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Abstract

The aim of these studies was to provide reference data on intersubject variability
and reproducibility of metabolite ratios for Choline/Creatine (Cho/Cr), N-acetyl
aspartate/Choline (NAA/Cho) and N-acetyl aspartate/Creatine (NAA/Cr), and
individual signal-intensity normalised metabolite concentrations of NAA, Cho and
Cr. Healthy volunteers underwent imaging on two occasions using the same 3T
Siemens Verio magnetic resonance scanner. At each session two identical
Metabolic Imaging and Data Acquisition Software (MIDAS) sequences were
obtained along with standard structural imaging. Metabolite maps were created and
regions of interest applied in normalised space. The baseline data from all 32
volunteers were used to calculate the intersubject variability, while within session
and between session reproducibility were calculated from all the available data. The
reproducibility of measurements were used to calculate the overall and within
session 95% prediction interval for zero change. The within and between session
reproducibility data were lower than the values for intersubject variability, and were
variable across the different brain regions. The within and between session
reproducibility measurements were similar for Cho/Cr, NAA/Choline, Cho and Cr
(11.8%, 11.4%, 14.3 and 10.6% vs. 11.9%, 11.4%, 13.5% and 10.5% respectively),
but for NAA/Creatine and NAA between session reproducibility was lower (9.3%
and 9.1% vs. 10.1% and 9.9%; p <0.05). This study provides additional reference
data that can be utilised in interventional studies to quantify change within a single
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imaging session, or to assess the significance of change in longitudinal studies of
brain injury and disease.

Introduction

Proton magnetic resonance spectroscopic imaging ("HMRS) can be used in the
diagnosis, assessment of progression and prediction of outcome in a variety of
neurological disorders such as brain tumours [1], traumatic brain injury [2—4],
multiple sclerosis [5, 6], motor neuron disease [7], Alzheimer’s dementia [8] and
psychiatric disorders [9-11]. The metabolites reliably measured with proton
spectroscopy ('HMRS) at medium to long echo times include N-acetyl aspartate
(NAA), Creatine (Cr) and Choline (Cho) containing compounds. These provide a
measure of neuronal integrity, metabolism and a marker of neuronal breakdown
and turnover respectively [12—15]. While targeted imaging of regions of interest
(with single voxel or two dimensional "HMRS) allows evaluation of local neuronal
loss and glial proliferation, whole brain imaging provides assessment of the global
burden of neurological disease even in regions that appears structurally normal.
"HMRS has been used to non-invasively evaluate normal appearing brain in a
variety of neurological disorders including multiple sclerosis and head injury
(3,6, 16]. Whole brain proton spectroscopy (WB 'HMRS) data acquired with
Metabolic Imaging and Data Acquisition Software (MIDAS) [17-19] provides a
fully automated pipeline for processing and interpreting WB "HMRS data.
Previous studies using MIDAS and other "HMRS techniques have provided
invaluable reference data regarding normal values within different brain regions
and reproducibility of such data [20-24]. However, there are limited data
comparing intersubject variability and reproducibility of WB 'HMRS measure-
ments within the same imaging session (within session reproducibility) and those
obtained during repeat imaging sessions on different days (between session
reproducibility). This is of relevance for group comparisons with healthy controls,
and longitudinal and interventional studies where WB "HMRS is used as a
biomarker of disease progression or response to therapy. The rational design and
interpretation of such studies is hampered by lack of knowledge regarding how
the variability of WB "HMRS measurements in data obtained during the same
scanning session differs when compared with similar data obtained during a
different session or day. In studies where consecutive measurements are
performed on each subject under resting and experimental conditions problems
associated with variation between subjects due to individual differences
(intersubject variability) can be limited. However, baseline MIDAS WB "HMRS
measurements may vary within an individual patient (intrasubject variability) and
limit the ability to detect significant changes over time or following a therapeutic
intervention. Where imaging is repeated after several days or weeks in different
sessions the measurements may vary within an individual patient even in the
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absence of disease progression due to a combination of intrasubject and scanner
variability [25]. Without knowledge of such differences it is difficult to accurately
determine the clinical significance of pathophysiological changes, as they evolve
following various causes of brain injury or disease.

The aim of these studies was to provide reference data on intersubject
variability and reproducibility of commonly used metabolite ratios (Cho/Cr,
NAA/Cho and NAA/Cr) and individual signal-intensity normalised metabolite
concentrations (NAA, Cho and Cr) in a group of healthy volunteers using
MIDAS. These data will inform the design of interventional studies, where
repeated measurements are conducted within the same session, and longitudinal
studies where assessments are repeated over time in several different imaging
sessions.

Materials and Methods

Ethics statement

Ethical approval was obtained from the Cambridgeshire 2 Research Ethics
Committee (reference number 97/290), and written informed consent was
obtained from all volunteers in accordance with the Declaration of Helsinki.

Imaging data acquisition

Thirty two healthy volunteers without any history of neuropsychiatric disorder or
substance abuse underwent imaging using a 3T Siemens Verio MRI scanner
(Siemens AG, Erlangen, Germany) with 12 channel detection within the Wolfson
Brain Imaging Centre (WBIC), University of Cambridge. All volunteers were right
handed (fourteen males and eighteen females) with mean (range) age of 34 (25 —
50) years, and were employed by Cambridge University Hospitals NHS Trust.
Twenty-two volunteers attended a second imaging session within a mean (range)
of 33 (3 — 181) days. At each imaging session subjects were imaged twice with
MIDAS along with standard structural imaging. Structural sequences included 3D
T1-weighted magnetisation prepared rapid gradient echo (MPRAGE), fluid
attenuated inversion recovery (FLAIR), gradient echo and dual spin echo (proton
density/T2-weighted). Whole brain spectroscopy data were acquired using a
volumetric spin echo (TR/TE 1710/70 milliseconds, flip angle of 73° 50 phase
encoding steps and a field of view of 280 x 280 x 180 mm®) covering the whole
brain with an acquisition time of 26 minutes as described by Maudsley et al
[17,18,26]. This sequence also included lipid inversion nulling and an
unsuppressed water spectroscopy dataset acquired with 20° flip angle acquired in
an interleaved fashion. The MIDAS and MPRAGE were acquired at an angulation
of 715 to "20° to the AC-PC line to improve brain coverage and limit field
inhomogenieties from the frontal and sphenoid air sinuses. The MPRAGE (TR/TE
2150/4.4 and flip angle 8°) was acquired within each imaging session with one
millimetre isotropic resolution.
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Spectroscopic data processing

Parametric maps were created using the automated pipeline of MIDAS and the
data for NAA, Cho and Cr were individual signal-intensity normalised to
institutional units (iu) based on the tissue water signal derived from the water
reference dataset. Metabolite data were reconstructed using MIDAS and resulted
in images composed of 64 x 64 x 32 voxels with an individual voxel volume of
approximately 1 ml. Voxel data with line width greater than 12 Hz were excluded
from further analysis as previously described by Maudsley et al [24]. The WB
"HMRS parametric maps were spatially normalised using a two-step approach
using FSL [20,27]. First, control T1 weighted images were coregistered to water
spectroscopic images using FMRIB’s Linear Image Registration Tool (FLIRT) [28-
30]. This was followed by coregistration of control T1 weighted images to the
MNI152 template using FMRIB’s Non-linear Image Registration Tool (FNIRT)
[29-31]. Combined transformation matrixes were then applied to all parametric
images used in the analyses. Representative white matter, deep grey and mixed
regions of interest (ROIs) from the Harvard Oxford subcortical and MNI
structural probabilistic atlases available within FSL were then applied in
normalised space (Fig. 1). All coregistered images were subsequently inspected to
ensure that the ROIs were correctly aligned and corresponded to the regions
specified. The ROI template was modified by erosion of a single voxel using FSL to
improve spatial localisation and reduce the impact of coregistration, normal-
isation and partial volume errors. The mean values for metabolites for each ROI
were calculated using in-house software written in Matlab (Mathworks, Natick,
USA).

Analysis Strategy

Each of the 32 volunteers were invited to attend two separate imaging sessions
where two MIDAS sequences were obtained. This resulted in a maximum of four
independent sets of WB "HMRS data (runs) for each subject, which could be used
to assess the reproducibility of measurements. Twenty-two subjects underwent
imaging in both sessions. The baseline data from all 32 volunteers were used to
calculate intersubject variability. For the repeat MIDAS measurements obtained in
the same subject the data were split into that obtained during the same imaging
session and that obtained in two different imaging sessions to calculate within
session and between session reproducibility respectively. Therefore, the available
paired data from each session (run 1 & 2 and 3 & 4 respectively) were used to
calculate within session reproducibility, and the available combinations of the
four datasets from the different sessions were used to calculate between session
reproducibility (runs 1 & 3,1 & 4, 2 & 3, and 2 & 4). The inclusion of all potential
combinations ensures that any variation in the order of the individual sequences
obtained within each particular session is accounted for within the calculated
average measurement of between session reproducibility and reflects clinical
practice.
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Fig. 1 Region of interest template. T1 weighted magnetic resonance image in MNI152 space (2mm
resolution) showing frontal lobe left (L Frontal), frontal lobe right (R Frontal), anterior corpus callosum (ACC),
thalamus left (L Thalamus), thalamus right (R Thalamus), occipital left (L Occipital), occipital right (R Occipital),
putamen left (L Putamen) and putamen right (R Putamen). Additional regions not shown include body corpus
callosum, posterior corpus callosum, dorsal mid brain, ventral mid brain and bilateral regions covering the
corticospinal tract, anterior thalamic radiation, inferior longitudinal fasciculus, superior longitudinal fasciculus,
pallidum, hippocampus, parietal lobe, temporal lobe, cerebral peduncle and pons.

doi:10.1371/journal.pone.0115304.9001

In order to help design any future interventional study using proton
spectroscopy we need to know how much deviation in a repeat measurement we
would accept as no or zero change. We used the SD of measurements obtained in
this healthy volunteer study to calculate a ‘confidence interval’ for zero change of
a repeat measurement in the same subject. We used the average SD for all
measurements obtained in 32 volunteers in both sessions to calculate the
population 95% prediction interval (PI) for zero change (using two SD values)
[25,32,33]. These calculated thresholds are prediction intervals for assuming no
changes from zero with the repeat WB '"HMRS measurement rather than
confidence intervals for variability of the measurement. This estimate for the
variation in repeat measurements means that we would accept a positive or
negative change in a patient as being indicative of zero change as long as it were
less than 2 times the standard deviation of the repeat measurement obtained in
our healthy volunteer group. Although these average data are extremely useful, the
calculated SD could vary within different sessions and particular ROIs within
subjects. It would therefore be helpful to have a more specific measure of
variability within a session (within session reproducibility), and preferably for
each ROI. While this is possible, the small sample numbers (two readings
obtained in each of the two sessions) means that a conventional threshold of
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change greater than 2SD cannot be used to assess the statistical significance of
changes in this context. For a t distribution with two degrees of freedom,
statistical theory suggests that an estimate of the 95% prediction interval for zero
change may be provided by a threshold of 4.3 SDs. These within session
measurements could therefore be used to assess the significance of the changes in
WB "HMRS parameters following a therapeutic intervention within the same
imaging session. We have previously published this analysis strategy for diffusion
tensor imaging and >O positron emission tomography [25, 34].

Statistical analysis

Statistical analyses were conducted using Statview (Version 5, 1998, SAS Institute
Inc., Cary, North Carolina, USA) and SPSS Statistics Version 21 (IBM
Corporation, New York, United States). All data are expressed and displayed as
mean and standard deviation (SD), unless otherwise stated. To compare the
reproducibility of WB "HMRS measurements the SD and coefficient of variation
(CoV) (CoV = SD/mean) of measurements were calculated within each ROI.
Data were compared using paired t-tests, factorial analysis of variance (ANOVA)
and intraclass correlation (ICC) as appropriate. Using ANOVA the residual
standard deviation was used to calculate the 95% prediction interval for zero
change of repeat WB 'HMRS studies. All p values are quoted after Bonferroni
corrections for multiple comparisons (where appropriate).

Results

Intersubject variability for whole brain proton spectroscopic
imaging (WB 'HMRS)

The intersubject variability of the metabolite ratios (Cho/Cr, NAA/Cr and NAA/
Cho) and concentrations (NAA, Cho and Cr) using the ROI template (Fig. 1) are
displayed in Table 1 and 2 respectively. In Fig. 2 NAA, Cr and Cho signal-
intensity normalised metabolite concentration parametric maps are displayed in
comparison with a structural image. The intersubject variability was high with a
mean (range) CoV across the ROIs for Cho/Cr of 21 (11 — 62%), NAA/Cho 17 (11
—55%), NAA/Cr 13 (8 — 37%), NAA 12 (6 — 23%), choline of 31 (13 — 69%) and
creatine 19 (7 — 61%).

Within session and between session reproducibility of WB "HMRS

The individual ROI data for within and between session reproducibility were
variable across the different brain regions, but lower than the values for
intersubject variability (Tables 3, 4, 5, 6). The within and between session
reproducibility measurements were similar for Cho/Cr, NAA/Choline, Cho and
Cr (11.8%, 11.4%, 14.3 and 10.6% vs. 11.9%, 11.4%, 13.5% and 10.5%, and p =
0.44, 0.87, 0.08 and 0.86 respectively, paired ‘t’ tests), but for NAA/Creatine and
NAA between session reproducibility was lower than within session reproduci-

PLOS ONE | DOI:10.1371/journal.pone.0115304 December 17, 2014 6/23



@'PLOS | ONE

Reproducibility of Metabolites with Proton Spectroscopy

bility (9.3% and 9.1% vs. 10.1% and 9.9%, p <0.05 paired ‘t’ test with Bonferroni
correction). The difference between intersubject variability, within and between
session reproducibility is displayed for a selection of ROIs for the metabolite ratios
and concentrations in Figs. 3 and 4 respectively.

The intraclass correlation coefficient (ICC) for within and between session
reproducibility within brain regions of mixed cortical and deep grey, and white
matter are displayed in table 7.

Calculation of 95% prediction interval for zero change

Using the four WB 'HMRS measurements obtained from both sessions we used
ANOVA to determine the significance of the differences (Tables 8 and 9). These
confirm that there is a significant difference between regions and subjects, and
that there is a significant interaction between brain region and subject. The
residual variance of the measurements that cannot be accounted for by the known
independent variables is shown in Tables 8 and 9. The calculated SD values were
0.10, 1.03 and 0.28 for Cho/Cr, NAA/Cho, NAA/Cr and 1709.7, 913.2 and 1521.4
iu for NAA, Cho and Cr respectively. The overall population 95% prediction
interval for zero change (based on two SD values) were therefore 0.20, 2.06 and
0.56 for Cho/Cr, NAA/Cho and NAA/Cr and 3419.4, 1826.4 and 3042.8 iu for
NAA, Cho and Cr respectively. For the within session measurements the
calculated SD values were 0.10, 1.11 and 0.23 for Cho/Cr, NAA/Cho, NAA/Cr and
1399.7, 1115.9 and 1292.8 iu for NAA, Cho and Cr respectively and were similar
to the data obtained from all four sessions. These data can be used to calculate
prediction intervals within individual ROIs. For the within session data (Table 3
& 5) an estimate of the 95% prediction intervals for zero change within individual
ROIs should be based on 4.3 SD values. As an example, this results in a 95%
prediction interval for zero change for NAA, Cho and Cr within a single imaging
session of 3839.5, 844.5 and 2345.2 iu for the left temporal, and 3557.0, 1815.9 and
3081.0 iu for the right anterior thalamic radiation respectively. These prediction
intervals can be used to assess the impact of therapeutic interventions within a
single session, but also to assess the impact of treatment and disease progression
over time within different imaging sessions.

Discussion

This study provides additional reference data concerning intersubject variability
and reproducibility of metabolite ratios and individual signal-intensity normalised
metabolite concentrations obtained using WB "HMRS conducted within the same
imaging session (within session) and different imaging sessions (between session)
in a group of healthy volunteers. As reported previously, we found that
intersubject variability was high [21]. The reproducibility of metabolite ratios and
concentrations were lower than intersubject variability (10 — 15% vs. 15 — 30%)
but there was substantial variability across the brain for all the calculated
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Table 1. Intersubject variability of metabolite ratios for whole brain proton spectroscopy.

Choline/Creatine

e ChoveGrestine. [ Nawchone | nanGroane
[Region ofersst | Wean [ 50 [ covsi | Wemn [50 [ Covee | mean |50 [ Covii

Anterior corpus callosum

Body of corpus callosum

Posterior corpus callosum
Corticospinal tract right
Corticospinal tract left

Anterior thalamic radiation right
Anterior thalamic radiation left
Inferior longitudinal fasciculus right
Inferior longitudinal fasciculus left
Superior longitudinal fasciculus right
Superior longitudinal fasciculus left

Thalamus right
Thalamus left
Pallidum right
Pallidum left
Putamen right
Putamen left
Dorsal Mid Brain
Ventral Midbrain
Frontal lobe right
Frontal lobe left
Hippocampus right
Hippocampus left
Occipital right
Occipital left
Parietal right
Parietal left
Peduncle right
Peduncle left
Pons right

Pons left
Temporal right
Temporal left
Mean

0.63
0.27
0.28
0.29
0.29
0.32
0.31
0.24
0.22
0.23
0.21
0.31
0.30
0.29
0.30
0.28
0.30
0.37
0.35
0.21
0.22
0.33
0.33
0.17
0.16
0.18
0.17
0.28
0.28
0.45
0.46
0.19
0.18
0.29

0.39
0.07
0.05
0.04
0.06
0.06
0.07
0.04
0.03
0.03
0.03
0.05
0.05
0.05
0.07
0.04
0.06
0.08
0.08
0.06
0.09
0.06
0.04
0.08
0.05
0.04
0.03
0.04
0.05
0.11
0.12
0.02
0.02
0.06

61.81
24 .47
17.04
13.57
21.11
18.37
22.61
17.26
13.13
11.93
12.51
15.84
15.62
16.50
22.54
15.62
20.25
21.14
21.93
27.24
40.53
16.57
13.19
45.79
29.32
21.17
16.75
14.32
18.23
24.90
26.18
11.00
12.62
21.24

NAA/Choline NAA/Creatine
5.23 2.85 54.58 1.79 0.67
6.45 0.93 14.47 1.59 0.23
6.78 0.78 11.53 1.81 0.23
4.98 0.67 13.41 1.40 0.14
4.85 0.56 11.57 1.37 0.12
5.29 0.67 12.68 1.44 0.12
5.54 0.68 12.26 1.46 0.11
7.16 0.81 11.35 1.49 0.12
6.65 0.78 11.68 1.38 0.12
6.77 0.83 12.30 1.50 0.13
6.26 0.78 12.52 1.36 0.11
5.37 0.68 12.58 1.59 0.18
5.58 0.67 12.08 1.63 0.20
5.71 0.84 14.67 1.49 0.12
5.82 0.79 13.66 1.54 0.16
5.75 0.84 14.65 1.47 0.14
5.70 0.74 12.95 1.50 0.15
4.84 0.94 19.49 1.71 0.22
5.11 0.78 15.34 1.64 0.14
4.42 0.87 19.79 0.97 0.13
4.25 0.90 21.13 0.92 0.14
4.97 0.95 19.14 1.49 0.21
4.88 0.91 18.59 1.50 0.23
9.27 1.89 20.34 1.47 0.26
7.97 1.67 20.96 1.30 0.21
6.37 1.16 18.27 1.24 0.18
5.92 1.01 17.05 1.15 0.14
4.69 0.65 13.80 1.27 0.17
4.59 0.56 12.20 1.23 0.15
3.94 0.90 22.73 1.74 0.42
4.18 1.18 28.24 1.78 0.48
4.60 0.75 16.22 1.04 0.13
4.20 0.73 17.33 0.95 0.14
5.58 0.93 16.96 1.43 0.19

37.35
14.35
12.86
10.26
8.62

8.30

7.63

8.09

8.46

8.57

8.17

11.57
12.09
8.23

10.18
9.88

10.18
13.10
8.33

13.79
15.03
13.87
15.24
17.76
15.95
14.25
12.19
13.37
12.00
24.08
27.16
12.94
14.65
13.30

Intersubject variability for Choline/Creatine, N-Acetyl aspartate (NAA)/Choline and N-Acetyl aspartate/Creatine. Data displayed were obtained in 32 subjects
and show mean, standard deviation (SD) and percentage coefficient of variation (CoV%) for each region of interest (ROI).

doi:10.1371/journal.pone.0115304.t001

parameters. The within and between session reproducibility measurements were
similar for Cho/Cr, NAA/Cho, Cho and Cr but for NAA/Creatine and NAA

between session reproducibility was lower than within session reproducibility. The
calculated overall population 95% prediction intervals for zero change of repeat
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Table 2. Intersubject variability of metabolite concentrations for whole brain proton spectroscopy.

[Regonofmersst e |50 [ covsi | memn [0 [Covee [mem [0 [covei _

Anterior corpus callosum

Body of corpus callosum

Posterior corpus callosum
Corticospinal tract right
Corticospinal tract left

Anterior thalamic radiation right
Anterior thalamic radiation left
Inferior longitudinal fasciculus right
Inferior longitudinal fasciculus left
Superior longitudinal fasciculus right
Superior longitudinal fasciculus left

Thalamus right
Thalamus left
Pallidum right
Pallidum left
Putamen right
Putamen left
Dorsal Mid Brain
Ventral Mid brain
Frontal lobe right
Frontal lobe left
Hippocampus right
Hippocampus left
Occipital right
Occipital left
Parietal right
Parietal left
Peduncle right
Peduncle left
Pons right

Pons left
Temporal right

Temporal left
Mean

11778.3
14215.7
14769.6
12802.3
12545.5
11825.9
12371.3
13292.0
12006.4
13347.6
11969.7
12445.6
123711
12804.3
13159.7
13276.7
13664.1
13584.3
13478.7
7793.6

T7724.7

12640.0
12628.8
12968.4
11378.9
11321.4
10300.9
16640.8
16388.9
14199.4
14712.8
9137.6

8266.0
124791

2644.6
1799.0
1782.9
765.3

691.9

882.6

722.3

1147.9
1119.4
992.9

1139.7
1926.6
2000.5
1312.2
1388.3
1546.3
1426.8
2699.4
1588.7
767.3

818.0

1255.2
1315.5
1817.8
1562.1
1039.0
977.7

1451.7
1198.7
2778.6
2663.6
1119.4

1267.6
1442.7

225
12.7
121
6.0
5.5
7.5
5.8
8.6
9.3
7.4
9.5
15.5
16.2
10.2
10.5
11.6
10.4
19.9
11.8
9.8
10.6
9.9
10.4
14.0
13.7
9.2
9.5
8.7
7.3
19.6
18.1
123

15.3
11.6

3928.9
2535.7
2256.2
2660.9
2651.9
2973.8
2958.6
2220.6
1976.1
2067.6
1905.6
2417 1
2313.6
25171
2554.0
2601.2
2791.6
3003.7
2840.5
1991.8
2042.6
3121.1
3257.6
1667.8
1507.6
1668.9
1550.0
3771.9
3760.7
3757.8
4076.3
1834.7

1683.3
2571.7

1593.9
1131.0
377.8
334.7
407.9
1568.1
1307.1
817.6
437.8
302.5
285.7
474.5
442.4
542.8
509.3
647.9
742.0
791.2
546.8
1156.6
1261.6
928.0
1660.3
1146.9
627.7
532.8
468.8
618.9
927.0
918.3
1777.4
341.9

344.8
787.0

40.6
44.6
16.7
12.6
15.4
52.7
44.2
36.8
22.2
14.6
15.0
19.6
19.1
21.6
19.9
24.9
26.6
26.3
19.3
58.1
61.8
29.7
51.0
68.8
41.6
31.9
30.2
16.4
246
244
43.6
18.6

20.5
30.7

9561.7
9357.7
8508.9
8612.0
8667.5
9130.7
8946.8
9015.0
8232.2
8578.7
7986.0
8043.5
7825.0
8952.5
8877.8
9356.6
9473.1
8169.9
8576.1
6519.3
6379.4
9388.5
9433.9
8480.5
7655.5
7682.2
7164.8
13721.4
13589.7
8322.3
9308.0
6849.1

6203.0
8683.9

3934.6
2010.0
1788.5
561.5

804.0

3498.9
16741
1466.9
794.6

613.6

675.7

1531.9
1594.3
1091.4
1140.2
1079.3
1071.1
1740.5
1110.9
2158.9
1701.0
1823.7
2998.5
1905.3
1042.3
914.2

834.4

22524
1511.0
1989.1
5645.1
881.4

751.6
1654.3

411
21.5
21.0
6.5

9.3

38.3
18.7
16.3
9.7

7.2

8.5

19.0
20.4
12.2
12.8
11.5
1.3
213
13.0
33.1
26.7
19.4
31.8
22.5
13.6
11.9
1.6
16.4
11.1
23.9
60.6
12.9

121
19.0

Intersubject variability for N-Acetyl aspartate (NAA), Choline (Cho) and Creatine (Cr). Data displayed were obtained in 32 subjects and show mean, standard

deviation (SD) and percentage coefficient of variation (CoV%) for each region of interest (ROI).

doi:10.1371/journal.pone.0115304.t002

MIDAS measurements were 0.20, 2.06 and 0.56 for metabolite ratios (Cho/Cr,
NAA/Cho and NAA/Cr) and 3419.4, 1826.4 and 3042.8 iu for metabolite
concentrations (NAA, Cho and Cr) respectively. These prediction intervals can be

PLOS ONE | DOI:10.1371/journal.pone.0115304 December 17, 2014

9/23



@'PLOS | ONE

Reproducibility of Metabolites with Proton Spectroscopy

hwwd \Wwww

. I . |
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Fig. 2. Metabolite parametric maps. T1 weighted magnetic resonance image in MNI152 space (2mm
resolution) with a representative spectra from the right thalamus and N-acetyl aspartate (NAA), Creatine (Cr)
and Choline (Cho) signal-intensity normalised metabolite concentration parametric maps. PPM (parts per
million).

doi:10.1371/journal.pone.0115304.g002

calculated for individual ROIs and utilised in interventional studies where
response to therapy can be assessed, or to assess the significance of change from
disease progression within longitudinal studies of nervous system disorders.

The factors affecting the reproducibility of WB "HMRS parameters include
changes within the MR scanner or individual subjects. Features related to the
scanner include By field inhomogeneities (heating during the long acquisition
process), scanner drift, gradient coil stability, signal to noise ratio and software
upgrades. Such factors may be more significant when imaging is acquired within
different imaging sessions, rather than repeat acquisitions within the same session
where such parameters are more likely to be similar. Regular servicing and daily
quality assurance measurements seek to ensure that an MR scanner is operating
normally. It is obviously necessary to monitor such changes, and where possible,
take steps to limit their impact on the spectroscopic data obtained. Importantly,
there were no upgrades or changes in MR scanner hardware or software during
the period of this study. While scanner variability is important there are
individual subject factors that can induce substantial variability in WB "HMRS.
These include head movements and positioning within the scanner field of view.
In particular, data acquisition within the volume of interest is sensitive to
inhomogeneities that can result from proximity to the sphenoid and frontal
sinuses. We undertook standard procedures to limit such variability. All subjects
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Table 3. Within session and between session variability of metabolites for whole brain proton spectroscopy.

Chol/Cr NAA/Cho NAA/Cr

Between
Between Session| Within Session| Between Session| Session

Anterior corpus callosum 0.21 + 0.21 0.23 + 0.20 1.73 + 1.40 2.63 + 2.86 0.48 + 0.42 0.50 + 0.47
Body of corpus callosum 0.03 + 0.03 0.05 + 0.06 0.69 + 0.65 0.68 + 0.64 0.18 + 0.16 0.16 + 0.14
Posterior corpus callosum 0.04 + 0.08 0.05 + 0.08 0.51 + 0.50 0.55 + 0.56 0.25 + 0.30 0.25 + 0.31
Corticospinal tract right 0.03 + 0.05 0.02 + 0.03 0.52 + 0.63 0.60 + 0.70 0.09 + 0.15 0.10 + 0.15
Corticospinal tract left 0.03 + 0.03 0.03 + 0.05 0.48 + 0.58 0.46 + 0.55 0.11 + 0.21 0.09 + 0.17
Anterior thalamic radiation right 0.04 + 0.08 0.05 + 0.08 0.32 + 0.37 0.32 + 0.26 0.09 + 0.13 0.06 + 0.10
Anterior thalamic radiation left 0.04 + 0.05 0.04 + 0.04 0.29 + 0.22 0.35 + 0.33 0.06 + 0.08 0.06 + 0.06
Inferior longitudinal fasciculus right 0.03 + 0.07 0.03 + 0.09 0.50 + 0.59 0.52 + 0.48 0.07 + 0.10 0.06 + 0.09
Inferior longitudinal fasciculus left ~ 0.02 + 0.05 0.02 + 0.04 0.50 + 0.69 0.44 + 0.53 0.08 + 0.14 0.06 + 0.09
Superior longitudinal fasciculus right 0.01 + 0.02 0.01 + 0.02 0.59 + 0.74 0.61 + 0.68 0.07 + 0.07 0.06 + 0.06
Superior longitudinal fasciculus left 0.01 + 0.02 0.01 + 0.01 0.38 + 0.40 0.44 + 0.34 0.06 + 0.08 0.06 + 0.06
Thalamus right 0.03 + 0.03 0.03 + 0.03 0.52 + 0.45 0.46 + 0.48 0.12 + 0.12 0.12 + 0.10
Thalamus left 0.03 + 0.02 0.03 + 0.03 0.56 + 0.46 0.61 + 0.51 0.14 + 0.16 0.14 + 0.13
Pallidum right 0.04 + 0.04 0.03 + 0.03 0.57 + 0.66 0.51 + 0.58 0.13 + 0.17 0.12 + 0.15
Pallidum left 0.05 + 0.06 0.04 + 0.05 1.11 £ 1.12 0.99 + 0.95 0.18 + 0.24 0.15 + 0.17
Putamen right 0.03 + 0.03 0.03 + 0.03 0.66 + 0.62 0.48 + 0.52 0.12 + 0.14 0.1 + 0.13
Putamen left 0.04 + 0.04 0.04 + 0.04 0.74 + 0.84 0.73 + 0.80 0.14 + 0.18 0.13 + 0.15
Dorsal mid brain 0.04 + 0.07 0.04 + 0.07 046 + 042 0.54 + 0.45 0.27 + 0.42 0.26 + 0.40
Ventral mid brain 0.06 + 0.06 0.05 + 0.05 0.62 + 0.58 0.55 + 0.64 0.22 + 0.32 0.20 + 0.28
Frontal lobe right 0.04 + 0.04 0.03 + 0.04 047 + 0.28 0.57 + 0.48 0.07 + 0.06 0.08 + 0.08
Frontal lobe left 0.05 + 0.05 0.04 + 0.05 0.38 + 0.31 0.50 + 0.47 0.06 + 0.05 0.07 + 0.08
Hippocampus right 0.03 + 0.03 0.02 + 0.03 0.48 + 0.33 0.49 + 0.38 0.14 + 0.11 0.13 + 0.10
Hippocampus left 0.03 + 0.04 0.03 + 0.03 0.53 + 0.48 0.52 + 0.46 0.18 + 0.15 0.16 + 0.15
Occipital right 0.03 + 0.08 0.05 + 0.13 1.09 + 1.09 122 + 1.13 0.09 + 0.13 0.11 + 0.14
Occipital left 0.03 + 0.07 0.03 + 0.06 0.91 + 0.92 0.90 + 0.86 0.09 + 0.10 0.09 + 0.09
Parietal right 0.03 + 0.08 0.03 + 0.08 0.72 + 0.68 0.81 + 0.74 0.10 + 0.13 0.12 + 0.13
Parietal left 0.02 + 0.04 0.02 + 0.03 0.49 + 0.50 0.69 + 0.60 0.09 + 0.14 0.11 + 0.15
Peduncle right 0.10 + 0.26 0.06 + 0.19 043 + 0.38 0.42 + 0.38 0.17 + 0.19 0.15 + 0.17
Peduncle left 0.09 + 0.33 0.08 + 0.28 042 + 0.39 0.39 + 042 0.13 + 0.22 0.12 + 0.21
Pons right 0.06 + 0.06 0.05 + 0.04 0.63 + 1.02 0.54 + 0.79 0.21 + 0.16 0.17 + 0.15
Pons left 0.06 + 0.06 0.06 + 0.05 0.68 + 1.23 0.53 + 0.96 0.24 + 0.19 0.22 + 0.18
Temporal right 0.02 + 0.04 0.02 + 0.03 0.32 + 0.33 0.39 + 0.33 0.07 + 0.08 0.05 + 0.07
Temporal left 0.02 + 0.02 0.02 + 0.02 0.44 + 0.55 0.39 + 048 0.10 + 0.13 0.08 + 0.10
Mean 0.04 + 0.10 0.04 + 0.09 0.60 + 0.73 0.63 + 0.87 0.14 + 0.20 0.13 + 0.20

Individual region of interest measurements for within session reproducibility obtained in the first and second imaging sessions in 17 and 16 subjects
respectively, and the between session reproducibility for those 22 subjects who underwent imaging at both sessions. Data displayed are standard deviation
for metabolite ratios (Choline (Cho)/Creatine (Cr), N-Acetyl aspartate (NAA)/Choline and NAA/Cr.

doi:10.1371/journal.pone.0115304.t003
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Table 4. Within session and between session variability of metabolites for whole brain proton spectroscopy.

vt Sevion] cove enion i Ssson) otvenSssond v Sesion S|
Between Session| Within Session| Between Session Session
Anterior corpus callosum 39.56 + 34.49 46.44 + 3547 41.96 + 40.19 47.03 + 38.81 40.69 + 40.56 38.17 +
37.48
Body of corpus callosum 10.71 + 7.72 14.59 + 13.44 10.33 + 9.86 10.53 + 9.64 11.09 + 9.58 9.92 + 7.66
Posterior corpus callosum 10.36 + 1549 12.99 + 15.49 7.78 + 8.39 8.35 + 8.72 12.93 + 14.36 12.68 +
14.41
Corticospinal tract right 8.15 + 11.83 7.24 + 8.49 8.92 + 8.72 10.75 + 11.00 5.57 + 6.83 6.54 + 7.48
Corticospinal tract left 8.21 + 8.91 8.54 + 11.98 8.63 + 8.73 8.59 + 8.94 6.50 + 9.37 5.98 + 7.99
Anterior thalamic radiation right 12.29 + 1717 1249 + 16.87 6.63 + 8.65 6.34 + 5.97 6.68 + 11.84 4.62 + 8.63
Anterior thalamic radiation left 11.74 + 1245 11.06 + 11.21 5.39 + 4.66 6.58 + 6.58 445 + 6.73 4.45 + 472
Inferior longitudinal fasciculus right 7.47 + 11.18 9.01 + 14.85 7.70 + 10.50 7.79 + 8.22 5.17 + 8.28 4.08 + 6.72
Inferior longitudinal fasciculus left 8.80 + 11.95 7.51 + 9.58 8.80 + 15.09 7.60 + 11.26 6.50 + 13.10 512 + 9.1
Superior longitudinal fasciculus right 5.26 + 7.34 5.46 + 6.46 7.80 + 8.51 8.47 + 8.18 427 + 3.98 3.94 + 3.93
Superior longitudinal fasciculus left 5.99 + 6.54 6.16 + 5.52 6.32 + 8.12 714 + 6.22 437 + 7.1 4.86 + 5.35
Thalamus right 9.10 + 7.04 9.05 + 8.39 9.83 + 8.49 8.38 + 8.82 7.56 + 7.23 7.91 + 6.52
Thalamus left 844 + 7.22 9.67 + 8.10 10.16 + 8.33 11.01 + 9.07 8.81 + 8.51 8.35 + 7.58
Pallidum right 12.54 + 12.38 10.84 + 9.75 11.90 + 18.78 9.93 + 14.88 10.00 + 16.35 8.58 + 13.02
Pallidum left 14.69 + 18.61 12.82 + 15.19 20.59 + 25.85 17.26 + 20.01 1413 + 2287 1112 +
16.82
Putamen right 11.28 + 9.83 10.19 + 10.22 13.04 + 15.64 9.20 + 12.42 8.98 + 13.40 8.15 + 11.15
Putamen left 11.96 + 13.74 1221 + 13.27 1448 + 20.63 13.15 + 16.67 11.21 + 1853 9.47 + 14.13
Dorsal mid brain 10.58 + 1220 9.68 + 11.80 9.89 + 9.67 11.15 + 9.24 14.38 + 17.92 13.82 +
15.09
Ventral mid brain 17.27 + 16.76  14.07 + 13.13 13.50 + 17.99 10.99 + 15.45 13.97 + 2191  12.09 +
17.39
Frontal lobe right 16.12 + 13.73 14.71 + 15.11 10.03 + 6.45 12.96 + 11.93 6.84 + 6.76 8.15 + 8.28
Frontal lobe left 18.83 + 15.03 17.00 + 16.07 8.56 + 7.40 11.34 + 12.00 6.50 + 5.81 7.34 + 8.24
Hippocampus right 8.44 + 9.05 7.71 + 7.78 9.88 + 6.36 9.92 + 7.17 9.88 + 8.01 9.03 + 7.43
Hippocampus left 11.08 + 15.17 8.87 + 11.62 12.05 + 12.26 11.51 + 11.51 13.80 + 13.84 11.98 +
13.01
Occipital right 11.27 + 1553 13.04 + 22.14 13.52 + 17.83 13.83 + 14.95 6.99 + 12.66 7.68 + 10.33
Occipital left 11.35 + 1854 11.08 + 17.57 12.81 + 15.86 12.21 + 13.82 6.89 + 9.52 713 + 7.67
Parietal right 8.37 + 13.84 10.15 + 13.54 10.61 + 9.97 12.15 + 10.74 7.22 + 823 9.06 + 8.90
Parietal left 7.77 + 12,53 9.27 + 11.44 7.92 + 8.51 11.36 + 9.84 6.81 + 8.96 9.02 + 10.03
Peduncle right 16.93 + 25.85 13.01 + 19.52 9.75 + 10.40 9.45 + 9.10 1255 + 1444 11.24 +
11.89
Peduncle left 12.33 + 21.86 12.20 + 18.94 9.79 + 10.34 8.91 + 10.24 9.18 + 10.44 8.93 + 10.51
Pons right 12.89 + 12.02 10.61 + 8.31 13.10 + 15.61 11.86 + 13.39 12.72 + 10.05 9.57 + 9.16
Pons left 13.78 + 12.87 14.85 + 11.69 1452 + 1540 11.69 + 14.43 15.22 + 1294 1261 +
11.73
Temporal right 8.35 + 12.58 8.46 + 10.05 7.86 + 9.41 9.07 + 8.80 7.07 + 9.77 5.63 + 8.36
Temporal left 11.18 + 13.93 9.34 + 11.57 13.12 + 20.92 10.86 + 16.65 12.94 + 18.93 9.63 + 15.11
Mean 1191 + 1577 11.83 + 15.65 1143 + 15.62 11.44 + 14.77 10.06 + 15.29 9.30 + 13.43

Individual region of interest measurements for within session reproducibility obtained in the first and second imaging sessions in 17 and 16 subjects
respectively, and the between session reproducibility for those 22 subjects who underwent imaging at both sessions. Data displayed are percentage
coefficient of variation for metabolite ratios (Choline (Cho)/Creatine (Cr), N-Acetyl aspartate (NAA)/Choline and NAA/Cr.

doi:10.1371/journal.pone.0115304.t004
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Table 5. Within session and between session variability of metabolites for whole brain proton spectroscopy.

Between
Between Session| Between Session, Session

Anterior corpus callosum 32799 + 2968.5 + 2697.1 1878.8 + 1719.7 + 2458.7 3697.5 + 38145 +
2703.7 2338.6 29754 3818.6

Body of corpus callosum 1141.0 + 815.6 1314.2 + 1162.3 4922 + 1191.7 656.2 + 1355.5 1201.2 + 1317.6 +

1391.4 1327.6
Posterior corpus callosum 1091.4 + 989.5 1186.1 + 1089.6 318.2 + 376.5 323.3 + 3874 1309.3 + 1432.2 +
1398.6 1454.5

Corticospinal tract right 7029 + 7344 590.2 + 608.4 2842 + 646.5 256.6 + 500.8 5194 + 6719 504.0 + 614.5

Corticospinal tract left 673.5 + 700.7 558.0 + 625.5 231.7 + 2405 196.4 + 1941 521.8 + 5445 378.7 + 465.1

Anterior thalamic radiation right 8272 + 9122 740.0 + 7751 422.3 + 4229 523.5 + 598.9 716.5 + 565.6 904.9 + 1558.5

Anterior thalamic radiation left 789.7 + 1023.5 727.1 + 938.9 387.9 + 3741 4240 + 536.9 604.6 + 677.1 731.0 + 860.9

Inferior longitudinal fasciculus 798.9 + 929.8 816.7 + 881.6 179.7 + 1755 287.8 + 607.3 627.6 + 553.7 712.5 + 901.6

right

Inferior longitudinal fasciculus left 802.6 + 1058.1 775.9 + 969.3 207.5 + 431.0 202.7 + 317.7 419.8 + 430.0 466.5 + 498.6

Superior longitudinal fasciculus 5489 + 6555 624.2 + 673.6 208.5 + 285.7 216.2 + 226.4 465.4 + 459.7 471.0 + 454.4

right

Superior longitudinal fasciculus  623.6 + 768.8 657.1 + 726.0 197.0 + 190.2 177.3 + 178.5 493.8 + 529.0 478.7 + 508.6

left

Thalamus right 1307.2 + 1214.1 + 1308.9 294.7 + 2423 266.5 + 269.1 864.7 + 682.2 968.4 + 780.6
1442.7

Thalamus left 1219.0 + 1301.8 + 1171.3 330.9 + 304.3 399.7 + 438.0 996.5 + 757.5 1079.0 + 894.7
1244.6

Pallidum right 1211.9 + 1209.2 1087.1 + 1259.3 427.3 + 354.7 334.5 + 2994 847.8 + 5814 7225 + 635.1

Pallidum left 1457.9 + 1212.6 + 1515.8 453.0 + 300.8 365.3 + 314.9 935.8 + 814.1 829.6 + 789.2
1760.3

Putamen right 1154.7 4+ 1145.8 1084.7 + 1280.7 368.4 + 404.2 317.3 + 407.0 7949 + 7201 770.7 4+ 726.4

Putamen left 1286.2 + 1289.1 + 1553.6 416.5 + 365.3 413.6 + 434.6 804.7 + 763.3 775.7 + 788.2
1634.9

Dorsal Mid Brain 21799 + 1996.1 + 1847.3 423.3 + 328.8 4158 + 311.8 1160.2 + 1060.2 1229.0 + 881.1
2135.5

Ventral Midbrain 1348.3 + 1184.9 + 1597.5 4127 + 360.1 316.6 + 315.8 947.6 + 939.3 901.7 + 835.9
1791.0

Frontal lobe right 4519 + 5299 548.9 + 575.8 379.3 + 499.0 409.2 + 396.5 700.7 + 667.7 756.8 + 912.2

Frontal lobe left 516.0 + 575.2 596.0 + 565.1 537.9 + 560.2 430.3 + 463.8 826.1 + 826.4 739.7 + 591.6

Hippocampus right 861.7 + 658.3 845.6 + 764.6 388.7 + 3411 289.6 + 226.4 7974 + 5553 676.4 + 532.2

Hippocampus left 1050.0 + 1001.4 + 1147.3 380.9 + 300.4 338.5 + 278.2 853.3 + 765.6 790.2 + 659.6
1232.9

Occipital right 658.8 + 781.0 749.0 + 837.7 2353 + 368.6 390.9 + 986.0 526.1 + 653.5 7704 + 1264.1

Occipital left 582.0 + 799.6 567.2 + 692.2 2774 + 6114  269.8 + 644.9 496.8 + 5425 5455 + 717.1

Parietal right 528.1 + 648.3 536.3 + 609.6 2324 + 4455 208.5 + 334.0 465.2 + 594.3 494.0 + 540.5

Parietal left 507.5 + 598.6 527.3 + 610.9 177.0 + 216.8 152.8 + 1924 487.6 + 581.7 4917 + 535.7

Peduncle right 1578.9 + 1470.6 + 1444.0 7709 + 1507.8 541.6 + 1107.7 1199.7 + 1218.9 1295.7 +
1632.0 1422.0

Peduncle left 1357.3 + 1337.8 + 12694 960.6 + 32714 8624 + 2572.0 1065.0 + 1230.5 +
1592.7 1330.2 1142.6

Pons right 1590.4 + 1617.1 + 15894 411.3 + 295.7 3954 + 384.1 9904 + 638.2 1048.3 + 776.8
1560.1
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Table 5. Cont.
| Scusn] oton s Wit essin] etenSss v ession] Sseon
Between Session Between Session Session
Pons left 1569.6 + 1401.8 + 1561.0 553.4 + 612.4 368.8 + 4745 1532.3 + 985.7 + 797.7
1464.3 2594.0
Temporal right 843.6 + 924.7 768.5 + 884.4 185.3 + 137.6 176.5 + 204.3 513.8 + 503.8 557.1 + 551.7
Temporal left 8929 + 1170.0 839.5 + 1017.6 196.4 + 1594 183.8 + 192.8 5454 4+ 674.7 522.7 + 591.2
Mean 1073.7 + 1034.4 + 1280.9 412.8 + 896.0 388.8 + 835.9 876.6 + 1163.6 890.7 + 1223.2
1350.1

Individual region of interest measurements for within session reproducibility obtained in the first and second imaging sessions in 17 and 16 subjects
respectively, and the between session reproducibility for those 22 subjects who underwent imaging at both sessions. Data displayed are standard deviation)
for metabolite concentrations (NAA, Cho and Cr).

doi:10.1371/journal.pone.0115304.t005

were positioned within the head coil according to standard operating procedures
within our institution and the alignment confirmed prior to commencing
imaging. Following standard imaging for localisation we monitored subject
movement, and all data were checked during processing for movement artefact.
No data sets were excluded in these analyses due to subject motion during the
scan. In addition, we performed all analyses following image coregistration and
spatial normalisation to MNI standard space. We used a standard ROI template
covering the whole brain from the Harvard Oxford subcortical and MNI
structural probabilistic atlases available within FSL. While the use of this analysis
strategy sought to reduce variability within our comparisons, we eroded the ROI
template by a single voxel within FSL in order to improve spatial localisation and
reduce the impact of coregistration, normalisation and partial volume errors.
Finally, all ROIs were manually inspected to ensure that they were correctly
aligned with the imaging data and corresponded to the regions specified. In
summary, we considered possible sources of WB 'HMRS variability within our
centre and attempted to limit their impact and ensure that the data we acquired
were comparable within and between the different imaging sessions.

Whilst our results for WB "HMRS reproducibility are in line with published
data, we report data specifically concerning the difference between intersubject
variability, within session and between session reproducibility. It is useful to
consider the sources of variability in WB '"HMRS data in the setting where we are
trying to address the significance of changes between normal physiology and
disease states, or changes that are the consequence of a therapeutic intervention.
In the first case, the relevant sources of error are the intersubject variability in the
patient and volunteer groups. Our data for healthy volunteers are broadly
concordant with results from other groups [24], and show that these are high,
with mean (range) CoV for Cho/Cr 21 (11 — 62%), NAA/Cho 17 (11 — 55%),
NAA/Cr 13 (8 = 37%), NAA 12 (6 — 23%), Cho 31 (13 — 69%) and Cr 19 (7 —
61%). To be certain that "HMRS values derived from an individual patient are
significantly lower, with a confidence of 95%, these figures suggest that we need to
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Table 6. Within session and between session variability of metabolites for whole brain proton spectroscopy.

Between
Between Session| Within Session| Between Session| Session

Anterior corpus callosum 38.0 + 415 33.1 + 38.1 446 + 37.8 405 + 37.9 421 + 38.2 375 + 37.2
Body of corpus callosum 8.6 + 6.2 95 + 84 15.8 + 17.8 18.8 + 22.3 13.7 + 14.0 14.6 + 13.9
Posterior corpus callosum 80+ 74 84 + 78 13.9 + 13.7 139 + 147 16.1 + 15.7 176 + 16.9
Corticospinal tract right 57 + 6.2 48 + 52 8.8 + 13.6 8.1 + 11.1 6.1 + 75 59 + 7.0
Corticospinal tract left 57 + 6.3 47 + 56 8.7 + 83 76 +73 64 +79 47 + 6.7
Anterior thalamic radiation right 79 + 97 6.9 + 8.1 14.5 + 12.9 16.9 + 14.8 85+ 7.0 9.5 + 104
Anterior thalamic radiation left 7.2 + 104 6.5 + 9.1 13.0 + 10.7 14.7 + 15.6 70+ 76 84 + 9.6
Inferior longitudinal fasciculus right 6.6 + 8.2 6.6 + 7.5 83 +7.0 9.6 + 13.1 7.0 + 5.8 76 + 7.8
Inferior longitudinal fasciculus left 76 + 115 7.1 + 101 85 + 11.2 8.7 + 94 54 + 6.1 58 + 6.5
Superior longitudinal fasciculus right 4.4 + 5.8 50 + 5.8 101 + 11.7 10.5 + 10.0 5.6 + 6.1 58 + 6.1
Superior longitudinal fasciculus left 5.5 + 7.7 58 +7 104 + 9.5 9.5 + 93 6.5 + 8.3 64 +79
Thalamus right 10.5 + 11.0 99 + 9.8 12.5 + 10.6 11.6 + 11.5 10.7 + 9.0 12.3 + 104
Thalamus left 10.2 + 115 109 + 10.3 14.3 + 13.0 16.7 + 16.5 12.7 + 10.9 13.7 + 11.8
Pallidum right 1.1 + 144 9.6 + 13.2 16.7 + 13.3 13.1 + 123 101 + 7.8 8.8 + 9.1
Pallidum left 143 + 234 11.0 + 184 19.3 + 153 155 + 14.9 12.5 + 16.6 10.6 + 14.1
Putamen right 10.0 + 12.0 9.0 + 11.9 14.2 + 13.0 12.3 + 14.0 9.1 + 86 89 + 9.1
Putamen left 121 + 194 11.1 + 16.4 16.6 + 14.3 16.0 + 16.0 10.0 + 123 9.3 + 120
Dorsal Mid Brain 15.5 + 15.3 142 + 121 140 + 11.9 14.1 + 10.7 13.2 + 121 14.8 + 10.8
Ventral Midbrain 13.0 + 24.1 10.3 + 18.6 16.4 + 16.1 12.5 + 13.7 129 + 16.3 1.8 + 134
Frontal lobe right 6.3 + 8.6 76 + 9.0 18.3 + 16.7 20.8 + 17.4 11.0 + 10.1 11.6 + 11.8
Frontal lobe left 71 4+ 9.0 8.1 + 8.6 234 + 16.2 20.7 + 19.7 123 + 10.9 1.7 £ 9.7
Hippocampus right 74 + 59 71 + 6.6 13.0 + 8.6 10.5 + 8.1 87 + 59 7.8 + 6.3
Hippocampus left 9.6 + 128 87 + 114 129 + 104 12.1 + 10.0 91+ 75 9.0 + 7.7
Occipital right 56 +75 6.1+ 7.1 1.4 + 141 13.0 + 18.8 59 +73 7.7 + 9.8
Occipital left 56 + 8.9 54 +79 11.3 + 16.0 1.4 + 15.7 6.1 + 6.7 6.6 + 7.4
Parietal right 47 + 59 48 + 55 10.3 + 11.9 10.0 + 10.7 58 + 7.6 6.4 + 7.2
Parietal left 48 + 57 51+ 5.8 9.7 + 88 85 + 85 6.6 + 8.6 69 +79
Peduncle right 10.9 + 13.0 9.8 + 11.0 15.9 + 19.1 12.0 + 155 10.1 + 12.7 99 + 11.5
Peduncle left 9.8 + 13.3 9.2 + 10.3 13.3 + 222 12.3 + 187 89 + 14.0 9.7 + 115
Pons right 13,5 + 16.4 121 + 13.2 127 + 114 11.7 + 11.8 134 + 9.6 134 + 104
Pons left 129 + 149 10.5 + 13.0 145 + 16.7 11.1 + 155 15.7 + 16.7 127 + 114
Temporal right 10.8 + 13.5 9.2 + 121 106 + 7.4 9.5 + 9.0 85 + 9.2 8.6 + 88
Temporal left 144 + 240 12.0 + 19.1 13.6 + 14.3 12.1 + 14.0 1.2 + 174 10.0 + 144
Mean 9.9 + 154 9.1 + 13.4 14.3 + 15.9 13.5 + 16.2 10.6 + 13.8 10.5 + 13.2

Individual region of interest measurements for within session reproducibility obtained in the first and second imaging sessions in 17 and 16 subjects
respectively, and the between session reproducibility for those 22 subjects who underwent imaging at both sessions. Data displayed are percentage
coefficient of variation for metabolite concentrations (NAA, Cho and Cr).

doi:10.1371/journal.pone.0115304.t006

have mean ROI NAA values (for example) that are at least 23% lower than
volunteer means. This estimate and the secure distinction of a patient group as
abnormal is confounded by the fact that intersubject CoV in patients with

PLOS ONE | DOI:10.1371/journal.pone.0115304 December 17, 2014
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Fig. 3. Variability in N Acetyl Aspartate/Creatine ratio measurements. Box and whisker plot for N Acetyl Aspartate/Creatine ratio for a selection of the
regions of interest (ROI), including right (R) and left (L) corticospinal (CST), anterior thalamic radiation (ATR), thalamus, putamen, frontal lobe, hippocampus
and temporal lobe. The spread of data within each ROI reflects inter subject variation, while the difference between runs 1 — 2 and 3 — 4 reflects within
session reproducibility, and the change from first to second sessions reflects between session reproducibility. The central lines in each box denote median
values, the lower and upper boundaries the 25th and 75th centile, the error bars the 10th and 90th centile, and the closed circles outlying data points.

doi:10.1371/journal.pone.0115304.9003
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neurological disorders is likely to be larger than controls, and variable across
different brain regions. These figures underline the difficulty of using WB "HMRS
in small groups of patients with different causes of neurological disease who have
variable pathophysiology. In practice, the estimated study sample size is
moderated by the dramatic changes in metabolite concentration that occur in
patients. For example, following mild traumatic brain injury there is approxi-
mately a 20% reduction in NAA and increase in Cho even where structural
imaging appears normal, and in severe traumatic brain injury changes of up to a
50% can occur [35,36]. Hence the significance of metabolite change is often
detected with manageable numbers, despite the large intersubject variability in
volunteer and patients groups.

However, it is important to point out that these figures are largely irrelevant
when considering the power and design of clinical studies, when WB "HMRS is
being used to monitor changes within the same subject in the same scanning
session (within session reproducibility) or during longitudinal assessments over
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Fig. 4. Variability in N Acetyl Aspartate concentration. Box and whisker plot for N Acetyl Aspartate for a selection of the regions of interest (ROI),
including right (R) and left (L) corticospinal (CST), anterior thalamic radiation (ATR), thalamus, putamen, frontal lobe, hippocampus and temporal lobe. The
spread of data within each ROI reflects inter subject variation, while the difference between runs 1 — 2 and 3 — 4 reflects within session reproducibility, and
the change from first to second sessions reflects between session reproducibility. The central lines in each box denote median values, the lower and upper
boundaries the 25th and 75th centile, the error bars the 10th and 90th centile, and the closed circles outlying data points.

doi:10.1371/journal.pone.0115304.9004

Table 7. Within session and between session intraclass correlation coefficient for metabolites.

I - L

CholCr 0.76(0.72 — 0.80) 0.71(0.68 — 0.75) 0.50(0.41 — 0.58) 0.58(0.53 — 0.63)
NAA/Cho 0.84(0.82 — 0.87) 0.82(0.80 — 0.84) 0.78(0.74 — 0.82) 0.56(0.51 — 0.61)
NAA/Cr 0.76(0.72 — 0.80) 0.79(0.76 — 0.81) 0.60(0.52 — 0.66) 0.55(0.49 — 0.60)
NAA 0.81(0.77 — 0.84) 0.80(0.78 — 0.83) 0.63(0.56 — 0.68) 0.58(0.53 — 0.63)
Cho 0.84(0.81 — 0.86) 0.75(0.71 — 0.78) 0.53(0.44 — 0.60) 0.61(0.56 — 0.66)
Cr 0.84(0.81 — 0.86) 0.77(0.74 — 0.79) 0.73(0.68 — 0.77) 0.66(0.61 — 0.70)

Data displayed are mean (95% Confidence interval) intraclass correlation coefficient for metabolite ratios (Choline (Cho)/Creatine (Cr), N Acetyl Aspartate
(NAA)/Cho, NAA/Cr) and metabolites (NAA, Cho and Cr) for mixed cortical and deep grey, and white matter brain regions.

doi:10.1371/journal.pone.0115304.t007
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Table 8. Analysis of variance table for metabolite ratios.

Parameter Session DF Sum of Squares Mean Square F Value p Value

CholCr ROI 32 17.18 0.54 52.86 <.0001
subject 31 2.86 0.09 9.07 <.0001
ROI * subject 992 14.70 0.01 1.46 <.0001
Residual 1815 18.44 0.01

NAA/Cho ROI 32 3105.79 97.06 91.19 <.0001
subject 31 657.96 21.22 19.94 <.0001
ROI * subject 992 1264.47 1.27 1.2 0.0006
Residual 1815 1931.76 1.06

NAA/Cr ROI 32 113.60 3.55 61.42 <.0001
subject 31 24.16 0.78 13.48 <.0001
ROI * subject 992 83.45 0.08 1.46 <.0001
Residual 1815 104.90 0.08

Data were obtained from 32 volunteers using the region of interest (ROI) template for metabolite ratios. (Choline — Cho, Creatine — Cr, N acetyl aspartate —
NAA and DF — Degrees of freedom).

doi:10.1371/journal.pone.0115304.t008

time in several different imaging sessions (between session reproducibility). In
such settings, the subject is his or her own control, and the relevant parameter is
intrasubject variability or reproducibility. Our data show that these figures for
CoV are smaller than those obtained from the discussion in the previous
paragraph. In addition, we provide reference data for metabolites in healthy
volunteers demonstrating that the CoV for within session reproducibility is
broadly comparable to that obtained in different imaging sessions (Tables 3, 4, 5,
6, 7). While the reproducibility of NAA/Creatine and NAA was significantly lower
for between session compared to within session measurements the absolute

Table 9. Analysis of variance table for metabolite ratios.

8.3 x 10° x 108 89.1 <.0001
subject 31 1.2 x 10° 3.7 x 107 12.8 <.0001
ROI * subject 992 3.7 x 10° 3.7 x 10° 1.3 <.0001
Residual 1815 5.3 x 10° 29 x 10°
Cho ROI 32 1.2 x 10° 3.7 x 107 439 <.0001
subject 31 35 x 108 1.1 x 107 13.4 <.0001
ROI * subject 992 1.5 x 10° 1.5 x 10° 1.9 <.0001
Residual 1815 1.5 x 10° 8.3 x 10°
Cr ROI 32 47 x 10° 15 x 108 63.3 <.0001
subject 31 1.0 x 10° 3.3 x 107 14.1 <.0001
ROI * subject 992 44 x 10° 4.4 x 10° 1.9 <.0001
Residual 1815 4.2 x 10° 2.3 x 10°

Data were obtained from 32 volunteers using the region of interest (ROI) template for and metabolite concentrations. (Choline — Cho, Creatine — Cr, N acetyl
aspartate — NAA and DF — Degrees of freedom).

doi:10.1371/journal.pone.0115304.t009
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differences were small. This finding is not consistent with the lack of difference for
the other metabolites and is unlikely to be clinically relevant. We found no
evidence to suggest that within session reproducibility was smaller than between
session reproducibility measurements. These data provide helpful guidance for
designing clinical studies, and suggest that for NAA or NAA/Cr it should be
possible to detect differences of 20% with confidence. For example, although the
reproducibility of measurements is variable for the different brain regions we can
use these data to calculate sample sizes for interventional and longitudinal clinical
studies. For a lobar ROI such as the right frontal region the between session CoV
was 8% for NAA and we should be able to detect a 20% change with 95% power at
a significance level of 1% within a group of 10 subjects within a single
interventional or longitudinal study design [37]. Clearly, such estimates only
strictly apply to our scanner and institution, but they provide a useful starting
point for any spectroscopic study design. There are a number of factors particular
to our scanning protocols and institutional setup that limit the use of the
reproducibility measurements that we provide. These include, but might not be
limited to, scanner, acquisition protocols, data correction and reconstruction, and
processing. Despite these variations, it should be possible for other groups to use
the methodology that we describe to derive ‘in house’ data for their studies. In
addition, although these data provide guidance for designing clinical studies,
particular groups of subjects (including those with brain injury) may require
sedation and control of ventilation as part of clinical care. While such patient
groups may appear complex and difficult to manage within the context of an
imaging study the fact that they remain completely immobile and have stable
physiology should result in lower CoV for reproducibility measurements and an
increase in the sensitivity of interventional studies[34].

Methodological limitations

The volunteers included in this study ranged in aged from 25 — 50 years, and since
metabolite levels are associated with age [23], this may account for some of the
variability in the intersubject analysis. While we were able to obtain multiple WB
"HMRS datasets on up to two occasions in this group of volunteers, scanner
availability and subject tolerance (duration and noise) prevented us from
acquiring further WB 'HMRS datasets within the same session and additional
scanning sessions. A repeat imaging session was performed within a mean (range)
of 33 (3 — 181) days, and variation in this interval could result in biological
differences between the datasets obtained within a few days compared to those
obtained after several months. However, any expected change in WB '"HMRS in
healthy volunteers of a similar age over a period of up to six months is small and
unlikely to have resulted in the differences we have found [23, 38]. In addition, we
found no relationship between scan reproducibility and the interval between the
two imaging sessions.

We found variability in the '"HMRS measurements and their reproducibility
across the different brain regions. In addition, there was more variability in
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metabolite data involving choline, which probably reflects the lower concentration
of choline within the brain [39]. These differences are demonstrated in Tables 1,

callosum, deep grey matter, midbrain, frontal, occipital and some white matter
regions. We found no relationship between the ROI volume and intersubject
variability and reproducibility of '"HMRS for any of the metabolites (data not
shown). Despite this, the cause of these differences may in part be related to
inhomogeneities in the By field induced by the frontal and sphenoidal air sinuses,
partial volume errors within relatively small regions, locally variant metabolite
concentrations, and variation in the quality of coregistration and spatial
normalisation within individual subjects. We tried to limit these errors through
careful review of all the transformed imaging datasets, shimming the scanner
before each MIDAS data acquisition, and eroding the ROI template by a single
voxel to improve accuracy. Despite this, errors remain within some ROIs where
"HMRS values differ in closely adjacent brain regions. However, the purpose of
this study was to determine the variability of measurements using an ROI
template and standard processing pipeline. While variability in the fitting of
template ROIs in individual subjects may result in higher intersubject variability
for particular brain regions this should be less likely for measurements of
reproducibility within the same subject. Here any differences in ROI template
fitting between the sessions should be small. These regional differences underline
that "HMRS studies should compare data within the same brain region using the
same data processing technique. Our figures for reproducibility are higher than
that reported by Maudsley et al using the same acquisition sequence [20]. This
reflects our inclusion of a larger study group and that we utilised a standard
processing pipeline and ROI template covering the whole brain within normalised
space that we would typically apply to patient studies. While the data we report
are specific to our methods the reproducibility measurements that we report
provide a useful starting point for study design.

Conclusions

This study provides additional reference data concerning intersubject variability
and reproducibility of WB "HMRS conducted in a group of healthy volunteers.
The CoV for repeat WB '"HMRS measurements obtained during the same session
were similar to that obtained from measurements obtained in a different imaging
session separated by up to six months. These data can be used to calculate the 95%
prediction interval for zero change and may inform the design of interventional
studies to quantify change within a single imaging session, or to assess the
significance of change in longitudinal studies.

PLOS ONE | DOI:10.1371/journal.pone.0115304 December 17, 2014 20/ 23
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