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Abstract 

5-formylcytosine (5fC) is a rare base found in mammalian DNA and thought to 

be involved in active DNA demethylation. Here, we show that developmental 

dynamics of 5fC levels in mouse DNA differ from those of 5-

hydroxymethylcytosine (5hmC), and using stable isotope labelling in vivo, we 

show that 5fC can be a stable DNA modification. These results suggest 5fC 

has functional roles in DNA that go beyond being a demethylation 

intermediate. 
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DNA of all mammalian cells and tissues is methylated at specific loci, mainly 

in the 5’-cytosine-phosphate-guanine-3’ (CpG) context, to modulate the 

expression of genes1. 5-methylcytosine (5mC) is produced from cytosine (C) 

by dedicated DNA methyltransferases using S-adenosylmethionine (SAM) as 

a source of the methyl group2. In 2009, two independent laboratories found 5-

hydroxymethylcytosine (5hmC) to be present in mammalian DNA and to be 

the product of ten eleven translocation (TET)-enzyme mediated oxidation of 

5mC3,4. This oxidised base occurs in all mammalian cells and tissues with 

global levels ranging between 0.005% and 0.7% of all cytosines5,6. The iron(II) 

and 2-oxoglutarate dependent TET enzymes can also oxidise 5hmC further to 

5fC and 5-carboxycytosine (5caC), which were found at levels below 0.002% 

(or 20 ppm) of all Cs in the genomic DNA of mouse embryonic stem (mES) 

cells and several adult mouse tissues7-9. 

One proposed role for these oxidised cytosine bases is to serve as 

intermediates of enzyme-mediated DNA demethylation initiated by oxidation 

of 5mC10,11. Indeed, thymine-DNA glycosylase (TDG) can selectively 

recognise and excise 5fC and 5caC from the genome and trigger a repair 

process, which can lead to restoring unmodified C7,12. Moreover, mES cells 

lacking TDG show increased levels of 5fC and 5caC, suggesting that a part of 

these modifications is constantly being removed from the genome of mES 

cells7,12. On the other hand, we recently demonstrated that 5hmC is a 

predominantly stable modification in mammalian DNA, especially in the adult 

mouse brain where 5hmC is most abundant6. Herein we investigate the 

temporal dynamics of 5fC in genomic DNA in vivo to consider whether this 
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rare modification can be stable, rather than an active demethylation 

intermediate (Fig. 1a). 

 

We first analysed global levels of all cytosine modifications in the genomic 

DNA of C57BL/6 mouse tissues to see whether we can detect and quantify 

5fC, and identify a relationship between its levels and those of its precursors 

5mC and 5hmC or its metabolite 5caC. We included a range of postnatal 

tissues from newborn (1 d old), adolescent (21 d old) and adult (15 w old) 

mice, as their genomic DNA is known to have different levels of 5hmC 

depending on the overall proliferation rate (and therefore the age) of the 

tissue6. We also included C57BL/6 embryos at 11.5 d post-fertilisation as this 

is the lethal age for mice lacking TDG13,14, and mES cells derived from the 

same strain were added for comparison. To achieve quantification of the rare 

modifications (5fC and 5caC) with the highest possible sensitivity and 

accuracy, we employed a nano high-performance liquid chromatography – 

tandem high-resolution mass spectrometry (nanoHPLC-MS/HRMS) method, 

which is able to resolve genuine rare modified bases (5fC and 5caC) from 

potential impurities of the same nominal mass and retention time, and can 

detect down to 0.1 ppm of total cytosines in as little as 100 ng of digested 

genomic DNA. In addition, the use of isotopically labelled internal standards 

(IS) of C, 5mC and 5hmC substantially improved the quality of the 

measurements, ensured excellent reproducibility between technical replicates 

and excluded spontaneous oxidation of 5hmC as the source of 5fC or 5caC. 

Example mass spectra, extracted ion chromatograms and calibration curves 

are shown in Supplementary Results, Supplementary Figs. 1-5. 5mC and 
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5hmC were present in all tissues (Supplementary Fig. 6) and their levels 

were in good agreement with available published data5,6,8,9. While 5mC levels 

show a relatively uniform distribution between tissues, global 5hmC content is 

highly correlated to the proportion of proliferating cells in the tissue as we 

have shown previously6. We found 5fC to be also present in all studied 

tissues at levels ranging between 0.2 ppm and 15 ppm of all cytosines (Fig. 

1b and Supplementary Fig. 6). Notably, 5caC was not detected in any 

postnatal tissues from C57BL/6 mice, even in those with high 5fC content, but 

several tissues from C57BL/6 embryos (Fig. 1b) and adult (12 w old) CD1 

mice (Supplementary Fig. 7) contained up to 2 ppm of this rare DNA base 

modification. Overall, we found no correlation between the levels of 5fC and 

the levels of its precursors 5mC or 5hmC (Supplementary Fig. 8), nor did we 

find any clear pattern of DNA modification changes as the tissues age. They 

can retain the levels of 5fC while gaining 5hmC (e.g. brain), lose 5fC while 

retaining the levels of 5hmC (e.g. heart), or even lose 5fC while gaining 5hmC 

(e.g. liver) (Figs. 1c-e). We found that DNA from mES cells lacking all three 

TET enzymes (TET triple-knockout (TET-TKO))15 contains no detectable 

5hmC, 5fC or 5caC (Fig. 1a and Supplementary Fig. 6), confirming that 

5hmC is the only source of 5fC and 5caC in mES cell DNA. Although we have 

no measure of tissue-specific susceptibility to oxidation (such as the quantity 

of the oxidative lesion 8-oxoguanine), the lack of correlation between global 

levels of 5hmC and 5fC (Supplementary Fig. 8) together with the lack of 

positional overlap between 5hmC and 5fC in mES cells16,17 strongly suggest 

that 5fC and 5caC are not generated by spontaneous oxidation of 5hmC and 

5fC.  
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To elucidate the stability of 5fC in genomic DNA towards turnover in vivo, we 

applied a stable isotope tracing method consisting of feeding cultured cells 

and mice with [methyl-13CD3] L-methionine as we have done previously to 

study the lifetime of 5hmC6. The methyl-13CD3 group enters the intracellular 

pool of SAM and is transferred into newly methylated cytosines by the action 

of DNMT enzymes. The TET enzymes can then convert labelled [methyl-

13CD3] 5mC (5mC[+4]) into [hydroxymethyl-13CD2] 5hmC (5hmC[+3]) and 

[formyl-13CD] 5fC (5fC[+2]) (Fig. 1a). The labelling ratios (e.g. % 5fC[+2] over 

total 5fC) change according to the dynamics and half-life of the given 

modification in the genomic DNA. For example, a modification that is quickly 

turning over in DNA would show a high labelling ratio, whereas a very stable 

modification would show no labelling in non-proliferating cells or tissues. The 

maximum obtainable ratio also depends on the activity of other biosynthetic 

pathways feeding into the one carbon metabolism. The labelling ratios can be 

determined very accurately for each modified cytosine using LC-MS/HRMS 

due to unique masses of the labelled base fragments (Supplementary Fig. 8).  

We first cultured mES cells in the labelled ([methyl-13CD3] L-methionine) 

media for 8 days, and found that the labelling ratio of 5fC increases much 

slower than that of 5mC and 5hmC. This indicates either a substantial time lag 

in making 5fC from newly formed 5hmC, or presence of a population of slower 

or non-dividing (unlabelled) cells with higher global levels of 5fC compared to 

the fast dividing (labelled) population of mES cells (Fig. 2a).  

We then analysed genomic DNA from C57BL/6 mice fed with a diet where all 

L-methionine was replaced with [methyl-13CD3] L-methionine. To gain 

information about 5fC in developing tissues, we fed a pregnant female starting 
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from 7 d before birth, and kept the family for 6 more days on the labelled diet 

(the 6 d-old pups were therefore labelled for 13 d when harvested). The 

genomic DNA in tissues such as kidney or colon showed uniform labelling of 

around 30% for all detectable modifications (5mC, 5hmC and 5fC) (Fig. 2b). 

However, brain tissue from the same pups showed much less 5hmC[+3] and 

no detectable 5fC[+2]. This indicates that 5fC was formed in these tissues 

prior to the start of labelling and remained there for 13 d until the DNA was 

harvested. 1 d-old newborns labelled from conception and with pre-labelled 

parents (52 d prior to conception, total labelling time of pup is therefore 22 d) 

already showed a higher 5fC labelling in the brain, but the ratio was still lower 

than those of 5mC and 5hmC (27% vs. 44% and 42.5%, respectively) (Fig. 

2b). During the gestation period, the labelling ratio of the methionine pool in 

the pregnant female was still increasing and therefore this observation is 

consistent with 5fC being more abundant on the older or slower proliferating 

DNA as concluded above. Proliferating tissues from adult mice (e.g. spleen) 

showed a similar trend where the 5fC labelling ratio was always smaller than 

that of 5mC or 5hmC, even in animals labelled for as long as 4 months (117 

d) (Fig. 2c). This effect is best explained by 5fC being mostly stable, and 

again by the presence of non-dividing (unlabelled) cells alongside a 

population of proliferating (labelled) cells that have lower global 5fC levels 

than the non-dividing cells.  

Finally, in the mostly non-dividing adult brain where only 1.3% and 3.7% of 

5mC becomes labelled during the 117-d feeding period, there was no 

detectable labelled 5fC. Again, this is not due to a lack of an intracellular pool 

of [methyl-13CD3] SAM, as we could measure more than 50% [methyl-13CD3] 
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5mC in RNA in adult brain and cerebellum (Fig. 2d). If 5fC was a short-lived 

DNA modification and was constantly being turned over, its labelling ratio 

would be close to the labelling ratio of intracellular SAM and 5mC in RNA. If 

5fC was short-lived and only produced from pre-existing unlabelled 5hmC in 

the adult brain, the levels of 5hmC would be depleted over time, which is not 

consistent with the high levels of 5hmC in this tissue and is the opposite of 

what has been described for ageing brain18. Therefore, the lack of 5fC 

labelling in the adult brain means that this modified base must be stable in the 

genome as opposed to generally acting as a dynamic intermediate of active 

DNA demethylation. 

 

In summary, we present the first direct evidence that 5fC (derived from mC by 

TET-mediated oxidation) can be a stable DNA modification in vivo, and 

provide quantitative measurements of the levels of all modified cytosines in 

mouse tissues across several developmental stages. 5fC levels do not 

correlate with those of its precursors 5mC and 5hmC, its metabolite 5caC or 

with age of the individual. Whilst there is precedent for removal of 5fC and 

5caC from the genome (e.g. in mES cells), probably in the process of active 

DNA demethylation7,12, our findings suggest that the bulk of 5fC can be stable. 

5fC has been identified as having more protein binders than 5mC or 

5hmC19,20 and having a distinct genomic profile from 5mC, 5hmC or 5caC at 

single-base resolution12,16,17,21-23. Moreover, 5fC has recently been shown to 

alter the structure of the DNA double helix24. We therefore conclude that such 

stably 5fC-modified DNA could have profound consequences for the 

regulation of gene expression that may be distinct to those caused by the 
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presence of 5mC and 5hmC. However, direct evidence regarding the 

biological function of 5fC remains to be demonstrated. 

 

Methods 

Methods and any associated references are available in the online version of 

the paper. 
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Online Methods 

Animals. All in vivo experiments were performed under the terms of a UK 

Home Office license. C57BL/6 and CD1 mice were bred and housed 

according to UK Home Office guidelines. Custom L-methionine-free mouse 

diet supplemented with [methyl-13CD3] L-methionine (Sigma) was 

manufactured by TestDiet. 

 

Cell culture. mES cells were derived by Dr Xiangang Zou in the CRUK 

Cambridge Institute from a C57BL/6 mouse (Charles River) and cultured on a 

gelatin-coated plate in a DMEM-KO medium (Invitrogen) supplemented with 
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10% FCS, MEM non-essential amino acids, glutamine, sodium pyruvate, 

penicillin, streptomycin, mouse leukemia inhibitory factor (mLIF) and 2i as 

described by Ying et al.25 TET-TKO mES cells were obtained from Guoliang 

Xu15 and cultured in the 2i conditions as above. All cells were regularly tested 

for mycoplasma contamination. For isotopic labelling experiments, cells were 

maintained in a custom L-methionine-free DMEM-KO medium (Invitrogen) 

supplemented with 30 mg/L of [methyl-13CD3] L-methionine (Cambridge 

Isotope), and the respective components above.  

 

Genomic DNA extraction. Tissues and cells were resuspended in lysis 

buffer (100 mM Tris, pH 5.5, 5 mM EDTA, 200 mM NaCl, 0.2% SDS) 

supplemented with 400 μg/ml proteinase K (Invitrogen), and were incubated 

at 55°C overnight. DNA was purified using phenol:chloroform:isoamyl alcohol 

(25:24:1, Sigma) and Phase Lock Gel (5 Prime), precipitated from 70% 

ethanol and resuspended in ultrapure HPLC-grade water. 

 

DNA degradation to 2’-deoxynucleosides and LCMS analysis. 1-2 µg of 

DNA was incubated with 5 U of DNA Degradase Plus (Zymo Research) in a 

total volume of 30 µl for 4 h at 37°C. Samples were filtered through a pre-

washed Amicon 10 kDa centrifugal filter unit (Millipore) before LCMS analysis.  

 

LCMS analysis of global 5mC, 5hmC, 5fC and 5caC levels. Analysis of 

global levels of 5mC, 5hmC, 5fC and 5caC was performed on a Q Exactive 

mass spectrometer (Thermo) fitted with an UltiMate 3000 RSLCnano HPLC 

(Dionex) and a self-packed hypercarb column (20 mm  75 µm, 3 µm particle 
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size) at a flow rate of 0.75 µl/min, and a gradient of 0.1% formic acid in water 

and acetonitrile. Calibration curves were generated using a mixture of 

synthetic standards 2’-deoxycytidine (Sigma), 5-methyl-, 5-hydroxymethyl-, 5-

formyl- and 5-carboxy-2’-deoxycytidine (Berry&Associates), in the ranges of 

0.5 nM – 5 µM for C, 0.025 – 250 nM for 5mC and 0.005 – 50 nM for 5hmC, 

5fC and 5caC. Samples and synthetic standards were spiked with an 

isotopically labelled mix containing 100 nM of 2’-deoxycytidine-(15N,d2) 

(synthesis and characterisation in Bachman et al.6), 5-methyl-2’-

deoxycytidine-(d3) and 5-hydroxymethyl-2’-deoxycytidine-(d3) (both Toronto 

Research Chemicals). Target ions were fragmented in a positive ion mode at 

10% normalized collision energy, and full scans (50 – 300 Da) were acquired. 

The inclusion list contained the following masses: C (228.1), C_IS (231.1), 

5mC (242.1), 5mC_IS (245.1), 5hmC (258.1), 5hmC_IS (261.1), 5fC (256.1), 

5caC (272.1). Extracted ion chromatograms of base fragments (see 

Supplementary Fig. 1) were used for quantification. Results are expressed as 

a % or ppm of total cytosines. 

 

LCMS analysis of isotope incorporation into genomic DNA. Analysis of 

isotope incorporation into DNA was performed using the same instrumental 

set up as above, targeting ions of masses 242.1 (mC), 246.1 (mC[+4]), 258.1 

(5hmC and 5fC[+2]), 261.1 (5hmC[+3]) and 256.1 (5fC). Extracted ion 

chromatograms of base fragments were used for quantification of labelling 

ratios (see also Supplementary Fig. 8). Results are expressed as % labelling 

(e.g. % 5fC[+2] represents the percentage of labelled 5fC[+2] in total 5fCs). 
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LCMS analysis of isotope incorporation into 5mC in RNA. Total RNA was 

carried through during genomic DNA extraction (no RNase treatment), during 

hydrolysis to nucleosides and LC-MS/HRMS analysis. An additional mass of 

262.1 was targeted for RNA 5mC[+4] (unlabelled 5mC was present in the 

258.1 channel), and base fragments 126.0662 (5mC) and 130.0884 

(5mC[+4]) were used for quantification of % labelling as above.  
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Figure Legends: 

 

Figure 1 | Dynamics of global levels of 5fC during mouse development 

are distinct to those of 5hmC. (a) Metabolism of cytosine modifications in 

DNA. While the majority of 5mC and 5hmC persist in the genomic DNA, the 

stability of 5fC and 5caC in vivo was unknown. Feeding [methyl-13CD3] L-

methionine can be used to measure the lifetime of cytosine modifications in 

cells and in vivo. Labelling pattern is indicated in red. See also Fig. 2. (b) 

Global levels of 5fC and 5caC in genomic DNA from mouse embryos (E11.5). 

Shown are mean ± SEM of 3 animals. Each sample was analysed in technical 

duplicate and the mean value was used. (c, d, e) Changes of global 5fC, 5mC 

and 5hmC levels during development in selected C57BL/6 mouse tissues 

(further data in Supplementary Fig. 6). Shown are mean ± SEM of 3 

embryos (E11.5) (data from Fig. 1b), 3 newborns (1 d old), 2 adolescent (21 d 

old) and 2 adult (15 w old) mice. See also Supplementary Figs. 7–8.  
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Figure 2 | 5fC can be a stable DNA modification in vivo. (a) Labelling 

ratios of 5mC, 5hmC and 5fC in the genomic DNA of mES cells cultured in the 

presence of [methyl-13CD3] L-methionine. Shown are single measurements 

and total labelling time is given in brackets. (b, c and d) Labelling ratios of 

5mC, 5hmC and 5fC in the genomic DNA of C57BL/6 mice fed with the 

[methyl-13CD3] L-methionine diet. (b) 6 d-old pups labelled from 1 week prior 

to birth (total labelling time of 13 d), or 1 d-old newborn (total labelling time of 

22 d, parents on labelled diet for 52 d prior to conception). Shown are mean ± 

SEM of 2 animals (6 d-old pups) or 2 technical replicates (1 d-old pup). (c and 

d) Mice labelled in adulthood. Shown are mean ± SEM of at least 2 technical 

replicates from individual mice, and total labelling time is shown in brackets. 

The absence of 5fC[+2] in the brain (d) where 5fC is most abundant (see Fig. 

1 and Supplementary Fig. 6) indicates minimal or no further generation of 

5fC once placed in post-mitotic tissues. Moreover, if 5fC was involved in 

cycles of methylation and demethylation, its labelling ratio would be similar to 

that of 5mC in RNA (d). 

 

 


