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1 Introduction

Our purpose in this paper is to develop a methodology for improving the esti-
mates of the risk premia (lamda) calculated jointly with the asset sensitivities
(beta) using the McElroy and Burmeister (1988) representation of the Arbitrage
Pricing Theory (Ross 1976) as a restricted nonlinear multivariate regression
model using observed macroeconomic risk factors.

A serious difficulty with the McElroy and Burmeister (1988) methodology
is that as the number of assets used to estimate the model is increased, there
may be problems in defining the variance-covariance matrix of the estimated
parameter. Moreover, increasing the number of assets makes the estimation
computationally very demanding as the variance-covariance matrix of the es-
timated parameter becomes big. Indeed, the largest number of stocks used in
the APT non-linear estimation literature is of the order of 70 (McElroy and
Burmeister 1988).

In this paper, we first obtain a simpler expression for the variance-covariance
matrix of the estimated parameter which allows easier estimation and testing
of the risk premium parameter. In the empirically relevant case of a large num-
ber of stocks and a small number of observations, we use different samples of
stocks to estimate the vector of the risk premia and combine our different esti-
mates in a way that gives a final improved estimate of the risk premium vector.
We also derive the variance-covariance matrix of the final estimate of the risk
premium. QOur improved estimator can be interpreted as the ”asymptotically
unbiased minimum variance portfolio” among the set of available estimators.
We apply the methodology to UK data, using FTSE-350 assets and observed
macroeconomic risk factors. This extends existing research on the APT using
UK data by Antoniou, Garrett and Priestley (1998), who use different samples
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of UK stocks as we do, to arrive at different estimators of the risk premium.
Other papers that compute UK risk premia based on a linear factor model which
satisfies the APT include Clare and Thomas (1994), Poon and Taylor (1991),
Beenstock and Chan (1988) etc.

The paper is organised as follows: Section 2 explains the methodology, sec-
tion 3 discusses the data used and presents the empirical results and section 4
concludes. Section 5 is an appendix with mathematical proofs of the proposi-
tions we develop.

2 Methodology

The McElroy and Burmeister (1988) methodology involves writing the APT as a
multivariate non-linear seemingly unrelated regression model for a sample N of
the universe n of assets (N < n). By considering T time periods, the following
system of N non-linear regressions is obtained:

K

ri(t) = Xo(t) = Y bi[fi(8) + X ()] + ()

Jj=1

where ¢ = 1,...,.N,t = 1,...,T,5 = 1,..., K, and definitions follow below.
A;j(t) is the risk premium associated with the macroeconomic factor j and it is
assumed initially that it is time-varying. For the purposes of our estimation we
treat it as constant in line with McElroy and Burmeister (1988). We can justify
this based on the claims by Cochrane (1999) and Campbell (1999) that over
low data frequencies variation in the risk premium is of secondary importance.
Rewriting the system we get:

K
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where i = 1,..., N, i1 is a vector of T ones and the following T'z1 vectors are
defined:

ri = (ri(1),...,m(T)) i=1,...,N, a vector of asset i’s returns
Ao = (Mo(1), ..., Ao(T)) a vector of a risk-free asset’s returns
fi = (fi(D), ..., f;(D@)) j = 1,..,K, a vector of realisations on the

macroeconomic risk factor j

e; = (e;(1),...e;(T)) i =1,..., N, the error term

The dependent variable in (1) is the excess rate of return which requires that
Ao is observed. Equation (1) is re-written as

p; = [N ®ir) + Flb; + e;



pi = X(A)bi + e (2)

where i = 1, ..., N, ® denotes a Kronecker product and

A= (A1, ..., A\x)" is a K21 risk premia vector,

F =[f1,..., fx] is a Te K macroeconomic risk factors matrix,

b; = (bi1, .., bir)',i = 1,..., N, a Kz1 sensitivities of asset returns to macroe-
conomic risk factors vector

X(\) = (N ®ir)+ F,is a TrK matrix

By definition the \’s are common to all securities that identify them. The
matrix X () is invariant across securities. If A were known, equation (1) would
be a system of seemingly unrelated linear regressions; since A is unknown we
have a system of seemingly unrelated non-linear regressions with (N —1)K cross-
equations restrictions that the \’s are the same for each of the IV securities.

Finally, stacking the IV equations yields

P1 X()\) e 0 b1 €1
P2 0 X()\) PN 0 bg €9
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PN 0 0 e X()\) bN enN
or in obvious notation,
p=[In2X(\)]b+e (3)

We assume that the Tx K factor matrix F', as well as the Nz K sensitivities
matrix B = [bs;], are of full column rank. We also assume that 7> N > K and
that NT > K(N+1), the last condition ensuring that the system represented by
(3) has more equations than unknowns. Consequently, the necessary conditions
for the NLSUR estimators to exist is satisfied and the Jacobian in equation (4)
is of full column rank

TNV = (ﬁ) Iy @ X0} = Bwir Iy 0 XN (4)

The joint estimates of b and A (NLSUR estimators) can be obtained in three
steps:

Step 1: Estimate (2) for each asset by ordinary least squares. In this step
(A1, ..., Ai) is not identified, so we replace \'b; with an intercept a; and for each
1 =1,...,N select 6; to minimise (p;—Z6;) (p;— Z0;), where 0; = (a;, b1, ..., bix)
and Z = [ir, F). This first step coincides with the first step in the common two-
step procedures of Fama and McBeth (1973). The output used from this step
is not 9, but the residuals.



Step 2: Use the residual vector &; = p; — Z6; for i = 1,...,N to estimate
as ¥ = [(3',_7} = [Tﬁlé;éj}

Step 3: Choose the nonlinear seemingly unrelated estimator (5\, 13) to min-
imise the quadratic form

QAbS) = {p— [In 0 XY x (7" w0 Ip) x {p - [In 0 X(V]B}  (5)

These NLSUR estimators are, even in the absence of normality of the error
distribution, strongly consistent and asymptotically normal (Gallant 1987), and
they form the basis for classical asymptotic hypothesis testing. Finally, with
some additional regularity conditions given by Gallant (1975) in the context of
non-linear estimation, \/T[(;\/, V) — (XN, b')] is asymptotically normal with mean
zero and covariance matrix {2~ which is consistently estimated by

Q=TJN, V) (E @ Ir) IV, )

In the McElroy and Burmeister (1988) restricted seemingly unrelated mul-
tivariate regression model described above, there is a trade-off between how
many time series observations (T') and how many assets (V) are used. There
are problems with the covariance matrix if N > T . However, for small N,
the risk premia will have very large standard errors. McElroy and Burmeister
use T = 72 and N = 50 in most of their analyses. They conjecture that this
represents a compromise between computational feasibility and a sufficiently
large sample for approximately valid asymptotic properties. Indeed, there are
computational problems when the number of assets is large, because the vari-
ance covariance matrix of the estimated parameter becomes very big, a problem
which we address in this paper.

In an effort to overcome these problems, we develop a simpler expression for
the variance covariance matrix of the estimated risk premia. The simplification
of the risk premium variance-covariance matrix allows us easier estimation and
testing of the risk premia when the number of assets is large. This facilitates
the estimation of the risk premium parameter using different samples of stocks,
which can be combined in a final improved estimate of the risk premium pa-
rameter. We also derive the variance-covariance matrix of this final improved
estimate.

We consider a selection matrix A; of dimension mx N, which selects m stocks
out of the sample of N stocks. We vary the A matrix p times to get p different
samples of stocks which we use to estimate the risk premia. The expression for
the variance-covariance matrix of the risk premium vector estimated using the
selection matrix A; is given in Proposition 1 below which is derived fully in the
appendix.

Proposition 1 The asymptotic variance-covariance matriz of the risk premium
vector estimated using the selection matriz A; is given by



var(Aa,) = (cov[VT(Aa, — )] = (B'A;S3' A;B) ™

The expression for the asymptotic covariance between different estimates of
the vector of risk premia obtained using two different selection matrices, A; and
A; is given in Proposition 2, also fully derived in the appendix.

Proposition 2 The asymptotic covariance matrix between two risk premia vec-
tors based upon selection matrices A; and Aj; is given by

cov(S\Ai,j\A].) = cov[VT(Aa, — \*), \/T(S\A]. -]

= (B'AiS, AiB) T (B'AiS 4 ASA;S T AGB)(B'AjS 1A B)

where \ 4, is the estimate of the risk premium vector on the basis of stock

returns selected from the universe of N stocks using the matrix A;, A* is the

true risk premium vector, and X 4, is the variance-covariance matrix of the stock
returns selected by the A; matrix.

We estimate the risk premium vector using different random samples of
stocks from the FTSE-350. We combine our estimates to get the weighted
average “minimum-variance” estimate of the risk premium vector denoted by
by (Kz1). For each macroeconomic risk factor j, j = 1, ..., K, and subject to the
constraint that the weights sum to 1, the set of weights w; (K1) that minimise
the asymptotic variance of the final estimator is given by the expression:

wj =
it S T
where S; (KzK) is the variance-covariance matrix of the risk premia es-
timated over all samples and associated with the jth macroeconomic risk fac-
tor and e (Kx1) is a vector of ones. Then the expression \/T(S\* —A\") is
consistent and asymptotically normal and its asymptotic variance is given by
~ %k
var();) = e’S;le
The expression for S; can be obtained by combining the relevant blocks of
the matrices in Propositions 1 and 2 and is given below in Remark 3 for four
selection matrices Ay, As, Az and A4 corresponding to each of the four samples
of stocks we use in this study.

Remark 3 The variance-covariance matriz of risk premia estimated over all

samples associated with each macroeconomi risk factor j, j =1,. ]c
WT(AAJ[J J] cov(Aa,, Aa,) [, -+ Cov({\Al Aa)l J]
= N N A
CO’U(/} %‘A1)[ ] Cov(i\Aa’ i\Az) ) J CO’U()A‘AE,? )‘A4)[]7]
cov(Aa,, Aa)ld, cov(Aa,, Aa,)d, g var(Aa,)[d, J]



where [7, j] indicates the element that lies at the intersection of the jth row
and jth column of a matrix.

For example, if we consider the ”unexpected-shifts-in-the-term-structure”
risk factor, the associated matrix S; will comprise on the main diagonal the
variances of the term structure risk premia calculated using each of the ran-
dom samples of stocks. The elements off the main diagonal will then be the
covariances of these risk premia.

3 Data description and results

Data on total monthly logarithmic returns for UK stocks are obtained from
Datastream. Our sample spans a period of ten years, starting from the end of
October 1988 until the end of September 1998. After the ARIMA modelling to
generate innovations in the risk factors T' equals 108. The sample comprises 66
stocks from FTSE100 and 146 stocks from FTSE250 on which data are available
throughout the sample period. We used only the 50 smallest stocks (on the basis
of market capitalisation at the beginning of the sample period) in the FTSE100
in an effort to isolate the local risk premium effects, as largest stocks tend to
be stocks of multinational companies that are influenced significantly by global
factors. In total, 196 stocks were used to form four random samples, three
comprising 50 stocks and one comprising 46 stocks. In line with McElroy and
Burmeister (1988), the use of N = 50 is deemed to be reasonable for asymptotic
properties to be approximately valid. This assertion, however, needs to be
validated. The estimates of the risk premia for each sample were then combined
to obtain an improved estimate of the risk premium vector.

Our use of several observed macroeconomic risk factors to explain asset
returns can be justified by the newest generation of empirical research, which
has revised the simple view of the investment world that expected returns can
be explained solely by their tendency to move with the market as a whole.
As summarised by Cochrane (1999) we now know that there are assets whose
average returns cannot be explained by their beta. Rather, multifactor models
dominate the description, performance attribution and explanation of average
returns. Such models associate high average returns with a tendency to move
with additional risk factors rather than only to movements in the market as a
whole. In fact, asset pricing theory recognised at least since Merton (1971a,b)
the theoretical possibility that we should need factors, state variables or sources
of priced risk, beyond movements in the market portfolio in order to explain
why some average returns are higher than others.

One of the earliest examples of the analysis applying prespecified macroe-
conomic risks in the APT is the paper by Chen et al. (1986) analysing the
pricing of such factors in the US market. Recognising the ability of investors to
diversify and the co-movements of asset prices, the authors suggest the presence
of pervasive or systematic influences as the likely source of investment risk. To



illustrate the effect of macroeconomic factors on asset prices, they express them
as follows:

El)
K

where c is the dividend stream and k is the discount rate. Then, actual returns
in any period are given by:

dp  c_dE(Q) dk | c

p p  El k p

and it follows that the systematic forces that influence returns are those that
change the discount factor k& and the expected cash flows E(c).

The discount rate is an average of rates over time and also depends on the risk
premium. It changes with both the level of rates and the term-structure spreads
across different maturities so that unanticipated changes in the riskless interest
rate will influence pricing, and through their influence on the time value of future
cash flows will influence returns. Unanticipated changes in the risk premium
will also influence returns. On the demand side, changes in the indirect marginal
utility of real wealth, perhaps as measured by real consumption changes, will
influence pricing and will also show up as unanticipated changes in risk premia.

Expected cash flows change because of both real and nominal forces. Changes
in the expected rate of inflation would influence nominal expected cash flows as
well as the nominal rate of interest. To the extent that pricing is done in real
terms, unanticipated price-level changes will have a systematic effect, and to the
extent that relative prices change along with general inflation, there can also
be a change in asset valuation associated with changes in the average inflation
rate. Finally, changes in the expected level of real production would affect the
current real value of cash flows. Insofar as the risk premium does not capture
industrial production uncertainty, innovations in the rate of productive activity
should have an influence on stock returns through their effect on cash flows.

Chen, Roll and Ross find that the following sources of risk are significantly
priced in the US market:

1. Risk stemming from unanticipated changes in the expected level of real
production (reflecting the changing state of the economy).

2. Risk stemming from unanticipated shifts in the shape of the term struc-
ture.

3. Risk stemming from changes in default premiums, and somewhat more
weakly,

4. Risk stemming from unexpected inflation and changes in expected infla-
tion, when these variables were highly volatile.

By contrast, risks stemming from unanticipated changes in the market port-
folio, aggregate consumption and oil prices are not priced.

The choice of candidate macroeconomic factors in this study is largely in-
spired by Chen, Roll and Ross (1986) and is a subset of the factors presented




in Antoniou et al. (1998). All data for measuring the macroeconomic factors
are obtained from Datastream. The correlation patterns in factors do not seem
large enough to posit a problem in the econometric estimation. Apart from
spanning the space of returns, the most important property required of appro-
priate factor measures is that they cannot be predictable from their own past.
Chen, Roll and Ross (1986) rely on the fact that because the factor measures
used are defined in first differences, they can be employed as innovations without
alteration. They state that one could identify a vector autoregression model in
an attempt to use its residuals as the unanticipated innovations in the economic
factors, but that would be antithetical to the spirit of their investigation. How-
ever, when calculating autocorrelations for the macroeconomic factors over their
entire sample period, Chen, Roll and Ross (1986) found that the factors gen-
erally display mild autocorrelations. The autocorrelation in the state variables
implies the existence of an errors-in-variables problem that biases estimates of
the loadings of the stock returns on these variables and also biases downward
estimates of statistical significance.

For this reason, the methodology used by CRR (1986) was criticised by Poon
and Taylor (1991), who pre-whiten all series to make sure that only the unex-
pected components are analysed, as failure to adequately filter the various series
may create a spurious relationship and introduce an errors-in-variables problem.
The pre-whitening process is carried out by fitting a univariate ARIMA model
to each series.

Clare and Thomas (1994) also conjecture that from the autocorrelations
properties of CRR’s surprises it is evident that there is highly significant lagged
information omitted from the generation of their innovations, which is not con-
sistent with the interpretation of these variables as ”surprises”. They also prefer
to use single equation autoregressive models with a careful examination of resid-
uals and model stability to ensure no systematic errors are present wherever
possible.

To avoid the problems caused by the potential presence of autocorrelation
in the variables, simple ARIMA models were fitted to pre-whiten the series.
It has to be noted, however, that although this procedure is designed to avoid
spurious correlation, it carries a danger of possible misspecification. Given finite
samples, the fitted ARIMA models can only be approximations to the true data
generating process. The measurement of the risk factors used in our study is
explained below.

3.1 Industrial production

In line with Chen, Roll and Ross, we use the monthly growth rate in industrial
production to capture the effect of the production risk factor. This is defined
as:

MP(t) =InIP(t) —InIP(t — 1)



where I P denotes industrial production. We use the UKINPRODG series
defined as the UK industrial production - total production voln’. An AR(1)
model was used to derive the innovations in industrial production.

Even if no complete theoretical foundations have been developed for the
signs of the risk premia corresponding to each macroeconomic risk factor, some
propositions can still be made based on economics. CRR (1986) find a positive
sign for the risk premium of the M P variable with US data and they argue that it
reflects the value of insuring against real systematic production risks. However,
Antoniou et al. (1998) find a negative value! for the UK. It is quite likely that
a detailed investigation into the decline of UK manufacturing relative to the US
could explain empirically and possibly theoretically why the risk premia could
change sign.

3.2 Inflation

We use the difference in the logarithm of the consumer price index (CPI) to
capture the effect of the inflation factor, as follows:

IR(t) =InCPI(t) — InCPI(t—1)

We use the series UKRP....F defined as the 'UK Retail Price Index NADJ'.
An ARMA model was used to derive the unexpected component of this series.

Chen, Roll and Ross (1986) and other studies use a measure of unexpected
inflation calculated as the difference between the realised inflation rate and the
inflation for the period expected at the beginning of the period. The construc-
tion of the expected inflation series is itself a significant task that was carried
out by Fama and Gibbons (1984). Another inflation variable that is unantici-
pated and that might have an influence separable from unexpected inflation is
the change in expected inflation. This series has also been used in the literature.

The sign of the risk premium corresponding to the IR variable may be
ambiguous because of the fact that changes in inflation generally shift wealth
among investors. In the literature, CRR(1986) find a negative risk premium
for unexpected inflation. They interpret this finding as evidence that over their
sample period US stocks consituted a hedge against the adverse influence on
inflation on other assets with relatively more fixed nominal returns. On the
other hand, Clare and Thomas (1994) find that in the UK the inflation risk
premium is positive, so that UK stocks were not considered to be a hedge
against inflation over their sample period.

11t is also worth noting that although a factor has a negative price of risk, in terms of the
expected return it is the sum of the prices of risk and the sensitivity of the stock to the factors
which generates the risk premium that particular assets carry. Both the price of risk and the
sensitivity to a factor could be negative, thereby yielding a positive premium for that factor.
Thus, a negative price of risk for a factor may not be an unreasonable finding.



3.3 Market risk premium

To capture the effect of the market risk premium factor, we use the difference in
the returns on the equity market (EM) and the government bond market (BM)
in line with the definition of the risk premium in Datastream:

RP(t) = [ln EM(t) — In EM(t — 1)] — [ln BM(t) — In BM(t — 1)]

We use the FTALLSH(RI) series defined as the 'FTSE All Share - Total
Return Index’ and the series FTAGOVT(RI) defined as the 'FTA Government
All Stocks - Total Return Index’. An AR(1) model was used to derive the
innovations in this series.

The market risk premium variable is expected to carry a positive risk pre-
mium to reflect the fact that investors would want to hedge against unexpected
increases in the aggregate market risk premium as a result of an increase in
uncertainty. Indeed, Chen, Roll and Ross (1986) and Clare and Thomas (1994)
find significantly positive risk premia in US and UK respectively. Antoniou et
al. (1980) also find that the price of risk related to excess returns on the UK
stock market is positive and significant.

3.4 Term structure

To capture the effect of unanticipated shifts in the term structure, in line with
the approach followed in the literature, we use the spread between long-term
(LTR) and short-term interest rates (STR):

TS(t) = LTR(t) — STR(t)

We use the first difference in the logarithm of the series BMUK30Y (RI)
defined as the '"UK Benchmark 30 Year DS Government Index - Total Return
Index’ and the series LDNTB3M defined as the "UK Treasury Bill Discount
3 month - Middle Rate’. The T'S(t) series appears uncorrelated so it can be
employed directly in the econometric estimation.

The risk premium associated with the term structure variable may also be
ambiguous in sign. CRR find a negative risk premium indicating that stocks
whose returns are inversely related to increases in long rates over short rates
are, ceteris paribus, more valuable. They argue that one way to interpret these
results is that the TS variable measures a change in the long-term real rate of
interest, having accounted for the effect of inflation in the IR variable. When
long-term real rates decrease there is a lower real return on any form of capital,
so investors who want to hedge against this possibility will place a relatively
higher value on assets whose price increases when long-term real rates decline,
and such assets will carry a negative risk premium. McElroy and Burmeister
(1988) find a positive risk premium for the T'S variable using US data while
Clare and Thomas (1994) find that the T'S variable was not significant in the
UK market over their sample period.

10



Sample means, standard deviations and correlations between the macroeco-
nomic factors are shown in Tables 1 and 2. All tables appear at the end of the

paper.

The different estimates of the risk premium vector, the combined improved
estimate and their t-statistics are shown in Table 3 below. Full results from our
estimations with the sensitivities and full variance-covariance and correlation
matrices are reported in the appendix. It is evident from Table 3 that the risk
premia are not consistently estimated across samples, in the sense that in some
cases both their signs and statistical significance differ. This inconsistency has
also been documented in Antoniou et al. (1998). Nevertheless, considering
the estimates obtained from the four random samples, most of the risk premia
appear to be significant. However, considering the minimum-variance estimate,
only the inflation risk premium appears to be significant. The production,
market risk premium and term structure risk premia appear to be insignificant
despite the fact that in the individual samples they appear to be significant
most of the time. The minimum-variance estimate all risk premia appear to
have plausible signs even if this was not the case in each of the individual
estimates.

This phenomenon is due to the fact that the risk premia appear with differ-
ent signs across the samples, so when they are weighted to obtain the minimum
variance estimate, they tend towards zero. To examine the validity of this
hupothesis, we repeated the same exercise of combining our estimates consider-
ing only samples 2 and 4 in which the risk premia have consistent signs. Because
we expect the production risk to carry a positive risk premium we use the one
estimated using sample 3. The results of this exercise appear in Table 4 below.
In this case, the minimum variance risk premia appear larger in magnitude and
they are all statistically significant. Even if we adjust the risk premia by adding
back the constant factor means from Table 2, none of the signs are changed.

4 Conclusions

It is well-known that the estimation of the APT using non-linear methods is
difficult for numerical reasons, so that it is hard to combine more than about 50
stocks. Antoniou et al. (1998) have presented a range of UK estimates of risk
premia based on different samples.

Our contribution is to derive results for the asymptotic covariance matrix
of a set of estimators of the risk premium based on different samples of stocks.
These are given in Propositions 1 and 2.

Armed with this information we can then combine the different estimates
of the risk premia to construct a better estimator, in the sense that it will

11



have minimum-variance among the class of available ”consistent estimators”
ie. those combinations whose weights add to one. Good combinations only
occur if we use information about the signs of the associated factor risk premia.

5 Appendix

Our ultimate purpose is to combine different estimates of the risk premia to
obtain an improved estimate. To facilitate this task we find a simpler expression
for the variance-covariance matrix of the estimated parameter in each of the
samples. In particular, we are mainly interested in that block of the estimated
parameter variance-covariance matrix which refers to the risk premia. We repeat
some of the definitions to make the appendix more self-contained.

The McElroy and Burmeister (1988) recast of the APT as a restricted non-
linear multivariate regression model is:

p=[In®X(\)]b+e e~ (0,2 Ir) (6)

and X(\) = (N ®ir) + F

where p is NTx1

Iy is NoN

Ip is TxT

X(N\)is Tz K, hereon suppressed to X to simplify the mathematical exposi-
tion

b =vec(B) where B is Na K

Ais Kzl

We consider a selection matrix A; of dimension mx N, which selects m stocks
out of the universe of N stocks. We vary the A matrix p times to get p different
samples of stocks which we use to estimate the risk premia.

Applying the selection matrix to equation (6) we get:

pa, = (A; @ Ir)p ,a vector of dimension mTx1 and substituting for p from
equation (6) we get:

pa, = (i Ir){[Iy  Xb + e}

Pa;, = (AZ'IN (34 ITX)b + (Az (24 IT)e

pa, = (A0 X)b+ (A; ® Ir)e

pa, = (A0 X)b+eaq, where e4, ~ (0,34, ® IT) and X4, = A;XA; and
is of dimension maxm

¥ here refers to the variance-covariance matrix of all NV stocks in the universe.
Re-writing the expression above we get:

en = pa, — (A0 X)b ™)

where e4, is of dimension m7T'x1
We combine the unknown parameters A\ and b into one vector 6 so that

0= ( 2 > , where 0 is of dimension (K + NK)z1.

12



(96,41. - _B(AZ ® X)b
00 o7}

The first derivative of expression (7) with respect to 6 is
(8)

6€A.
t=—(AB®ir,A; 0 X
50 (AiBir, A; 0 X)
Equation (8) represents a matrix of dimension mTz(K + NK).
Setting up the Seemingly Unrelated Regression (equivalent to the quadratic

form Q4,) we get:
Qa, = e/A,(EZX,l ® IT)eAi.

Qa; = [pa, — (Ai 0 X' (S47 0 Ir)[pa, — (Ai 0 X)) (9)

The first derivative of the quadratic form is:
Qs ., 1 Oea, o Oe , .
(2 ) = 2e/y, (X, ® I7) 50 and substituting for 50 from equation (8)
we get:

0Q 4,
gg" =2€y, (35 ® Ir)[—(AiB ®ir, A; © X)]

0Qa, _ —2¢/4, (54 A B & Irip, X4 A @ IrX)

00
GQA,: o ’ —1 4. . 14 <
20 = 2¢/y (X4, AiB @ir, ¥ Ai © X) (10)
The second derivative of the quadratic form is:

Qa, 9€y; i1 D |

5000 — -2 50 (EAL_AZBGOZT,EAL_A,GOX)
9*Qa, B'A; @i -1 : -1
9000 ( A X >(2ALAZ'BWT’EALAZ‘®X)
PQa, TB'AY;'A;B  B'AY A wilpX
9000" AY ' AB® X A, A0 XX
PQa, TB'AY,'A;B (A4S, AiBw X'ir)
0000" ASA AB® Xlir  AiS A X'X (1)

To obtain an expression involving the difference of the estimated parameter

from its true mean we use the Taylor series expansion:

13



8QA,(9) -0

00
aQAi (GAL') + aQQAi (GA’I:)
00 0000’ )
where 0 is the true value and 0 4, is the estimated value of the parameter on
the basis of selection A;. Re-arranging gives:

aQA; )(QQQA,' )7
00 0606

(04, —0) =0

@A.—Qz—(

i

(12)
We define the inverse of the second derivative (11) as follows:

A A
aQQAi.)fl _ ( ‘/lfll Vvl% )
/ - i i
0000 Vo1t Vg
and we use the formula for the partitioned inverse to obtain the required

blocks

The general formula for the inverse of a partitioned matrix M = ( g ff )

(

is M= (If(, é)where

K=(E-FH'G)™',L=-KFH™',P=-H'GK and

Q=H'"4+H 'GKFH™!

So calculating the blocks of the inverse matrix that we need to proceed with
our calculation of the estimated variance covariance matrix we get:

K=V ={TB'AS 'A;B — [BAS 'A; 0 il X]

[AS71A; 0 X' X7 AS T A B © X'ig]} ! .

K= Vlfll" = {TB/AZ'E_IAZ‘B— [B/AZE_IAZ(X)’LITX} [(AiE_lA,')_l @(X/X)_l]

(A5 A;B ® X'ip]} !

K=V = {TB'A>""A;B — [B'AS " A;(AX7TA) " @il X (X' X))~

(A3 1 4;B & X'ig]} !

K =Vjy' ={TBAS"A;B — [BAS A B it X(X'X) X ir]} !

K=V = {TBAS 1A;B - BAYX "AB®ilX(X'X) 1 X ip} !

K=V =(TB'AS 'A;B — cB'A;$ ' A;B) !

K=V — %(B’Ai*lAB)*l

where ¢ is a scalar and is equal to i X (X' X) ™! X ir.

P= 1/21 = —[A;S A 0 X'X]7YAS L A B 0 Xig Vi

P=Vy' = —[(AS3]A) 7 0 (X'X)T[ASZ] AiB @ X'ir] Viy'

P =V = —[B© (X'X) ' X'ir|Vy}'

Equation (13) then becomes:
S\A- — )\* / -1 — —1 S ‘/i?b ‘/igb
N [~ N AZB ,E,Ai,X ) )
(G oy ) venemamsmsiaen (4
and cons1der1ng the risk premlum parameter only we get
A, = N ey (S AB @ir) Vi + ey (S50 A 0 XV

14



Performing the algebra:
Aa, =N ey (51 A Beir ) Vi ey {55! A X [=[Boo(X'X) ' X ir] Viy']}

Aa, =N~ ey (33" A Bwir) Vit +ely 157 Ao X [ [Beo(X' X)L X i |V}
Aa, = N~ ey (B4 AiB @iz — (3304 0 X) (B (X'X) ' X"ig)| V)

Aa, = N~ ey (B3 AB ® (ir — X (X' X)X i) Vi

A, = N~ ey [R5 AB w (ir — X (X'X) ' X"ig)| VY
A, = N~ ey B3 AB w (ir — X (X'X) ™ X i) VY
A, — N~ €y [E31 A B & Myir)| Vi

Substituting for Vi the expression becomes:

R B'A; x5 A;B)!
s, — N ~ € S5 AB & M) o a D)
where T* =T — it X (X' X) 1 X ip = il Myir
Similarly, for a different selection matrix A; the expression above would be:
3 - . Aj - ) Aj
Aa, =N ~ely (EA;AJ'B ®ir)Viy' + €}y, (EA;AJ' % XVy")
and after performing the algebra we end up with a similar expression
(B'A;%,,4;B)"
T

The expression for the variance-covariance matrix of the risk premium vector

estimated using the selection matrix A; is:

VT (A4, —\*) = VT (e}, Wa,) where Wa, =[S, A;BoM,ir)]
, a TmxK matrix

cov[\/TO\AL. -] = TW), E(ea,e’y,)Wa,

cov[VT(Aa, = N*)] = TW (Sa, ® Ir)Wa,

cov[VT(Aa, = X)] = T(B/Ai(Ezig)j;hB)_1 (B'ATy] @i My )(Sa, © Ir)

(32! AiB & Myir)(B'A;$3 AiB)~!

(B'A;x5' A;B)™!
(T)?

cou[VT(3a, — )] = %(B’A,-EZ}AiB)—l

and since i/ fx = 0 as the factors have sample means of zero it follows that

5\Aj N 614,- [E;‘jAjB ® Myir))

(B'Ai$;A;B)~!
T*

T

cov[VT(Aa,—\")] (B'AiS ;' A;B)T*(B' A, A;B) !

T
T = 1 and the expression simplifies to:

;=

ar(A4,) = (cov[V/T(Aa, — \*)] = (B'A; 55" A;B) | (13)

15



The expression for the covariance between different estimates of the vector
of risk premia is:

W(1}3’,42-2;},41-5’)— (B'A;%5, 0ilp My ) (AD A 0I7) (851 AjBo Myir) (B'AjX5 1 A B) ™!

COU[\/T(S‘AL - )‘*)7 \/T()‘A, - )\*)] =

(;;) (B'A;is5  AiB) N (B' A AiZ A, T AjB) (B A5 A B) !

. T .
and using the fact that T = 1 since the factors have sample means equal

to zero, the expression simplifies to:
cov(Aa,, S\A_,,.) = cov[\/f(S\Ai —\%), \/T(S\AJ_ -\ =
= (B'Ai%, AiB) T (B' AT, ASA; S, A B) (B AjS 1A B) (14)
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Table 1: Means and standard deviations for the factors
Mean Std. dev.
Industrial production | -0.0001 | 0.0075
Inflation 0.00003 | 0.0025
Market risk premium | -0.0012 | 0.0356
Term structure 0.0053 0.0301
Table 2: Correlation structure of macroeconomic factors

Ind. Prod. | Infl. | Mkt. risk prem. | Term str.
Industrial production 1.00
Inflation 0.37 1.00
Market risk premium 0.02 0.02 1.00
Term structure -0.07 -0.09 0.08 1.00

Table 3: UK risk premia with respect to UK macroeconomic risk factors

MP IR RP TS

Sample 1 risk premia -0.0017 | -0.0009 | -0.0024 | 0.0067
t-statistic -2.1253 | -3.6229 | -1.4668 | 2.6769
Sample 2 risk premia -0.0016 0.0020 0.0033 | -0.0014
t-statistic -1.8752 6.9393 2.0409 | -0.5617
Sample 3 risk premia 0.0048 -0.0019 | -0.0117 | 0.0131
t-statistic 6.7539 -7.2098 | -5.7472 | 5.0699
Sample 4 risk premia -0.0104 | 0.00002 | 0.0065 | -0.0185
t-statistic -8.7382 0.0617 3.7488 | -6.3392
Combined minimum variance | -0.00010 | -0.00027 | 0.00058 | -0.00071
risk premia

t-statistic -0.2055 | -2.0925 | 0.5249 | -0.4740
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Table 4: UK sign-consistent risk premia with respect to UK macroeconomic risk
factors

MP IR RP TS

Sample 2 risk premia - 0.0020 | 0.0033 | -0.0014
t-statistic - 6.9393 | 2.0409 | -0.5617
Sample 3 risk premia 0.0048 - - -
t-statistic 6.7539 - - -
Sample 4 risk premia - 0.00002 | 0.0065 | -0.0185
t-statistic - 0.0617 | 3.7488 | -6.3392
Combined minimum variance | 0.0048 | 0.0011 | 0.0048 | -0.0089
risk premia

t-statistic 6.7539 | 5.2245 | 3.6279 | -4.7496
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