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Summary 

Factors influencing T-cell responses are important for vaccine development but incompletely 

understood. Here vaccinia virus (VACV) protein N1 is shown to impair the development of both 

effector and memory CD8+ T-cells and this correlates with its inhibition of nuclear factor kappa B 

(NF-κB) activation. Infection with VACVs that either have the N1L gene deleted (vΔN1) or 

containing an I6E mutation (vN1.I6E) that abrogates its inhibition of NF-κB resulted in increased 

central and memory CD8+ T-cell populations, increased CD8+ T-cell cytotoxicity and lower virus titres 

after challenge. Furthermore, CD8+ memory T-cell function was increased following infection with 

vN1.I6E, with more IFNγ production and greater protection against VACV infection following passive 

transfer to naïve mice, compared to CD8+ T-cells from mice infected with wild type virus (vN1.WT). 

This demonstrates the importance of NF-κB activation within infected cells for long-term CD8+ T-cell 

memory and vaccine efficacy. Further, it provides a rationale for deleting N1 from VACV vectors to 

enhance CD8+ T-cell immunogenicity, while simultaneously reducing virulence to improve vaccine 

safety. 

 

Introduction 

Immunological memory provides protection against reinfection by pathogens encountered previously 

and in mammals is conferred by specific leukocyte populations that endure long after clearance of 

infection [1, 2]. Naïve T-cell clones expand rapidly after T-cell receptor ligation and, whilst most die 

subsequently after clearance of the specific antigen, some survive to become long-lasting memory 

cells that protect against future infection [3, 4]. Induction of strong T-cell memory is desirable for 

vaccine development but factors that influence this are not fully understood. Two populations of 
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memory T-cells, called central and effector memory CD8+ and CD4+ T-cells (TCM and TEM 

respectively), are defined by expression of specific surface markers. In mice these are CD62L and 

CD44 (TCM being CD44hiCD62Lhi and TEM being CD44hiCD62Llo) and are induced well by acute viral 

infections [5, 6]. These subsets are functionally distinct because TCM cells mediate long term 

protection, whilst TEM cells provide immediate protection [6] and they have distinct locations with 

TCM being resident mainly in lymph nodes, whilst TEM are predominantly in peripheral tissue. CD8+ 

TCM and TEM cells confer protection against several pathogens, although the TCM subset may be more 

broadly protective [7-10]. 

 

Vaccinia virus (VACV) was the live vaccine used to eradicate smallpox [11] and induces long-lasting 

protective immunity [12-15], for review see [16]. Consequently, VACV is useful for studying the 

induction of immunological memory. Moreover, the engineering of VACV to express foreign antigens 

has made VACV a popular vector for vaccine development [17, 18]. VACV expresses about 200 

proteins [19] and many of these inhibit innate immunity [20]. Studying such immunosuppressive 

proteins provides insight into how the innate immune system functions and may be suppressed 

[21-23], and their manipulation can improve VACV immunogenicity. For instance, deletion of genes 

encoding the chemokine binding protein A41 [24], the IL-1β binding protein B15 [25], or the IRF3 

inhibitor C6 enhanced immune responses [26, 27]. Such viruses are useful tools for studying how the 

innate immune response shapes adaptive immunity [28]. 

 

This paper concerns VACV protein N1 and shows that its deletion or mutation can simultaneously 

reduce virus virulence and induce stronger CD8+ T-cell responses that confer enhanced protection 
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against virus challenge. N1 is present in many, but not all, VACV strains and orthopoxviruses, for 

details see reference [29], and is, for instance, present in VACV strain modified virus Ankara (MVA) 

but is shortened from 117 to 113 amino acid residues due to a frameshift mutation that removes the 

last 27 residues and replaces these with 23 unrelated residues [30]. N1 is an intracellular homodimer 

expressed early during infection [29] that inhibits activation of NF-κB [31-33], suppresses apoptosis 

[33, 34] and contributes to virus virulence [29, 33, 35]. The crystal structure of N1 revealed a Bcl-2 

fold [34, 36] and structure-based mutagenesis showed that inhibition of NF-κB activation and 

apoptosis are separable [33]. N1 mutants unable to block NF-κB activation (I6E) or apoptosis (R58Y 

and Q61Y) were described and analysis of recombinant VACVs expressing these mutant N1 proteins 

showed that inhibition of NF-κB activation, rather than apoptosis, was the predominant mechanism by 

which protein N1 contributed to VACV virulence [33]. An additional mutant, R71Y, affected neither 

inhibition of apoptosis nor NF-κB activation and a virus bearing this mutation has wild type virulence 

[33]. 

 

Here, these VACVs are utilised to study how NF-κB activation during infection influences 

development of cellular immunity, immunological memory and resistance to reinfection. NF-κB is 

crucial in regulating inflammation and cell proliferation, but there is little direct evidence of its role in 

development of immunological memory due to gross developmental defects in mice where NF-κB 

signalling is suppressed. Recombinant VACVs with altered ability to suppress NF-κB enable 

circumvention of this problem. Data presented show that intradermal (i.d.) infection with VACV 

lacking N1 (vΔN1) or bearing the I6E mutation (vN1.I6E) caused increased activation of CD8+ T-cells 

compared to WT virus (vN1.WT), illustrating the importance of NF-κB signalling for induction of 
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T-cell responses. Furthermore, mice infected with vN1.I6E or vΔN1 developed increased numbers of 

CD8+ TCM and TEM cells that mediated enhanced protected against VACV challenge. This study 

illustrates how the innate immune response to viral infection driven by NF-κB has a profound impact 

on the development of T-cell memory and provides a rationale for deleting the N1L gene, and possibly 

other inhibitors of NF-κB, from VACV-based vaccines. 

 

Materials and Methods 

Ethics statement 

This work was conducted under licence PPL 70/7116 from United Kingdom Home Office according 

to the Animals (Scientific Procedures) Act 1986. 

 

Mice and cell lines 

Female C57BL/6 (B6) mice (Harlan) were housed under pathogen-free conditions. EL4 (H-2b) and 

P815 (H-2d) cells (both ATCC) were cultured in RPMI 1640 (Gibco) containing 10% foetal bovine 

serum (FBS) (Harlan Seralab) and penicillin/streptomycin (50 µg/ml; Gibco). 

 

Viruses 

VACV strain WR recombinants vN1.WT and vΔN1 [29] and VACVs expressing N1 mutant protein 

I6E, R58Y, Q61Y and R71Y were described [33]. Virus infectivity was titrated by plaque assay on 

BSC-1 cells. 
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Murine infection models 

Female C57BL/6 mice (6-8 weeks) were infected i.d. with 104 plaque-forming units (PFU) in both ear 

pinnae [37, 38]. Virus doses used to infect animals were always re-titrated to confirm the infectious 

dose administered. In vivo data shown are from one representative experiment, and all experiments 

were performed at least twice. To determine virus titres, infected ears were ground with a tissue 

homogenizer, subjected to three cycles of freezing and thawing and sonication, and the resulting 

homogenate was titrated on BSC-1 cells [37, 38]. To evaluate the degree of protection induced by i.d. 

infection, immunised mice were challenged by i.n. infection with the indicated dose of VACV strain 

WR as described [39]. 

 

Isolation of cell populations 

Mice were euthanised and the liver, spleen, lung and lymph nodes were removed. Hepatic 

lymphocytes were prepared as described [40]. Splenocytes and lymph node suspension cells were 

obtained by forcing the organ through a stainless steel mesh. Splenocytes were treated with 0.2% 

NaCl solution to remove erythrocytes. Lung pieces were incubated in RPMI 1640 with 5% FBS, 100 

U/ml penicillin/streptomycin, 10 mM HEPES, 50 μM 2-ME, 20 mM L-glutamine containing 20 U/ml 

collagenase (Type Ia) and 1 μg/ml DNase (Type I) for 30 min prior to passing through a mesh. For 

preparation of cells for passive transfer to recipient mice, the mouse CD4+ or CD8+ T-cell isolation kit 

was used as indicated by the manufacturer (Miltenyi Biotec) to deplete non-CD4+ or non-CD8+ cells 

on an autoMACS instrument. 
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Antibodies, cell staining and flow cytometry 

Anti-mouse CD3 (clone 145-2C11), CD4 (GK1.5), CD8 (5H10-1), B220 (RA3-6B2), NK1.1 (PK136), 

CD11b (M1/70), Ly-6G/Ly-6C (RB6-8C5), CD44 (IM7), CD62L (MEL-14), granzyme B (GB11), 

CD16/32 (2.4G2) and IFN-γ (XMG1.2) mAb were purchased from BD Biosciences or Biolegend. The 

mAbs were purified or conjugated with FITC, PerCP/cy5.5, APC, PE-Cy7, BV650 C or BV421. 

Isotype controls were used as negative controls. For intracellular staining, cells were incubated with 

Golgistop (BD Pharmingen) for 5 h before analysis. After surface staining, samples were fixed, 

permeabilised using Cytofix/Cytoperm intracellular staining kit (BD Pharmingen), and incubated with 

the indicated mAb. Then cells were stained intracellularly for 30 min, washed and fixed in 1% 

paraformaldehyde (Sigma-Aldrich). Flow cytometry was performed with a BD LSR Fortessa (BD 

Biosciences), and data were analysed with FlowJo software (Tree Star Inc.). LIVE/DEAD® Fixable 

Aqua Dead Cell Stain Kit (Life Technologies) was used to exclude nonviable cells from analysis. 

 

DimerX assay to detect VACV specific CD8+ T-cells 

Recombinant soluble dimeric mouse H-2Kb:Ig fusion proteins were purchased from BD Biosciences 

and the DimerX assay was performed according to the manufacturer’s instructions. Briefly, 2 µg of 

H-2Kb:Ig fusion proteins were incubated overnight at 37°C in PBS with a 40 molar excess of B820 

peptide (TSYKFESV). Peptide-loaded dimers were then incubated for 1 h at room temperature with 

PE-coupled anti-mouse IgG1 (clone A85-1, BD Biosciences). Cells were labelled with DimerX and 

anti-CD8 (clone 53-6.7, BD Biosciences) for 1 h on ice and washed twice before acquisition using a 

BD LSR Fortessa (BD Biosciences). Analysis was done using FlowJo software (Tree Star Inc.). 

Events were gated for live lymphocytes on FCS × SSC followed by CD8+ T-cells × DimerX+ cells. 
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Backgrounds as determined using irrelevant peptides were in the order of 0.5 to 0.8% and were 

subtracted from the values presented for test samples. 

 

51Cr release cytotoxic assay 

Cytotoxic T lymphocyte (CTL) activity was assayed by 51Cr-release assay [24]. VACV-infected EL4 

cells were used as targets for VACV-specific CTL lysis. In some experiments, CD8+ cells were 

depleted from liver and spleen cell suspensions by incubation with anti-CD8 mAb (clone 3.115) 

together with human complement. An isotype control mAb was used in parallel. Flow cytometry 

confirmed >95% depletion of the desired cells. The remaining cells were used for cytotoxicity assays 

without adjustment for alteration in number during depletion. The cytotoxicity of purified NK cells 

was tested on VACV-infected P815 cells by 51Cr release assay. The percentage of specific 51Cr release 

was calculated as specific lysis  =  [(experimental release−spontaneous release)/(total detergent 

release−spontaneous release)]×100. The spontaneous release values were always <15% of total lysis.  

 

Cell depletion by antibody in vivo 

Rat anti-CD8 (YTS169) or rat anti-CD4 (YTS 191.1) mAbs were concentrated from tissue culture 

supernatant by ammonium sulphate precipitation and quantified by ELISA. Depleting antibodies (0.3 

mg) were injected into the peritoneal cavity of naïve recipient mice 10, 8 and 6 days prior to transfer 

of 106 CD8+ or CD4+ T-cells from immunised or naïve mice. The depletion of specific T-cell 

populations was analysed by FACS and showed >95% of specific cells were depleted. 
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Serum antibody titration 

To measure the neutralising titre of anti-VACV antibodies, vaccinated mice were exsanguinated at 28 

day p.i., and sera were prepared and heated at 56 ºC for 30 min to inactivate complement. Two-fold 

dilutions of sera in Dulbecco's modified Eagle's medium (DMEM, Gibco) supplemented with 2% 

FBSwere prepared and were incubated with VACV intracellular mature virus (purified by sucrose 

density gradient centrifugation) for 1 h at 37 ºC before plaque assay on BS-C-1 cells. ND50 values 

represent the reciprocal of the serum dilution giving 50% reduction in plaque number compared to 

virus incubated without serum. 

 

Statistical analyses 

Data were analysed using GraphPad Prism 5 software, represented as mean with the standard error of 

the mean (SEM), and assessed for significance using the Mann–Whitney U or student's t-test statistics. 

p-values less than 0.05 were considered statistically significant. *< 0.05, **< 0.01. 

 

Results 

Deletion of VACV N1 increases effector CD8+ T-cell numbers during acute infection 

Intradermal infection with vN1.WT, vΔN1 or viruses with single amino acid mutations in the N1 

protein did not affect virus replication in vivo early (2 days) post infection p.i. (Supplementary Figure 

1), as noted earlier for vN1.WT, vΔN1 or revertant viruses [29]. To investigate if blocking NF-κB or 

apoptosis affected virus immunogenicity, mice were immunised i.d. with these viruses to mimic 

dermal vaccination and splenic T-cells were analysed one month thereafter. Total splenic cells 

increased substantially early after infection (being maximal 7-10 days p.i.), but there were no 
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differences between vN1.WT and the N1 mutant viruses in the magnitude or kinetics of this response 

(Figure 1A, B). The absolute numbers of T-cells (CD3+CD4+, CD3+CD8+), B cells (CD3-B220+) and 

NK cells (CD3-NK1.1+) in the spleen at 7 days p.i. increased after infection (Figure 1C), but no 

differences were observed between the viruses. The proportion of splenic T-cells (expressed as a 

percentage of total lymphocytes) increased after infection, whereas this value decreased for B cells 

(Figure 1D). The proportions of splenic macrophages (CD11b+Ly6G-) and neutrophils (CD11b+Ly6G+) 

(not shown) were similar to mock infection for all viruses. Analysis of cells in the posterior cervical 

lymph nodes proximal to the infection site showed similar results for the total cell numbers 

(Supplementary Figure 2A), CD8+ T-cells (Supplementary Figure 2B) and other cell subsets including 

CD4+ T-cells, B cells, NK cells, macrophages and neutrophils (not shown). 

 

During acute VACV infection activated CD8+ T-cells have high granzyme B (GzmB) and low CD62L 

expression (GzmBhiCD62Llo) and this population can be detected without the requirement for ex vivo 

peptide antigen stimulation [41]. These cells were analysed at different times p.i and in naïve mice, 

~95% of splenic CD8+ T-cells were in the resting, GzmBloCD62Lhi, population and less than 1% were 

GzmBhiCD62Llo. However, 7 days p.i. with vN1.WT, vN1.R58Y or vN1.R71Y approximately 45% of 

splenic CD8+ T-cells were GzmBhiCD62Llo. Notably, after infection with vΔN1 or vN1.I6E this 

population increased to >60% and the differences between these viruses and vN1.WT, vN1.58Y and 

vN1.R71Y were statistically significant (Figure 2A, B). Similar results were obtained 14 days p.i. 

when vΔN1 and vN1.I6E caused an increased proportion of activated CD8+ T-cells. By days 21 and 

28 p.i. the activated CD8+ T-cell population had decreased to resting levels in all groups (Figure 2). In 

conclusion, deletion of N1 or I6E mutation increased the number of activated CD8+ splenocytes 
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(Figure 2B). To quantify VACV-specific CD8+ T-cells, DimerX reagent loaded with the 

immunodominant VACV B820-27 peptide was used. Consistent with a previous study [41], 

VACV-specific GzmBhiCD62Llo CD8+ T-cells were identified in the spleen at day 7 p.i., and their 

proportion and absolute number increased upon deletion of N1 or I6E mutation (Figure 3A, B). In the 

draining lymph nodes this difference was more pronounced (p<0.01) (Figure 4). Therefore, either 

removal of N1, or its mutation to ablate inhibition of NF-κB, induced greater numbers of CD8+ 

effector T-cells following infection. 

 

VACVΔN1 induces enhanced development of immunological memory  

To test if changes induced by N1 mutation influenced protection against reinfection, mice were 

immunised i.d. with WT or mutant viruses and challenged i.n. 4 weeks later (when activated CD8+ 

T-cells had returned to resting levels) with a dose of VACV WR (5×106 p.f.u) representing >200 LD50 

for naïve mice [29, 42]. Mice vaccinated with vΔN1 or vN1.I6E showed better protection against 

challenge, characterised by reduced weight loss and more rapid recovery, compared to those 

immunised with vN1.WT, vN1.R58Y or vN1.R71Y (Figure 5A). Also, the virus titre in lungs 4 days 

after virus challenge was lower following immunisation with vΔN1 or vN1.I6E compared to other 

groups (Figure 5B). No virus was detected in spleen after challenge for any of the virus groups (data 

not shown). Collectively, although deletion or I6E mutation of N1 reduced virulence, these changes 

enhanced immunological memory following vaccination. 

 

To understand the basis of enhanced protection, VACV-specific antibodies were measured at 28 days 

p.i by plaque reduction neutralisation assay [43]. This showed that all groups of immunised mice had 
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high serum antibody titres, but titres induced by immunisation with vΔN1 or vN1.I6E were lower 

(p<0.05) than mice infected with vN1.WT or vN1.R58Y and vN1.R71Y (Figure 5C). Therefore, 

antibody responses did not explain the enhanced protection induced by vΔN1 and vN1.I6E, 

suggesting cellular immunity might be responsible. 

 

Deletion of VACV N1 results in enhanced CD8+ T-cell effector functions 

To investigate T-cell effector functions, the killing activity of CD8+ T-cells was assessed 28 days p.i 

with vN1.WT or the mutant N1 viruses by ex vivo cytotoxicity assay (Figure 6A). Splenic 

lymphocytes from mice immunised with vΔN1 or vN1.I6E showed significantly higher cytotoxicity 

against VACV-infected autologous target cells compared with cells derived from mice immunised 

with vN1.WT, vN1.R58Y or vN1.R71Y (Figure 6A). Notably, differences between groups and the 

cytotoxicity of lymphocytes were abolished by CD8+ T-cell depletion with specific mAb (Figure 6B). 

Analysis of hepatic lymphocytes gave similar results (not shown). Consistent with their enhanced 

killing activity, splenic CD8+ T-cells expressed significantly greater CD107a at 28 days p.i. with 

vΔN1 or vN1.I6E (p<0.01) than with vN1.WT, vN1.R58Y or vN1.R71Y (Figure 6C). NK cell 

responses were not responsible for the enhanced protection because, although splenic NK cells from 

immunised mice lysed VACV-infected targets better than mock-infected cells, there were no 

differences between mice immunised with vN1.WT or vΔN1 (Figure 6D).  

 

vΔN1 and vN1.I6E induce increased populations of CD8+ TCM and TEM cells 

The enhanced cytotoxicity of CD8+ T-cells 28 d p.i. with vΔN1 and vN1.I6E indicated phenotypic 

differences between these cells and those from mice infected with the other viruses despite activation 
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markers having returned to baseline by day 21 p.i. (Figure 2). Therefore, CD8+ TCM and TEM cells in 

the spleen and draining lymph node were analysed 28 d after i.d. infection. After vN1.I6E infection 

10.4±1.5% of splenic CD8+ T-cells were CD44hiCD62Llo (TEM) and 20.6±1.9% were CD44hiCD62Lhi 

(TCM) and similar results were obtained with vΔN1. However, only 7.1±1.3% CD8+ TEM and 

14.7±2.2% of CD8+ TCM cells were induced by vN1.WT, vN1.R58Y or vN1.R71Y and the differences 

between these groups and the vN1.I6E/vΔN1 groups were statistically significant (p<0.05) (Figure 

7A). In the draining lymph nodes this enhancement was even more pronounced (p<0.01) (Figure 7B). 

In contrast, CD4+ TCM and TEM populations were indistinguishable between viruses (Figure 7A, B). 

Analysis by DimerX staining demonstrated a higher proportion and absolute number of 

VACV-specific CD8+ T (DimerX+CD8+) cells at 28 days p.i. with vΔN1 and vN1.I6E compared to 

vN1.WT, vN1.R58Y or vN1.R71Y (p<0.05) (Figure 8A, B). In this population there were no naïve 

T-cells (CD44loCD62Lhi) and only TEM and TCM remained (Figure 8A lower panels). Infection with 

vΔN1 or vN1.I6E induced greater numbers of TEM and TCM cells than vN1.WT, vN1.R58Y or 

vN1.R71Y (p<0.05) (Figure 8C). In conclusion, N1 reduces development of CD8+ T-cell central and 

effector memory and this correlates with inhibition of NF-κB. 

 

CD8+ T-cell effector functions are enhanced after challenge of vΔN1- or vN1.I6E-vaccinated 

mice 

To address if enhanced CD8+ T-cell memory influences their effector function, IFN-γ production by 

these cells was investigated 4 days after reinfection. Cells from lungs and spleen were stimulated with 

peptides from VACV protein B8 (the IFN-γ receptor [44]) that are recognised by MHC class I 

restricted CD8+ T-cells [45] and IFN-γ production was quantified by intracellular cytokine staining. 
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IFN-γ production by cells from both organs was higher following vΔN1 and vN1.I6E infection 

compared to other viruses (Figure 9). Similar data were obtained with CD8+ T-cells from the draining 

lymph nodes (data not shown). Therefore, CD8+ T-cell memory induced by vΔN1 or vN1.I6E 

infection correlates with enhanced effector function of these cells in response to secondary infection. 

 

CD8+ T-cells from vN1.I6E-vaccinated mice confer enhanced protection  

Finally, the ability of T-cell subsets to confer protection against challenge with VACV was examined 

by passive transfer. Splenic CD8+ and CD4+ T-cells were purified from naïve or vaccinated mice 28 d 

p.i. and transferred to naïve mice that were challenged with VACV. Mice infused with an equivalent 

number of additional naïve CD8+ or CD4+ T-cells were equally susceptible to subsequent virus 

challenge (data not shown), showing that more naïve cells per se did not influence outcome. However, 

mice that received CD8+ or CD4+ T-cells from vN1.WT immunised mice responded differently to 

challenge. First, these animals lost weight sooner than mice receiving naïve cells (Figure 10). This 

effect has been observed repeatedly following i.n. challenge of VACV immunised mice and was 

attributable to lung immune pathology [24-26]. Passive transfer of anti-VACV Ab prior to challenge 

did not enhance disease symptoms [46], suggesting the effect was via cellular immunity. Figure 10 

shows this phenomenon is mediated by T-cells and that CD8+ cells play a greater role than CD4+ cells. 

Second, mice receiving either CD8+ or CD4+ T-cells from immunised mice were protected better than 

those that received equivalent cells from naïve mice, and this was characterised by a lower weight loss, 

lower virus titres and more rapid recovery (Figure 10A). Notably, the transfer of CD8+ T-cells from 

mice immunised with vN1.I6E enhanced this protection, and reduced virus titres further, whilst the 

transfer of CD4+ T-cells from these mice conferred no additional benefit over those from vN1.WT 
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immunised mice (Figure 10A). 

 

This beneficial effect of CD8+ T-cells from vN1.I6E immunised mice was also seen if the recipient 

mice were depleted of CD8+ T-cells by addition of mAb prior to passive transfer (Figure 10B). Flow 

cytometry showed that this treatment had depleted >95% of CD8+ T-cells at the time of challenge, and 

the mAb had declined to levels unable to affect the function of infused CD8+ T-cells upon transfer (A 

Cooke, personal communication). As above, CD8+ T-cells from vN1.I6E immunised mice conferred 

greater protection than cells from vN1.WT immunised mice, but the N1.I6E mutation did not 

influence protection from CD4+ cells (Figure 10A, B). Therefore, CD8+ and CD4+ memory T-cell 

populations confer protection against VACV challenge and the I6E mutation enhances protection from 

the CD8+ population. Hence, the inhibition of NF-κB by N1 correlates with a profound and specific 

effect on the generation of CD8+ T-cell memory. 

 

Discussion 

Despite encoding scores of immunomodulatory proteins, deletion of individual VACV genes can 

impact on virulence and immunogenicity [20]. Previous studies showed VACV protein N1, or its 

ectromelia virus counterpart, contributed to virulence in several infection models [29, 35, 47-49], 

affected T-cell and NK cell responses during primary infection [47, 48] and a N1 deletion mutant 

induced better protection from challenge [49]. However, it was unknown if these effects of N1 were 

attributable to inhibition of apoptosis or NF-κB or both activities, whether this phenotype was evident 

following immunisation by dermal vaccination and challenge via a heterologous route, and what 

mechanism mediated the enhanced protection. Subsequently, using VACV N1 mutants that 
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discriminate between inhibition of apoptosis and NF-κB, it was shown that virulence correlated with 

inhibition of NF-κB [33]. Here, these mutants were used to investigate the consequence of inhibiting 

NF-κB on the development of adaptive immunity using i.d. infection, mimicking dermal vaccination. 

N1 is shown to hinder the development of CD8+ T-cell effector and memory functions and this 

correlates with its ability to block NF-κB activation. 

 

During primary infection with VACV, deletion of N1 or an I6E mutation resulted in enhanced CD8+ 

T-cell (but not CD4+ or NK) cytotoxicity, increased numbers of CD8+ (but not CD4+) TCM and TEM 

cells, and better protection against challenge with VACV. In contrast, mutation of the BH3 binding 

groove of N1, which obviated the ability of N1 to bind Bad and Bid and to disrupt apoptotic signalling 

[33], did not affect T-cell responses. Therefore, N1 influences immunological memory, specifically 

CD8+ T-cells, and this correlates with inhibition of NF-κB signalling. Passive transfer demonstrated 

that CD8+ and CD4+ T-cells from immunised mice provided protection against VACV challenge, but 

CD8+ T-cells transferred from vN1.I6E-immunised mice conferred enhanced protection compared to 

CD8+ T-cells from vN1.WT-immunised mice. Therefore, enhancement of the CD8+ T-cell response 

correlates with loss of NF-κB inhibition. 

 

During acute virus infection the inflammatory environment influences the proliferation and 

development of effector and memory T-cell populations. Inflammation is the third signal required for 

optimal T-cell activation, where antigen stimulation and co-stimulation comprise signals one and two, 

respectively [50, 51]. IL-2, IL-12 and IFNs influence the differentiation of naïve T-cell precursors into 

their effector and memory populations and other cytokines may also contribute [50, 52]. 
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Co-stimulation is provided mainly by 4-1BB and CD27, although CD40, CD28 and OX40 can also 

contribute to signal 2 [5, 50]. Following clearance of antigen, IL-15 and IL-7 drive the proliferation 

and maintenance of the CD8+ memory populations and anti-apoptotic factors, such as BclXL, are 

essential to avoid activation-induced death of these cells [5, 53]. Here we show that modulation of 

NF-κB signalling by VACV protein N1 during primary infection affects the effector and memory 

CD8+ T-cell response, and this is consistent with NF-κB regulating the expression of many cytokines, 

co-stimulatory molecules and maintenance factors needed for CD8+ T-cell responses [54]. Transgenic 

mouse models for studying the impact of NF-κB on these processes are hampered by the profound 

effects on the development of haematopoietic cells and/or systemic hyperinflammation deriving from 

deletion or inhibition of NF-κB [55-57]. Hence, using mutant viruses to modify specific signalling 

pathways during infection provides an alternative way to assess the effects of NF-κB, or other 

inflammatory responses, on immunological memory development in a wild-type host. In addition, 

data produced in this study showed an unexpected specificity for enhancing CD8+ T-cell function 

without modulating CD4+ T-cell function to the same degree by direct modification of NF-κB during 

acute infection. In the future, mutant VACVs will allow aspects of the mechanisms of CD8+ and CD4+ 

T-cell responses during acute virus infection to be dissected.  

 

The impact of innate immunity on the development of immunological memory is of great interest for 

vaccine development. Adjuvants help memory development [28, 58] by activating pattern recognition 

receptors and thereby transcription factors, including NF-κB, which induce a favourable inflammatory 

cytokine environment at the site of antigen exposure during vaccination. The activity of N1 during 

VACV infection, namely blocking NF-κB and inhibiting CD8+ T-cell memory, is opposite to the 
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activity of a vaccine adjuvant. Therefore, deleting N1 from VACV is a logical strategy to improve 

immunogenicity, especially if cytotoxic T-cell activity is required. Indeed, removal of VACV 

immunomodulators can enhance memory responses during vaccination [26, 27, 59]. There are at least 

ten different VACV intracellular inhibitors of NF-κB activation [31-33, 60-67] and several other 

proteins that block IRF3 activation [23, 65, 67-69] and therefore it is likely that removal of some of 

these immunomodulators alone or in combination may improve immunological memory. Thus, these 

mutant viruses are valuable tools to identify factors promoting immunological memory as well as 

functioning as improved vaccines. 

 

Acknowledgements 

We thank Nathalie Jacobs (University of Liège) for helpful discussions on this work. This work was 

supported by grants from the Wellcome Trust and the Medical Research Council. GLS is a Wellcome 

Trust Principal Research Fellow. HR, BJF, CMdM, RPS & GLS designed experiments, analysed data 

and wrote the paper, HR performed the experiments and LH produced reagents. 

 

Conflict of interest 

The authors declare no financial or commercial conflict of interest. 

 

References 

1. Badovinac VP, Harty JT. Programming, demarcating, and manipulating CD8+ T-cell memory. Immunol 

Rev 2006;211:67-80. 

2. Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. 

Science 1996;272(5258):54-60. 

3. Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol 2011;12(6):509-17. 

4. Volkert M, Marker O, Bro-Jorgensen K. Two populations of T lymphocytes immune to the lymphocytic 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

choriomeningitis virus. J Exp Med 1974;139(5):1329-43. 

5. Lanzavecchia A, Sallusto F. Understanding the generation and function of memory T cell subsets. Curr 

Opin Immunol 2005;17(3):326-32. 

6. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with 

distinct homing potentials and effector functions. Nature 1999;401(6754):708-12. 

7. Zaph C, Uzonna J, Beverley SM, Scott P. Central memory T cells mediate long-term immunity to 

Leishmania major in the absence of persistent parasites. Nat Med 2004;10(10):1104-10. 

8. Cerwenka A, Morgan TM, Dutton RW. Naive, effector, and memory CD8 T cells in protection against 

pulmonary influenza virus infection: homing properties rather than initial frequencies are crucial. J 

Immunol 1999;163(10):5535-43. 

9. Castiglioni P, Hall de S, Jacovetty EL, Ingulli E, Zanetti M. Protection against influenza A virus by 

memory CD8 T cells requires reactivation by bone marrow-derived dendritic cells. J Immunol 

2008;180(7):4956-64. 

10. Zanetti M, Franchini G. T cell memory and protective immunity by vaccination: is more better? Trends 

Immunol 2006;27(11):511-7. 

11. Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. Smallpox and its eradication. World Health 

Organisation, Geneva 1988. 

12. Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R. Long-term B cell memory in 

humans after smallpox vaccination. J Immunol 2003;171(10):4969-73. 

13. Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK. 

Duration of antiviral immunity after smallpox vaccination. Nat Med 2003;9(9):1131-7. 

14. Pütz MM, Alberini I, Midgley CM, Manini I, Montomoli E, Smith GL. Prevalence of antibodies to 

Vaccinia virus after smallpox vaccination in Italy. J Gen Virol 2005;86(11):2955-60. 

15. Taub DD, Ershler WB, Janowski M, et al. Immunity from smallpox vaccine persists for decades: a 

longitudinal study. Am J Med 2008;121(12):1058-64. 

16. Moss B. Smallpox vaccines: targets of protective immunity. Immunol Rev 2011;239(1):8-26. 

17. Mackett M, Smith GL. Vaccinia virus expression vectors. J Gen Virol 1986;67(10):2067-82. 

18. Moss B, Flexner C. Vaccinia virus expression vectors. Annu Rev Immunol 1987;5:305-24. 

19. Goebel SJ, Johnson GP, Perkus ME, Davis SW, Winslow JP, Paoletti E. The complete DNA sequence 

of vaccinia virus. Virology 1990;179(1):247-66, 517-63. 

20. Smith GL, Benfield CT, Maluquer de Motes C, Mazzon M, Ember SW, Ferguson BJ, Sumner RP. 

Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. J Gen Virol 

2013;94(11):2367-92. 

21. Alcami A, Smith GL. A mechanism for the inhibition of fever by a virus. Proc Natl Acad Sci U S A 

1996;93(20):11029-34. 

22. Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL. DNA-PK is a DNA sensor for 

IRF-3-dependent innate immunity. eLife 2012;1:e00047. 

23. Peters NE, Ferguson BJ, Mazzon M, et al. A mechanism for the inhibition of DNA-PK-mediated DNA 

sensing by vaccinia virus. PLoS Pathog 2013;9:e1003649. 

24. Clark RH, Kenyon JC, Bartlett NW, Tscharke DC, Smith GL. Deletion of gene A41L enhances vaccinia 

virus immunogenicity and vaccine efficacy. J Gen Virol 2006;87(1):29-38. 

25. Staib C, Kisling S, Erfle V, Sutter G. Inactivation of the viral interleukin 1beta receptor improves CD8+ 

T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. J Gen Virol 

2005;86(7):1997-2006. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

26. Sumner RP, Ren H, Smith GL. Deletion of immunomodulator C6 from vaccinia virus strain Western 

Reserve enhances virus immunogenicity and vaccine efficacy. J Gen Virol 2013;94(5):1121-6. 

27. Garcia-Arriaza J, Najera JL, Gomez CE, Tewabe N, Sorzano CO, Calandra T, Roger T, Esteban M. A 

candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory 

HIV-1-specific T-cell responses. PLoS One 2011;6(8):e24244. 

28. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 

2010;327(5963):291-5. 

29. Bartlett N, Symons JA, Tscharke DC, Smith GL. The vaccinia virus N1L protein is an intracellular 

homodimer that promotes virulence. J Gen Virol 2002;83(8):1965-76. 

30. Antoine G, Scheiflinger F, Dorner F, Falkner FG. The complete genomic sequence of the modified 

vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 1998;244(2):365-96. 

31. DiPerna G, Stack J, Bowie AG, et al. Poxvirus protein N1L targets the I-kappaB kinase complex, 

inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits 

NF-kappaB and IRF3 signaling by toll-like receptors. J Biol Chem 2004;279(35):36570-8. 

32. Graham SC, Bahar MW, Cooray S, et al. Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold 

but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 2008;4(8):e1000128. 

33. Maluquer de Motes C, Cooray S, Ren H, et al. Inhibition of apoptosis and NF-kappaB activation by 

vaccinia protein N1 occur via distinct binding surfaces and make different contributions to virulence. 

PLoS Pathog 2011;7(12):e1002430. 

34. Cooray S, Bahar MW, Abrescia NG, et al. Functional and structural studies of the vaccinia virus 

virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol 2007;88(6):1656-66. 

35. Kotwal GJ, Hugin AW, Moss B. Mapping and insertional mutagenesis of a vaccinia virus gene 

encoding a 13,800-Da secreted protein. Virology 1989;171(2):579-87. 

36. Aoyagi M, Zhai D, Jin C, Aleshin AE, Stec B, Reed JC, Liddington RC. Vaccinia virus N1L protein 

resembles a B cell lymphoma-2 (Bcl-2) family protein. Protein Sci 2007;16(1):118-24. 

37. Tscharke DC, Reading PC, Smith GL. Dermal infection with vaccinia virus reveals roles for virus 

proteins not seen using other inoculation routes. J Gen Virol 2002;83(8):1977-86. 

38. Tscharke DC, Smith GL. A model for vaccinia virus pathogenesis and immunity based on intradermal 

injection of mouse ear pinnae. J Gen Virol 1999;80(10):2751-5. 

39. Reading PC, Smith GL. Vaccinia virus interleukin-18-binding protein promotes virulence by reducing 

gamma interferon production and natural killer and T-cell activity. J Virol 2003;77(18):9960-8. 

40. Ren H, Shen J, Tomiyama-Miyaji C, Watanabe M, Kainuma E, Inoue M, Kuwano Y, Abo T. 

Augmentation of innate immunity by low-dose irradiation. Cell Immunol 2006;244(1):50-6. 

41. Yuen TJ, Flesch IE, Hollett NA, Dobson BM, Russell TA, Fahrer AM, Tscharke DC. Analysis of A47, 

an immunoprevalent protein of vaccinia virus, leads to a reevaluation of the total antiviral CD8+ T cell 

response. J Virol 2010;84(19):10220-9. 

42. Zhang WH, Wilcock D, Smith GL. Vaccinia virus F12L protein is required for actin tail formation, 

normal plaque size, and virulence. J Virol 2000;74(24):11654-62. 

43. Putz MM, Midgley CM, Law M, Smith GL. Quantification of antibody responses against multiple 

antigens of the two infectious forms of Vaccinia virus provides a benchmark for smallpox vaccination. 

Nat Med 2006;12(11):1310-5. 

44. Alcami A, Smith GL. Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon 

receptors with novel broad species specificity. J Virol 1995;69(8):4633-9. 

45. Tscharke DC, Karupiah G, Zhou J, et al. Identification of poxvirus CD8+ T cell determinants to enable 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

rational design and characterization of smallpox vaccines. J Exp Med 2005;201(1):95-104. 

46. Law M, Putz MM, Smith GL. An investigation of the therapeutic value of vaccinia-immune IgG in a 

mouse pneumonia model. J Gen Virol 2005;86(4):991-1000. 

47. Jacobs N, Bartlett NW, Clark RH, Smith GL. Vaccinia virus lacking the Bcl-2-like protein N1 induces a 

stronger natural killer cell response to infection. J Gen Virol 2008;89(11):2877-81. 

48. Gratz MS, Suezer Y, Kremer M, et al. N1L is an ectromelia virus virulence factor and essential for in 

vivo spread upon respiratory infection. J Virol 2011;85(7):3557-69. 

49. Mathew A, O'Bryan J, Marshall W, Kotwal GJ, Terajima M, Green S, Rothman AL, Ennis FA. Robust 

intrapulmonary CD8 T cell responses and protection with an attenuated N1L deleted vaccinia virus. 

PLoS One 2008;3(10):e3323. 

50. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat 

Rev Immunol 2012;12(11):749-61. 

51. Sun JC, Madera S, Bezman NA, Beilke JN, Kaplan MH, Lanier LL. Proinflammatory cytokine 

signaling required for the generation of natural killer cell memory. J Exp Med 2012;209(5):947-54. 

52. Plumlee CR, Sheridan BS, Cicek BB, Lefrancois L. Environmental cues dictate the fate of individual 

CD8+ T cells responding to infection. Immunity 2013;39(2):347-56. 

53. Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD. Interleukin (IL)-15 and IL-7 jointly regulate 

homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype 

CD4+ cells. J Exp Med 2002;195(12):1523-32. 

54. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 

1999;18(49):6853-66. 

55. Memet S, Laouini D, Epinat JC, et al. IkappaBepsilon-deficient mice: reduction of one T cell precursor 

subspecies and enhanced Ig isotype switching and cytokine synthesis. J Immunol 

1999;163(11):5994-6005. 

56. Ishikawa H, Claudio E, Dambach D, Raventos-Suarez C, Ryan C, Bravo R. Chronic inflammation and 

susceptibility to bacterial infections in mice lacking the polypeptide (p)105 precursor (NF-kappaB1) 

but expressing p50. J Exp Med 1998;187(7):985-96. 

57. Caamano JH, Rizzo CA, Durham SK, Barton DS, Raventos-Suarez C, Snapper CM, Bravo R. Nuclear 

factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated 

immune responses. J Exp Med 1998;187(2):185-96. 

58. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 

2010;33(4):492-503. 

59. Garcia-Arriaza J, Arnaez P, Gomez CE, Sorzano CO, Esteban M. Improving adaptive and memory 

immune responses of an HIV/AIDS vaccine candidate MVA-B by deletion of vaccinia virus genes 

(C6L and K7R) blocking interferon signaling pathways. PLoS One 2013;8(6):e66894. 

60. Chen RA, Ryzhakov G, Cooray S, Randow F, Smith GL. Inhibition of IkappaB kinase by vaccinia virus 

virulence factor B14. PLoS Pathog 2008;4(2):e22. 

61. Ember SW, Ren H, Ferguson BJ, Smith GL. Vaccinia virus protein C4 inhibits NF-kappaB activation 

and promotes virus virulence. J Gen Virol 2012;93(10):2098-108. 

62. Gedey R, Jin XL, Hinthong O, Shisler JL. Poxviral regulation of the host NF-kappaB response: the 

vaccinia virus M2L protein inhibits induction of NF-kappaB activation via an ERK2 pathway in 

virus-infected human embryonic kidney cells. J Virol 2006;80(17):8676-85. 

63. Harte MT, Haga IR, Maloney G, et al. The poxvirus protein A52R targets Toll-like receptor signaling 

complexes to suppress host defense. J Exp Med 2003;197(3):343-51. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

64. Mansur DS, Maluquer de Motes C, Unterholzner L, et al. Poxvirus targeting of E3 ligase beta-TrCP by 

molecular mimicry: a mechanism to inhibit NF-kappaB activation and promote immune evasion and 

virulence. PLoS Pathog 2013;9(2):e1003183. 

65. Schroder M, Baran M, Bowie AG. Viral targeting of DEAD box protein 3 reveals its role in 

TBK1/IKKepsilon-mediated IRF activation. EMBO J 2008;27(15):2147-57. 

66. Shisler JL, Jin XL. The vaccinia virus K1L gene product inhibits host NF-kappaB activation by 

preventing IkappaBalpha degradation. J Virol 2004;78(7):3553-60. 

67. Stack J, Haga IR, Schroder M, et al. Vaccinia virus protein A46R targets multiple 

Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 2005;201(6):1007-18. 

68. Ferguson BJ, Benfield CT, Ren H, Lee VH, Frazer GL, Strnadova P, Sumner RP, Smith GL. Vaccinia 

virus protein N2 is a nuclear IRF3 inhibitor that promotes virulence. J Gen Virol 2013;94(9):2070-81. 

69. Unterholzner L, Sumner RP, Baran M, et al. Vaccinia virus protein C6 is a virulence factor that binds 

TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7. PLoS Pathog 2011;7(9):e1002247. 

 

Figure legends 

Figure 1. N1 mutation does not affect splenic lymphocyte numbers following infection. Groups of 

5 mice were infected i.d. with the indicated VACVs and splenic lymphocyte populations were counted 

at 7, 14, 21 and 28 d p.i. (A, B) Total cell numbers. (C, D) T and B cell populations presented as total 

cell number (C) and as percentages of total lymphocytes (D). Results are expressed as mean ± SEM. 

Statistical comparison of cells from mock-infected mice with virus-infected mice: * p<0.05, ** 

p<0.01. 

 

Figure 2. Infection with vΔN1 or vN1.I6E induces enhanced numbers of effector CD8+ T-cells. 

Mice were infected i.d. with the indicated VACVs and populations of splenic GzmBhiCD62Llo
 CD8+ 

T-cells were counted at 7, 14, 21 and 28 days p.i. (A) Flow cytometry scatter plots from representative 

samples from individual mice. The arrows emphasise the greater percentage of GzmBhiCD62Llo
 CD8+ 

T-cells following infection with vN1.I6E or vΔN1 compared to other viruses. (B) Graphs showing the 

proportion of total CD8+ T-cells that were GzmBhiCD62Llo
 (left) and the absolute numbers of 

GzmBhiCD62Llo cells (right panel) (mean ± SEM). *, p<0.05, n=5.  
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Figure 3. Infection with vΔN1 or vN1.I6E induces enhanced numbers of VACV-specific effector 

CD8+ T-cells. Mice were infected i.d. with the indicated VACVs and populations of splenic 

DimerX+CD8+, and GzmBhiCD62Llo of DimerX+CD8+ T-cells were counted at 7 days p.i. (A) Flow 

cytometry scatter plots from representative samples from individual mice. The arrows emphasise the 

greater percentage of DimerX+CD8+ and GzmBhiCD62Llo of Dimer+CD8+ T-cells following infection 

with vN1.I6E or vΔN1 compared to other viruses. (B) Graphs showing the absolute numbers of 

DimerX+CD8+ T-cells (left) and of GzmBhiCD62Llo cells (right panel) (mean ± SEM). *, p<0.05, n=5. 

 

Figure 4. Infection with vΔN1 or vN1.I6E induces enhanced numbers of effector CD8+ T-cells in the 

VACV-specific CD8+ T-cells in the draining lymph nodes. Mice were infected i.d. with the indicated 

VACVs and populations of DimerX+CD8+, and GzmBhiCD62Llo of DimerX+CD8+ T-cells in the draining 

lymph nodes were counted at 7 days p.i. (A) Flow cytometry scatter plots from representative samples 

from individual mice. The arrows emphasise the greater percentage of DimerX+CD8+ and GzmBhiCD62Llo 

of DimerX+CD8+ T-cells following infection with vN1.I6E or vΔN1 compared to other viruses. (B) Graphs 

showing the absolute numbers of DimerX+CD8+ T-cells (left) and GzmBhiCD62Llo of DimerX+CD8+ 

T-cells (right panel) (mean ± SEM). **, p<0.01, n=5. 

 

Figure. 5. VACVs lacking N1 or expressing I6E induce better protection to virus challenge. (A) 

Groups of 5 mice were infected i.d. with the indicated viruses. At 28 d p.i. mice were challenged i.n. 

with VACV (5×106 p.f.u of VACV WR) and weight change was monitored. Each mouse was 

compared to its original weight on day zero and data are expressed as the percentage ± SEM. (B) 

Groups of 5 mice were infected and challenged as (A), sacrificed on d 1 or 4 post challenge (p.c.) and 
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virus titres in the lungs were measured by plaque assay. Data are mean titre ± SEM, **,p<0.01. (C) 

Sera from mice infected as in (A) were collected 28 d p.i and assayed for neutralisation of VACV 

strain WR. The median value for each population is represented by a horizontal black bar. Significant 

differences between groups are shown, Mann–Whitney test. *, p<0.05, n=15. 

      

Figure 6. Deletion or I6E mutation of N1 enhances CD8+ T-cell cytotoxicity. (A) Mice were 

infected i.d. with the indicated viruses splenic lymphocytes were harvested at 28 d p.i. and tested for 

their ability to lyse VACV-infected EL4 cells by chromium release assay. Data are presented as 

percentage cell lysis at various effector to target (E:T) cell ratios. *, p<0.05, **, p<0.01, n=5. (B) 

Lymphocytes were prepared as in (A) and pre-incubated with a CD8 blocking mAb before cytotoxic 

activity was assayed as in (A). (C) Lymphocytes were prepared as in (A). Histograms showing the 

absolute number of CD8+ cells expressing CD107a following stimulation with VACV B8 peptide. (D) 

Cytotoxicity assay as in (A) but with purified splenic NK cells and using VACV-infected P815 cells as 

targets. Results are expressed as mean ± SEM.  

 

Figure 7. Deletion or I6E mutation of N1 enhances CD8+ TEM and TCM populations. Mice were 

infected i.d. with the indicated viruses and 28 d later populations of CD8+ or CD4+ CD44hiCD62Llo -

(TEM) and CD44hiCD62Lhi
 (TCM) cells were counted from (A) the spleen or (B) the draining lymph 

nodes. These data are presented as scatter plots with arrows indicating the gates corresponding to 

CD44hiCD62Llo
 populations (black arrow) or CD44hiCD62Lhi (blue arrow, top panels), or as 

histograms showing absolute numbers of the specific populations as a proportion of total CD8+ or 

CD4+
 cells. *, p<0.05, n=5. Results are expressed as mean ± SEM. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Figure 8. Deletion or I6E mutation of N1 enhances VACV-specific CD8+ TEM and TCM cell 

populations. Mice were infected i.d. with the indicated VACVs and populations of splenic lymphocytes 

that were DimerX+CD8+, and TEM or TCM of DimerX+CD8+ T-cells, were counted at 28 days p.i.. (A) Flow 

cytometry scatter plots from representative samples from individual mice. The arrows emphasise the 

greater percentage of DimerX+CD8+ following infection with vN1.I6E or vΔN1 compared to other viruses. 

(B) Graphs showing the absolute numbers of DimerX+CD8+ T-cells. (C) Graphs showing the absolute 

numbers of TEM and TCM of DimerX+CD8+ T-cells (mean ± SEM). *, p<0.05; **, p<0.01, n=5. 

 

Figure 9. Deletion or I6E mutation of VACV N1 enhances the effector function of memory CD8+ 

T-cells. Mice were infected i.d. with the indicated viruses and challenged i.n. 28 d p.i. with 5×106 

PFU of VACV WR. Lung or splenic lymphocytes were isolated 4 d later and the CD8+
 T-cell 

populations were assayed by intracellular cytokine staining (ICS) for IFNγ production. Data are 

presented as scatter plots (top panels) and as histograms indicating the percentage of IFNγ+ CD8+
 

T-cells (middle panels), or the absolute cell number of IFNγ+ CD8+
 T-cells (bottom panels). *, p<0.05, 

n=5. Results are expressed as mean ± SEM. 

 

Figure 10. CD8+ T-cells from vN1.I6E-infected mice confer enhanced protection. (A) Mice were 

infected i.d. with vN1.WT or vN1.I6E or mock infected and either CD8+ or CD4+ cells were isolated 

28 d p.i and 106 cells were transferred into naïve recipient mice. The recipient mice were challenged 6 

h later with 3×103 PFU. of VACV WR and weight change (middle panels) was monitored. *, p<0.05, 

n=5. Lower panels show virus titres in the lungs 5 d post challenge. Data are mean titre ± SEM, * 

p<0.05, ** p<0.01. NS = non-significant. (B) As (A), except the naïve recipient mice were depleted 
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for CD8+ or CD4+ T-cells by administration of mAb at 10, 8 and 6 d prior to transfer of cells. CD4+ 

T-cells were transferred to mice depleted of CD4+ T-cells, or CD8+ T-cells were transferred to mice 

depleted of CD8+ T-cells. *, p<0.05, n=5. Results are expressed as mean ± SEM. 
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