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Abstract

Background: Network motifs are small modules that show interesting functional and dynamic properties, and are
believed to be the building blocks of complex cellular processes. However, the mechanistic details of such
modules are often unknown: there is uncertainty about the motif architecture as well as the functional form and
parameter values when converted to ordinary differential equations (ODEs). This translates into a number of
candidate models being compatible with the system under study. A variety of statistical methods exist for ranking
models including maximum likelihood-based and Bayesian methods. Our objective is to show how such methods
can be applied in a typical systems biology setting.

Results: We focus on four commonly occurring network motif structures and show that it is possible to
differentiate between them using simulated data and any of the model comparison methods tested. We expand
one of the motifs, the feed forward (FF) motif, for several possible parameterizations and apply model selection on
simulated data. We then use experimental data on three biosynthetic pathways in Escherichia coli to formally assess
how current knowledge matches the time series available. Our analysis confirms two of them as FF motifs. Only an
expanded set of FF motif parameterisations using time delays is able to fit the third pathway, indicating that the
true mechanism might be more complex in this case.

Conclusions: Maximum likelihood as well as Bayesian model comparison methods are suitable for selecting a
plausible motif model among a set of candidate models. Our work shows that it is practical to apply model
comparison to test ideas about underlying mechanisms of biological pathways in a formal and quantitative way.

Background
Cellular processes are very complex, but it seems that
such processes can often be broken down into a small
number of reoccuring patterns of interconnections
known as network motifs [1,2]. Interestingly, some
motifs are known to display specific dynamic functional
roles [3,4]. Motif dynamics can now be assessed in a
precise manner thanks to the emergence of new experi-
mental techniques that allow generating high quality
time series data with a high temporal sampling rate
[5-9]. However, studying biological systems in general
involves two steps: first, the components of the network
need to be identified, and then the type of relationships
between them established. Different methods exist for
doing so. While some have focused on deriving pairs of

possible interacting molecules from existing databases
[1], others have tried to reconstruct networks from
scratch integrating different sources of both static and
dynamic data [10]. In fact, automatic identification of
interactions has been the aim of reverse engineering for
many years [11]. In general, multiple hypotheses about
the architecture of a network are easily generated, and
assessing their validity is often difficult.
Existing knowledge can be used in the model identifi-

cation process. If certain aspects of the networks are
already known, the space of possible models is smaller
and reverse engineering amounts to model comparison
in this case. Several techniques exist for comparing the
plausibility of different candidate models, given observa-
tions. On the one hand, judgement is sometimes based
solely on visual inspection of predicted vs. observed data
[12]. On the other hand, formal frequentist methods
such as likelihood ratio tests (LRT) and bootstrapping
have been used for comparing models [13]. Until
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recently, Bayesian model comparison approaches such as
Bayes factors have largely been ignored in analysing the
identifiability of biological systems from time series data
[14]. However, Bayesian approaches to problem solving
have recently gained in popularity due to their inherent
control of complexity and the ease with which any prior
knowledge about the system under study can be incor-
ported (for an introduction to Bayesian modelling see
[15]). This prior information is derived either through
literature surveys or through experimental observations.
In this paper, we wish to show how formal statistical

model comparison methods can be applied to a typical
systems biology scenario. We analyze whether the
dynamic fingerprint of a number of commonly occur-
ring motifs allows discrimination of the underlying net-
work structure based on simulated data. These are the
single input motif (SIM), regulatory chain (RC), feedfor-
ward (FF) and feedback (FB) motifs. Any of these motif
architectures can be parameterized differently when
converted to ordinary differential equations resulting in
different dynamics of the system. This has been reported
in the case of the FF motif [5-7], which appears in the
arabinose, flagella, and galactose pathways in E. coli.
The original work on these systems explored the differ-
ences between each FF type and a control non-FF archi-
tecture in a statistically informal manner [5-7]. Here we
take the analysis one step further and explore whether
statistical model comparison is also able to distinguish
between FF parameterizations.
Before we apply model comparison to specific

dynamic models derived from biological network motifs
(Section Results), we provide some background on sta-
tistical model comparison in the next section (Section
Methods). The spirit of this work is to demonstrate in a
didactic way how different statistical model comparison
tools perform on a class of dynamic models of interest
in the systems biology community. We have therefore
restricted the type and number of methods and models
to those most easily implementable and accessible to the
non-expert reader. In addition, we provide an introduc-
tory exercise with a simple one-equation model in
[Additional file 1]. The statistical methods presented
have important limitations, which we also briefly
discuss.

Methods
A model M describes the deterministic dynamic beha-
viour of variables z(t) = (z1(t), ..., zK (t))T by a system of
differential equations dzk/dt = fk(z(t), t, θ), using para-
meters θ. The parameters may include initial values.
Measurements yki of each zk are taken at time points ti,
i = 1, ..., N. For notational simplicity, we assume all vari-
ables are measured at all the time points, but the follow-
ing discussion is easily extended to more general cases.

An additive Gaussian measurement error � ~ N (0, s2)
affects the observations of the variables. For simplicity
we assume here that the error distributions of the vari-
ables are independent and constant over time. They are
also characterised by some variance s2 which we con-
sider to be part of the parameters.
The probability of the data Y given some estimates ̂

of the parameters is
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where pN (y | ŷ , s2) is a Gaussian with mean ŷ and
variance s2. Estimates ŷ ki are obtained by ˆ ˆ ( )y z tki k i
where ẑ k are the solutions of differential equation sys-
tem zk(t) = fk(z(t), t, ̂ ).
Model comparison methods involve two steps: first

the model parameters need to be inferred from the
available data, and then the adequacy of each calibrated
model needs to be assessed. The classical and Bayesian
approaches to each step are described next.

Bayesian inference
In Bayesian statistics our knowledge about model para-
meters, conditional on the observed data, is summarised
by probability distributions. This is allowed because
parameters are random variables with a degree of uncer-
tainty. The relationship between the data and the para-
meters is described by

p Y M
p Y M P M

p Y M
( | , )

( | , ) ( | )
( | )

   (2)

The posterior distribution of the parameters θ, given
the data Y, is proportional to the likelihood P (Y | θ, M)
of the parameters times the parameter prior P (θ | M),
normalised by the likelihood or evidence P (Y | M) for
model M. Samples from the posterior distributions of
model parameters are routinely obtained by Markov
Chain Monte Carlo (MCMC) methods [16]. Descrip-
tions of the posterior distribution in terms of mean,
median or variance are easily obtained from such sam-
ples. In the following, estimates of the 95% credible
interval (CI), for example, are obtained by the cutoffs
for the lowest 2.5% and highest 2.5% of samples.
The denominator in Equation 2, the model evidence,

is constant during the calibration step for one particular
model and thus can be ignored. However, it becomes
our quantity of interest in model comparison. Computa-
tion of the model evidence requires solving the integral
p(Y | M) = ∫p(Y | θ, M) p(θ | M)dθ, which is analytically

Domedel-Puig et al. BMC Systems Biology 2010, 4:18
http://www.biomedcentral.com/1752-0509/4/18

Page 2 of 13



intractable for most examples discussed in this paper.
However, if a sample of S sample points θ1, ..., θS, from
the posterior distribution p(θ | Y, M) is available (for
example, from an MCMC simulation), then the model
evidence can be estimated by Gelfand and Dey’s [17]
reciprocal importance sampler, which is defined as

1 1

1
p Y M S

h s M
p Y ss

S

( | )
( | )
( | )



 


(3)

where h(θ | M) is an arbitrary probability density
function over parameters θ. The choice of a suitable
function h(θs | M) is crucial. If set to the prior we
obtain the harmonic mean estimator which can perform
very poorly due to its high variance. The variance pro-
blem is mitigated when a distribution is chosen which is
close to the posterior distribution. Stability of the esti-
mator is, for example, achieved by setting h(θ | M) to a
multivariate Gaussian fitted to the sampled points θs, or
to a multivariate t-distribution as used here. The reci-
procal importance sampler was shown to perform well
[18] when compared to other model comparison meth-
ods such as reversible jump MCMC or simple informa-
tion criteria like the BIC.
As we show in the simulations below the reciprocal

importance sampler is suitable for the comparatively
simple models which we investigate in this study. For
more complex models, particularly with many modes,
more complex model comparison algorithms might be
required (see, for example, [14]). Such algorithms are
harder to implement and run. The strategy we are sug-
gesting here is to test via simulations whether a particu-
lar type of models is amenable to simple model
selection procedures based on MCMC samples and only
if this is not the case to develop more advanced
methods.

Bayesian model comparison
Given a particular candidate model, Mi, its posterior
probability is given by

p M Y p Y M p M

p M p Y M p M d

i i i
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where p(Mi) is the prior probability of the model, and
p(Y | Mi) is the model evidence which we estimate here
by equation 3.
According to Occam’s principle, simpler models are

preferred over complex models if they explain the data
equally well. If the unknown parameters θ are integrated
out as in equation 4, the posterior model probability
incorporates a balance between complexity and fit. Since
P (Y | M) embodies Occam’s principle, it will be the key

quantity for model comparison. One way to see that P
(Y | M) can be used to choose the model with the better
predictive performance is as follows. The model likeli-
hood P (Y | M) essentially captures the sequential pre-
dictive power of the model over past incremental data
sets, since P (Y | M) = P (Y1 | M)P (Y2 | Y1, M) ... P(Yn

| Y1, ..., Yn-1, M), that is, it captures how well part Yi of
the data Y = (Y1, ..., Yn) is predicted using earlier parts
Y1, ..., Yi-1 to calibrate the model. This makes complex
models which overfit less likely. An alternative though
related measure that penalises models that overfit is the
Deviance Information Criterion (DIC) [19], which mea-
sures the predictive power on unseen data. It relies
more strongly on assumptions about the distribution of
future data, but assesses the fully calibrated model, not
only versions calibrated by partial data. To define the
DIC we first set the deviance as D(y, θ, M) = -2 log p(y
| θ, M). For large sample sizes, the model minimizing
the deviance is the model with the highest posterior
probability (see, for example, [20]). The predictive
deviance for future data can be approximated by

DIC M( ) ( , ) ( , , ) 2D y M D y M (5)

for samples θs from the posterior (for example, by
MCMC simulation) and D (y, M) = 1/N ΣsD(y, θs, M) is
the average deviance and  = 1/N Σs θs is the vector of
posterior parameter means. The lower the DIC the bet-
ter the model. However, we find that the DIC calcula-
tions are often unstable resulting in completely
unrealistic values, which might be less relied upon.
Note that the complexity of the model is not easily

captured by the number of estimated parameters or
degrees of freedom, as in the well known Akaike’s infor-
mation criterion (AIC) or even the BIC and related
information criteria. If correlated parameters or infor-
mative priors are used, for example, the number of effec-
tive degrees of freedom, pD, is reduced. They can be
estimated by (see [19])

pD M( ) ( , ) ( , , ) D y M D y M (6)

Once the probability of the model is known, we can
select the most probable model from a set of competi-
tive models using the Bayes factor BF = p(Y | Mi)/p(Y |
Mj). That is, the Bayes factor measures the extent by
which the data increase the odds of Mi to Mj. Standard
cutoffs for interpreting the significance of BFs, like [21],
then allow interpretation of the result. Basically, a BF
above 1 provides weak, above 3 substantial, above 10
decisive, and above 100 overwhelming evidence for
model Mi over Mj.
The effective degree of freedom measures how many

and by how much parameters are constrained by the
data. On one hand, each parameter contributes close

Domedel-Puig et al. BMC Systems Biology 2010, 4:18
http://www.biomedcentral.com/1752-0509/4/18

Page 3 of 13



to one degree if the width of its posterior is small
compared to the width of its prior. On the other hand,
a parameter contributes very little to the overall effec-
tive degrees of freedom if it is not well constrained by
the data and the width of its posterior hardly differs
from the width of its prior. Consequently, the Bayes
factor or effective degrees of freedom cannot eliminate
or penalise spurious parameters which are ill deter-
mined by the data. It might be dubious to invoke
Occam’s principle once more (after it has already been
incorporated in the model evidence) to decide between
models and only additional data should be used for
final clarification. For purely pragmatic reasons of con-
venience one might still accept the model with for-
mally fewer parameters even though it has the same
model evidence and same effective degrees of freedom
as a more complex one.

Frequentist inference
Parameter estimation by maximising the likelihood of θ
in equation 1 is equivalent to least squares (LS) optimi-
sation, minimising the sum of squared errors

SSE y yki ki
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An unbiased estimator ̂ 2 for the noise variance is

ˆ ( ˆ) 2 


SSE
N p

(8)

Confidence intervals for the p estimated parameters
are obtained from the covariance matrix of ̂ . This
matrix is approximated by the Hessian matrix H( ̂ ),
that is, the matrix of second derivatives of the optimised
function. The matrix is evaluated at ̂ . 95% confidence
intervals for the j-th parameter (with j = 1, ..., p) are
obtained as ̂ j ± 1.96 SEj, where each particular stan-
dard error (SEj) is obtained from the j-th diagonal ele-
ment of the SE matrix

SE  2 2 1ˆ ( ˆ) H (9)

Model selection as hypothesis testing
A commonly used method for frequentist model com-
parison is a likelihood ratio test (LRT), in which two
nested models with different number of parameters are
compared. According to the null hypothesis, a simple
model Ms (with ps parameters) is correct, and thus the
additional parameters in the more complex model Mc

with pc parameters are unnecessary. A p-value is

obtained as tail probability of a c2 distribution with pc -
ps degrees of freedom of the statistic

 2 2 log
( | )
( | )

p Y Mc
p Y Ms

(10)

Applicability of an LRT is limited due to the require-
ment that the models are nested, and that the para-
meters are fully identifiable. Akaike’s Information
Criterion (AIC) allows ranking models even when they
are nonnested. It is defined by

AIC M p Y M pi i i( ) log ( | , )  2 2ML (11)

where pi is the number of parameters in model i and
θML is the value of θ that maximises the likelihood in 1.
Standard tables exist for assessing the significance of
AIC values [22].

Implementation
MCMC methods are generic approaches to obtain sam-
ples from posterior distributions without the need to
calculate the model evidence in equation 2 (for details
see [16]). In the following we use MCSim, an MCMC
simulator for differential equations developed mainly for
application to pharmacokinetic models [23] for the esti-
mation of posterior distributions and model probabil-
ities. Essentially, at each step of the MCMC simulation,
a set θ* of new parameters is chosen from a distribution
centered on the current parameters θ (a multivariate
Gaussian in MCSim). The differential equation is solved
using the new parameters θ*. In the case of a symmetric
proposal distribution, θ* is accepted and θ set to θ* with
probability

min ,
( | *, ) ( *| )
( | , ) ( | )

1
p Y M p M
p Y M p M

 
 









 (12)

Five parallel MCMC chains were run for each model.
Each chain consisted of 40,000 iterations (20,000 itera-
tions in the simple one-equation model shown in [Addi-
tional file 1]). The first 20,000 samples (10,000 samples
in the simple one-equation model) of each chain were
discarded and then one every 10 iterations was stored.
Convergence was assessed by applying the R̂ statistic
described in [16] to the five parallel runs. This statistic
was below 1.05 in all estimations, except otherwise sta-
ted, indicating good convergence behaviour. Evaluation
of one model takes a few minutes on a standard desktop
machine. Monitoring and analysis of MCSim runs was
performed with the statistical R software [24]. Maximum
likelihood values were obtained by taking the highest
value from the MCMC runs.
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Results
Here we present the model comparison results for dif-
ferent motif architectures (section Common network
motifs), and for different parameterizations of the same
FF motif (section Variants of feed forward motif). In
each case, the models are introduced first, and the sta-
tistical comparisons described secondly in terms of
Bayesian model evidence, DIC, effective degrees of free-
dom, and the maximum likelihood value from the
MCMC chains. Statistical comparisons are here sup-
ported with the use of simulated data. This step is fun-
damental since it allows us to evaluate the performance

of each approach before applying it to experimental
data.

Common network motifs
Models
We analyze the identifiability of the four motif architec-
tures shown in figure 1, which have been found in tran-
scription networks [1,2], based on simulated time series
data from each of them. These motifs consist of one
experimentally controlled input variable S and two state
variables y and z. Briefly, the single input motif (SIM)
involves a signal which simultaneously affects two

Figure 1 Network motifs. a) Single input motif (SIM), b) regulatory chain motif (RC), c) feed forward motif (FF), and d) feedback motif (FB). The
abbreviations are: S, input signal; y and z, monitored variables; a, b reaction rates. Solid arrows denote production and degradation reactions,
while dashed arrows denote control mechanisms. Normal arrowheads denote activation, while flat arrowheads denote inhibition.
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targets, possibly with different strengths. The effect of a
transcription factor upon the sequential expression of its
target genes serves to illustrate this motif [25]. Regula-
tory chains (RCs) comprise a series of chained reactions,
in which the end product of a reaction activates the
next, as in the yeast cell cycle [1]. In feed forward loop
motifs (FF), a master regulator controls an intermediate
regulator, and both control a target component. Such an
architecture has been shown to display many interesting
roles in bacteria [26]. Finally, the feedback (FB) motif
involves stimulation of a reaction by a signal, followed
by end-product regulation (positive or negative) of the
process. Negative feedback is known to control, for
example, the DNA-damage response through p53 and
Mdm2 in mammals [27].
These motifs can be expressed mathematically in

many forms. As a first approximation, they are
described here as systems of first order ordinary differ-
ential equations (ODEs), like those shown in table 1.
Note that models SIM and RC are nested within model
FF (for example, setting bzy to zero in model FF renders
it the same as model SIM), thus they have been boxed
together. The same phenomenon is observed between
models RC and FB. The same model architectures
described assuming cooperative production functions
are given in [Additional file 1: supplementary table S4].
Analysis
Time series data were simulated from each of the mod-
els in tables 1 and [Additional file 1: supplementary
table S4]. Parameter values were S = {0, 1, 2, 0} at times
t = {0, 2, 6, 10}, and by = ay = 1. Following [28], the
coefficient and activation threshold in Hill functions
were set to h = 2 and θ = 0.5, respectively. These are
not experimentally determined parameter values. They
are values required to yield biologically plausible solu-
tions, a strategy also applied in [4]. Finally, 30 equally
spaced data points were sampled from each time course,
and a Gaussian error term with mean 0 and standard
deviation 0.05 was added to simulate measurement
errors.

The choice of parameter priors is critical in Bayesian
model comparison. To make comparison as fair as pos-
sible, the same distribution was chosen for all rate con-
stants in the simulations below, namely a log-normal
distribution with mean 0 and standard deviation 1 in
log-space. Finally, for the prior on the noise variance s2

an inverse Gamma distribution with shape a = 0.5 and
scale b = 0.05 was chosen (a fairly broad and heavy-
tailed prior, the mean does not exist and the mode is at
0.1/3).
Table 2 provides a ranking of the four candidate mod-

els (SIM, RC, FF, FB in columns), given data generated
from each of the four models (in rows). The analysis of
the SIM and FF models, given that the data are gener-
ated by the SIM model, is of high interest since these
models are nested. As shown in the first row in table 2,
both models result in a similar model evidence (around
89), that is, the fit by FF is as good as the one by SIM.
Note that FF has one more parameter than SIM. By
looking at the effective degrees of freedom, we see that
the additional parameter in FF is not estimated. Since
model SIM has fewer formal parameters, a pragmatic
approach would prefer model SIM. In this test, the max-
imum likelihood values render the SIM, RC and FF

Table 1 Motif models.

motif model

SIM y = byS - ayy

z = bzS - azz

RC y = byS - ayy

z = bzy - azz

FF y = byS - ayy

z = (bzsS + bzyy) - azz

FB 1
1( ) z
z = bzy - azz

Simple ODE models for the network motifs of figure 1.

Table 2 Model comparison results from simple network
motifs

data source measure SIM RC FF FB

SIM log p(Y | Mi) 89.3 73.74 89.6 49.03

DIC -198.1 -192.5 -198.8 -177.51

pD 3.93 2.94 4.01 4.34

log p(Y | ML
mcmc , Mi) 102.99 102.44 103.45 100.70

AIC -197.98 -196.88 -196.9 -191.4

RC log p(Y | Mi) 29.21 87.61 73.58 55.38

DIC -86.17 -194.60 -187.13 -175.21

pD 4.08 3.92 4.53 4.66

log p(Y | ̂ , Mi) 47.18 101.22 100.46 97.62

AIC -86.36 -194.44 -190.92 -185.24

FF log p(Y | Mi) 80.20 57.60 93.43 22.95

DIC -184.7 -153.1 -208.8 -131.53

pD 4.06 3.92 4.81 5.01

log p(Y | ML
mcmc , Mi) 96.42 81.03 109.17 77.64

AIC -184.84 -154.06 -208.34 -145.28

FB log p(Y | Mi) -17.60 -13.93 -39.68 79.07

DIC 2351.3 2718.1 2375.8 -181.37

pD 4.04 3.66 4.61 4.98

log p(Y | ML
mcmc , Mi) -1171.59 -1355.33 -1176.64 95.62

AIC 2351.2 2718.66 2363.26 -181.24

Model comparison results for artificial data from the simple ODE models SIM,
RC, FF (type 1 coherent with OR gate) and negative FB motifs. Each fit is
assessed in terms of model evidence, log p(Y | Mi), the deviance information
criteria, or DIC, the effective degrees of freedom, or pD, the maximum
likelihood value obtained from MCMC simulations, log p(Y | , Mi), and Akaike’s
Information Criteria, or AIC.
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models almost equally plausible. A likelihood ratio test
between SIM and FF yields 1

2
df = 0.92 which is not

significant at the 5% level and we reject the alternative
hypothesis that the additional parameter in model FF is
necessary. The LRT cannot be applied to assess the
SIM/RC pair because the models are not nested. In this
case, the conclusion derived by looking at AIC is that
neither model can be discarded.
Bayesian model evidence values clearly favour the true

model when data is generated from the RC motif (sec-
ond row in table 2). Note that the maximum likelihood
also favours the correct option, although here the rela-
tive difference between RC and FF is smaller than the
differences in model evidence. When data from the
more complex models FF and FB are used (third and
fourth rows), the models that achieve the best fit are the
true models FF and FB respectively, no matter the statis-
tical measure chosen. Note that the effective degrees of
freedom are close to the correct number of five for the
FF data as opposed to four for the SIM data when fit-
ting the FF model.
We performed the same analysis assuming the motif

models could be defined with cooperative production
terms (see [Additional file 1: supplementary table S4]).
Bayesian model evidence always favours the correct
model ([Additional file 1: supplementary table S5]). The
results from of the AIC are less conclusive, which
favours the wrong model (FB) in at least one case (RC).

Variants of feed forward motif
Models
The generic FF architecture shown in figure 1c has been
found to exist in different forms depending on the signs
in the intermediate and main branches. The abundance
of these different FF subtypes has been studied in E. coli
and yeast [28,29]. It has been shown that coherent type

1 FF motifs (FF.C1), where the signal is activating in
both branches, and incoherent type 1 FF motifs (FF.I1),
which features negative regulation from y to z, are the
most frequent (figure 2).
In [28] it is shown through theoretical mathematical

modeling that these FF forms display specific dynamic
behaviours. In their models, the rates of change of the
concentration of the state variables y and z are
expressed as a combination of a nonlinear production
term and a linear degradation term (basal production
rates are set to zero). Following [28] and the notation in
figure 2, we have that the rate of change of y, as deter-
mined by an activating signal S with activation threshold
θSy and Hill coefficient h, is defined as

y f S h yy Sy y   ( , , ) (13)

where f+(S, θSy, h) = Sh/(Sy
h + Sh). If S were a repres-

sor, the associated Hill function would be f -(S, θSy, h) =
Sy

h /(Sy
h +Sh). The rate of change of z is generically

defined as

z g S y h zz Sy yz z    ( , , , , ) (14)

where g describes the function (or gate type) that inte-
grates the signals from S and y on the promoter of z
[28]. For an AND gate integrating two activating signals,
we have g = f+(S, θSz, h)f

+(y, θyz, h), while for an activat-
ing and a repressing signal, we have g = f+(S, θSz, h)f

-(y,
θyz, h).
FF behaviours have been experimentally explored for

the coherent (AND gate), coherent (OR gate) and
incoherent (AND gate) subtypes in the arabinose, fla-
gella, and galactose systems of E. coli respectively
[5-7]. Interestingly, the time series data available allows
following the FF component z (figure 2) as the system

Figure 2 Feed forward motif subtypes: coherent and incoherent. In a feed forward (FF) motif, the interaction between the master and
intermediate regulators (named S and y, respectively) modulates the response of the target component, z. In a type 1 coherent FF motif (a), both
S and y are activating signals, while y is a repressing signal in a type 1 incoherent FF motif (b). Other –less frequent– subtypes have been
reported [28].
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is switched ON and OFF, in comparison to a non-FF
control system. Below we present a description of each
control and FF instance, and a formal statistical analy-
sis of the data.
Arabinose system
The arabinose (ara) system is the set of genes that
allows intake of the sugar arabinose (figure 3a). These
genes, which encode catabolism (AraBAD) and trans-
port (AraFGH) proteins, are activated in the presence
of arabinose provided their preferred carbon source–
glucose–is not available. That is, two signals regulate
the system: absence of glucose and presence of arabi-
nose, and two different transcription factors respond
to them: i) CRP, that becomes an activator upon sen-
sing the no-glucose signal cAMP, and ii) AraC, that
acts as a transcriptional activator upon binding arabi-
nose. CRP promotes the expression of araC, and both
CRP and AraC promote the expression of the ara-
BAD/FGH genes [5].
Here we test whether the generic FF.C1.AND model

described in [28] can be used to model the ara system.
This is defined by:

d
dt

B f hac ac crp ac ac
[ ]

([ ], , ) [ ],
AC

CRP AC     (15)

d
dt

B f h f hab ab crp ab ac ab

ab

[ ]
( ([ ], , ) ([ ], , ))

[

, ,
AB

CRP AC 



   

 AAB]
(16)

where AraC is abbreviated as AC, and the product of
gene araBAD is abbreviated as AB. Since experiments
were performed under saturating arabinose levels, all
the AraC protein produced is assumed to be active.
Experiments also revealed that the basal rates of AC
and AB production, Bac and Bab, are small compared to
the levels reached upon activation [5], thus they are set
to zero in the parameter inference exercise. The ON
step consists of a constant signal, CRP = 1, and initial
conditions AC(0) = 0 and AB(0) = 0, while the OFF step
is defined as CRP = 0, and AC(0) = 1, AB(0) = 1.
Control model for arabinose system
In [5] the dynamic behaviour of the coherent FF motif
was compared with a simpler non-FF regulation motif
in which two unlinked TFs regulate a common target
via an AND gate, the control system ([Additional file 1:
supplemental figure S3a]). The module shares the main
TF with the arabinose system, CRP. The other positive
regulation flow consists of a double-repression mechan-
ism: the lacZ repressor, LacI, is repressed by lactose or
IPTG. In other words, lactose (or IPTG) allows tran-
scription from lacZ. Since the two inputs to the system,
CRP and lactose, are independent and externally con-
trolled, a model with one single equation is suggested
here. This is defined as:

d
dt

B f h

f

lz lz crp lz

lactose l

[ ]
( ([ ], , )

([ ],

,

,

LZ
CRP

lactose

  



 

 zz lzh, )) [ ] LZ
(17)

Figure 3 Bacterial feed forward systems. The bacterial feed forward systems analysed here are the arabinose system (a), the flagella network
(b), and the galactose system (c). Figures adapted from [5-7].
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This control model is set up as follows: an ON step
consists of CRP = 1, lactose = 1, LZ(0) = 0, and an OFF
step consists of CRP = 0, lactose = 1, LZ(0) = 1. As
before, Blz was assumed to be 0. In terms of the target
component z, the only difference between this control
model and a coherent FF motif is the fact that the two z
inputs are independent.
Flagella system
The flagella biosynthesis network of E. coli is the system
that governs the swimming capabilities of the bacteria,
in such a manner that it moves away from its current
location when growth conditions become mildly unfa-
vourable. As illustrated in figure 3b, the genes that pro-
duce the flagella motor are regulated by a FF motif (see
[6] and references therein). The components of this
motif are the master regulator FlhDC (S), the intermedi-
ate regulator FliA (y), and a target operon (z) composed
of a series of genes, fliLMNOPQR (hereafter abbreviated
fliL). The two regulators are activators, thus forming a
coherent FF, that converge upon fliL with OR input
logic [30].
An initial candidate model for the flagella network,

model FF.C1.OR.1, is based on the FF.C1.OR equations
described in [28]:

d
dt

B f hfa fa fd fa fa
[ ]

( ([ ], , ) [ ],
FA

FD FA     (18)

d
dt

B f h

f h

fl fl c fd fl

c fa fl f

[ ]
( ([ ], , )

([ ]*, , ))

,

,

FL
FD

FA

 

 





 

  ll[ ]FL
(19)

where FlhDC is abbreviated as FD, FliA as FA, and the
product of gene fliL as FL. Under this model, an ON
step is simulated by FD = 1, FA(0) = 0, and FL(0) = 0,
while an OFF step is set up as FD = 0, FA(0) = 1, and
FL(0) = 1.
Control model for flagella system
In [6] the kinetic activity of this module was compared
to that of a differently engineered version of the system
in which the gene for fliA was deleted. This control sys-
tem, which is a simple regulation motif [26], only con-
tains two elements: the positive regulator FlhDC, and its
target operon fliL ([Additional file 1: supplemental figure
S3b]). The corresponding model consists of a linear
function-regulated z in which no cis-regulatory function
is needed because the promoter is controlled by one
input only:

d
dt

B fl fl fl
[ ]

[ ] [ ]
FL

FD FL    (20)

The initialization conditions are FD = 1, FL(0) = 0 for
the ON step, and FD = 0 and FL(0) = 1 for the OFF
step.
Additional flagella models
We consider two alternative models for the flagella FF
motif incorporating time delays. The interval needed for
FliA activation is explicitly modeled via a time delay, τ,
in model FF.C1.OR.2

d
dt

B

d
dt

B

fa fd fa fa fa fa

fl fd f

FA
FD FA FA

FL

   

 

( [ ] [ ] ) [ ]

(

, ,

,

  





ll fa fl fl[ ] [ ]) [ ],FD FA FL  
(21)

In this type of models, delay differential equation
models, the concentration of FA used in the equation at
time t is the one which existed earlier at time t - τ,
where τ is an additional parameter that needs to be esti-
mated. Intuitively, while the sign-sensitive delay beha-
viour is well explained by the type of logic gate used,
only the incorporation of a time delay on y could
explain the observed increase in the concentration of z
upon an OFF signal step (see time series in [6]). This
model uses the same initialisation conditions described
for model FF.C1.OR.1.
Finally, a last model for the flagella system was tested

in which the time delay affects both the expressions for
FA and FL, model FF.C1.OR.3:

d
dt

B fa fd fa fa fa
[

( [ ] [ ] ) [ ],
FA]

FD FA FA      (22)

d
dt

B fl fd fl fl fl
[

( [ ] [ ] ) [ ],
FL]

FD FA FL      (23)

Galactose system
In an incoherent FF motif, the two regulation paths
flowing from the master regulator display opposite
signs. In particular, in a type 1 incoherent FF motif, the
branches from S to y and S to z are activating, but the
intermediate branch from y to z is repressing (figure
2b). In [7] the dynamics for a FF.I1.AND motif were
studied in E. coli cells in vivo in the network of genes in
charge of galactose (gal) metabolism (figure 3c). Simi-
larly to the ara system, the gal system is activated in the
absence of glucose. Under these conditions, CRP simul-
taneously activates the galETK operon and the galS
gene. GalS is a repressor of galETK that unbinds from
the target promoter upon galactose binding. Thus, in
contrast to the ara system, an ON step here consists in
sensing the no-glucose signal cAMP in absence of the
alternative sugar galactose. In the presence of galactose,
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the system becomes a coherent FF motif, reaching the
maximal rate of expression of the galETK operon.
According to [7], the biological explanation behind this
counter-intuitive effect may be that cells prepare to use
galactose as soon as they run out of glucose. The galac-
tose catabolism machinery is produced at medium
levels, allowing fast use of this alternative carbon source
as soon as it becomes available, in which case the gal
system is maximally activated.
The equations suggested here to model the gal system

are

d
dt

B f hgs gs crp gs gs
[

([ ], , ) [ ],
GS]

CRP GS     (24)

d
dt

B f h f hge ge crp gs gs ge

ge

[
( ([ ], , ) ([ ], , ))

[

, ,
GE]

CRP GS 



   

 GGE]
(25)

where GalS is abbreviated as GS, and the product of
gene galETK as GE. An ON step is set up by CRP = 1,
GS(0) = 0, GE(0) = 0, while no OFF step was simulated
because it was not provided in the original paper [7]
Control model for galactose system
The same control module developed for the arabinose
system was used as a control for the gal system in [7],
with the difference that no repressor inhibitor was uti-
lised. Thus, it resulted in a multiple input module that
integrated two incoherent signals: activation from CRP
and inhibition by LacI ([Additional file 1: supplemental
figure S3a]). The control model therefore consists of

d
dt

B f h f hlz lz crp lz li lz
[

( ([ ], , ) ([ ], , )), ,
LZ]

CRP LI      (26)

 lz[ ]LZ (27)

where LI refers to the repressor LacI. The simulation
conditions are CRP = 1, LI = 1, LZ(0) = 0.
Analysis
Here we first explore the different FF motif subtypes
using simulated data generated from equations 15, 18
and 24 under the same conditions used in the experi-
ments: the same signal function, number of observed
variables and dataset size. The latter implies that the
number of data points for each of the FF systems is: 60
for the arabinose system (30 in ON, 30 in OFF step), 37
for the flagella system (20 in ON, 17 in OFF step), and
15 for the galactose system (only ON step). Note that
only one variable -z- is monitored here, and y is set as a
hidden variable. The parameters were set to the same

values as indicated in the theoretical work by [28], and
parameter priors were the same as indicated in section
Analysis.
As shown in table 3, the simpler control models per-

form poorly, as expected. They might therefore be used
as control systems to demonstrate that the specific
dynamic signature found in time series data from an FF
system cannot be reproduced by simpler network archi-
tectures. Here we take the analysis one step further and
compare the identifiability of the different FF subtypes
as well. When the data are generated from the FF.C1.
AND (first row in table 3) or the FF.C1.OR.1 (second
row) motifs, the correct model is identified using any of
the model comparison methods: model evidence, DIC
or maximum likelihood. However, for the FF.I1.AND
case (third row), the correct model is only slightly
favoured over the competing FF.C1.OR.1 model accord-
ing to all methods tested.
Table 4 shows the results of comparing real experi-

mental data from the E. coli systems with the feed for-
ward models. In the case of the ara system, model
evidence identities FF.C1.AND as the underlying model,
which agrees with current knowledge about the system
[5]. However, DIC and maximum likelihood favour the

Table 3 MCMC model comparison results for the artificial
FF datasets.

data
source

measure CONTROL FF.C1.
AND
(Eqns
15)

FF.C1.
OR.1
(Eqns
18)

FF.I1.
AND
(Eqns
24)

(Eqn. 17)

FF.C1.AND
(Eqns 15)

log p(Y | Mi) 85.98 108.94 106.51 86.53

DIC -217.98 -388.91 -292.81 -205.64

log p(Y | θML,
Mi)

111.22 165.18 164.34 111.15

AIC -208.44 -316.36 -314.68 -208.3

FF.C1.OR.1
(Eqns 18)

log p(Y | Mi) (Eqn. 20)
40.12

30.90 48.09 42.55

DIC -108.96 -102.47 -136.65 -117.22

log p(Y | θML,
Mi)

62.73 60.06 86.94 69.97

AIC -111.46 -106.12 -159.88 -125.94

FF.I1.AND
(Eqns 24)

log p(Y | Mi) (Eqn. 26)
12.52

8.28 13.78 14.02

DIC -38.33 -35.75 -36.75 -41.63

log p(Y | θML,
Mi)

26.66 25.69 30.09 30.86

AIC -39.32 -37.38 -46.18 -47.72

Datasets have the same number of samples as the experimental data from
[5-7]. They were generated using Equations 15 (first row), 18 (second row) and
24 (third row). Note that the model labelled control is specific for each
dataset: ara control (Equation 17) on the first row, flagella control (Equation
20) on the second row, and gal control (Equation 26) on the last row.
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FF.C1.OR.1 model. Figure 4 shows the corresponding
model reconstructions, that is, the predicted solution
under each tested model. Although the predictions from
models FF.C1.AND and FF.C1.OR.1 (Figures 4a and 4c)
appear very similar at first glance, note that the 95%
confidence interval for the latter is slightly wider. There-
fore, in agreement with table 4, the best match between
data and prediction is obtained for the correct model
(Figure 4b).

In the case of data from the flagella network, the
results unexpectedly favour the control model. Since
this network is indeed believed to be composed of a
feed forward FF.C1.OR motif [6], additional modifica-
tions of this motif were tested (models FF.C1.OR.2
and 3) in order to improve the fit. The results are
shown in table 5. Again the statistical methods dis-
agree, with the Bayesian model evidence still favouring
the simple control model, while the AIC prefers FF.
C1.OR.3. This discrepancy might be explained by the
tendency of Bayesian methods to favour simpler mod-
els. Overall, it seems that if an FF.C1.OR type model
fits the flagella data at all, it has to be a more complex
one than for the other two systems, possibly involving
delays. This hints at the possiblity of the essential
involvement of further elements not represented in
the current system.
Finally, in the case of data from the gal system, all

approaches agree that the data are drawn from a FF.I1.
AND model (the Bayes factor of FF.I1.AND to model FF.
C1.OR.1 is 58.55, which can be interpreted as decisive
evidence in favour of the incoherent FF motif according
to [21]), which agrees with current knowledge [7].

Discussion
When building a model for a biological system, one
has to decide whether to use parameter values from
the literature or estimate them from the data. While
the first option may be very useful, one has to bear in

Table 4 MCMC model comparison results for the
experimental FF datasets.

data
source

measure CONTROL FF.C1.
AND

FF.C1.
OR.1

FF.I1.
AND

ara
system

log p(Y | Mi) 51.22 74.99 72.31 51.88

DIC -158.69 -435.02 -445.81 -275.31

log p(Y | θML, Mi) 83.99 140.05 147.06 83.99

AIC -157.98 -264.10 -278.12 -151.98

flagella
system

log p(Y | Mi) -16.22 -264.64 -73.81 -∞

DIC -54.99 -41275.70 -2296.40 5878.25

log p(Y | θML, Mi) 31.02 -15.28 -4.72 -256.50

AIC -52.04 46.56 25.44 529.20

gal
system

log p(Y | Mi) -8.71 -13.29 -4.49 -0.42

DIC 10.53 9.88 -3.53 -20.47

log p(Y | θML, Mi) -1.79 -1.13 11.57 12.53

AIC 13.58 18.26 -7.14 -9.04

The equations used are the same as in table 3.

Figure 4 Reconstructing the arabinose dataset. Model predictions for the arabinose dataset, using the posterior parameter values inferred
with MCMC. The fractional value of the feedforward element z (target gene AB in the arabinose model) is shown as a function of time. Red
dots denote the original data as provided in [5], dashed black lines the 95% credible interval, and the average solution is shown in green. The
first row shows the ON steps, while OFF steps are given in the second row.
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mind the limitations that extrapolating parameter
values from other systems and experimental conditions
have [31]. Thus, when data is available for the system
under study, parameter inference becomes an interest-
ing strategy. However, knowledge about biological sys-
tems is often sparse, and thus more than one model
structure is often compatible with the system of inter-
est. That is, more than one model structure could
potentially be calibrated. In order to explore which
model is preferable given the available data, a natural
step after parameter inference consists in formally
assessing the validity of all possible -now parameter-
ized- candidate models. Despite its importance, this
step is often overlooked.
Here we have provided a short overview of the

Bayesian and frequentist approaches to model com-
parison. Then, we have applied the model comparison
techniques to two cases. First, we have investigated
the identifiability of a series of transcription regula-
tion motif architectures (SIM, RC, FF and FB). The
objective was to find out if one could infer the correct
underlying model structure given time series data
from each of these motifs (tables 2 and [Additional
file 1: supplementary table S5]). For the case of the
nested models, SIM and FF, when the data were gen-
erated by the SIM model, models SIM and FF have
about equal model evidence. This is expected since
the FF model can mimick the SIM model and the
additional parameter can not be estimated from the
data. From a pragmatic point of view one might
accept the SIM model in this case. Note that AIC
failed to identify the correct model in this case. For
all the other datasets, model evidence, DIC and AIC
favoured the correct model.
Secondly, it is known that the same model architecture

can give rise to different dynamics depending on the parti-
cular model parameterization. To explore this issue, we
have focused on the FF motif, an architecture for which
extensive experimental caracterization has been carried
out during the past years [5-7], following the description
of different FF subtypes (figure 2) with different dynamic
properties [28]. In [5-7] it is shown that the predicted

behaviour of FFs is indeed observed in vivo. That is, their
functionality is conserved even when they are embedded
in large genetic systems. To address the question whether
the biological signals are strong enough for the specific
type of model parameterization to be identified from
experimental data, we have analyzed such data under a
series of candidate FF subtypes.
The motivation behind the original papers [5-7] was to

compare each FF subtype to its non-FF control in a quali-
tative manner. We have formalized this comparison and
have taken the analysis one step further discriminating
each FF subtype from the others. Analysis of artificial
data indicates that the experiments should be informative
enough for the coherent FF subtypes to be differentiated
from their controls, but also from each other. Identifica-
tion of the incoherent subtype seems to be harder than
the rest given the available data (table 3). Comparison of
each FF model with its corresponding control model
given the experimental datasets (table 4) shows that the
Bayesian framework agrees with the conclusions that
Alon and colleagues derived from visual inspection of the
plots in all but the flagella network case [5-7].
While the cis-regulatory functions involved in the fla-

gella gene network are known [30], no mathematical
model is given in [6] to describe the experimental data
corresponding to this system. Flagella system models
including time delay effects have been defined here
based on current biological knowledge. Bayesian model
evidence still points towards the simpler control model
without an additional FF branch as the best explanation
for the data, but the AIC indicates that a delay model
might be plausible. The importance of a delay element
hints towards involvement of further unobserved com-
ponents in the motif.
It could be argued that the body of information

assumed available to generate the dataset used is so
large that no model uncertainties remain. We wish to
stress that embarking on a model comparison exercise
is a way to make sure that all relevant mechanisms have
been accounted for. Therefore, model comparison stra-
tegies should be regarded as complementary to and
dependent on experimental work, rather than as standa-
lone techniques.

Conclusions
We have given an overview of model comparison meth-
ods suitable for selecting a plausible network motif
structure among a set of candidate models for time ser-
ies data on gene regulation. We show that it is practical
to apply maximum likelihood as well as Bayesian model
comparison procedures to test ideas about underlying
mechanisms of biological pathways in a formal and
quantitative way.

Table 5 Assessment of additional flagella models for the
flagella dataset [6], with MCMC

Measure CONTROL FF.C1.OR.1 FF.C1.OR.2 FF.C1.OR.3

log p(Y | Mi) -16.22 -73.81 -179.11 -33.81

DIC -54.99 -2296.40 23.59 -212.89

log p(Y | θML, Mi) 31.02 -4.72 30.38 35.09

AIC -52.04 23.44 -46.76 -54.18

The prior for the delay parameter was a Normal distribution with mean and
variance 10, truncated at [0,100].
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Additional file 1: Supplementary material for “Statistical model
comparison applied to common network motifs”. The example of
estimating parameters for a simple DE model consisting of one equation
is used to exemplify and discuss statistical issues of model selection as
clearly as possible. Results for extended cooperativity effects in models
SIM, RC, FF, and FB are also shown.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1752-0509-4-18-
S1.pdf ]
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