
 
 
 
 
 
 
 
 
 

Structural Interactions in Spatial Panels 

 
 

Arnab Bhattacharjee and Sean Holly  
 

January 2010 
 
 

 
 
 

CWPE 1004 
 
 



Structural Interactions in Spatial Panels¤

Arnab Bhattacharjee$ and Sean Holly#y

July 27, 2009

Abstract

Traditionally, research has been devoted almost exclusively to es-
timation of underlying structural models without adequate attention
to the drivers of di¤usion and interaction across cross section and spa-
tial units. We review some new methodologies in this emerging area
and demonstrate their use in measurement and inferences on cross sec-
tion and spatial interactions. Limitations and potential enhancements
of the existing methods are discussed, and several directions for new
research are highlighted.

JEL Classi…cation: E42, E43, E50, E58.
Keywords: Cross Sectional and Spatial Dependence; Spatial Weights

Matrix; Interactions and Di¤usion; Monetary Policy Committee; Gen-
eralised Method of Moments.

1 Introduction1

Spatial or cross-section dependence is a common feature of most economic
applications involving either a cross-section of economic agents or a macro
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panel. Increasingly, availability of data on spatial panels provides the ex-
plicit opportunity to understand and model such cross-section and spatial
dependence. Two distinct econometric approaches have been proposed in
the literature to model spatial dependence. A popular characterisation, orig-
inally developed in the regional science and geography literatures, but with
increasing economic applications, is based on spatial weights matrix, the ele-
ments of this matrix represent the direction and strength of spillovers between
each pair of units. Alternatively, multifactor approaches which assume cross
section dependence can be explained by a …nite number of unobserved com-
mon factors that a¤ect all units (regions, economic agents, etc.) are gaining
increasing popularity. This paper informs the emerging debate as to which
of these two approaches is more convenient and useful in applied studies.2 In
particular, we argue that spatial weights matrices with relatively unrestricted
interactions are more appropriate in applications when spatial dependence
is structural, in the sense that the observation units are not exchangeable.
In other words, spatial dependence is driven, at least partially, by the loca-
tion of the units in some observed (or even, notional and abstract) space.
Further, we discuss several new econometric methods for inference on spatial
dependence in the above setting, and illustrate their relative merits based on
an application to cross-member interactions within a committee setting.

The idea behind spatial weights matrix is that there are spillover e¤ects
across the economic agents because of spatial or other forms of local cross
section dependence. Such a matrix, W , is square ( £ ) with zero diago-
nal elements, and where the o¤-diagonal elements  represent the spillover
from unit  to unit  (  = 1     ). Panel data regression models with
such spatially correlated error structures have been estimated using maxi-
mum likelihood techniques (Anselin, 1988; Baltagi et al., 2006; Kapoor et
al., 2007), or generalized method of moments (Kelejian and Prucha, 1999;
Conley, 1999; Fingleton, 2007). Kelejian and Prucha (2007) also extend the
GMM methodology to nonparametric estimation of a heteroscedasticity and
autocorrelation consistent cross section covariance matrix, for applications

2In an invited session in honour of Cheng Hsiao at the recently concluded 15th In-
ternational Panel Data Conference (Bonn, 2009), Badi H Baltagi provided an extensive
review of the current literature on "Spatial Panels". Two important questions were ac-
tively debated in the general discussions following the talk. First, how useful is explicit
modeling of spatial dependence using spatial weights matrices? Second, do multifactor
aproaches provide more versatility in such modeling, and are there substantial advantages
of interpretability attached to spatial weights matrices?
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where an instrumental variable procedure has been used to estimate the re-
gression coe¢cients.

At the same time as spatial weights characterise cross section dependence
in useful ways, their measurement has a signi…cant e¤ect on the estimation of
a spatial dependence model (Anselin, 2002; Fingleton, 2003). Measurement
is typically based on underlying notions of distance between cross section
units. These di¤er widely across applications, depending not only on the
speci…c economic context but also on availability of data. Spatial contigu-
ity (resting upon implicit assumptions about contagious processes) using a
binary representation is a frequent choice. Further, in many applications,
there are multiple possible choices and substantial uncertainty regarding the
appropriate choice of distance measures. However, while the existing litera-
ture contains an implicit acknowledgment of these problems, most empirical
studies treat spatial dependence in a super…cial manner assuming in‡exible
di¤usion processes in terms of known, …xed and arbitrary spatial weights
matrices (Giacomini and Granger, 2004). The problem of choosing spatial
weights becomes a key issue in many economic applications; apart from ge-
ographic distances, notions of economic distance (Conley, 1999; Pesaran et
al., 2004, Holly et al., 2008), socio-cultural distance (Conley and Topa, 2002;
Bhattacharjee and Jensen-Butler, 2005), and transportation costs and time
(Gibbons and Machin, 2005; Bhattacharjee and Jensen-Butler, 2005) have
been highlighted in the literature. The uncertainty regarding the choice of
metric space and location, closely related to the measurement of spatial
weights, have been addressed in the literature (Conley and Topa, 2002, 2003;
Conley and Molinari, 2007). Related issues regarding endogeneity of loca-
tions have also been addressed (Pinkse et al., 2002; Kelejian and Prucha,
2004; Pesaran and Tosetti, 2007).

On the other end, spatial panel regression models under multifactor error
structure have been addressed by maximum likelihood (Bai, 2009), principal
component analysis (Coakley et al., 2002), or the common correlated e¤ects
approach (Pesaran, 2006). Factor models are potentially powerful in that
they do not require strong and unveri…able a priori assumptions on the na-
ture of spatial dependence. However, there are two potential limitations.
First, a factor representation is equivalent to exchangebility of the observa-
tion units,3 which is not a reasonable assumption in many applications. For
example, in many spatial applications, the location of the units in space plays

3See, for example, de Finetti (1931) and Hewitt and Savage (1955).

3



a key role in modelling and interpretation, and these units cannot therefore
be assumed to be exchangeable. In this paper, we use the term structural
spatial dependence to describe situations where a factor representation does
not provide an adequate description of spatial dependence, or in other words,
the observation units are not exchangeable. Second, even when an approx-
imate factor representation can be obtained, it is often the case that the
identi…ed factors cannot be related in any satistactory way to interpretable
individual features or time e¤ects. Thus, economic interpretation of factor
models is often a considerable challenge.

The above two characterisations of cross section dependence, namely spa-
tial weights and common factors, are not mutually exclusive. As discussed
above, factor models typically only provide a partial expanation for cross
section dependence, and therefore it is often observed that residuals from
estimated factor models display substantial cross section correlation. Fur-
thermore, Pesaran and Tosetti (2007) consider a panel data model where
both sources of cross section dependence exist and show that, under cer-
tain restrictions on the nature of dependence, the common correlated e¤ects
approach (Pesaran, 2006) still works.

While the above literature addressed cross section dependence in various
ways, it has focused mainly on estimation of the regression coe¢cients in the
underlying model, treating the cross section dependence as a nuisance para-
meter. Estimation and inferences on the magnitude and strength of spillovers
and interactions has been largely ignored. However, there are many instances
in which inferences about the nature of the interaction is of independent in-
terest. For example, understanding empirically the precise form of spillovers
and di¤usion between observational units is an important objective of the
studies on economic growth and convergence in a cross-country panel set-
ting. Likewise, studying cross-member interactions in a commitee or network
setting is a crucial counterpart to the development of theories of economic
networks; see, for example, Dutta and Jackson (2003) and Goyal (2007). The
empirical contribution of this paper will be based on an application of the
second kind.

By contrast to the above literature, we take a nonparametric view on
the nature and strength of spatial di¤usion and cross section interaction.
We focus explicitly on several new methods for estimating spatial weights
(or interactions) that are consistent with an observed pattern of spatial (or
cross sectional) dependence. Once these interactions have been estimated
they can be subjected to interpretation in order to identify the true nature
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of spatial dependence, representing a signi…cant departure from the usual
practice of assuming a priori the nature of spatial interactions. The methods
are illustrated with an application to monetary policy making within the
Bank of England’s monetary policy committee (MPC).

The paper is organised as follows. In Section 2, we describe our model
and the considered econometric methods. First, we follow Bhattacharjee and
Jensen-Butler (2005) and describe estimation of the spatial weights matrix
in a spatial error model. We emphasize that estimation of spatial weights
consistent with an estimated pattern of spatial autocorrelations is a partially
identi…ed problem, and therefore structural constaints are required for precise
estimation; symmetry of the spatial weights matrix constitutes such a valid
set of identifying restrictions. Second, based on Bhattacharjee and Holly
(2008a), we consider estimation and inference on interactions under moment
restrictions which explicitly exploit the spatio-temporal nature of panel data
on economic agents. Third, we extend the above methods to allow for spatial
e¤ects that may be partly driven by unobserved common factors. Following
this (Section 4), we develop an application to decision making within the
MPC, where members are allowed to have unrestricted interactions. Our
empirical analysis illustrates each of the above methods and further, pro-
vides interesting inferences for spatial dynamics within a committee setting.
Finally, Section 5 concludes, highlighting strengths and weaknesses of the
discussed methods, as well as areas of new research.

2 Model and methodologies

The spatial weights matrix is one of the most convenient ways to summarise
spatial relationships in the data. With conventional geographical data, the
spatial weights matrix re‡ects the intensity of the geo-spatial relationship
between observations in a neighborhood, for example, the distances between
neighbors, the lengths of shared border, or whether they fall into a speci…ed
directional class such as north/ south. Standard spatial autocorrelation sta-
tistics compare the spatial weights to the covariance relationship at pairs of
locations. Spatial autocorrelation that is more positive than expected from
random assignment indicate the clustering of similar values across geo-space,
while signi…cant negative spatial autocorrelation indicates that neighboring
values are more dissimilar than expected by chance.

Since spatial weights are usually de…ned by conventional measures of ge-
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ographic (or economic) distances between observation units, or various mea-
sures of contiguity, a spatial weights matrix is typically a exogenous (and
known) square matrix with zero diagonal elements and positive symmetric
elements away from the diagonal. Given a spatial weights matrix W , dy-
namic spatial regression models are constructed in ways analogous to stan-
dard time series analysis, with the spatial lag of a vector  of observations
for all units de…ned as the vector W . Once such a regression model has
been set up, inferences can be drawn using a variety of methods, including
maximum likelihood and GMM; see, for example, Anselin (1999) and Anselin
et al. (2003) for further discussion.

However, as discussed earlier, there is in most real applications consider-
able uncertainty regarding measurement of these distances. Worse still, infer-
ences drawn using mis-measured spatial weights are typically biased (Anselin,
2002; Fingleton, 2003) and further, inferences from mis-speci…ed spatial mod-
els are also inadequate (Baltagi et al., 2009). Thus, while convential spatial
econometric methods have treated the spatial weights as known, estimation
of the spatial weights matrix is emerging as an important and active area of
research (Dubin, 2009).

2.1 Spatial error model with unrestricted structural

dependence

Studies in spatial econometrics typically distinguish between two di¤erent
kinds of spatial e¤ects in regression models for cross-sectional and panel data
– spatial interaction (spatial autocorrelation) and spatial structure (spatial
heterogeneity). While the study of spatial structure is similar to the tradi-
tional treatment of coe¢cient heterogeneity in econometrics, spatial interac-
tion is usually modeled through a spatial weights matrix. Given a particular
choice of the spatial weights matrix, there are two important and distinct
ways in which spatial interaction is modelled in spatial regression analysis –
the spatial error model and the spatial lag model.

We consider the spatial error model with spatial autoregressive errors,
where the response variable () is explained by the e¤ects of explanatory
variables (X) and spatial spillover of errors from other units.4 The model

4By contrast, the spatial lag model includes the spatial lag of the response variable,
W, as an additional regressor.
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and its reduced form are described as follows:




= X +   = 1      (1)

 = W +  (2)

=) 

= X + (I ¡ W )¡1 

where there are  time periods ( = 1      ) and  units ( = 1     ),


is the  £ 1 vector of the response variable in period ,

W is an unknown spatial weights matrix of dimension  £ , and
 is the  £ 1 vector of independent but possibly heteroscedastic spatial
errors.

We …rst make the following four assumptions.
Assumption 1: We assume that the spatial errors, , are iid (inde-

pendent and identically distributed) across time. However, we allow for het-
eroscedasticity across regions, so that E (

0
) = § =  (21 

2
2     

2
),

and 2  0 for all  = 1     .
The uncorrelatedness of the spatial errors across the units is crucial. As-

sumption 1 ensures that all spatial autocorrelation in the model is solely
due to spatial di¤usion described by the spatial weights matrix.

Assumption 2: The spatial weights matrix W is unknown and possibly
asymmetric. W has zero diagonal elements and there are no restrictions on
the o¤-diagonal elements (i.e., they could be either positive or negative).

At the moment, we retain the ‡exibility of a possibly asymmetric spatial
weights matrix. Our most signi…cant point of departure from the literature
is in the assumption of an unknown spatial weights matrix, which we intend
to conduct inferences on. We do not impose a non-negativity constraint on
the o¤-diagonal elements of W .

Assumption 3: (I ¡ W ) is non-singular, where I is the identity matrix.
This is a standard assumption in the literature, and required for identi…cation
in the reduced form.

Under Assumption 3, we have:

E (0) = (I ¡ W )¡1 § (I ¡ W )¡1
0



2.2 Estimation under structural constraints

Bhattacharjee and Jensen-Butler (2005) consider estimation of a spatial weights
matrix in the above spatial error model with spatial autoregressive errors.
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They consider a setting where a given set of cross section units have …xed
but unrestricted interactions; these interactions are inherently structural in
that the units are not exchangeable, and the interactions are therefore related
to an underlying structural economic model. In addition to Assumptions 1-3
above, they make the following assumption.

Assumption 4: For the spatial error model (1, 2), the population spatial
autocovariance matrix, E (0), is unknown and positive de…nite with prob-
ability one, but otherwise has a completely unrestricted structure. Further,
there exists a consistent estimator, b¡, of the population spatial autocovariance
matrix E (0).

Thus, Bhattacharjee and Jensen-Butler (2005) take an estimation method
for the underlying regression model as given. Based on residuals from these
estimates, a consistent estimator is …rst obtained. This estimator b¡ is then
used to estimate the unknown spatial weights matrix. They show that with-
out any structural constraints on the spatial weights matrix,5 the estimation
problem is only partially identi…ed, up to an orthogonal transformation of
interactions. Speci…cally, under Assumptions 1-4, the matrix

V = (I ¡ W )0 

µ
1

1

1

2
    

1



¶

(3)

is consistently estimated, upto an orthogonal transformation, by b¡¡12 =
bEb¤

¡12
bE


, where bE and b¤ contain the eigenvectors and eigenvalues re-

spectively of the estimated spatial autocovariance matrix b¡.6 In other words,
b¡¡12 is a consistent estimator of V T for some unknown square orthogonal
matrix T .

Since T is an arbitrary orthogonal matrix, it has  ( ¡ 1) 2 free ele-
ments. Hence, the spatial weights matrix W can be preceisely estimated
under additional structural constraints. Symmetry of the spatial weights
matrix constitutes one set of valid identifying restrictions. Note that, the
assumption of a symmetric spatial weights matrix is natural in many appli-
cations, and spatial econometric studies routinely assume symmtric spatial

5Other than the condition that (I ¡ W ) is nonsingular which is required for identi…-
cation in the reduced form.

6Here, A12 denotes the symmetric square root of a positive de…nite matrix A, and
A¡12 denotes its inverse. In other words, A¡12 has the same eigenvectors as A, but with
the eigenvalues replaced by reciprocal of the square root of the corresponding eigenvalues
of A.

8



weights based on geographical or economic distances. Of course, depending
of the application, one can postulate other sets of structural constraints. We
will develop such an alternative set of constraints in our application later in
the paper.

Under such structural assumptions, Bhattacharjee and Jensen-Butler (2005)
describe inference methods and an algorithm for estimation of the unknown
spatial weights matrix. Estimation requires application of the “gradient pro-
jection” algorithm (Jennrich, 2001) which optimises any objective function
over the group of orthogonal transformations of a given matrix. Convergence
is fast and the algorithm is easily programmable.7

However, the above method has two important limitations. First, the
identifying restrictions of symmetry (or other alternate structural assump-
tions) may be too strong in some applications. Second, and more importantly,
these structural constraints are not generally testable. Further, standard er-
rors in the above method have to be estimated by a bootstrap procedure
which can be cumbersome.

2.3 GMM based inferences on endogenous interactions

In the same setting as above, Bhattacharjee and Holly (2008a) developed
an alternative GMM based methodology for estimating spatial or interaction
weights matrices which are unrestricted except for the validity of the included
instruments and other moment conditions. This method assumes a nonempty
set of other cross section units, correlated with the units under consideration,
but which may change over time, expand or even vanish. Speci…cally, mo-
tivated by the system GMM approach (Arellano and Bond, 1991; Blundell
and Bond (1998), they use these additional cross section (or spatial) units
to constitute instruments, in addition to temporal lags normally available as
instruments in a panel data setting. Bhattacharjee and Holly (2008a) also
extend their methodology to a model with interval censored responses.

Like Bhattacharjee and Jensen-Butler (2005), the methodology in Bhat-
tacharjee and Holly (2008a) relies on an estimator for the underlying regres-
sion model



= X + 

The residuals, e, from this estimated model are obtained. Then, for a given

7An implementation of the algorithm in Matlab is available from the authors on request.
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cross section unit , the following regression model in latent errors follows

e = e 0
(¡)() + 

where e(¡) denotes the vector of residuals for the cross section units other
than , () is the -th row of W transposed (ignoring the diagonal element,
which is zero by construction), and observations run over  = 1      . At
each subsequent estimation step, they estimate (), an index row of W . The
same procedure is repeated for each cross section unit in turn, and the whole
W matrix is therefore estimated.

The main issue with the estimation of the above model is the endogene-
ity of the regressors, e(¡). In order to address this issue, Bhattacharjee
and Holly (2008a) draw on the connection between the setting here and the
standard dynamic panel data model. Here, we have (spatially) lagged en-
dogenous variables as regressors, but the observations are not sampled at
equi-spaced points on the time axis. Rather, the locations of our units lie in
a multi-dimensional, and possibly abstract, space without any clear notion of
ordering or spacing between observations. At the same time, one can often
imagine that potential nonzero interaction weights imply that 1 2     
are regression errors from (1), at time , on a collection of observation units
who are not located very far away in space. In many applications, there
may also be, potentially speci…c to the time period, additional units who are
located further away (like those at higher lags in the dynamic panel data
model), who are correlated with the above set of endogenous variables, but
not with the idiosyncratic errors 1 2      from the interaction error
equation (2).

In social networks agents who have weak ties with other agents may act
as instruments for groups of agents that share strong ties (Granovetter, 1973,
Goyal, 2005). In panel data on cross-sections of countries or regions, such a
set may include other countries not included in the analysis either because
of irregular availability of data or because they are outside the purview of
the analysis. Similarly, in geography and regional studies, observations at a
…ner spatial scale may constitute such instruments.

Assumption 5: There is, speci…c to a particular time point , a collec-

tion of instruments 
()
 =

³

(1)
  

(2)
      

()


´
, with corresponding

P
=1 

moment conditions


³

()
 

´
= 0  = 1 2     ;  = 1 2      (4)
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The validity of these potentially large number of instruments can be
checked using, for example, the Sargan-Hansen -test (Hansen, 1982). How-
ever, weak instruments may also potentially provide a problem here. Simi-
lar to Arellano and Bond (1991), and assuming a …rst order autoregressive
structure in the errors of the interactions model, a further set of moment
conditions are obtained.

Assumption 6: Assume a …rst order autoregressive model

 = ¡1 +   = 1 2     ;  = 2 3     

 () = 0  6= 

so that an additional  ( ¡ 1) ( ¡ 2) 2 linear moment conditions follow


¡
(¡2)

¢
= 0  = 3      (5)

where (¡2) =
³

(¡2)
1  

(¡2)
2      

(¡2)


´
and 

(¡2)
 = (1 2     ¡2) for

 = 1 2     .

Estimation can now follow along stnadard lines. First, we estimate the
underlying regression model (1) using an optimisation based method such
as maximum likelihood, least squares or GMM, and collect residuals. Next,
we estimate the interactions error model (2) using a two-step GMM estima-
tor. The weights matrix is estimated using the outer product from moment
conditions evaluated at an initial consistent estimator, which is the GMM es-
timator using the identity weighting matrix. The validity of this multi-step
procedure follow from Newey (1984).

Bhattacharjee and Holly (2008a) also extend their methodology to the
censored regression model. This is achieved by making a control function
assumption.

Assumption 7: Assume the interval censored observation scheme

Observations :
¡
[0 1]  e(¡) 

¢
(6)

 (e 2 [0 1]) = 1

where  =
³

()
 (¡2)

´
is a set of instruments. Further, the following

conditions hold:

e(¡) = 0+ ; () = 0; (7)

 = 0 + ;  ?  ;  » 
¡
0 2

¢

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The interval inequalities  (e 2 [0 1]) = 1 can be expressed as

0 = 1
¡
¡0 + e 0

(¡)() + 0 +  ¸ 0
¢

and (8)

1 = 1
¡
1 ¡ e 0

(¡)() ¡ 0 ¡  ¸ 0
¢

(9)

Assuming exogenous censoring intervals, and using the control function
approach (Blundell and Smith, 1986), the following moment conditions are
obtained:


£


¡
e(¡) ¡ 0

¢¤
= 0


£
0

¡
0 0 e(¡)

¡
e(¡) ¡ 0

¢
   

¢
e(¡)

¤
= 0


£
0

¡
0 0 e(¡)

¡
e(¡) ¡ 0

¢
   

¢ ¡
e(¡) ¡ 0

¢¤
= 0 (10)


£
0

¡
0 0 e(¡)

¡
e(¡) ¡ 0

¢
   

¢
0

¤
= 0


£
1

¡
1 1 e(¡)

¡
e(¡) ¡ 0

¢
   

¢
e(¡)
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and  and © are the pdf and cdf of the standard normal distribution respec-
tively. As before, GMM estimation can now along standard lines.

In a simple way, the above methodology exploits the panel nature of
the data as well as spatial interactions to obtain robust inferences in the
presence of potential endogeneity. This is particularly important in micro-
economic and spatial contexts where the positions of economic agents or
regions in geographical and quality space are determined strategically, and
therefore endogenously, as a result of repeated cross section interactions; see
also Pinkse et al. (2002) and Conley and Topa (2003).

The GMM based methods discussed above are potentially quite pow-
erful. They also have the advantage that unveri…able assumptions on the
structure of W are not required. At the same time, there is the potential
of a weak instruments problem. It is an empirical question as to which sets
of identifying assumptions, structural restrictions as in Bhattacharjee and
Jensen-Butler (2005) or moment restrictions as in Bhattacharjee and Holly
(2008a), is more appropriate in the context of any speci…c application.

2.4 Presence of unobserved common factors

The above two methodologies are based on the structural spatial dependence
assumption that the spatial units under observation are not exchangeable.
However, just as a pure factor model usually explains only a part of the spatial
dependence, a pure structural dependence assumption can also be problem-
atic. Such an assumption would imply that whatever structural drivers lead
to spatial autocorrelation, whether geographic distance or something more
abstract, it is uncorrelated with the regressors included in the model. These
drivers shape a particular pattern of spatial interaction, which then a¤ects
the spatial di¤usion of shocks, and which in turn we can identify and infer
upon using the above methods. Clearly, this is a strong assumption.

Further, some spatial interactions can also potentially be driven by com-
mon factors, and there can a combination of both structural drivers and
unobserved factors.8 Pesaran and Tosetti (2007) consider a model where, in
addition to spatial or network interactions described by a weights matrix,
there are unobserved common factors; see also Holly et al. (2008). Their

8While the literature on spatial econometrics has been silent on this crucial question,
there is some discussion of related issues in the literature on regional growth and conver-
gence; see, for example, Evans and Karras (1996).
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estimation is based on the common correlated e¤ects approach (Pesaran,
2006) where, in addition to the usual regressors, linear combinations of un-
observed factors are approximated by cross section averages of the dependent
and explanatory variables. De…ning notions on weak and strong cross section
dependence, Pesaran and Tosetti (2007) show that the common correlated
e¤ects method provides consistent estimates of the slope coe¢cient under
both forms of dependence. Here, we are interested in inferences on spatial
interactions under the model:

 =  + 0 + 
()
  + 

()0

  +  (11)

 = W +   = 1 2     

where our original model (1) is simply augmented with cross section averages
of  and  ( and  respectively).

While inference in Pesaran and Tosetti (2007) assumes certain structural
constraints on the weights matrix, our network interactions are unrestricted
except for the identifying assumption that the matrix (I ¡ W ) is nonsingu-
lar. Instead, we would achieve identi…cation through the moment conditions
given in (4) and (5). Under these moment conditions, GMM estimation is
straightforward.

Also, as in the previous subsection, we can accommodate interval censored
responses, by assuming either that censoring intervals are exogenous and then
conducting GMM estimation under the moment conditions (10).

This combination of spatial weights estimation with the multifactor model
is very powerful. It will allow us to infer on the relative importance of factor
based and structural explantions of spatial dependence. Further, it is now
possible to additionally infer on the drivers of the structural spatial e¤ects
as well as on endogenous network architectures.

3 Application: Interactions within the Bank

of England’s MPC

We develop the methodological approach described above in the context of
a particular form of interaction. In this case it is the decisions that a Com-
mittee makes on interest rates for the conduct of monetary policy.
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3.1 A simple model of committee decision making within
the MPC

Our model for the in‡ation process is structured as follows:

 = ¡1 + ¡1 +  (12)

 = 1¡1 ¡ 2(¡1 ¡ ¡1) +  (13)

Here,  is the in‡ation rate in period ,  is the output gap (the di¤erence
between the log of output and the log of potential output), and  the nominal
interest rate. , a supply shock and , a demand shock, are iid shocks in
period  not observable in period ¡1. The coe¢cients  and 2 are positive;
1 (0  1  1) measures the degree of persistence in the output gap. The
output gap depends negatively on the real lagged interest rate. The change
in in‡ation depends on the lagged output gap. The output gap is normalised
to zero in the long run.

If the policymaker only targets in‡ation, the central bank can (in expec-
tation) use the current interest rate to hit the target for in‡ation two periods
hence. So the intertemporal problem can be written as a sequence of single
period problems. In this case (Svensson, 1997):

 =
1

2

£
+2j ¡ ¤

¤2
 (14)

where +2j is the forecast of in‡ation at time period  + 2 based on infor-
mation available in period .

Then the rule for setting the interest rate by the monetary authority is:

 =
¡
j ¡ ¤

¢
+

1

2
+1j +

1
2

j (15)

Next, we model the decision making process within the MPC. A standard
way of understanding how a committee comes to a decision is that each mem-
ber reacts independently to a ‘signal’ coming from the economy and makes
an appropriate decision in the light of this signal and the particular prefer-
ences/expertise of the member. A voting method then generates a decision
that is implemented. In practice there is also cross committee dependence.
Before a decision is made there is a shared discussion of the state of the world
as seen by each of the members. In this section we model the possible inter-
actions between members of a committee as one in which interaction occurs
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in the form of deliberation. Views are exchanged about the interpretation of
signals and an individual member may decide to revise his view depending
upon how much weight he places on his own and the views of others.

This process can be cast as a simple signal extraction problem within
a highly stylised framework. Let the -th MPC member formulate an (un-
biased) estimate of, say, the output gap,  . We adopt this notation here
since we wish to consider situations where  = 1     members could be
a subset of a Committee of  members. Then the underlying model for the
-th member is:

 = 

 + 

 with 
 v (0 2) and (16)


¡


¢
= 


 =  for  = 1    

The initial estimates of output gap for each individual member are unbiased.
Further, since 

 re‡ects private views not shared by other committee mem-
bers, we would normally expect that (

 

 ) = 0, for  6= . However, in

case there is strategic interaction between committee members  and , 


and 
 can be correlated.

The internal process of deliberation between the members of the Com-
mittee reveals to everyone individual views of the output gap brought to the
meeting.9 At the end of discussion and deliberation, an agreed estimate,  ,
of the output gap is agreed upon. This common estimate ( ) is a weighted
average of the initial estimates for the  committee members, the weights
re‡ecting their relative importance or seniority within the committee. There-
fore

 =  + 
 with 

 v (0 2) (17)

is also unbiased for the unknown true output gap.
For the -th member, the …nal estimate of  that minimises the forecast

error variance and combines optimally the central bank estimate ( ) and the
private estimate ( ) is given by:

 =  + ( ¡  ) (18)

9Austin-Smith and Banks (1996) point out that we need each committee member to
be open in revealing his estimate of the output gap and sincere in casting a vote for an
interest rate decision that corresponds to the infomation available. Although we consider
only the one period problem here, in a multi-period context we assume that reputational
considerations are su¢ciently powerful to ensure fair play.
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where  is:

 =
2

2

+ 2


 (19)

Clearly the more con…dent the committee member is in her own judgement
the smaller 2 , and the less weight is attached to the collective forecast.

This …nal estimate shows how members may di¤er about the size of the
output gap. Committee members may also di¤er in their views on the e¤ect
of interest rates on in‡ation and output gap. This implies member-speci…c
e¤ects 2 and 2 respectively.

Then, the decision rule for the -th member can be written as:

 = (j ¡ ¤) +
1

2
+1j +

1
2

j +  (20)

where j =  is the average (forecast) of current output gap, and

 =
1
2

( ¡ j) (21)

represents the e¤ect of the deviation of the -th member’s initial estimate of
output gap from the common estimate.

There are two important features of the ’s, which are crucial for our
empirical analysis. First,  need not be a zero mean process and in general
captures the extent to which the -th member deviates from the central
interest rate projection. Hence,  can be expressed in …xed e¤ects form as

 =  + 

Second, the ’s are uncorrelated across di¤erent meetings for the same pol-
icy maker, but are correlated across members of the committee. This is in
turn because of two reasons: (a) they are related to each other through the
common estimate (j), which is a linear combination of individual estimates,
and (b) there may be strategic interactions among committee members, in
which case (

 

 ) 6= 0 for some  6= .

Therefore, our model implies the following decision rule for the -th mem-
ber:

 = (j ¡ ¤) +  +
1

2
+1j+

1
2

j+ 

 +  +  (22)
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where  (the …xed e¤ect) indicates whether the -th member is a hawk (high

values) or a dove,  denotes indicators included in the -th member’s esti-
mate of output gap (with heterogeneity both in the choice of the variables
and in their e¤ects),  is a measure of the uncertainty associated with fu-
ture macroeconomic climate and  denotes the -th member’s response to
such uncertainty, and ’s are zero mean errors with heteroscedastic vari-
ances across members; the magnitude of the variance re‡ects how activist a
particular member is. For member , ’s are uncorrelated across meetings.
However, ’s are correlated across members, because of (a) deliberation
within the committee, and (b) strategic interaction between members.

3.2 Data and sample period

The primary objective of the empirical study is to understand cross member
interaction in decision making at the Bank of England’s MPC, within the
context of the model of committee decision making presented in the previ-
ous section. Importantly, our framework allows for heterogeneity among the
MPC members and the limited dependent nature of preferred interest rate
decisions. Our dependent variables are the decisions of the individual mem-
bers of the MPC. The source for these data are the minutes of the MPC
meetings.

TABLE 1: Voting records of selected MPC members
Member Meetings Votes Dissent

Lower No change Raise Total High Low

Buiter 36 10 10 16 17 9 8
Clementi 63 14 39 10 4 3 1
George 74 15 51 6 0 0 0
Julius 45 18 25 2 14 0 14
King 85 14 50 21 12 12 0

Since mid-1997, when data on the votes of individual members started
being made publicly available, the MPC has met once a month to decide on
the base rate for the next month.10 Over most of this period, the MPC has
had 9 members at any time: the Governor (of the Bank of England), 4 inter-
nal members (senior sta¤ at the Bank of England) and 4 external members.

10The MPC met twice in September 2001. The special meeting was called after the
events of 09/11.
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External members were usually appointed for a period ranging from 3 to 4
years. Because of changes in the external members, the composition of the
MPC has changed reasonably frequently. To facilitate study of heterogeneity
and interaction within the MPC, we focus on 5 selected members, including
the Governor, 2 internal and 2 external members. The longest such period
when the same 5 members have concurrently served in the MPC is the 33
month period from September 1997 to May 2000. The 5 MPC members who
served during this period are: George (the Governor), Clementi and King
(the 2 internal members) and Buiter and Julius (the 2 external members).
The voting pattern of these selected MPC members suggest substantial vari-
ation (Table 1).11

In order to explain the observed votes of the 5 selected members, we col-
lected information on the kinds of data that the MPC looked at for each
monthly meeting. The important issue was to ensure that we conditioned
only on what information was actually available at the time of each meet-
ing. Assessing monetary policy decisions in the presence of uncertainty about
forecast levels of in‡ation and the output gap (including uncertainty both in
forecast output levels and perception about potential output) requires col-
lection of real-time data available to the policymakers when interest rate
decisions are made as well as measures of forecast uncertainty. This con-
trasts with many studies of monetary policy which are based on realised
(and subsequently revised) measures of economic activity (see Orphanides,
2003).

We collected information on unemployment (where this typically refers
to unemployment three months prior to the MPC meeting), as well data
on the underlying state of asset markets (housing prices, share prices and
exchange rates). We measure unemployment by the year-on-year change
in International Labor Organization (ILO) rate of unemployment, lagged
3 months. The ILO rate of unemployment is computed using 3 months
rolling average estimates of the number of ILO-unemployed persons and size
of labour force (ILO de…nition), both collected from the O¢ce of National
Statistics (ONS) Labour Force Survey. Housing prices are measured by the

11For example, of the 45 meetings which Julius attended, the votes for 14 were against
the consensus decision, and all of these were for a lower interest rate. On the other hand,
King disagreed with the consensus decision in 12 of the 82 meetings he attended, voting
for a higher interest rate each time. Buiter dissented in 17 meetings out of 36, voting on
8 occasions for a lower interest rate and 9 times in favour of a higher one. See also King
(2002) and Gerlach-Kristen (2004).
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year-on-year growth rates of the Nationwide housing prices index (seasonally
adjusted) for the previous month (Source: Nationwide). Share prices and
exchange rates are measured by the year-on-year growth rate of the FTSE
100 share index and the e¤ective exchange rate respectively at the end of the
previous month (Source: Bank of England). The other current information
included in the model is the current level of in‡ation – measured by the
year-on-year growth rate of RPIX in‡ation lagged 2 months (Source: ONS).

Our empirical model also includes expected rates of future in‡ation and
forecasts of current and future output. One di¢culty with using the Bank’s
forecasts of in‡ation is that they are not su¢ciently informative. By de…ni-
tion, the Bank targets in‡ation over a two year horizon, so it always publishes
a forecast in which (in expectation) in‡ation hits the target in two years time.
To do anything else would be internally inconsistent. Instead, as a measure
of future in‡ation, we use the 4 year ahead in‡ation expectations implicit
in bond markets at the time of the MPC meeting, data on which can be
inferred from the Bank of England’s forward yield curve estimates obtained
from index linked bonds.12 For current output, we use annual growth of 2-
month-lagged monthly GDP published by the National Institute of Economic
and Social Research (NIESR) and for one-year-ahead forecast GDP growth,
we use the Bank of England’s model based mean quarterly forecasts.

Finally, uncertainty in future macroeconomic environment and private
perceptions about the importance of such uncertainty plays an important
role in the model developed in this paper. The extent to which there is
uncertainty about the forecast of the Bank of England can be inferred from
the fan charts published in the In‡ation Report. As a measure of uncertainty
in the future macroeconomic environment, we use the standard deviation of
the one-year-ahead forecast. These measures are obtained from the Bank of
England’s fan charts of output; details regarding these measures are discussed
elsewhere (Britton et al., 1998).

3.3 The empirical model

We start with the model of individual voting behaviour within the MPC
developed in the previous section (??). The model includes individual speci…c
heterogeneity in the …xed e¤ects, in the coe¢cients of in‡ation and output

12We use the four year expected in‡ation …gure because the two year …gure is not
available for the entire sample period. In practice the in‡ation yield curve tends to be
very ‡at after two years.
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gap, and in the e¤ect of uncertainty. We aim to estimate this model in a
form where the dependent variable is the -th member’s preferred change
in the (base) interest rate. In other words, our dependent variable, ,
represents the deviation of the preferred interest rate for the -th member
(at the meeting in month ) from the current (base) rate of interest ¡1:

 =  ¡ ¡1

Therefore, we estimate the following empirical model of individual deci-
sion making within the MPC:

 =  + 
()
 4¡1 + 

(0)
  + 

(4)
 +4j + 

(0)
 j (23)

+
(1)
 +1j + 

()
 

¡
+1j

¢
+ 


  + 

where  represents current observations on unemployment (4) and the
underlying state of asset markets: housing, equity and the foreign exchange
market (,  and  respectively). Standard deviation of the
one-year ahead forecast of output growth is denoted by 

¡
+1j

¢
; this term

is included to incorporate the notion that the stance of monetary policy may
depend on the uncertainty relating to forecast future levels of output and
in‡ation. As discussed in the previous section, increased uncertainty about
the current state of the economy will tend to bias policy towards caution in
changing interest rates. In particular, this strand of the literature suggests
that optimal monetary policy may be more cautious (rather than activist)
under greater uncertainty in the forecast or real-time estimates of output gap
and in‡ation (see Issing, 2002; Aoki, 2003; and Orphanides, 2003). Since, as
previously discussed, the published in‡ation forecast is not su¢ciently infor-
mative, we con…ned ourselves to uncertainty relating to forecasts of future
output growth.

However, there are two important additional features of our data gen-
erating process that render the estimation exercise nonstandard. First, the
dependent variable is observed in the form of votes, which are highly clustered
interval censored outcomes based on the underlying decision rules. Second,
and importantly in our context, the regression errors are potentially interre-
lated across the members. Therefore, we augment the empirical model (23)
with a model for interaction between the error terms for di¤erent members

 = W +  (24)
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where W is a ( £ ) matrix of interaction weights with zero diagonal
elements and unrestricted entries on the o¤-diagonals, subject to the con-
straint that (I ¡ W ) is nonsingular, and  = (1 2     )

0 is a vector
of uncorrelated errors that are possibly heteroscedastic with

 (
0
) = § =

2

6
6
6
4

21 0    0
0 22    0
...

...
. . .

...
0 0    2

3

7
7
7
5


Votes of MPC members are highly clustered, with a majority of the votes
proposing no change in the base rate. The …nal decisions on interest rate
changes are all similarly clustered. For the Bank of England’s MPC as a
whole over the period June 1997 to March 2005, 69 per cent of the meetings
decided to keep the base rate at its current level, 14 per cent recommended
a rise of 25 basis points, 13 per cent recommended a reduction of 25 basis
points, and the remaining 4 per cent a reduction of 50 basis points.

This clustering has to be taken into account when studying individual
votes and committee decisions of the MPC. We do not observe changes in in-
terest rates on a continuous or unrestricted scale, we have a non-continuous
or limited dependent variable. Moreover, changes in interest rates are in
multiples of 25 basis points. Therefore, we use an interval regression frame-
work for analysis; other authors have used other limited dependent variable
frameworks, like the logit/ probit or multinomial logit/ probit framework to
analyse monetary policy decisions. Our choice of model is based on the need
to use all the information that is available when monetary policy decisions are
made, as well as problems relating to model speci…cation and interpretation
of multinomial logit models (Greene, 1993). We also explored an ordered and
multinomial logit formulations, and found the broad empirical conclusions to
be similar.

Therefore, the observed dependent variable in our case, , is the trun-
cated version of the latent policy response variable of the -th member, ,
which we model as

 = ¡025 if  2 [¡0375¡020)

= 0 if  2 [¡020 020] (25)

= 025 if  2 (020 0375]  and

 2 ( ¡ 0125  + 0125] whenever jj  0325
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The wider truncation interval when there is a vote for no change in interest
rates (ie., for  = 0) may be interpreted as re‡ecting the conservative
stance of monetary policy under uncertainty with a bias in favour of leaving
interest rates unchanged.

3.4 Results

Under the maintained assumptions that (a) regression errors are uncorrelated
across meetings, and (b) the response variable is interval censored, estima-
tion of the policy reaction function for each member (23) is an application
of interval regression (Amemiya, 1973). In our case, however, we have an
additional feature that the errors are potentially correlated across members.
If we can estimate the covariance matrix of these residuals, then we can use
a standard GLS procedure by transforming both the dependent variable and
the regressors by premultiplying with the symmetric square root of this co-
variance matrix. However, the dependent variable is interval censored and
has to be placed at its conditional expectation given current parameter es-
timates and its censoring interval. This sets the stage for the next round
of iteration. Now, the dependent variable is no longer censored; hence, a
standard SURE methodology can be applied.

Estimating the covariance matrix at the outset is also nonstandard. Be-
cause the response variable is interval censored the residuals also exhibit sim-
ilar limited dependence.13 We use the Expectation-Maximisation algorithm
(Dempster et al., 1977; McLachlan and Krishnan, 1997) for estimation. At
the outset, we estimate the model using standard interval estimation sep-
arately for each member and collect residuals. We invoke the Expectation
step of the EM algorithm and obtain expected values of the residuals given
that they lie in the respective intervals. Since we focus on …ve MPC mem-
bers, for each monthly meeting, we have to obtain conditional expectations
by integrating the pdf of the 5-variate normal distribution with the given
estimated covariance matrix.

13For example, suppose the observed response for the -th member in a given month
 is 025. By our assumed censoring mechanism (25), this response is assigned to the
interval (020 0375]. Suppose also that the linear prediction of the policy response,
based on estimates of the interval regression model is b = 022. Then the resid-
ual  ¡ b cannot be assigned a single numerical value, but can be assigned to the
interval (020 ¡ 022 0375 ¡ 022]. In other words, the residual is interval censored:
 ¡ b 2 (¡002 0155].
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Iterating the above method till convergence provides us maximum likeli-
hood estimates of the policy reaction function for each of the …ve members,
under standard assumptions, speci…cally multivariate normality of the cross
member errors. The covariance matrix of the errors is unrestricted.

TABLE 2: Interval Regression Estimates
of policy reaction functions for the 5 MPC members

Variables Governor Internal External
George Clementi King Buiter Julius

4¡1 ¡0119 ¡0107 ¡0101 ¡0164 ¡0226¤

 0040 0024 ¡0050 0051 0110
+4j 0103¤¤ 0110¤¤ 0111¤¤ 0258¤¤ 0248¤¤

 ¡0016 ¡0024 ¡0052 ¡0114 0046+

+1j 0211¤¤ 0223¤¤ 0186¤¤ 0216¤ 0047
4 ¡0175 ¡0244+ ¡0216+ ¡0645¤¤ ¡0251¤¤

 1760¤¤ 1696¤ 2355¤¤ 6154¤¤ 1323
 0620¤¤ 0412+ 0614¤¤ 1229¤¤ ¡0222
 0003 0009 0007+ ¡0006 0004


¡
+1j

¢
¡1152¤ ¡0420 0378 ¡0555 ¡0981¤

constant ¡0054 ¡0795 ¡1313¤¤ ¡1803 ¡0716

Number of meetings 73 62 94 35 45
Good. of …t Wald 2 1414 1484 1746 4585 9117
  2(10) 0000 0000 0000 0000 0000
Log pseudo-likelihood ¡3798 ¡3857 ¡6617 ¡2789 ¡1170

¤¤ , ¤and +– Signi…cant at 1%, 5% and 10% level respectively.

These estimates are presented in Table 2. The estimates show substantial
heterogeneity across the members of the MPC, which is discussed elsewhere
(Bhattacharjee and Holly, 2008b).

Our focus here is on the cross-member interactions. Based on the above
estimates, we obtain interval censored residuals using the initial censoring
scheme. These are also placed at their expected values, conditional on esti-
mates of the model parameters and their own respective censoring intervals.
Similarly, policy reaction functions are estimated for other (¡) members
who were in the committee in each month under study, for use as instruments
later on. These are also placed at their conditional expected values.

Further, as discussed above, we use the residuals for the 5 selected mem-
bers and invoke the EM algorithm to obtain the MLE of their spatial autoco-
variance matrix. The iterative estimation procedure converges quite fast (in
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4 iterations). The estimated covariance matrix and the implied correlation
matrix for the regression errors across the 5 selected members are reported
in Table 3.

The estimated correlation matrix in Table 3 indicate very high correlation
coe¢cients between regression errors corresponding to several pairs of MPC
members. The CD (cross-section dependence) test (Pesaran, 2004) strongly
rejects the null hypothesis of no cross-section dependence. Estimation of the
spatial weights matrix would facilitate understanding of these interactions.

Table 3: Estimated MLEs for Mean Vector, Covariance Matrix
and Correlation Matrix of Regression Errors (n = 33 months)14

A. Regression Errors: Mean Vector (MLE)

George Clementi King Buiter Julius
00041 ¡00174 ¡00070 00016 ¡00054

B. Regression Errors: Correlation (Covariance) Matrix

George Clementi King Buiter Julius
George 1:00

(000829)

Clementi 09989 1:00
(001031)

King 09923 09896 1:00
(000871)

Buiter 09573 09679 09558 1:00
(000778)

Julius 05184 04934 05182 02965 1:00
(000050)

The stage is now set for estimating the matrix of cross member network
interactions. This is done using the three methodologies described in the
previous section.

First, we estimate the interaction (spatial) weights under suitable struc-
tural constraints, using the methodology in Bhattacharjee and Jensen-Butler
(2005). Typically, one would then require either ( ¡ 1)2 constraints, or
equivalently an appropriate objective function to …x the orthogonal transfor-
mation. Bhattacharjee and Jensen-Butler (2005) show that an useful set of
constraints is symmetry of the spatial weights matrix W . This constraint is,
however, not useful in our case since we expect the strength of interaction

14Panel B reports the cross-member correlation matrix, with …gures in parentheses on
the diagonals representing the corresponding variances.
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between MPC members often to be asymmetric. For example, it is plausible
that an external member of the MPC arrives at her estimate of the output
gap quite independently of what an internal member does, while the internal
member may position himself strategically after assessing how the external
member is likely to vote.

We, therefore, build up an alternative set of ( ¡ 1)2 = 10 con-
straints. Based on some ideas about the institutional setting of monetary
policy decision making in the Bank of England, we choose the following sets
of restrictions:

1. Row-standardisation: It is quite common in the spatial economet-
rics literature to work with a row standardised spatial weights matrix,
where the rows sum to unity. This, however, is not strictly relevant in
our context because some of the elements in the spatial weights matrix
could be negative. Instead, we standardise rows so that the squares
of the elements in each row sum to unity. This assumption gives us 5
constraints.

2. Homoscedasticity: Idiosyncratic error variances (2 ’s) are the same
for George, Clementi and Buiter, and di¤erent and unequal error vari-
ances for King and Julius – 2George = 2Clementi = 2Buiter (2 restrictions)

3. Symmetry: Symmetric weights between the internal members and the
Governor –Clementi,King = King,Clementi, George,Clementi = Clementi,George

and George,King = King,George (3 restrictions).

The estimates of the spatial weights and idiosyncratic error variances are
presented in Table 4. As one can see, the restrictions are approximatey satis-
…ed. More importantly, con…dence intervals based on the bootstrap indicate
that quite a few of the spatial weights are signi…cant. As discussed ear-
lier, non-zero spatial weights in our model are indicative of (a) interaction
due to deliberation and combined decision making within the MPC, and/
or (b) strategic interaction. Of particular signi…cance are the negative spa-
tial weights. While the process of discussion and agreement to a common
estimate of the output gap would contribute to positive spatial weights, nega-
tive weights are almost certainly the outcome of strategic interaction. In this
context, the negative spatial weights between the Governor and the external
members (Buiter and Julius) are of particular importance. It would appear
that the evidence from these estimates point towards strategic alignment of
votes within the MPC.

26



Table 4: Estimated Weights Matrix under Structural Constraints

George Clementi King Buiter Julius Row SS b
George 0 0642¤¤

(0043)
0602¤¤
(0053)

¡0284¤¤
(0110)

¡0343¤¤
(0132)

0973 274-4

Clementi 0638¤¤
(0042)

0 ¡0600¤¤
(0223)

0261¤
(0106)

0277¤¤
(0085)

0911 297-4

King 0618¤¤
(0097)

¡0608¤¤
(0235)

0 0265¤
(0114)

0322¤¤
(0092)

0926 132-3

Buiter ¡0562¤¤
(0172)

0562¤¤
(0212)

0542¤¤
(0124)

0 ¡0297
(0187)

1014 318-4

Julius ¡0564¤
(0228)

0564¤
(0249)

0555¤
(0227)

¡0249
(0158)

0 1007 163-3

¤¤ , ¤and +– Signi…cant at 1%, 5% and 10% level respectively.

Bootstrap standard errors in parentheses.

Second, we estimate the spatial weights matrix under moment restric-
tions, using the methodology developed in Bhattacharjee and Holly (2008a).
This is achieved by GMM, assuming that the censoring intervals are exoge-
nous in the interaction model for the errors, and using moment conditions
given in (10). In other words, instruments are derived from residuals for other
members in the committee and lagged residuals of members included in the
analysis (from lag 2 backwards). In the spirit of dynamic panel GMM esti-
mators (Arellano and Bond, 1991; Blundell and Bond, 1998), the instrument
set is therefore di¤erent for each month under analysis. The endogenous
error models for each member are estimated separately, though the entire
estimation exercise can be combined together within an uni…ed GMM setup.

Table 5: Estimated Spatial Weights Matrix, GMM

George Clementi King Buiter Julius Row SS -stat.
George 0 0813¤¤

(0031)
0184¤¤
(0057)

¡0008
(0061)

¡0149¤
(0061)

0717 909
(=077)

Clementi 0911¤¤
(0061)

0 ¡0081
(0073)

0173¤¤
(0055)

0159¤¤
(0057)

0892 1012
(=068)

King 0532¤¤
(0172)

¡0283
(0216)

0 0610¤¤
(0127)

0540¤¤
(0120)

1027 767
(=086)

Buiter ¡0153
(0277)

0352
(0233)

0680¤¤
(0132)

0 ¡0454¤¤
(0067)

0816 1136
(=058)

Julius ¡0427¤¤
(0086)

0481¤¤
(0121)

0501¤¤
(0072)

¡0340¤¤
(0085)

0 0780 1092
(=062)

¤¤ , ¤and +– Signi…cant at 1%, 5% and 10% level respectively.

HAC standard errors in parentheses.
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The validity of the assumed moment conditions is checked using the
Sargan-Hansen -test for overidentifying restrictions (Hansen, 1982). The
estimated interaction matrix is presented in Table 5. The reported estimates
are numerically, and de…nitely in sign, similar to estimates of spatial weights
under structural constraints (Table 4). At the same time, signi…cance of
some of the weights are di¤erent. Admittedly, the assumed structural re-
strictions on the weights matrix are not veri…able and can be violated in
empirical applications. This observation further underscores an advantage of
the GMM based methodology, subject to the validity of the assumed moment
conditions. Further, the moment restrictions can be tested, as we have done
here.

Third, we estimate structural spatial weights after allowing for common
correlated factors. In the context of the current application, we suspect a
priori that the MPC members may not be completely exchangeable. In other
words, some structural connections may be important. At the same time,
unobserved factors may drive some of the cross-section dependence. In order
to explore the relative importance of these two channels, we estimate the
model using the common correlated e¤ects (CCE) methodology (Pesaran,
2006). In the current application, none of the variables in the RHS of the
empirical policy rule (23) has cross-section variation, but we allow for com-
plete slope heterogeneity. Therefore, we estimate a modi…ed policy rule with
cross-section averages of the dependent variable as an additional regressor.
Very similar results are obtained when we use the median response as a proxy
for this mean response. This also has the advantage of helping place an ex-
plicit interpretation to the additional regressor; hence, we report results for
this modi…ed decision rule:

 =  + 
()
 4¡1 + 

(0)
  + 

(4)
 +4j + 

(0)
 j (26)

+
(1)
 +1j + 

()
 

¡
+1j

¢
+ 


  + 

()
 4 + 

where as before

 = W + ;

 (
0
) = § = 

¡
21 

2
2     

2


¢


The covariance and correlation matrix of the residuals from this model is
estimated in the same way as before, and reported in Table 6. It is interesting
to note that, after allowing for common factors, the degree of structural
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cross-section dependence has signi…cantly reduced, to the extent that the
CD test (Pesaran, 2004) now fails to reject the null hypothesis of no spatial
dependence.

Table 6: Estimated MLEs for Mean Vector, Covariance Matrix
and Correlation Matrix of Regression Errors in CCE model (26)15

A. Regression Errors: Mean Vector (MLE)

George Clementi King Buiter Julius
757-10 ¡00141 ¡00216 ¡00114 00121

B. Regression Errors: Correlation (Covariance) Matrix

George Clementi King Buiter Julius
George 1:00

(000019)

Clementi 01144 1:00
(000719)

King ¡00895 01089 1:00
(000989)

Buiter ¡02021 00917 03145 1:00
(000974)

Julius ¡01117 ¡00140 00440 ¡00435 1:00
(001020)

However, some spatial correlations are quite large, and it is possible that
a degree of structural spatial interactions may be present. In order to explore
this, we estimate the structural spatial weights matrix by GMM, using the
same moment conditions as before (10). The estimates and corresponding
tests for overidentifying restrictions are reported in Table 7.

The estimates point to important structural interconnections between
members of the MPC. Though the statistical signi…cance of spatial interac-
tions is weaker than those reported before (Tables 4 and 5), the direction and
magnitude of the important network e¤ects are broadly preserved. Further
analysis of network connections within the Bank of England’s MPC, and re-
lated inferences on network architecture and strategic behaviour, is beyond
the scope of this paper.

Overall, we can conclude that the objective of studying spatial interac-
tions is best served by allowing for both structural and factor based cross-
section dependence. Further, we describe and illustrate several methods

15Panel B reports the cross-member correlation matrix, with …gures in parentheses on
the diagonals representing the corresponding variances.
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based on spatial panel data that can be used to draw inferences on these
spatial and interaction weights.

Table 7: Estimated Spatial Weights Matrix by GMM
(allowing for common unobserved factors – CCE)

George Clementi King Buiter Julius -stat.
George 0 00015

(00087)
¡00096
(00099)

¡00060
(00121)

¡00279¤
(00134)

877
(=079)

Clementi ¡04976
(05561)

0 01516
(01055)

02511+
(01365)

¡01458
(01389)

846
(=081)

King 02936
(14663)

02393+
(01431)

0 03319¤
(01467)

04021¤
(01769)

875
(=079)

Buiter 22354+
(13537)

00326
(00994)

06435¤¤
(01198)

0 ¡00234
(01251)

1078
(=063)

Julius ¡26098¤¤
(09904)

00105
(01136)

¡00231
(01078)

01583
(01198)

0 873
(=079)

¤¤ , ¤and +– Signi…cant at 1%, 5% and 10% level respectively.

HAC standard errors in parentheses.

4 Conclusions

In this paper, we argue that the distinction between structural and factor
based connections is very important in the study of spatial and cross-section
interactions. Both of these channels o¤er alternative explantions for spatial
correlation and can coexist in some models and applications. Further, while
the assumption of exchangebility inherent in the factor model can be un-
reasonable in many spatial applications, assuming the absence of common
unobserved factors also appears to be too strong.

We describe three methods to draw inferences on spatial (interaction)
weights that explicitly address the above distinction. The …rst two methods
are designed to draw inferences under the structural dependence assump-
tion, one under structural constraints on the spatial weights matrix (Bhat-
tacharjee and Jen-Butler, 2005) and the other under moment restrictions in-
spired by the system GMM literature (Bhattacharjee and Holly, 2008a). The
third method allows for both structural and factor based dependence, where
the unobserved factors are modelled using the common correlated e¤ects
methodology (Pesaran, 2006) and the structural spatial weights estimated
using GMM methods propoesed in Bhattacharjee and Holly (2008a). The
methods are illustrated using an application to committee decision making
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within the Bank of England’s MPC. The application highlights the relative
advantages and shortcomings of each of the methods, and helps draw useful
inferences on the nature and strength of interactions.

Research in the above area, both empirical and econometric, is ongo-
ing. More work needs to be done in combining the common factor approach
with structural spatial interactions. Further research on the nature of spatial
interactions would inform both the very active theoretical literature on eco-
nomic networks, and provide additional empirical insights into the stability
of di¤erent network architectures under assumptions on information sharing
and bargaining. Also, the networks emerging from our work can be viewed
as a sequence of weighted directed graphs, with connections condituioned on
the assumed signi…cance level. How research on such random graphs can
aid inferences on connections in space and economic networks is a matter of
further study.

Apart from the application developed here, Bhattacharjee and Jensen-
Butler (2005) and Holly et al. (2008) have used related frameworks for em-
pirical studies of housing markets. However, the applicability of the frame-
work and methods would surely go beyond these couple of applications. For
example, an important application area would be economic convergence of
countries and regions. Previous research suggests that there are stable dif-
ferences in productivity across regions in the EU. Potentially, such spatial
inequality can be explained by technology transfer, where some regions are
more e¢cient in generating new technology or technology absorption. In
turn, technology transfer is often related to trade (imports and/ or exports),
FDI etc., while technology absorption depends on human capital, R&D and
similar features. However, theory provides no clear guidance as to which of
these channels are more important, or indeed if relative importance varies
across regions. Further, while some of the di¤usion can be explained by the
pull of common factors, there may be institutional features that enhance or
depress technology transfer between speci…c pairs of regions. In empirical
studies, it is useful to allow for technology transfer in relatively unrestricted
manner and further, to infer on the strength and direction of inter-region
di¤usion while being agnostic about the speci…c drivers of such interaction;
see Bhattacharjee and Jensen-Butler (2005) for a simulation study based on
the US. Further research along similar lines will be important for our under-
standing of economic growth and convergence.
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