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Abstract

Hydrogen produced by microalgae is intensively researched as a potential alterna-

tive to conventional energy sources. Scaling-up of the process is still an open issue, and

to this end accurate dynamic modeling is very important. A challenge in the devel-

opment of these highly nonlinear dynamic models is the estimation of the associated

kinetic parameters. This work presents the estimation of the parameters of a revised

Droop model for biohydrogen production by Cyanothece sp. ATCC 51142 in batch and

fed-batch reactors. The latter reactor type results in an optimal control problem in

which the in�uent concentration of nitrate is optimized which has never been consid-

ered previously. The kinetic model developed is demonstrated to predict experimental

data to a high degree of accuracy. A key contribution of this work is the prediction
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that hydrogen productivity can achieve 3365 mL/L through an optimally controlled

fed-batch process, corresponding to an increase of 116% over other recently published

strategies.

Introduction

Global warming has been directly linked to the release of carbon dioxide (CO2) by burning

carbon-based energy resources1. Aside from the environmental impact, it does not seem to

be sensible to permanently rely on limited and non-renewable conventional fuels for energy

supply2. To reduce the production of CO2 and ful�ll the increasing demands on energy

supply, seeking novel sustainable and environmentally friendly energy resources is actively

researched internationally.

Currently, hydrogen (H2) produced by microorganisms is considered one of the fuels of

the future with great potential for sustainability and environmental friendliness3. Di�er-

ent microorganisms such as green algae, cyanobacteria and purple non-sulfur bacteria are

known to generate hydrogen. Chlamydomonas reinhardtii, an outstanding representative

of green algae, produces biohydrogen by photosynthesis and utilizes water as the hydrogen

source4. Instead of releasing CO2, C. reinhardtii �xes CO2 for its growth, indicating that

the hydrogen generated in this process could be carbon-neutral5. Cyanobacteria are capable

of producing hydrogen via di�erent metabolic pathways including both photosynthesis and

nitrogen-�xing pathways6. In particular, Cyanothece sp. ATCC 51142 attains the highest

hydrogen production rates compared to other natural species, and CO2 can also be chosen as

the carbon source in its photo-autotrophic growth period7. Purple non-sulfur bacteria have

the advantage of continuously generating hydrogen after deprivation of a nitrogen source8.

Additionally, their anoxygenic photosynthesis pathway signi�cantly facilitates the commer-

cialization of biohydrogen production, as hydrogen is only generated in anaerobic conditions

regardless of the species of microorganisms4,6,9.

Extensive studies have been conducted to improve the productivity of hydrogen by dif-

2



ferent microorganisms. Suppression of methanogenic activity for hydrogen production using

mixed bacterial cultures has been investigated10. E�ects of light intensity, temperature

and nutrient ratio on microorganism growth and hydrogen production have also been ex-

amined7,11�14. Di�erent processes have also been designed to extend hydrogen production

periods and improve biomass concentration15,16. Despite these e�orts, there are unresolved

problems that still seriously prevent industrialization of biohydrogen production processes.

For example, in laboratory scale research, recent studies have concluded that light atten-

uation in photobioreactors (PBRs) can strongly limit algal and cyanobacterial growth and

hydrogen production17,18. The con�guration of a PBR is also found to a�ect the uniformity

of culture mixing, light transmission and cell growth rate19,20. Furthermore, �nding the

optimal operating conditions such as incident light intensity, temperature and nutrient ratio

is very demanding if it is carried out purely by experiments. On the other hand, recent

research demonstrated that di�erent reactor operation modes such as well-mixed mode and

non-mixed mode can largely in�uence the productivity of biohydrogen production process21.

As a result, it is essential to choose the suitable reactor type and to �nd the optimal operating

conditions when scaling-up biohydrogen production processes.

Developing dynamic models to simulate and optimize fermentation processes have been

widely accepted as the most e�ective method to solve the previously mentioned problems.

A variety of dynamic models including the Monod model and the Droop model have been

developed and modi�ed by previous research for biohydrogen production22? �24. With ac-

curate and reliable dynamic models available, di�erent reactor types and operation can be

simulated, and the optimization of operating conditions such as nutrient ratio and dilution

rate can be explored so as to reveal their maximal productive capability.

The use of dynamic models requires the use of state-of-the-art techniques in simulation

and optimization so as to select the optimal reactor type and operation. The aim of the

present study is twofold: to develop an accurate biohydrogen production model via parameter

estimation, and the dynamic optimization of hydrogen production process models. The

3



species investigated in the current work is Cyanothece sp. ATCC 51142 because of its

distinctively high hydrogen production rate7.

The key motivation for this work is to present original contributions in the area of mod-

eling and optimizing fermentation processes, with particular emphasis on biohydrogen pro-

duction, as follows:

1. Complete dynamic model identi�cation via the use of rigorous dynamic optimization

procedures

2. Veri�cation of the derived models through comparison with experimental data

3. Use of the derived dynamic process model to predict the optimal operation of the

underlying process

4. Investigate the impact on productivity of treating some traditionally constant operating

parameters as controls

Process Modeling and Optimization

Model Development

Various dynamic models have been developed to simulate di�erent growth phases of microor-

ganisms? . Speci�c to the biohydrogen production process by green algae and cyanobacteria,

�ve growth phases have been observed by recent experimental studies15,25 (i) the lag phase,

(ii) the primary growth phase, (iii) the secondary growth phase, (iv) the stationary phase,

and (v) the decay phase21. In the primary growth phase, cyanobacteria grow rapidly be-

cause of the presence of essential nutrients, including nitrate (nitrogen source) and glycerol

(carbon source). Once nitrate in the culture is consumed, the cyanobacterial growth phase

shifts to the secondary growth phase. In this phase, cells continue growing by consuming the

intracellular nitrogen source accumulated in the primary growth phase, and the activity of
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nitrogenase is recovered because of the absence of nitrate. The nitrogen-�xing process is also

stimulated due to the activation of nitrogenase, which initiates the generation of hydrogen.

After the rapid consumption of the intracellular nitrogen source, a brief stationary phase is

observed which is followed by the decay phase where hydrogen is mainly generated.

To construct an accurate dynamic model for cyanobacterial hydrogen production, all of

the growth phases except the lag phase have to be considered. As most of the present dynamic

models are designed to simulate a single speci�c growth phase of microorganisms, such as

the stationary phase or the �rst growth phase14,22�24, modi�cations have to be introduced

with the aim to produce a complete process model that is capable of predicting all phases

seamlessly. By comparing the characteristics of di�erent dynamic models, a revised Droop

model constructed in previous research21 is selected as it is capable of simulating the entire

set of growth phases of cyanobacteria, except the lag phase. The revised Droop model is

presented in Equations (1a)�(1i). Further details of model selection and construction can

be found in21. As hydrogen production rates were found to be proportional to biomass

concentration in our experiment work15, the yield ratio of hydrogen to biomass, YH/X , is

determined as 2.34 mL·g−1 and does not need to be estimated.
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f (O) =
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Fin =
0.1

720− T
(1i)

where N is nitrate concentration (mg · L−1), q denotes the normalized intracellular nitrogen

source concentration , kq represents the normalized minimum intracellular nitrogen source

concentration, C is glycerol concentration (mM), O is oxygen concentration (% of oxygen

saturation in the solution), H is hydrogen production (mL·L−1), X is biomass concentration

(g · L−1). f (N), and f (O) are the switch functions to stimulate the production of hydrogen.
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When the culture is anaerobic (O = 0.0) and the nitrate concentration is lower than its

threshold (N<100 mg·L−1), hydrogen is generated, (f (N) = 1 and f (O) = 0.0); otherwise

hydrogen production is inhibited (f (N) = 0.0 or f (O) = 1), Fin is the in�uent �ow rate

(L · hr−1), CFed denotes the glycerol in�uent concentration (mmol · L−1), OFed is oxygen

in�uent concentration (%), NFed(t) is nitrate in�uent concentration (mg·L−1) considered to

be a manipulated variable, and T (hr) is the switch time after which the inlet starts being

administered to the reactor.

The above model simulates a �xed-volume fed-batch process very similar with that of a

variable-volume fed-batch process21, in the current research only the �xed-volume fed-batch

process is selected as the representative case.

Parameter Estimation

It is clearly important to estimate accurately the parameters of any process model in order

to use it for evaluation and design purposes. Di�erent parameter estimation techniques can

be used in di�erent scenarios. For problems without gross errors, weighted nonlinear least-

squares method is the best way to estimate the values of process variables. However, when a

signi�cant amount of noise exists either in the bio-system behavior or in the measurement of

the states, least squares might not be the best method as outliers have a strong impact on the

�nal �t. In an errors-in-variables-measured formulation (EVM) both errors in the input and

output variables are taken into account. A major di�culty in solving this problem is that,

since the error is accounted for in all the variables, the optimization is performed on both the

parameters and the inputs, thus leading to problems with many degrees of freedom26. M-

estimators are robust estimators, which can reduce the e�ect of large outliers or nullify their

e�ect27. Another type of robust estimator to outliers can be obtained by formulating the

objective as an `1-norm. Moreover, recent work has proposed an `1-norm with a dead-band

which enhances noise rejection and minimizes unnecessary parameter adjustment28.

In this work parameters are estimated through nonlinear least-squares, though there
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are other advanced regression formulations like those mentioned above the former has been

chosen due to the measuring accuracy of experimental instruments. Parameter estimation

for large nonlinear models has also been explored in26,29. In this section a description of the

parameter estimation procedure followed in this work is presented

Optimization problem formulation for parameter estimation

Biohydrogen production in a �xed-volume fed-batch reactor is modeled by Equations (1a)�

(1i), where the set of parameters p ∈ R9is de�ned by:

p = (p1, p2, p3, p4, p5, p6, p7, p8, p9) = (µmax, kq, KC , µd, YC/X , YN/X , Yq/X , YO/X , Yd) (2)

To estimate the parameters in Equation (2) the following nonlinear least-squares opti-

mization problem is formulated.

min
p
LSQR (p) =

N∑
i=1

(ŷi − y(ti, p))
T Λi (ŷi − y(ti, p)) (3a)

subject to:

dx

dt
= f(x(t), p) (3b)

xlb ≤ x ≤ xub (3c)

plb ≤ p ≤ pub (3d)

t = t0, x = x0 (3e)

where xlb, xub are lower and upper bounds, respectively, for the state variables, and pub, plb
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are lower and upper bounds for the parameters, respectively. The output variables once

the DAE system is solved are labeled y, while the experimental data is labeled as ŷ. The

objective function is a general weighted least-squares function, where Λ is the weighting

matrix. Given the nonlinearity and sti�ness of the DAE model in Equations (1a)�(1i),

sti� system integration methods are required, hence the orthogonal collocation method over

�nite elements in time using Radau roots is used throughout this paper30. This method has

proved to be highly e�cient for discretizing dynamic systems, and computational costs are

reduced signi�cantly compared to simpler discretization schemes such as the implicit Euler

method31,32 which has been widely used in recent publications for dynamic model parameter

estimation22�24.

9



Optimization procedure

The optimization problem is transcribed into an NLP through orthogonal collocation33 which

can then be adressed by NLP solvers.

The implementation in this work is programmed in a Python environment, Pyomo. Py-

omo34 is a tool package for modeling optimization applications in Python and serves as an

interface for the optimization solver IPOPT35 (used as a library in Pyomo). It is used in

our work to discretize and optimize parameter estimation problems. IPOPT is a software

package for large-scale nonlinear optimization. It is designed to �nd (local) solutions of con-

strained nonlinear optimization problems with continuous variables. This solver is extremely

e�cient in handling nonlinear problems, and has the option to approximate the Hessian of

the Lagrangian of the problem by a quasi-Newton method. This makes it a very e�ective

solver in addressing nonlinear parameter estimation problems with nonlinear constraints

(even though a Gauss-Newton Hessian is never supplied).

The optimization method used in this work is a local optimization method, hence it can

only guarantee local solutions. The starting points of the optimization de�ne the outcome

of the �t and due to their importance, the state variables are given initial points as lin-

ear approximations of the pro�les described by the data points in the case of monotonic

pro�les. When experimental data (and theory) suggested non-monotonic pro�les, piecewise

linear approximations are used instead. To ensure su�cient exploration of the impact of

optimization starting points, a multistart method is employed which is explained further in

the computational results section.

Optimization of Biohydrogen Production

The greatest challenge in biohydrogen production is the e�ciency of the process, hence

optimization of its operation is very important. In this subsection we describe the model-

based procedure adopted to optimize biohydrogen production for both a batch and a fed-

batch process. This optimization will simulate a 30 day period which enable us to make a
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standardized comparison with existing published works15,36.

Batch optimization

The Equations (1a)�(1i) represent a �xed-volume fed-batch process. If the inlet �ow Fin = 0,

then we can describe a batch reactor model. With the former constraint once the parameters

are estimated, we proceed to �nd the optimal operating conditions that maximize hydrogen

yield for the batch process. There are two crucial operating conditions to optimize hydrogen

production: the initial nitrate concentration and the number of runs in a 30 day period.

Optimizing nitrate initial concentration is straightforward, however optimizing the number

of runs for the batch process results in a mixed-integer nonlinear programming problem

(MINLP). To solve this MINLP a branch and bound (B&B) procedure is used37.

The relaxed optimization problem is discretized by orthogonal collocation over 100 ele-

ments in time, with 3 collocation points per element. The previous discretization results in

an optimization problem with approximately 4800 variables and 7200 constraints, in total.

Once the optimization problem has been adapted to the orthogonal collocation formulation

the resulting NLP is de�ned as follows:

Objective function

max
t,N(t0)

H(tf )
720

t+ n · 48
(4a)

subject to:

Process dynamics

ẋi,j = f(xi,j, ẋi,j, p) (4b)

Collocation constraints

xi,j = xi−1,K + hi

K∑
l=1

Φl(τj)ẋi,l (4c)
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Continuity constraints

xi,0 = xi−1,K (4d)

Initial conditions

x1,0(t0) = x0 (4e)

Integration horizon

0 ≤ t ≤ tf (4f)

Bounds

20 ≤ tf ≤ 720 N(t0)lb ≤ N(t0) ≤ N(t0)ub (4g)

where tf refers to the �nal integration time for each run, such that 720
tf

= n, where n is the

optimal number of runs, N(t0) is the initial nitrate concentration, for a cleaning time of 48

hours between runs15, appearing in the objective function. Because the current research aims

to discover the maximal capacity of cyanobacterial hydrogen production, the total amount of

biomass will be �xed at 0.2 g3,15 in this optimization study, while the other design conditions

can be found in Table 1. A multistart scheme was used to identify better solutions, using

50 di�erent starting points. From the 50 starting points 28 converged to 2.45 process runs,

11 converged to process 2.98 runs, 7 converged to process 4.02 runs, and 4 did not converge.

This highlights the fact that this problem is nonconvex and has many local solutions. The

average computational time for each computational optimization execution was 55 seconds,

with a total of 2,750 seconds for all 50 starting points on an Intel Core i5, 4 GB RAM 2.53

GHz computer. As mentioned before, once the optimal value for this relaxed MINLP was

found, a branch and bound scheme was employed which identi�ed the optimal operating
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conditions as reported in the results section. This problem has the number of runs as an

integer valued variable and is discretized into 100 elements in time, with 3 collocation points

per element.

Table 1: Operating conditions of batch process

Initial biomass concentration 0.2·n−1 [g·L-1]
Operating time t∈ [20, 720] [hr]
Total operating time 720 [hr]
Initial oxygen concentration 20%
Initial nitrate concentration N0 ∈ [1.0, 3000] [mg·L-1]
Initial glycerol concentration 50 [mmol·L-1]
Initial nitrogen quota 1.0
Initial hydrogen production 0.0 [mL]
Number of runs 2
Cleaning time 48 [hr]

Fed-batch process optimization

An optimal control problem was formulated to optimize hydrogen production in the fed-

batch process. Two manipulated variables were taken into account, the switching time T

which determines the time when nitrate starts to be administered into the reactor, and the

manipulated variable NFed(t) which is the nitrate concentration of the in�uent. This last

variable is allowed to change value once per day in a 30 day experiment, but otherwise re-

mains constant during each 24 hour period (piecewise-constant control function). Operating

conditions can be found in Table 2. The biohydrogen production model yields the following

optimal control problem for a fed-batch reactor

Objective function

max
T,NFed(t)

H(tf ) (5)

subject to:

Equations (1a)�(1i)

13



When orthogonal collocation is applied to the problem discretized above, it results in

an NLP of considerable size. Direct solution of the entire set of constraints and variables

resulting from the orthogonal collocation discretization was found to be di�cult to converge.

For this reason the SALA augmented Lagrangian decomposition method was used38. De-

composition algorithms have been found to be useful to initialize a dynamic optimization

problem when good initial estimates are hard to �nd39. According to this approach, the

discretized problem was decomposed into three decoupled subproblems. Each subproblem

was discretized by orthogonal collocation into 100 elements and 3 collocation points, for an

overall problem of 300 elements. In terms of overall size, the complete discretized problem

involves 28,800 constraints and 14,400 variables. The outer coordination algorithm took 203

iterations to converge, each iteration in average had a computational cost of 163 seconds, the

overall computational time was 9 hrs 12 minutes on an Intel Core i5, 4 GB RAM 2.53 GHz

computer. With good initialization points from the above framework, the non-decomposed

problem presented a computational time of 152 seconds.

Table 2: Operating conditions of fed-batch process

Initial biomass concentration 0.2 [g·L-1]
Total operating time 720 [hr]
Initial oxygen concentration 20%
Initial nitrate concentration 150 [mg·L-1]
Initial glycerol concentration 50 [mmol·L-1]
Initial nitrogen quota 1.0
Initial hydrogen production 0.0 [mL]
Oxygen inlet concentration 20%
Glycerol inlet concentration 50 [mmol·L-1]
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Results and discussion

Parameter estimation

The resulting model from the parameter estimation least-squares optimization problem in

Equations (3a)�(3e) is depicted in Figure (1) , where the pro�les for the experimental points,

the initial guess, and the �tted model are shown.

Figure 1: Comparison of simulation and experimental results. (a) biomass concentration.
(b) glycerol concentration. (c) nitrate concentration. (d) oxygen concentration.

The parameter values solving the least-squares �tting optimization problem are presented

in Table (3). In the current experiment, nitrate is the only limiting nutrient as the e�ect of

glycerol on cyanobacterial growth and hydrogen production is negligible since it is always in

excess. Therefore, KC is calculated as zero and the term C
KC+C

accounting for the e�ect of

glycerol becomes equal to 1.

Con�dence intervals can be computed through the parameter estimation process. The
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covariance matrix for the estimated parameters can be approximated by the inverse of the

reduced Hessian at the optimal solution. Con�dence intervals can then be obtained from

the trace of this approximated covariance matrix following standard procedures40. Due to

the high nonlinearity and complexity of modeling metabolic kinetics, the assumption of

computing the con�dence intervals from the above framework may not hold. For this reason

the con�dence intervals presented in Table 3 must be understood as theoretical values. The

detailed description of the model used in this work is presented in21. It is found that the

simulation results are in good agreement with the experimental data as well as able to predict

new processes. Therefore, the current model is suitable for further process design.

Table 3: Model identi�cation parameter values

Parameter Value Parameter Value
µmax [hr−1] 0.04765 ±0.00822 YN/X [mg · g−1] 244.6±0.0635
kq 0.6281 ±0.1727 Yq/X 1.723±0.0011
KC [mmol · L−1] 0.0 ±0.1223 YO/X [L · g−1 · hr−1] 14.60±1.002
µd [L · g−1 · hr−1] 0.008559±0.000287 Yd [L · g−1] 26.22±0.8309
KN [mg · L−1] 50.0 ±4.43 YC/X [mmol · g−1] 20.83±0.2467

Optimal Operating Conditions in Batch Mode

High biomass concentration in the culture is essential to e�ciently generate hydrogen in a

batch process. During the hydrogen production period cyanobacteria commence decaying

due to the lack of nitrate. After a certain period most cells in the culture are dead, and

fresh culture has to be reloaded in order to improve process e�ciency. Although frequently

renewing the culture in a photobioreactor can enhance hydrogen productivity, the increasing

total cleaning time will reduce the hydrogen production period. It is thus essential that the

operating time of each run to be optimized.

An optimal initial nitrate concentration exists due to the trade-o� e�ects of nitrate con-

centration a�ecting hydrogen production. On the positive side, a higher nitrate concentration

can enhance the growth of cyanobacteria, as hydrogen production rate is almost proportional

to biomass concentration in a nitrate-limiting culture. On the negative side, the activity of
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nitrogenase will be inhibited if nitrate concentration is higher than a threshold (100 mg·L−1

as observed in the current experiment), and hydrogen thereby will not be produced.

The resulting optimal batch operating conditions from the optimization problem de�ned

in Equations (4a)�(4g) are: two runs (n = 2), an initial nitrate concentration N(t0) =

2283.6 mg · L−1, and a batch process duration tf = 336 hr. The optimized batch process

operation concentration pro�les for a single run are shown in Figure (2).

Figure 2: Optimized pro�les of the batch process in each run. (a) biomass concentration.
(b) hydrogen production. (c) nitrate concentration. (d) oxygen concentration.

During each run of the operation when the initial nitrate concentration is low, nitrate

concentration in the culture rapidly drops below the threshold and because of this the hy-

drogen production period is extended (Figure 3(c)). However, total hydrogen production

is severely limited due to the low biomass concentration caused by the low initial nitrate

concentration. On the contrary, even if higher biomass concentration is obtained in the cul-

ture when the initial nitrate concentration is higher than its optimum, total hydrogen yield
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is still low because of the severely reduced hydrogen production period. This is because

cyanobacteria have to spend more time in consuming nitrate to stimulate the activation of

nitrogenase for hydrogen production (Figure 3(d)).

Figure 3: Biomass concentration (×3.5 g·L−1), nitrate concentration (× 2283 mg·L−1), oxy-
gen concentration (× 100 %) and hydrogen production (× 773 mL·L−1) during the time
course of batch processes with di�erent initial nitrate concentrations. (a) hydrogen pro-
duction with respect to the change of operating time for each run [hr] and initial nitrate
concentration; (b) initial nitrate concentration is 2283 mg·L−1; (c) initial nitrate concentra-
tion is 1000 mg·L−1; (d) initial nitrate concentration is 5000 mg·L−1.

The e�ects of operating time of each run on hydrogen production are very similar with

those of the initial nitrate concentration. A longer operating time at each run may lead to

a longer hydrogen production period, but the increased decay of cells is found to o�set the

advantage of a longer hydrogen production period. On the other hand, a shorter operating

time for each run requires the initial biomass concentration to be very dilute. Hence, a

longer cell growth period is necessary to increase biomass concentration, which decreases

the hydrogen production period in each operation. The total hydrogen production period

thereby is also reduced.
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The high nonlinearity of the batch process highlights the importance of robust and e�-

cient modeling procedures. Given the discussion above, it becomes clear that the method-

ology followed throughout this contribution is necessary to describe accurately the process

dynamics. On the other hand, the procedure followed to optimize the resulting MINLP

to �nd optimal operating conditions guarantees a high quality solution, though practically

di�cult to certify the global optimality of the solutions obtained with dynamics such as the

one describing the current system. It should be noted that the resulting optimization models

are described by nonlinear equality constraints, which are many in numbers as is the case

of the variables involved. The model is demonstrated numerically to be nonconvex, via the

multistart policy, exhibiting many local optimal solutions.

Optimal Operating Control Policy for the Fed-batch Process

The resulting optimal switching time for the fed-batch process was T = 42 hr, and the

optimal pro�les for the dynamic optimization of the model in Equations (5) and Equa-

tions (1a)�(1i) are shown in Figure (4).
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Figure 4: Optimized pro�les of key state variables of the fed-batch process. (a) biomass
concentration. (b) hydrogen production. (c) nitrate concentration in the culture. (d) oxygen
concentration. (e) in�uent nitrate concentration (manipulated variable of the system).

The fed-batch process reaches a productivity of 3365 mL/L, this result constitute a

signi�cant improvement compared to both the experimental based optimized multiple batch

process (864mL/L)41, and modelling-based optimized fed-batch process (1560 mL/L)21. The

optimal switching time is found to be at the 42nd hour, where the initial nitrate in the

culture is almost completely consumed. Nitrate concentration in the in�uent increases with

operating time until cyanobacteria reach the stationary phase. Following this, the inlet
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nitrate concentration remains constant until the end of the experiment.

The increasing concentration of nitrate in�uent maintains a high cyanobacterial growth

rate, and at the same time a rapid nitrate uptake rate in the culture. Given these conditions,

nitrate concentration in the culture rapidly drops below its threshold to facilitate hydrogen

production.

At the beginning of the feeding phase, the consumption rate of nitrate in the culture is

slow due to the low biomass concentration. An increase of nitrate concentration in the cul-

ture is observed when the in�uent nitrate concentration is very high, as the nitrate addition

rate is higher than the consumption rate (Figure 5(b)). This increase delays the start of hy-

drogen production because nitrogenase is only active at low nitrate concentration conditions

(Figure 5(b)). If the accumulation of nitrate exceeds the maximum consumption capacity of

the culture and nitrate is continuously added, the culture will become nitrate excessive and

hydrogen is not possible to be generated during the entire processing period.

Figure 5: Biomass concentration (× 1.0 g·L−1), nitrate concentration (× 100 mg·L−1) and
hydrogen production (× 2000 mL·L−1) in fed-batch process at di�erent operating conditions.
(a) the in�uent nitrate concentration is 2×104 mg·L−1; (b) the in�uent nitrate concentration
is 1.8×105 mg·L−1.

However, if the in�uent nitrate concentration is always kept at a low concentration,

cyanobacteria cannot fully grow because of the lack of nitrate (Figure 5(a)). Although nitro-

genase activity can be recovered earlier, total hydrogen yield in this case is greatly restricted

by the low biomass concentration (Figure 5(a)). Furthermore, the lack of nitrate in the cul-
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ture can lead to a strong anaerobic respiration of cyanobacteria, and acidic products excreted

by the anaerobic respiration such as acetate will increase the cell death rate. The reason why

the optimal switching time is determined at the 42nd hour is that nitrate concentration in the

culture is still high enough to maintain the rapid growth of cyanobacteria before this time,

and an extra addition of nitrate from the in�uent will result in the accumulation of nitrate.

If the switching time is much later than the optimal value, the decay of cyanobacteria will

be obvious and biomass concentration will drop signi�cantly, therefore hydrogen production

will also be reduced.

Designing a viable fed-batch process for the bioproduction of hydrogen translates into

higher e�ciency productivity. The optimal control problem takes into account practical

constraints in running such processes, such as allowing the inlet nitrate concentration to

change once every 24 hours. Comparing the simulation results, the fed-batch process which

allows inlet nitrate concentration to change, yields twice the amount of hydrogen as the

standard multi-run optimized batch-process.

Conclusions and future work

This work proposes a systematic framework for proposing a model, verifying the model, and

optimizing the productivity of the system. An original strategy to enhance productivity

was developed, the hydrogen production yield predicted in this work is higher than any

previously reported in the relevant literature, with 116% increase over the most recently

published productivity21, and twice as high compared to that of a fully optimized multistage

batch reactor.

To obtain these results, a traditionally static variable (inlet concentration of a nutrient

for a fed-batch fermenter) is treated as a manipulated variable, and productivity is enhanced

through dynamic optimization, constituting an original observation and contribution arising

from this work. Additionally, a transferable model construction methodology for nonlinear
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biochemical dynamic processes is presented.

Future work will focus on experimental implementation of the optimal control fed-batch

procedure proposed so as to verify and �ne-tune the applicability of the proposed method-

ology. Also, model predictive control (MPC) of related bioprocesses will be explored, imple-

menting online the dynamic optimization methodologies presented in this work. Finally, an

economic analysis will be developed to assess feasibility of biohydrogen production by these

new design strategies.
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Nomenclature

CFed glutamate inletconcentration

Fin inlet �ow

ceeH0 initial hydrogen production
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ceeHf �nal hydrogen production

KC glutamate half velocity coe�cient

kq minimum nitrogen quota

ceeN0 initial nitrate concentration

NFed nitrate inlet concentration

ceeO0 initial oxygen concentration

OFed oxygen inlet concentration

ceeq0 initial nitrogen quota

T switch time

ceeC0 initial glutamate concentration

ceeX0 initial biomass concentration

YC/X glutamate yield coe�cient

Yd oxygen consumption coe�cient

YH/X hydrogen yield coe�cient

YN/X nitrate yield coe�cient

YO/X oxygen yield coe�cient

Yq/X nitrogen quota yield coe�cient

mumax maximum biomass speci�c growth rate

mud biomass speci�c respiration rate

EVM errors in variables measured

MINLP mixed integer nonlinear programming

PBR photobioreactor
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