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Abstract

The ultimate goal of this thesis is to improve our understanding of the cosmol-

ogy of axions. Axions couple to QCD instantons and these non-perturbative

effects are modeled within the framework of the interacting instanton liq-

uid model (IILM). The thesis describes the significant advances made within

the IILM in order to study the quark-gluon plasma in realistic parameter

regimes. In particular, a determination of the temperature-dependent axion

mass in the IILM lays the foundation for a critical reevaluation and update

of present cosmological axion constraints.

We develop grand canonical Monte Carlo routines to study topological

fluctuations in the quark-gluon plasma. The model is calibrated against

the topological susceptibility at zero temperature, in the chiral regime of

physical quark masses. A numerical framework to derive interactions among

the pseudo-particles is developed that is in principle exact, and is used to

cure a pathology in the presently available finite temperature interactions.

The IILM reduces field theory to a molecular dynamics description, and

we show that, quite generically, the dynamics for non-trivial backgrounds

in the presence of light quarks is reminiscent of a strongly associating fluid.

To deal with the well-known difficulty in simulating ionic fluids, we develop

advanced algorithms based on Biased Monte Carlo techniques.

We study the IILM at finite temperature in the quenched and unquenched

sector, with due diligence to a consistent thermodynamic limit. Of particular

interest is chiral symmetry breaking and the temperature dependence of the

topological susceptibility, and we study in detail the effects of instanton–anti-

instanton pairs. Our determination of the topological susceptibility provides,

for the first time, a well-motivated axion mass for all temperatures.

The misalignment mechanism for axion production is studied in detail,

solving the evolution equations exactly in a radiation dominated FRW uni-

verse with the full temperature dependence of the effective degrees of freedom

taken into account. Improved constraints in the classic and anthropic axion

window are derived. We generalise the latter to large angle fine-tuning by in-

cluding in the isocurvature contribution to the cosmic microwave background



radiation the full anharmonic axion potential effects. Finally, we reexamine

bounds from axion string radiation in the thermal scenario to complete a

comprehensive update of all cosmological axion constraints.
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Chapter 1

Introduction

The strong interactions are very hard to tackle analytically in general. A

notable exception is given by hard processes, which can be accurately de-

scribed by perturbation theory. This is due to the ultra-violet Gaussian fix

point, i.e. asymptotic freedom. Therefore, perturbation theory provides a

self-consistent framework from the practical point of view. By this we mean

that low-order computations are under control, and we neglect questions re-

lating to the formal convergence of the perturbation theory; instead we just

take for granted that the perturbation series might be asymptotic.

Many interesting features that QCD is believed to display can, however,

not be studied with these tools. In particular, the strong interactions are

believed to display a number of interesting, non-perturbative phenomena,

among which are the confinement/deconfinement transition, spontaneous P

and CP violation and chiral symmetry restoration. The hadronic regime

can be addressed by chiral perturbation theory in a systematic fashion. It

relies very strongly on the large symmetry group of chiral transformations,

but cannot be derived from QCD from first principles, i.e. by integrating out

the hard modes in the path integral. The ultimate systematic tool that is

at our disposal at the moment is lattice gauge theory, see [134] for a thor-

ough introduction. Over the last decade this field has made much progress,

driven by increasing computing resources and improved algorithms, see [51]

for an account of these developments. Unquenched simulations of QCD with

physical quark masses can finally be studied on large lattices, and we can

investigate the properties pertaining to the non-perturbative regime.

1



CHAPTER 1. INTRODUCTION 2

To get a more qualitative understanding of the QCD vacuum, computer

simulations are perhaps too blunt a tool, although eventually any qualita-

tive model will have to reproduce lattice results. Given a phenomenological

model, inspired by experiments or lattice data itself, specific operators can be

constructed to scan the (practically) infinite dimensional configuration space

of the lattice and corroborate or refute said model. The insights gained will

eventually influence the lattice community, and the loop of scientific progress

closes.

In this thesis we will use instanton methods as a phenomenological model

of the QCD vacuum [62, 167, 168, 169]. The idea is indeed old [31, 32], and

has been validated by lattice studies for some time now [41, 199]. The reason

to develop instanton based models at all rests on the expectation that they

should describe well the chiral regime of QCD, which in turn follows from

the connection between the Dirac zero modes and the quark condensate, i.e.

the Casher-Banks relation, on the one hand, and the connection between the

Dirac zero modes and the topology of the vacuum, i.e. the index theorem,

on the other hand.

Instanton models are based on a combination of semi-classical expansions

[182] and variational approaches [61, 62]. Taking this variational path inte-

gral as a starting point, Shuryak investigated what has become known as

the interacting instanton liquid model (IILM) [170, 171]. In [157] many bulk

properties were computed and seen to be consistent with the available lat-

tice data and phenomenology. Some recent studies [76, 46] corroborate the

earlier results that the IILM rather accurately describes the chiral properties

of QCD, i.e. that instantons are the dominant degrees of freedom as far as

the chiral regime of QCD is concerned.

At finite temperature the picture is less clear, and comparatively few

studies of the instanton ensemble have been performed. It is, however, gen-

erally believed that the instanton liquid based on Harrington–Shepard (HS)

calorons [93] does not lead to confinement. On the heuristic level this can be

understood because these calorons have trivial holonomy, the order parame-

ter for the deconfinement phase transition.

Over the last decade more general Euclidean solutions have been derived

[119, 121, 120]. These possess more parameters and allow for non-trivial
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holonomy. Thus, interest has been stirred again as to whether instanton

models based on these more general calorons can play an instrumental role

in the deconfinement transition.

In essence the IILM describes the non-perturbative regime of QCD by

approximating the soft fluctuations by the collective degrees of freedom of

the instanton background field. In the process, the infinite dimensional path

integral is reduced to a finite dimensional partition function describing ‘par-

ticles’ in a box. The interactions that generate dynamics in the model follow

from the fact that the background of instantons is not a classical solution to

the equations of motion.

It is straightforward, in principle, to derive the interactions between in-

stantons; we just have to evaluate the action over the background ansatz. On

a practical level, the task is far from trivial as no analytic closed-form expres-

sions can be given. To parametrise the interactions is tricky because of the

rather high dimensionality of the moduli space that describes the collective

coordinates of individual instantons. Such parametrisations are available for

HS calorons [172], but they lead to unphysical behaviour. Studying the large

volume dependence of the IILM in order to fit light, physical quarks into the

simulation box, it will become clear that these interactions do not allow for

a thermodynamic limit.

In light of the even more complicated moduli space of the non-trivial

holonomy calorons, we will set up a more systematic framework to derive

the interactions, that will allow us to incorporate the latter in the future.

The framework we will develop in chapter 3 will rely on a combination of

interpolation of the exact interactions and matched asymptotic expansions.

We will stick to the HS calorons, and validate our model against the available

data at finite temperature from earlier studies [157]. After studying the var-

ious systematic effects of the model, we will push the IILM into the physical

quark mass regime. We will use recent lattice data [37, 38] to set the one

dimensionful parameter of the model. This will allow us to set the quark

masses to their physical values.

After calibrating the model with the zero temperature simulations, the

results in the finite temperature regime will be real predictions. It turns

out, however, that simulating the IILM with light quark masses is compu-
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tationally non-trivial. As we will discuss at length in chapter 4, the quark

interaction will favour the formation of instanton–anti-instanton molecules.

We will show that the IILM behaves as a strongly associating fluid. The

latter have been extensively studied in chemical engineering and computa-

tional chemistry, and the key technique to simulate these systems is Biased

Monte Carlo. We will review the basics underlying Monte Carlo methods,

paying due attention to the concept of proposal probabilities. The latter are

instrumental in devising powerful algorithms to deal with the highly localised

regions of strong interactions. We will argue that, quite generically, the com-

bination of localised backgrounds and light quarks will lead to systems that

behave like associating fluids.

It has long been advocated that instanton–anti-instanton pairs play an

important part in chiral symmetry restoration [99, 100, 158]. We will study

this aspect in much detail in chapter 5 and give conclusive evidence that

these molecules drive the chiral phase transition, within the IILM based on

HS calorons.

Our main concern, however, will be to derive the temperature dependence

of the topological susceptibility. The topological susceptibility is a key pa-

rameter of QCD and has been investigated in many lattice studies. It is a

chiral property of QCD and can thus be expected to be well described by

the IILM. Comparatively few studies have addressed this quantity within the

IILM [173]. One reason is that, so far, the IILM is based on a canonical en-

semble, whereas the most natural setting for the investigation of topological

fluctuations is the grand canonical ensemble. We will use grand canonical

Monte Carlo methods, which simulate directly in the grand canonical ensem-

ble.

The ultimate purpose, and the initial motivation, for studying the topo-

logical susceptibility relies on the fact that it gives the temperature dependent

mass of the axion. In the hadronic regime the axion mass can be computed

within chiral perturbation theory. At high temperatures, above the phase

transition, it can be reliably estimated by instanton methods in the so-called

dilute gas approximation. The transition between the two regimes has so far

not been addressed rigorously. Our determination of the topological suscep-

tibility will for the first time give an axion mass for all temperatures and,
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in particular, provide a well-motivated interpolation between the zero and

finite temperature regimes.

Axions are the standard candidate to solve the strong CP problem1,

and provide one of the simpler extensions of the Standard Model of par-

ticle physics. Its coupling to QCD is a purely quantum mechanical effect,

arising from the anomalous axial current. The fundamental origin of the

axion field is not settled, however, if it exists at all. Originally it was in-

troduced as the Goldstone boson of the spontaneously broken, anomalous,

Peccei-Quinn symmetry [146, 145], tied to the electro-weak sector. Failure

to detect such a particle has lead to the invisible axion, whose energy scale

is a priori arbitrary, but large enough to evade laboratory and astrophysical

bounds.

The axion scale is, however, also constrained from above through cosmo-

logical considerations. In fact, the very weak interactions make it one of the

best motivated candidates for cold dark matter. The axion can be created

through many cosmological processes. We will focus mainly on the mis-

alignment mechanism, which is the appropriate production channel for the

anthropic axion [126, 188, 184]. This axion has a very large decay constant,

comparable to the GUT or string scale, and is thus much better motivated

from a theoretical point of view than just any arbitrary invisible axion model

[181].

We will derive the contributions from the classical evolution of the zero

mode oscillations by solving the field equations exactly in chapter 7. In par-

ticular, we will include the correct number of relativistic degrees of freedom,

and provide accurate fitting formulas for the latter.

In the anthropic region, the PQ symmetry is broken before inflation and

the latter induces isocurvature fluctuations in the axion field. These are

very tightly constrained by the temperature perturbations in the cosmic mi-

crowave background radiation. We will generalise this bound by including

anharmonic effects from the axion potential.

If the PQ symmetry breaks after inflation, the axion evolution becomes

much more complicated due to the emergence of a string network, as a con-

1Other often quoted mechanisms include a massless quark, see the discussion in section
2.3, or spontaneous CP breaking, see for instance [56].
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sequence of the Kibble mechanism. In fact, axion radiation from this string

network supersedes the density of axions produced through the misalignment

mechanism, and is thus the most relevant contribution in the “classic axion

window”. We will update these axion string bounds by using our new axion

mass. Since the time these constraints were first derived, the cosmological

parameters have been determined to much higher precision, and we also take

the opportunity to update them in that respect.



Chapter 2

QCD, the Strong CP problem

and Axions

Since the 1970’s physicists believe that hadron physics is described by a non-

Abelian gauge field theory, quantum chromodynamics or QCD for short.

The excitations of this field are quarks and gluons, not the experimentally

observed hadrons, build from these fundamental degrees of freedom. That

hadrons have a substructure was beautifully realised already in Gell-Mann’s

eightfold way [79], the constituent quark model. The full story in QCD is,

however, more complicated: on top of the three ‘valence’ quarks, QCD pre-

dicts the constant creation and annihilation of quark–anti-quark pairs, the

so-called sea quarks. Including the coupling to the electro-weak sector, these

sea-quarks can even change their flavour before returning to the vacuum.

This rich vacuum structure, which is a direct consequence of the field con-

cept underlying gauge theories, goes far beyond the static constituent quark

model, and gives rise, for instance, to the rather counterintuitive phenomenon

of asymptotic freedom: counterintuitive because QCD was always supposed

difficult to tackle analytically, being strongly coupled, yet the theory predicts

a regime of weak coupling at high energies. Due to asymptotic freedom, the

high energy regime of QCD can be studied perturbatively1.

The fundamental degrees of freedom of QCD, quarks and gluons, have

never been observed directly. It is postulated that at low energies quarks and

1At higher orders, perturbation theory breaks down, however, due to magnetic insta-
bilities at T 6= 0, see for instance [103].

7



CHAPTER 2. QCD, THE STRONG CP PROBLEM AND AXIONS 8

gluons are bound into colour-neutral hadrons, i.e. are confined. Even though

a compelling theoretical proof is still lacking, QCD is believed to explain

confinement. There is certainly a large body of evidence from lattice QCD

to support the claim. Even more importantly, experiments give indirect

evidence in favour of QCD, e.g. the measurement of the cross-section of

e+ − e− annihilation to hadrons as compared to muons or the decay of the

neutral pion into two photons, which are sensitive to the number of colours;

deep inelastic scattering experiments gave evidence for a weakly interacting

pointlike substructure in hadrons, the so-called partons, later to be identified

with quarks. For more details, see [149].

Taking asymptotic freedom at face value, baryonic matter under extreme

conditions2, such as during the early universe or in neutron stars, has little

resemblance with its hadronic realisation at low energies where only colour-

neutral states can propagate freely. The connection between these regimes

cannot be studied perturbatively. There is, however, compelling evidence

from the lattice community that, as temperature and/or pressure is raised,

QCD will undergo a phase transition to a new form of matter, the so-called

quark-gluon plasma in which quarks and gluons are deconfined, i.e. can prop-

agate freely. Whether this transition is of first order has direct consequences

for cosmology because of the large amount of entropy that is produced [98].

The large experimental efforts undertaken at RHIC and LHC specifically aim

at unravelling the mysteries of matter under such extreme conditions. For

more details see [207].

As mentioned above, lattice gauge theory provides probably the best

method to study non-perturbative effects in gauge theories. Interestingly,

lattice studies of the pure gauge sector show that gluodynamics also exhibits

a confinement/deconfinement phase transition, and it is conceivable that a

better understanding of Yang-Mills theory alone will give us key insights into

the confinement mechanism.

QCD is very hard to tackle analytically in the hadronic phase because

the coupling is strong and a simple perturbative treatment is not possible.

That is not to say that no analytic progress can be made at all. Given

some physical intuition, different approaches have been devised; some more

2High temperature and/or pressure.
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rigorous than others in that they can be ‘derived’ or at least well motivated

from the fundamental QCD Lagrangian: chiral perturbation theory, heavy

quark theory, sum rules, 1/Nc expansion, see for instance [177, 139] for more

details. A different approach, that we will follow in this thesis, is based on

the idea that already classical Yang-Mills theory holds the key to the non-

perturbative QCD vacuum. In particular, that the proper starting point for a

perturbative treatment is not based on trivial vacuum configurations; instead

we should embrace the very non-linear nature of the field equations and the

topologically non-trivial field space. This method is based on a combination

of the semi-classical approximation and the variational approach, and will be

discussed in the next chapter.

2.1 Classical Yang-Mills theory

Originally, Yang and Mills devised their theory to describe the nucleon. At

the time the almost mass degenerate proton and neutron, with the mass

splitting due to electromagnetic effects, were thought to be just two different

realisations of the same particle, the Heisenberg nucleon, in much the same

way as a spin up and spin down electron are only two different states of the

electron. This similarity prompted the name isospin3, also with group SU(2).

Once we agree on labelling the proton as spin up, say, no more freedom is left.

At the time isospin was thought to be conserved, and nature invariant under

rotations in isospin space. Yang and Mills found that within a field theory

description the choice to label the isospin states should in principle be allowed

to change from one space-time point to another [96]. Thus they gauged SU(2)

and arrived at a theory similar to Maxwell’s electromagnetism4, however with

charged ‘photons’.

Nowadays, we know that isospin is not an exact symmetry5, and so it

cannot be gauged in a mathematically consistent way. However, non-Abelian

gauge theories have become a central ingredient in our understanding of

3From isotopic spin.
4The principle of gauge invariance, i.e. that a symmetry operation can be performed at

different locations independently, is due to Weyl’s work on electromagnetism. Incidentally
electromagnetism is the prototype, and simplest, gauge theory based on the group U(1).

5The different up and down quark masses explicitly break isospin.
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the strong and weak interactions: they are described by SU(3) and SU(2)

gauge groups respectively. They are also instrumental in physics beyond the

Standard Model, for instance in grand unified theories.

The Lagrangian formalism is the most straightforward to develop models

because the action has to be a scalar under any symmetry transformation

the theory is supposed to possess. In the present case, the action has to

be invariant under local SU(N) gauge transformations. Therefore, it can be

constructed by patching together into singlets the elementary building blocks

that transform under irreducible representations.

One of these building blocks is the covariant derivative

Dµ ≡ ∂µ − iAµ , (2.1)

with Aµ ≡ Aa
µT

a, where Aa
µ is the gauge field and the generators T a span

the Lie algebra su(N); here it is given in the fundamental representation.

In general, the generators are normalised according to TrT aT b = 1
2
δab, with

commutators [T a, T b] = ifabcT c. The derivative operator (2.1) transforms

covariantly by definition and therefore according to

Aµ → U(Aµ + i∂µ)U † , (2.2)

with U = exp(iαaT a) ∈ SU(N). The covariant derivative can be used to

build new covariantly transforming quantities. One such follows from the

commutator of the covariant derivative with itself

i[Dµ, Dν ] = ∂µAν − ∂νAµ − i[Aµ, Aν ] ≡ Fµν . (2.3)

In components, F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν . Demanding that the field

equations be second order, we can build a kinetic term for the gluons from

Fµν ,

LYM = − 1

2g2
Tr FµνF

µν , (2.4)

where the normalisation follows from a comparison with Maxwell’s theory,

and g is the strong coupling constant. The field equations follow from varying
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this action and are given by

DµG
µν = 0 , (2.5)

where, here, Dµ is the covariant derivative in the adjoint representation, i.e.

Dµ = ∂µ − i[Aµ, ·] . (2.6)

In terms of the adjoint covariant derivative, an infinitesimal gauge transfor-

mation can be written as

δAµ = Dµα . (2.7)

2.1.1 Gauge fixing

The gauge symmetry is really a redundancy in the description of the system.

In particular, field space in terms of the gauge potential is very large and

contains many copies of the same physical configuration, related of course

through gauge transformations. This leads to equivalence classes, which can

be labelled by a set of gauge-invariant observables. Choosing one such repre-

sentative from a given class and applying all possible gauge transformations

to it gives rise to the notion of gauge orbit; the gauge orbit thus comprises

all configurations that belong to the same equivalence class.

To pass to the Hamiltonian formalism, we need to relate the generalised

momenta to the generalised velocities, and this mapping needs to be one-to-

one. Due to the redundancies in the Lagrangian treatment this will not in

general be the case. The standard technique is to fix the gauge so that the

mapping becomes faithful.

Starting from one representative of each equivalence class, we can generate

the initial configuration space by applying all possible gauge transformations.

A useful picture to have in mind is that the total configuration space has the

structure of a bundle over the equivalence classes with the gauge group as

fibre. Gauge fixing then amounts to choosing a cross-section in that bundle

space. Note that by definition this corresponds to total gauge fixing, i.e. the

prescription gives a unique representative from each equivalence class, see

Fig. 2.1. In practice however, the gauge might not be totally fixed.
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SU(N
)

Cross-section CA

Gauge orbit

Figure 2.1: The configuration space CA of a gauge theory can be foliated by
gauge orbits. This, effectively, turns field space into a bundle over equivalence
classes; the fibre, running along the orbit, is given by the gauge group. Fixing
the gauge completely amounts to choosing some cross-section. The latter is
the (unique) solution to F [A] = 0, with F the gauge choice functional.

Many different gauge choices exist, e.g. temporal gauge A0 = 0, axial

gauge Ai = 0, Lorentz gauge ∂µA
µ = 0, or background gauge DµA

µ =

0, where the covariant derivative is with respect to a classical background

field Acl by which the original gauge field has been shifted A → A + Acl

and acts now on the quantum field A. In general, the gauge choice can be

parametrised by F [A] = 0, whose (unique) solution describes a cross-section

through configuration space. Typically, some residual gauge freedom is left

over though, and F [A] = 0 does not possess a unique solution.

2.1.2 Vacuum structure

Non-Abelian gauge theories have a topologically non-trivial classical vacuum

structure. The Hamiltonian density of the Yang-Mills theory, in A0 = 0
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gauge6, is given by

H =
1

2g2

(

Ȧa
i Ȧ

a
i +

1

2
F a

ijF
a
ij

)

=
1

2g2
(Ea

i Ea
i + Ba

i B
a
i ) , (2.8)

which is manifestly positive, and we defined Ea
i ≡ Ȧa

i , Ba
i ≡ 1

2
ǫijkF

a
jk.

From this we clearly see that time independent pure gauge configurations,

Aa
i = i/gU∂iU

† with U̇ = 0, minimise H. If we were to couple matter to this

theory (in a SU(N)-invariant way), the global gauge rotations would lead to

currents through Noether’s theorem. These symmetry currents are assumed

to fall off fast enough at spatial infinity, which translates into Aµ → 0 or

U(|~x| → ∞) → const. This compactifies R
3 to S3, and therefore the classical

vacua are characterised by mappings S3 → S3. The second S3 follows from

the fact that the group manifold of SU(2) is topologically equivalent to S3,

and because SU(2) ∈ SU(N). These mappings are non trivial, and the cor-

responding vacua fall into distinct (homotopic) equivalence classes, labelled

by the winding number

n(U) = − 1

24π2

∫

S3

dV Tr (ǫijkU∂iU
†U∂jU

†U∂kU
†) , (2.9)

which is invariant under homeomorphisms [42], is an integer and defines a

homomorphism because n(U1U2) = n(U1) + n(U2)
7. In particular, the above

construction shows that the vacuum manifold of Yang-Mills theory is not

simply connected.

By means of the stereographic projection we can pull the integrand back

to R
3, and n can then be related to the Chern-Simons current. In formulas,

n =
1

16π2

∫

d3xK0 , (2.10)

Kµ = 4ǫµνδγTr

[

Aν

(

∂γAδ − 2i

3
AγAδ

)]

. (2.11)

6Although this does not fix the gauge completely (the residual gauge freedom consists
of time-independent gauge transformations), it is sufficient to get a one-to-one mapping
between the generalised momenta and velocities and, hence, to write down the Hamilto-
nian.

7Which is easily proved by using the cyclic property of the trace, anti-hermiticity of
U∂U† and the unitarity constraint U(∂U†) = −(∂U)U†.
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Gauge transformations are called large unless they satisfy n = 0, in which

case they are called small. A representative of a large gauge transformation

with n = 1 is given by

U = exp

(

iπ
~x~σ

√

~x2 + ρ2

)

, (2.12)

where σi are the Pauli matrices and ρ is an arbitrary constant. From the

homomorphism property of the winding number it follows that Um belongs to

the m-sector. Thus, large gauge transformations relate the different classical

vacua, i.e. n → n+m. The latter are physically equivalent, being mere gauge

copies of the trivial vacuum.

Non-vacuum configurations have higher energy density, and their winding

number will no longer be guaranteed to be an integer. Because of the poten-

tial barrier between integer winding numbers, the vacuum manifold cannot

be simply connected8. This is the more pedestrian way to convince ourselves

that the vacuum manifold is topologically non-trivial. Since the different

classical vacua are physically equivalent, the winding number is sometimes

said to correspond to motion along a circle which encloses the topological

obstruction, or ‘hole’, in function space, see [161, 177].

2.2 Quantum theory and QCD

The topologically non-trivial structure of the classical vacua that we have

been describing is reminiscent of the motion of a particle on an upright cir-

cle in a gravitational field, and is schematically indicated in Fig. 2.2. In

the classical theory the configurations labelled by the winding number n give

equivalent groundstates. However, in quantum mechanics these classical con-

figurations become smeared out to form the states |n〉, the so-called n-vacua;

they correspond to wave-functionals that are peaked around the respective

classical minima. Using the analogy of the quantum behaviour of a particle

in a such a potential, we know that the true quantum vacuum has a very

different structure due to tunnelling. We will now investigate this issue for

8Transformations that change n as well as stay on the vacuum manifold cannot be
homotopies, because the latter, by definition, belong to the trivial sector.
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V
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)

Figure 2.2: The direction in function space that encloses the topological ob-
struction is given by the winding number n. The energy density is minimised
for integer n, and has necessarily potential barriers, V , between these vacuum
configurations. The configurations labelled by n are physically equivalent as
they are related by large gauge transformations.

gluodynamics.

2.2.1 Euclidean formulation, θ-vacuum and instantons

To understand the vacuum structure of a field theory, it turns out to be

advantageous to study the Euclidean sector, because the Euclidean theory

can be used to describe tunnelling phenomena semi-classically, see [42, 161,

27].

The continuation to imaginary time, i.e. xi
M → xi

E and x0
M → −ix4

E in

order to evade the mass poles, induces the following changes for the gluon

field:

AM
i → AE

i , (2.13)

AM
0 → iAE

4 . (2.14)
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Note that, quite generally, the zero component of a contravariant index gets

a factor of −i, whereas the zero component of a covariant index gets a factor

of i. Defining the Euclidean tensors to have a lower index9, we pull down the

upper index and include an extra minus sign; this takes care of the negative

definite metric and we need not bother anymore about the difference between

co- and contra-variant tensors.

The Euclidean action becomes SM → iSE with10

SE =

∫

d4x
1

2g2
Tr FE

µνF
E
µν . (2.15)

In the semi-classical approximation to the path integral that we will de-

velop in chapter 3, finite action configurations are most important since they

build the starting point for a non-trivial perturbative expansion. Actually,

finite action configurations form a set of measure zero [42], but since in the

semi-classical expansion we restrict the function space to the neighbourhood

of finite action configurations by definition, this fact is of no consequence.

To get finite action configurations on R
4, we demand that the field be-

comes pure gauge at infinity. These boundary conditions define a mapping

from infinity, which is topologically equivalent to S3, into the gauge group.

Following the same logic as in the previous section, the finite action config-

urations define mappings S3 → S3. We have already learned that these fall

into distinct equivalence classes, which in this case are labelled by another

winding number, the topological charge,

QE =

∫

d4x
1

16π2

∫

d4xTr FE
µνF̃

E
µν , (2.16)

where F̃E
µν ≡ 1

2
ǫµνρσF

E
ρσ is the dual field strength. This winding number is

gauge invariant, in contrast to n, and takes values in N.

A note on the relation to the Minkowski counterparts is in order. The

Minkowski dual field strength is defined by F̃M
µν ≡ 1

2
ǫµνρσF

ρσ
M . Under analytic

9Or an upper index; as long as we stay consistent with one choice, the results will be
equivalent.

10Note that the integration measure has naturally an upper index, i.e. dx0 → −idx4.
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continuation11 we then have

F µν
M F̃M

µν → −iFE
µνF̃

E
µν ,

∂µKM
µ → −i∂µK

E
µ . (2.17)

It can be shown12 that the topological charge is related to (2.11) by

QE =

∫

d4x∂µK
E
µ , (2.18)

which holds equally well in Minkowski space due to the transformations

(2.17). Using Gauss’ theorem we find that

QM =

∫

d3x
[
KM

0 (t = +∞) − KM
0 (t = −∞)

]
= n(t = +∞) − n(t = −∞) ,

(2.19)

and we worked in Minkowski space-time and in the AM
0 = 0 gauge to make

contact with the winding of the classical n-vacua. Clearly these finite action

configurations interpolate between the classical vacua, and they are identi-

fied as tunnelling transitions [27]. One heuristic way to convince ourselves

that these are tunnelling phenomena is to note that they do not cost any

(Minkowski) energy. To see it, note that for self-dual configurations we have

that ~Ea
M = i ~Ba

M , which annihilates the Hamiltonian density. From now on

we will keep to the Euclidean theory and drop the M - and E-index.

In the classical theory each n-vacuum provided a suitable groundstate,

even though it is not gauge invariant. In the quantum theory we have just

learned that the n-vacua are no longer disconnected. Therefore the superpo-

sition principle forces us to superpose the different n-vacua.

It turns out that the rather large Hilbert space can be reduced through

a super-selection rule. Note that the operator that implements gauge trans-

formations commutes with the Hamiltonian and is unitary. We can therefore

divide the Hilbert space into sectors labelled by the phase of the gauge trans-

formation operator. In particular, there are different vacuum states |θ〉 that

change under m-sector gauge transformations into Um|θ〉 = e−iθm|θ〉. Such a

11F̃M
0i → F̃E

0i , F̃M
ij → −iF̃E

ij , KM
0 → −KE

0 , KM
i → iKE

i .
12This is straightforward; the only ‘tricky’ part involves exploiting the invariance of the

ǫ pseudo-tensor under cyclic permutations.
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state can be constructed from the n-vacua according to

|θ〉 =
+∞∑

n=−∞
einθ|n〉 , (2.20)

where we use that Um|n〉 = |n + m〉.
A gauge invariant operator O has no overlap between these smaller Hilbert

spaces labelled by θ, as follows from

0 = 〈θ′|[O,Um]|θ〉 =
(

e−iθm − e−iθ′m
)

〈θ′|O|θ〉 . (2.21)

Since physical operators need to be gauge invariant, no process can change

θ; it is a fundamental constant of our universe. All of this is beautifully

described in [177]. Following [152], the path integral is defined through the

vacuum-to-vacuum transition

Z(θ) = 〈θ| exp(−iHt)|θ〉 =
∑

q

eiqθ
∑

n

〈n + q| exp(−iHt)|n〉 . (2.22)

Remembering that the n-vacua are all equivalent, the last term defines the

usual gauge invariant path integral Zq ≡
∑

n〈n+q|e−iHt|n〉, with the restric-

tion that only fields with topological charge Q = q are included. This then

leads to a new path integral, summed over all Q sectors, that incorporates

the topological θ-term

Z ≡
∫

[dA] exp

[

−
∫

d4x

(
1

2g2
Tr FµνFµν + i

θ

16π2
Tr FµνF̃µν

)]

. (2.23)

Within the semi-classical approach, the minimal action configuration cor-

responds to the most probable tunnelling event. Note that the action can be

rearranged into the following form,

S = ±8π2

g2
Q +

1

8g2

∫

d4x(F a
µν ∓ F̃ a

µν)
2 , (2.24)

which shows that the action is minimised, in a given equivalence class, by

(anti-)self-dual configurations, i.e. F̃ a
µν = ±F a

µν . Thus, such configurations

are solutions to the field equations but can be obtained much more easily
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from these first order differential equations.

Perhaps the most famous such solution is the BPST instanton [22]. It

belongs to the Q = 1 sector and is SO(4) symmetric. The latter condition

implies that the gauge potential is of the form

Aµ = iU∂µU
†f(x2) , (2.25)

with f(x2) → 1 for |x| → ∞, to comply with the boundary condition. At

the origin we require f to cancel the singularity that is inevitably present

because of the fact that U is defined only on the 3-sphere at infinity. A

representative from the Q = 1 equivalence class is given by

U =
x4 + ixiσi√

x2
. (2.26)

Using this form, it is straightforward to show that at infinity

Aa
µ =

2

x2
(δaµδν4 + ǫaµν − δaνδµ4
︸ ︷︷ ︸

≡ ηaµν

)xν , (2.27)

and ηaµν are the ’t Hooft symbols that entangle space and group indices. The

self-duality equation leads to the simple differential equation

f ′x2 − f + f 2 = 0, f ′ =
df(s)

ds
, (2.28)

which, together with the boundary conditions for f , leads to the BPST in-

stanton solution,

Aa
µ = 2ηaµν

xν

x2 + ρ2
, (2.29)

where ρ is a constant of integration. The winding at infinity can be traded for

a winding at the origin by means of a singular gauge transformation, given

by V = U †.

A slightly more general solution is given by ’t Hooft’s multi-instanton
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ansatz, in singular gauge, and reads

Aa
µ = −η̄aµν∂ν log Π , (2.30)

Π = 1 +
N∑

i=1

ρ2
i

(x − xi)2
. (2.31)

This ansatz can be used to construct the finite temperature caloron so-

lution of Harrington–Shepard (HS) [93]. The latter is the generalisation of

the BPST instanton to finite temperature, and is crucial for studying the

restructuring of the QCD vacuum at finite temperature in the semi-classical

approach. Finite temperature field theory can be described by a Euclidean

formulation, with bosonic (fermionic) field subject to periodic (anti-periodic)

boundary conditions in the time direction, with extend β = 1/T , see for in-

stance [103]. The HS solution is explicitly realised by lining up the BPST

instanton periodically along the time direction, and has the form

Π =
πρ2

βr

sinh 2πr
β

cosh 2πr
β

− cos 2πt
β

. (2.32)

The most general solution to the Yang-Mills field equations follows from

the ADHM construction [12]. Explicit solutions, believed to be important

for the semi-classical treatment of the confinement/deconfinement transition,

have recently been derived within the full generality of the ADHM formalism:

the so-called non-trivial holonomy, or KvBLL, calorons [119, 121, 120, 123].

2.2.2 Perturbation theory

The path integral as defined in (2.23), with or without θ, is ill-defined pertur-

batively because we sum over equivalent configurations an infinite amount of

times, and because of ultraviolet (UV) divergences.

Since we do not perform any perturbative computations in the remainder,

except for a low-order one where no complications arise, we will be rather

brief.
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Gauge fixing

We know already, in principle, how to solve the first problem, namely by

restricting the path integral to include only one representative of each gauge

orbit, i.e. by gauge fixing. To perform perturbation theory, we need to define

the propagator, i.e. the inverse of the quadratic part of the kinetic term.

Although the quadratic part is no longer gauge invariant under the full group

in general, it will still be invariant under the centre13. This restricted gauge

group leads to gauge zero modes for the propagotor and the inverse does not

exist. As long as the gauge fixing breaks the centre completely perturbation

theory can be defined.

Note that boundary conditions play an important role with regard to the

residual gauge freedom. For instance in the Abelian case, Lorentz gauge

does not fix the gauge completely but has a residual gauge freedom for gauge

parameters that are harmonic, i.e. Aµ → Aµ + ∂µα with ∂2α = 0. However,

the boundary condition that Aµ ≡ 0 at infinity on R
4, restricts α = const

and thus lifts the gauge freedom completely.

Gauge fixing of the Lagrangian path integral (2.23) is achieved through

the Fadeev-Popov technique14, which amounts to inserting a factor of unity

in the path integral; in formulas,

1 ≡ ∆[Aµ]

∫

[dU ] δ[F [AU
µ ]] , (2.33)

where AU
µ decribes the gauge orbit, and the cross-section over the bundle

that singles out a representative of each gauge orbit is given by F . The path

integral is then transformed into

Z →
(∫

[dU ]

) ∫

[dA] ∆[A] δ[F [A]] exp (−S − iθQ) , (2.34)

and the infinite volume factor
∫

[dU ] =
∏

x V SU(N) is irrelevant in expectation

values.

Since we need a constraint for each Aa, F is a vector in the adjoint

representation, i.e. F = F aT a. The factor of ∆ is defined by (2.33), and can

13The centre is defined by ZG ≡ {z ∈ G |zg = gz, ∀g ∈ G}.
14We follow [152], which should be consulted for details.
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be shown to be formally given by

∆[Aµ] = det
δF

[
AU

µ

]

δU

∣
∣
∣
∣
∣
U=1

, (2.35)

where we used the gauge invariance of ∆ to choose A such that F [A] = 0.

More precisely, we have that

∆[Aµ] = det Mab, with Mab ≡
δF a

[
Aα

µ

]

δαb

∣
∣
∣
∣
∣
αb=0

. (2.36)

To perform the functional derivative, we use that δAµ = Dµα for an infinites-

imal gauge transformation. Thus

Mab(x, y) =

∫

d4z
δF a[A(x)]

δAc
µ(z)

(
∂z

µδbc + f bcdAd
µ(z)

)
δ4(z − y) . (2.37)

By introducing a set of auxiliary anti-commuting scalar fields, so-called

Fadeev-Popov ghosts, the determinant can be put in the form of an, a priori,

non-local Lagrangian, i.e.

∆[Aµ] =

∫

[dc][dc̄] exp

(

−
∫

d4xd4y c̄a(x)Mab(x, y)cb(y)

)

. (2.38)

A standard choice is F a[Aµ] = ∂µA
a
µ, i.e. Lorentz gauge. In this case

δF a[A(x)]
δAc

µ(z)
= ∂x

µδ4(x − z) = −∂z
µδ

4(z − x) and, integrating by parts, we get

Mab(x, y) = ∂µD
a
µδ

4(x − y); this then leads to a local action.

In chapter 3 we will be discussing QCD in the presence of instantons, and

a convenient choice will be the so-called background gauge15

F [A] = DµAµ , (2.39)

in which case we find that

M(x, y) =
δF

δα
= (DµDµ − iDµ[Aµ, ·]) δ4(x − y) , (2.40)

= DµDµδ
4(x − y) − i[Aµ, Dµδ

4(x − y)] , (2.41)

15The covariant derivative is with respect to the classical background and acts on the
quantum field.
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where in the second line we made use of the background condition.

Renormalisation

A local field theory is generally plagued by UV divergences, and needs to be

regularised and then renormalised. Regularisation tames the short-wave fluc-

tuations. Standard techniques include a finite cutoff in the momentum space

integrals, introduction of auxiliary fields with non-standard kinetic terms

(Pauli-Villars), analytic continuation (dimensional regularisation) or a dis-

crete space-time (lattice gauge theories). The second step, renormalisation,

consists of shifting the parameters of the theory in such a way as to give finite

results when the regulator is removed. Here, again, various prescriptions can

be used, e.g. mass-shell renormalisation, momentum substraction, or mini-

mal or modified minimal subtraction (MS) to name a few. For details see

[44].

In super- and renormalisable theories, the parameters that appear at tree-

level together with wave-function renormalisation are sufficient to render ev-

ery computation finite. Even though we cannot infer the underlying bare

parameters, the theory contains the same amount of free parameters as the

bare theory. On the other hand, in non-renormalisable theories new interac-

tions, and new experimental input, needs to be taken into account at higher

orders in perturbation theory. In finite theories, finally, we can compute the

shifts that the quantum interactions induce between the measured and bare

parameters of the theory. Even though not described by field theory, a useful

heuristic picture to keep in mind in this respect is the modification of the

physical electron mass in condensed matter due to its interactions with the

phonons. Here we could also renormalise the electron mass and parametrise

the theory with the effective, observed electron mass but we never need to

regularise the theory.

The bare and renormalised quantities are related through renormalisa-

tion constants Zi. In the case of Yang-Mills theory these are the coupling

constant and the field amplitudes for the gauge fields and the ghosts. The dif-

ferent regularisation and renormalisation prescriptions implicitly define these

parameters. On a heuristic level we can view these parameters as the coordi-

nates of some manifold that describes the theory. The different prescriptions
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can then be viewed as choosing different coordinates on this manifold. It is

important that predictions within different schemes can be related to each

other. This is particularly important in the lattice community, that usually

converts results into the MS scheme to compare with other approaches. Such

a procedure runs under the name of matching, see for instance [51].

The standard prescription to include quarks is through minimal coupling

Lm = ψ̄ (D/ + m) ψ , (2.42)

here in the Euclidean formulation16. This adds two more renormalisation

constants, for the quark mass and field amplitude. In the so-called renor-

malised perturbation theory the renormalised fields and coupling constants

are used to perform perturbation theory, and the shifts between the latter

and the original bare parameters are treated as perturbations that depend

on the renormalisation constants. The latter are adjusted order by order to

maintain finite results.

It can be shown that QCD is renormalisable and that gauge invariance

survives in the quantum theory. This puts strong constraints on the form of

the renormalised Lagrangian; it takes the form [152]17

L =
1

4
F a

µνF
a
µν + ψ̄ (D/ + m) ψ + c̄a∂µDµc

a + Lc.t. , (2.43)

where we used Lorentz gauge, and Lc.t. is the counter-term Lagrangian, i.e.

Lc.t. = (Z2 − 1)ψ̄∂/ψ − (Z1 − 1)igψ̄A/ψ + (Z0 − 1)mψ̄ψ + (Z̃2 − 1)c̄a∂2ca

+ (Z̃1 − 1)gc̄afabcAb
µ∂µc

c +
1

4
(Z3 − 1)

(
∂µA

a
ν − ∂νA

a
µ

)2

− 1

2
(ZYM

1 − 1)g (∂µA
a
ν) fabcAb

µA
c
ν +

1

4
(ZYM2

1 Z−1
3 )fabcfadeAb

µA
c
νA

d
µA

e
ν .

(2.44)

16More details are given in section 2.3.
17More details can be found in [44]
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The relation between the bare and renormalised parameters is given by

Aa
Bµ = Z

1/2
3 Aa

µ , (2.45)

ψB = Z
1/2
2 ψ , (2.46)

ca
B = Z̃

1/2
2 ca , (2.47)

mB = mZ0/Z2 , (2.48)

and gauge invariance leads to the following relation among the renormalisa-

tion constants,

Z
1/2
3 gB/g = ZYM

1 /Z3 = Z1/Z2 = Z̃1/Z̃2 = finite . (2.49)

This last relation states that even after renormalisation, the same coupling

constant gives the interaction strength for the quark-gluon, and 3- and 4-

gluon vertex. In particular, the coupling constant follows uniquely from the

gluon interaction and does not depend on the particle content in the sense

that any matter particles couple to gluons through g.

Renormalisation group and matching

As described in the last subsection, there is considerable arbitrariness in the

renormalisation program. This can be used to find particularly convenient

schemes. For instance, it allows us to rearrange the perturbation series in

expansion parameters that might lead to faster convergence.

A very convenient prescription in this respect is MS, which defines the

theory at an arbitrary scale µ. This scale is then chosen such that the per-

turbation series is well-behaved and in particular such that large logarithms,

due to higher order contributions, are small, see [200] for a detailed discus-

sion. This leads to the so-called running coupling constant and masses, and

the evolution of these free parameters with respect to µ is encoded in the

renormalisation group equations (RGE’s); µ is often called the RGE scale.

In the Wilsonian picture of renormalisation the scale µ can be viewed as

a floating cutoff which separates the soft from the hard modes. The latter

have been integrated out and produce the logarithms that combine with the

coupling constants (and masses); due to renormalisability, their sole effect
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is to change these free parameters. In effect, then, the running coupling

constants encode the fluctuations that have already been integrated out.

The RGE scale is an artefact from the renormalisation program and,

in particular, the bare parameters, with fixed regulator, are independent of

it. The latter observation allows us to derive equations that encode the

renormalisation flow. From the relations between bare and renormalised

parameters, i.e.

gB = Z−1
g (µ)g(µ) , (2.50)

mB = Z−1
m (µ)m(µ) , (2.51)

the following RGE’s can be derived:

µ
dg

dµ
= g

d ln Zg

d ln µ
≡ β (2.52)

d ln m

d ln µ
=

d ln Zm

d ln µ
≡ γm . (2.53)

In a mass-independent renormalisation scheme, such as MS, the renor-

malisation constants only depend on g, and thus β and γ only depend on g;

this allows for a simple solution:

ln
µ

µ0

=

∫ g

g0

dg̃

β(g̃)
, (2.54)

m(g) = m(g0) exp

(∫ g

g0

γm(g̃)

β(g̃)
dg̃

)

, (2.55)

= m(µ0) exp

(∫ µ

µ0

γm(µ̃)

β(µ̃)
d ln µ̃

)

= m(µ) . (2.56)

The RG functions β and γm can be computed in perturbation theory.

It turns out that the first two coefficients of the β function and the first

coefficient of γm are universal and gauge invariant [44]. In particular, the

first coefficient of the β function is negative, so that the coupling constant

decreases with increasing µ; this is asymptotic freedom. At one-loop, the

running coupling is given by

αs(µ) =
4π

b0 ln µ2/Λ
, (2.57)
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where αs = g2/4π and Λ is the QCD scale.

Another quantity we will be interested in is the quark condensate 〈ψ̄ψ〉. It

is possible to write down RGE’s for such local operators. The renormalised bi-

quark operator is related to the bare one by (ψ̄ψ)B = Z−1
ψ̄ψ

ψ̄ψ. We know that

in the Lagrangian this term appears multiplied by m, with their combination

adding up to mB(ψ̄ψ)B. Thus γψ̄ψ = −γm, and the quark condensate runs

inversely to the quark masses. The coefficient γψ̄ψ is called the anomalous

dimension of the local bi-quark operator.

In chapter 3 we need to relate our results for the quark condensate to those

from the lattice. The latter is quoted in MS whereas the scheme that we will

use is Pauli-Villars (PV ) together with a substraction scheme analogous to

MS. To disentangle the contribution from the RGE running, we will compare

the local operators at a common scale. We have just learned that mψ̄ψ is

RGE-invariant, so that we can work either with the quark condensate or the

mass to run to the common scale; we choose the latter.

To match the PV and MS masses, we will use the pole mass to relate .

From the form of the full propagator

SF =
1

p/ − m − Σ
=

1

p/(1 − ΣV ) − m(1 + Σm)
, (2.58)

where Σ is the quark self-energy, we can infer that the pole mass is given by

m2
pole = m2

(
1 + Σm(mpole)

1 − ΣV (mpole)

)2

. (2.59)

As discussed in the previous subsection, different schemes will give dif-

ferent parametrisations but the results must be equivalent. Therefore, at

one-loop18, we have that

mPV

(
1 + ΣPV

m (m2
PV ) + ΣPV

V (m2
PV )

)

= mMS

(

1 + ΣMS
m (m2

MS
) + ΣMS

V (m2
MS

)
)

, (2.60)

and the self-energy is given by Fig. 2.3.

18Maintaining manifest gauge-invariance in Yang-Mills theories using Pauli-Villars reg-
ularisation is not straightforward beyond one-loop.
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�p p

Figure 2.3: Feynman diagram needed to compute the difference between the
MS and PV scheme at one-loop.

This is a textbook computation, [151]. After subtracting off the diver-

gences, we end up with

ΣPV =
αs

2π
C(3)

{

−2m +
1

4
p/

+

∫

dx(2m − (1 − x)p/) ln
µ2

xm2 − x(1 − x)p2

}

, (2.61)

and

ΣMS =
αs

2π
C(3)

{

−m +
1

2
p/

+

∫

dx(2m − (1 − x)p/) ln
µ2

xm2 − x(1 − x)p2

}

. (2.62)

Relating both through the pole mass and using that C(3) = 4/3, we get

mMS = mPV

(

1 − αs

2π

5

3

)

. (2.63)

2.3 Strong CP problem

As we’ve seen before, quarks are included through minimal coupling. In

the case of QCD we couple Nf quarks in the fundamental representation to

SU(3) gluodynamics. Staying in the Euclidean sector, the quark Lagrangian

reads

Lm = ψ̄ (D/ + M) ψ , (2.64)
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where M is the mass matrix. The Euclidean γ-matrices are chosen to be

hermitian and to satisfy {γµ, γν} = 2δµν ; they are given by γ0 = γ0
M and

γi = −iγi
M . Note that ψ̄ transforms as ψ† in Euclidean space.

If the mass matrix is proportional to the identity, the Lagrangian has a

global U(Nf ) symmetry. If M = 0 we can rotate the left and right handed

parts of ψ separately, due to the larger U(Nf )L ⊗ U(Nf )R symmetry. For

quark masses small compared to the dynamically generated scale Λ, the

massless Lagrangian is a good starting point and the quark masses can be

treated as perturbations. This is the basis for chiral perturbation theory.

If the U(Nf )L ⊗ U(Nf )R symmetry was realised explicitly in nature, the

hadrons should come in parity doublets, see for instance [152]. Such a multi-

plet structure is not seen experimentally, and the vacuum cannot be chirally

symmetric. The vacuum need not preserve all symmetries however, and it

turns out that the axial part of the chiral symmetry is spontaneously broken.

This gives rise to massless states, the Goldstone bosons, carrying the quan-

tum numbers of the broken generators. Since our symmetry was explicitly

broken by the u, d and s quark masses, the bosons are only nearly massless

states, and indeed such states can be identified with the pseudo-scalar octet.

This accommodates the spontaneous breaking of SUA(Nf ). There is,

however, no particle in the spectrum that would correspond to the Goldstone

boson associated with the spontaneous breakdown of U(1)A. This is the old

U(1)A problem: “where is the 9’th Goldstone boson?” [42].

The first step to solving this problem was the realisation that the axial

current is anomalous, i.e. that it is not conserved quantum mechanically. This

is a consequence of the famous Adler-Bell-Jackiw triangle anomaly [23, 2] and

takes the form [152]

∂µj
5
µ = 2

g2

32π2
F a

µνF̃aµν , (2.65)

for each quark that is rotated.

Secondly, non-conservation of the current in itself is not sufficient to break

the symmetry. A classical symmetry survives quantisation if its associated

charge commutes with the Hamiltonian, i.e. if it is time-independent. Under
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an axial rotation the charge changes by

∆Q5 =

∫

dt
d

dt
Q5 =

∫

d4x∂tj
5
0(x) = 2Q , (2.66)

where we neglected the contribution from ∂ij
5
i because by Gauss’s theorem

it only contributes a surface term which is assumed to vanish. We see that

the axial charge is conserved as long as the gauge sector does not support

topologically non-trivial field configurations. We have discussed at length

that QCD has a non-trivial vacuum structure. Thus, we don’t expect a

Goldstone boson since UA(1) was no symmetry to start with. This solves the

old U(1) problem.

The very same non-trivial vacuum structure induces, however, a new

problem because the θ term breaks CP explicitly19, whereas nature is very

nearly CP invariant, so that θ ≈ 0 or θ ≈ π20. The θ-term gives an electric

dipole moment to the neutron [17, 45], which is tightly constrained experi-

mentally [15] and results in the bound

θ < 10−9 . (2.67)

This is the new CP problem: why is θ so small?

The CP problem can be solved in QCD if one quark is massless. To see

it, note that on the level of the path integral the anomaly stems from the

non-invariance of the measure under axial transformations ψ → exp(iαγ5)ψ,

i.e.

Z →
∫

[dA][dψ][dψ̄] exp [−S − i(θ + 2α)Q] . (2.68)

In the massless case we can conclude that the θ angle is unphysical as it can

be rotated away by an axial transformation. For massive quarks, θ remains

a physical parameter since it will be shifted into phases of the mass matrix;

indeed, θ + arg det M = const under this UA(1).

There has been some controversy relating to this possibility [102, 78]: the

non-zero quark mass used in chiral perturbation theory could in fact be an

instanton induced ‘soft’ mass, even though the fundamental current mass is

19Under P we have that F a
0i → −F a

0i with the rest unchanged so that F a
µνF̃ aµν →

−F a
µνF̃ aµν . Under C F a

µν → −F a
µν so that F a

µνF̃ aµν → F a
µνF̃ aµν .

20Bear in mind that the quantum theory is defined via the path integral and eiπ = e−iπ.
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zero, see for instance the discussion in [114, 115]. Recent lattice studies to

determine the current quark masses seem to rule out this possibility [130].

Also, the electro-weak sector is known to break CP, and is well parametrised

by the CKM matrix, generating complex quark mass phases. A massless

quark could, however, be used to remove these phases from the Lagrangian21,

and explicit CP breaking through the CKM mechanism would no longer work.

Finally, assuming that CP is explicitly broken in the electro-weak sector, it

seems natural that it is broken at tree-level in QCD too. There are, however,

other approaches, see for instance [122].

Actually, the axial current gets anomalous contributions from all the

gauge fields that the quarks couple to. In particular, other vacuum angles

could be generated by the electro-weak sector. These are, however, unphysi-

cal: the vacuum angle for UY (1) does not exist because the vacuum structure

is trivial, i.e. only field configurations in the Q = 0 sector exist; the vacuum

angle arising from the SUL(2) gluodynamics can be rotated away by the

anomalous UB(1) transformation22.

2.3.1 Peccei Quinn Mechanism and Axions

Probably the most popular solution to the strong CP problem is provided

by the Peccei-Quinn mechanism [146, 145]. Here, an extra chiral U(1)PQ is

introduced to rotate the vacuum angle to zero, in much the same way as

a massless quark allowed us to achieve this. Since such a symmetry is not

observed in the spectrum, U(1)PQ is assumed to be spontaneously broken.

The chiral phase gives rise to a pseudo-scalar Goldstone boson, the axion. In

fact, the chiral symmetry is anomalous and the axion is not massless.

All models have the generic feature that the axion only couples deriva-

21Firstly, choose different Uf
A(1) on the individual quark fields qf to remove the complex

phases. Secondly, the so generated θ-term can be rotated away by an axial transformation
on the massless quark.

22From the four anomalous (global) symmetries Ue(1) × Uµ(1) × Uτ (1) × UB(1) we can
construct three conserved currents and retain UB(1), say, as anomalous. Note that the
rotations on the quark fields have to be identical across generations because SU(3) is
flavour-blind. Now, UB(1) is a vector symmetry, i.e. not broken by mass terms, so that
the classical part of the Lagrangian remains invariant and the measure transformation
gives only a contribution for the chiral gauge symmetries SUL(2) and UL(1) in the form
of θ-terms; SU(3), being a vector symmetry, does not contribute. See for instance [14] for
details.
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tively to matter and the only non-derivative coupling is to the topological

charge

Lnon−der.
a = i

φa

fa

g2

32π2
F a

µνF̃
a
µν , (2.69)

where φa is the axion field and fa the axion decay constant. Thus, the axion

adds another CP-violating contribution to the QCD Lagrangian unless it

exactly cancels the θ term.

Indeed, the PQ mechanism solves the strong CP problem because the ef-

fective potential for the (homogenous) axion field has a CP-conserving min-

imum [113]

e−V Veff(φ) =

∣
∣
∣
∣

∫

[dA] det(D/ + M) e−S+i(θ+ φ
fa

)Q
∣
∣
∣
∣

, (2.70)

≤
∫

[dA] det(γµDµ + M) e−S
∣
∣
∣e

i(θ+ φ
fa

)Q
∣
∣
∣ , (2.71)

= e−V Veff(φ=−faθ) , (2.72)

and thus 〈θ + φa/fa〉 = 0, where V the 4-dimensional volume. Note that

the effective potential is periodic. Shifting the axion field, we can define

θ + φ/fa → θa, with θa the axion angle. Thus, the PQ mechanism effectively

trades θ, a free parameter, for a dynamical field that evolves to its CP-

conserving minimum.

We will study the axion mass in great depth in chapter 5 and the cosmo-

logical implications of the axion effective potential will be discussed in more

detail in chapter 7.



Chapter 3

The IILM at zero temperature

In the strong coupling regime, the degrees of freedom appearing in the fun-

damental Lagrangian are not manageable in a perturbative treatment. One

strategy is to reparametrise the theory in terms of degrees of freedom that

do allow a systematic perturbative expansion, e.g. chiral perturbation theory,

describing the low energy regime of QCD in terms of baryon and meson fields

and based on the symmetries of the QCD Lagrangian; or exact dualities, as

in the work of Seiberg and Witten. A different approach is to identify non-

perturbative field configurations of the fundamental degrees of freedom. It

provides genuine strong coupling information; a priori, though, it is plagued

by the same shortcomings as normal perturbation theory in that higher order

corrections are not under control. A posteriori, the method can provide a

systematic expansion if the solitonic degrees of freedom dynamically generate

a scale at which the coupling is sufficiently small to allow for a systematic

perturbative treatment, the semi-classical expansion.

First written down in [22], instantons are self-dual solutions to the full

Yang-Mills equations of motion and are thought to be the dominant non-

perturbative fluctuations in the low energy limit of QCD, e.g. [164, 165, 166]

from the phenomenological and [199, 41] from the lattice perspective. In his

seminal work [182], ’t Hooft computed the quantum fluctuations around an

instanton background and this calculation has formed the basis for many

studies of the structure of the QCD vacuum, e.g. the pioneering papers [31]

and [32] that made strong use of the dilute gas approximation. The latter

suffers from an infrared divergence due to the unbounded integral over the

33
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instanton size collective coordinate. In the early works it was cut off by hand.

In [61] [62] the IR problem was dealt with ‘dynamically’ by introducing the

concept of an interacting instanton ensemble. The authors showed that the

most important configurations are not exact multi-instanton solutions but

an ensemble of instantons and anti-instantons. To this end they saturated

the path integral with such an ensemble, and, using a variational principle,

could show that it provides a lower bound for the exact partition function;

within a mean field approximation, good agreement to phenomenology and

existing lattice data was achieved.

Taking this variational path integral as a starting point, Shuryak inves-

tigated what has become known as the interacting instanton liquid model

(IILM) [170, 171]. In [157] many bulk properties were computed and seen

to be consistent with the available lattice data and phenomenology. Some

recent studies [76] [46] corroborate the earlier results that the IILM rather

accurately describes the chiral properties of QCD, i.e. that instantons are the

dominant degrees of freedom as far as the chiral regime of QCD is concerned;

the latter study confirmed the value of the mean instanton size ρ̄, a key pa-

rameter of the IILM, to be around 1/3 fm, a result anticipated by Shuryak

through phenomenological considerations and supported by lattice studies,

e.g. [148]. The average instanton size provides an estimate for the scale of

typical fluctuations in this model and thus defines the floating cutoff for the

IILM to be around [46]

µ ≈ 1

ρ̄
≈ 600 MeV,

and probably justifies the semi-classical expansion1, i.e. αs(µ) . 12.

The IILM is based on a superposition of instantons in singular gauge.

This gauge is used because the potentials fall off rapidly enough at infinity

for the integrals to converge. However, the gauge singularities at the centres

of the instantons do lead to divergences for exactly overlapping pairs; in

1Strictly speaking, in the semi-classical expansion we study the response of the vac-
uum to a classical background that is a solution to the classical equations of motion; by
definition, the quantum fluctuations arise only at second order. The classical configura-
tions we will study have generally a linear response which is, however, neglected so as to
suppress quantum-induced forces that would otherwise distort the background. From an
operational point of view then, we are performing a semi-classical computation.

2Note that in multi-loop computations the natural, and smaller, expansion parameter
is αs/π
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practice the integrals blow up as the instantons approach each other and

overlap ever more strongly, and this is interpreted as a repulsive interaction.

Such a repulsive interaction is indeed needed to separate the topological from

the perturbative fluctuations, which have already been integrated out.

As mentioned above, the IILM works well in describing the chiral proper-

ties of QCD, but it fails to reproduce confinement. The failure to do so might

be traced back to the fact that in the singular gauge ensemble the instantons

do not overlap strongly. To increase this overlap, a regular instanton ensem-

ble has been proposed that does lead to confinement [136]. Naively, such an

ansatz will lead to an infrared divergent action because of the slow fall-off

of regular gauge instantons. In the above mentioned paper the instantons

are placed in a finite box which also serves as cutoff for spacetime integrals.

This regularises the infrared divergence, and it was established that a well-

defined thermodynamic limit exists3. In the end we want to go beyond zero

temperature and do not know how to extend the regular gauge ensemble to

finite temperature; therefore we will stick to the singular gauge ensemble.

The topological susceptibility is a key parameter of QCD and has been in-

vestigated in many lattice studies. Comparatively few studies have addressed

this quantity within the IILM [173]. One reason is that, so far, the IILM

is based on a canonical ensemble. Although one can extract the topological

susceptibility from the canonical ensemble through the decay of correlators,

e.g. see [173] for IILM and [37, 38] for lattice simulations, it is most natural

to use the grand canonical ensemble to study the topological susceptibility.

Recent investigations of the IILM in the grand canonical ensemble [66, 65]

were based on canonical simulations and a fugacity expansion, while we will

set up a grand canonical IILM that uses grand canonical Monte Carlo simu-

lations; see also [55] for a ‘mean-field’ study of the grand-canonical ensemble.

In full QCD the topological susceptibility is a chiral quantity, and therefore

we might expect it to be well modelled in the IILM; the rather large amount

of available data makes the former a good candidate to fix units within the

IILM. In this chapterr we will use the topological susceptibility together with

results from chiral perturbation theory to choose physical quark masses and

set the scale µ. Another advantage of the grand canonical ensemble is that

3Screening of the long-range interactions is thought to cure the infrared problem.
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it automatically reaches the equilibrium density whereas in the canonical

ensemble the density has to be inferred from the minimum of the free energy.

We found it necessary to re-derive the instanton interaction because, with

the original interactions for the ratio ansatz at finite temperature [172], the

instanton ensemble does not possess a thermodynamic limit. We believe the

cause to be a deficiency of the fitting formulas for the interactions. Specifi-

cally the instanton–instanton interaction, Eq. (3.11) in [172], contains a term

that decays very slowly with instanton separation R,

ln

(

1 +
β

R

)

R→∞−−−→ β

R
, (3.1)

and is not integrable. In their original paper the authors do discuss this

long-range interaction and point out that they found the O(1/R) dyon–dyon

behaviour for a wide range of intermediate separations. It might well be that

the interactions are still well described by this ansatz for the simulation boxes

used in subsequent numerical investigations, e.g. [157], but for studying the

large volume behaviour it is not appropriate. Instead of improving the fitting

formulas, we decided to use direct numerical integration4. Of course it is not

feasible to integrate during the actual simulations because multidimensional

integrals are rather time consuming to compute. Instead our strategy con-

sists of precomputing the interactions on a grid and then use look-up tables

during the simulations. We believe that this scheme might also be success-

fully implemented for more complicated backgrounds, and eventually for an

ensemble of non-trivial holonomy calorons [119, 121, 120], for which good

fitting formulas will be even harder to come by.

In section 3.1 we will review the standard strategy used to write down

the partition function for an ensemble of background gauge fields, i.e. the

semi-classical approximation. This is rather similar in spirit to the lattice

formulation of [196]. It serves the purpose to highlight which simplifying

assumptions are eventually made for the actual simulations and hints at how

we can go beyond these. We will then re-derive the interactions for the

so-called ratio ansatz, used to construct multi-instanton backgrounds from

individual instantons, in section 3.2 and compare it with other available

4The difficulty of getting good analytical formulas at finite temperature is already
pointed out in [172].



CHAPTER 3. THE IILM AT ZERO TEMPERATURE 37

ansätze. In section 3.3 we present the numerical framework we have set up

to deal with the simulations. Given that different ansätze are available, we

will study their effect on some bulk properties in section 3.4 and we endeavour

to get a handle on systematic uncertainties inherent in this approach. Finally

we fix the free parameters of the model and summarise our results in section

3.5.

3.1 Saturating the path integral

The method presented here is a combination of the variational and the semi-

classical approach. It is not limited to QCD or instantons. Rather, we want

to consider here the general computational strategy of the method, paying

special attention to the low frequency part of the fluctuation spectrum; the

reason is, of course, that only the low energy part is strongly sensitive to the

non-trivial classical background. Details pertaining to the variational ap-

proach, gauge fixing and renormalisation can be found in the original papers

[61, 62].

Depending on the theory we are interested in, we choose an appropri-

ate field configuration, not necessarily a solution to the classical equations

of motion, that is expected to play a dominant role in the phenomena un-

der investigation. In QCD, for instance, different field configurations have

been proposed to explain confinement, instantons, merons or BPS monopoles

and one can, in principle, set up an IILM type path integral for any such

background.

We approximate the fundamental path integral by saturating the par-

tition function with the chosen classical background and we compute the

quantum fluctuations around it:

Z[J ] =

∫

[dφ] exp(−S[φc + φ]) . (3.2)

Since we can only perform Gaussian integrals, the computational rationale

is the same as in ordinary perturbation theory, i.e. after expanding around

φc, the action consists of a quadratic term, from which the propagator is

derived, plus higher order terms that are treated as perturbations. The
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technical complication, in this case, is that the kernel of the quadratic term

is a non-trivial function of space, and, therefore, the functional determinant

and the propagator are very hard to come by analytically and in general

will not be available. For the class of backgrounds that are superpositions

of classical solutions, for which analytic results exist, progress can be made

without too much numerical effort as we will now discuss.

In general the classical background possesses (quasi) zero modes which

render the path integral ill-defined if treated in the Gaussian approxima-

tion. The method of collective coordinates trades the zero mode expansion

coefficients for the coordinates of the (quasi) moduli-space. The collective

coordinates can be interpreted as those degrees of freedom whose quantum

mechanics (on this non-trivial space) approximates the low-energy dynamics

of the fundamental theory.

In what follows we will use the practical approach of discarding the linear

term δS[φ]/δφ|φ=φc
because it would induce a shift in the background field.

The reason it appears is linked to the fact that the background is in general

not a solution to the equations of motion. There exist systematic methods

to cope with this issue, like the streamline [16] and valley [10] techniques,

however, they have not been used for instanton–anti-instanton pairs at finite

temperature and are therefore not directly applicable to our case of interest.

Within this approximation the ‘free’ generating functional, coupled to an

external classical source J , is given by

Z[J ] = e−Sc

∫

M

dNξ
√

g

∫

[dφ] exp

(

−1

2
φ · δ2S

δφ2
· φ + J · φ

)

,

= e−Sc

∫

M

dNξ
√

g

∫

[dφ′] exp

(

−1

2
φ′ · δ2S

δφ2
· φ′ +

1

2
J · G · J

)

,

= e−Sc

∫

M

dNξ
√

g

(

det
δ2S

δφ2

)−1/2

exp

(
1

2
J · G · J

)

,

(3.3)

where we defined φ′ = φ−G ·J . The moduli-space M is of dimension N , and

gij its metric [185], equivalent to the Jacobian induced by the change to the

collective coordinates. The classical source J is orthogonal to the tangent

space of M , i.e has no overlap with the zero modes of δ2S/δφ2, as is the

propagator G = (δ2S/δφ2)−1.
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For the sake of simplicity, we assume that the exact solution has one zero

mode η1 related to the collective coordinate γ. We start with the N = 1 case;

to trade the eigenfunction η1 for the collective coordinate γ, we write the full

field φc + φ in two equivalent forms5, using the eigenfunctions of δ2S/δφ2 at

zero and finite γ,

φc(x, 0) + φ(x) = φc(x, 0) +
∞∑

n=1

ζnηn(x, 0) ,

= φc(x, γ) +
∞∑

n=2

ζ̄nηn(x, γ) + O(γ2) .

(3.4)

This can be rearranged to write (omitting the x-dependence for notational

clarity)

φ({γ, ζ̄}) = φc(γ) − φc(0) +
∞∑

n=2

ζ̄nηn(γ) ,

=
∞∑

m=1

[
∫

dnx

(

φc(γ) − φc(0) +
∞∑

n=2

ζ̄nηn(γ)

)

ηm(0)

]

ηm(0) ,

(3.5)

where we used the fact that η(x, 0) forms a complete basis. To compute

the Jacobian for the variable change {ζn} → {γ, ζ̄m}, we need the following

partial derivatives

∂ζn

∂γ
=

∫
(

∂γφc(γ) +
∞∑

m=2

ζ̄m∂γηm(γ)

)

ηn(0) , (3.6)

∂ζn

∂ζ̄m

=

∫

ηm(γ)ηn(0) , (3.7)

evaluated at γ = 0. This gives

∂ζn

∂γ

∣
∣
∣
∣
γ=0

=

∫
(
∂γφc(0) ηn(0) − φ(ζ̄)∂γηn(0)

)
, (3.8)

∂ζn

∂ζ̄m

∣
∣
∣
∣
γ=0

= δmn , (3.9)

5This follows [116].
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where in the first line we used
∫

∂γηmηn = −
∫

ηm∂γηn and substituted φ(ζ̄) =

φ({γ = 0, ζ̄}) =
∑∞

m=2 ζ̄m∂γηm(γ). Clearly φ(ζ̄) ⊥ η1. Note the occurrence

of the φ part. This will lead to new interactions which have no classical

counterpart but are purely quantum mechanical; to 1-loop order, we are

allowed to discard it and (3.6) simplifies to

∂ζn

∂γ

∣
∣
∣
∣
γ=0

=

∫

∂γφc(0) ηn(0) . (3.10)

The matrix of derivatives has the following structure









∫
∂γφc η1 0 0 · · ·

∫
∂γφc η2 1 0 · · ·

∫
∂γφc η3 0 1 · · ·

...
...

...
. . .









. (3.11)

The Jacobian thus gives the well known result J =
∫

∂γφc η1. In the above

situation, we actually have the further simplification that
∫

∂γφc ηn = 0, n >

1; however, for the Jacobian this is irrelevant.

We now turn to the case of arbitrary N . Even though we can no longer be

sure that the background has N exact zero modes, the N lowest lying modes

are quasi-zero modes, i.e. they turn into exact zero modes in the dilute limit

and are related to the collective coordinates γi. We get the following matrix,

where we already dropped the higher order terms,

















∫
∂γ1φc η1 · · ·

∫
∂γN

φc η1 0 · · ·
∫

∂γ1φc η2 · · ·
∫

∂γN
φc η2 0 · · ·

∫
∂γ1φc η3 · · ·

∫
∂γN

φc η3 0 · · ·
...

...
...

...
. . .

∫
∂γ1φc ηN · · ·

∫
∂γN

φc ηN 0 · · ·
...

...
... 1 0

...
...

... 0
. . .

















. (3.12)

From the matrix structure, the Jacobian is given by det(
∫

∂γnφc ηm).

Now, we do not know the set {η} of exact low lying eigenfunctions. How-

ever we can approximate it by constructing an orthonormal set of the known
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single particle zero modes that descend from the exact solutions used to

build up the background field. With a slight abuse of notation, we substitute

η → η̄ = OBη; OB is the matrix that generates an orthonormal basis from

the original set {η} of single particle zero modes. The Jacobian is then given

by

det

(∫

∂γnφc η̄m

)

= det

(∫

∂γnφc ηm

)

det OB . (3.13)

The high-frequency eigenvalues, encoded in the determinant of the fluctu-

ation operator δ2S/δφ2 are assumed to be N -fold degenerate, and so the

fluctuation determinant factorises.

In QCD we also need to introduce quarks and treat their interactions with

the background field. In the case where the Dirac operator admits quasi-zero

modes we can approximate the low-frequency part in the same way as for

the gluonic case; the high-frequency fluctuations will again be assumed to

factorise. As for the Jacobian, we do not know the exact set of low-lying

eigenfunctions for the superposition, but we approximate it by constructing

an orthonormal set of the exact single particle zero modes ξn, i.e. ξ̄ = OF ξ.

The Dirac operator, truncated to that subspace, is then given by

(D/ + m)low = (D/ + m)ij|ξ̄i〉 ⊗ 〈ξ̄j| =
(

D̄/ ij + mδij

)

|ξ̄i〉 ⊗ 〈ξ̄j| , (3.14)

with D̄/ ij = 〈ξ̄i|D/ |ξ̄j〉. The matrix of overlaps is related to the single particle

zero mode overlaps by

D/ low = D̄/ = O†
F D/ OF , (3.15)

with D/ ij = 〈ξi|D/ |ξj〉. Note that this is not a similarity transformation because

OF is not unitary.

3.2 Interactions in the IILM

We will now turn to instantons in QCD. In this chapter, we will only discuss

BPST instantons [22]. In terms of the ’t Hooft potential6

Π(x, {y, ρ}) =
ρ2

r2
, (3.16)

6Actually 1 + Π is the ’t Hooft potential.
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with r2 = (x − y)2, the BPST instanton in singular gauge is given by

Aa
µ = −Oabζb

µν

∂νΠ(x, {y, ρ})
1 + Π(x, {y, ρ}) , (3.17)

with ζb
µν = η̄b

µν for instantons, ζb
µν = ηb

µν for anti-instantons and η the ’t Hooft

symbols. The collective coordinates are: y the centre, ρ the size and O the

colour orientation in the adjoint representation.

The simplest background configuration is the sum ansatz, as used for

instance in [61]. It was shown in [168] that the sum ansatz produces an un-

physical amount of repulsion; this is due to the fact that the field strength

actually diverges at the individual centres, and is in sharp contrast to the in-

dividual singular gauge instanton whose field strength is finite at the centre7.

In this case, the author therefore proposed a different ansatz, inspired by ’t

Hooft’s multi-instanton form, that stays finite at the centre of the instantons,

and dubbed it the ratio ansatz. It is given by

Aa
µ = −

∑

i O
ab
i ζb

µν∂νΠi(x, {yi, ρi})
1 +

∑

i Πi(x, {yi, ρi})
. (3.18)

In what follows we will refer to RE as the interactions or the ensemble gen-

erated by the ratio ansatz. We will compare the predictions from RE with

those of the streamline ansatz S [190] and another ‘hybrid’ ratio-sum ansatz

RH [157]. This is summarised in Table 3.1.

Phenomenological considerations have lead to the conclusion that the

QCD vacuum consists of a dilute ensemble of instantons; a fact corroborated

by lattice studies and self-consistency checks within the IILM. Diluteness and

the localised nature of instantons render negligible contributions other than

7Note, however, that the field strength of the individual singular gauge instanton is not
continuous at the centre and is only defined on the punctured Euclidean space. Inciden-
tally, the winding about this singular point corresponds to the winding at infinity of the
regular instanton.
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Ansatz Description

RE Interactions for ratio ansatz as derived in this paper.

RH
Gluonic interactions are derived from the ratio ansatz whereas
the quark overlaps use a sum ansatz, [157].

S
Interactions have been derived from the so-called streamline
ansatz. These are only available at zero temperature, [157]
[190].

Table 3.1: Several ansätze for the classical background field have been pro-
posed. The following table summarises what they will be referred to through-
out the rest of this thesis.

two-body interactions8, given here for an instanton–anti-instanton pair,

Aa
µ = −

η̄a
µν∂νΠ1(x, {x1, ρ1}) + Oabηb

µν∂νΠ2(x, {x2, ρ2})
1 + Π1(x, {x1, ρ1}) + Π2(x, {x2, ρ2})

, (3.19)

with O = Ot
1O2. The formulas for like-charged pairs follow trivially from the

above.

3.2.1 Gluonic interactions

The complete classical gluonic interaction is given by the sum over all the

possible pairings. It is clear from the structure of (3.19) that the colour

degrees of freedom can be completely factorised out. After some lengthy

algebra the result for the squared field strength can be written in the form

F a
µνF

a
µν = I + (Tr OtO + (η̄Oη)µνµν)J + (η̄Oη)ρµρνIµν

+ (η̄Oη)µρνσIµρνσ + (ηOtOη)µρνσJµρνσ + (η̄Oη)αµαρ(η̄Oη)βνβσKµρνσ . (3.20)

The different contributions are given in appendix A.1.

Factorising out the single instanton contributions and the coupling con-

8A note on terminology: whenever we use the word interaction, we mean a quantity
‘normalised’ to the dilute gas, i.e. we subtract the dilute gas counterpart if the term
naturally occurs in the exponential, as in the classical gluonic interactions, or we divide
by the dilute gas counterpart if the interaction is a pre-exponential factor, as in the gluonic
Jacobian or the Dirac determinant.
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Figure 3.1: For instantons with equal sizes the interaction of RE agrees very
well with RH for oppositely charged instantons. There is a slight discrepancy
for like-charged instantons, in that the repulsion is a bit steeper in the RE

case. (We have set ρ̄ =
√

ρ2
1 + ρ2

2.)
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stant, the classical interaction between instantons is given by

Sg
12/S0 ≡ V12 ≡ (S[A]/S0 − 2) , (3.21)

S[A] =
1

4g2

∫

F a
µνF

a
µν , (3.22)

where S[A] is the action of the background gauge fields and S0 = 8π/g2 that

of a single instanton.

The functional dependence on the size parameters is of the form
√

ρ1ρ2 in

RH , whereas in the RE ansatz the sizes enter in the combination
√

ρ2
1 + ρ2

2

9; this is in agreement with [61]10. For equal sizes both ansätze lead to the

same
√

ρ1ρ2 behaviour, so that we will use this regime to validate our results.

For equal sizes the agreement with RH is very good, see Fig. 3.1. How-

ever, for unequal sizes there are noticeable differences, see Fig. 3.2. The

discrepancy follows from the different functional dependence on the size pa-

rameters.

We will now comment on the assumptions that have so far been made in

the practical implementation of the IILM and that we will adopt in this study

too. These are, on the one hand, the approximation of the high-frequency

quantum interaction by an inverse running coupling constant evaluated at

the scale of the mean instanton size and, on the other hand, the neglect of

the Jacobian that introduces the collective coordinates and represents the

low-frequency quantum interaction.

In the single instanton case the quantum fluctuations lead to charge renor-

malisation and the coupling constant is replaced by the running coupling at

the scale given by the instanton size [182], S0(ρ) = 8π/g2(ρ). The same

calculation has never been performed for a pair. The high-frequency part of

the fluctuation determinant could in principle be estimated along the lines

of [54], as suggested in [61]. This approach seems to fit in well with the

strategy used so far, as it would basically consist of deriving expressions

like (3.20) for higher order gauge invariant operators; but it is not an exact

computation since it neglects the lower part of the high-frequency spectrum.

On the analytical side this approach allows us to estimate that the (high-

9At least in the parameter regions of large and small separations, see appendix A.1.2.
10The authors of [61] have considered the sum ansatz; for large separations, however,

every ansatz is equivalent to the sum ansatz.
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Figure 3.2: For unequal size parameters, e.g. ρ1/ρ2 = 3 in this case, large
differences start to become apparent. The reason is that the dependence
on the sizes is more complicated than the functional form

√
ρ1ρ2 used in

RH . Note that the attractive well is much deeper in the RH case which will
eventually lead to a denser ensemble. (We have set ρ̄ =

√

ρ2
1 + ρ2

2.)
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frequency) quantum interaction is subdominant to the classical interaction:

instantons are localised and thus these higher order operators are subdom-

inant for well separated instantons. The variational approach has indeed

shown that the system stabilises in a rather dilute state and that the clas-

sical interaction dominates over the quantum interactions [61]. In the latter

paper the authors argue then that the quantum interaction can be estimated

by modulating the (total) classical interaction with the inverse running cou-

pling constant, a slowly varying function of the background field, at the scale

ρ̄. We will adopt the parametrisation put forth in [168, 157] that estimates

the scale of the running coupling constant on a pair-by-pair basis and uses the

geometrical mean of the sizes to set this scale. The full gluonic interaction

is then given by

Sg
12 = S0(

√
ρ1ρ2)V12 . (3.23)

The Jacobian (3.12) is positive by definition11. After normalising it to

the dilute gas contribution and placing it into the exponential we can there-

fore interpret it as a (low-frequency) quantum interaction. The normalised

Jacobian matrix is of the form J = I + O, where O represents the overlap

between different instantons and the unit matrix ‘self’-overlaps. For large

separations, O becomes small, and we can expand the determinant. The

leading term will be given by TrO2. A rough estimate of the large distance

behaviour suggests that the asymptotic power-law decay is O(1/R6), with R

the separation between the pair. This is a faster decay than the well-known

dipole–dipole interaction that follows from the classical action. For strong

overlaps the matrix will become approximately degenerate, and the determi-

nant small, because the matrix elements of the pair with the other instantons

will be roughly equal12. From the point of view of the effective interaction

this might be regarded as a repulsive core. For complete degeneracy the sin-

gularity should be logarithmic because one singular value will tend to zero

as the rank of the matrix decreases by one. The repulsion will thus be of the

form

ln J sing
12 ∼ ln

(
R2

ρ2
1 + ρ2

2

)

, (3.24)

11It is a mere variable transformation.
12We assume that, other than the centres, the sizes and colour orientations of the pair

are approximately equal.
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with proportionality factor of order O(1)−O(10) because, as we argued, the

degeneracy is due to one overlapping pair and should not get contributions

from other instantons. In (3.3.1) we will discuss the small separation asymp-

totic behaviour for the ratio ansatz; the analytical expressions are given in

appendix A.1.2, and we note that the singular behaviour is also repulsive

and logarithmic,

Ising
IA ∼ ln

(

1 +
ρ2

I + ρ2
A

R2

)

, (3.25)

with a proportionality factor that is again of order O(1) − O(10). In the

intermediate region it is harder to estimate the Jacobian interaction, but

the logarithm should make its contribution subdominant. Also, the classical

interaction is boosted by the quantum contribution through charge renor-

malisation. We conclude that the Jacobian interaction is probably negligible

compared to the classical interactions. Note that within the moduli-space

approximation it should be incorporated for consistency; it is straightfor-

ward to compute and will be included in the future. In this work, however,

we will focus solely on the classical interaction.

Finally, note that for superpositions that do not lead to a repulsion clas-

sically, as for instance the streamline ansatz S, a repulsive interaction has

been added by hand [157]. The need for such a term follows from the fact

that strongly overlapping instanton–anti-instanton pairs are indistinguish-

able from perturbative fluctuations, since their topological charges have prac-

tically cancelled each other off; but perturbative modes have already been

integrated out and should no longer be present in the IILM. The repulsion

then allows for a separation between instantons and perturbative fluctuations

by introducing an obstruction for strongly overlapping pairs to form. The

IILM might provide its own mechanism to achieve this through the Jacobian

and render unnecessary the need to add a classical repulsive core by hand.

3.2.2 Quark Interactions

The quark interaction arises from (3.14), as is clear from our discussion in

section 3.1, and is purely quantum mechanical. As for the gluonic interaction,

some further approximations have been used in the literature; we will adopt

these, albeit rephrased sightly differently.
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We will assume that the single instanton zero modes {ξ} form a func-

tional orthonormal basis, i.e. we neglect contributions arising from non-

vanishing overlaps among the ξi. With this in mind, the finite dimensional

low-frequency Dirac operator is then given by

(D/ + m)ij = 〈ξi|D/ + m|ξj〉 = D/ ij + mδij . (3.26)

To reiterate, we attribute the diagonal mass term to the requirement of

orthonormality13 rather than the degree of dilution of the instanton ensemble,

e.g. [139]. On the practical level this is irrelevant in as far as we recover the

same determinantal interaction as used in previous works.

The quark zero mode, in singular gauge and in the chiral representation,

is given by [84]

ξI =
1

2πρI

√

1 + ΠI∂/
ΠI

1 + ΠI

(

UIϕ

0

)

, (3.27)

ξA =
1

2πρA

√

1 + ΠA∂/
ΠA

1 + ΠA

(

0

UAϕ

)

, (3.28)

with ϕαa = ǫαa, normalised according to ǫ12 = 1. Finally, Ui is the 3 × 3

colour matrix describing the collective coordinates for the colour embedding;

it is related to the adjoint representation by Oab = 1/2Tr (UτaU †τ b), with

U = U †
I UA.

The Dirac operator, as defined above, is anti-hermitian. Eventually we

need to diagonalise it, but, since readily available routines work with hermi-

tian matrices, we display here the matrix elements of iD/ . Within the ratio

ansatz, the matrix elements TIA =
∫

ξ†IiγµD/ µξA are as follows

TIA =

∫

d4x
1

4π2ρIρA

1

2
Tr (Uτ+

β )Iβ. (3.29)

The concrete realisation of Iβ is given in appendix A.2.

The rather large difference between RE and RH , see Fig. 3.3, is due to

the fact that the latter use a sum ansatz. The ratio ansatz was introduced

13Writing H = Hij |ψi〉 ⊗ 〈ψj | makes only sense if {ψi} forms an orthonormal system,
given the scalar product 〈·|·〉.
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Figure 3.3: The relatively large discrepancy is due to the fact that RE uses
the full ratio ansatz in the Dirac operator whereas RH uses the sum ansatz.
(We have set ρ̄ =

√

ρ2
1 + ρ2

2.)
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=0.4 s=0.02 md=0.01 mu: mHR

=0.4 s=0.2 md=0.1 mu: mER
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Figure 3.4: On the level of the effective interaction, the difference between
RE and RH is not as pronounced, i.e. the relative difference has decreased
substantially. We can clearly see that light quark masses lead to a stronger
attractive interaction between instantons and anti-instantons. Note that the
relative difference between the ansätze RE and RH does not seem to depend
strongly on the quark masses. The instantons have been set up with equal
sizes. (We have set ρ̄ =

√

ρ2
1 + ρ2

2.)

to remove the unphysical divergence in the field strength; no such problem

afflicts the overlap matrix elements. On top of that the quark determinant

is a pre-exponential factor and as an effective interaction the extra loga-

rithmic factor should make it rather insensitive to its exact form, see [172].

Within our numerical framework, the full ratio ansatz does not produce any

additional overhead and has the merit to be more consistent with the glu-

onic interactions. We have checked that upon neglect of the contributions

special to the ratio ansatz, i.e. simplifying the overlaps so as to recover the

sum ansatz, our results agree very well with those of RH , apart form the

aforementioned discrepancy in the instanton size parametrisation. As for the

gluonic interactions, the colour matrices could again be completely factorised

out.
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Note that the Dirac operator only connects instantons to anti-instantons

due to the extra γ-matrix factor as compared to the mass operator, which

vanishes between instantons and anti-instantons. Therefore the quark fluc-

tuation operator has the following form

mI − i

(

0 T

T † 0

)

, (3.30)

with T the NI × NA matrix of overlaps TIA, and NI (NA) is the number

of instantons (anti-instantons); the 0-matrices are NI × NI and NA × NA

dimensional, respectively; finally, I is the identity operator on the quasi-zero

mode space of dimension (NI +NA)×(NI +NA). To diagonalise iD/ , it suffices

to know the singular-value-decomposition of T . The left and right singular

vectors, ψL and ψR, are defined by

TψR
n = λnψ

L
n , (3.31)

T †ψL
n = λnψ

R
n . (3.32)

The singular eigenvalues λn are always positive. The kernel of the Dirac

operator is spanned by the λ = 0 singular eigenvectors, ψK , of either T or

T †, depending on whether NI < NA or NI > NA. We can then construct

the eigenvalue decomposition of the Dirac operator. The non-zero eigenvalue

part has the following eigensystem

{[

λn,

(

ψL
n

ψR
n

)]

,

[

−λn,

(

−ψL
n

ψR
n

)]∣
∣
∣
∣
∣
n ∈ {1, . . . , min(NI , NA)}

}

. (3.33)

Finally, the kernel is spanned by the eigensystem







{[

0,

(

ψK
n

0

)]∣
∣
∣
∣
∣
n ∈ {1, . . . , NA − NI}

}

, NI < NA,

{[

0,

(

0

ψK
n

)]∣
∣
∣
∣
∣
n ∈ {1, . . . , NI − NA}

}

, NI > NA.

(3.34)

Note that the non-zero eigenvalues come in pairs. Together with the zero
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eigenvalues, the determinant of the Dirac operator can be written as

det(iD/ ) = m|Q|
min(NI ,NA)

∏

n

(m2 + λ2
n), (3.35)

with Q = NI − NA the topological charge. If we are only interested in the

determinant, and not so much in the eigensystem, this can be put in the

equivalent form

m|Q|

{

det(TT † + m2), Q < 0

det(T †T + m2), Q > 0.
(3.36)

Upon placing this term into the exponential, the normalised determinant

of quark zero mode overlaps leads to an effective interaction. The normali-

sation consists of dividing (3.36) by mNI+NA . The quark interaction is thus

given by

Sq
Nf

= −
Nf∑

n=1

{

ln det(TT † + m2
n) − NI ln m2

n, Q < 0

ln det(T †T + m2
n) − NA ln m2

n, Q > 0
, (3.37)

with Nf the number of active quark flavors. Note that the quark interaction

is always attractive. This follows from the fact that we can write the overlap

matrix for each flavour as I + T 2

m2
n
, and this form makes it explicit that the

determinant is bounded from below by unity because the smallest eigenvalue

is easily seen to satisfy λmin ≥ 1.

This exhausts the interactions in the IILM because the fluctuation oper-

ator of the ghost part is positive definite and its lack of zero modes prevents

the construction of the low frequency part of the spectrum within the moduli-

space approximation. We are thus left with the high-frequency part which,

as in the other cases, is assumed to factorise and cannot lead to interactions.

3.3 Numerical Implementation

3.3.1 Interpolation and asymptotic matching

The decoupling of the colour degrees of freedom is a computational benefit:

by using global SO(4) transformations, without loss of generality, we place
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the first instanton at the origin and the second along the z-direction. The

initial orientational dependence is then factored out of the integrand and

combines with the colour matrices as in [61]. These integrations are too time

consuming to perform during actual simulations; instead, they are computed

beforehand to fill interpolation tables that are, in turn, used during the

simulations. The interpolation grid is three-dimensional, and depends on ρ1,

ρ2 and R = |x1 − x2|. For numerical stability we choose to use simple linear

interpolation.

A uniform grid can, of course, only extend over a finite region and we

must decide which portion of the parameter space to cover. We took the

single instanton moduli-space measure as a guide for the size grid because,

suitably normalised, it can be interpreted as a probability density. We choose

the lower limit, ρmin ≈ 2
30

Λ−1, to be a fairly small quantile14. Here, Λ is the

scale at which QCD starts to become strongly coupled. The upper limit is

set to ρmax = Λ−1. Larger instantons cannot be treated consistently in the

IILM because it uses perturbation theory, which breaks down below Λ.

We believe that these choices cover the relevant parameter space, and we

sample the sizes from the interval [ρmin, ρmax]. As a consistency check we

monitored the actual size distribution and did not find any evidence for a

significant weight at the edges of the sample interval. We therefore conclude

that this procedure is well-defined.

The classical gluonic interaction in the ratio ansatz suffers from gauge

singularities that prevent us from extending the grid down to vanishingly

small instanton separations, R → 0. The opposite limit, R → ∞, cannot be

covered either unless we use a non-uniform measure on R+. In principle this

would seem like the most elegant approach, however, it is not feasible prac-

tically because the numerical integration becomes inaccurate at larger sepa-

rations; the only remedy would be to set very small error tolerances for the

numerical integrations, but that is computationally prohibitive. Therefore,

we decided to use matching formulas for both the large and small separation

regimes.

The rationale is not to derive accurate formulas in absolute terms but to

get the absolute value from the interpolation results at a matching point Rm.

14It corresponds to less than the millionth quantile.



CHAPTER 3. THE IILM AT ZERO TEMPERATURE 55

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

����

����
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

I1

I2R

Figure 3.5: The instantons I1 and I2 are so far apart that, within the shaded
region that give the dominant contribution to the field strength of each, the
partner’s field strength is roughly constant and fixed at xµ −Rµ ≈ −Rµ. We
can then safely extend the integration region to be all of R

4, with a negligible
error due to the rather strong localisation of the individual instantons.

The matching formulas are thus to be understood as accurate in a relative

sense, i.e. the asymptotic interactions fasy should behave, asymptotically,

like the exact numerical interactions fex. This ensures that we reproduce the

correct fall-off or singularity behaviour. Thus, we compute the interactions

according to

f(R) = fasy(R)
fex(Rm)

fasy(Rm)
, (3.38)

whenever they fall out of the grid. Since the localisation of the instantons

is set by the sizes, it is natural for the matching point to be proportional

to the former. Eventually, the exact proportionality factor follows from an

‘optimisation’ procedure, given that we aim for the interpolated interactions

to be correct at the one percent level.

The full gluonic interaction consists of different pieces that are added to-

gether, (3.20). We could use (3.38) for these subinteractions term by term

but it turns out that such a matching is numerically rather unstable. Thus,

even though we are only interested in asymptotic relations, we need a sys-

tematic procedure that insures that the different asymptotic subinteractions

are added up with the correct magnitude relative to each other.

For the large separation case we want the instantons to be so far apart

from each other that within the region in which the field strength for I1 is

strong the field strength of I2 hardly changes: we can approximate xµ−Rµ ≈
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Large separation asymptotic integration up to R

2 (II)

I2I1

Proper small separation asymptotic integration down to R (I)

neglected

Figure 3.6: The instantons I1 and I2 are strongly overlapping. We approxi-
mate the integral by, first, integrating over I1 keeping I2 fixed at Rµ, as in the
large separation case but with upper limit R/2; to this we add the analogous
contribution from I2. Secondly, the, possibly, singular behaviour is picked up
by integrating from infinity down to R, and approximating the arguments to
be xµ − Rµ/2 ≈ xµ and xµ + Rµ/2 ≈ xµ, respectively.

−Rµ
15. Since the field strength is negligible at and beyond Rµ, we can safely

extend the integration region to cover all of R
4. The field strength of I2

behaves as a constant, and we can use the rather simple rational expression

for the interaction in terms of the ’t Hooft potential to find exact results.

We add to this the analogous contribution from I1 ↔ I2. The configuration

is illustrated in Fig. 3.5.

We shall call this the zeroth order approximation, and it is clear that, to

this order, terms odd in derivatives of Ii will vanish due to O(4) symmetry.

However, it turns out numerically that, upon combining all the different

terms from (3.20), the zeroth order terms are sufficient. Our formulas are

given in appendix A.1.2.

In principle, we can compute the neglected terms by going to first order,

i.e. g(x−R) ≈ g(−R) +xµ∂µg(−R), or beyond. Such higher order contribu-

15We use a translation to place I1 at the origin.
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tions will typically no longer converge on R
4. It seems natural to cut them off

at R, and this will generally lead to logarithms, ln(1+R2/(ρ2
1+ρ2

2)), together

with rational functions. However, in contrast to the fitting formulas of [157],

the Taylor expansion of our asymptotic formulas produce only power-law like

decays for large separations; in addition they fall off more strongly than the

zeroth order terms.

We now turn to the case of asymptotically small separations. A typical

situation is depicted in Fig. 3.6. The rationale is to split the integration into

2 regions.

I The far-field region beyond both centres, placed symmetrically around

the origin; we approximate the arguments by xµ ± Rµ/2 ≈ ±xµ.

II The region around each instanton up to R/2, with R the pair sep-

aration. We integrate around ±Rµ/2 keeping the arguments of the

partner instanton fixed at xµ ∓ Rµ/2 ≈ ∓Rµ/2. This is similar to the

large separation case, but here we only integrate up to R/2.

Region I accounts for possible singularities. After adding up all the dif-

ferent subinteractions, the singularities from region I dominate the total in-

teraction. Since we need the region II approximations anyway in the large

separation case, it does not represent any extra overhead to use them as well

in the small separation limit.

In Figs. 3.7 and 3.8 we plot the exact and approximate result for the glu-

onic, quark and total interaction. Note that some subinteractions in the glu-

onic sector are poorly approximated by the zeroth order asymptotic matching

formulas in region I. However, those terms that do exhibit singularities com-

pletely dominate, and the total gluonic interaction is well approximated for

all separations. The quark overlap consists of just one term, which is not well

described in region I. We estimated that the correct asymptotic behaviour

can be obtained at second order. However, this is unnecessary since the quark

interaction is bounded in that region and the gluonic interaction completely

dominates. Combining the gluonic and fermionic interactions, we see that

the total pair interaction is accurate on the one percent level.

Note that we use interpolation up to very strong overlaps; also, instantons

rarely enter region I during simulations because it makes up a very small part
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Figure 3.7: The gluonic interaction is well approximated by the combination
of interpolation and asymptotic matching. The quark overlap is very poorly
approximated by the zeroth order small separation asymptotic formula; it
tends to zero with too high a power as compared to the exact result. The
correct behaviour can in principle be obtained from higher orders, and we’ve
estimated that the second order contribution will suffice. In practice, the
quark interaction in this region is completely irrelevant as compared to the
gluonic interaction.
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of the total volume box. In any case, region I overlaps will almost certainly be

rejected in Monte Carlo moves, and therefore quantities that are computed

solely from the quark interaction, as for instance the quark condensate, are

very insensitive to large errors in region I. Ultimately, this is the reason why

we chose the interpolation grid to cover such strong overlaps.

3.3.2 Monte Carlo

Previous studies, lattice results and phenomenology indicate that the instan-

ton ensemble is fairly dilute. Therefore, we organise the partition function

into a dilute gas measure times the exponential of interactions,

Z =
∞∑

NI ,NA

1

NI !

1

NA!

NI∏

i

d(ρi)

NA∏

j

d(ρj) exp (−(Sg + Sq)) , (3.39)

≡
∞∑

NI ,NA

1

NI !

1

NA!
ZNI ,NA

, (3.40)

Sg =
∑

ij

Sg
ij , (3.41)

where Sg
ij is given in (3.23) and Sq is given in (3.37). We follow [157] and

use one-loop accuracy for the charge renormalisation factor that modulates

the classical gluonic interaction, i.e. S0(
√

ρ1ρ2) → β1(
√

ρ1ρ2), with β1 given

below in (3.46). Although not really consistent, the single instanton density is

given at two-loop in order to replace the pre-exponential bare by the running

coupling constants [61]; the former were induced by the transformation to

collective coordinates. The two-loop single instanton measure is then given

by

d(ρ) = dg
0(ρ) dq

0(ρ)Nf , (3.42)

dg
0(ρ) = CNcρ

−5β1(ρ)2Nc exp

[

−β2(ρ) +

(

2Nc −
b′

2b

)
b′

2b

ln β1(ρ)

β1(ρ)

]

, (3.43)

dq
0(ρ) = mρ exp

(

−1

3
ln mρ

+
1
3
ln mρ + 2α − (6α + 2β)(mρ)2 + 2A1(mρ)4 − 2A2(mρ)6

1 − 3(mρ)2 + B1(mρ)4 + B2(mρ)6 + B3(mρ)8

)

. (3.44)
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For the quark term, dq
0, we use the generalisation of ’t Hooft’s [182] result

valid for arbitrary mass [59]. The different terms in dg
0 are given by

CNc =
0.466 e−1.679Nc

(Nc − 1)!(Nc − 2)!
, (3.45)

β1(ρ) = −b ln(ρΛ), b =
11

3
Nc −

2

3
Nf , (3.46)

β2(ρ) = β1(ρ) +
b′

2b
ln

(
2

b
β1(ρ)

)

, b′ =
34

3
N2

c − 13

3
NcNf +

Nf

Nc

. (3.47)

Note that the above has been derived in Pauli-Villars regularisation.

Being an interacting many-body system, the partition function cannot be

evaluated analytically, and we choose Monte Carlo methods to cope with it

numerically. More precisely, we will use the Metropolis algorithm to sample

the important integration regions of the partition function. This is, of course,

all well known, but it seems appropriate to introduce the, possibly less known,

Monte Carlo moves corresponding to insertion and deletion of instantons

needed for grand canonical simulations.

Following the usual strategy of imposing detailed balance, the simplest

insertion/deletion algorithm consists of randomly placing an instanton in the

box and randomly selecting an instanton to be removed. Imposing detailed

balance and considering the case of an instanton, we arrive at

1

V
peq

NI ,NA
ANI ,NI+1 =

1

NI + 1
peq

NI+1,NA
ANI+1,NI

. (3.48)

As usual, peq
NI ,NA

= ZNI ,NA
/Z16 is the probability to be in the state {NI , NA}.

The acceptance probability Aij is implicitly defined through (3.48), and the

16Note that we neglect the factorial terms in the definition of the equilibrium probability
density peq because they are an artifact as far as the measure is concerned. They have
been introduced to render the integration volume simple, i.e. the product of the single
instanton moduli-spaces MNI . During the integration process all the permutations of a
given set of coordinates are generated, but, since the instantons are indistinguishable, they
really correspond to only one configuration. To correct for this overcounting, we then have
to divide by a factor of NI !. The important point is that for the transition probabilities
these factorial factors are irrelevant.
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Metropolis algorithm defines it to have the following form, [70],

ANI ,NI+1 = min(1,A) , (3.49)

ANI+1,NI
= min(1,A−1) . (3.50)

Plugging this into (3.48) we finally arrive at

A =
V

NI + 1

peq
NI+1,NA

peq
NI ,NA

. (3.51)

The difference to ordinary Monte Carlo moves, as used in the canonical

ensemble17, is that the proposal probabilities do not cancel and the transition

matrix is not symmetric. In this specific case, the proposal probability for

an insertion is P ins
P = 1/V , corresponding to the probability to place the

instanton randomly within the box, whereas the proposal probability for a

deletion is Pdel
P = 1/(NI + 1), corresponding to the probability to select an

instanton among the NI + 1 available.

When we perform the standard updates, it is easy to monitor the accep-

tance rates and tune the the proposal probabilities to achieve good rates, i.e.

50% say. For the move described by (3.51) we do not have a parameter to

tune though. At T = 0, this is not really a big issue because it turns out that

the acceptance rate is ≈ 0.4, even for the rather small quark masses that we

will use. This is still acceptable and does not really justify the overhead of

more sophisticated update algorithms.

Also, note that such an insertion/deletion step is a fairly large change as

compared to the normal coordinate updates, and so these grand canonical

moves actually help to sweep through phase space more quickly.

Finally, we need to decide how many grand canonical moves we perform

per coordinate update, that is we need to fix the a-priori-probabilities δC and

δGC . We found that, for T = 0, the ensemble is not sensitive at all to this

parameter, see Table 3.2. Since we will ultimately be interested in computing

the topological susceptibility, we will aim to achieve low autocorrelation times

for the instanton number, N = NI + NA, and topological charge, Q = NI −
NA, i.e. we will perform rather more insertion/deletion moves than less. In

17That is, updates for the positions, sizes and colour orientations
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δC δGC 〈N〉 ξN 〈Q2〉 ξQ2 〈Sint〉 ξint

0.5 0.5 101.4(6) 2500 2.4(1) 200 −5.005(5) 1200
0.6 0.4 100.8(6) 2100 2.30(5) 130 −5.0010(5) 1400
0.8 0.2 102.6(6) 4000 2.35(4) 130 −5.010(2) 2400
0.9 0.1 102.1(6) 5000 2.5(1) 270 −5.016(3) 3700

Table 3.2: The sample size is roughly equivalent for each set, with 200 inde-
pendent configurations generated according to the autocorrelation time ξN .
Considering some bulk properties, we see that the sampling does not re-
ally depend on the a-priori-probabilities δi. Even though the autocorrelation
times are only rough estimates, we will take the data at face value and choose
δC = 0.6 and δGC = 0.4 for the remaining simulations.

practice we perform canonical moves only 60% of the time.

3.3.3 Fermionic determinant

As mentioned in the introduction, we want to study the IILM for ’physical’

quark masses. In that case, we must make sure that the simulation box is

large to be insensitive to finite size effects. In the lattice community it is

common practice to use a box length that corresponds to 4 − 5 times the

wavelength of the lightest propagating degree of freedom, which is the pion.

In practice, we want to circumvent the need for extremely large boxes by

studying the thermodynamic limit, V → ∞.

As compared to fitting formulas, our combination of interpolation and

asymptotic matching results in a rather substantial computational overhead.

This is particularly so in the quenched case. For unquenched simulations the

situation is less drastic as the computationally most demanding part is the

evaluation of the determinant and/or the determination of the eigensystem of

the Dirac operator. Increasing the simulation box, i.e. increasing the number

of instantons, this becomes the bottleneck to large volume simulations.

The Monte Carlo changes are, however, of a rather simple form, changing

only one column of the overlap matrix T at a time. We can therefore use

decomposition update techniques to reduce the complexity from O(N3) to

O(N2).

For the update step we only need to evaluate the determinant (3.36).

Given the fact that m2 + TT †, respectively m2 + T †T , is a positive defi-
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nite hermitian matrix, the fastest evaluation will be achieved by using the

Cholesky decomposition. An added bonus is that the Cholesky decomposi-

tion and its algorithm are known to be very stable.

Focusing on M2 = m2 + TT † = LDL†, an update T ′ = T + ∆T can be

written as two rank 1 updates for M2, of the form

M ′2 = M2 + ΦΦ† − ΨΨ† , (3.52)

with Φ, Ψ vectors. Details are given in appendix C, where we also discuss

more efficient ways to deal with adding and removing instantons, and the

corresponding updates. The Cholesky decomposition can be updated effi-

ciently when it only changes by rank 1 matrices, that is transformations of

the form

M ′2 = L′D′L
′† = M2 + αzz† = L(D + αww†)L† , (3.53)

where Lw = z. The algorithms then compute the decomposition of D +

αww† = L̃D̃L̃†, which can be achieved in O(N2) because D is diagonal. Fur-

thermore, the matrix L̃ has a special form which allows an efficient matrix

multiplication, L′ = LL̃, in O(N2). Details can be found in [81]. The algo-

rithm we use in practice is known to be unstable for downgrading, α < 0,

unless the resulting matrix, M ′2, is known to be positive definite. Since

upgrading, α > 0, is always stable, it is important to perform the two con-

secutive updates in the order given by (3.52).

In general we will be performing grand canonical simulations, and need

to keep track of two decompositions, one for m2 +TT † and one for m2 +T †T .

Furthermore, we deal with 3 active quarks so that each Monte Carlo update

entails 2 · 2 · 3 = 12 rank 1 updates. We find that for an ensemble with

100 instantons and 100 anti-instantons we achieve a computational gain of a

factor of 2 as compared to the full Cholesky decomposition.

3.4 Different Ensembles

To be predictive, the IILM should not depend too sensitively on the chosen

ansatz. Given the fact that, for instance, the streamline and the ratio ansatz

have quite different functional forms for overlapping pairs, the insensitivity
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of the model to specific background ansätze can only be determined a poste-

riori. On a heuristic level, we expect insensitivity to emerge if the ensemble

stabilises in a rather dilute form so that the precise functional form of the

repulsion is irrelevant. The large separation limit is a priori unproblematic

because all ansätze are constructed such that, asymptotically, they approach

the simple sum ansatz, i.e. A = A1 + A2, with A the gauge field.

First, we will frame our discussion on the pair interactions. The total

effective interaction of a pair of oppositely charged partners is given by

S12 = S0(
√

ρ1ρ2)V12 −
Nf∑

n=1

ln

( |T12|2 + m2
n

m2
n

)

. (3.54)

Identically charged pairs only feel the gluonic interaction as TII = TAA = 0.

As expected, the ratio and streamline ansatz are markedly different only for

strongly overlapping pairs, see Fig. 3.9, where strongly overlapping pairs are

characterised by R ≤
√

ρ2
1 + ρ2

2.

In the quenched case, we notice that the RE ansatz has a higher absolute

minimum as compared to the RH ansatz, occurring roughly for the same

separation. So we expect the ensemble to become slightly more dilute because

it will not be as favourable, energetically, for instantons to come close. For

unequal sizes, however, the repulsion is weaker in the RE case which would

favour a denser ensemble, as less volume is excluded. The streamline ansatz

will lead to a substantially more dilute system because the core repulsion is

broader, excluding more volume for the instantons to move through.

In the unquenched case, the difference in the absolute interaction strength

is much more pronounced between RE and RH . We therefore expect that the

RE ansatz should be quite a bit more dilute as compared to the RH ansatz.

Considering that the streamline ansatz has a deeper minimum than the RE

ansatz, the former will favour instantons to come closer. However, it has

more excluded volume. Both trends work in opposite directions, and there

is a possibility that they lead to roughly identical ensembles, at least on the

level of the instanton density.

We will address these issues in more detail by performing canonical sim-

ulations and minimising the free energy. This follows closely [157], and also

serves to validate our code against their results. Note that the simulations
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Figure 3.9: Top: Most attractive colour orientation. Bottom: Random colour
orientation. For both graphs the instantons have different size parameters.
We expect the RH ensemble to be denser than the RE ensemble because
the attraction well is deeper, whereas the excluded volume due to repulsion
is not that different. Along the same lines, the S ansatz should lead to a
rather more dilute system in the quenched case. For unquenched simulations,
the deeper attraction well, and the steeper and broader repulsion, of the S
interactions might lead to an ensemble roughly equivalent to the RE one.
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are performed in the topologically trivial sector, for which NI = NA, i.e. the

topological charge Q = 0. In Fig. 3.10 we plot the free energy F = − ln Z/V

against the instanton density n = (NI + NA)/V . As expected from our con-

siderations of the pair interactions, in the quenched case the RE and RH

ansätze are only slightly different, with RE leading to a slightly denser en-

semble. Also, the interactions stored in that ensemble18 are a bit lower, again

as could be anticipated from the pair interactions. The S ansatz leads to a

much more dilute instanton ensemble, and our data reproduces well that of

[157].

Ultimately, we will be interested in smaller quark masses. It is clear

from (3.54) and Fig. 3.4 that smaller masses increase the quark interaction

strength as compared to the gluonic counterpart, which stays constant and

is responsible for the core repulsion. From a purely energetic point of view,

smaller quark masses should then lead to denser ensembles. However, we

clearly see in Fig. 3.10 that the ensembles become more dilute. The reason

is that the small quark masses enter the instanton size distribution; in turn,

the density, in the dilute gas limit, is entirely set by the size distribution, i.e.

n = 2
∫

dρd(ρ). Bringing it into the action, we can interpret the size distribu-

tion as the energy cost needed to insert an instanton into the box. This is a

well-known fact, namely that small quark masses suppress instanton contri-

butions to the QCD vacuum because the different topological vacua become

equivalent in the limit of vanishing quark masses; phrased differently, the

energy barrier has disappeared, and only field configurations with topologi-

cal charge Q = 0 survive. In the dilute gas approximation this leads to the

disappearance of instantons altogether. As Fig. 3.10 shows, this is not true

for an interacting instanton ensemble, where the instanton density converges

to a finite limit as the quark mass is lowered19. The results from Fig. 3.10

also show that the RE ansatz generates an ensemble that differs more and

more from the RH ansatz, as was anticipated from our considerations of the

pair interactions. We can also clearly see that the RE ensemble does not

converge to the S ensemble.

18The difference in the free energies is directly related to the difference of the interaction
per instanton

19Remember that the simulations take place in the topologically trivial sector, i.e. NI =
NA or Q = 0.
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mu md ms

M1 0.1 0.1 0.7
M2 0.05 0.05 0.3
M3 0.012 0.022 0.44

Table 3.3: We use three different sets of quark masses and investigate how
the instanton liquid depends on them.
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Figure 3.10: The different quark masses are summarised in Table 3.3. The
simulations were performed in the topologically trivial sector, i.e. NI = NA.
For the quenched and the M1 case we fixed N = 64 as in [157]. The other
two unquenched simulations have N = 200. We clearly see that small quark
masses suppress instanton contributions to the QCD vacuum, but also that
there exists a finite limit for the instanton density as the quark masses van-
ish; this is in contrast to the dilute gas approximation which suppresses
instanton contributions completely for zero quark masses. For unquenched
simulations the free energy for the RE ensemble roughly agrees with that of
the S ensemble, although the equilibrium densities are rather different. Still,
the approximate equality between the free energies might be interpreted as
evidence of an approximate equivalence between both ensembles for bulk
properties, e.g. equivalent pressure, since it is directly related to the free
energy. However, the RE liquid does not seem to converge towards the S
ensemble as we lower the quark masses.
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Figure 3.11: As anticipated from the canonical study, the instanton number
for both ratio ansätze is very similar in the quenched case. There seems to
exist a finite limit for the instanton density as the quark masses vanish, and
instantons will be present in the QCD vacuum even in the chiral limit; this
is in sharp contrast to dilute gas approximations.

So far we have framed the discussion essentially in terms of the instanton

density. To investigate the similarities and differences in more detail, we will

look at a few bulk properties and their dependence on the different ansätze

in the thermodynamic limit and the grand canonical ensemble. We clearly

see how the density decreases with the quark masses, but approaches a finite

limit, Fig. 3.11. As we have discussed before, the quark masses will suppress

fluctuations to inequivalent topological sectors and in the limit of vanishing

masses only the trivial Q = 0 sector will survive. The fluctuations between

topological sectors are encoded in the topological susceptibility χ = 〈Q2〉/V ,

which vanishes with the quark masses, see Fig. 3.12. Both the instanton

number and the topological charge fluctuations exhibit a nice scaling with

the volume.

We will now turn to an intensive quantity, the mean instanton size ρ̄

Fig. 3.13. For the quenched and the first unquenched, M1, simulations,
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Figure 3.12: The topological susceptibility, the slope of the graphs, is very
sensitive to the quark masses. It is screened by small quark masses and will
vanish in the chiral limit. This is expected as QCD with massless quarks
does not have topologically inequivalent vacua; in this case the so-called θ
parameter is not physical and can be rotated away by a chiral rotation of the
quark fields. See also [173] for another work on the topological susceptibility
in the IILM.
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Figure 3.13: For the quenched and the M1 simulations, which have been
fixed to N ≈ 64 for the smallest volume, the simulation boxes are still a too
small, as can be seen by the systematic drift. For the other two unquenched
simulations (N ≈ 200 for the smallest volume) we are much closer to the
thermodynamic limit, although there are still systematic deviations for the
RH ansatz. In any case, the different ansätze give rather similar results. Also
the mean instanton size approaches a unique limit for small quark masses.
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Figure 3.14: As anticipated from the pair interaction considerations, the
interactions are very similar in the quenched sector for RE and RH . For full
simulations, the differences between the ansätze stay constant as the quark
masses vary, with RH leading to the strongest attractive interactions, as was
expected. Note that the pair interactions are less sensitive to finite size effects
compared to the mean instanton size.
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n χ 〈ρ〉 〈Sg + Sq〉/V

Quenched
0.567(1) [RE]
0.532(1) [RH ]
0.282(1) [S]

0.46(3)
0.86(5)
0.24(1)

0.6837(2)
0.6850(1)
0.5631(1)

1.420(1)
1.455(1)
1.122(1)

M1

0.288(2)
0.370(2)
0.163(1)

0.041(1)
0.0369(8)
0.0196(6)

0.6662(2)
0.6581(3)
0.6331(3)

−1.648(1)
−2.311(2)
−1.818(3)

M2

0.1660(7)
0.259(1)
0.1255(8)

0.0136(4)
0.0126(2)
0.0075(2)

0.6757(2)
0.6615(2)
0.6510(2)

−2.996(1)
−3.945(2)
−3.472(2)

M3

0.1686(8)
0.265(1)
0.1269(5)

0.00440(7)
0.00403(7)
0.00230(5)

0.6744(2)
0.6606(2)
0.6511(2)

−4.954(1)
−5.902(2)
−5.407(2)

Table 3.4: Thermodynamic extrapolations for the instanton density, the
topological susceptibility, the mean instanton size and the mean interaction.
The data has been obtained from Figs. 3.11, 3.12, 3.13 and 3.14 respectively.

which have been calibrated to achieve N ≈ 64 for the smallest volume as

in the canonical simulations, we see that the simulation boxes are not large

enough, even though the density and the charge fluctuations seem to suggest

otherwise, i.e. display good scaling with V . For the other two unquenched

simulations, tuned to N ≈ 200 for the smallest volume, we have reached

volume sizes large enough to perform a thermodynamic limit. It is worth

noticing that the mean instanton size is a rather robust quantity, and does

neither depend strongly on the ansatz nor on the quark masses. This makes

it a good quantity to use when comparing data from different ensembles, e.g.

[46] where the authors establish that the scale at which the IILM is oper-

ating is given by the inverse of the mean instanton size. Another intensive

quantity, the interaction per instanton, is less sensitive to finite size effects,

see Fig. 3.14. The data shows that the weaker repulsion of the RE ansatz as

compared to the RH ansatz dominates over the deeper attractive well of the

latter. Therefore, the total interaction in the RE ensemble is slightly lower,

leading to a denser system. The stronger repulsion for the S interactions

leads to more excluded volume; this, in turn, leads to lower interactions and

a more dilute ensemble. These conclusions are in agreement with the direct

measurement of the instanton density Fig. 3.11.
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We are mostly interested in unquenched results, and the following com-

ments relate this sector. From the data of Table 3.4, we can infer that results

for χ1/4 have a 12% systematic ansatz dependence. The topological suscep-

tibility is surprisingly similar for the RE and RH ansatz in the unquenched

sector. The mean instanton size is indeed a rather robust quantity and only

affected on the 3% level by these systematics. Also, note that the mass de-

pendence on 〈ρ〉 is rather small, with differences not larger than 5%. The

instanton interactions and n1/4 agree within 20%, and the latter converges

to a fixed limit as the quark masses vanish.

3.5 Fixing parameters

3.5.1 Quenched case

In the quenched case, the IILM has only one freely adjustable constant, the

lambda parameter Λ. We need one observable, from the lattice say, to fix it.

Different approaches can be chosen. In the early works, Λ was determined

by fixing the instanton density to 1 fm−4 at T = 0. To compare this with the

lattice is not straightforward as the classical instanton content is convoluted

with the quantum mechanical fluctuations. With the discovery of the KvBLL

calorons, there is a renewed interest in studying the topological structures

on the lattice, see for instance [29]. Since the topological susceptibility is

well measured on the lattice and is easily accessible within the IILM, it is a

natural candidate. The lambda parameter is then given by

Λ = 4

√
χlat

χIILM

. (3.55)

We will use χ
1/4
lat = 193 MeV, [60]. The topological susceptibility in the IILM

is extracted from Fig. 3.15 by using the definition

χtop = lim
V →∞

〈Q2〉
V

. (3.56)

This yields Λ = 234(1) MeV. The error is purely statistical. The instanton

density turns out to be n = 0.543 Λ4 = 1.02(2) fm−4, fairly close to the
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Figure 3.15: The fluctuations of the topological charge 〈Q2〉 show a nice linear
dependence with the volume box V , as it should be for an extensive quantity.

From this we infer the topological susceptibility χtop = limV →∞
〈Q2〉
V

.

usually quoted phenomenological value of n = 1 fm−4. We find that even for

these larger volumes the mean instanton size is still evolving towards lower

values, as in Fig. 3.13. The largest volume then leads to the upper bound

ρ̄ < 0.57 fm. Using a simple fit to ρ̄ = ρ̄∞ + αV −0.25 to extrapolate to the

asymptotic value, we find ρ̄∞ ≈ 0.53 fm; this is rather large compared to the

phenomenological value of ρ̄ ≈ 0.33 fm.

To estimate the systematic error due to the dependence on the ansatz, we

will use the data from Table 3.4. The fact that we take a fourth root reduces

the rather large differences in χIILM to about 15% for Λ, i.e. Λ = 234(35) MeV.

Our value has been obtain through simulations in PV regularisation. To

compare it with lattice data, we will convert it to the MS scheme, [94],

ΛMS/ΛPV = exp(−1/22). This gives ΛMS = 224(33) and compares well with

the lattice result ΛMS = 259(20) [82].
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3.5.2 Unquenched case

We want to use realistic quark masses. These are fairly small, and one must

worry whether such light degrees of freedom will fit into the simulation box.

The usual approach, used in the lattice community and also in work on the

IILM [46], is to compute the pion mass from a set of unphysical quarks

and to fix the volume box such that Lmπ > 5; chiral perturbation theory

can then be used to extrapolate to physical masses. Ultimately, the lattice

wants to test the predictions of chiral perturbation theory as well, and in

recent years, the computing power and, most importantly, the algorithms

have improved to such an extent that physical quark mass simulations are

becoming feasible; however, these are still immensely costly simulations, and

2 + 1 flavour simulations were rare until recently.

We follow a rather more modest rationale by simply demanding that the

quark mass be at least so small as to be comparable to the lowest eigenvalue

of the Dirac operator, 〈λmin〉, see Fig. 3.17. This sets the smallest box we

use in our simulations. We then use ever larger volumes and extrapolate to

the thermodynamic limit.

In [46] the lambda parameter20 is fixed by computing the meson and

nucleon masses, through current correlators of the interpolating fields and

their asymptotic spatial decay, and by comparing them with the available

lattice data. This study established that the IILM is compatible with the

predictions of chiral perturbation theory. We will take this for granted in

what follows.

In order to fix Λ, we could still use the topological susceptibility as it

is routinely measured on the lattice. However, the topological susceptibility

depends strongly on the quark masses, see Fig. 3.12. We can get rid of

the mass dependence by using chiral perturbation theory and computing the

chiral condensate 〈q̄q〉21. The chiral condensate has been studied within chiral

perturbation theory and, more recently, it has been precisely determined on

the lattice [39, 38, 37]. We will take it to be 〈q̄q〉MS
0 (µ = 2 GeV) = 250 MeV.

20Actually, the authors fixed the mean instanton size. But it is trivial to relate the latter
to the lambda parameter.

21To reiterate, we implicitly rely on the fact that the IILM is describing well the chiral
properties of QCD, as has been checked in numerous studies, the most convincing being
[46].
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To extract the chiral condensate from the IILM, we will use the procedure

adopted in [39, 38, 37]: we compute the topological susceptibility for different

sets of quark masses and extrapolate to the chiral limit, mi → 0. The

condensate can then be determined by chiral perturbation theory [125],

χ = meff〈q̄q〉0 + O(m2) , (3.57)

meff =





Nf∑

n

1

mn





−1

.

The chiral condensate has an anomalous dimension and, therefore, de-

pends on the scale. Furthermore, the IILM is set up with a PV regulator,

whereas the quoted result is computed in dimensional regularisation. It is well

known that within an unphysical renormalisation scheme such as MS22 the re-

sults depend on the regulator (for unphysical quantities like masses, coupling

constants and amplitudes). We therefore need to compute the finite countert-

erms that relate the PV to the MS regularised results. Using the result (2.63)

we derived in section 2.2.2, we find that 〈q̄q〉PV
0 (µ = 2 GeV) ≈ 244 MeV. This

is a one-loop result. The two-loop correction can be estimated very roughly

to be on the 10% level as is typical for computations around the scale of

µ = 2 GeV23.

We will define the scale of the IILM by µΛ = Λ/ρ̄, as suggested in [46],

and determine Λ from the self-consistency equation

〈q̄q〉PV
0 (µΛ) = Λ3〈q̄q〉IILM

0 , (3.58)

where we run the chiral condensate 〈q̄q〉PV
0 (µ) at one loop. To that order,

there is no difference between schemes and we can use the MS results, e.g.

[191].

To get an estimate of the quark mass ratio dependence, we have used two

22’t Hooft’s computation of the one-loop instanton measure, using Pauli-Villars regular-
isation, is also unphysical because, instead of poles, logarithms of the regulator mass are
subtracted.

23Strictly speaking, we should use the two-loop result because the simulations in the
IILM have been obtained using the two-loop improved instanton measure. However, Pauli-
Villars regularisation is not straightforward for non-Abelian gauge theories beyond the
one-loop level, and we do not have the expertise to embark on this endeavour. In any
case, the difference should still be on the 10% level.
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different sets of quark masses, one inspired by the chiral perturbation theory

and the other by the quark masses extracted from the lattice [131]. The two

sets have the following ratios

mi

mj

=

{

1 : 1.83 : 36.7 (M1)

1 : 2.32 : 45.0 (M2)
. (3.59)

For each set we perform 5 simulations with ever smaller absolute masses,

see Fig. 3.16. This data is fitted to (3.57) to extract the chiral condensate.

The results for the two sets agree on the 1σ level, and we can argue that the

chiral condensate depends only weakly on the quark mass ratios, given that

the latter vary by roughly 25%, see (3.59). This is as it should be since the

exact chiral condensate does not depend on the quark masses at all. From an

operational point of view, the robustness against quark mass ratios24 makes

the chiral condensate a good quantity to set Λ.

Solving (3.58) we find that the lambda parameter is given by

Λi =

{

401(5)(40)(15) MeV

389(6)(40)(15) MeV
, (3.60)

where the errors follow from the fit, 〈q̄q〉PV
0 and the systematic on χ. This

leads to an overall error of 44 MeV, or roughly 11%, and is strongly dominated

by the one-loop result for 〈q̄q〉PV
0 . Since we run at one loop in the self-

consistency equation (3.58), such a large error is certainly realistic, if not

underestimated.

We found that running at two-loop25 gives results consistent with (3.60).

Using the prescription of [46], the scale and the mean instanton size for the

24i.e. taking the limit from different directions in quark mass space.
25We use β-functions and anomalous dimensions from the MS scheme, [191], since we do

not know them for PV regularisation. However, both regularisations are thought to give

roughly similar results, for instance 〈q̄q〉PV
0 and 〈q̄q〉MS

0 agree on the 3% level at one-loop
and µ = 2GeV, and for the purpose of estimating errors in the one-loop running this
procedure should be fine.
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Figure 3.16: Computing the topological susceptibility allows for the extrac-
tion of the chiral condensate by using chiral perturbation theory, (3.57). The
rationale is the same as used in recent lattice studies to extract the chiral
condensate [39, 38, 37]. In order to get a rough estimate on the systematic
error introduced by the chiral limit, two sets of masses have been used. The
upper plot corresponds to the set M1 and the lower plot to M2, as given in
(3.59). The chiral condensate for both mass ratios agrees on the 1σ level,
and we conclude that it depends only weakly on the quark mass ratios.
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IILM is26

µΛi
=

{

598(65) MeV

580(64) MeV
ρΛi

=

{

0.33(3) fm

0.34(4) fm
. (3.61)

This is in very good agreement with the precision study [46]. Given that both

works use chiral properties for the calibrations, the nice overlap is probably

not totally unexpected.

Note that (3.60) is a prediction for the lambda parameter with 3 active

quark flavours. To compare our result with experimental data, we run down

the coupling constant αMS
s = 0.117(2) [64] from MZ to µΛ and convert it

to a lambda parameter. This is a rather big difference in scales and it is

appropriate to use two-loop running, although not entirely consistent when

we compare it to the one-loop result (3.60). To deal with threshold effects,

we use the Mathematica package RunDec, [36]. The conversion between the

MS and PV lambda parameters is given by [94], [11]

ΛPV = ΛMS exp

(
1

22 − 4Nf/3

)

. (3.62)

This leads to Λ
(3)
PV = 325(40) and the IILM result agrees on the 1σ level.

Trusting the perturbative running down to the rather low scale µΛ is a leap

of faith. However, earlier studies have seen good agreement between IILM

and lattice predictions for physical quantities, such as meson masses, and so

the agreement between the lambda parameters might not just be a fluke.

To determine the physical quark masses, we will use (3.57) rewritten in

terms of the pion mass

χ = m2
πf 2

π

mumd

(mu + md)2
+ O

(
1

ms

)

=

{

(77.4 MeV)4

(75.9 MeV)4
. (3.63)

We used mπ = 135 MeV and fπ = 93 MeV. Together with the fits, Fig. 3.16,

we can compute the corresponding quark masses. We convert them into MS

masses at 2 GeV, run at one-loop, in order to compare them more easily with

26Remember that in the unquenched case the instanton size is fairly independent of the
quark masses.
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other sources. Our results are

mPV
i (µ = 0.6 GeV) =

{

2.2(2) 4.0(4) 80(9)

1.9(2) 4.4(4) 87(10)
( MeV) , (3.64)

mMS
i (µ = 2 GeV) =

{

1.9(2) 3.4(5) 69(11)

1.7(2) 3.8(5) 74(11)
( MeV) . (3.65)

The errors include an estimate from the 2-loop running. These masses com-

pare well with the particle data group masses [63], i.e. mu = 1.5 − 3.3 MeV,

md = 3.5−6.0 MeV and ms = 70−130 MeV, and to the lattice masses [131],

i.e. mu = 1.9(2) MeV, md = 4.4(3) MeV and ms = 87(6) MeV.

Very large volume simulations are expensive even in the IILM, and the

thermodynamic limit has been performed only on four volumes, in the range

2 . Lmπ . 3. Even though the data has displayed a nice scaling with the

volume, it is important to check whether the thermodynamic limit was con-

sistent. To this end we will run large volume simulations, Lmπ ∈ [2.11, 3.7],

for the particular set of physical masses inspired by chiral perturbation the-

ory: in dimensionless units, mu = 0.00546, md = 0.01001 and ms = 0.2002.

This will allow us to estimate the systematic error introduced by performing

the thermodynamic on the set of smaller simulation boxes.

The thermodynamic limit on the topological susceptibility turns out to

be rather insensitive, see Fig. 3.18. However, the mean instanton size does

not converge to a constant even for the largest volumes, see Fig. 3.19. It is a

rather lucky fact that the mean instanton size does not vary much in absolute

terms. The slope is clearly decreasing and we might estimate the convergence

to occur somewhere in the range ρ̄ ∈ [0.68, 0.66]. A fit to ρ̄ = ρ̄∞ + αV −0.25

gives ρ̄∞ = 0.6720(5) Λ−1 = 0.33(3) fm, in good agreement with the phe-

nomenological value. The instanton density turns out to be n = 1.7(7) fm−4,

and like the topological susceptibility displays a nice thermodynamic limit.

3.6 Conclusion

With the discovery of the new non-trivial holonomy calorons [119, 121], [123],

there is renewed interest in studying the role of non-trivial field configura-

tions in QCD, especially their role in the confinement/deconfinement phase
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Figure 3.17: The simulations are performed for different simulation boxes.
The average of the smallest Dirac eigenvalue, 〈λmin〉, is smaller than the
quark masses for all but the smallest simulation box.
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Figure 3.18: The fluctuations of the topological charge 〈Q2〉 show a nice
linear dependence with the volume box V , as it should be for an extensive
quantity. Applying the thermodynamic limit to the 4 smallest volumes yields
a topological susceptibility that agrees on the 1σ level with the corresponding
result using all available volumes. The mean instanton number ranges from
〈N〉 ≈ 200 to 〈N〉 ≈ 1600.



CHAPTER 3. THE IILM AT ZERO TEMPERATURE 84

)-4ΛV (
5000 10000 15000

>ρ<

0.678

0.68

>=6.78e-01 ρ<

Figure 3.19: Even for the largest volumes the mean instanton size ρ̄ is still
decreasing and does not seem to converge to a constant. We are rather lucky
that, although the effect is clearly systematic, the variation of ρ̄ is small in
absolute terms.
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transition. A lattice based approach [80] is well suited for the pure gauge

sector because it easily incorporates many-body instanton interactions in the

classical action. However, the introduction of fermions will be plagued by

the same problems that full lattice computations face. Most notably, the

computations will become very costly.

A different approach, pioneered by Shuryak, Diakonov and Petrov, is

to formulate the instanton liquid in the continuum, see for instance [157].

This approach suffers from the fact that it is not straightforward to include

many-body interactions. Incidentally, only two-body effects are taken into

account. The strongly localised profiles of instantons and the, a posteriori,

fact that the instanton ensemble is rather dilute make this a viable working

premise. The big advantage of the continuum formulation is the ease with

which quarks can be incorporated, see also [197]. From this perspective, both

the lattice and the continuum models complement each other rather well.

Meanwhile, different publications have investigated the confining nature of

other backgrounds, such as regular gauge instantons and merons [124, 136],

[196] at zero temperature.

So far the continuum models used explicit analytic formulas for the inter-

actions. They have been obtained through asymptotic considerations and fits

to numerical evaluations of the classical action. We noted that these formulas

do not possess a thermodynamic limit at finite temperature. More impor-

tantly perhaps, the more complex moduli-space of the non-trivial holonomy

calorons probably demand a more systematic approach. In this paper we

have set up a framework which we believe is numerically well-defined, can

be extended to more complicated backgrounds and does not suffer from the

parametrisation bias introduced implicitly through analytical formulas moti-

vated by symmetry arguments and fits. The price to pay is a larger numerical

overhead, which in our framework comes about through look-up tables and

asymptotic matching formulas.

We have found that the analytic formulas of [157] agree very well with

our interactions at zero temperature. Especially for the case of equal instan-

ton sizes, where strong symmetry arguments support the analytic formulas,

the agreement can be seen as a validation of the numerics. In general, how-

ever, the interactions of both schemes differ; the differences are especially
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pronounced for the quark overlaps because in this paper we use the full ratio

ansatz whereas a sum ansatz is used in [157]. Shifting the point of view, we

considered the formulas of [157] to be another valid scheme; together with

the streamline ansatz we studied the dependence of bulk properties of the

IILM on the choice of these three rather different interactions and found

that this introduces a systematic effect which depends on the quantity under

consideration, but was generally rather large, up to 20%.

The IILM has been shown to be compatible with the chiral properties of

QCD, see for instance [46]. A key chiral property, the topological suscepti-

bility, has not been studied extensively within the IILM, see however [173].

One reason might be that the IILM was so far set up for simulations in the

canonical ensemble whereas the topological susceptibility is most naturally

studied in the grand canonical ensemble. We have enlarged the Monte Carlo

moves to incorporate insertion/deletion steps in order to simulate an open

ensemble. Apart from technical problems related to book-keeping issues this

is rather straightforward.

A major incentive for this work was to investigate the regime of physical

quark masses. In order to deal with such light quarks, rather large volumes

need to be considered. We dealt with this issue by, first, reducing the com-

plexity of the algorithm from O(N3) to O(N2); this is achieved by rewriting

the updates in a form suitable for fast matrix modifications. Secondly, we

study the thermodynamic limit and monitor some bulk quantities to guar-

antee a consistent large volume extrapolation.

The topological susceptibility is easy to compute in the IILM and has

been studied extensively on the lattice. It represents a natural candidate to

fix units in the IILM. For quenched simulations we found rather good agree-

ment between the IILM and the lattice in this way. We are, however, mainly

interested in the unquenched case. Instead of using the topological suscepti-

bility directly, we decided to use the chiral condensate, extracted through the

topological susceptibility and chiral perturbation theory, to set units. The

reason we decided against a direct use of the topological susceptibility is that

it depends strongly on the quark masses. We found that the chiral condensate

has a very weak dependence on the chiral limit, and use it to set the units in

the unquenched sector. We achieve good agreement with previous work and
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also with experimental data on the strong coupling constant αs. Using chiral

perturbation theory, we are able to determine physical quark masses. These

turn out to compare well with experimental bounds and lattice simulations.

Finally, we investigated the uncertainties introduced by the large volume

extrapolations, and found that our procedure, of bounding the volume in such

a way that the quark masses are smaller than the smallest Dirac eigenvalues,

allows for a systematic thermodynamic limit.



Chapter 4

Biased Monte Carlo

In chapter 3, we have set out to perform simulations in the interacting in-

stanton liquid model (IILM) with ‘physical’ quark masses. Using these input

parameters for the finite temperature simulations, we have found that the

Monte Carlo simulations become rather inefficient. The reason lies in the

formation of instanton–anti-instanton pairs. They provide the mechanism

for chiral symmetry restoration within the IILM [99], [100], [158]. In another

numerical study [157], no technical problems were encountered because the

quark mass parameters were large enough for ordinary Monte Carlo to work

well. But as the masses decrease, the interactions become stronger and ran-

dom sampling starts to run into trouble. Furthermore, in the deconfined

phase screening sets in: the temperature fluctuations obstruct the formation

of coherent field configurations that exceed the screening length, so that in-

stanton sizes are cutoff at ρ . 1/T . Since the interactions in the IILM follow

from the overlap of the instanton profiles, smaller sizes lead to shorter-ranged

forces between pairs.

The strong attraction is a generic feature of the IILM at finite tempera-

ture. Normalising the low frequency determinant to the dilute gas, the quark

effective interaction is of the form

Sq = − ln det
(
I + T 2/M2

)
. (4.1)

Depending on the topological charge, the determinant is over the subspace

spanned by the NI or NA zero modes: T 2 = T †T if NI > NA, and T 2 = TT †

88
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otherwise. The matrix M2 is diagonal and of the same dimension as T 2; its

non-vanishing elements are given by the squared quark mass. Crucially, it

is an attractive interaction because the determinant is bounded from below

by unity. It is clear from the above expression that the quark interaction

becomes ever stronger as quark masses decrease.

The feature of strong and short-ranged interactions is thus not confined

to the specific case of the trivial holonomy calorons [93] that we have been

studying, but is a general characteristic of non-trivial backgrounds; in par-

ticular, it will play a role for the newly found non-trivial holonomy calorons

[119, 121] and [123]. The latter might be the correct degrees of freedom to

explain the confinement/deconfinement phase transition [80], [53], the lack

of which is a major shortcoming of the current IILM.

Systems with strong and localised interactions have been investigated for

a long time in chemical engineering and computational chemistry, and are

known to present computational challenges. They run under the name of

strongly associating, or ionic, fluids. The technical problems that Monte

Carlo methods face are two-fold:

• The small relative volume of attraction makes ordinary Monte Carlo

updates miss them most of the time.

• Once a pair is formed, ordinary Monte Carlo moves can get stuck in

these configurations because of the large energy difference.

From an algorithmic point of view, it means that the acceptance rates to

reach or leave the regions of phase space corresponding to instanton–anti-

instanton molecules are very low. This would not be a problem if we had

an infinite amount of computer time, but, in practice, it leads to very long

autocorrelation times. This, in turn, induces a strong dependence on initial

conditions and, in the extreme case of very poor mixing between correlated

and uncorrelated states, the system might stay fixed in one of those ‘phases’

during the available computer time. For all practical purposes, we lose er-

godicity because we end up with samples that are either devoid or dominated

by pairs, none of which is a representative sample.

The solution is to develop algorithms which explicitly sample the attrac-

tion centres and are able to break up pairs with high acceptance rates. To
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sample these volumes, we need to, first, construct these regions and, then,

to define a measure over them. This is a non-trivial geometrical problem; it

also depends very strongly on the specific problem. Considering the dipole

character of the instanton interactions, this seems like a daunting task.

In recent years, general purpose algorithms have been developed which do

not rely on an accurate construction of the union of all attraction volumes but

on the different ways that a given, simple interaction box can be reached,

e.g. the Unbonding–Bonding algorithm [205]. In its original form, it has

been given for a canonical ensemble. We will adapt it to our needs for grand

canonical simulations.

As argued above, the quark interactions will generically lead to strong

interactions for small quark masses, and any non-trivial background will lead

to screening effects at finite temperature. To avoid unnecessary complications

and background dependent features, e.g. the colour-orientation dependence

for calorons, we will use a toy model that mimics the interactions of (4.1).

In section 4.1 we will quickly review the idea behind Markov chain Monte

Carlo. We will then discuss biased Monte Carlo in section 4.2, and set up

the framework for dealing with strong and short-ranged interactions in the

grand canonical ensemble. Finally, we will present a toy model in section

4.3, and benchmark the biased moves from section 4.2 within that setting.

4.1 Markov Chain Monte Carlo

The phase space for a general statistical mechanical system will be very

high-dimensional for a large number of particles. Usual integration rules

over a grid are not well adapted to evaluate the defining partition function

because, for such high dimensional integrals, the number of grid points would

be overwhelmingly large.

Markov chain Monte Carlo techniques are the method of choice1 because

they can ‘find’ the relevant regions that dominate the partition function. It

is achieved by preferentially sweeping those parts of parameter space that

have a large measure. The configurations produced by such algorithms form

a Markov chain {Xn}, whose dynamics is governed by the transition prob-

1If the integrand is positive definite
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abilities pij = P(Xn+1 = xj|Xn = xi). The well-developed mathematics of

Markov chains allow us to rely on powerful theorems that guarantee conver-

gence to an equilibrium distribution. For these theorems to hold, the Markov

chain must satisfy a certain number of assumptions, which we will take for

granted in what follows2. On a heuristic level, we can use our intuition from

classical mechanics to assess whether they are fulfilled; the rationale is that

these assumptions correspond to ergodic motion through phase space, i.e.

the trajectory, induced by pn
ij, of a fictitious particle must pass through any

region of phase space, any number of times. A classic example of a motion

that does not meet these requirements is a random walk with drift3.

It can be shown that pn
ij → peq

j , where peq is the equilibrium distribution.

The theorems guarantee that the limit actually corresponds to the unique

invariant distribution. Invariance of the equilibrium distribution means that

∑

i

peq
i pij = peq

j . (4.2)

Under these same assumptions, ergodic theorems can be proved. They relate

ensemble averages to time averages of paths through phase space, with a

specific path given by the Markov chain {Xn},

1

N

N∑

i=1

f(Xi) → 〈f〉 =
∑

i∈I

peq
i f(xi) , (4.3)

and are of tremendous practical importance.

In our case, we know peq, essentially the integrand of the partition func-

tion, and we want to construct pij that converges to this equilibrium dis-

tribution. Using the convergence theorems, this is a well posed problem if

we demand that peq is invariant for pij. It is not hard to see4 that (4.2) is

2The assumptions are irreducibility, positive recurrence and aperiodicity, see for in-
stance [138].

3In this case, the Markov chain is not positive recurrent. Strictly speaking, this does
not prevent convergence, but the equilibrium distribution will no longer be guaranteed to
be invariant, a fact that is crucial for the ergodic theorems and the practical applications
that follow from it.

4We only need to remember that
∑

i pji = 1, i.e. we go to some state with probability
one.
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fulfilled if we impose the stronger condition of detailed balance,

peq
i pij = peq

j pji . (4.4)

This deceptively simple looking equation lies at the heart of all Monte Carlo

simulations. Note that the pij’s are not unique and that there is a large

amount of freedom in choosing them. This redundancy can be used to accel-

erate convergence.

If there are different paths that connect states i and j, pij =
∑N

a pa
ij, (4.4)

can be met by imposing the stronger condition

peq
i pa

ij = peq
j pa

ji . (4.5)

This is sometimes called super-detailed-balance [72]. If there are very many

different paths, N ≫ 1, the implementation can become rather tedious, and

super-detailed-balance might be the only viable option. Even if there are a

manageable number of paths, the book-keeping needed to relate them might

be overwhelming.

It is important to note that the transition probability is really the product

of the proposal probability Pij and the acceptance probability Aij. This

observation lies at the heart of biased Monte Carlo techniques: we can tweak

the proposal probabilities to increase acceptance rates. Typically, this leads

to asymmetric transition probabilities. The latter can, however, also be found

in ordinary Monte Carlo: consider for instance a simple insertion/deletion

step for grand canonical simulations; the proposal probability for an insertion

corresponds to the probability to place the particle within the simulation box,

whereas for a deletion it gives the probability to choose a particle already in

the box. Clearly, these will be different in general.

Finally, let us mention that there are different prescriptions to satisfy

(4.4). The most straightforward is the heatbath algorithm. It consists of us-

ing as transition probabilities the equilibrium distribution itself, i.e. pij = peq
j .

It clearly satisfies (4.4). This approach only works in very simple cases, but

for those it usually converges faster than alternative algorithms. On a heuris-

tic level, this seems obvious since we take full advantage of our knowledge

of peq. A general purpose algorithm, and the one we will focus on, is the
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Metropolis algorithm [72], which defines the acceptance probability by

Aij = min

(

1,
peq

j

peq
i

Pji

Pij

)

. (4.6)

It is not hard to see that it satisfies (4.4).

4.2 Biased Monte Carlo

But for the simplest statistical systems, ordinary Monte Carlo techniques can

become rather inefficient, if not downright inadequate: inefficiency manifests

itself by long autocorrelation times, and inadequacy stems from an inability

to sample the relevant regions accurately. For finite computer time, and

hence finite-sized samples, we basically lose ergodicity.

By ‘ordinary’ Monte Carlo moves we mean random sampling. A typical

example is updating the position of a particle: it is straightforward to im-

plement such a move by adding a random increment to the particle’s current

position. This random increment is typically drawn from a fixed volume with

uniform measure. Thus, Pij is constant for all updates and cancels in (4.6).

For strong and short-ranged interaction, such a random increment will be

very inefficient. Either we choose it so small that we can sample the inter-

action region, in which case very many sweeps are needed to move through

phase space; this leads to very long autocorrelation times. Or we choose

a large enough increment, so as to sweep quickly through phase space, but

thereby missing the interaction regions most of the time; the sample will

most likely not be representative. Furthermore, the acceptance probability

for random sampling is typically given by the ratio of two Boltzmann factors,

and does only depend on the energy difference. Due to the strong interac-

tion, the acceptance probability will be very low for moves that attempt to

leave the attraction centres. The Markov chain can become trapped in these

energy-dominated configurations, which leads again to a non-representative

sample.

The way out is to use importance sampling. It is designed to sample

those parts of phase space that dominate the partition function. It might

help to get a rough criterion for importance sampling. Remember that in our
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case Monte Carlo methods try to evaluate the integral given by the partition

function. If the integrand is peaked so strongly that the exact integral is

well approximated by the integral over some localised patches, the algorithm

will need to preferentially sample these parts of phase space. Thus, random

sampling will be inefficient if

V < ∆V exp(−H(∆V )) , (4.7)

where V is the volume of the simulation box, and ∆V ≪ V is the small

region where the interaction is very strong.

As mentioned in the introduction, in chemical engineering and computa-

tional chemistry the issues of low acceptance rates have long been known:

they are very low in polymer physics simulations, due to conformational

obstructions; or in simulations of ionic fluids, due to strong short-ranged in-

teractions. The latter is of immediate interest to us because the IILM at

finite temperature displays the same characteristics. To treat such systems

correctly, new algorithms based on biased Monte Carlo have been developed

[194]. We can take advantage of these well tested techniques in IILM simu-

lations at finite temperature.

Recently, efficient and general purpose algorithms have been developed

[34] [205]. In these algorithms, the focus is not on an accurate construction

of the union of all the interaction regions, which is a difficult, and problem-

dependent, geometric task, but on the individual interaction regions and all

the possible routes that lead to the same final state. In [34], the algorithm

is further simplified by using super-detailed-balance (4.5), whereas the algo-

rithm in [205] does not rely on this stronger condition, and was shown to

converge faster. We use the latter scheme, the Unbonding–Bonding algo-

rithm (UB).

The UB algorithm starts by defining a bonding region. It does not neces-

sarily need to be the exact physical bonding region, but a strong departure

from it will not be very useful. A list is made of those instantons that are in

at least one bonding region of an anti-instanton and the same is done for the

anti-instantons. There are NB
I (NB

A ) bonded instantons (anti-instantons).

NB
I (iI) is the number of anti-instantons that instanton iI is bonded to, and

analogously for NB
B (iA). In what follows, iI means instanton iI , but can also
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stand for the state the instanton iI is in; unprimed quantities are evaluated

before the move, whereas primed ones denote the same quantity after the

move.

We will now focus on the UB for instantons; the case for anti-instantons is

then obvious. The bonding move consists of choosing uniformly an instanton

and an anti-instanton, and placing the instanton in the bonding region of the

anti-instanton with flat measure. The unbonding move consists of choosing

one of the bonded instantons and to place it randomly in the simulation box;

again both steps are performed with a flat measure for the bonded instantons

and the simulation box respectively. This leads to the following transition

probabilities

PB
iI(i′I ,iA) =

1

NI

1

NA

1

ViA

, (4.8)

PU
ii′ =

1

NB
I

1

V
, (4.9)

where (iI , iA) is a bonded instanton–anti-instantion pair, and ViA is the bond-

ing region of anti-instanton iA. The UB algorithm now adds up all possible

routes that lead to the same final state i′, bonding and unbonding; super-

detailed-balance is, however, used with respect to the unbiased displacement

move. The forward and backward proposal probabilities are then given by

PiI i′I
=

N ′B
I (iI)
∑

iA

PB
iI(i′I ,iA) + δB

iI
PU

iI i′I
, (4.10)

Pi′I iI =

NB
I (iI)
∑

iA

PB
i′I(iI ,iA) + δB

i′I
PU

i′I iI
, (4.11)

with δB
i = 1 if i is bonded and δB

i = 0 otherwise. We assume that bond-

ing and unbonding moves have the same a-priori-probability, 1/2, which we

omitted because it cancels out anyway.

Since we want to perform grand canonical simulations, we also need in-
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sertion and deletion moves. The unbiased moves are given by

Pub
NI ,NI+1 =

1

V
, (4.12)

Pub
NI+1,NI

=
1

NI + 1
. (4.13)

The corresponding biased insertions and deletions will be constructed along

the lines of the UB algorithm, either by placing the instanton iI into the

bonding region of an anti-instanton, or by removing the bonded instanton iI .

More precisely, insertions consist of choosing an anti-instanton iA, placing

the instanton iI uniformly within the bonding box ViA and finally summing

over all possible anti-instantons that could have been chosen to reach this

same final state; to delete an instanton, we choose uniformly from the list of

bonded instantons NB
I . In formulas,

Pb
NI ,NI+1 =

N ′B
I (iI)
∑

iA

1

NA

1

ViA

, (4.14)

Pb
NI+1,NI

=
δB
i

N ′B
I

. (4.15)

In this case, it does not produce much overhead to combine the biased and

unbiased moves. More importantly, we found that acceptance rates could be

boosted upon combining biased and unbiased insertions/deletions. To add

them up, we need to specify the relative weights, the a-priori-probability for

biased updates pb. The full insertion/deletion proposal probabilities are

PNI ,NI+1 = pbPb
NI ,NI+1 + (1 − pb)Pub

NI ,NI+1 , (4.16)

PNI+1,NI
= pbPb

NI+1,NI
+ (1 − pb)Pub

NI+1,NI
. (4.17)

To reiterate, a similar factor for the a-priori-probabilities of canonical moves

was tacitly omitted before because we chose to follow the original imple-

mentation of the UB algorithm, which does not mix biased and unbiased

particle updates: its use of super-detailed-balance implies that the a-priori-

probabilities give an overall multiplicative factor that drops out.

Other than good mixing between bonded and unbonded structures, clus-

ter moves have been argued to be important to accelerate convergence to-
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wards the equilibrium distribution [142]. For the IILM, we assume that

instanton–anti-instanton pairs are dominating in this respect. We therefore

augment our list of single particle moves by pair-displacements and pair-

insertions and -deletions.

Whereas we made sure to have a uniform distribution among the NB
I

bonded instantons for the UB-type moves discussed so far, regardless of

whether they were bonded many times, we naturally demand uniformity

in the number of pairs NP for the pair-moves.

The pair-displacements consist of collective translations of the pair, by

an increment δ ∈ vC , and of internal displacements, δ ∈ vI , of one of the

pair’s constituents. The latter are rejected if the displaced instanton leaves

the bonding box. The proposal probabilities for these moves are given by

PC =
1

NP

1

vC

, (4.18)

PI =
1

NP

1

vI

, (4.19)

We use super-detailed-balance for the internal displacement because the ac-

ceptance rates could not be boosted by including unbiased and/or UB moves;

the additional overhead, required to go beyond super-detailed-balance, is thus

not justified.

The pair-insertions and -deletions, set up without recourse to super-

detailed-balance, are built from biased and unbiased moves, whose probabil-

ities are summed up in the end. A biased pair-insertion consists of placing,

uniformly, either an instanton iI or an anti-instanton iA in the simulation

box; the partner is then positioned randomly within the bonding box. Note

that the probabilities for both possibilities are added up. The unbiased pair-

insertion consists of placing, uniformly, both an instanton iI and an anti-

instanton iA in the simulation box. For a biased pair-deletion we select an

instanton and anti-instanton uniformly from the pairs NP , whereas for an

unbiased pair-deletion we select an instanton and anti-instanton randomly

from NI and NA respectively. The final proposal probabilities are then given
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by

PN,N+1 = p′bδ
P
iI iA

(
1

2

1

V

1

ViI

+
1

2

1

V

1

ViA

)

+ (1 − p′b)
1

V

1

V
, (4.20)

PN+1,N = p′b
δP
iI iA

N ′
P

+ (1 − p′b)
1

N ′
I

1

N ′
A

. (4.21)

The factor δP
iI iA

ensures that the biased contribution to the proposal probabil-

ity is added only if iI and iA are paired, i.e. δP
iI iA

= 1 if instanton iI and anti-

instanton iA are paired and δP
iI iA

= 0 otherwise. The a-priori-probabilities p′b
can be chosen to tune the acceptance rates even further.

Given these different proposal probabilities, together with the trivial

case of unbiased displacements, we can compute the acceptance probabil-

ity through (4.6).

Finally, we need to specify the increment volumes vi and the bonding

boxes Vi, and we have to decide upon the different a-priori-probabilities pb,

p′b and pi. The latter give the probability to perform a specific update and

have, so far, been omitted because they will always cancel in the acceptance

probabilities. These choices will depend on the problem at hand, and some

fine-tuning runs cannot be avoided to set these parameters.

In practice, we have finite-sized samples, and the outcome of the simu-

lations will depend on these parameters. The differences will vanish with

increasing sample size; this observation provides a straightforward means

to test whether the biased updates have been implemented correctly. For

computer-intensive simulations, large samples are prohibitive, and it is im-

portant that the dependence is rather weak if the algorithms are to be useful.

4.3 Toy Model

Now that we have set up the update moves using biased Monte Carlo tech-

niques, we will test their performance compared to random sampling. We

will use a two-dimensional toy model that nevertheless will mimic the IILM.

The advantage of the toy model is that it will be computationally very cheap.

Also, we can adjust the parameters freely to get a rough estimate for those re-

gions in parameter space where pair formation will be important and, hence,
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Figure 4.1: The solid lines represent the interaction for an instanton–anti-
instanton pair. The repulsion for like-charged pairs is represented by dashed
lines. It is chosen so strong that clusters larger than simple pairs are strongly
disfavoured. We see that as the temperature t is raised the attractive well
deepens. In this graph α = 2.

biased Monte Carlo essential.

The interactions in the IILM have the following form

Sint
IA = ln

(

1 +
1

R2

)

− 1

1 + R2
− Nf ln

(

1 + e−2πRR2 T 2

m2

)

, (4.22)

Sint
II = ln

(

1 +
1

R2

)

− 1

1 + R2
. (4.23)

The logarithmic repulsion in the pair separation R, given here in units of the

inverse temperature T , is typical for the IILM5. It combines with the rational

function to produce the large separation decay. The instanton–anti-instanton

pairs feel an additional attraction due to the quark wavefunction overlaps.

Their R2 dependence follows from ‘strong’ overlaps, whereas the exponential

describes the large separation behaviour. For our purposes, the product of

5In the ratio ansatz, see chapter 3.
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both will be a good enough approximation. The quark mass is given by m,

the number of flavours by Nf . As for the IILM, SII and SIA have the same

fall-off behaviour.

In two dimensions, this isotropic interaction results in a rather dense

ensemble because the repulsion is mild and the attractive wells are compar-

atively deep. More importantly, these interactions will favour large clusters

of instantons and anti-instantons. Such a behaviour does not correspond to

the situation that we expect from the IILM, namely the formation of rather

isolated pairs. In the IILM, the interaction is orientation dependent, and

large conglomerates of instantons cannot form because most of the relative

orientations within the cluster would be repulsive. To achieve this same effect

of pair formation with our toy model, we add an extra ‘entropic’ repulsion

term to SII
int.

The exponential decay for the quark overlaps starts for e−2πRt2 ≈ 1; we

have set t = T/m, i.e. the temperature in units of the quark mass. For sep-

arations smaller than R0 = ln t/π, the attraction wells are rather deep, and

we choose the repulsion to become strong in order to obstruct the formation

of large clusters. The functional form of this ‘entropic’ repulsion is rather

unimportant, and for simplicity we choose it to be given by

Sent
II =

(
αR0

R

)8

. (4.24)

It turns out that choosing α = 2−3 is sufficient to prevent cluster formation.

For dilute ensembles, the precise value is rather irrelevant.

Now that we have fixed the interactions, see also Fig. 4.1, we define our

system by the following partition function

Z =
∞∑

NI ,NA

∫

dxNI+NA
dNI

NI !

dNA

NA!
exp (−Sint(x)) , (4.25)

Sint =

NI∑

i<j

Sint
ij + Sent

ij +

NA∑

i<j

Sint
ij + Sent

ij +

NI ,NA∑

iI iA

Sint
iI iA

, (4.26)

where the free parameters of the model are d, t and the simulation box V . In

the full model, instantons have a size ρ, and quantum effects are such that
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Figure 4.2: For the biased Monte Carlo moves to work well, the bonding box
should be adapted to the interactions. Isotropy suggests the best form to be
in the shape of an annulus. The shaded region corresponds to the bonding
box. A priori Rmin and Rmax are free parameters that can be fine tuned to
achieve good mixing, i.e. low autocorrelation times.

small sizes are disfavoured, d(ρ) = ρβ with β > 0 [182]; the free parameter d

plays that role.

Neglecting interactions, d determines the density of the ensemble,

〈N〉
V

= 2d . (4.27)

This is the dilute gas result. Once interactions are included, the system will

be more dilute if the total interaction is repulsive and less dilute otherwise;

this is adjusted by the parameter t which captures the combined effects of

temperature and quark masses, see (4.22).

In order to use the biased Monte Carlo framework set up in section 4.2,

we need to decide on the bonding box to use. Given that the interaction is

isotropic, we will choose an annulus as bonding box, see Fig. 4.2. It is natural

to fix the free parameters Rmin and Rmax so as to achieve low autocorrelation

times.

We perform biased simulations for three sets of bonding boxes, and com-

pare them with unbiased runs. The natural box size extends to Rmax = R0,

the point at which the quark interaction starts to vanish exponentially. The
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Figure 4.3: We choose three different sets for (Ri
min, R

i
max). A small interval

that samples the strong interaction region, a ‘natural’ one that sample most
of the attractive well and a larger box that extends beyond what would
naturally look like the bonding region.

corresponding lower edge Rmin is determined by Sint
IA(Rmin) ≈ Sint

IA(Rmax).

Given the relatively large values for t, we can solve this approximately by

Rmin ≈ exp

(

−1

6
Sint

IA(Rmax) −
2

3
ln t

)

. (4.28)

We also choose a larger interval with Rmax = 2R0 and a smaller one that

samples predominantly the very strong interaction region. In the latter case,

we choose Rmin and Rmax according to Sint
IA(Rmax) ≈ Sint

IA(Rmin) ≈ 1
3
minR Sint

IA.

A typical setup is displayed in Fig. 4.3.

Before we start the simulations, it is worth mentioning one more technical

point, related to the choice for the equilibrium probability density. We claim

that it is given by

peq =
dNIdNAe−Sint

Z
. (4.29)

The slightly subtle point we want to raise is that in (4.29) we neglect the

Boltzmann-counting factors for indistinguishable particles. We would like to

argue that they are an artifact. These terms are introduced so as to allow for
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an unconstrained integration region, xa
i ∈ [0, La], instead of the complicated

multi-dimensional region given by {xa
i |xa

1 < xa
2 · · · < xa

Nj
}, with a labelling

a component. The result of the integrations is corrected by dividing by the

factorials because ∪σ{xa
i |xa

σ(1) < xa
σ(2) · · · < xa

σ(Nj)
} = [0, La]Nj , where σ is a

permutation. Therefore, the Boltzmann-counting factors are not really part

of the weight [1]. A different, but equivalent, point of view is to keep the

factorials in the weight and to sum the equilibrium probability, with the

factorials included, over all permutations Ni! that correspond to mere rela-

bellings of the particles in the initial state [156]. The permutations cancel off

the factorials, and we are left again with (4.29). The transition probabilities

Pij are similarly summed over all initial and final state permutations, and

the resulting factor of Ni!Nj! trivially cancels out of (4.4). The simplest way

to understand the need to sum over permutations, lack of which will violate

detailed balance, is to realise that, taking indistinguishability at face value,

the states are really equivalence classes6. Since we actually use a specific

representative but the result should be independent of it, we need to sum

over all members of the given equivalence class. The upshot is that, for all

practical purposes, we treat the different particles as distinguishable!

The parameter t is set to the values given in Fig. 4.1. The dilution

parameter d is chosen small enough so that we end up with a rather dilute

system because the biased Monte Carlo moves, set up in section 4.2, will not

work well for dense ensembles. We are interested in how the system behaves

if d is further decreased. We can envisage three different equilibrium states:

either the ensemble will be dominated by pairs, or equilibrates in a mixture

of paired and unpaired instantons, with roughly equal weight, or settles in

an uncorrelated state with no pairs.

For the simulations that follow, we use the ‘natural’ bonding box, Rmax =

R0. We always use hot initial conditions, i.e. place the instantons and anti-

instantons randomly throughout the volume. As we can see from Fig. 4.4,

the smallest value of t leads to equivalent equilibrium states for both biased

and unbiased Monte Carlo. However, as we increase t, and lower d in order

to maintain a dilute ensemble, ordinary Monte Carlo needs a very long time

to reach equilibrium compared to biased Monte Carlo, see Fig. 4.5. Since

6The group by which we factor out is the permutation group
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Figure 4.4: Choosing a rather small parameter for t, i.e. a shallow attraction
well, the biased (bottom) and unbiased (top) simulations have thermalised
over the same time scale. The overhead that importance sampling introduces
is not necessary provided that the autocorrelation times are similar. In the
present case we found that this is indeed so.
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Figure 4.5: As the interaction well is deepened, i.e. for larger t, unbiased
Monte Carlo algorithms (top) start to run into trouble. The thermalisation
process takes longer and longer as we increase the dilution of the system,
i.e. by decreasing d. Importance sampling (bottom) thermalises much faster:
notice the rather large difference in the number of sweeps it takes to reach
equilibrium for the blue (d = 10−4) curve.
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MC d 〈N〉 ξ

biased
10−2

10−3

10−4

202.4(2)
199.7(4)
193.1(4)

7940
7302
2857

unbiased
10−2

10−3

10−4

202.0(1)
200.2(1)
196.8(2)

41058
75115
140683

Table 4.1: We estimate the autocorrelation times ξ for the instanton number
N as a function of the Monte Carlo algorithm and the dilution parameter d.
The temperature/mass parameter is t = 100, i.e. it corresponds to the data
in Fig. 4.5. We clearly see that as the density of the system is lowered, i.e.
by decreasing d, the autocorrelation times for unbiased simulations become
very large compared to the unbiased ones.

we start with a random distribution, the long thermalisation process can be

attributed to the fact that it takes longer and longer to locate the attraction

centres as the system becomes ever more dilute. The correlation between

the number of instantons N and the number of pairs P is clearly visible in

Fig. 4.6.

After equilibration, we can estimate autocorrelation times. We find that

the autocorrelation time in the instanton number N is much larger for ran-

dom sampling simulations, see Table 4.1. The reason is that random inser-

tions and deletions are suppressed: insertions because they generally do not

form pairs, and deletions because they most likely try to break up pairs; this

leads to low acceptance probabilities.

The toy-model is computationally rather cheap, which allows for very long

thermalisation sweeps. During such a long equilibration process, helped by

the low dimensional configuration space, random sampling does eventually

form sufficient pairs to converge to the same state as importance sampling. In

higher dimensional simulations, as for instance in the IILM, the interaction

regions have much lower ‘entropy’7, and it will be harder for ordinary Monte

Carlo simulations to find the regions of phase space that lead to pair forma-

tion. Also, realistic systems are computationally more expensive8, and long

7By which we mean that ∆V/V ≪ 1, with ∆V the bonding volume.
8For instance, the IILM in the unquenched case needs to evaluate determinants, a
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Figure 4.6: The long thermalisation time is directly correlated with the slow
process of forming pairs in the unbiased case. The correlation between pairs
and instanton number is also seen in the biased simulations; here thermalisa-
tion is fast (note the different scale, i.e. the upper axis) because the algorithm
explicitly samples the possible bonding sites.
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Figure 4.7: Random sampling is not well suited to deal with cold initial
conditions: we started the thermalisation run with a configuration made up
of 200 pairs. Random sampling has trouble to break up the excess pairs.
The inefficiency can be traced back to the fact that the algorithm depends
solely on the energy difference, which is big when destroying pairs in a ‘naive’
way. This leads to low acceptance probabilities and hence long thermalisa-
tion sweeps. The biased simulations equilibrate very quickly because the
algorithm is tailored to deal with bonded instantons.

runs are prohibitive. Biased Monte Carlo techniques become unavoidable in

these situations.

The hot initial condition manifests itself by a rapid drop in instanton

numbers early in the thermalisation process, due to the lack of pairs; this

can even be seen in the case of biased simulations, although the algorithm

creates pair much more quickly, see Fig. 4.5. We expect that cold initial

conditions, i.e. starting off with pairs, will also be problematic for random

sampling techniques because they rely solely on the energy difference between

states: in see Fig. 4.7 we examine how ordinary Monte Carlo copes with an

ensemble with excess pairs.

time-consuming task.
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From Figs. 4.5 and 4.7 it is clear that biased Monte Carlo techniques

vastly outperform random sampling. The computational advantage follows

from our knowledge of the structures that can form, e.g. instanton–anti-

instanton molecules in the IILM [99], and the ability to construct algorithms

that take full advantage of that knowledge.

So far we have restricted the simulations to a single bonding box, which

is a free parameter a priori. We have run every data set with the two other

bonding boxes, see Fig. 4.3. We have found that the results agree on the 2σ

level. In Table 4.2, we show such data for one specific point in parameters

space {d, t}. This particular set, with large t and very small d, is probably

representative for more realistic simulations in that the unbiased simulations

have failed to converge to the true equilibrium state; we have lost ergodicity

because those regions of phase space that correspond to bonded pairs is not

sampled adequately.

The weak dependence on the bonding box allows us to dismiss systematic

effects, and we can base our choice entirely on achieving low autocorrelation

times. The data presented in Table 4.2 would suggest that the two smallest

bonding boxes are equivalent but the bulk of the computations suggest the

lowest autocorrelation times are achieved with the smallest bonding box.

It is interesting to see how the ensemble behaves as we tune the two free

parameters d and t separately. We have found that the system will always

evolve to a random state with a negligible amount of pairs upon decreasing

d for any fixed t. This is as it should be because small d favour a dilute

system: from (4.27) we see that V increases for decreasing d and constant

number of instantons; the strong interaction region ∆V is unaffected by d,

and the inequality (4.7) will be violated for large enough V ; thus, random

sampling is efficient and the ensemble equilibrates in an uncorrelated state.

We illustrate this in Fig. 4.8.

Similarly, we find that for fixed dilution d and increasingly large inter-

action strength t the system tends to favour energy-dominated configura-

tions. We therefore expect that the topological susceptibility should drop

to zero since pairs do not contribute to the charge fluctuations. The in-

stanton density, on the other hand, increases because the energy-dominated

configurations favour a denser ensemble. This in turn implies that the topo-
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Figure 4.8: The degree of dilution increases from left to right, top to bottom;
the temperature-mass parameter is fixed at t = 300. As d is decreased fewer
instantons are paired up with anti-instantons. For the last box the system
has equilibrated in a random state.
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Bonding Box (R0) 〈N〉 〈Q2〉 〈Sint〉
(0.102, 0.66) 194.6(4) 134(4) −2.323(5)

[1998] [1790] [1083]
(0.046, 1.00) 194.7(4) 133(3) −2.328(7)

[1907] [1212] [1812]
(0.031, 2.00) 195.5(3) 137(3) −2.340(7)

[4629] [2607] [5475]
unbiased 131.8(3) 129(5) −0.4(6) 10−5

[887] [322] [545]

Table 4.2: This data is from a simulation with t = 500 and d = 10−7,
and for these parameters the unbiased Monte Carlo simulation equilibrates
at a substantially lower value for the total number of instantons N . Note
also the low interaction, from which we conclude that no pairs have formed.
The results for the different bonding boxes agree well at the 2σ level. The
autocorrelations are given in square brackets. The two smallest boxes give
rather similar autocorrelation times but we have found that in most of the
runs the smallest box leads to the fastest convergence.

logical susceptibility will be boosted because the topological fluctuations per

unit volume have increased. Both effects work in opposite directions, but

it turns out that the topological susceptibility decreases overall, although

rather slowly. This is demonstrated in Fig. 4.9. In particular, the topological

susceptibility is lower than the dilute gas approximation would suggest.

In QCD, the level of dilution and the interaction strength change simulta-

neously, such as to increase both with increasing temperature. Therefore, we

cannot draw any direct conclusions from this work, other than to note that

with increasing fermion number the screening, and hence the dilution, de-

creases whereas the fermionic interactions increase. It is therefore not clear a

priori whether in QCD the IILM will remain in a highly correlated molecular

phase after the chiral phase transition.

4.4 Conclusions

We have argued that, quite generically, light quarks in non-trivial back-

grounds will induce strong and short-ranged interactions at finite temper-

ature. The Dirac operator is positive definite and bounded, and leads to an
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Figure 4.9: As the interaction strength t is increased, the proportion of pairs
to instantons increases until basically all instantons are in pairs. Pairs do not
contribute to topological fluctuations, reducing the topological susceptibility.
However, the instanton density increases rather strongly with t, resulting in
a much denser ensemble. This implies a larger topological susceptibility,
because the fluctuations per unit volume increase. Both effects are clearly
antagonistic. In this case, it turns out that the topological susceptibility
decreases, although rather slowly.
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attraction between instantons that becomes stronger with decreasing quark

mass. Plasma effects at finite temperature constrain the spatial extent of the

non-trivial backgrounds to be below the screening length; since the quark

interactions are induced by the overlap of quark wavefunctions, centred on

top of the classical gauge fields, it follows that the interactions become more

and more short-ranged as the temperature rises.

Systems with strong and short-ranged interactions are known as strongly

associating fluids in the literature of computational chemistry and chemical

engineering. These fluids are hard to simulate and need special techniques.

Using the concepts of the general purpose Unbonding–Bonding algorithm,

we extended the biased scheme to grand canonical simulations. Following

suggestions from the literature, we augmented the Monte Carlo steps by

pair moves. The input from previous studies of the IILM is crucial as these

have identified the instanton–anti-instanton pairs to be important at finite

temperature. This knowledge has allowed us to implement biased Monte

Carlo techniques that specifically address the problems faced with random

sampling.

The defining characteristic of the system is its strong and short-ranged

interactions. We therefore have decided to test importance sampling on a

toy-model, roughly displaying the features of the IILM. However, we have

decided to leave out any orientation dependence because it is not necessarily

a generic feature for the non-trivial backgrounds and would only introduce

further complications in the Monte Carlo steps.

The simulations show that random sampling becomes very inefficient if

the ‘temperature’ is raised or the ‘mass’ is lowered. We could run the toy-

model for very long times and check that both the biased and unbiased

simulations give equivalent results. For one particular set of parameters we

actually found that ordinary Monte Carlo was not able to reach the correct

equilibrium state; in this sense we lost ergodicity because the sample was not

representative, having missed that region of phase space that corresponds to

pair formation. We expect this to become a much more severe problem for

the IILM because the higher dimensionality of the latter will make it much

harder to sample correctly the phase space volume leading to pair formation.

Also, the simulations will be much more expensive, and long runs will be
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prohibitive.

We found that the parameters setting the bonding box have virtually no

impact on the results, and that bulk properties agree on the 2σ level. This is

as it should be because a strong dependence on these free parameters would

introduce some new systematics and render the method impractical. We can

therefore choose the parameters that give the smallest autocorrelation times.

Finally, we found that as the degree of dilution is increased, with fixed

interaction strength, entropy-dominated configurations will eventually give

the bulk contribution to the partition function, and the system will settle in

a random state. The opposite equilibrium state, namely a highly correlated

ensemble of pairs, is reached by increasing the interaction strength while

holding the dilution parameter fixed; in that case the small entropy of these

configurations is largely compensated by the gain in total energy, and the

partition function is saturated by these energy-dominated states. These are

generic features. In the IILM, however, the interactions become stronger

and the system more dilute simultaneously as the temperature is increased.

Whether the system ends up in a random ensemble or stays in the molecular

phase after the chiral symmetry is restored depends on which quantity grows

stronger and cannot be decided by the results presented in this study. It

is, however, interesting to point to the possibility of a smaller topological

susceptibility in the molecular phase as compared to the random phase. In

light of the ultimate goal of this series of papers, this could lead to an axion

mass that is rather different from the standard one computed in the dilute

gas approximation.



Chapter 5

IILM at finite temperature

In this chapter we continue the study of the interacting instanton liquid

model (IILM) at finite temperature, with an ancillary goal being to improve

our understanding of the temperature dependence of the axion mass. For the

first time, we will be able to give a well-motivated axion mass that covers all

temperatures down to T = 0.

In chapter 3 we set up the formalism underlying the IILM and developed

a numerical framework to compute the interactions given by an arbitrary

background ansatz. Simulations at zero temperature were performed with

the so-called ratio ansatz to determine the parameters that enter the model:

the lambda parameter, Λ, and the quark masses, mq.

We will investigate the IILM at finite temperature based on the caloron

solution of Harrington and Shepard [93]. Using as input the physical pa-

rameters we determined at zero temperature, we will study chiral symmetry

restoration, based on the ideas of instanton–anti-instanton molecule forma-

tion [99], [100], [158], and determine the topological susceptibility.

In order to deal with light, physical quark masses, we study the thermo-

dynamic limit. As mentioned in chapter 3, we found that the interactions

derived previously in [172] are deficient in this respect. Although the old and

new interactions agree rather well at zero temperature, this is no longer the

case at T 6= 0 because of an unphysical behaviour for the instanton–instanton

interaction that only decays as O(1/Rs), with Rs the spatial instanton sepa-

ration, see Eq. (3.11) in [172]. This long-range interaction prohibits a thermo-

dynamic limit as it is not integrable, see Fig. 5.1. In their paper, the authors

115
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Figure 5.1: The RH ansatz does not lead to a well-defined thermodynamic
limit at finite temperature, whereas the RE ansatz does exhibit the correct
linear scaling of an extensive quantity. Here we display results from quenched
simulations, but the same problems persist with dynamical quarks. The in-
stanton number N shows the strongest response to the unphysical interac-
tions.



CHAPTER 5. IILM AT FINITE TEMPERATURE 117

do discuss this long-range interaction and report they found the O(1/Rs)

dyon–dyon behaviour for a wide range of intermediate separations1. It might

well be that for the simulation boxes used in a subsequent numerical investi-

gation (see [157]) the interactions are still well described by this ansatz, i.e.

that the spatial extent of the box is bounded by these intermediate separa-

tions. However, for studying the large volume behaviour this ansatz is not

appropriate. Removing this particular part of the interactions, we were able

to retrieve a well-defined thermodynamic limit.

Apart from this deficiency, it seems obvious that at finite temperature

it will be much harder to find a good parametrisation for the action of the

background ansatz because the underlying O(4) symmetry is broken and the

constituent gauge fields are more complicated. This fact was already pointed

out in [172]. We improve the existing interactions by extending the formalism

set up in chapter 3 to finite temperature; as we will see, the only difficulties

are of a technical nature.

In this chapter we will achieve our initial aim of computing the temper-

ature dependent axion mass. So far the mass was computed within a dilute

gas approximation which breaks down at low temperatures. The connection

between the high temperature regime, where the dilute gas becomes ever

more accurate, and the zero temperature result, obtained through chiral per-

turbation theory, has been performed in a rather crude manner up to date:

either by unsmoothed matching [186, 13] or by an ad hoc interpolation pre-

scription [117]. Our determination of the axion mass will for the first time

give a well-motivated interpolation between the zero and finite temperature

regimes. Comparison with lattice data will allow for a critical evaluation

of the systematic uncertainties. In particular, considerations regarding the

anthropic axion with large decay constant [126, 188, 184] are potentially very

sensitive to the non-perturbative effects of the QCD phase transition, when

their mass becomes sizable.

In section 5.1 we will re-derive the finite temperature interactions for

the ratio ansatz. We will then discuss, in section 5.2, the new elements

that finite temperature introduces in the numerical framework. After these

technical preliminaries we will have a short investigation of the topological

1The gauge potential of a dyon is of the form Aa
µ ∝ η̄a

µνxν/r2
3d.
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susceptibility in the quenched sector in section 5.3, before we discuss the

main numerical results of the unquenched IILM regarding chiral symmetry

restoration, section 5.4, and the topological susceptibility and axion mass,

section 5.5.

5.1 Interactions in the IILM at finite temper-

ature

In terms of the ’t Hooft potential 1 + Π, the Harrington–Shepard caloron

[93], an infinite sequence of singular gauge BPST instantons [22] along the

Euclidean time direction, is given by

Aa
µ = −Oab

i ζb
µν

∂νΠ(x, {y, ρ})
1 + Π(x, {y, ρ}) , (5.1)

where O is the colour matrix in the adjoint representation of the embedding

SU(2) → SU(3), and ζb
µν = η̄b

µν (ζb
µν = ηb

µν) for instantons (anti-instantons);

η are the ’t Hooft symbols. The ’t Hooft potential has the following form

Π(x, {y, ρ}) =
πρ2

βr

sinh 2πr
β

cosh 2πr
β

− cos 2πt
β

, (5.2)

with r2 = (~x − ~y)2 and t = x4 − y4; the collective coordinates are: y the

centre, ρ the size and O the colour orientation. At finite temperature bosonic

quantities such as Π are periodic in the Euclidean time direction with period

β = 1/T . Note that Π approaches the zero temperature instanton potential

in the singular gauge for β → ∞.

We will use as background the ratio ansatz and, as for the zero tempera-

ture case, only consider two-body interactions. The gauge field is then given

by

Aa
µ = −

∑

i O
ab
i ζb

µν∂νΠi(x, {yi, ρi})
1 +

∑

i Πi(x, {yi, ρi})
, (5.3)

with O = Ot
1O2. This pair interaction has been derived in [172], and we will

refer to it as RH ; the corresponding forces will be denoted by RE. However,

in studying the volume dependence of various quantities, we noticed that
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these interactions did not allow for a thermodynamic limit. The problem

can be traced back to the log term in the instanton–instanton interaction,

(3.11) in [172], only decaying like O(1/Rs) for large Rs, where Rs is the

spatial separation of the pair. Note that this term is attributed to the dyon–

dyon interaction for intermediate separations, β ≪ Rs ≪ ρ2/β, in the high

temperature limit.

The ratio ansatz has the same functional form in terms of Π as for zero

temperature, and so we can use result from chapter 3 to write

F a
µνF

a
µν = I + (Tr OtO + (η̄Oη)µνµν)J + (η̄Oη)ρµρνIµν

+ (η̄Oη)µρνσIµρνσ + (ηOtOη)µρνσJµρνσ + (η̄Oη)αµαρ(η̄Oη)βνβσKµρνσ . (5.4)

The different terms are given in appendix B.1. Due to charge renormalisation

the action, S[A] = 1
4g2

∫
F a

µνF
a
µν , acquires a quantum contribution in the form

of the running coupling constant. The classical interaction is given by

Sg
12/S0 ≡ V12 ≡ (S[A]/S0 − 2) , (5.5)

where S0 = 8π/g2 is the single instanton action. The quantum effects sub-

stitute g in S0 for the running coupling constant; the RG scale is estimated

by the geometric mean
√

ρ1ρ2, as proposed in [168, 157].

First, we will look at the dependence of the interactions on Rt, the in-

stanton separation in the (imaginary) time direction. Compared to the zero

temperature case, the differences are substantial even for pairs with equal

sizes. The major difference comes from the fact that the RH interactions are

not periodic. For unequal sizes, the difference is even more pronounced as

was the case at zero temperature, see Fig. 5.2. The reason is again that the

functional form on the instanton sizes in RH is not general enough.

The interaction between instantons and anti-instantons does not lead

to as close a match between RE and RH as in the T = 0 case, but is still

qualitatively similar for not too large separations. In the instanton–instanton

case, however, we have found significant differences, see Fig. 5.3: we do

find the dyon–dyon behaviour for intermediate distances but for separations

Rs ≫ ρ2/β the functional dependence changes into an integrable O(R−4
s )

for RE whereas the non-integrable dyon–dyon interaction persists in the RH
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Figure 5.2: The major difference follows from the fact that RH interactions
are not periodic in Rt. This is clearly a deficiency of the analytical formulas
because it follows directly from (5.4) that the interactions should have pe-
riod β. For spatial separations, the main differences occur for unequal size
parameters, e.g. ρ1/ρ2 = 3 in this case. The reason is that the dependence
on the sizes is more complicated than the functional form,

√
ρ1ρ2, used in

RH . (We have set ρ̄ =
√

ρ2
1 + ρ2

2.)
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Figure 5.3: The instanton–instanton interaction behaves very differently for
RH and RE. In the high temperature, large size limit we do see the dyon–
dyon behaviour but for larger separations, Rs ≫ ρ2/β, the interaction decays
much faster, O(R−4

s ). This fall-off behaviour is integrable and we can study
the thermodynamic limit, in contrast to the purely dyonic interaction. (We
have set ρ̄ =
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2.)
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ansatz. That the large separation fall-off should be different from the dyonic

regime is clear from the discussion in [83] where the authors show that the

caloron field develops a dipole-like character in the far-field region. Note that

this leads to a three-dimensional dipole–dipole interaction for an instanton–

anti-instanton pair, but that the RH ansatz retains the zero temperature

(four-dimensional) dipole–dipole interaction2.

The fermionic interaction follows from the quark wave function overlaps

(D/ + m)ij = 〈ξi|D/ + m|ξj〉 = D/ ij + mδij . (5.6)

Even though the set of eigenfunctions {ξi} is generally not an orthonormal

basis, the extra contributions are neglected; effectively, we treat {ξi} as being

orthonormal which leads to the diagonal mass term. The fermionic zero mode

at finite temperature is given by [84], [83], [172],

ξI =
1

2πρI

√

1 + ΠI∂/
χI

1 + ΠI

(

UIϕ

0

)

, (5.7)

ξA =
1

2πρA

√

1 + ΠA∂/
χA

1 + ΠA

(

0

UAϕ

)

, (5.8)

χ = Π
cos πt

β

cosh πr
β

, (5.9)

with ϕαa = ǫαa, normalised according to ǫ12 = 1, and Ui the collective coor-

dinates for the colour embedding in the fundamental representation.

The overlaps TIA =
∫

ξ†IiD/ξA have a slightly more complicated form than

their T = 0 counterparts and are given by

TIA =

∫

R3×S1

1

4π2ρIρA

(
1

2
Tr (Uτ+

β )Iβ − i

2
Tr (Uτ+

β τa)η̄
a
µαJβµα

+
i

2
Tr (Uτaτ

+
β )ηa

µαKβµα

)

. (5.10)

The different contributions can be found in appendix B.2.

2instanton–instanton pairs decay slightly faster, at O(1/R4
s), however, and their inter-

action is not of dipole type; note that this happens at T = 0 too, where instanton–anti-
instanton pairs exhibit a dipole–dipole interaction but instanton–instanton pairs don’t
[61].
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Figure 5.4: The large discrepancy between RE and RH for both temporal
and spatial separations is due to the fact that RE uses the full ratio ansatz in
the Dirac operator whereas for RH a sum ansatz is used. Periodicity, which
follows directly from (5.6), is lacking for overlaps in the RH ansatz but is
realised in the RE ansatz. (We have set ρ̄ =

√

ρ2
1 + ρ2

2.)
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The difference between the RE and RH interactions is quite large for tem-

poral and spatial separations, see Fig. 5.4. However, it is not straightforward

to compare both ansätze because the RH overlaps are computed on a differ-

ent background [172], the sum ansatz, whereas we use the full ratio ansatz

in RE. As in the gluonic case, the quark overlaps are not periodic for the

RH ansatz as opposed to those of RE. As always, unequal sizes increase the

differences between the RH and RE ansätze even more. For large separations,

when the ratio ansatz becomes indistinguishable from the sum ansatz, and

for equal sizes, we find very good agreement between RH and RE.

The total interaction, after normalising to the dilute gas approximation,

is given by

Sint =
∑

pairs (i,j)

S0(
√

ρiρj)Vij −
Nf∑

n=1

{

ln det(I + TT †

m2
n

) , Q < 0

ln det(I + T †T
m2

n
) , Q > 0

, (5.11)

where Q = NI − NA is the topological charge and Nf the number of quark

flavours. For details see chapter 3.

Even though the analytic formulas of the RH ansatz are not periodic,

this is not really a major shortcoming because periodicity can be realised

by folding back the instantons into the fundamental interaction region Rt ∈
[−β/2, β/2]. We demonstrate this for the total interaction in Fig. 5.5. We

can clearly see that the RE ansatz is intrinsically periodic.

5.2 Numerical Implementation

5.2.1 Interpolation and asymptotic matching

As for zero temperature, we will need to set up a grid for the numerical

evaluation of the two-body interactions. The look-up tables will depend on

four variables: the spatial separation Rs, the temporal separation Rt and the

two sizes ρ1 and ρ2. The colour degrees of freedom O, or equivalently U ,

have been completely factored out and can be treated exactly.

As we have seen in the introduction to this chapter, the dyon–dyon regime

is characterised by a fairly slow fall-off. However, not all bosonic interactions

in appendix B.1.1 decay this slowly; rather they can be grouped according to
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action region, Rt ∈ [−β/2, β/2], we explicitly retrieve periodic interactions
for RH . The RE ansatz is intrinsically periodic.
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polynomial and exponential decay. The fermionic overlaps fall-off exponen-

tially, but slightly more slowly than their bosonic counterparts. Therefore,

we found it advantageous to define three different grids:

• For the polynomial grid, the maximal separation Rmax
s will depend

on ρ̃ ≡ πρ2/β, the natural size parameter for separations beyond β.

Note that for very small sizes Rmax
s < β the prescription for Rmax

s

should switch over to the T = 0 case; this is implemented by setting

Rmax
s = max(αp

0ρ, αp
T πρ2/β).

• The exponential decay sets in at Rs ≈ β. To accommodate very small

instantons we set again Rmax
s = min(αeg

0 ρ, αeg

T β).

• The grid for quark overlaps is set up accordingly, i.e.

Rmax
s = min(αeq

0 ρ, αeq

T β).

The constants αj
i are fine-tuned so as to achieve fast and stable numerical

integrations and a good matching to the analytic expressions used for sep-

arations beyond Rmax
s . In the temporal direction the grid is bounded by

|Rt| = β/2; care needs to be taken again for small instantons and we set

|Rmax
t | = min(Rmax

s , β/2).

The size distribution is supported on 30 grid points and for each pair

(ρi, ρj) the Rs − Rt plane consists of 30 · 29 nodes; this leads to a total of

roughly 1 million interpolation points. The grid is ‘logarithmic’ in the size

and Rs direction. A typical Rs − Rt plane is shown in Fig. 5.6.

The minimal and maximal sizes supported by the grid are fixed as in the

T = 0 case, i.e. they are chosen so small, respectively large, that they corre-

spond to a very low, respectively high, quantile of the normalised instanton

density. As we will see in section 5.2.2, at finite temperature the instanton

density becomes temperature dependent, reflecting the screening of coherent

background fields. Instead of computing a grid for every temperature we run

simulations at, we can exploit the following scaling transformations: under

coordinate rescaling, xµ → αxµ,

V (ρi, Rj, β) = V (ρi/β,Rj/β) , (5.12)

T (ρi, Rj, β) =
1

β
T (ρi/β,Rj/β) . (5.13)
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Figure 5.6: It turns out that the interactions are more or less identical on the
Rs−Rt plane, when expressed in units of ρ2

1+ρ2
2. We therefore choose the grid

to be irregular, i.e. the points on the Rs −Rt plane are different for different
values of the sizes. Since instantons are localised field configurations, the
separation between grid points grows geometrically in the Rs direction. In
the ρ directions the mesh is regular, but still ‘logarithmic’. The inner and
outer regions are matched to asymptotic expansions: for small separations
the matching is performed radially from the origin because in this region
the interactions are roughly O(4) symmetric; for large separations we match
along the Rs direction with constant Rt because the interactions become t-
independent. (Note that for graphical reasons not all 870 grid points are
displayed and that we actually display log Rs. Also the actual grid only
contains the Rs > 0 points.)
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Figure 5.7: In order to derive simple analytical expressions in the limit of
small and large pair separations, we approximate the ’t Hooft potential to
have a simple functional form in different integration regions. This procedure
works well for instantons with sizes that do not exceed β. As we will see the
plasma screening effects limit instanton sizes to be rather small compared to
β.

These can be used to transform the grid and interactions to different temper-

atures. We just need to make sure to choose the original sizes large enough

to accommodate the low temperature behaviour, i.e. ρmax = Λ. We defined

the grid and the interactions at β = 1 with ρ ∈ [0.01, 1.6].

As for the zero temperature case, the matching consists in deriving asymp-

totic formulas fasy that are patched on to the numerically integrated inter-

actions according to

f(R) = fasy(R)
fex(Rm)

fasy(Rm)
, (5.14)

where Rm is the matching point. For details see chapter 3. At T 6= 0,

however, we match differently for small and large separations. In the former

case the interactions will be approximately O(4) symmetric and the matching

is performed in an O(2) symmetric way on the Rs−Rt plane, i.e. along a ray

connecting the origin with (Rs, Rt). For large separations the interactions

become t-independent and we match along a line of constant Rt.

To derive the large separation asymptotic formulas, we consider two dif-

ferent integration regions, see Fig. 5.7. Therefore, we effectively approximate

integrals by ∫

S1×R3

≈
∫

S3×[0,β/2]

+β

∫

S2×[β/2,∞]

, (5.15)
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Figure 5.8: The instantons I1 and I2 are so far apart that within the shaded
region that give the dominant contribution to the field strength of each, the
other’s field strength is roughly constant and fixed at xµ−Rµ ≈ −Rµ. We can
then safely extend the integration region to be all of S1×R

3, with a negligible
error due to the rather strong localisation of the individual instantons. The
functional form of the relevant ’t Hooft potential changes from Π = ρ2/r2

4d

to Π = πρ2/βr3d at r4d = β/2, see Fig. 5.7.

where we exploit the respective spherical symmetry of the ’t Hooft potentials.

In both regions we only have to deal with rational functions which can be

easily integrated exactly. Apart from this extra complication the strategy is

the same as in the zero temperature case and is illustrated in Fig. 5.8. The

results are given in appendix B.1.2 and B.2.2.

The main objective for small separations is to capture adequately the sin-

gularity structure, for which it is sufficient to restrict ourselves to the T = 0

region. To capture contributions that do not blow up, we add the large sep-

aration contributions truncated at the pair separation (Rt, Rs). The results

are given in appendix B.1.2 and B.2.2. Apart from considering different func-

tional forms for the ’t Hooft potential this is the same procedure as for the

T = 0 asymptotic interactions and is illustrated in Fig. 5.9.

As in the T = 0 case, the quark overlaps in the small separation region

are qualitatively incorrect. However, this region is again dominated by the

gluonic repulsion. The latter is not as well approximated as in the T = 0

case but the agreement is still on the 10% level and, most importantly, qual-

itatively correct, see Fig. 5.10. In contrast, the large separation asymptotic

formulas work well.
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Figure 5.9: The instantons I1 and I2 are strongly overlapping. We approx-
imate the integral by first integrating over I1 keeping I2 fixed at Rµ as in
the large separation case, see Fig. 5.8, but with upper limit R/2; to this we
add the analogous contribution from I2. The possibly singular behaviour
is picked up by integrating from infinity down to R and approximating the
arguments by xµ − Rµ/2 ≈ xµ and xµ + Rµ/2 ≈ xµ, respectively.
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Figure 5.10: The small separation asymptotic approximation is only qualita-
tively correct. It overestimates the correct interaction for moderately small
separations because it underestimates the quark contribution. For very small
separations, where the exact quark interaction is indeed negligible, the glu-
onic approximation underestimates the exact result. However, the grid cov-
ers rather small separations so that the asymptotic interactions for strongly
overlapping instanton–anti-instanton pairs are rarely needed. In those cases
where it is needed we get a qualitatively correct repulsion. (The temporal
separation Rt has been chosen very small in order to see the repulsion).
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5.2.2 Biased Monte Carlo

The IILM is defined by its partition function,

Z =
∞∑

NI ,NA

1

NI !

1

NA!

NI∏

i

d(ρi)

NA∏

j

d(ρj) exp (−Sint) , (5.16)

with Sint defined in (5.11) and the single instanton density given by d(ρ) =

d0(ρ)dT (ρ). The zero temperature contribution d0 is given in (3.42). The

finite temperature term describes the screening in the plasma of coherent

field excitations exceeding the inverse temperature scale β, and is given by

[83] [157],

dT (ρ) = exp

[

−1

3
(2Nc + Nf )(πρT )2 −

(

1 +
Nc

6
− Nf

6

)

(

− ln(1 + (πρT )2/3) +
0.15

(1 + 0.15(πρT )−3/2)8

)]

. (5.17)

Apart from book-keeping related technicalities, the major challenge is to

adequately simulate instanton–anti-instanton molecules, the structures re-

sponsible for the chiral symmetry restoration within the IILM [99], [100],

[158]. Detailed numerical studies at finite temperature have been performed

in [157]. For the mass parameters used in these latter simulations no technical

problems were encountered. However, for the small quark masses that we de-

termined in the T = 0 simulations, we found that standard Monte Carlo tech-

niques faced severe problems with the strong attraction between instanton–

anti-instanton pairs. In chapter 4 we have argued that this technical problem

will occur quite generally for the semi-classical expansion with small quark

masses. There we have set up the framework to deal with these algorithmic

issues by adapting techniques from chemical engineering and computational

chemistry and developed for the study of strongly associating fluids.

The instanton–anti-instanton pair interactions become ever stronger and

more localised for small quark masses, and random sampling methods will

generically miss these configurations. We therefore need to preferentially

sample the attraction centres. This can be achieved by resorting to biased

Monte Carlo schemes. They exploit the large redundancy in devising transi-
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tion probabilities Pij that satisfy detailed balance,

P eq
i Pij = P eq

j Pji , (5.18)

where the equilibrium distribution P eq is given by the partition function.

Specifically, the degeneracy follows from the fact that the transition proba-

bility consists of two parts, the proposal probability, Pij, and the acceptance

probability, Aij,

Pij = PijAij . (5.19)

To satisfy (5.18), the acceptance probability is given by

Aij = min

[

1,
P eq

j

P eq
i

Pji

Pij

]

, (5.20)

which is the Metropolis prescription.

Recently, efficient and general purpose algorithms have been developed to

achieve this importance sampling; we will use [205], the Unbonding–Bonding

algorithm (UB). This algorithm focuses not on the union of all the interaction

regions, a complicated and case-specific geometrical problem, but on the

individual interaction regions and all the possible routes that lead to the

same final state.

For the IILM, we choose the bonding region to consist of the two dis-

connected valleys of strong interaction, see Fig. 5.11, and take them to be

hypercubes for simplicity. The precise size of the box is a free parameter

and will be chosen to achieve the fastest convergence. We will check that the

results do not depend on the bonding box parameters, within statistical un-

certainties. We will now present the transition probabilities for the different

types of updates; details can be found in chapter 4.

The forward and backward transition probabilities for the UB moves of
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Figure 5.11: The strongest interaction is achieved for the colour orientation
U = I and located in the two troughs. For simplicity we will choose the
bonding box to consist of the two hypercubes displayed by dashed lines.
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instanton i are given by

Pii′ =

N ′B
I (i)
∑

j

PB
i(i′,j) + δB

i PU
ii′ , (5.21)

Pi′i =

NB
I (i)
∑

j

PB
i′(i,j) + δB

i′ PU
i′i , (5.22)

(5.23)

with δB
i = 1 if i is bonded and δB

i = 0 otherwise. We denote by NB
I (NB

A ) the

number of bonded instantons (anti-instantons) and NB
I (i) is the number of

anti-instantons that instanton i is bonded to, and analogously for NB
B (i). Un-

primed quantities are evaluated before the move whereas primed ones denote

the same quantity after the move. The individual bonding and unbonding

transition probabilities are given by

PB
i(i′,j) =

1

NI

1

NA

1

Vj

, (5.24)

PU
ii′ =

1

NB
I

1

V
. (5.25)

The bonding move consists of choosing uniformly an instanton and an anti-

instanton, and to place the instanton i uniformly in the bonding region Vj

of the anti-instanton j. The unbonding move consists of choosing uniformly

one of the bonded instantons and to place it uniformly in the simulation box.

Insertion and deletion will be constructed along the lines of the UB al-

gorithm by either placing the instanton i into the bonding region of an anti-

instanton or removing the bonded instanton i. Adding up all possible paths,

including the unbiased one, we get

PNIN ′
I

= pb

N ′B
I (i)
∑

j

1

NA

1

Vj

+ (1 − pb)
1

V
, (5.26)

PN ′
INI

= pb
δB
i

N ′B
I

+ (1 − pb)
1

N ′
I

. (5.27)

Here pb is the a-priori-probability to perform biased moves.

It has also been argued that cluster moves are important to achieve good
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mixing of the Markov chain [142]. We assume that I − A pairs are the

dominant clusters that form. The pair displacements consist of translating

the pair as a whole or to displace one of the constituents within the bonding

region of its partner, and the resulting transition probabilities are obvious.

The pair insertions and deletions are given by

PNN ′ =
δP
iI iA

4

1

V

(
1

ViI

+
1

ViA

)

+
1

2

1

V

1

V
, (5.28)

PN ′N =
1

2

δP
iI iA

N ′
P

+
1

2

1

N ′
I

1

N ′
A

, (5.29)

where NP is the number of pairs. The last terms in each line follow from

randomly and independently inserting/deleting an instanton and an anti-

instanton. We found that inclusion of these unbiased moves enhances the

acceptance rates at high temperature when we approach the dilute gas limit.

So far we have only discussed the spatial arrangements of the instantons.

However, the interaction also depends on the colour degrees of freedom [72].

This further technicality can be dealt with by adapting techniques for ori-

entation dependent forces in molecular dynamics simulations. To this end

we define the measure in colour space by the Boltzmann factor of the pair

interaction. This ensures that U is chosen so as to increase the interaction.

More precisely, given the position of the instanton within the bonding box

of its partner anti-instanton, we want to sample the following equilibrium

distribution:

P(UI |xI , xA, UA) =
exp

(

−Spair
int (UI , UA, xI , xA)

)

∫
dUI exp

(

−Spair
int (UI , UA, xI , xA)

) , (5.30)

where dUI is the Haar measure over SU(3). Note that we neglect the influence

of the neighbouring instantons and anti-instantons; we could include them

but since the fermionic interaction involves a determinant the computation

would become rather costly.

We cannot sample this distribution analytically, but we can sample it

exactly within a Monte Carlo scheme [72]. Using the fact that the Haar

measure is invariant under group composition and also that the interactions

(5.4) and (5.10) depend on U = U †
I UA, it is natural to work with U . To
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sample (5.30), we choose a set of N different colour matrices uniformly over

SU(3), i.e. according to the Haar measure. We select one among those N

matrices according to the probability

pi =
e−Spair

i

∑N
j e−Spair

j

, (5.31)

with Spair
i = Spair

int (Ui, xI , xA). Now, remember that the transition probability

is given by a proposal and acceptance probability, and that the former in-

cludes any a-priori-probabilities for generating the proposed state. Thus, the

orientational bias includes the generation probability of the set of matrices,

and is given by

Pi =

(
1

VSU(3)

)2N−1

Npi . (5.32)

The selection probability and the first N volume factors are obvious. The

additional N − 1 volume factors need further explanation. Given the form

(5.20) for the acceptance probability, apart from the N matrices used in

(5.31), we need to generate another N−1 trial matrices that combine with the

matrix selected in the forward move to form the set of N matrices necessary

to evaluate the orientational bias, (5.31), in the backward move. Finally, the

extra enhancement of N is necessary because we are not so much interested

in Ui being generated at the ith trial but rather that the value Ui is selected.

Thus we must marginalise over the label i: adding up all the permutations of

the set of trial matrices modulo the permutations of the subset of the N − 1

matrices that are not selected produces the extra N factor. Of the 2N − 1

volume factors 2N − 2 will cancel in general3 and so we can simplify (5.32)

to

Pi =
e−Hi

VSU(3)

N

∑N
j e−Hj

, (5.33)

which we recognise as an approximation to (5.30); note, however, that within

the MC scheme is exact, i.e. the results do not suffer from any discretisation

errors. Including the orientation bias amounts to multiplying the bonding

3One might think that all 2N − 1 volume factors drop out, but in general we might
add new moves that select U with a rule different from (5.31); in such a case we only need
2N − 2 trial matrices, i.e. N − 1 from either the forward and the backward move.
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box volume factors Vj by (5.33).

We found that the interactions are rather self-similar when expressed in

units of ρ̄ =
√

ρ2
I + ρ2

A. Thus, the bonding region depends on both particles

that make up the pair through a function of their sizes. We choose the

functional form of the size dependence to be given by

Vj → Vij = VUB

(
ρ2

i + ρ2
j

)2
. (5.34)

By construction, VUB is independent of the specific pair, and we will tune it

to achieve fast convergence.

The IILM does not lead to confinement; from a heuristic point of view

this follows from the simple fact that the Harrington–Shepard calorons have

a vanishing Polyakov loop, the order parameter of the phase transition. It

has been in argued in [163] that at low temperatures the instanton density

should only depend very weakly on temperature and that, in particular, the

result (5.17) is only applicable in the plasma, i.e. deconfined, phase. In the

hadronic phase the fundamental degrees of freedom are not screened and

the heat bath consists mainly of pions. We will follow the prescription put

forward in [157] and include in (5.17) a phenomenological term that mimics

the transition from the confined to the deconfined phase. We have decided

to investigate this with the following two choices, see Fig. 5.12,

d1
T (ρ) = d0(ρ) dT (ρ)αT ,

d2
T (ρ) = d0(ρ) (1 + αT (dT (ρ) − 1)) ,

αT =
1

2

(

1 + tanh
T − T∗

∆T

)

. (5.35)

The functional form d1
T for the transition between hadronic and plasma phase

has been used in [157]. The functional form d2
T is chosen on the basis that,

intuitively, it should lead to a more symmetrical behaviour around T∗. With

these two choices we will get a rough idea on the systematics due to these

phenomenological terms. We’ve introduced two new parameters into the

IILM; they will be fixed by comparing our results to available lattice data.

So far these modified screening factors are purely phenomenological. How-

ever, the more general non-trivial holonomy calorons [119, 121, 120] [123],
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Figure 5.12: The screening factors (5.35) lead to constant mean instanton
sizes in the confined phase, below T∗, as has been found from lattice investiga-
tions [40]. As expected, the factor d2 leads to a slower and more symmetrical
switch-on of the screening.
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that might play a crucial role in driving the confinement/deconfinement phase

transition, have been shown to lead to mean instanton sizes that depend very

weakly on temperature in the confined phase [80]. Given the assumptions of

that paper, the change of the Polyakov loop with temperature is responsible

for the different screening behaviour of instantons in the confined and decon-

fined phase: in the former, the equilibrium state corresponds to an ensemble

of maximally non-trivial holonomy calorons which are not screened, whereas

the latter consists of trivial holonomy Harrington–Shepard calorons which

are strongly screened. We can therefore interpret the modified screening fac-

tors (5.35) as an effective description of the change of the Polyakov loop as

the system evolves through the phase transition. Generalising the IILM to

include these calorons in the future, we might be able to describe the plasma

screening effects self-consistently.

Note that for low temperatures the IILM should not be very different

from the T = 0 case, which was well dealt with by ordinary Monte Carlo.

We can use this regime to test the more advanced Monte Carlo scheme against

unbiased simulations. In Fig. 5.13 we plot the thermalisation history at such

low temperatures for two different set of quark masses; the latter are given by

the physical masses determined in chapter 3 and the second set has the same

dimensionless strange quark mass and identical light quarks with a value of

ten times the physical up quark. We can clearly see that the histories for the

biased and unbiased simulations are very similar.

As the temperature is increased, ordinary Monte Carlo fails for the set

of physical quark masses. For intermediate temperatures, around T∗, there

is a substantial difference in the results from biased and unbiased simula-

tions. Even for the set of larger masses there are differences visible to the

naked eye, see Fig. 5.14. For these temperatures instanton–anti-instanton

pair formation, the mechanism that drives the chiral symmetry restoration

in the IILM, is supposed to be very important. We find that the number of

pairs is indeed quite different with 〈NP 〉 ≈ 20 for biased and 〈NP 〉 ≈ 7 for

unbiased simulations and physical quarks. For the larger quark masses we

find that the difference in the number of pairs between biased, 〈NP 〉 ≈ 16,

and unbiased, 〈NP 〉 ≈ 11, simulations is less pronounced, as expected.

At temperatures well inside the plasma phase, ordinary Monte Carlo fails
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Figure 5.13: In the hadronic phase, i.e. without the plasma screening factor
(5.17), biased and unbiased simulations agree very well. This is to be ex-
pected because we know from the T = 0 simulations that ordinary Monte
Carlo leads to good sampling. These low-T simulations serve thus to check
the biased Monte Carlo scheme.
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Figure 5.14: Around the confinement/deconfinement transition, modeled by
(5.35), the formation of instanton–anti-instanton pairs is important as it
drives the chiral symmetry restoration in the IILM. We can clearly see that for
the small, physical quark masses (top) ordinary Monte Carlo fails to sample
the ensemble correctly. For the large quark masses the effect is much less
pronounced but there is a clear systematic difference in the mean instanton
number. It can be attributed again to fewer pairs.
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Figure 5.15: In the plasma phase, ordinary Monte Carlo fails drastically for
the physical quark masses (top). This trend will, however, not persist to
higher temperatures. Depending on the quark masses the energy-dominated
pair configurations will be outweighed in the partition function by entropy-
dominated configurations at sufficiently high temperatures. For larger masses
this happens at lower temperatures (bottom).
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completely to describe the system accurately for physical quark masses, see

Fig. 5.15. In this case the number of pairs is very different, 〈Nbiased
P 〉 ≈ 18

and 〈Nunbiased
P 〉 ≈ 1. Note, however, that the number of pairs has decreased

for the higher temperatures.

Simulations at larger masses converge (slowly) to the correct equilibrium

distribution. Actually, ordinary Monte Carlo perform better at high tem-

perature than around T∗ for these larger quark masses. The reason is that

the ensemble equilibrates in a very dilute state, so that there are only a few

instanton–anti-instanton pairs, 〈Nbiased
P 〉 ≈ 4.5 and 〈Nunbiased

P 〉 ≈ 1.5. Note,

again, that the pair concentration has dropped with respect to temperatures

around T∗. It turns out that, quite generally, the molecule concentration

drops with increasing temperature, because the energy-dominated pair con-

figurations have a smaller and smaller entropy and are outweighed by the

entropy-dominated configurations; the latter correspond to a truly random

ensemble of instantons at a high enough temperature. This will happen for

physical quark masses as well, albeit at higher temperatures.

To be a bit more precise, consider the contribution to the partition func-

tion of an instanton–anti-instanton pair, which we approximate by its dilute

gas limit and by the contribution from the bonding box. The latter domi-

nates, and hence biased simulations might be needed, if

1 <

(∫

d(ρ)

)

∆V exp (−Sint) . (5.36)

The contribution from the two instanton measures have cancelled on both

sides, and we used V = N/2
∫

d for the dilute gas. The overbar is meant to

indicate the average over the bonding box, size and colour orientations.

Using the 1-loop formula for the instanton measure and choosing one

specific size with Tρ = const, this leads to

0 <

[

−
(

7 +
Nf

3

)

+

(

11 − 2

3
Nf

)

(−V12) + 2Nf − 4

]

log T + const . (5.37)

We only display explicitly the temperature dependence for the one-loop in-

stanton measure (first term), the gluonic interaction (second term), the quark

interaction (third term) and the scaling with temperature of the bonding box
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(fourth term). It turns out that the gluonic contribution is bounded by 5 for

Nf = 3. Hence the log T term is negative and the dilute gas approximation

becomes better and better as the temperature increases, see also Fig. 5.16.

For higher temperatures, when more quark flavours become active, the trend

seems to be reversed. Note, however, that this conclusion completely neglects

the high-frequency quantum interaction, which should be investigated in the

future to study this issue further.

The UB algorithm is only useful if the results do not depend strongly

on the precise implementation, i.e. the actual definition of the bonding box.

We checked this by using different bonding boxes for three different tem-

peratures, i.e. above, around and below T∗, see Table 5.1. We found that

the results agree very well for temperatures below T∗. This corroborates

our expectations that biased Monte Carlo is not essential in that regime.

For a modest sample of 200 independent configurations4, we also find rather

good agreement for the higher temperatures where random sampling fails.

We have also checked the dependence on the a-priori-probabilities5; we find

again that the results only depend weakly on these choices for the small sam-

ple size we have used. Autocorrelation times, however, depend much more

strongly on the bonding box; this allows us to fine-tune the parameters to

achieve efficient sampling. The bonding box B4 will be used for the final

simulation.

5.2.3 Fermionic determinant

We argued that for sufficiently high temperatures, the IILM goes over to a di-

lute ensemble. It turns out that for high dilution the numerical manipulation

of the quark overlaps becomes unstable because the overlap matrix becomes

nearly degenerate. To render the evaluation of the fermionic interaction sta-

ble we need to decompose the overlap matrix into smaller non-degenerate

blocks.

To achieve this, we truncate the interactions to zero above a certain cut-

off; it is a function of the pair sizes and determines which instantons interact

4This relates to 〈N〉; the autocorrelation time for 〈Q2〉 was always smaller, effectively
leading to a larger sample size. The better agreement on the latter quantity corroborates
the expectation that the differences among bonding boxes vanish for infinite sample size.

5The data in Table 5.1 corresponds to one particular choice for the a-priori-probabilities.
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Figure 5.16: We display a (spatial) snap-shot of a typical configuration. For
low temperature (top) spatial correlations are not very pronounced and the
system equilibrates in a ‘random’ state. In the region T ≈ T∗ (middle) a
higher concentration of instanton–anti-instanton pairs can be seen, signalling
the restoration of chiral symmetry in the IILM. At higher temperatures (bot-
tom) the ensemble becomes dilute: the energy gain in pair-formation is out-
weighed by the large entropy gain of a random distribution of instantons
throughout the box.
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B1 B2 B3 B4 B5 B6

〈N〉 99(1) 100(1) 97(1) 102(1) 98(1) 98(1)
〈Q2〉 0.81(1) 0.81(1) 0.81(1) 0.78(1) 0.81(1) 0.779(9)
〈ūu〉 230(9) 219(8) 222(9) 217(9) 211(9) 225(8)

〈N〉 105(1) 101(1) 96.7(9) 99.3(8) 98.6(9) 95.3(9)
〈Q2〉 0.36(1) 0.31(2) 0.39(2) 0.30(2) 0.347(8) 0.349(6)
〈ūu〉 84(8) 68(6) 80(8) 69(7) 75(7) 72(7)

〈N〉 102.0(9) 106(1) 99.2(9) 106(1) 108(1) 102.2(9)
〈Q2〉 6.9(3) 7.0(3) 7.0(2) 6.7(3) 6.8(2) 6.9(1)
〈ūu〉 1320(30) 1300(30) 1300(40) 1200(30) 1310(40) 1210(30)

B1 B2 B3 B4 B5 B6

xbb
i 0.4 0.4 0.4 0.6 0.23 0.17

xbb
t,min 0.2 0.25 0.3 0.2 0.35 0.4

xbb
t,max 2 1.8 1.6 2 1.2 1

Table 5.1: The temperature increases from top to bottom. We find rather
good agreement between the different bonding boxes. The sample has a
modest size of 200 independent configurations for 〈N〉. The topological sus-
ceptibility has smaller autocorrelation times and a correspondingly larger
sample size. The better agreement for 〈Q2〉 can be used to argue that the
differences between the bonding boxes vanish with increasing sample size, as
expected. The bottom table gives the dimensions, defined in Fig. 5.11, for
the different bonding boxes Bi.
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with each other. Given this cutoff, we can built clusters of pairwise interact-

ing instantons. The overlap matrix TIA is then decomposed into a direct sum

according to these clusters. Not only does this render the numerical manip-

ulations stable, but it also leads to a dramatic speed increase. Incidentally,

we also use a cutoff for the gluonic interactions to get a better scaling with

the number of instantons.

5.3 Quenched simulation

The main purpose of this section is to investigate how well the phenomenolog-

ical screening factor (5.35) can model the confinement/deconfinement phase

transition. To this end, we compare the topological susceptibility, for various

values of the free parameters, to lattice data [6]. Normalising to the T = 0

result, we get Λ = 206(8)MeV.

We performed many simulations with different sets {T∗, ∆T}. We report

a few of these in Fig. 5.17, which is representative of the general findings.

Namely, that the screening factors do not capture the lattice data well. In

particular, we found that the IILM result for the topological susceptibility

decays too fast: the power-law-like behaviour, e.g. χ ∝ T−8 from the dilute

gas approximation, at temperatures above T∗ is not compatible with the

available lattice data. The screening factor d1
T generically underestimates

the lattice result for rather moderate temperatures. Only higher T∗ could

remedy this; however, for such values the topological susceptibility is too

high in the low temperature regime. This can also be seen in Fig. 5.17 for

the second screening factor d2
T : it has a gentler switch-on of the plasma

screening effects, and also leads to rather large values for the topological

susceptibility at low temperature.

We actually found that without any plasma screening, and therefore also

in the low temperature region, the IILM produces a susceptibility that rises

with temperature. This is not what the lattice predicts, namely an almost

constant χ. The quenched IILM at finite temperature does not seem to

give a good description of the pure Yang-Mills sector: that it fails around

the phase transition could be expected since the crude phenomenological

screening terms can only be expected to be a rough effective description;
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Figure 5.17: A striking feature of the quenched simulation is that the topo-
logical susceptibility decays generically too fast, as compared to lattice data.
At low temperatures the IILM predicts a rising topological susceptibility, in
contrast to the lattice data, which is roughly constant. The screening factor
d1

T underestimates the lattice result, whereas d2
T tends to overestimate it at

temperatures around T∗. Once the plasma screening is fully effective, both
lead to too fast decays: the dilute gas approximation gives an approximate
power-law of χ ∝ T−8 which is not compatible with the available lattice data.

however, we find that the IILM fails to qualitatively describe the pure gauge

dynamics at low and high temperature.

Given the fact that the dilute gas of non-trivial holonomy calorons [80]

gave rather encouraging results, it might be that these are essential to model

QCD in the quenched case. In particular, it will be interesting to find out

whether these degrees of freedom can capture the smaller decay at high tem-

perature or whether other degrees of freedom are dominant.

5.4 Chiral symmetry restoration

Compared to the quenched sector, full QCD has the additional property of

(softly broken) chiral symmetry. Based on it, powerful analytical approaches
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like chiral perturbation theory have been developed. A strong point of the

IILM is its rather accurate description of the chiral properties of QCD. As

compared to the quenched sector, this additional structure can be expected

to improve the agreement between the IILM and the lattice at finite temper-

ature.

We will repeat the analysis of the previous section for the unquenched

IILM. Instead of the topological susceptibility, which we want to compute

after all, we will use the chiral susceptibility [9] to estimate the parameters T∗

and ∆T . Note that there is a controversy with regard to the lattice results for

the critical temperature [52, 104, 8] with differences on the order of 20 MeV.

The chiral susceptibility is defined by

χq̄q = ∂2
m ln ZQCD =

∫ ∫

〈ψ̄ψ(x)ψ̄ψ(y)〉 −
(∫

ψ̄ψ(x)

)2

, (5.38)

with ZQCD the QCD partition function. It is actually composed of a con-

nected and a disconnected part, and the latter is most sensitive to the chiral

transition [105]. In terms of propagators both parts are given by

χd
q̄q = 〈

(∫

Tr SA(x, x)

)2

〉A −
(

〈
∫

Tr SA(x, x)〉A
)2

, (5.39)

χc
q̄q = −〈

∫

Tr SA(x, y)SA(y, x)〉A + χd
q̄q , (5.40)

and the expectation values are over the gluon fields. These formulas make it

clear that the disconnected part is the main order parameter of the transition.

Within the IILM, the propagator is the sum of a low and a high frequency

part; the latter is usually just approximated by the free massive propagator.

As such it gives an infinite contribution to the disconnected part and has

to be subtracted at T = 0. A finite contribution remains at T 6= 0; it can

be derived from the free partition function [103] and turns out to be small

compared to the low-frequency contribution, and we will ignore it. This is

expected, as the chiral transition is driven by the dynamics of the interacting

instanton ensemble, and so the contribution from the free propagator should

be negligible. By the same reasoning, we will ignore the cross terms between

the low frequency and the free propagator. It is then straightforward to
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compute the chiral susceptibility in the IILM. The propagator, truncated to

the finite dimensional low frequency part, is given by

SA(x, y) = (D/ + m)−1
low =

∑

n

1

m − iλn

ξn(x)ξ†n(y) , (5.41)

where λ are the eigenvalues of the matrix defined in (5.10); note that we

used the fact that the set {ξn} of zero modes is assumed orthonormal. The

susceptibilities in the IILM are then given by

χd
q̄q = 〈

(
∑

n

1

m − iλn

)2

〉 −
(

〈
∑

n

1

m − iλn

〉
)2

, (5.42)

χc
q̄q = −〈

∑

n

(
1

m − iλn

)2

〉 + χd
q̄q . (5.43)

For notational simplicity we have omitted the subscript A on the expectation

value, but the average is again over the gauge fields. Remembering that the

non-zero eigenvalues are paired due to chiral transformations, we find that

χd
q̄q = 〈(q̄q − 〈q̄q〉)2〉, q̄q =

|ν|
m

+
∑

n

2m

m2 + λ2
n

, (5.44)

χc
q̄q = −〈 |ν|

m2
+

∑

n

2(m2 − λ2
n)

(m2 + λ2
n)2

〉 + χd
q̄q , (5.45)

where |ν| is the number of zero modes and is related to the topological charge

Q through the index theorem, ν = Q.

Now, the chiral susceptibility in [9] is isospin symmetric, whereas we

have broken it explicitly, i.e. mu 6= md. In order to obtain effectively isospin

symmetric results, we will compute

χq̄q =
1

2

∂2Z

∂m̄2
, (5.46)

with m̄ = 1
2
(mu +md) the mean quark mass and mu/md = const. This leads

to

m̄2χq̄q =
1

2
m2

uχ
c
ūu +

1

2
m2

dχ
c
d̄d + mumd〈(ūu − 〈ūu〉)(d̄d − 〈d̄d〉)〉 . (5.47)
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It turns out that the chiral susceptibility, with all plasma screening effects

removed, peaks around Tc ≈ 120 MeV, and decays very slowly afterwards.

Screening effects in the IILM tend to increase the dilution of the ensemble,

and thus they will be responsible for the faster decay at higher temperature.

Incidentally, with screening effects included down to very low temperatures,

below Tc, the peak in the chiral susceptibility disappears completely; this

gives a first constraint on T∗.

The lattice data shows a peak at Tc ≈ 160 MeV6 and no tuning of the

parameters {T∗, ∆T} will shift the chiral phase transition in the IILM towards

the lattice result.

To fix the free parameters, we simply demand that the IILM result for the

chiral susceptibility does not exceed the lattice result at high temperature, i.e.

that the rapid decay due to screening effects should be around T ≈ 160 MeV,

and that its peak remains intact. We’ve computed the chiral susceptibility for

four sets of parameters to estimate the systematics, see Fig. 5.18. The large

errors are due to the large systematics in Λ that is used to set dimensions. By

construction, the data below Tc ≈ 120 MeV is very robust as the screening

effects are almost completely negligible, and the location of the peak remains

fairly unaffected. Above Tc the results do not depend too strongly on the

parameters {T∗, ∆T}, apart for the first curve (solid circles) which does seem

to have too big a T∗-value. Given the phenomenological terms, see (5.35),

and the constraint T∗ > 120 MeV, the IILM predicts a chiral phase transition

at Tc ≈ 120 MeV.

One of the successful predictions of the IILM has been chiral symme-

try restoration based on the formation of instanton–anti-instanton molecules

[99], [100], [158]: through pairing up of instantons and anti-instantons, and

the strongly localised quark wavefunctions, the Dirac operator spectrum de-

velops a gap and the Casher-Banks relation tells us that the quark condensate

vanishes, i.e. chiral symmetry is restored.

Naively we would expect that the pair concentration is highest around

the phase transition. This is, however, not what we find and, interestingly,

the number of pairs seems to drop at the phase transition. In fact, the

6The newer analysis in [8] results in a shift towards lower temperatures by about 5MeV.
This is not a significant change with regard to the IILM prediction of Tc ≈ 120MeV and
we will ignore it in what follows.
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Figure 5.18: The chiral susceptibility in the IILM predicts a chiral phase
transition at Tc ≈ 120 MeV. Given the constraint that T∗ > 120 MeV this
is a robust result. The different parameter sets were chosen such that the
plasma screening effects are effectively fully enhanced at about 160 MeV, the
transition predicted by the lattice result (note that we use the continuum
extrapolation of [9]). The first curve (solid circles) falls slightly short of this
expectation. Taking the errors at face value (including those for the lattice
result) the IILM is off by roughly 3σ. Considering the newer analysis [8]
that shifts the lattice result to lower temperatures, the agreement improves
slightly.
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Figure 5.19: Contrary to expectation, the pair concentration does not peak
at the chiral phase transition, although it is large with 50%, but, interestingly
dips at the phase transition. Also, it keeps growing to 70% at roughly T ≈
300 MeV; beyond that point it decays.
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Figure 5.20: The instanton density compared to the dilute gas result. The
data clearly shows that even for temperatures as high as T = 400 MeV the
ensemble is not compatible with a dilute gas. The higher density in the IILM
is due to the energy stored in pairs.

concentration of molecules keeps growing beyond Tc, see Fig. 5.19, and at

Tc only half of the instantons are paired up into molecules. The maximum

concentration of 70% is reached at T ≈ 300 MeV, beyond which it starts

to decay rather slowly. Note that even at T = 400 MeV the system is still

far from a dilute random gas of individual instantons, see Fig. 5.20. It is,

however, important to note that the identification of pairs is correlated to

our specific definition of a bonding box, and even though the Monte Carlo

results did not depend on the definition of the box, the number of instanton–

anti-instantons does certainly depend on it.

Despite the fact that the ensemble is distinct from a random gas, the

quark condensate tracks the dilute gas approximation already for moderately

high temperatures, see Fig. 5.21. The reason is that the Dirac eigenvalues

for pairs are large compared to the quark masses; this in turn follows from

the fact that pairs have lined up along the time direction and thus their

separation becomes smaller as the temperature increases. Therefore they
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Figure 5.21: Although at T ≈ 300 MeV the pair concentration is high, the
quark condensate already tracks the dilute gas approximation (solid line).

are negligible compared to the zero modes. Bearing in mind the cluster

decomposition of the quark overlap matrix TIA, the quark condensate is

given by

〈q̄q〉 ≈ 1

mq

∑

clusters

〈|ν|〉 ≡ 〈|νeff |〉
mq

. (5.48)

Note that this has almost the form of the dilute gas result, for which TIA = 0

and hence λn = 0,

〈q̄q〉|DGA =
〈N〉/V

mq

. (5.49)

It turns out that 〈|νeff |〉 has a temperature dependence that follows the di-

lute gas approximation for 〈N〉, see Fig. 5.22. The straightforward explana-

tion that |νeff | is approximately equal to the number of unbonded instantons

did not hold up to scrutiny, especially 〈#unbonded〉 does not behave as

〈N/V 〉|DGA. Thus the population of unbonded instantons is still too large.

But the clustering is defined through cutoffs in the interactions; these cutoffs

can therefore also be used to identify a truly non-interacting sub-ensemble in

the IILM. By definition, this population behaves according to the dilute gas
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approximation. We find that its density becomes important at T ≈ 300 MeV

which explains the behaviour of the quark condensate.

We can conclude that, quite generally, the quark condensate is rather

insensitive to the details of the molecule population. Presumably, only its

concentration determines the effective number of zero modes νeff , respectively

the density of the non-interacting instantons.

5.5 Topological susceptibility and axion mass

5.5.1 Topological susceptibility

The topological susceptibility approaches the dilute gas approximation for

temperatures above approximately 250 MeV, and, like the quark condensate,

does not seem to be affected by the high concentration of instanton–anti-

instanton molecules, see Fig. 5.23.

Guided by the ideas of [100] that the IILM leads to a mixture of a highly

correlated and a random component, it is natural to identify the unbonded

instantons as the dominant contribution to the topological susceptibility; the

molecules, at least at zeroth order, do not lead to charge fluctuations and thus

cannot account for the topological susceptibility. For a random ensemble Nr

it follows that

χ ∝ 〈N2
r 〉 − 〈Nr〉2 ∝ 〈Nr〉 . (5.50)

We found, however, that the population of unbonded instantons is far too

large to be responsible for the small topological susceptibility, under the as-

sumption that Nub is a completely random ensemble, see Fig. 5.24. Again, as

in the case of the quark condensate, it is the non-interacting instantons, not

the unbonded instantons, that fit the bill. Note that for higher temperatures,

T ≈ 600 MeV, where the pair concentration is still quite high, the concen-

tration of unbonded and non-interacting instantons becomes equal and there

is no more distinction between the two. For lower temperatures a coupling

between unbonded and bonded instantons still exists.

Note that, in the chiral limit, the topological susceptibility is related to

the quark condensate through chiral perturbation theory. It is therefore con-

sistent that the condensate and the topological susceptibility behave rather
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Figure 5.22: It turns out that the effective number of zero modes, |νeff |, fol-
lows the temperature dependence of the dilute gas approximation for the
density (solid line). Together with the observation that the condensate is
dominated by νeff at high temperatures, see text, this explains why the con-
densate has a temperature dependence that follows closely the dilute gas
result. At temperatures around T ≈ 300 MeV we can attribute this effect to
a sub-population of non-interacting instantons.
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Figure 5.23: The IILM reproduces the topological susceptibility in the dilute
gas approximation for temperatures where the ensemble is still far from di-
lute. We found that this phenomenon cannot be attributed to a population of
unbonded instantons. Rather, it can be explained by the population of non-
interacting instantons, Fig. 5.22, which is smaller than that of the unbonded
instantons. At higher temperatures the distinction between unbonded and
non-interacting instantons becomes ever more unimportant.
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Figure 5.24: For moderately high temperatures, the population of unbonded
instantons cannot be responsible for the topological susceptibility (solid line);
we have checked that 〈N2

ub〉 − 〈Nub〉2 ≈ 〈Nub〉. The unbonded instantons
still interact too strongly with the highly correlated instanton–anti-instanton
molecules. For higher temperatures, the unbonded instantons become indis-
tinguishable from the non-interacting instantons that can account for the
topological susceptibility. The latter instantons play the role of the random
sub-ensemble along side the ‘molecular’ ensemble, following the ideas of [100].
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similarly.

Finally, it is worth noting that the topological susceptibility, and also the

quark condensate, are not overly sensitive to the free parameters T∗ and ∆T ,

see Fig. 5.25.

5.5.2 Temperature-dependent axion mass

In order to solve the strong CP problem, Peccei and Quinn introduced a

new field into the Standard Model of particle physics [146, 145]. It was soon

realised that this field gives rise to a new light particle, a pseudo-Goldstone

boson, the axion [206, 201]. At the time it seemed natural to tie the axion

to the electro-weak scale but laboratory experiments have ruled out such

an axion. Leaving the scale of the PQ field fa free, and large to evade the

previously mentioned constraints, the so-called ‘invisible’ axions were born,

e.g. [57, 208, 112, 162].

Through their weak couplings to ordinary matter, invisible axions can

play the role of a dark matter candidate. They have a rich phenomenology,

and can be produced through a variety of production channels: the thermal

scenario (similar to WIMP production), cosmic string decay (axions are the

the Goldstone boson of a spontaneously broken UPQ(1) symmetry) and the so-

called misalignment mechanism. The latter is essentially the PQ mechanism:

due to the anomalous UPQ(1) symmetry an axion mass term is generated

through the coupling of the axion to the topological charge

La−g ∝ φ

fa

g2

32π2
F a

µνF̃
a
µν . (5.51)

This term combines with the vacuum angle θ and the axion field can be

shifted to get rid of θ, i.e. the vacuum angle becomes a dynamical field,

the axion angle θa. This is the key insight because now we can evoke the

principle of least action to argue that θa → 0 dynamically to solve the strong

CP problem.

Indeed, integrating out the gluons, we can determine the axion mass from

the effective action,

exp(−V Veff(φ)) =

∫

[dA] det(D/ + M) exp(−Sg − Sa−g) , (5.52)
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Figure 5.25: Both the topological susceptibility and the density are fairly
constant for low temperatures, except for a very gentle growth from T = 0
towards a maximum at around T = 100 MeV. In contrast to the quenched
case, the IILM is not as sensitive to the free parameters, {T∗, ∆T}, that
effectively describe the phase transition. The first curve (solid circles) could
be argued to be unphysical as it delays the decay in a rather unnatural
fashion.
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according to

m2
φ =

∂2Veff

∂φ2

∣
∣
∣
∣
φ=0

=
χ|θ=0

f 2
a

, (5.53)

and the axion eventually evolves to its minimum at θa = 0 [189]. It also

demonstrates that the mass for the QCD axion is set by the topological

susceptibility.

Of all the production channels, the misalignment mechanism is most sen-

sitive to the axion mass. From above it is clear that the axion mass is

inherently a non-perturbative problem. At high temperatures, the dilute gas

approximation to the instanton ensemble can be used. However, at lower

temperatures it breaks down. From our determination of the topological

susceptibility we can for the first time give a well-motivated axion mass that

covers all temperatures down to T = 0.

In Fig. 5.26 we display the axion mass together with a fit and its error

range mainly due to the error in Λ. The data suggests that the axion mass

turns into the dilute gas approximation rather quickly; around T ≈ 300 MeV

the differences are negligible, and the fit takes this into account. We have

seen in the previous sections that the IILM predicts a phase transition that is

slightly too low. Using the lattice data for the phase transition temperature

Tc, we also include a tentative fit to what the ultimate lattice data might look

like, and again we impose the dilute gas limit at moderately high tempera-

tures. It is worth noting that we currently do not have lattice data available

that could corroborate such a result; remember that in the quenched case

the lattice data did not behave according to the dilute gas result at high

temperatures! Given the state of lattice calculations it should not take too

much longer before a comprehensive lattice study with physical quark masses

and across a wide range of temperatures will be available to give the exact

axion mass.

Within the IILM some progress can be made by including the non-trivial

holonomy calorons; a dilute gas study in the quenched sector has given en-

couraging results [80] that these degrees of freedom might play a role in the

confinement/deconfinement transition. It would be very interesting to in-

vestigate their role in the unquenched sector, where we might expect less

dramatic qualitative changes for chiral quantities, such as the topological
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susceptibility, because chiral properties are reasonably well modeled by the

IILM. However, we certainly expect a closer agreement with the lattice results

if the QCD vacuum is indeed dominated by non-perturbative, topological

fluctuations.

A second improvement with regard to finite temperature effects is the

implication of quantum interactions on the plasma screening effects. In par-

ticular, we have found within a toy-model that the topological susceptibility

can change qualitatively if the screening effects become subdominant to the

quark zero mode interactions. This would favour a higher concentration of

molecules and therefore reduce the non-interacting instanton density that

sets the axion mass. Specifically, it would lead to a faster decay of the axion

mass.

The IILM result has a slight rise at low temperatures. We do not have

enough low-T data to determine the shape of this rise; however, in the gauge

sector we found that the topological susceptibility had a roughly linear de-

pendence on T . We will therefore constrain the fit at low temperatures to be

a first order polynomial in temperature. It is given by

m2
af

2
a = 1.46 10−3Λ4 1 + 0.50 T/Λ

1 + (3.53 T/Λ)7.48 , 0 < T < 0.45 , (5.54)

where Λ = 400 MeV, and the errors will be mainly due to the uncertainties

in Λ.

Inspired by the lattice result for the chiral phase transition [9], we in-

clude a fit that delays the decay of the topological susceptibility until Tc ≈
160 MeV. As mentioned above, there is a rather large disagreement between

different lattice collaborations, and the chiral phase transition could occur

at higher temperatures still. We assume again that the dilute gas limit will

be recovered rather quickly above the phase transition. This assumption is

hard to justify quantitatively given the lack of lattice data in that regime; the

dilute gas result is really the best estimate we have at the moment. For the

lattice inspired fit to smoothly connect with the dilute gas limit at around

T ≈ 200 MeV, we patch together two different rational functions with the

help of a washed-out step function, α(T ) = 1
2

(

1 − tan T/Λ−0.40
0.075

)

. The result
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Figure 5.26: The mass for the QCD axion follows from the topological sus-
ceptibility, m2

af
2
a = χ. The fit goes over to the dilute gas approximation for

moderately high temperatures, in accordance to the IILM data. Note that
the large errors are mostly due to the large uncertainties in the determination
of Λ, used to set dimensions. We also include a similar fit that is slightly
shifted towards higher temperatures to mimic the phase transition as seen
on the lattice, and a simple power-law approximation to the dilute gas limit
(DGA), see (5.59). We see that such a simple power-law approximation to
the full result certainly has its merit as it is fairly accurate given the analytic
simplicity.
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is

m2
af

2
a = 1.46 10−3Λ4

(
1 + 0.3 T/Λ

1 + (2.5 T/Λ)8.3

)α(T )
(
1 + (3.4 T/Λ)7.4)α(T )−1

,

(5.55)

for the temperature range 0 < T < 0.41 GeV.

These fits cover the low temperature regime, bounded by what we call

TDGA. Given our aim to improve on the current axion mass computations,

we will also be more systematic for high temperatures and take the effects

of quark thresholds into account. To that end, remember that we really are

using the language of effective field theory: the results are given as a function

of g(3), the strong coupling for Nf = 3 active flavours. It is well known that

in order for S-matrix elements to be smooth, the ‘free’ parameters, such as

masses and coupling constants, become ‘discontinuous’ [202, 143, 144, 155];

actually, the parameters are not discontinuous but belong to different theories

that are matched at quark mass thresholds, i.e. g(3) = g(4) +O((g(4))2). Since

part of the quantum effects in the instanton density are two-loop improved,

we expect that such ‘discontinuities’ do arise. In the present case the coupling

in the exponential is the only place that displays two-loop improvements, and,

at the threshold, the dilute gas approximations are related to each other by

χ(4) = χ(3) exp(γ3,4) . (5.56)

The factor γ3,4 is essentially given by the Dirac determinant of the newly

active quark flavour. In practice we just determine γ3,4 such that the dilute

gas approximations are smooth across the quark threshold.

At high temperatures the dilute gas result is almost given by a power-law.

We found that the corrections could be straightforwardly taken into account

by a higher order polynomial in log-log space; therefore the fit takes the form

of an exponential of a polynomial in logarithms. We find

m2
af

2
a = Λ4







exp
[

d
(3)
0 + d

(3)
1 ln T

Λ
+ d

(3)
2

(
ln T

Λ

)2
+ d

(3)
3

(
ln T

Λ

)3
]

, Nf = 3

exp
[

d
(4)
0 + d

(4)
1 ln T

Λ
+ d

(4)
2

(
ln T

Λ

)2
]

, Nf = 4

exp
[

d
(5)
0 + d

(5)
1 ln T

Λ
+ d

(5)
2

(
ln T

Λ

)2
]

, Nf = 5

,

(5.57)
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valid in the region T
(i)
l ≤ T < T

(i)
h and the different parameters are given by

Nf d
(Nf )
0 d

(Nf )
1 d

(Nf )
2 d

(Nf )
3 T

(Nf )

l T
(Nf )

h

3 −15.6 −6.68 −0.947 0.555 TDGA 1.2

4 15.4 −7.04 −0.139 1.2 4.2

5 −14.8 −7.47 −0.0757 4.2 100

. (5.58)

The γNf−1,Nf
-factors have already been absorbed into d

(Nf )
0 ; they are γ3,4 =

0.444 and γ4,5 = 1.54.

We conclude by giving a very simple approximation to the dilute gas

result in the form of a power-law, as in earlier work [186, 13],

m2
a =

αaΛ
4

f 2
a (T/Λ)n

, (5.59)

where n = 6.68 and α = 1.68 10−7, from (5.58), and compare well with the

more recent study [13]; it compares well with [13]. We believe it is a rather

lucky coincidence that such a simple fit, based solely on the high tempera-

ture regime, still gives such a good overall approximation to the much more

elaborate result of the IILM simulations, see Fig. 5.26. The small qualitative

differences are that the power-law approximation: overshoots the IILM result

at high temperatures, due to the wrong running of the QCD β-function, and

underestimates the axion mass at low temperature where it is by construction

constant whereas it reaches the T = 0 limit from above in the IILM. Given

its analytic simplicity and its unexpectedly good agreement, such a simple

power-law has certainly its merit. Whether such a conclusion pertains to an

improved IILM including the more general calorons, and ultimately to the

lattice, remains an open question.

5.6 Conclusion

We have been able to improve on the finite temperature interactions in the

IILM. The numerical framework we set up in chapter 3 could successfully be

implemented at finite temperature as well, and well-defined interactions that

lead to a consistent thermodynamic limit have been derived.
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Using these improved interactions, we investigated the IILM at finite

temperature with light, physical quark masses. For these small quark masses

we have found that the usual ‘random’ Monte Carlo sampling is very ineffi-

cient and can even break down. Using the results form chapter 4, where we

introduced biased Monte Carlo techniques and, in particular, adapted the

Unbonding–Bonding algorithm to the grand canonical ensemble, including

a biasing scheme to deal with the orientation-dependent interaction of the

IILM, we could run efficient simulations at finite temperature. We have found

that the screening factors, from single instanton quantum fluctuations, will

lead to a dilute, random ensemble at high enough temperatures. There is,

however, a possibility that this trend could be reversed when more quarks be-

come active; this does seem rather unnatural though. We want to point out

that the high-frequency quantum interactions from overlapping instantons

might be important to settle this question.

In the Yang-Mills sector we found rather poor overlap of the IILM and

the lattice data. Most strikingly, we found that the IILM failed to repro-

duce the lattice data, even in a qualitative manner, in the regions where

the phenomenological factors that mimic the phase transition in the IILM

are unimportant, namely at low and high temperatures. To model the pure

gauge sector, the IILM might have to be generalised to include the non-trivial

holonomy calorons. Ultimately this is needed in any case because, as for the

zero temperature IILM, confinement is still lacking and these more general

degrees of freedom, the KvBLL calorons [119, 121, 120, 123], might play a

crucial7.

In the unquenched sector, we investigated the chiral susceptibility and the

quark condensate to gauge the free parameters introduced by the phenomeno-

logical screening factors; we found that the IILM is not overly sensitive to

these, given some mild restrictions. The IILM unambiguously leads to chi-

ral symmetry restoration at Tc = 120 MeV, slightly too low as compared to

lattice data.

We investigated the population of instanton–anti-instanton molecules and

found that, rather surprisingly, the maximum concentration does not occur

7Recent lattice studies see evidence of the lumpy structure characteristic for an ensem-
ble of these new caloron solutions [101].
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at Tc but rather at higher temperatures. A large population of instanton

pairs prevailed to fairly high temperatures, indicating that the dilute gas

limit of the instanton ensemble is only reached far beyond the critical tem-

perature. However, the quark condensate and the topological susceptibility

behave according to the dilute gas result much earlier. We could attribute

this behaviour to a sub-ensemble of non-interacting instantons, distinct from

the unbonded instantons that still interact considerably with the instanton–

anti-instanton molecule population. At higher temperature, the distinction

between unbonded and non-interacting instantons becomes irrelevant.

Given the topological susceptibility, we have presented a fit to the axion

mass. We paid due attention to extrapolate the axion mass to higher tem-

perature by including threshold effects due to heavier quarks that become

active as the temperature rises. The main improvement, however, is a real

computation of the low temperature axion mass that matches smoothly to

high temperatures. Considerations of the anthropic axion for which θ and

fa are considered free parameters, one ‘environmental’ and the other funda-

mental, need knowledge of the axion mass for all temperatures, which this

work provides. Comparison with lattice data leaves open the intriguing pos-

sibility that the high temperature axion mass does not behave according to

the dilute gas result based on Harrington–Shepard calorons. A considerably

different fall-off behaviour of the axion mass will change the cosmological

bounds decidedly: the classic axion misalignment scenario, where θa is set by

its rms fluctuations at the time of symmetry breaking, would get a weaker

upper bound. This conclusion relies on our findings from the pure gauge

simulations, where the lattice topological susceptibility did not fall off as

quickly as predicted by the IILM. The unquenched case is, however, sig-

nificantly different and chiral symmetry, which has proved powerful at zero

temperature, might constrain the discrepancies between the lattice and the

IILM. Especially, a higher instanton–anti-instanton molecule density, pos-

sibly due to the non-trivial holonomy calorons or weaker screening effects

for the strongly overlapping pairs (the effective size of such a pair will be

smaller), would lead to stronger upper bounds and could possibly rule out

the classic axion window. This was one motivation for the present work, but

within the present IILM this expectation could not be corroborated. Further
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investigations are necessary to settle this issue. It might turn out, however,

that the non-interacting sub-population that sets the axion mass in the IILM

will not change considerably; such robustness within the IILM could be in-

terpreted as evidence that the axion mass is rather insensitive to the details

of the QCD phase transition. Given the advance of lattice QCD simulations,

the ultimate axion mass determination might be available in the near future.



Chapter 6

Concordance Cosmology

The birth of the modern, quantitative discipline of cosmology can arguably

be posited to have begun with the introduction of General Relativity (GR)

by Einstein in the early 20th century. In pre-relativistic physics space-time

was fixed and eternal, the background stage on which physical processes took

place. At the time, the known interactions unfolding on this stage were New-

tonian gravity and Maxwell’s theory of electromagnetism. And just as these

laid out the theoretical frameworks for astronomy, and electricity and mag-

netism, GR finally provided physicists with a dynamical theory to describe

space-time itself. As such it gave the community, for the first time, a means

to speculate about the origins of the universe within a precise mathematical

framework.

Einstein himself did not embrace a dynamical universe at first. He intro-

duced the famous cosmological constant to constrain the universe to remain

static. Although not convincing from a theoretical point of view, as the

solution is unstable, Einstein only gave up on his static universe when Hub-

ble’s observations provided experimental evidence for the cosmic expansion.

Extrapolating backwards in time, the universe must have begun in a singular-

ity, the Big Bang. It is generally seen as the beginning of the universe, when

space and time, and matter were created. Extrapolating back over billions

of years was, and is, a reckless procedure and alternative cosmologies were

proposed, the most famous being the steady state theory by Bondi, Gold,

and Hoyle in the late 40’s. Only with the discovery of the cosmic microwave

background radiation (CMBR) in the 60’s, a definite prediction of the Big

171
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Bang theory and very hard to reconcile with the ideas of the steady state

theory, did the scales shift decisively in favour of the former. For an account

of the other observational probes in favour of the Big Bang see for instance

the discussion in [117], some of which will be alluded to in the next sections.

Taking the paradigm of the Big Bang at face value, the conditions of the

early universe must have been extreme, i.e. very high temperature and pres-

sure. Such environments are hardly found anymore in the universe around us,

and are only achievable to some extent in laboratory experiments. This real-

isation led to a convergence of two disparate branches of physics: relativity

and cosmology, and particle physics. The combined efforts of these commu-

nities, both theoretical and experimental, have lead to what is often called

the era of precision cosmology, and created the field of particle cosmology.

The reason that particle physics can hope to address the early universe

certainly relies heavily on the paradigm of unification: it is generally believed

that at higher energies the different interactions will unify and the universe

will become ever more symmetric, and hence more simple to describe. In

such a scenario, phase transitions necessarily occur during the evolution of

the universe, which can in principle be detected, validating or refuting mod-

els beyond the Standard Model of particle physics. On the other hand, the

fundamental theories give the promise of theoretically investigating the orig-

inal singularity at the Big Bang, if it exists at all. This has led again to

alternative scenarios to the Big Bang, such as pre-Big Bang cosmologies [77]

and cyclic universes [178], which future experimental observations will test,

providing us with more insight into the origin of our universe.

6.1 General Relativity

Einstein’s great insights are that the (apparently) fundamental gravitational

force is really fictitious, i.e. it is the acceleration that test particles undergo

due to their motion on a non-trivial manifold, and that the metric structure

of space-time is influenced by the matter content itself. This feedback mecha-

nism renders general relativity highly non-linear; the Einstein equations look,
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however, deceptively simple

Gµν =
8π

m2
Pl

Tµν . (6.1)

Here, Gµν is the Einstein and Tµν the energy-momentum tensor, and mPl is

the Planck mass. Note that the right hand side is not just a source term

because it typically involves the metric tensor implicitly.

In order to define distances on a manifold, a metric gµν must be intro-

duced. In (pseudo-)Riemannian geometry1, the setting for general relativity,

gµν provides a preferred covariant derivative operator ∇µ. On a mixed tensor

T of rank (m,n) it acts as (in components)

∇µT
ρ1···ρm
σ1···σn

= ∂µT
ρ1···ρm
σ1···σn

+
m∑

i

Γρi
µνT

ρ1···ν···ρm
σ1···σn

−
n∑

i

Γν
µσi

T ρ1···ρm
σ1···σi···σn

, (6.2)

where Γρ
µν are the Christoffel symbols. They are uniquely determined through

the condition of metric compatibility, which states that the metric should not

change under parallel transport, i.e. ∇ρgµν = 0. The Christoffel symbols are

then given by

Γρ
µν =

1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (6.3)

The covariant derivative is constructed so as to preserve geometric quanti-

ties; in other words it transforms covariantly. Therefore, just as in the gauge

theory case, the covariant derivative can be used to define new quantities

transforming covariantly under the group of diffeomorphisms. In particular,

the kinetic term is again constructed from the covariant derivative alone, see

for instance [198]. In component form the Einstein tensor is given by

Gµν = Rµν −
1

2
Rgµν , (6.4)

where Rµν is the Ricci tensor and R = Rµ
µ the Ricci scalar. The former is

defined as a contraction of the Riemann tensor, i.e. Rµν ≡ Rρ
µρν ; the latter

1Riemannian geometry has a positive metric, whereas in GR the metric is of Lorentzian
signature, see for instance [135].
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encodes the intrinsic curvature of the metric space, and is given by

Rσ
µνρ = ∂νΓ

σ
µρ − ∂µΓσ

νρ + Γα
µρΓ

σ
αν − Γα

νρΓ
σ
αµ . (6.5)

Eq. (6.4) can be shown to follow from varying the Einstein-Hilbert action

SEH =
m2

Pl

16π

∫

d4x
√−g R , (6.6)

where g is the determinant of gµν .

A useful rule of thumb to convert equations from Minkowski space-time

to a space-time with generic metric gµν is to replace ∂ → ∇. This ensures

that the equations are generally covariant, the mathematical embodiment of

the equivalence principle2. Theories constructed accordingly are said to be

minimally coupled. Two often used examples are the perfect fluid, whose

energy momentum tensor reads

Tµν = ρuµuν + p(uµuν − gµν) , (6.7)

with ρ the energy density and p the pressure measured in the rest frame, and

the scalar field with Lagrangian

L =
1

2
∇µφ∇µφ − V (φ) . (6.8)

In the latter case the equations of motion read

∇µ∇µφ + V ′(φ) = 0 . (6.9)

6.2 Concordance cosmology

Cosmology is the study of the universe as a whole, and aims to explain the

dynamical evolution of the cosmos from the time of the Big Bang until times

of large scale structure formation. The subsequent stages in the evolution

of the universe, e.g. galaxy and solar system formation and dynamics, are

described by astrophysics.

2See [198] for more details and ‘exceptions’ to this rule.
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Figure 6.1: The CMBR temperature fluctuation map from the WMAP
year 5 data release, from http://map.gsfc.nasa.gov. The fluctuations, en-
coded by a blue (colder) and red (hotter) colour scheme, are on the order
of δT/T < 10−4, demonstrating the very high degree of symmetry of the
universe. Incidentilly, it is also the most precise determination of the ab-
solute CMBR temperature, Tγ = 2.725(2) K from the FIRAS experiment,
http://lambda.gsfc.nasa.gov/product/cobe/firas overview.cfm.

6.2.1 Symmetry and FRW universe

Experimental observations of the temperature fluctuations in the CMBR, see

Fig. 6.1, or of the large scale structure of the universe around us, for instance

from high redshift galaxy surveys, see Fig. 6.2, suggest that our position is in

no way special: the Copernican principle extends to cosmological scales, and

in this context is sometimes called the cosmological principle. In concordance

cosmology, this empirical fact of apparent isotropy and homogeneity of the

observable universe3, can be explained by inflation, the very rapid expansion

of the universe after the Big Bang that stretched out initial inhomogeneities.

Isotropy and homogeneity lead to a Friedmann-Robertson-Walker (FRW)

universe, with infinitesimal line element

ds2 = dt2 − a(t)2hijdxidxj, (6.10)

3Mathematically, we can formulate the cosmological principle as the requirement that
translations and rotations are isometries of the background space-time, see [198] for details.
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Figure 6.2: Distribution of luminous red galaxies (LRGs) in the Sloan Digi-
tal Sky Survey, from [183], gives evidence for the homogeneity and isotropy
of the universe around us. The power spectrum extracted from large scale
structure, especially baryon acoustic oscillations, can be used to test cosmo-
logical models and determine cosmological parameters; the Sloan Digital Sky
Survey results for the year 5 data release is given in [147].
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Flat Closed Open

Figure 6.3: The spatial metric structure of FRW cosmologies is constrained
to be one of three possible spaces of constant curvature, see [198]. We show
here 2-dimensional examples: the disc, the sphere and the hyperboloid. Note
that the hyperboloid z =

√

R2 + x2 + y2 is embedded in a three dimensional
Minkowski space with line element dl2 = dz2 − dx2 − dy2.

where a(t) is the scale factor of the universe and hij is the spatial metric.

The latter is restricted to represent a space of constant curvature of which

there exist only three: flat (zero curvature), closed (positive curvature) and

open (negative curvature), see Fig. 6.3. The time parameter t is often called

cosmic time.

The Christoffel symbols are given by

Γ0
ij =

ȧ

a
hij , (6.11)

Γi
j0 =

ȧ

a
δi
j , (6.12)

which lead to the following expressions for the Ricci tensor

R00 = −3
ä

a
, (6.13)

Rij =

(
ä

a
+ 2

ȧ2

a2
+ 2

k

a2

)

hij . (6.14)

From this the Ricci scalar follows

R = −6

(
ä

a
+

ȧ2

a2
+

k

a2

)

, (6.15)
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and k = −1, 0, 1 parametrises the spatial curvature (negative, flat, positive).

The dynamics of a FRW universe filled with a perfect fluid (6.7) follows

from (6.1)

ȧ2

a2
=

8π

3m2
Pl

ρ +
Λ

3
− k

a2
, (6.16)

ä

a
= − 4π

3m2
Pl

(ρ + 3p) +
Λ

3
, (6.17)

or equivalently

H2 =
8π

3m2
Pl

ρ +
Λ

3
− k

a2
, (6.18)

ρ̇ = −3H(ρ + p) , (6.19)

where H ≡ ȧ
a

is the Hubble parameter. The parameter Λ = (8π/m2
Pl)ρΛ

is the cosmological constant4. The equation of state, p = w ρ, closes the

system. The Friedmann equation (6.16) connects the spatial curvature to

the energy density of the universe, i.e.

k

a2
= H2(Ω − 1) , (6.20)

Ω =
ρ + ρΛ

ρc

, (6.21)

ρc =
3H2m2

Pl

8π
, (6.22)

and thus the universe is

• open if k = −1 or equivalently if Ω < 1,

• flat if k = 0 or equivalently if Ω = 1,

• closed if k = +1 or equivalent if Ω > 1.

6.2.2 Expanding universe

General relativity applied to cosmology allowed for the first time a dynamical

description of the universe. The constraints of homogeneity and isotropy

4In the Einstein-Hilbert action (6.6) replace R → R + 2Λ.
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lead to very simple equations, and the whole dynamics is encoded in the

scale factor a(t). As alluded to in the introduction, Einstein did not embrace

this fact and introduced the cosmological constant to render the universe

static: by fine-tuning Λ so as to maintain a vanishing right hand side for the

Friedmann equation.

Taking the dynamical nature of the universe at face value, galaxies that

we observe should display a Hubble drift

v = H0d , (6.23)

where v is the velocity and d the distance of the galaxy; H0 is the Hubble

parameter today. Only after Hubble was able to corroborate the dynamical

nature of the universe by his experimental measurements [97] of the galaxy

recession velocities, according to (6.23), did Einstein embrace the concept of

an evolving universe, and famously said the introduction of the cosmological

constant to have been his greatest blunder.

The Hubble parameter H0 is a very important experimental input as it

enters almost all cosmological computations. Its measurement is, however,

not a simple one, and until recently the experimental uncertainties were quite

large. This has changed with the Hubble Space Telescope Key Project, which

has measured H0 = 72(8) km sec−1 Mpc−1 [71], see also Fig. 6.4.

6.2.3 Inflation

The standard hot Big Bang cosmology faced a number of, now, classic short-

comings [117]:

• The flatness-oldness problem: the simple observation that our uni-

verse is so old, roughly 14 billion years, gave a first rather conclusive

hint that our universe has the critical density Ω = 1. This is because a

universe this old cannot have been very different from flat as it would

have either collapsed or undergone heat death. It is of course very en-

couraging that this anthropic reasoning has been put on firmer grounds

by other measurements, most notably by the CMBR which gives the

best evidence that our universe is very nearly flat. However, Ω ≈ 1 is

dynamically unstable. To see it, we use (6.17), (6.20) and the equation
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Figure 6.4: Final results from the Hubble Space Telescope Key Project to
determine H0 from galaxy recession speeds and redshifts [71]. A nice discus-
sion about distances in cosmology and their experimental determination can
be found in [204].
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of state to get
dǫ

ǫ(1 + ǫ)(1 + 3ω(ǫ))
=

da

a
, (6.24)

where ǫ = Ω − 1. To lowest order in ǫ, we find that a small initial

deviation from flatness is amplified according to

ǫ = ǫ0

(
a

a0

)1+3ω(0)

, (6.25)

as long as 1 + 3ω > 0. Thus, to have a nearly flat universe today, just

after the Big Bang the universe must have been very much closer to

critical. Therefore, the flatness problem is a fine tuning problem. For

different variations of the flatness problem see [127].

• The horizon-smoothness problem: measurements of the tempera-

ture fluctuations in the CMBR from all directions show only tiny varia-

tions. In a standard radiation and matter dominated universe this fact

cannot be explained, see Fig. 6.5. It is not difficult to estimate how

many causally connected patches at the time of last scattering have

evolved, i.e. Hubble-expanded, into our present-day observable uni-

verse5. To this end, note that during radiation- and matter-domination

the horizon evolves as dH ∝ t. The number of patches is then

Np =
VH(t0)

VH(tls)

(
als

a0

)3

. (6.26)

Using the connection between time and temperature during matter-

domination, i.e. t ∝ T−3/2, and that during most of the universe’s

evolution T ∝ 1/a, we can estimate that Np ≈ (Tls/T0)
3/2 = O(104).

Thus, in standard cosmology the isotropic CMBR is a mystery.

• Unwanted relics: in the Standard Model of particle physics, and even

to a greater extent for physics beyond the Standard Model, a number of

phase transitions occur as the universe cools down after the Big Bang.

During these phase transitions topological defects, such as magnetic

monopoles, cosmic strings or domain walls, can be formed, see for in-

5After the time of last-scattering these patches do not interact anymore, and the cor-
relations imprinted on the CMBR at that time remain fixed, modulo Hubble-expansion.
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τcmb

τls

Today

Last scattering

Big Bang

Figure 6.5: The Big Bang event is causally disconnected in standard ra-
diation/matter dominated FRW cosmologies. In the conformal coordinates
displayed here, this is encoded in the non-compact spatial extent of the ini-
tial singularity, leading to a particle horizon, see [198]. Therefore, at the
time of last scattering not all regions of the, then, observable universe could
have been in thermal equilibrium. Since that epoch the photons have free-
streamed, in particular no interactions have been able to wash out the signa-
tures set up during the time of recombination. Hence, we expect to see the
induced “super-horizon” inhomogeneities in the CMBR, the lack of which
has been a major puzzle. By pushing upwards the event of last scattering
in the conformal diagram, we eventually encounter a situation where the
CMBR that we measure today has originated from one causally connected
primordial region. This stretching of the conformal diagram can be achieved
at early times within the framework of inflation.

stance [193] for a comprehensive reference. Often a sizable abundance

of these defects cannot be reconciled with standard cosmology, and a

mechanism is needed to explain their absence.

• Small structure: although the universe is very smooth on large scales,

we also need a way to explain the origin of small fluctuations that

eventually, through gravitational instability, have evolved into galaxies.

In particular, the theory should predict the temperature fluctuations

in the CMBR.

It turns out that the theory of inflation, a very rapid expansion of the

universe shortly after the Big Bang, provides a solution to all these problems.
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From (6.17) we see that an accelerated expansion can be achieved provided

ρ + 3p < 06. In the standard scenario this is achieved by having a field stuck

in a high energy state; as long as this field does not develop enough kinetic

energy, it behaves essentially like vacuum energy, i.e. p = −ρ. As can be seen

from (6.25), a flat universe becomes an attractor; as explained in Fig. 6.5

inflation also solves the horizon problem, and, provided no phase transitions

leading to cosmologically unviable topological defects occur, the unwanted

relics have been diluted away. Perhaps the most appealing aspect of inflation

is that it provides a mechanism to explain structure formation through the

amplification of quantum mechanical fluctuations, see for instance [58].

The precise mathematical implementation of this idea has, however, not

yet been found. The simplest models, using single or multiple scalar fields,

are plagued by some fine-tuning issues themselves. Also, scalar fields have

so far eluded experimental detection. A theoretical motivation/justification

to work with scalar fields might well come from fundamental theories such

as string theory, where such fields abound and can sometimes be given a

geometric meaning, which can arguably be seen as an improvement. Alter-

native cosmological scenarios, such as the cyclic universe [178], endeavour to

connect high energy inflation, operating in the early universe, to the recently

discovered low energy inflation, the so-called dark energy, that dominates the

late time evolution of our universe [150, 153].

6.2.4 The dark sector

Even though we still lack a comprehensive implementation of inflation, the

inflationary paradigm has become part of mainstream cosmology. The coin-

cidences in standard hot Big Bang cosmology that inflation is able to explain

gives it a strong theoretical support. Taking the paradigm of inflation at

face value, we end up in particular with a critical universe, Ω = 1. Precision

measurements of the CMBR together with high redshift supernovae data and

baryon acoustic oscillations all give experimental evidence for a flat universe.

The naive guess would have been that baryons make up the totality of the

energy content of the universe, but it turns out that we live in a quite different

6We neglect the low-energy Λ-term that is usually identified with the late-time accel-
eration.
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universe. First of all, it has been known for a very long time that baryons

only account for a tiny fraction of Ω, obtained for instance from studying

galaxy rotation curves to estimate the average galaxy mass. Extending these

measurements beyond the luminous core of the galaxies, it became clear

that most galaxies are surrounded by a non-luminous halo of matter, i.e.

dark matter. Although substantially larger than the baryon contribution,

the dark matter component of the universe is still not sufficient to explain

a flat universe. This astrophysical evidence for dark matter, on galactic

and super-galactic scales (from studying the motion of galactic clusters), is

supplemented by evidence for dark matter on cosmological scales.

The above mentioned precision measurements, i.e. fits to the power-

spectrum of the temperature fluctuations in the CMBR [118] and to the

power spectrum of large scale structure (baryon acoustic oscillations) [147],

and the determination of the deceleration parameter from high redshift su-

pernovae data [154], give the best estimate for the amount of dark matter and

dark energy, and lead to the astonishing fact that the latter, a homogeneous

substance permeating the universe, contributes more than 70% to the energy

content of the universe, see Fig. 6.6. Not much is known about dark energy.

Possible explanations include vacuum energy, i.e. Λ ∝ 〈T00〉 together with

anthropic reasoning to explain its tiny value [203] and the ‘modern’ version

in terms of the string theory landscape [180], a very light homogeneous scalar

field reminiscent of a low-energy inflaton, i.e quintessence, see for instance

[128], or alternative cosmology like the cyclic universe [178] among others.

Compared to dark energy, we know a lot about dark matter. It obviously

has to be stable, or at least meta-stable on cosmological time scales. It turns

out that the origin of the light elements, i.e. H,D,He, Li, is cosmological.

Their abundances can be computed in Big Bang Nucleosynthesis (BBN),

and are sensitive to the baryon density. From the experimental observations

we can infer that dark matter cannot be baryonic. Large scale N -body

simulations of galaxy formation, sensitive to astrophysical details of the halo

structure, prefer dark matter to be cold, i.e. non-relativistic at the time of

structure formation. The same conclusion follows from cosmological probes

of large scale structure formation.

The fact that laboratory experiments have not detected particles with
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Figure 6.6: Energy composition of our universe, from
http://map.gsfc.nasa.gov. Note that the very fact that we can write
down unambiguously the different components as percentages, follows from
Ω = 1 which holds for a spatially flat universe.
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the relevant characteristics gives strong evidence that dark matter should

be weakly interacting. Such hypothetical particles are not produced copi-

ously in the primordial plasma, and therefore need to be heavy to make

up dark matter. Such weakly interacting massive particles (WIMP’s) in

fact constitute the prime candidate for cold dark matter, as they generi-

cally are non-relativistic during structure formation. Canonical examples

are a heavy (sterile) neutrino, the lightest supersymmetric particle (LSP)

e.g. the neutralino, the gravitino in supergravity; see for instance [14] for

a textbook treatment. Taking the paradigm of string theory seriously, the

heavier Kaluza-Klein modes from compactification of extra dimensions pro-

vide another class of WIMPs. For a comprehensive review on dark matter,

discussing experimental evidence and constraints on dark matter, and a wide

range of candidates, see for instance [26].

The new particle does not need to be a WIMP, however. If it is produced

non-thermally, new possibilities open up. The prime example is the invisible

axion that was never in thermal equilibrium and can be produced by coherent

field oscillations or, topologically, by axionic string radiation. We will study

the axion at length in the next chapter.

6.3 Thermodynamics in FRW

The early universe was filled with a hot plasma of particles and anti-particles,

e.g. quarks, gluons, leptons, possibly some hypothetical dark matter parti-

cles, to name but a few. After recombination, matter cooled into a neutral

atomic gas. The vast number of particles present make a statistical treatment

mandatory. In the early universe most interaction rates were high enough to

keep the cosmos in thermal equilibrium, and we can use thermodynamics. In

particular, as long as the universe stays in thermal equilibrium, the evolution

will be adiabatic.

During the cosmological evolution some particles will decouple from the

heat bath. Particles decouple whenever their interaction rates with the heat

reservoir drop below the Hubble expansion rate, at which stage their abun-

dance is frozen in, and the particle density simply Hubble redshifts. See [117]

for details.
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The universe is possibly the best isolated system we can think of. As

such the first law of thermodynamics is given by

dU = −p dV , (6.27)

where p is the pressure, V the volume and U the energy of the system.

Assuming that we stay in thermal equilibrium, the first (6.27) and the second

law of thermodynamics,

T dS = dU + p dV , (6.28)

with T the temperature of the universe, imply that the universe evolves

adiabatically, i.e. dS = 0, as expected on physical grounds. It can be shown

[117] that the entropy density is given by

s =
S

V
=

ρ + p

T
, (6.29)

and ρ = U/V is the energy density. In particular,

S = a3s = const . (6.30)

Therefore, an adiabatically evolving universe has a specific relation be-

tween the temperature and scale factor, see Fig. 6.7. It allows us to relate cos-

mic time to the temperature of the plasma. This relationship holds as long as

the universe remains in thermal equilibrium. Typical situations when (6.30)

is violated are first order phase transition, because of the latent heat that is

produced in the process; or an out-of-equilibrium decay of a heavy particle,

an example of which is provided by the inflaton: at the end of inflation the

universe is very cold, and has very low entropy, but the out-of-equilibrium

decay of the inflaton produces all the known particles in the form of a hot

plasma, which has very high entropy.

The connection with the microscopic degrees of freedom follows through

the phase-space density function f(x, p). In thermal equilibrium it takes the
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Figure 6.7: In an adiabatically evolving universe the scale factor and the
temperature are related through the condition of constant entropy. Given
the knowledge of the effective degrees of freedom g∗,S, it amounts to solving
an implicit equation. The QCD phase transition occurs at around TQCD ≈
180 MeV, when the number of hadronic excitations rises very sharply, and
g∗,S is almost discontinuous; the would-be latent heat ‘reheats’ the universe,
which is clearly seen in the graph.
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well-known form7

f(p) =
1

exp E
T
± 1

, (6.31)

with the upper sign for fermions and the lower sign for bosons. Note that

by definition the equilibrium density function cannot depend on the spa-

tial coordinates. The particle and energy density, and pressure are defined

through

n =
g

(2π)3

∫

d3pf(p) , (6.32)

ρ =
g

(2π)3

∫

d3pEf(p) , (6.33)

p =
g

(2π)3

∫

d3p
p2

3E
f(p) , (6.34)

where E =
√

p2 + m2 and g is the degeneracy factor that gives the intrinsic

degrees of freedom, e.g. g = 2 · 3 = 6 for a quark. Summing over all the

particle species, we get the total energy and entropy density

ρ =
π2

30
g∗,RT 4 , (6.35)

s =
2π2

45
g∗,ST 3 , (6.36)

where we normalise by the contribution from the photons, i.e. T = Tγ
8. This

defines the effective number of (relativistic) degrees of freedom g∗,i; they are

given by

g∗,R =
∑

i

(
Ti

T

)4
15gi

π4

∫ ∞

0

dx

√

x2 + y2
i

exp
√

x2 + y2
i + (−1)Qf

i

, (6.37)

g∗,S =
∑

i

(
Ti

T

)3
45gi

4π4

∫ ∞

0

dx
x2

√

x2 + y2
i

(

1 + 1
3

x2

x2+y2
i

)

exp
√

x2 + y2
i + (−1)Qf

i

, (6.38)

where Ti is the temperature of species i, yi = mi/Ti, and Qf (fermion) = 1

7We have neglected the chemical potential, which turns out to be negligible compared
to the temperatures of interest.

8We choose the photon field, instead of some other relativistic species, because it will
be the only relativistic field at sufficiently low temperatures.
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and Qf (boson) = 0. The energy and entropy densities are dominated by the

contribution from relativistic species.

When the temperature of the plasma drops below some particle mass,

their contribution to the entropy and radiation density drops to zero fairly

rapidly. To compute these threshold effects correctly, the relevant phase-

space integrals have to be evaluated, which is not possible in closed form in

general. Following the analysis of [43], we include all the known hadrons9, up

to a mass of 3 GeV, in the low temperature regime and match g∗ smoothly

to the plasma phase. Using a rough estimate of the available lattice data

sensitive to the confinement/deconfinement transition [104], e.g. the Polyakov

loop, we will use Tc = 180 MeV; given the spread in these results and also

the cross-over nature of the transition [9], we apply the smoothing over a

range of ∆T = 20 MeV. This is slightly different from [43] which used {Tc =

180 MeV, ∆T = 5 MeV}; the differences are small in any case.

If a species decouples, it will no longer be in contact with the heat bath,

and its temperature will simply redshift due to the Hubble expansion. This

is in contrast to the evolution of the plasma temperature which follows from

entropy conservation, i.e. from (6.30). Thus, if a species becomes non-

relativistic, it transfers its entropy only to those particles that are still in

equilibrium with the heat bath, and reheats the plasma in the process. This

leads to the different temperatures Ti for the decoupled fields.

In standard cosmology neutrinos decouple before e±-annihilation, and so

have a slightly lower temperature than the photons, Tν =
(

4
11

)1/3
Tγ today.

This result is valid at T ≪ 1 MeV. For a general temperature T , the neutrino

temperature is given by10

Tν = T

(
g∗,S(T )

g∗,S(T d
ν )

)1/3

, if T < T d
ν , (6.39)

where T d
ν ≈ 1 MeV is the neutrino decoupling temperature. It is a conse-

quence of the fact that for decoupled (relativistic) particles such as neutrinos

T i
ν/T

f
ν = af/ai, where the ratio of the scale factors follows from the adi-

abatic evolution of the universe. In fact, (6.39) is an implicit equation in

9“with strong experimental evidence”, see [7]; we use a multiplicity of gJ = 1 if the
angular momentum is not known

10Assuming a sharp decoupling transition.
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Figure 6.8: The effective degrees of freedom g∗,R and g∗,S are given for the
temperature range up to T ≈ 100 GeV. The decoupling of the neutrinos is
included and manifests itself in the differences between g∗,R and g∗,S after
e± annihilation, when Tν 6= Tγ. We followed closely [43], but included some
minor changes to take into account the better understanding of the QCD
phase transition that recent lattice studies have put forth, see main text;
the differences are small in any case. We have determined fits by using a
sequence of smoothed step functions, see main text. As seen from the graph,
the fits are rather accurate, generally below the 1%.
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Tν since g∗,S(T ) depends on it. With only neutrinos decoupling, it is easy

to solve, and the result is (6.39) with the substitution g∗,S → g∗,S − gν . In

order to reproduce the correct analytic ratio for low temperature, we have

set T d
ν = 5 MeV. This then leads to Fig. 6.8.

Evaluation of the exact numerical integration is fast. However, in chapter

7 we need to solve a system of ODE’s and, in the process, relate the scale

factor to the photon temperature to compute the axion mass. To integrate

these equations in a reasonable amount of time, we have approximated g∗,i by

fits that are sums of smoothed-out step functions in log-log space. These fits

are plotted in Fig. 6.8 and are generically accurate below the 1% level, except

at the QCD phase transition and the e±-annihilation where the accuracy is

temporarily only around 4%. The fits are given by

g∗,i = exp

[

ai
0 +

5∑

j=1

ai
j,1

(

1.0 + tanh
t − ai

j,2

ai
j,3

)]

, t = log
T

1 GeV
. (6.40)

The corresponding parameters are

j 1 2 3 4 5

aR
0 1.21

aR
j,1 0.572 0.330 0.579 0.138 0.108

aR
j,2 −8.77 −2.95 −1.80 −0.162 3.76

aR
j,3 0.682 1.01 0.165 0.934 0.869

aS
0 1.36

aS
j,1 0.498 0.327 0.579 0.140 0.109

aS
j,2 −8.74 −2.89 −1.79 −0.102 3.82

aS
j,3 0.693 1.01 0.155 0.963 0.907

(6.41)

To our knowledge, such fits to g∗ covering a large temperature range

have not been given in the literature before. This can be traced to the fact

that g∗ is a slowly varying function for most temperatures; the two major

exceptions are at e±-annihilation and the QCD phase transition. That said,

any investigation that covers a wide range of temperatures can benefit from

our approximations to g∗; we will use them to study the anthropic axion

window in chapter 7. In addition, it is very easy to continue the exact g∗



CHAPTER 6. CONCORDANCE COSMOLOGY 193

to higher temperatures by including the particle content from one’s favorite

beyond the SM extension, and amend the fits by incuding some more ’step’-

functions.



Chapter 7

Axions

Axions are still one of the best motivated cold dark matter candidates. Ini-

tially invented to solve the strong CP problem (“why is the QCD vacuum

angle so small?”, i.e. θ < 10−9, see chapter 2 for details), it was soon re-

alised by Weinberg [201] and Wilczek [206] that the Peccei-Quinn mechanism

[146, 145] gave rise to a very-light pseudo-scalar Goldstone boson. In order

to retain renormalisability, Peccei and Quinn introduced a new chiral sym-

metry, U(1)PQ, on the quark and Higgs fields, that is spontaneously broken.

This implies the existence of a new particle, a would-be pseudo-Goldstone

boson, the axion; it receives a mass due to instantons because U(1)PQ is

anomalous. In the original papers, the axion was incorporated in the elec-

troweak sector but laboratory experiments soon ruled out such a light boson

with GeV coupling. This gave rise to the so-called invisible axion models

[162, 112, 57, 208], that a priori are not tied to any known energy scale. To

constrain them, it was realised that such extremely weakly interacting par-

ticles could provide a new cooling mechanism for stars. The invisible axions

have typically very weak couplings to ordinary matter. On the one hand,

this makes their experimental detection difficult but, on the other hand, pro-

vides us with a well-motivated dark matter candidate. Refer to past reviews

[113, 35, 187] for further details.

The axion has a rich phenomenology in that it can be produced thermally

or non-thermally. The thermal production channel is the standard scenario

for most WIMP’s [117]. Recently it was shown that the thermal axion cannot

194
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contribute the dominant dark matter component of the universe [91]1. The

axion can also be produced non-thermally: after the spontaneous breaking

of the PQ symmetry, the axion lives in a U(1) vacuum manifold; such a

broken field supports the formation of topological strings [48, 49, 50, 47, 19]

[92, 86, 85], whose radiation produce axions. Finally, axions can be produced

non-thermally through the so-called misalignment mechanism: at the QCD

phase transition non-perturbative effects generate a mass, and the axion field

relaxes to its minimum, which is precisely the PQ mechanism2, invented to

solve the strong CP problem. The oscillation around its minimum produce

a coherent state of zero mode axions, i.e. a Bose-Einstein condensate [175].

This last production scenario is potentially sensitive to the QCD effects, i.e.

the axion mass.

Because of the anomalous UPQ(1) symmetry, the axion has a two gauge

boson interaction and can thus decay into two photons; such processes are

used to look for axions experimentally, e.g. in solar axion searches and vac-

uum birefringence experiments. The former is one of the more stringent

astrophysical constraints, the strongest coming from the analysis of the su-

pernova 1987A neutrino flux which would be affected by axions. It gives a

lower bound for the axion decay constant, fa & 109GeV. See [122] for a

recent, comprehensive set of review articles.

In section 7.1 we discuss the effective axion potential, and essentially

focus on the temperature dependent axion mass. We very briefly review

our determination of the mass in the framework of the interacting instan-

ton liquid model (IILM) from chapter 5. In section 7.2 we reexamine the

cosmology of the vacuum realignment production mode in light of this new

mass function: We solve the cosmological evolution equations numerically,

and compare the results to the standard analytic approximation, identifying

regimes in which present estimates are and are not robust. To make the nu-

merics self-contained, we include the correct effective degrees of freedom for

the entropy and radiation density and derived in chapter 6. For completeness,

1The thermal axion bound follows from (mth
a /130 eV) < Ωc gdec

∗ /10, and is saturated
for mth

a ≈ 15 eV. This bound is, however, excluded by the new astrophysics bound ma <
0.01 eV. Thus, Ωth

a = Ωc(0.01/15) ≈ 0.001Ωc.
2The θ angle, a free parameter, is replaced by a dynamical field that evolves to its

CP-conserving minimum.
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we also review and update constraints from axion string radiation.

7.1 Axion potential

As discussed in chapter 2, all axion models have the generic feature that

the axion only couples derivatively to matter and the only non-derivative

coupling is to the topological charge

Lnon−der.
a = i

φa

fa

g2

32π2
F a

µνF̃
a
µν , (7.1)

where φa is the axion field and fa the axion decay constant. This combines

with the θ angle, and it can be shown that the effective potential for the

axion field,

e−V Veff(φ) =

∫

[dA] det(γµDµ + M) e−S+i(θ+ φ
fa

)Q , (7.2)

has a CP-conserving minimum at 〈θ + φa/fa〉 = 0, where V the 4-dimensional

volume. Note that the effective potential is periodic and that our computa-

tion is performed in the Euclidean theory. At finite temperature, real-time

configurations, sphaleron transitions, might also give contributions. How-

ever, as was shown in [133], these classical field configurations do not affect

the axion mass at leading order, basically because the classical field equations

do not depend on θ. Shifting the axion field, we will define θ + φ/fa → θa,

with θa the axion angle. This is the PQ solution to the strong CP prob-

lem: θ, a free parameter, is traded for a dynamical field that evolves to its

CP-conserving minimum.

Evaluation of (7.2) allows us, in principle, to determine the axion effective

potential. We can of course not hope to get exact, analytic formulas since

the effective potential includes strong coupling QCD effects. Ultimately, the

lattice will be able to compute the axion effective potential exactly. How-

ever, there are technical problems since the action is complex and cannot be

studied directly by simple Monte Carlo methods. This is the same problem

that arises in lattice gauge theory with a finite baryon density, i.e. a non-zero

chemical potential. In this chapter we will study the axion potential in the
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framework of the IILM set up in chapters 3 and 5.

To summarise, in the IILM we saturate the partition function (7.2) with

suitably chosen background configurations. In the non-interacting limit, the

so-called dilute gas approximation (DGA), used so far for the axion mass

determination, the path integral factorises into one-instanton contributions

Z1 =

∫

dρ d0(ρ) dT (ρ) , (7.3)

where d ≡ d0 dT is the instanton measure. The zero temperature part d0

is given by (3.42). At finite temperature, electric Debye screening prohibits

large scale coherent field configurations to exist in the plasma, i.e. fields with

a correlation length ξ & 1/T . The finite temperature part to the instanton

measure dT is given in (5.17).

Given Z1, the dilute gas approximation follows immediately as

Z =
∑

NI ,NA

1

NI !NA!
ZNI+NA

1 exp(iθa(NI − NA)) , (7.4)

where we have already included the axion angle through its non-derivative

coupling to the topological charge, which is approximated by Q = NI−NA in

the background of NI instantons and NA anti-instantons. This sum is easily

computed, and we find the effective potential

Veff(θa) = −2

∫

d(ρ) cos θa . (7.5)

That the potential had to be periodic follows from the defining QCD path

integral (7.2). In general, the potential will have a much more complicated

form than this simple cosine, see [89, 87, 88, 73, 74, 75]. Still, one can estimate

that the first few terms of a harmonic expansion should describe the axion

potential rather accurately [113], and it is custom for axion cosmology to

work with a simple cosine.

Note that the effective potential is negative at its CP conserving mini-

mum. The reason is that the one-instanton contribution is really normalised

to the perturbative result, which by definition has zero energy. Instantons,

interpreted as tunnelling effects between the n-vacua, restructure the vacuum
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and give rise to the energetically lower true θ-vacuum.

At temperatures below the QCD phase transition, the dilute gas approx-

imation breaks down. In that regime chiral perturbation theory can however

be used to derive the classic result for the zero temperature axion mass

m2
af

2
a = m2

πf 2
π

mumd

(mu + md)2
, (7.6)

with corrections of order one that depend on the precise model. The above

axion mass is exact in the framework of the simplest hadronic axion [162, 112],

where only a new super-heavy SU(2)×U(1) singlet Dirac spinor carries PQ

charge; after integrating out the heavy field, we are left with the typical non-

derivative coupling to the QCD topological charge. The low energy effective

QCD Lagrangian, i.e. chiral perturbation theory, including the axion, is also

used to derive the couplings of axions with pions and the weak sector, needed

in the thermal production scenario [91]. Above the phase transition these

coupling follow from the fundamental Lagrangian [132].

This same result can also be derived from the defining QCD path integral

by noting that

m2
af

2
a =

∂2Veff

∂θ2
a

≡ χ , (7.7)

where χ = limV →∞
〈Q2〉
V

is the topological susceptibility. It can be shown

that χ is related to the quark condensate [125] and, using chiral perturbation

theory, this can be transformed into (7.6). Here, only the axion carries PQ

charge and it interacts with matter derivatively, together with the topological

coupling to the gauge sector. This axion field is the same as the physical axion

field in the effective Lagrangian approach, i.e. the propagation eigenstate.

The important point to note is that the axion mass is essentially given

by the topological susceptibility, a quantity that is routinely measured on

the lattice. With the recent progress of lattice algorithms and increased

computing power, physical quark mass simulations are finally feasible and

the lattice will soon be able to provide us with the best estimate for the

temperature dependent axion mass.

Beyond the DGA, the IILM saturates the path integral with an ansatz for

the multi-instanton background configurations, and treats the low-frequency

fluctuations ‘exactly’ while still assuming a factorisation of the high frequency
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gluon, quark and ghost spectrum. The IILM partition function is defined by

ZIILM =
∑

NI ,NA

1

NI !NA!

∫ NI+NA∏

i=1

dγid(ρi)e
−Sint , (7.8)

Sint =
∑

pairs (i,j)

S0(
√

ρiρj)Vij −
NF∑

q=1

{

ln det(I + TT †

m2
q
) , Q < 0

ln det(I + T †T
m2

q
) , Q > 0

.(7.9)

The integration is over the collective coordinates, which are the positions,

sizes and the colour embedding matrices. The classical gluonic two-body

interaction is given by Vij; it receives a contribution from the high frequency

fluctuations through charge renormalisation. The latter is approximated by

the one-instanton action, S0 = 8π/g2, with the running coupling evaluated

at
√

ρiρj. The low frequency quark determinant is approximated by the

finite dimensional subspace of quasi zero modes {ξn}, i.e. TIA = 〈ξI |D/ |ξA〉.
The details of the zero temperature calibrations are given in chapter 3. In

particular we determined, self-consistently, physical quark masses. Finite

temperature simulations have been performed to compute the topological

susceptibility in chapter 5, and to derive the axion mass: the low temperature

axion mass is displayed in Fig. 7.1 and given by

m2
af

2
a = 1.46 10−3Λ4 1 + 0.50 T/Λ

1 + (3.53 T/Λ)7.48 , 0 < T < 0.45 , (7.10)

where Λ = 400 MeV; the high temperature mass, including threshold effects3,

can be parametrised as

m2
af

2
a = Λ4







exp
[

d
(3)
0 + d

(3)
1 ln T

Λ
+ d

(3)
2

(
ln T

Λ

)2
+ d

(3)
3

(
ln T

Λ

)3
]

, Nf = 3

exp
[

d
(4)
0 + d

(4)
1 ln T

Λ
+ d

(4)
2

(
ln T

Λ

)2
]

, Nf = 4

exp
[

d
(5)
0 + d

(5)
1 ln T

Λ
+ d

(5)
2

(
ln T

Λ

)2
]

, Nf = 5

,

(7.11)

and the different parameters are given in (5.58). We also give a very simple

approximation to the dilute gas result in the form of a power-law, as in earlier

3The quark thresholds are treated within the effective field theory language, where
decoupling is enforced by hand and continuity is achieved through matching conditions.
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work [186, 13],

m2
a =

αaΛ
4

f 2
a (T/Λ)n

, (7.12)

where n = 6.68 and α = 1.68 10−7, from (5.58); it compares well with [13].

We believe it is a coincidence that such a simple fit, based solely on the

high temperature regime, still gives such a good overall approximation to

the much more elaborate result of the IILM simulations, see Fig. 7.2.

In chapter 5 we found that the instanton ensemble is very distinct from

a non-interacting system. Corroborating earlier ideas on the instanton liq-

uid at finite temperature, we found a population of instanton–anti-instanton

molecules and a non-interacting remnant. The molecules do not lead to

charge fluctuations and, hence, the axion mass is determined by the random

sub-ensemble. It turns out that the latter have a concentration that just

matches the dilute gas approximation. We believe this is an unfortunate co-

incidence; in particular, we have found within a toy-model that, depending on

the interaction and screening effects, a different high temperature behaviour

can occur: for stronger interactions the molecule concentration can become

higher so that the non-interacting sub-ensemble acquires a lower density, and

hence a lower axion mass, compared to the dilute gas estimate. A crude argu-

ment within the IILM gave evidence that at higher temperatures, with more

active quark flavours, the fermionic interactions might outweigh the screen-

ing effects and the molecule concentration could increase. For temperatures

below the charm or even the bottom threshold, the molecule concentration

will, however, decrease as the screening effects dominate over the interac-

tions. That the molecule concentration would not depend monotonically on

the temperature seems unnatural. Below the charm threshold, where we

find that the molecule density decreases, weaker screening effects could alter

this trend: corrections to the factorised high frequency quantum interactions

could indeed induce weaker screening because overlapping instantons have

effectively a smaller size; note that at zero temperature such quantum inter-

actions were estimated to be subdominant but this has not been repeated for

the finite temperature case.

In the pure gauge sector the IILM is not able to accurately describe

the topological susceptibility as obtained from lattice simulations, whereas
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Figure 7.1: The mass for the QCD axion follows from the topological sus-
ceptibility, m2

af
2
a = χ. The fit goes over to the dilute gas approximation for

moderately high temperatures T ≈ 400 MeV, in accordance with the IILM
data. Note that the large errors are mostly due to the large uncertainties in
the determination of Λ, used to set dimensions.



CHAPTER 7. AXIONS 202

a dilute gas model of non-trivial holonomy calorons fared rather better [80].

In particular, the IILM predicts a topological susceptibility that decays too

fast. These more general degrees of freedom should therefore be included into

the IILM in the future to improve on the quenched sector and to investigate

whether they also lead to significant changes in the unquenched case. We

might expect the implications to be smaller because of chiral symmetry, which

is successfully implemented in the IILM and believed to play a crucial role

in the strong dynamics. In the unquenched case, we don’t have lattice data

available to check for a qualitatively different behaviour of the IILM in the

high temperature region. Given the progress of lattice simulations in the

physical regime, this issue will be settled in the near future.

Despite these uncertainties, our investigation might be evidence that the

axion mass is fairly insensitive to the details of the instanton ensemble and

that the dilute gas approximation might prove to be a reliable estimate, even

though the instanton ensemble is certainly not non-interacting.

7.2 Axion cosmology

Now that we have determined the mass function for the axion, we can turn

to the cosmological implications. For the misalignment mechanism to pro-

duce a dominant axion contribution, we assume that the axion is created

before the end of inflation; otherwise axionic string radiation will produce

the bulk of the axion population [48, 49, 50, 47, 19]4. Thus when the PQ

symmetry is spontaneously broken, we have different initial angles, the mis-

alignment angles, in the causally disconnected regions. Later, inflation sets

in and stretches these patches to cosmological sizes such that throughout the

observable universe the same misalignment angle prevails. Once instanton

effects set in, the axion becomes massive and starts to oscillate.

Only the homogeneous part of the axion field is relevant for the misalign-

ment mechanism. We are interested in the regime when the axion starts

rolling, which happens around the QCD scale when the universe is radiation

dominated. Recent lattice data suggests that the QCD phase transition is

4Note that there is still some controversy with regard to this statement, and other
numerical work [92, 86] finds the axion contribution from string radiation and decay to be
comparable to the contribution from the vacuum realignment production mode.
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Figure 7.2: Shown are the mass for the QCD axion from IILM simulations
(7.10), from a lattice inspired fit that uses the IILM mass shifted towards
higher temperatures to mimic the phase transition at T lat

c ≈ 160 MeV, from
the classic dilute gas approximation (DGA) by Turner [186] and its update by
Bae et al. [13], and from the DGA derived in this paper (7.12). The simple
power-law DGA axion masses are cut off by hand once they exceed ma(T = 0)
and give a surprisingly good approximation to the full IILM result. The
differences that persist to high temperatures arise from the slightly different
quark masses.
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a cross-over rather than a sharp phase transition [9]. In particular, it is not

of first order, and no latent heat is produced. Furthermore, we assume that

no exotic particles beyond those in the Standard Model decouple relativis-

tically. Thus, the universe evolves adiabatically and we leave aside models

with additional entropy production; see for instance the discussion in [69].

Since we will also be interested in assessing the accuracy of the standard

analytic results for the misalignment mechanism, we will take care to include

the correct number of degrees of freedom g∗,R and g∗,S, defined in (6.37) and

(6.38) and displayed in Fig. 6.8. In particular, this allows us to derive a

specific relation between the temperature and the scale factor, Fig. 6.7. The

details are given in chapter 6.

7.2.1 Misalignment mechanism

As usual in standard cosmology, the universe will be described by a flat FRW

metric [117], with cosmological parameters given by the concordance of the

best available data (we take WMAP5+BAO+SN [118]). For the temperature

regions of interest we can restrict ourselves to radiation and axions, in which

case Einstein’s equations are given by

H2 = 1
3M2

p

(
π2

30
g∗,RT 4 + f 2

a

(
1
2
θ̇a

2
+ m2

a(T )(1 − cos θa)
))

, (7.13)

θ̈ + 3Hθ̇a + m2
a(T ) sin θa = 0 , (7.14)

where M2
P is the reduced Planck mass. Note that the effective axion po-

tential has been shifted so that non-perturbative effects do not lead to a

non-vanishing vacuum energy5.

The dynamics of the axion evolution consists of three qualitatively dif-

ferent stages: First, as long as its Compton wavelength is below the Hubble

scale, the axion is effectively massless; the Hubble friction enforces a constant

axion field in this case. Secondly, once the axion mass becomes comparable

to the Hubble scale, at a time when ma ≈ 3H holds, the axion feels the pull

of its mass and starts to roll towards its minimum at θa = 0. Finally, after

a few oscillations the axion evolution is indistinguishable from pressureless

5Note that there exist theories that combine another axion-like field to entangle the
dark matter and the dark energy sector [137, 114].
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matter and the axion number per comoving volume is conserved. These three

regimes are illustrated clearly for an explicit numerical solution in Fig. 7.3.

The physics underlying the misalignment mechanism is based on the fact

that the energy redshifts with time, and that the Hubble dilution starts once

the oscillations in the axion zero mode begin. Consequently, the total Hub-

ble redshift increases with ma. This leads to the a priori counterintuitive

behaviour that light axions, i.e. high fa, contribute more to the energy bal-

ance than heavy axions.

Analytical progress can be made by noting that

ρ̇a = 2maṁa(1 − cos θa) − 3Hθ̇a
2
, (7.15)

where we have made use of the equation of motion for the axion field (7.14).

We assume that over one oscillation a, H and ma do not change much, i.e.

adiabatic evolution. Furthermore, we consider times when the axion field has

been Hubble redshifted for long enough so that anharmonic effects are negli-

gible, in which case the axion behaves as a damped harmonic oscillator with

constant coefficients. For such a system θ̇2
a = m2

aθ
2
a, where the expectation

value is an average over one oscillation. This leads to

ρaa
3

ma

= const . (7.16)

Eq. (7.16) allows us to easily compute the energy in the axion field today

ρa(today) = ρa(T )
ma(today)

ma(T )

s(today)

s(T )
, (7.17)

where T is the temperature when we reached the asymptotic behaviour pre-

dicted by (7.16), s = 2π2

45
g∗,ST 3 is the entropy density and g∗,S is the effective

number of degrees of freedom shown in Fig. 6.8; we have neglected the over-

bar for simplicity. This can then be compared to the present critical energy

density, which constrains the axion mass. Note that apart from the time

average, a spatial averaging is implicitly understood. In the formulas that

follow the coarse-grained θa now stands for the effective axion angle

θeff
a =

√

〈θ2
a〉 =

√

〈θa〉2 + σ2
θa

, (7.18)
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Figure 7.3: As long as the axion Compton wavelength is well outside the
horizon, the axion zero mode is frozen; this corresponds to the late-time
solution of (7.14) with ma neglected. The axion starts to feel the pull of
its mass at ma ≈ 3H, and evolves to its minimum at θa = 0, i.e. the PQ
mechanism to solve the strong CP problem. After a few oscillations the axion
number per comoving volume stays constant as long as the axion mass and
the scale factor change slowly (adiabatic approximation). This is then used
to extrapolate the result to today.
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where σθa represents contributions from quantum fluctuations and classical

inhomogeneities. (This notation for θa is used except where explicitly stated

otherwise or in expectation values.).

As alluded to in the introduction, the axions produced from the heat

bath have been ruled out as the dominant cold dark matter contribution

[91]. The remaining window for larger values of fa, bounded from below

by astrophysical considerations, implies tiny couplings of axions to ordinary

matter so that the axions will stay out of equilibrium with respect to the

cosmic plasma; anharmonic effects that couple higher modes can also be

ignored by the same reasoning. In addition, axions have very small velocity

dispersions6; in particular, axions are non-relativistic after recombination,

i.e. during structure formation. Therefore, axions provide a generic cold

dark matter candidate, whose density is constrained by observation to be

Ωc ≤ 0.23 [118].

We will follow the early paper [186] and the recent update [13] to derive

an analytic formula for the axion abundance which we then compare to a full

numerical solution (using the same updated parameters). We will use the

simple power-law approximation (7.12) for the axion mass from the dilute

instanton gas; it reaches the T = 0 mass at T ≈ 100 MeV, converges to

the full IILM mass at T ≈ 400 MeV and overestimates it slightly for higher

temperatures, as can be seen in Fig. 7.2. Note that the coefficient αa ∝
mumdms. The axion starts rolling at

T n+4
a ≈ 0.04

Λn+4αam
2
Pl

g∗,Rf 2
a

, T & 103 MeV (7.19)

T 4
a ≈ 0.04

χm2
Pl

g∗,Rf 2
a

, T . 103 MeV. (7.20)

Assuming that the number of axions per comoving volume is conserved at

Ta, we can use (7.17) to get

ρa =
45s0

4π2







(0.2 mPl)
− 6+n

4+n g
− 1+n/2

4+n

∗,R χ
1
2 Λ−1α

− 1
4+n

a f
6+n
4+n
a θ2

a

(0.2 mPl)
− 3

2 g
− 1

4
∗,Rχ

1
4 f

3
2
a θ2

a

. (7.21)

6The zero-mode has, by definition, none. Non-zero-mode contributions, due to inho-
mogeneities in the axion field set up during the PQ phase transition and due to string
decay, can be shown to be small (see, for example, Sikivie’s review article in [122]).
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Note that the axion abundance is fairly insensitive to changes in αa due to

its small exponent. In particular, the large uncertainties in the quark masses

have only a minor effect on the final results. We therefore expect this estimate

of the energy density ρa to differ only slightly relative to the results of [13],

say. The additional T -dependence due to g∗,R and g∗,S will also be weak,

again due to rather small exponents. Using Λ = 0.4 GeV, χ = (78.2 MeV)4

and Tγ = 2.725 K we get

T ≈







1.46 GeV g−0.094
∗,R

(
1012 GeV

fa

)0.19

122 GeV g−0.25
∗,R

(
1012 GeV

fa

)0.5 , (7.22)

and

Ωah
2 ≈

{

0.54 g−0.41
∗,R θ2

a

(
fa

1012 GeV

)1.19

0.0064 g−0.25
∗,R θ2

a

(
fa

1012 GeV

)1.5 . (7.23)

These analytic results can be improved by taking anharmonic effects into

account [13]. The upshot is that we can incorporate these through the sub-

stitution θ2
a → θ2

af(θa), where

f(θa) =
4
√

2

πθ2
a

∫ θa

0

dθ
√

cos θ − cos θa . (7.24)

It follows from the adiabatic invariant I =
∮

pθdθ, where pθ is the canonical

conjugate to θ. The Lagrangian is L = a3(1
2
θ̇2 − m2

a(1 − cos θ)), and it

is important to note that to derive (7.24) we keep a and ma constant in

time. We have that f(θa) → 1 as θa → 0; it decreases monotonically to

f(π) ≈ 0.516. In this regime, θa → π, the adiabatic condition breaks down

because the axion behaves like an inflaton, and the scale factor a no longer

varies slowly. However, analytic progress can be made in this limit if one takes

into account that the above quantity needs to be combined with an estimate

for the time when the axion actually starts rolling (and the inflationary phase

is over). This occurs no longer at ma ≈ 3H [129, 179, 195]. In the full

numerical set-up, we always propagate the solution into the harmonic regime

before we use (7.17) to extrapolate to today, and so the correction factor f(θa)

is not required.

To take the temperature dependence of g∗(T ) into account, we must solve
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the implicit equations (7.19) and (7.20). We find that neglect of the temper-

ature dependence of g∗ leads to an error of 10% in the analytic computation.

On top of that the analytic computation assumes that the adiabatic regime

is reached when ma = 3H; this is a further source of error relative to the full

numerical result.

Imposing the dark matter constraint Ωc ≈ 0.23, we get a relation between

the two parameters fa an θa. The analytic approximation compares well

with the full numerical result, except for very large or very small initial

misalignment angles, see Fig. 7.4. At large angles the adiabatic condition

breaks down. At small angles the DGA approximation to the axion mass is

constant whereas the full IILM mass decreases slowly towards ma(T = 0), i.e.

the IILM dynamics starts rolling slightly earlier so that the Hubble dilution

acts for longer which in turn leads to a smaller Ωa at a given fa; equivalently,

to reach Ωc a slightly larger fa is needed, as depicted in Fig. 7.4.

If the PQ symmetry breaks spontaneously after inflation, the correlated

domains with a given misalignment angle are not stretched to macroscopic

sizes and a strong spatial dependence remains. In ref. [186], these fluctua-

tions are averaged in the observable universe to find the root-mean-square

fluctuations θa = π√
3
. This was then taken to be the initial condition for

an estimate of the zero momentum mode axions. While this approach to

axion production in the thermal scenario is flawed (as we shall discuss), it

provides a useful benchmark with which to compare competing estimates.

Adopting these initial conditions, from the full numerical results we obtain

the important bound

fa ≤ 2.8(2) 1011 GeV or ma ≥ 21(2) µeV . (7.25)

This canonical result can be compared directly with our analytic modelling,

as well as other estimates in the literature, to check accuracy.

In Fig. 7.5, the errors of the analytic results with the DGA axion masses

are compared to the numerical result across the full range of fa. The numer-

ical solution has fa and θa chosen such that Ωa = 0.23. Except at large and

small fa, the differences with the analytic models using the same parameters

are of order O(1). It is clear in this regime that the relative abundance is

not strongly dependent on the exact shape of the axion mass. We also com-
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Figure 7.4: The anthropic axion is defined through its relation between fa

and θa given a fixed Ωa. We display here the result for the case that axions
form the dominant dark matter component of the universe, i.e. Ωa = 0.23.
The short-dashed lines correspond to the uncertainties in fa(θa) from the
systematic errors in Λ, which is the dominant source of uncertainties. We
also include the result of the analytic computation (7.21). Over many orders
of magnitude the agreement is very good. More pronounced differences only
show up at θa → 0 and θa → π. The latter is due to the fact that the
adiabatic condition is not fulfilled because the potential becomes very flat
and acts like a source of inflation, i.e. a rapidly changing scale factor. The
differences between the analytic and numerical data at small θa follow from
the different functional form of the axion masses: in the former case the axion
mass is constant whereas in the latter it is slightly rising with temperature
(see main text).
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pared the full numerical results for the DGA masses and found again that

differences are only pronounced in the region of the QCD phase transition

where the different mass ansätze differ considerably. We checked against the

full numerical solution for the lattice-inspired mass function too, see Fig. 7.2,

and found less than 5% variations for fa < 1015 GeV.

While revealing the regimes in which analytic estimates go astray, for the

most part the results are in good agreement with this simple DGA treatment.

It is encouraging to note that estimates of the axion density are relatively

insensitive to the detailed nature of the axion mass function, affirming the

validity of the previous literature. However, this does not mean that a simple

treatment will automatically give agreement with (7.25); this requires appro-

priate normalisation, updated parameter choices and a careful treatment of

g∗, as attested by the significant differences between quoted bounds.

7.2.2 Anthropic window, isocurvature and fine-tuning

bounds

The discussion so far has been purely classical. In order to discuss the an-

thropic window, where we fine-tune θa at large and small fa, we need to

take into account the quantum mechanical fluctuations of the axion field

induced by inflation. Like any other massless field, the axion receives quan-

tum mechanical fluctuations during the quasi de Sitter evolution of the early

universe, i.e. σφ = HI

2π
or in terms of the axion angle

σθa =
HI

2πfa

. (7.26)

Apart from the spatial averages, these quantum mechanical effects need also

be taken into account in the coarse grained equations; they are dominant

for the anthropic scenario where inflation has smoothed out the ‘classical’

inhomogeneities, and makes sense only if the PQ symmetry is broken be-

fore the end of inflation. The fluctuations in the massless axion field then

lead to isocurvature perturbations in the cosmic microwave background ra-

diation (CMBR). The ensuing constraints apply only if the PQ symme-

try has not been restored after inflation; this could happen if the quan-

tum mechanical fluctuations or the reheat temperature are too large, i.e. if
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Figure 7.5: To analyse the differences between the different determinations
of the axion abundance, we compute Ωa on a fixed set of {fa, θa} derived
from the full numerical determination with the IILM axion mass, given that
Ωa = Ωc. We see that the analytic results are off by more than a factor of
2 in the regimes of small and large axion angles; for the case when inflation
has not operated after PQ symmetry breaking, i.e. for fa < 2.8 1011 GeV, we
can see that the numerical and analytic results are different by a factor of 3
(and more if the axion is not the dominant dark matter component). For the
main part of parameter space the discrepancy is smaller but systematically an
underestimate. The full numerical data using the lattice inspired axion mass
are very similar for most fa (by construction), and differ only for large fa, as
might have been expected. It is noteworthy that the numerical determination
runs into the proper IILM axion mass already for rather low fa’s before it
extrapolates to today.
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fa < max
[

HI

2π
, TRH

]
.

As mentioned previously, the fluctuations lead to an effective axion angle,

θeff
a =

√

〈θ2
a〉 =

√

〈θa〉2 + σ2
θa

, and will be used in the coarse grained evolution

equations. It follows that the effective angle is bounded by the root-mean-

square fluctuations

θ2
a ≥ σ2

θa
=

H2
I

(2πfa)2
. (7.27)

We will follow refs [30, 24, 95, 90, 195] to put constraints on the PQ scale

fa and on the inflationary scale HI . By definition, isocurvature perturbations

do not change the energy density, i.e. δρ = 0. For a massless field such as the

axion, fluctuations do not change the potential energy density. In addition

we have assumed that the quantum mechanical fluctuations are small, i.e.

fa > HI so that the PQ symmetry is not restored, and the gradient energy

density is negligible compared to the inflationary energy scale, for details see

ref. [24]. Thus, inflationary axion fluctuations are indeed isocurvature which

leads to

δρ = 0 = δρa +
∑

i6=a

δρi + δρr . (7.28)

Assuming that all other fields have adiabatic perturbations, i.e. δρi

ρi
= 3

4
δρr

ρr
,

we get a relation between the temperature fluctuation, i.e. δρr

ρr
= 4 δT

T
, and

the axion fluctuation

δT

T
= − ρa

3
∑

i¬a ρi + 4ρr

δna

na

. (7.29)

It is customary to define the entropy perturbation

Si ≡
δ(ni/s))

ni/s
=

δni

ni

− 3
δT

T
, (7.30)

where s ∝ T 3 is the entropy density and ni the number density of particle

species i. It is clear that for adiabatic perturbations Si = 0 by definition. At

the time the relevant perturbations are set, the universe is radiation domi-

nated, and it follows from (7.29) that the radiation perturbations are negli-

gible with respect to axion fluctuations. The initial condition is thus given

by Sa = δna

na
and once this mode leaves the horizon it remains constant.

The relevant scales cross back inside the horizon during matter domina-
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tion, i.e. ρr ≪ ρa; it then follows from (7.29) that

(
δT

T

)

iso

= − 6

15

Ωa

Ωm

Sa , (7.31)

where we have added the Sachs-Wolfe contribution and Ωm is the total matter

abundance. The fraction of isocurvature to total temperature fluctuations

has been constrained to [118]

αa ≡ 〈(δT/T )2
iso〉

〈(δT/T )2
tot〉

< 0.072 , (7.32)

and (δT/T )rms
tot ≈ 1.1 10−5, where the sum is taken over the first few low-lying

multipoles.

For the large fa we are interested in, the axion dependence on the energy

density is well approximated by ρa ∝ θ2
a, where in this case θa is not the

effective axion angle. Assuming a Gaussian distribution for the axion angle

perturbation, we find that

〈S2
a〉 =

〈(
θ2

a − 〈θ2
a〉

〈θ2
a〉

)2
〉

=
2σ2

θa
(2θ2

a − σ2
θa

)

θ4
a

. (7.33)

From this it follows that the isocurvature fraction is given by

αa =
4

25

Ω2
a/Ω

2
m

〈(δT/T )2
tot〉

2σ2
θa

(2θ2
a − σ2

θa
)

θ4
a

, (7.34)

which we can rewrite into a constraint equation for HI :

(
HI

2π

)4

− 2(θafa)
2

(
HI

2π

)2

+
α̃a

2Ω2
a

(θafa)
4 > 0 . (7.35)

All explicit numerical factors have been absorbed into

α̃a = 0.072
25

4
〈(δT/T )2

tot〉Ω2
m ≈ 4 10−12 ≪ 1 . (7.36)

Of the two possible solutions, the larger one is in conflict with (7.27), so that
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the isocurvature constraint becomes

HI <

√
α̃aπ

Ωa

θafa <

√
α̃aπ

Ωa

θa(fa)fa ≈ 6.3 10−6

Ωa

θa(fa)fa , (7.37)

where θa(fa) follows from Fig. 7.4. Note that θa/Ωa ∝ Ω
− 1

2
a , so that for fixed

fa the bound becomes weaker if the axions make up only a fraction of the

dark matter content of the universe.

Actually, (7.37) is an implicit equation for HI since the effective axion

angle depends on it. However, in this regime the difference between θa and

〈θa〉 is negligible. To see this, we rewrite (7.37) in terms of 〈θa〉, and get

HI <

√
α̃aπ

Ωa

〈θa〉fa

(

1 − α̃a

4Ω2
a

)− 1
2

≈
√

α̃aπ

Ωa

〈θa〉fa . (7.38)

This, in turn, can be used to estimate that σa ≪ 〈θa〉. In the anthropic

regime the dependence of θa on HI is totally negligible, and we can fine-tune

the effective axion angle to θa ≈ 〈θa〉(1 − 10−10).

If we want to extend the analysis to all of the anthropic window, i.e.

θa = O(1), we need to take into account anharmonic effects. We are greatly

helped by the fact that σa ≪ 〈θa〉: it allows us to Taylor expand the true

axion potential around 〈θa〉 and we find that

〈S2
a〉 =

sin2〈θa〉(σ2
θa
− σ4

θa
) + 1

2
cos2〈θa〉σ4

θa

(1 − cos〈θa〉)2 + 1
4
cos2〈θa〉σ4

θa
+ (1 − cos〈θa〉) cos〈θa〉σ2

θa
(1 − 1

4
σ2

θa
)
,

(7.39)

where we expanded to fourth order, and we assume again that δθa is Gaussian

with mean zero. For small σθa ≪ 〈θa〉 ≪ 1 this goes over into (7.33). For

large misalignment angles the behaviour becomes rather different, and for

〈θa〉 → π we see that the entropy perturbation tends to 〈S2
a〉 → 1

8
σ4

θa
in

contrast to the 〈S2
a〉 → 4

π2 σ
2
θa

for the harmonic case. Since the perturbation

has to be small, the solution for σθa in the anharmonic case will be much

larger and the constraint on HI consequently much weaker. The solution

satisfies again σa ≪ 〈θa〉, and the approach is self-consistent.

Even though the fluctuation is very small, the regime θa → π can only

be achieved if HI is further constrained, as we will now show. Fine-tuning

in the effective axion angle is hindered at large HI by quantum fluctuations.
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Assuming that 〈θa〉 = π, we obtain the following bound on HI

HI <
√

8πξπfa , (7.40)

where ξ is defined by ξ ≡ π − θa and encodes the degree of fine-tuning. It is

clear then that for axions on the top of the potential, this bound supersedes

the isocurvature bound. This leads to a further restriction on the allowed

parameter space shown in Fig. 7.6 (bottom left). This cut-off provides an

interesting boundary in parameter space suggesting that inflationary axions

have a maximum possible mass of approximately ma . 1 meV. Inflationary

scenarios usually consider small axion masses in the range ma . 10 µeV, but

we see here with anharmonic tuning that it is possible to have Ωa = 0.23

with masses at and above that of the thermal dark matter axion (see be-

low). Naturalness arguments tend to disfavour inflation models with a low

energy scale, but we note that the weakening of the isocurvature constraint

at θa ≈ π opens up the inflationary window by several orders of magnitude

relative to naive expectations. It is possible to have these heavier axions

with an inflation scale approaching H ≈ 109 GeV. The fact that two alterna-

tive scenarios – thermal and inflationary – can produce axions with masses

ma = 0.1–1 meV might strengthen the case for experimental searches in this

parameter regime.

Note that although the parameter space is really three-dimensional, i.e.

in 〈θa〉, fa and HI , we only plot the HI–fa plane as these are the fundamental

parameters, whereas 〈θa〉 is naturally seen as an ‘environmental’ feature of

our location in the universe after inflation. Recall also that without inflation

the causal patches with different 〈θa〉 stay microscopic all the way to today

with θa → π√
3
, so again the axion angle is not required as an extra parameter.

The anthropic window bounds can be weakened by choosing θa < θa(fa),

however, if the axion is to be the dominant dark matter candidate then the

parameter space is truly 2-dimensional and collapses to the HI–fa plane.

We have mentioned previously, that the natural axion angle to be used

in the evolution equations is the effective axion angle that takes into account

root-mean-square fluctuations. A priori this entangles HI and 〈θa〉. However,

we have seen that for a large part of the anthropic window θa does not really

depend on HI . On the upper green curve in Fig. 7.6, that is if the axion is to
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Figure 7.6: The allowed parameter space in the HI–fa plane is plotted in
white; the inflationary energy scale is defined by EI ≡ (HImPl/

√

8π/3)1/2.
The green curve in the upper left corner follows from the isocurvature con-
straint (7.37), when the axion is the dominant dark matter candidate. If
axions provide only a fraction of the dark matter content of the universe, the
bound becomes weaker. For lower fa, i.e. larger θa, the anharmonic effects
become important and the bound on HI weakens because anharmonic effects
lead to smaller perturbations. For θa → π, the dependence of HI on θa can
no longer be neglected and leads to the black curve. The lower green curve
gives the lower bound for isocurvature production (very inefficient reheating
is assumed [95]); beneath this curve, the axion angle is spatially varying (with
root-mean-square fluctuation θa = π/

√
3). The cyan wedge is excluded as it

would lead to too much dark matter from axion string radiation. The bound
from the non-detection of gravitational waves, i.e. r < 0.22 [118], leads to
the upper bound on the inflationary scale HI < 1.26 1014 GeV. Finally, fa

is bounded from below by astrophysical considerations, i.e. axion emission
from stars; we use fa > 4 108 GeV, see [122] chapter 3.
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Figure 7.7: The allowed parameter space in the anthropic window. The dark
matter axion lives on the green face. Although not as clearly visible as for the
right plot, the projection of the green face from the left plot into the HI–fa

plane corresponds to the anthropic window displayed in Fig. 7.6. The colour
shading is calibrated to the axion density; this is clear for the right plot but is
also true for the left plot. We see that the parameter space does not depend
sensitively on Ωa in the range Ωa ∈ [Ωc, 0.1 Ωc]; for smaller densities HI starts
to grow rapidly and eventually we reach the regime 〈θa〉) ≪ σθa ≪ 1 where
the isocurvature bound can no longer be fulfilled. This gives another bound
in the anthropic window, although a rather uninteresting one since the axion
density has become totally negligible at that point.

be the dominant dark matter candidate, then fa and 〈θa〉 are in the one-to-

one correspondence defined through Fig. 7.4. Again, on the black curve in

Fig. 7.6, 〈θa〉 is very close to π and θa depends solely on HI for axions that

contribute Ωa = Ωc.

If we allow the axion to contribute only a fraction of the dark matter

content to the universe, the parameter space in the anthropic region becomes

truly 3-dimensional. For θa < θa(fa) the axion density drops, and smaller

effective angles are in one-to-correspondence with Ωa < Ωc for fixed fa. Note

that the relation Ωa = Ωa(fa, HI , 〈θa〉) can be inverted and allows us to trade

〈θa〉 for Ωa. In Fig. 7.7 we plot the available parameter space in the anthropic

window.
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It was somewhat surprising that fa(θa) varies very slowly as π − θa → 0;

indeed in that regime the axion field behaves like an inflaton, and one might

have expected that fa → 0 rather fast. This is in agreement with the earlier

numerical work by [186] and analytic computations [129, 179, 195]. It follows

from this that the axion potential is not flat enough to support a prolonged

inflationary period. In this regime, the fine-tuning in θa to many digits is

reminiscent of the fine-tuning for the couplings of the inflationary potential

to produce sufficient e-folds.

7.2.3 Axion strings

For completeness, let us take a closer look at the “classic axion window”,

that is, the thermal scenario in which the universe reheats to temperatures

above the PQ symmetry breaking scale, T > fa. There are a number of

misconceptions in the literature about the importance of misalignment pro-

duction of axions from this thermal state. At high temperature, the thermal

axion distribution θa will fluctuate randomly in time and space around the

circle 0 → 2π. An rms average with 〈θ〉 = π/
√

3 away from the minimum

at θa = 0 is assumed to be the thermal initial condition for a misalignment

zero momentum mode (7.25) which begins to oscillate when the axion mass

switches on. Unfortunately, this generically underestimates axion produc-

tion in the thermal scenario because it does not quantitatively account for

the full spectrum of axion momentum states which are excited by the time

of the mass ‘switch on’.

Axion production in the thermal scenario is in fact dominated by radiation

from axion strings which inevitably form via the Kibble mechanism [111]

when the UPQ(1) symmetry breaks. These strings radiate axions during their

scale invariant evolution on all subhorizon scales and then annihilate and

disappear at axion mass switch on (as we will explain in more detail below).

The important point is that axion strings at late times can effectively radiate

low-frequency axions in the range H < ω < ma (for fa ≪ 1016 GeV). Given

the same total energy radiated into axions, a spectrum concentrated at low

momenta will lead to a higher number of axions; thus the more low-energy

axions are produced, the tighter the constraints from string radiation will

become. This issue still remains controversial [176]. When the mass switches
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on, it is fairly straightforward to show that the resulting density of these non-

relativistic axions inevitably exceeds those naively estimated from the zero

momentum mode. This discussion follows the review given in ref. [19, 21],

updating the string constraint using new data.

Axion strings are global strings which possess strong long-range forces,

with a (renormalised) energy per unit length given by

µ ≈ 2πf 2
a ln(L/δ) , (7.41)

where δ ∼ f−1
a is the string core width and the typical radius of curvature is

L ∼ t. At late times near axion mass switch on, the logarithm ln(L/δ) ≈ 70

for fa ∼ 1011GeV. Here, we essentially have a renormalisation of the bare

string energy density µ0 = 2πf 2
a by radially integrating out the effect of the

axion field that winds by 2π around the string. Despite the nomenclature,

with such a large µ ≫ µ0, the axion string is in fact highly localised with

more than 95% of its energy in only 0.1% of the volume through which it

traverses; it behaves to lowest order like a (local) Nambu string.

The evolution of a network of cosmic strings is non-pathological (whether

local or global), because their evolution is scale-invariant with their curvature

radius growing as L = γt and the string density scaling as ρ = ζµ/t2, that is,

in proportion to the background cosmological density. In the radiation era,

we have ζ ≡ γ−2 ≈ 13, as determined by large-scale numerical simulations

[25, 5]. The string network consists of both a population of long strings, that

carry most of the energy, and small (subhorizon) loops which are created

through long string reconnections,

ρstr = ρ∞ + ρℓ ≡
µζ

t2
+ µ

∫

ℓ n(ℓ, t)dℓ , (7.42)

where n(ℓ, t)dℓ is the number density of loops in the range ℓ to ℓ + dℓ at the

time t. By conservation of energy for the string network, one can calculate

the loop number density (see the discussion in e.g. [193]):

n(ℓ, t)dℓ =
ζg(1 − 〈v2〉)α1/2

ℓ5/2t3/2
, (7.43)

where α describes the typical loop size at creation ℓ = αt, the rms string ve-
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locity is 〈v2〉1/2 ≈ 0.65, and the relativistic boost factor g ≈ 1/
√

2 accounts

for centre-of-mass kinetic energies at loop creation (with ν0 ≡ g〈v2〉 ≈ 0.28

reliably measured in simulations). Significant uncertainty remains concerning

the loop creation size α given the complex nature of small scale structure on

strings and the limited dynamic range available in simulations. The most re-

cent and largest scale simulations indicate that the largest loops are produced

on length scales α ≈ 0.1 and below, but with a fairly flat loop production

function which extends down to smaller scales [141].

Loops oscillate periodically and decay fairly rapidly into axions. Axion

radiation is primarily emitted in low frequencies, that is, in the lowest har-

monics of the fundamental frequency of the loop oscillation ω0 = 4π/L (the

loop period is T = L/2). We note that axion radiation by strings can be

treated very similarly to radiation into gravitational waves [193]. Decompos-

ing the loop radiation power P per oscillation into a spectrum Pn for each

harmonic nω0 we expect

P =
∑

n

Pn , Pn ∝ n−q (n ≫ 1), with q ≥ 4/3 . (7.44)

Here, the spectral index q = 4/3 can be calculated analytically for loops with

cusps, but realistically this is expected to be greater than 4/3 because of ra-

diative backreaction, with an effective maximum n∗. Given the dominance of

the low harmonics in these spectra, the following results are relatively insen-

sitive to the details at large n. The typical integrated power per oscillation

is described by Γa, defined in the continuum limit with a radiation spectrum

g(ℓω) as

P = Γaf
2
a = f 2

a

∫

g(x)dx with
dPℓ(ω)

dω
= f 2

a ℓg(ℓω) . (7.45)

The typical loop radiation rate Γa can be estimated analytically for specific

loop trajectories (see, for example, ref. [3]), but it is measured numerically

from simulation loop trajectories to be Γa ≈ 65 [4].

Due to these radiative losses into axions, a loop will shrink linearly from

its original size at creation ℓi = αti as

ℓ = ℓi − κ(t − ti) with κ = Γa/µ ≈ Γa/2πf 2
a ln(ℓ/δ) . (7.46)
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Given ln(ℓ/δ) ≈ 70 for the energy scales and times of interest, this means

that the loop backreaction rate κ ≈ 0.15 and a loop will oscillate about 10-

15 times before vanishing. This loop decay will modify and cut-off the loop

distribution given above (7.43), becoming

n(ℓ, t)dℓ =
ζν0α

1/2(1 + κ/α)3/2

(ℓ + κt)5/2t3/2
. (7.47)

Given the spectral assumptions (7.45), we can integrate over the loop distri-

bution 7.47 to obtain a spectrum for the number density of axions na (for

α . κ) [21]

dna

dω
=

1

ω

dρa

dω
=

4Γaζν0α
1/2(1 + κ/α)3/2

3ω2κ3/2t2

[

1 −
(

1 +
α

κ

)−3/2
]

. (7.48)

Integrating down to the lowest frequencies ω = 4π/αt emitted at a time t,

we obtain the total axion number density [21]

na =
Γaζν0

3πt

[(

1 +
α

κ

)3/2

− 1

]

, (7.49)

where the prefactor has a numerical value Γζν0/3π ≈ 31 with moderate un-

certainties (±30%). The most important uncertainty in the expression (7.49)

is clearly the loop size parameter α measured relative to the backreaction rate

κ. In Fig. 7.8, we see the strong dependence of the axion string bound on

the ratio α/κ having imposed the dark matter constraint Ωa ≤ 0.23. Recent

string simulations suggest α . 0.1 implying α/κ . 0.7, but what is the lower

limit or, rather, the appropriate range for α?

The lower cutoff for the loop production scale α depends on the nature of

small-scale structure on long strings, since it is unlikely that loops can be pro-

duced on scales below which the string network becomes smooth. Numerical

and analytic studies of long string backreaction indicate that it is somewhat

weaker than loop backreaction because of geometric effects and the typical

amplitude and velocity of long string oscillations. The loop radiation rate κ

is then replaced by the long string rate [20]

κ∞ ∼ π2

8
ln(t/δ) ∼ 0.02 , (7.50)
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Figure 7.8: Effect of the loop creation ratio r ≡ α/κ on the dark matter
axion constraint. If α(t) the loop creation size at time t is larger than κ(t),
the loop radiation backreaction scale, then the constraint is stronger and
conversely for α < κ. Note that in the second case with α ≪ κ, the dominant
contribution arises from direct long string radiation, which again exceeds
misalignment production.
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(refer also to related studies of gravitational waves from long strings in

ref. [140]). The expression (7.50) indicates a lower limit on the loop pro-

duction size ℓ & κ∞t, thus with the loop size ratio lying in a fairly narrow

range 0.1 . α/κ . 0.7. Nevertheless, it is the larger loops with α/κ ∼ 0.5

which are expected to dominate the axion contribution, given the nature of

the spectral weighting underlying (7.49).

There is also a significant contribution coming from direct radiation from

long strings which, given (7.50), has a spectral radiation rate [21, 20]

dn∞
a

dω
=

1

ω

dρa

dω
≈ π3f 2

aζ

8κ∞ω2t2
. (7.51)

This integrates to produce the additional axion number density

n∞
a =

π2f 2
aζ

32t
, (7.52)

where we have assumed that the radiation spectrum is peaked at the back-

reaction scale ω ≈ 4π/κ∞t (second harmonic). This assumption is certainly

a conservative underestimate because there will be significant radiation from

the strings on the correlation length and above, up to the horizon scale

ω & H, i.e. effectively contributing more non-relativistic axions at mass

‘switch on’.

Taken together, the sum of the axions produced by loops and long strings

is shown in Fig. 7.8, indicating that this is a significant stronger constraint

than the misalignment estimate even if loops were very small α/κ ≪ 0. Given

that present numerical simulations indicate that a significant proportion of

loops are produced on the largest scales in the available range 0.1 . α/κ .

0.7, we take the effective value α/κ = 0.5 ± 0.2 to obtain an updated axion

string constraint

fa . 3.2+4
−2 1010 GeV , ma & 0.20+0.2

−0.1 meV , (7.53)

that is, we predict that if thermal axions are the predominant dark matter

then they will have a mass near ma ≈ 200 µeV (revising slightly upward

previous estimates from strings [21]). We emphasise that the axion string

constraint (7.53) is a conservative bound which is an order of magnitude
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stronger than the misalignment estimate (7.25).

Finally, we comment on additional contributions, uncertainties and alter-

native views of the thermal scenario. At the QCD phase transition, the tilting

axion potential causes the axion field θ to relax toward the minimum θ = 0,

assisted on long wavelengths (ω ∼ H) by Hubble damping – as for the zero

momentum mode in inflationary scenarios. However, the presence of a string

implies a topological obstruction to this relaxation, so the field instead lo-

calises its variations 0 → 2π into domain walls connecting strings to others of

the opposite orientation [174, 192]. This correlation of strings within the net-

work, as well as the intercommuting properties of strings colliding with walls,

leads to the rapid demise of the hybrid network as demonstrated numerically

[159, 160]. Self-intersections of loops bounding domain walls are inevitable

until the system breaks up into tiny loops ℓ . m−1
a and wall tension effects

become negligible. These loops can decay by radiating (massive) axions and

gravitational waves. Estimates of the axion number density ndw
a produced

by this process are crude but suggest a contribution comparable only to that

from misalignment [33]. Axion production through hybrid network forma-

tion deserves more detailed analysis particularly for nonrelativistic modes

with H . ω . ma.

The key uncertainty in the string constraint above remains the typical

loop production size α for a global string network. This is difficult to probe

numerically for two reasons. First, Nambu string simulations are progress-

ing in resolution but they do not at present include the realistic radiative

backreaction necessary for describing global strings. The understanding of α

is improving but how it cuts off on small scales must be estimated analyti-

cally. Secondly, alternative field theory simulations do not have the dynamic

range needed to address the loop production issue; with ln(t/δ) ∼ 3 ≪ 70,

simulated global strings remain in a strongly damped regime unlike cosmo-

logical axion strings. It has been suggested that the spectrum of loop and

long string radiation could be ‘flat’ (see, for example, [176] and references

therein), rather than dominated by the lowest harmonics as in the standard

picture presented above (7.45). The proposed ‘flat’ spectrum entails produc-

ing equal radiation power over many orders of magnitude t . ω . fa (up

to 30), effectively suppressing the importance of the long wavelength modes
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on which the bound (7.53) is based. The ‘flat’ spectrum yields an axion

string constraint roughly matching the misalignment bound (7.25) [85], but

a detailed critique of this scenario is offered elsewhere [21].

7.3 Conclusion

We have presented a temperature-dependent axion mass, based on instanton

methods, that is valid for all temperatures. The transition between the high-

and low-temperature regime is well-motivated and computed within the same

model, the IILM, in contrast to some ad hoc procedure to connect the two.

Even though the IILM does not explain confinement, chiral symmetry

restoration is incorporated and the model can be expected to give qualita-

tively correct results for the axion mass; this relies on the fact that it is related

to the QCD topological susceptibility which in turn is a chiral quantity. We

note that chiral symmetry restoration is indeed seen in the IILM, although at

a slightly lower temperature. Given the discovery of the more general KvBLL

calorons, that may play an important role in the confinement/deconfinement

transition, we expect to improve our understanding of the axion potential in

the future by incorporating these new degrees of freedom into the IILM.

Using this new axion mass, we solved numerically the axion evolution

equations in the concordance FRW cosmology. It turns out that the analytic

approximations used previously differ by a factor of 2 − 3. This is unex-

pectedly good agreement, considering the crude determination of the axion

mass within the dilute gas approximation. We believe it to be the result of

a coincidence, that the extrapolation of the high temperature DGA axion

mass fairly closely follows the full IILM result around the phase transition.

Conversely, this correspondence can be interpreted as evidence that the ax-

ion mass determination is fairly robust. This is also seen from the rather

small differences between the numerical results between the IILM mass and

the lattice inspired mass.

We want to draw to attention that the IILM is a model of QCD, and

as such it needs to be checked against lattice data, say. In that light, there

remains the possibility that the true high temperature axion mass is different

from the IILM prediction. This could lead to qualitatively different results:



CHAPTER 7. AXIONS 227

On the one hand, a softer decay will lead to weaker constraints. A more

abrupt mass switch on, on the other hand, would tighten the constraints and

potentially close the classic axion window. The ideas of molecule formation

within the IILM, and the subsequent stronger suppression of the axion mass

in the plasma phase, have initially prompted this investigation. Within the

current IILM this is not realised, but it is not ruled out either. The lattice

community is performing realistic QCD simulations directly at the physical

quark masses, and we can expect a reliable axion mass determination to

follow from that data in future.

To get an accurate estimate across the whole fa axis, we included the

correct temperature dependence between the scale factor and the plasma

temperature which follows from the conservation of entropy. To that end we

computed the full phase-space integral to get the temperature dependence

for the effective degrees of freedom g∗.S and g∗,R, following closely [43]. Ad-

ditionally, we provide accurate fitting formulas, which to our knowledge have

not been presented in the literature previously.

In the classic axion window, where the PQ symmetry breaks only after

inflation, a quantitative analysis of the misalignment yields the new updated

fa < 2.8(2) 1011 GeV, ma > 21(2) µeV. While the misalignment axion is

a useful benchmark for comparing alternative estimates, it is far exceeded

in density by axions from string radiation which yields the more stringent

string bound fa . 3.2+4
−2 1010 GeV. Experimental searches for a thermal

dark matter axion should focus on masses around ma ∼ 200 µeV.

The anthropic axion window, which entangles θa and fa, is constrained by

investigating the production of isocurvature perturbations. The rather small

contribution of these to the CMBR power-spectrum places strong bounds

on fa and the inflationary scale HI . This bound is strong enough so that

quantum fluctuations are totally negligible, i.e. σa ≪ 〈θa〉, for almost all

axion angles. The anthropic window allows a dark matter axion that can

have any initial misalignment angle, provided the inflationary scale is low

enough. In light of naturalness in fundamental theory, most interest has

focused on the constraints for large fa.

Nevertheless, taking the whole of the anthropic range seriously reveals

some interesting possibilities. In particular, we investigated the region with
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large misalignment angles, especially θa → π. In this regime the axion po-

tential can no longer be described by a parabola, and we need to take the

anharmonic effects into account. A self-consistent solution follows for the

regime with small fluctuations, in which case we can Taylor-expand the ax-

ion potential around 〈θa〉; the anharmonic effects are then encoded in the

anharmonic dependence on 〈θa〉. These effects lead to smaller isocurvature

perturbations as compared to the harmonic case and, consequently, lead to

weaker constraints on the inflationary scale.

Fine-tuning the initial misalignment angle to π, we find that the quantum

fluctuations must be even more stringently constrained. If the axion provides

the dominant component to the dark matter content of the universe and if

we take at face value an inflationary period after the spontaneous breaking

of the PQ symmetry, then this places the strongest constraint on fa and HI

at large initial misalignment angle. We note the intriguing possibility of a

dominant dark matter axion with a mass ma ∼ 200 µeV which is consistent

with either the thermal or the inflationary scenarios. This model indepen-

dence provides extra motivation for experimental searches around this mass

range. Anthropic tuning near θ ≈ π allows inflationary dark matter axions

(Ωa = 0.23) to have masses as high as ma ≤ 1 meV, but no higher because

quantum fluctuations restrict the fine tuning (for HI ≥ 104 GeV).

Finally, the isocurvature and quantum fluctuation constraints become

weaker if the axion is not the dominant dark matter candidate, and we dis-

played the ensuing 3-dimensional parameter space.



Chapter 8

Conclusions and Outlook

The Peccei-Quinn mechanism still provides the best motivated solution to

the strong CP model, and inevitably introduces axions into the particle zoo.

From the theoretical side axions are appealing because they can also provide

for cold dark matter in a very natural way, even though they were not de-

signed for it. Among the different cold dark matter candidates, axions are

therefore rather well motivated. In recent years axions have become much

more popular again, due to their generic appearance in models for physics

beyond the Standard Model [181, 18]. These axions have typically very large

decay constants and so may well provide a precise implementation for an

anthropic axion within a larger theoretical framework. As such the misalign-

ment mechanism to axion production is most important. This channel is,

however, also the most sensitive to non-perturbative effects from the strong

interactions, encoded in the axion mass and its temperature dependence.

This work was largely motivated by our perceived need to improve the de-

termination of and investigate the uncertainties relating to the temperature-

dependent axion mass.

We have decided to tackle this question by using instanton based models,

namely the interacting instanton liquid model. In this model, interactions

between the pseudo-particles are taken into account, and computations can

be performed at all temperatures, most notably also in the vacuum. This

goes far beyond the usual treatment of the axion mass in the dilute gas

approximation, which can only be trusted beyond the deconfinement phase

transition. Anthropic axions, however, are sensitive to the strong interactions

229
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at lower temperatures.

The IILM was pioneered by Shuryak and, Diakonov and Petrov. Only

two-body effects are taken into account, but the strongly localised profiles of

instantons and the, a posteriori, fact that the instanton ensemble is rather

dilute make this a viable working premise. The big advantage of the con-

tinuum formulation is the ease with which quarks can be incorporated, a

definite advantage over lattice based approaches. The latter, on the other

hand, can handle the gluonic interactions in a much more straightforward

way, especially when incorporating many-body effects. Since our main inter-

est will be in full QCD with light quarks, i.e. in chiral properties, the correct

formulation of the fermionic part of the model will be paramount and so the

continuum formulation is appropriate.

Compared to a formulation on the lattice, it is not straightforward to

derive the gluonic interactions. Only in special cases with high symmetry

can good approximations in closed-form be given. These are generally ob-

tained through asymptotic considerations and fits to numerical evaluations

of the classical action. We noted that the available formulas do not possess

a thermodynamic limit at finite temperature. In chapter 3 we have set up a

framework which we believe is numerically well-defined, can be extended to

more complicated backgrounds and does not suffer from the parametrisation

bias introduced implicitly through analytical formulas motivated by symme-

try arguments and fits. The price to pay is a larger numerical overhead,

which in our framework comes about through look-up tables and asymptotic

matching formulas.

We have found that the analytic formulas of [157] agree very well with our

interactions at zero temperature, and this regime can be seen as a validation

of our numerical procedure for determining the interactions. In particular,

there are no qualitative differences for the zero temperature interactions.

On a quantitative level, however, our interactions differ. We exploited this

fact, and considered the formulas of [157] to be another valid scheme. We

studied the dependence of bulk properties of the IILM on these different

parametrisation, and found that this introduces a systematic effect which

depends on the quantity under consideration, e.g. the instanton density is

most sensitive and the mean size the least, but was generally rather large,
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up to 20%.

We could corroborate earlier results, e.g. [46], that IILM is compatible

with the chiral properties of QCD. By simulating directly in the grand canon-

ical ensemble, we were able to study the topological susceptibility in much

more detail than has been done before.

In light of our ultimate goal with regard to the axion mass, a major

incentive for this work was to investigate the regime of physical quark masses.

As is well-known, it is computationally expensive to simulate light degrees of

freedom. In essence, this boils down to using rather large boxes. To simulate

the latter in a reasonable amount of time, we reduced the complexity of the

algorithm from O(N3) to O(N2) by rewriting the updates in a form suitable

for fast matrix modifications; and by studying the thermodynamic limit to

guarantee a consistent large volume extrapolation.

The topological susceptibility represents a natural candidate to fix units

in the IILM. For quenched simulations we found rather good agreement be-

tween the IILM and the lattice. In the unquenched case we have used the

topological susceptibility to infer the chiral condensate, which has a very

weak dependence on the chiral limit, and is therefore better suited for set-

ting units. Our results on the strong coupling constant and the quark masses

are in good agreement with experimental bounds and lattice simulations.

Extending our analysis to finite temperature, we found that the Monte

Carlo updates were utterly inappropriate: the simulations did no longer

produce representative samples, generically equilibrating into a dilute state

with a few ’unbreakable’ instanton–anti-instanton pairs. The latter would

be present in random numbers, producing widely fluctuating results. This

prompted a thorough investigation of the Monte Carlo routines against the

initial conditions, and we have traced the problem to the strong and local

interactions induced by light quarks. In particular, we have argued that this

phenomenon is quite generic in localised backgrounds with light degrees of

freedom.

Systems with strong and short-ranged interactions are known as strongly

associating fluids, and their simulation presents computational challenges.

Drawing on the expertise from the fields of computational chemistry and

chemical engineering, we developed new algorithms based on Biased Monte
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Carlo. The new routines are largely inspired by the Unbonding–Bonding

algorithm, and we generalised the latter to the grand canonical ensemble

and included pair updates.

To test the algorithm, we have simulated a simple toy-model, and found

that random sampling becomes very inefficient if the temperature is raised

or the mass is lowered. In particular, we found that simple Monte Carlo

algorithms could effectively violate ergodicity. Tuning the free parameters of

the model, we found regions in the parameter space which displayed a high

temperature behaviour different from that of a dilute gas.

Using the numerical framework set up in chapter 3, we have been able

to improve on the finite temperature interactions, which we have shown to

lead to a consistent thermodynamic limit. We have generalised the Monte

Carlo routines set up in chapter 4 to deal with the specific characteristics

of calorons, i.e. the orientation dependence originating from the non-trivial

entanglement of the colour and space-time structure.

We have found that the IILM at high temperature differs in a qualitative

way from the lattice results in the pure gauge sector. In particular, the

topological susceptibility decays too quickly with temperature. This gives

evidence that the IILM based on HS calorons turns into a dilute gas too

quickly.

In the unquenched sector, we investigated the chiral susceptibility and

the quark condensate and found that the IILM unambiguously leads to chiral

symmetry restoration at Tc = 120 MeV, which is slightly too low as compared

to lattice data. The good qualitative agreement can possibly be accounted

for by chiral symmetry which is correctly implemented in the IILM. We did

not have lattice data available to compare the high temperature regime; such

data can be expected in the near future, at which point we can check whether

the IILM is in qualitative agreement with the lattice.

We investigated in detail the relevance of instanton–anti-instantons. In

particular, a large population of instanton pairs is present even at fairly high

temperatures, indicating that the dilute gas limit of the instanton ensemble

is only reached far beyond the critical temperature. However, the quark

condensate and the topological susceptibility behave according to the dilute

gas result much earlier. We could attribute this behaviour to a sub-ensemble
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of non-interacting instantons, distinct from the unbonded instantons that still

interact considerably with the instanton–anti-instanton molecule population.

We have shown that the axion couples to the topological charge and that

its mass is given by the topological susceptibility. Using our results on the

latter, we have presented a fit to the axion mass. We improved the high

temperature axion mass by including threshold effects due to heavier quarks

that become active as the temperature rises. This gives for the first time

a well-motivated axion mass for all temperature regions. In particular, we

have been able to compute in a consistent fashion the transition between the

high and low temperature regimes, which were derived so far within different

frameworks, i.e. the dilute instanton gas and chiral perturbation theory, and

connected in a rather ad hoc and arbitrary way.

In chapter 7 we have used this axion mass to investigate its cosmological

implications. We have mainly focused on the misalignment mechanism. It

is well-known that the axion evolution is adiabatic after a few oscillations

of the zero mode around its minimum, which we exploited to propagate the

results forward. The non-trivial, i.e. non-adiabatic, evolution has been per-

formed numerically in a radiation dominated FRW universe, appropriate for

the axion parameter space of interest. The radiation dominated universe is

treated exactly in that we use the correct, temperature-dependent relativis-

tic degrees of freedom derived in chapter 6. We have found that the original

analytic approximations, based on the old axion mass determinations, are

in unexpectedly good agreement with our full numerical results. We believe

this to be a lucky coincidence, considering the crude determination of the ax-

ion mass within the dilute gas approximation and its extrapolation to lower

temperatures.

In the axion parameter space where the Peccei-Quinn symmetry breaks

only after inflation, the axion evolution is considerably more complicated. In

particular, the Kibble mechanism leads to cosmic strings and the assump-

tion of homogeneity underlying the misalignment mechanism is only approx-

imately satisfied if the network is dilute; which it is. We have updated the

original results on the axion string network evolution to include the new ax-

ion mass and to incorporate the most recent cosmological parameters, which

are substantially different from those used at the time. In this standard
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thermal scenario, or classic axion window, we found fa < 2.8(2) 1011 GeV,

ma > 21(2) µeV from the misalignment contribution. The latter is, how-

ever, subdominant to the contribution from axionic string radiation, whose

bound reads fa . 3.2+4
−2 1010 GeV, allowing for a thermal dark matter axion

with mass ma ∼ 200 µeV.

The anthropic axion can only exist if the Peccei-Quinn symmetry breaks

before inflation, and when the reheat temperature or quantum mechanical

fluctuations do not restore the PQ symmetry subsequently. In the anthropic

window the misalignment production channel is dominant and the misalign-

ment angle becomes a new, environmental parameter. The dark matter con-

straint entangles θa and fa. Inflation induces isocurvature fluctuations in the

cosmic microwave background radiation, and intertwines the axion parameter

space with the inflationary one.

We have found that the isocurvature constraint from the CMBR places

strong bounds on fa and HI . Still, the anthropic window allows a dark matter

axion that can have any initial misalignment angle, provided the inflationary

scale is low enough. In light of naturalness in fundamental theory, most inter-

est has focused on the constraints for large fa, i.e. fine-tuned to π = 0. To ex-

tend the existing analysis to large axion angles for which the usual harmonic

potential no longer provides an adequate approximation, we have developed a

Taylor-expansion approach to incorporate the anharmonic effects. The latter

lead to smaller isocurvature perturbations as compared to the harmonic case

and, consequently lead to weaker constraints on the inflationary scale. In par-

ticular, anthropic tuning near θ ≈ π allows inflationary dark matter axions

(Ωa = 0.23) to have masses as high as ma ≤ 1 meV, but no higher because

quantum fluctuations restrict the fine tuning (for 104 . HI . 109 GeV). In

fact, the fine-tuning constraint for such low energy axion models places the

strongest bounds on fa and HI if the axion is the dominant dark matter

candidate. Note that both the anthropic misalignment and the thermal pro-

duction channel have an overlapping allowed axion mass region in the range

0.1−1 meV. This should strengthen the case for enhancing the experimental

effort to search for axion dark matter axions in the mass range 0.1− 1 meV.

Finally, for a subdominant dark matter axion the constraints change and the

parameters space becomes 3-dimensional, because there is no longer a strict
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functional relationship between fa and θa.

These conclusions follow from the data that the present formulation of

the IILM has provided. However, it is important to bear in mind that the

IILM is only a model of QCD, and that we must also carefully compare it

with available experimental or lattice data, say. As mentioned throughout

the thesis, chiral properties of QCD are expected to be well described by the

IILM at least at zero temperature; this has been checked by many studies so

that we can be rather confident about our calibrations at zero temperature.

At finite temperature the picture is slightly different. Firstly of all it has long

been known that the IILM does not provide a mechanism for confinement.

Secondly, in this thesis we have also shown that the topological susceptibility

in the quenched case is qualitatively different from lattice results. The latter

is no longer a chiral observable, so the earlier expectation for good agreement

might not be justified in this case. In the unquenched case, we did not

have lattice data available to adequately compare the IILM prediction. As

mentioned before, this should be possible in the near future.

The discovery of the new non-trivial holonomy calorons [119, 121], [123]

raises questions about whether the IILM would not be improved if based on

these, especially since recent lattice studies indeed see evidence of the lumpy

structure characteristic for an ensemble of these new caloron solutions [101].

Note that such an ensemble seems to give a better qualitative agreement [80]

around the confinement/deconfinement phase transition. The latter study

is based on a lattice formulation of the pure gauge instanton liquid, and it

will be interesting to see whether the continuum model can corroborate these

results; furthermore, the continuum formulation allows for a rather simple

treatment of quarks and might be better suited to study the unquenched

sector. We believe that the numerical framework set up in chapter 3 is well

adapted to deal with these more complicated backgrounds.

The need to address more clearly the validity of the IILM at finite tem-

perature has a direct implication for our predictions concerning the axion.

In particular, it is possible that the high temperature dependence of the ax-

ion mass is qualitatively different: in our toy model, in chapter 4, we found

that the high temperature limit need not be a non-interacting gas. In the

IILM, such a behaviour is in principle possible if the screening effects do not
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dominate over the quark overlap interactions when the quantum interactions

are taken into account. It will be interesting to see how the quark overlaps

behave if the non-trivial holonomy calorons are introduced. On a heuris-

tic level, overlapping pairs have a smaller effective size and so the screening

should be reduced. A considerably different fall-off behaviour of the axion

mass will change the cosmological bounds decidedly: a softer decay, as seen

in gluodynamics, will lead to weaker constraints; a more abrupt mass switch

on, e.g. due to a higher instanton–anti-instanton molecule density, would

lead to stronger upper bounds and could possibly rule out the classic axion

window. The lattice community is performing realistic QCD simulations di-

rectly at the physical quark masses, and we can expect the best axion mass

determination to follow from that data in the near future.

Other physical questions that can be addressed within such a microscopic

model of the QCD vacuum are related to on-going investigations of the spon-

taneous breaking of P and CP in the strong interactions. It has been argued

that around the phase transition meta-stable states could be exited which

will break P and CP spontaneously [108]. One might hope that instanton

models can shed some light on the mechanism for the formation of these

P-odd bubbles as the topological susceptibility plays an important role [109].

Within the IILM, these excited vacuum domains would correspond to regions

of non-zero topological charge, and can effectively be modeled by introduc-

ing explicitly a non-zero vacuum angle. This leads to charge separation

[65, 106, 110, 107], which can in principle be studied in heavy-ion-collisions.

Strong CP breaking might also lead to interesting cosmological implications:

there are proposals to use the QCD phase transition and the CP-breaking

bubbles to explain baryogenesis [28], the formation of the galactic magnetic

fields [67] and even dark matter [209, 68].



Appendix A

Interactions at zero

temperature

A.1 Gluonic Interactions

The ratio ansatz for an instanton–anti-instanton pair is defined by

Aa
µ = −

η̄a
µν∂νΠ1(x, {x1, ρ1}) + Oabηb

µν∂νΠ2(x, {x2, ρ2})
1 + Π1(x, {x1, ρ1}) + Π2(x, {x2, ρ2})

, (A.1)

where Π(x, {y, ρ}) = ρ2

r2 and O = Ot
1O2, with Oi the respective colour em-

beddings. A global colour rotation has been performed to bring the gauge

potential into this form, which is irrelevant since the action is gauge invari-

ant. Instanton–instanton and anti-instanton–anti-instanton pairs differ by

having either only η̄ or η in the above formula. A brute force computation

then gives

F a
µνF

a
µν = I + (Tr OtO + (η̄Oη)µνµν)J + (η̄Oη)ρµρνIµν

+ (η̄Oη)µρνσIµρνσ + (ηOtOη)µρνσJµρνσ + (η̄Oη)αµαρ(η̄Oη)βνβσKµρνσ . (A.2)
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The different terms have the following form

I =
4

(1 + Π1 + Π2)2
[(∂µ∂νΠ1)(∂µ∂νΠ1) + (∂µ∂νΠ2)(∂µ∂νΠ2)]

− 8

(1 + Π1 + Π2)3
[(∂µ∂νΠ1)(∂µΠ1)(∂νΠ2) + (∂µ∂νΠ2)(∂µΠ2)(∂νΠ1)

+2(∂µ∂νΠ1)(∂µΠ1)(∂νΠ1) + 2(∂µ∂νΠ2)(∂µΠ2)(∂νΠ2)]

+
4

(1 + Π1 + Π2)4
[3(∂µΠ1∂µΠ1)(∂µΠ1∂µΠ2) + 3(∂µΠ2∂µΠ2)(∂µΠ2∂µΠ1)

+3(∂µΠ1∂µΠ1)
2 + 3(∂µΠ2∂µΠ2)

2 + 2(∂µΠ1∂µΠ1)(∂µΠ2∂µΠ2)

+(∂µΠ1∂µΠ2)
2
]

. (A.3)

J =
2

(1 + Π1 + Π2)4
(∂µΠ1∂µΠ1)(∂µΠ2∂µΠ2) . (A.4)

Iµν =
4

(1 + Π1 + Π2)2
(∂µ∂σΠ1)(∂µ∂σΠ2)

+
4

(1 + Π1 + Π2)3
[(∂µ∂νΠ1)(∂σΠ2∂σΠ2) + (∂µ∂νΠ2)(∂σΠ1∂σΠ1)

−2(∂µ∂σΠ1)(∂νΠ2)(∂σΠ2) − 2(∂µΠ1)(∂σΠ1)(∂ν∂σΠ2)

−2(∂µ∂σΠ1)(∂σΠ1)(∂νΠ2) − 2(∂µΠ1)(∂ν∂σΠ2)(∂σΠ2)]

+
4

(1 + Π1 + Π2)4
[−(∂µΠ1)(∂νΠ1)(∂σΠ2∂σΠ2)

−(∂µΠ2)(∂νΠ2)(∂σΠ1∂σΠ1) + 3(∂µΠ1)(∂νΠ2)(∂σΠ1∂σΠ1)

+3(∂µΠ1)(∂νΠ2)(∂σΠ2∂σΠ2) + 3(∂µΠ1)(∂νΠ2)(∂σΠ1∂σΠ2)] . (A.5)

Iµρνσ =
4

(1 + Π1 + Π2)2
(∂µ∂νΠ1)(∂ρ∂σΠ2)

+
8

(1 + Π1 + Π2)3
[(∂µΠ2)(∂ρ∂νΠ1)(∂σΠ2) + (∂µΠ1)(∂ρ∂νΠ2)(∂σΠ1)]

+
8

(1 + Π1 + Π2)4
(∂µΠ1)(∂ρΠ2)(∂νΠ1)(∂σΠ2) . (A.6)
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Jµρνσ =
2

(1 + Π1 + Π2)4
(∂µΠ1)(∂ρΠ2)(∂νΠ1)(∂σΠ2) . (A.7)

Kµρνσ =
2

(1 + Π1 + Π2)4
(∂µΠ1)(∂ρΠ2)(∂νΠ1)(∂σΠ2) . (A.8)

A.1.1 Exact Interactions

When computing the look-up tables, we use global translations and rotations

in R
4 to place one instanton at the origin and the partner at y′

4 = R =
√

RµRµ = |yI1 − yI2|, where yi are the instanton centres. The rotation will

reemerge in contractions of Rµ with the colour structure, as we will now see.

The relation between the position vector Rµ and R′
µ ≡ (0, 0, 0, R) is given by

the following rotation matrix

R′
µ = Ot

µνRν ,

Oµ4 =
Rµ

R
, (A.9)

and the other components of the rotation matrix are irrelevant.

Note that, with the choice of R′
µ, the integrands are O(3) symmetric in

the subspace orthogonal to the 4-direction. Denoting the arguments of the ’t

Hooft potentials Π(x, {y, ρ}) by xµ and x̃µ ≡ xµ−Rµ, we can extract extract

the Rµ from the integrands with help of the following formulas, which we or-

der according to the tensor structure of the xµ-dependence on the integrand.

∫

xµ = Oµ4

∫

x′
4 . (A.10)

∫

xµxν = δµν

∫

x′2
1 + Oµ4Oν4

∫

(x′2
4 − x′2

1 ) . (A.11)
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∫

xµxνxκ = (δµνOκ4 + δκµOν4 + δνκOµ4)

∫

x′2
1 x′

4 (A.12)

+ Oµ4Oν4Oκ4

∫

(x′3
4 − 3x′2

1 x′
4) . (A.13)

∫

xµxνxκxδ = (δµνδκδ + δµκδνδ + δµδδκν)

∫

x′2
1 x′2

2 (A.14)

+ (δµνOκ4Oδ4 + perm.)

∫

(x′2
4 x′2

1 − x′2
1 x′2

2 ) (A.15)

+ Oµ4Oν4Oκ4Oδ4

∫

(x′4
4 − 6x′2

1 x′2
4 + 3x′2

1 x′2
2 ) . (A.16)

Terms with x̃ can be constructed from these. Incidentally, splitting the

different integrands according to the above formulas is the most stable pro-

cedure numerically. Taking into account the antisymmetry of the ’t Hooft

symbols, we end up with the following integrands.

I =
4

(1 + Π1 + Π2)2

[
(Π′′

1)
2 + 3(Π′

1/r)
2 + (Π′′

2)
2 + 3(Π′

2/r̃)
2
]

− 8

(1 + Π1 + Π2)3

[

2Π′′
1(Π

′
1)

2 + 2Π′′
2(Π

′
2)

2 +
xx̃

rr̃
(Π′′

1Π
′
1Π

′
2 + Π′

1Π
′′
2Π

′
2)

]

+
4

(1 + Π1 + Π2)4

[

12(Π′
1)

4 + 12(Π′
2)

4 + 8(Π′
1)

2(Π′
2)

2 + 4(
xx̃

rr̃
Π′

1Π
′
2)

2

+12(Π′
1)

2(
xx̃

rr̃
Π′

1Π
′
2) + 12(

xx̃

rr̃
Π′

1Π
′
2)(Π

′
2)

2

]

. (A.17)

Note that to achieve good numerical precision, we need to subtract the

one-instanton integrands from the above before performing the numerical

integration.

J =
2

(1 + Π1 + Π2)4
(Π′

1)
2(Π′

2)
2 . (A.18)
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Iµν = δµν Ĩµµ +
RµRν

R2
Ĩµν . (A.19)

Ĩµµ =
4

(1 + Π1 + Π2)2

[
x′2

1

r2
(Π′′

1 − (Π′
1/r))(Π

′
2/r̃)

+
x′2

1

r̃2
(Π′

1/r)(Π
′′
2 − (Π′

2/r̃)) + (Π′
1/r)(Π

′
2/r̃)

+
x′2

1

rr̃

xx̃

rr̃
(Π′′

1Π
′′
2 − Π′′

1(Π
′
2/r̃) − (Π′

1/r)Π
′′
2 + (Π′

1/r)(Π
′
2/r̃))

]

+
1

(1 + Π1 + Π2)3

[
4((Π′

1/r)(Π
′
2)

2 + (Π′
1)

2(Π′
2/r̃))

+
x′2

1

r2
(4(Π′′

1 − (Π′
1/r))(Π

′
2)

2 − 8(Π′
1)

2(Π′
2/r̃))

+
x′2

1

r̃2
(4(Π′

1)
2(Π′′

2 − (Π′
2/r̃)) − 8(Π′

1/r)(Π
′
2)

2)

+
x′2

1

rr̃
(−8

xx̃

rr̃
((Π′′

1 − (Π′
1/r))(Π

′
2)

2 + (Π′
1)

2(Π′′
2 − (Π′

2/r̃)))

−8Π′′
1Π

′
1Π

′
2 − 8Π′

1Π
′′
2Π

′
2]

+
1

(1 + Π1 + Π2)4

[

−4
x′2

1

r2
(Π′

1)
2(Π′

2)
2 − 4

x′2
1

r̃2
(Π′

1)
2(Π′

2)
2

+12
x′2

1

rr̃
Π′

1Π
′
2((Π

′
1)

2 + (Π′
2)

2 +
xx̃

rr̃
Π′

1Π
′
2)

]

. (A.20)
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Ĩµν =
4

(1 + Π1 + Π2)2

[
x′2

4 − x′2
1

r2
(Π′′

1 − (Π′
1/r))(Π

′
2/r̃)

+
(x′

4 − R)2 − x′2
1

r̃2
(Π′

1/r)(Π
′′
2 − (Π′

2/r̃))

+
x′

4(x
′
4 − R) − x′2

1

rr̃

xx̃

rr̃
(Π′′

1Π
′′
2 − Π′′

1(Π
′
2/r̃) − (Π′

1/r)Π
′′
2 + (Π′

1/r)(Π
′
2/r̃))

]

+
1

(1 + Π1 + Π2)3

[
x′2

4 − x′2
1

r2
(4(Π′′

1 − (Π′
1/r))(Π

′
2)

2 − 8(Π′
1)

2(Π′
2/r̃))

+
(x′

4 − R)2 − x′2
1

r̃2
(4(Π′

1)
2(Π′′

2 − (Π′
2/r̃)) − 8(Π′

1/r)(Π
′
2)

2)

+
x′

4(x
′
4 − R) − x′2

1

rr̃
(−8

xx̃

rr̃
((Π′′

1 − (Π′
1/r))(Π

′
2)

2 + (Π′
1)

2(Π′′
2 − (Π′

2/r̃)))

−8Π′′
1Π

′
1Π

′
2 − 8Π′

1Π
′′
2Π

′
2]

+
1

(1 + Π1 + Π2)4

[

−4
x′2

4 − x′2
1

r2
(Π′

1)
2(Π′

2)
2 − 4

(x′
4 − R)2 − x′2

1

r̃2
(Π′

1)
2(Π′

2)
2

+12
x′

4(x
′
4 − R) − x′2

1

rr̃
Π′

1Π
′
2((Π

′
1)

2 + (Π′
2)

2 +
xx̃

rr̃
Π′

1Π
′
2)

]

. (A.21)

Iµρνσ = δµνδρσ Ĩµνµν + δµν
RρRσ

R2
Ĩµρµσ . (A.22)

Ĩµνµν = 0 (analytically) . (A.23)
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Ĩµρµσ =
4

(1 + Π1 + Π2)2

[
x′2

4 − x′2
1

r2
(Π′′

1 − (Π′
1/r))(Π

′
2/r̃)

+
(x′

4 − R)2 − x′2
1

r̃2
(Π′

1/r)(Π
′′
2 − (Π′

2/r̃))

x′2
1 R2

(rr̃)2
(Π′′

1 − (Π′
1/r))(Π

′′
2 − (Π′

2/r̃))

]

− 8

(1 + Π1 + Π2)3

[
x′2

4 − x′2
1

r2
(Π′

1)
2(Π′

2/r̃) +
(x′

4 − R)2 − x′2
1

r̃2
(Π′

1/r)(Π
′
2)

2

+
x′2

1 R2

(rr̃)2
((Π′′

1 − (Π′
1/r))(Π

′
2)

2 + (Π′
1)

2(Π′′
2 − (Π′

2/r̃)))

]

+
8

(1 + Π1 + Π2)4

[
x′2

1 R2

(rr̃)2
(Π′

1)
2(Π′

2)
2

]

. (A.24)

J̃µρνσ = δµν
RρRσ

R2

2

(1 + Π1 + Π2)4

x′2
1 R2

(rr̃)2
(Π′

1)
2(Π′

2)
2 . (A.25)

K̃µρνσ =
[
(δµνδρσ + δµρδνσ + δµσδρν)x

′2
1 x′2

2

+δµν
RρRσ

R2
((x′

4 − R)2x′2
1 − x′2

1 x′2
2 ) + δρσ

RµRν

R2
(x′2

4 x′2
1 − x′2

1 x′2
2 )

+ (δµρ
RνRσ

R2
+ δµσ

RνRρ

R2
+ δνρ

RµRσ

R2
+ δνσ

RµRρ

R2
)(x′

4(x
′
4 − R)x′2

1 − x′2
1 x′2

2 )

+
RµRνRρRσ

R4
(x′2

4 (x′
4 − R)2 + 3x′2

1 x′2
2 − x′2

4 x′2
1 − (x′

4 − R)2x′2
1

−4x′
4(x

′
4 − R)x′2

1 )
] 2

(1 + Π1 + Π2)4

1

(rr̃)2
(Π′

1)
2(Π′

2)
2 . (A.26)

A.1.2 Asymptotic Interactions

As explained in the main text, the small separation asymptotic formulas get

contributions which have the same functional form as those for the large

separation asymptotics; the difference lies in the integration limit. We will

therefore start with the large separation formulas and leave the integrals

explicit.
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Large Separation

The upper integration limit z follows from variable substitution and has the

the following for integration over I1, with I2 held fixed,

z2
1 =

1 + Π2

ρ2
1

r2 . (A.27)

Apart from the dependence of z on Π, the rational form of the ’t Hooft

potential allows for a complete factoring out of Π under the above mentioned

variable substitution. For the large separation formulas it is understood that

z2 → ∞ because the initial integration variable r extends to infinity.

The integral over I contains terms that do not mix the ’t Hooft potential

Π1 and Π2 except for the denominators. At zeroth order in our expansion,

these terms can be transformed to exactly match the single instanton contri-

butions by exploiting scale invariance. Remembering that we actually sub-

tract the one-instanton contributions to get the interactions, we can neglect

these terms altogether. We then end up with the following formulas.

∫

I = 72π2ρ2 ∂µΠ∂µΠ

(1 + Π)3

∫ z s5ds

(s2 + 1)4
+ sym . (A.28)

∫

J = 16π2ρ2 ∂µΠ∂µΠ

(1 + Π)3

∫ z s5ds

(s2 + 1)4
+ sym . (A.29)

∫

Iµν = 16π2ρ2 ∂µ∂νΠ

(1 + Π)2

∫ z s3ds

(s2 + 1)3

−
(

8π2ρ2δµν
∂σΠ∂σΠ

(1 + Π)3
+ 8π2ρ2 (∂µΠ)(∂νΠ)

(1 + Π)3

) ∫ z s5ds

(s2 + 1)4
+ sym . (A.30)

At zeroth order, partial integration and the antisymmetry of the ’t Hooft

symbols can be used to simplify

Iµρνσ → 8

(1 + Π1 + Π2)4
(∂µΠ1)(∂ρΠ2)(∂νΠ1)(∂σΠ2) , (A.31)
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with asymptotic behaviour

∫

Iµρνσ = 16π2ρ2δµν
(∂ρΠ)(∂σΠ)

(1 + Π)3

∫ z s5ds

(s2 + 1)4
+ sym . (A.32)

∫

Jµρνσ = 4π2ρ2δµν
(∂ρΠ)(∂σΠ)

(1 + Π)3

∫ z s5ds

(s2 + 1)4
+ sym . (A.33)

For Kµρνσ no ’t Hooft symbols can be used to exchange the index pairs

(µ, ν) ↔ (ρ, σ), and so we cannot simplify with a symmetry argument any-

more.

∫

Kµρνσ = 4π2ρ2
1δµν

(∂ρΠ2)(∂σΠ2)

(1 + Π2)3

∫ z1 s5ds

(s2 + 1)4

+ 4π2ρ2
2δρσ

(∂µΠ1)(∂νΠ1)

(1 + Π1)3

∫ z2 s5ds

(s2 + 1)4
. (A.34)

Small Separation

As explained in the main text, the small separation asymptotic formulas get

contributions from the large asymptotics. Also, in this case we have per-

formed a global translation so that the instantons sit at ±Rµ/2. Therefore,

in the large separation formulas we need to put z2 = 1+Π
ρ2 (R/2)2.

We now turn to the proper small separation asymptotic formulas that

encode the repulsion through the gauge singularity. We will again introduce

an explicit upper limit for the integrals; abusing notation we will use the

same letter as before, but here the meaning becomes

z2 =
R2

ρ2
1 + ρ2

2

, z2
i =

R2

ρ2
i

. (A.35)

To derive these formulas, we approximate the arguments xµ ± Rµ/2 →
xµ. We have, therefore, explicitly restored O(4) symmetry, which can be

exploited to set several integrals to zero. Eventually, we arrive at
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∫

I = 384π2

[
ρ4

1 + ρ4
2

(ρ2
1 + ρ2

2)
2

∫

z

ds

s(s2 + 1)2

−
(

ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
2

+ 2
ρ6

1 + ρ6
2

(ρ2
1 + ρ2

2)
3

) ∫

z

ds

s(s2 + 1)3

ρ8
1 + ρ8

2 + ρ4
1ρ

4
2 + ρ6

1ρ
2
2 + ρ2

1ρ
6
2

(ρ2
1 + ρ2

2)
4

∫

z

ds

s(s2 + 1)4

−
∫

z1

s4ds

s(s2 + 1)4
−−

∫

z2

s4ds

s(s2 + 1)4

]

. (A.36)

∫

J = 64π2 ρ4
1ρ

4
2

(ρ2
1 + ρ2

2)
4

∫

z

ds

s(s2 + 1)4
. (A.37)

∫

Iµν = δµν

[

96π2 ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
2

∫

z

ds

s(s2 + 1)2

−192π2 ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
2

∫

z

ds

s(s2 + 1)3

+32π2ρ4
1ρ

4
2 + 3ρ6

1ρ
2
2 + 3ρ2

1ρ
6
2

(ρ2
1 + ρ2

2)
4

∫

z

ds

s(s2 + 1)4

]

, (A.38)

∫

Iµρνσ = δµνδρσ

[

−32π2 ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
2

∫

z

ds

s(s2 + 1)2

+32π2 ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
2

∫

z

ds

s(s2 + 1)3

]

. (A.39)

∫

Jµρνσ = 0 . (A.40)

∫

Kµρνσ =
8

3
π2(δµνδρσ + δµρδνσ + δµσδνρ)

ρ4
1ρ

4
2

(ρ2
1 + ρ2

2)
4

∫

z

ds

s(s2 + 1)4
. (A.41)
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A.2 Fermionic Interactions

The Dirac overlap matrix elements are given by

TIA =

∫

d4x
1

4π2ρIρA

1

2
Tr (Uτ+

β )Iβ . (A.42)

Note that 1
2
Tr (Uτ+

β ) ≡ iuβ is the colour four-vector used for instance in

[157]. After some straightforward algebra, we find that Iβ has the following

form

Iβ =
−1

(1 + ΠI + ΠA)(1 + ΠI)3/2(1 + ΠA)3/2

(
ΠA

1 + ΠI

(∂µΠI∂µΠI)∂βΠA + (∂µΠA∂µΠA)∂βΠI

)

. (A.43)

A.2.1 Exact Interactions

Using the same rotations (A.9) as for the gluonic interactions to marry the

space-time with the colour indices, we get

Iβ =
Rβ

R

−3

(1 + ΠI + ΠA)(1 + ΠI)3/2(1 + ΠA)3/2

{
x′

4

r
Π′

I(Π
′
A)2 +

x′
4 − R

r̃
(Π′

I)
2Π′

A

ΠA

1 + ΠI

}

. (A.44)

A.2.2 Asymptotic Interactions

Large Separation

In order to get rather simple formulas, we make the following additional

simplification

1 + ΠI + ΠA →
{

1 + ΠI : Integration over ΠI

1 + ΠA : Integration over ΠA

. (A.45)

Given these further assumption, we can proceed as for the gluonic inter-

actions. Finally, caution needs to be taken in the case of an anti-instanton

because it sits at −Rµ so that ∂βΠA generates an extra minus sign.
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∫

Iβ = 8π2ρ2
I

ΠA∂βΠA

(1 + ΠA)3/2

∫ zI s4ds

(s2 + 1)7/2

− 8π2ρ2
A

∂βΠI

(1 + ΠI)3/2

∫ zA s4ds

(s2 + 1)5/2
. (A.46)

Small Separation

At zeroth order, i.e. xµ±Rµ/2 → xµ, the contribution to Iβ vanishes because

of O(4) symmetry. It turns out that the large separation asymptotics falls

off too quickly as R → 0. However, this is not important because in this

regime the gluonic interaction is dominant.



Appendix B

Interactions at finite

temperature

B.1 Gluonic Interactions

The ratio ansatz for an instanton–anti-instanton pair is defined by

Aa
µ = −

η̄a
µν∂νΠ1(x, {x1, ρ1}) + Oabηb

µν∂νΠ2(x, {x2, ρ2})
1 + Π1(x, {x1, ρ1}) + Π2(x, {x2, ρ2})

,(B.1)

Π(x, {y, ρ}) =
πρ2

βr

sinh 2πr
β

cosh 2πr
β

− cos 2πt
β

, (B.2)

where O = Ot
1O2, with Oi the respective colour embeddings. A global colour

rotation has been performed to bring the gauge potential into this form.

Since we are ultimately interested in the action, we do not need to bother

about it since the action is gauge invariant. Instanton–instanton and anti-

instanton–anti-instanton pairs differ by having either only η̄ or η in the above

formula. A brute force computation then gives

F a
µνF

a
µν = I + (Tr OtO + (η̄Oη)µνµν)J + (η̄Oη)ρµρνIµν

+ (η̄Oη)µρνσIµρνσ + (ηOtOη)µρνσJµρνσ + (η̄Oη)αµαρ(η̄Oη)βνβσKµρνσ . (B.3)

249
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The different terms have the following form

I =
4

(1 + Π1 + Π2)2
[(∂µ∂νΠ1)(∂µ∂νΠ1) + (∂µ∂νΠ2)(∂µ∂νΠ2)]

− 8

(1 + Π1 + Π2)3
[(∂µ∂νΠ1)(∂µΠ1)(∂νΠ2) + (∂µ∂νΠ2)(∂µΠ2)(∂νΠ1)

+2(∂µ∂νΠ1)(∂µΠ1)(∂νΠ1) + 2(∂µ∂νΠ2)(∂µΠ2)(∂νΠ2)]

+
4

(1 + Π1 + Π2)4
[3(∂µΠ1∂µΠ1)(∂µΠ1∂µΠ2) + 3(∂µΠ2∂µΠ2)(∂µΠ2∂µΠ1)

+3(∂µΠ1∂µΠ1)
2 + 3(∂µΠ2∂µΠ2)

2 + 2(∂µΠ1∂µΠ1)(∂µΠ2∂µΠ2)

+(∂µΠ1∂µΠ2)
2
]

. (B.4)

J =
2

(1 + Π1 + Π2)4
(∂µΠ1∂µΠ1)(∂µΠ2∂µΠ2) . (B.5)

Iµν =
4

(1 + Π1 + Π2)2
(∂µ∂σΠ1)(∂µ∂σΠ2)

+
4

(1 + Π1 + Π2)3
[(∂µ∂νΠ1)(∂σΠ2∂σΠ2) + (∂µ∂νΠ2)(∂σΠ1∂σΠ1)

−2(∂µ∂σΠ1)(∂νΠ2)(∂σΠ2) − 2(∂µΠ1)(∂σΠ1)(∂ν∂σΠ2)

−2(∂µ∂σΠ1)(∂σΠ1)(∂νΠ2) − 2(∂µΠ1)(∂ν∂σΠ2)(∂σΠ2)]

+
4

(1 + Π1 + Π2)4
[−(∂µΠ1)(∂νΠ1)(∂σΠ2∂σΠ2)

−(∂µΠ2)(∂νΠ2)(∂σΠ1∂σΠ1) + 3(∂µΠ1)(∂νΠ2)(∂σΠ1∂σΠ1)

+3(∂µΠ1)(∂νΠ2)(∂σΠ2∂σΠ2) + 3(∂µΠ1)(∂νΠ2)(∂σΠ1∂σΠ2)] . (B.6)

Iµρνσ =
4

(1 + Π1 + Π2)2
(∂µ∂νΠ1)(∂ρ∂σΠ2)

+
8

(1 + Π1 + Π2)3
[(∂µΠ2)(∂ρ∂νΠ1)(∂σΠ2) + (∂µΠ1)(∂ρ∂νΠ2)(∂σΠ1)]

+
8

(1 + Π1 + Π2)4
(∂µΠ1)(∂ρΠ2)(∂νΠ1)(∂σΠ2) . (B.7)
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Jµρνσ =
2

(1 + Π1 + Π2)4
(∂µΠ1)(∂ρΠ2)(∂νΠ1)(∂σΠ2) . (B.8)

Kµρνσ =
2

(1 + Π1 + Π2)4
(∂µΠ1)(∂ρΠ2)(∂νΠ1)(∂σΠ2) . (B.9)

B.1.1 Exact Interactions

When computing the look-up tables we use global translations and rotations

in R
3, and periodicity in S1, to place one instanton at the origin and the

partner at y′
3 = Rs =

√
RiRi = |yI1

s − yI2
s | and y′

4 = Rt = |yI1
t − yI2

t |; yi are

the instanton centres. The rotation will reemerge in contractions of Ri with

the colour structure as we will now see. The relation between the spatial

position vector Ri and R′
i ≡ (0, 0, Rs) is given by the following O(3) rotation

matrix

R′
i = Ot

ijRj , (B.10)

Oi3 =
Ri

Rs

, (B.11)

and the other components of the rotation matrix are irrelevant.

Note that with the choice of R′
i the integrands are O(2) symmetric in the

subspace orthogonal to the 3-direction. Denoting the spatial arguments of

the ’t Hooft potentials, Π(x, {y, ρ}), by xi and x̃i ≡ xi − Ri, we can extract

the Ri from the integrands with help of the following formulas, which we

order according to the tensor structure in the xi-dependence of the integrand

∫

xi = Oi3

∫

x′
3 . (B.12)

∫

xixj = δij

∫

x′2
1 + Oi3Oj3

∫

(x′2
3 − x′2

1 ) . (B.13)
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∫

xixjxk = (δijOk3 + δkiOj3 + δjkOi3)

∫

x′2
1 x′

3 (B.14)

+ Oi3Oj3Ok3

∫

(x′3
3 − 3x′2

1 x′
3) . (B.15)

∫

xixjxkxh = (δijδkh + δikδjh + δihδkj)

∫

x′2
1 x′2

2 (B.16)

+ (δijOk3Oh3 + perm.)

∫

(x′2
3 x′2

1 − x′2
1 x′2

2 ) (B.17)

+ Oi3Oj3Ok3Oh3

∫

(x′4
3 − 6x′2

1 x′2
3 + 3x′2

1 x′2
2 ) . (B.18)

Insertion of x̃ can be constructed from these. Incidentally splitting the

different integrands according to the above formulas is the most stable pro-

cedure numerically. Taking into account the antisymmetry of the ’t Hooft

symbols, we end up with the following integrands

I =
4

(1 + Π1 + Π2)2

[

(Π′′
1)

2 + 2(Π′
1/r)

2 + 2(Π̇′
1)

2 + (Π̈1)
2

+(Π′′
2)

2 + 2(Π′
2/r̃)

2 + 2(Π̇′
2)

2 + (Π̈2)
2
]

− 8

(1 + Π1 + Π2)3

[

2Π′′
1(Π

′
1)

2 + 4Π̇′
1Π̇1Π

′
1 + 2Π̈1(Π̇1)

2

+2Π′′
2(Π

′
2)

2 + 4Π̇′
2Π̇2Π

′
2 + 2Π̈2(Π̇2)

2

+Π̇′
1Π

′
1Π̇2 + Π̇1Π̇

′
2Π

′
2 + Π̈1Π̇1Π̇2 + Π̇1Π̈2Π̇2

+
xx̃

rr̃

(

Π′′
1Π

′
1Π

′
2 + Π′

1Π
′′
2Π

′
2 + Π̇′

1Π̇1Π
′
2 + Π′

1Π̇
′
2Π̇2

)]

+
4

(1 + Π1 + Π2)4

[

12((Π′
1)

2 + (Π̇1)
2)2 + 12((Π′

2)
2 + (Π̇2)

2)

+8((Π′
1)

2 + (Π̇1)
2)((Π′

2)
2 + (Π̇2)

2) + 4(
xx̃

rr̃
Π′

1Π
′
2 + Π̇1Π̇2)

2

+12((Π′
1)

2 + (Π̇1)
2 + (Π′

2)
2 + (Π̇2)

2)(
xx̃

rr̃
Π′

1Π
′
2 + Π̇1Π̇2)

]

. (B.19)

Note that to achieve good numerical precision, we need to subtract the
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one-instanton integrands from the above before performing the numerical

integration

J =
2

(1 + Π1 + Π2)4
((Π′

1)
2 + (Π̇1)

2)((Π′
2)

2 + (Π̇2)
2) . (B.20)

Iµν = δij Ĩii +
RiRj

R2
s

Ĩij +
Ri

Rs

Ĩit +
Rj

Rs

Ĩtj + Ĩtt . (B.21)

Ĩii =
4

(1 + Π1 + Π2)2

[
x′2

1

r2
(Π′′

1 − (Π′
1/r))(Π

′
2/r̃)

+
x′2

1

r̃2
(Π′

1/r)(Π
′′
2 − (Π′

2/r̃)) + (Π′
1/r)(Π

′
2/r̃)

+
x′2

1

rr̃
(
xx̃

rr̃
(Π′′

1Π
′′
2 − Π′′

1(Π
′
2/r̃) − (Π′

1/r)Π
′′
2 + (Π′

1/r)(Π
′
2/r̃)) + Π̇′

1Π̇
′
2)

]

+
1

(1 + Π1 + Π2)3

[

4((Π′
1/r)((Π

′
2)

2 + (Π̇1)
2) + ((Π′

1)
2 + (Π̇2)

2)(Π′
2/r̃))

+
x′2

1

r2
(4(Π′′

1 − (Π′
1/r))((Π

′
2)

2 + (Π̇2)
2) − 8(Π′

1)
2(Π′

2/r̃))

+
x′2

1

r̃2
(4((Π′

1)
2 + (Π̇1)

2)(Π′′
2 − (Π′

2/r̃)) − 8(Π′
1/r)(Π

′
2)

2)

+
x′2

1

rr̃
(−8

xx̃

rr̃
((Π′′

1 − (Π′
1/r))(Π

′
2)

2 + (Π′
1)

2(Π′′
2 − (Π′

2/r̃)))

−8Π̇′
1Π̇2Π

′
2 − 8Π̇1Π

′
1Π̇

′
2 − 8(Π′′

1Π
′
1 + Π̇′

1Π̇1)Π
′
2

−8Π′
1(Π

′′
2Π

′
2 + Π̇′

2Π̇
′
2)

]

+
1

(1 + Π1 + Π2)4

[

−4
x′2

1

r2
(Π′

1)
2((Π′

2)
2 + (Π̇2)

2) − 4
x′2

1

r̃2
((Π′

1)
2 + (Π̇1)

2)(Π′
2)

2

+12
x′2

1

rr̃
Π′

1Π
′
2((Π

′
1)

2 + (Π̇1)
2 + (Π′

2)
2 + (Π̇2)

2 +
xx̃

rr̃
Π′

1Π
′
2 + Π̇1Π̇2)

]

. (B.22)
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Ĩij =
4

(1 + Π1 + Π2)2

[
x′2

3 − x′2
1

r2
(Π′′

1 − (Π′
1/r))(Π

′
2/r̃)

+
(x′

3 − Rs)
2 − x′2

1

r̃2
(Π′

1/r)(Π
′′
2 − (Π′

2/r̃))

+
x′

3(x
′
3 − Rs) − x′2

1

rr̃
(
xx̃

rr̃
(Π′′

1Π
′′
2 − Π′′

1(Π
′
2/r̃) − (Π′

1/r)Π
′′
2 + (Π′

1/r)(Π
′
2/r̃))

+Π̇′
1Π̇

′
2)

]

+
1

(1 + Π1 + Π2)3

[
x′2

3 − x′2
1

r2
(4(Π′′

1 − (Π′
1/r))((Π

′
2)

2 + (Π̇2)
2)

−8(Π′
1)

2(Π′
2/r̃))

+
(x′

3 − Rs)
2 − x′2

1

r̃2
(4((Π′

1)
2 + (Π̇1)

2)(Π′′
2 − (Π′

2/r̃)) − 8(Π′
1/r)(Π

′
2)

2)

+
x′

3(x
′
3 − Rs) − x′2

1

rr̃
(−8

xx̃

rr̃
((Π′′

1 − (Π′
1/r))(Π

′
2)

2 + (Π′
1)

2(Π′′
2 − (Π′

2/r̃)))

−8Π̇′
1Π̇2Π

′
2 − 8Π̇1Π

′
1Π̇

′
2 − 8(Π′′

1Π
′
1 + Π̇′

1Π̇1)Π
′
2

−8Π′
1(Π

′′
2Π

′
2 + Π̇′

2Π̇2)
]

+
1

(1 + Π1 + Π2)4

[

−4
x′2

3 − x′2
1

r2
(Π′

1)
2((Π′

2)
2 + (Π̇2)

2)

−4
(x′

3 − Rs)
2 − x′2

1

r̃2
((Π′

1)
2 + (Π̇1)

2)(Π′
2)

2

+12
x′

3(x
′
3 − Rs) − x′2

1

rr̃
Π′

1Π
′
2((Π

′
1)

2 + (Π̇1)
2 + (Π′

2)
2 + (Π̇2)

2

+
xx̃

rr̃
Π′

1Π
′
2 + Π̇1Π̇2)

]

. (B.23)



APPENDIX B. INTERACTIONS AT FINITE TEMPERATURE 255

Ĩit =
4

(1 + Π1 + Π2)2

[
x′

3

r
(
xx̃

rr̃
(Π′′

1 − (Π′
1/r))Π̇

′
2 + Π̇′

1Π̈2)

x′
3 − Rs

r̃
(Π′

1/r)Π̇
′
2

]

+
1

(1 + Π1 + Π2)3

[
x′

3

r

(

4Π̇′
1((Π

′
2)

2 + (Π̇2)
2)

−8
xx̃

rr̃
(Π′′

1 − (Π′
1/r))Π̇2Π

′
2 − 8Π̇′

1(Π̇2)
2 − 8Π′

1(
xx̃

rr̃
Π′

1Π̇
′
2 + Π̇1Π̈2)

−8(Π′′
1Π

′
1 + Π̇′

1Π̇1)Π̇2 − 8Π′
1(Π̇

′
2Π

′
2 + Π̈2Π̇2)

)

+
x′

3 − Rs

r̃
(4((Π′

1)
2 + (Π̇1)

2)Π̇′
2 − 8(Π′

1/r)Π̇2Π
′
2)

]

+
1

(1 + Π1 + Π2)4

[
x′

3

r

(

−4Π̇1Π
′
1((Π

′
2)

2 + (Π̇2)
2)

+12Π′
1Π̇1((Π

′
1)

2 + (Π̇1)
2 + (Π′

2)
2 + (Π̇2)

2 +
xx̃

rr̃
Π′

1Π
′
2 + Π̇1Π̇2)

)

−4
x′

3 − Rs

r̃
((Π′

1)
2 + (Π̇1)

2)Π̇2Π
′
2

]

. (B.24)
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Ĩti =
4

(1 + Π1 + Π2)2

[
x′

3

r
Π̇′

1(Π
′
2/r̃)

x′
3 − Rs

r̃
(
xx̃

rr̃
Π̇′

1(Π
′′
2 − (Π′

2/r̃)) + Π̈1Π̇
′
2)

]

+
1

(1 + Π1 + Π2)3

[
x′

3

r
(4Π̇′

1((Π
′
2)

2 + (Π̇2)
2) − 8Π̇1Π

′
1(Π

′
2/r̃))

+
x′

3 − Rs

r̃

(

4((Π′
1)

2 + (Π̇1)
2)Π̇′

2 − 8(
xx̃

rr̃
Π̇′

1Π
′
1 + Π̈1Π̇1)Π

′
2

−8
xx̃

rr̃
Π̇1Π

′
1(Π

′′
2 − (Π′

2/r̃)) − 8(Π̇1)
2Π̇′

2

−8(Π̇′
1Π

′
1 + Π̈1Π̇1)Π

′
2 − 8Π̇1(Π

′′
2Π

′
2 + Π̇′

2Π̇2)
)]

+
1

(1 + Π1 + Π2)4

[

−4
x′

3

r
Π̇1Π

′
1((Π

′
2)

2 + (Π̇2)
2)

x′
3 − Rs

r̃

(

−4((Π′
1)

2 + (Π̇1)
2)Π̇2Π

′
2

+12Π̇1Π
′
2((Π

′
1)

2 + (Π̇1)
2 + (Π′

2)
2 + (Π̇2)

2 +
xx̃

rr̃
Π′

1Π
′
2 + Π̇1Π̇2

)]

. (B.25)

Ĩtt =
4

(1 + Π1 + Π2)2

[
xx̃

rr̃
Π̇′

1Π̇
′
2 + Π̈1Π̈2

]

+
1

(1 + Π1 + Π2)3

[

4Π̈1((Π
′
2)

2 + (Π̇2)
2) + 4((Π′

1)
2 + (Π̇1)

2)Π̈2

−8(
xx̃

rr̃
Π̇′

1Π̇2Π
′
2 + Π̈1(Π̇2)

2) − 8(
xx̃

rr̃
Π̇1Π

′
1Π̇

′
2 + (Π̇1)

2Π̈2)

−8(Π̇′
1Π

′
1Π̇2 + Π̈1Π̇1Π̇2) − 8(Π̇1Π̇

′
2Π

′
2 + Π̇1Π̈1Π̇2)

]

+
1

(1 + Π1 + Π2)4

[

−4(Π̇1)
2((Π′

2)
2 + (Π̇2)

2) − 4((Π′
1)

2 + (Π̇1)
2)(Π̇2)

2

+12Π̇1Π̇2((Π
′
1)

2 + (Π̇1)
2 + (Π′

2)
2 + (Π̇2)

2 +
xx̃

rr̃
Π′

1Π
′
2 + Π̇1Π̇2)

]

. (B.26)
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Iµρνσ = δijδkhĨijij + δij
RkRh

R2
s

Ĩikih + δkh(δνt
Ri

Rs

Ĩiktk + δµt
Rj

Rs

Ĩtkjk)

+ δµtδνt(δkhĨtktk +
RkRh

R2
s

Ĩtkth) . (B.27)

Ĩijij = 0 (analytically) . (B.28)

Ĩikih =
4

(1 + Π1 + Π2)2

[
x′2

3 − x′2
1

r2
(Π′′

1 − (Π′
1/r))(Π

′
2/r̃)

+
(x′

3 − Rs)
2 − x′2

1

r̃2
(Π′

1/r)(Π
′′
2 − (Π′

2/r̃))

x′2
1 R2

s

(rr̃)2
(Π′′

1 − (Π′
1/r))(Π

′′
2 − (Π′

2/r̃))

]

− 8

(1 + Π1 + Π2)3

[
x′2

3 − x′2
1

r2
(Π′

1)
2(Π′

2/r̃) +
(x′

3 − Rs)
2 − x′2

1

r̃2
(Π′

1/r)(Π
′
2)

2

+
x′2

1 R2
s

(rr̃)2
((Π′′

1 − (Π′
1/r))(Π

′
2)

2 + (Π′
1)

2(Π′′
2 − (Π′

2/r̃)))

]

+
8

(1 + Π1 + Π2)4

[
x′2

1 R2
s

(rr̃)2
(Π′

1)
2(Π′

2)
2

]

. (B.29)
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Ĩiktk = Ĩtkjk =
4

(1 + Π1 + Π2)2

[
x′

3

r
Π̇′

1(Π
′
2/r̃) +

x′
3 − Rs

r̃
(Π′

1/r)Π̇
′
2

+
x′2

1 Rs

rr̃2
Π̇′

1(Π
′′
2 − (Π′

2/r̃)) −
x′2

1 Rs

r2r̃
(Π′′

1 − (Π′
1/r̃))Π̇

′
2

]

− 8

(1 + Π1 + Π2)3

[
x′

3

r
Π̇1Π

′
1(Π

′
2/r̃) +

x′
3 − Rs

r̃
(Π′

1/r)Π̇2Π
′
2

+
x′2

1 R2
s

rr̃2
(Π̇′

1(Π
′
2)

2 + Π̇1Π
′
1(Π

′′
2 − (Π′

2/r̃)))

−x′2
1 R2

s

r2r̃
((Π′

1)
2Π̇′

2 + (Π′′
1 − (Π′

1/r̃))Π̇2Π
′
2)

]

+
8

(1 + Π1 + Π2)4

[
x′2

1 Rs

rr̃2
Π̇1Π

′
1(Π

′
2)

2 − x′2
1 Rs

r2r̃
(Π′

1)
2Π̇2Π

′
2

]

. (B.30)

Ĩtktk =
4

(1 + Π1 + Π2)2

[

Π̈1(Π
′
2/r̃) + (Π′

1/r)Π̈2 +
x′2

1

r2
(Π′′

1 − (Π′
1/r))Π̈2

+
x′2

1

r̃2
Π̈1(Π

′′
2 − (Π′

2/r̃)) − 2
x′2

1

rr̃
Π̇′

1Π̇
′
2

]

− 8

(1 + Π1 + Π2)3

[

(Π′
1/r)(Π̇2)

2 + (Π̇1)
2(Π′

2/r̃)

+
x′2

1

r2
((Π′′

1 − (Π′
1/r))(Π̇2)

2 + (Π′
1)

2Π̈2)

+
x′2

1

r̃2
((Π̇1)

2(Π′′
2 − (Π′

2/r̃)) + Π̈1(Π
′
2)

2)

−2
x′2

1

rr̃
(Π̇′

1Π̇2Π
′
2 + Π̇1Π

′
1Π̇

′
2)

]

+
8

(1 + Π1 + Π2)4

[
x′2

1

r2
(Π′

1)
2(Π̇2)

2 +
x′2

1

r̃2
(Π̇1)

2(Π′
2)

2 − 2
x′2

1

rr̃
Π̇1Π

′
1Π̇2Π

′
2

]

.

(B.31)
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Ĩtkth =
4

(1 + Π1 + Π2)2

[
x′2

3 − x′2
1

r2
(Π′′

1 − (Π′
1/r))Π̈2

+
(x′

3 − Rs)
2 − x′2

1

r̃2
Π̈1(Π

′′
2 − (Π′

2/r̃)) − 2
x′

3(x
′
3 − Rs) − x′2

1

rr̃
Π̇′

1Π̇
′
2

]

− 8

(1 + Π1 + Π2)3

[
x′2

3 − x′2
1

r2
((Π′′

1 − (Π′
1/r))(Π̇2)

2 + (Π′
1)

2Π̈2)

+
(x′

3 − Rs)
2 − x′2

1

r̃2
((Π̇1)

2(Π′′
2 − (Π′

2/r̃)) + Π̈1(Π
′
2)

2)

−2
x′

3(x
′
3 − Rs) − x′2

1

rr̃
(Π̇′

1Π̇2Π
′
2 + Π̇1Π

′
1Π̇

′
2)

]

+
8

(1 + Π1 + Π2)4

[
x′2

3 − x′2
1

r2
(Π′

1)
2(Π̇2)

2 +
(x′

3 − Rs)
2 − x′2

1

r̃2
(Π̇1)

2(Π′
2)

2

−2
x′

3(x
′
3 − Rs) − x′2

1

rr̃
Π̇1Π

′
1Π̇2Π

′
2

]

. (B.32)

Jµρνσ = δij
RkRh

R2
s

J̃ikih + δkh(δνt
Ri

Rs

J̃iktk + δµt
Rj

Rs

J̃tkjk)

+ δµtδνt(δkhJ̃tktk +
RkRh

R2
s

J̃tkth) . (B.33)

J̃ikih =
2

(1 + Π1 + Π2)4

x′2
1 R2

s

(rr̃)2
(Π′

1)
2(Π′

2)
2 . (B.34)

J̃iktk = J̃tkik =
2

(1 + Π1 + Π2)4

[
x′2

1 R2
s

rr̃2
Π̇1Π

′
1(Π

′
2)

2

−x′2
1 R2

s

r2r̃
(Π′

1)
2Π̇2Π

′
2

]

. (B.35)
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J̃tktk =
2

(1 + Π1 + Π2)4

[
x′2

1

r2
(Π′

1)
2(Π̇2)

2 +
x′2

1

r̃2
(Π̇1)

2(Π′
2)

2

−2
x′2

1

rr̃
Π̇1Π

′
1Π̇2Π

′
2

]

. (B.36)

J̃tkth =
2

(1 + Π1 + Π2)4

[
x′2

3 − x′2
1

r2
(Π′

1)
2(Π̇2)

2

+
(x′

3 − Rs)
2 − x′2

1

r̃2
(Π̇1)

2(Π′
2)

2 − 2
x′

3(x
′
3 − Rs) − x′2

1

rr̃
Π̇1Π

′
1Π̇2Π

′
2

]

. (B.37)

Kµρνσ = (δijδkh + δikδjh + δihδkj)K̃ikik + δij
RkRh

R2
s

K̃ikih + δkh
RiRj

R2
s

K̃ikjk

+ (δik
RjRh

R2
s

+ δih
RjRk

R2
s

+ δjk
RiRh

R2
s

+ δjh
RiRk

R2
s

)K̃iijh

+
RiRjRkRh

R4
s

K̃ikjh

+ δµtδkh
Rj

Rs

K̃tkjk + δµtδjh
Rk

Rs

K̃tkjj + δµtδjk
Rh

Rs

K̃tjjh + δµt
RjRkRh

R3
s

K̃tkjh

+ δρtδjh
Ri

Rs

K̃itjj + δρtδih
Rj

Rs

K̃itji + δρtδij
Rh

Rs

K̃itih + δρt
RiRjRh

R3
s

K̃itjh

δµtδρtδjhK̃ttjj + δµtδρt
RjRh

R2
s

K̃ttjh + δµtδσtδjkK̃tjjt + δµtδσt
RjRk

R2
s

K̃tkjt

δµtδνtδkhK̃tktk + δµtδνt
RkRh

R2
s

K̃tkth + δρtδσtδijK̃itjt + δρtδσt
RiRj

R2
s

K̃itjt

δµtδνtδσt
Rk

Rs

K̃tktt + δρtδνtδσt
Ri

Rs

K̃ittt + δµtδρtδνtδσtK̃tttt . (B.38)

K̃ikik =
2

(1 + Π1 + Π2)4

x′2
1 x′2

2

(rr̃)2
(Π′

1)
2(Π′

2)
2 . (B.39)
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K̃ikih =
2

(1 + Π1 + Π2)4

(x′
3 − Rs)

2x′2
1 − x′2

1 x′2
2

(rr̃)2
(Π′

1)
2(Π′

2)
2 . (B.40)

K̃ikjk =
2

(1 + Π1 + Π2)4

x′2
3 x′2

1 − x′2
1 x′2

2

(rr̃)2
(Π′

1)
2(Π′

2)
2 . (B.41)

K̃iijh =
2

(1 + Π1 + Π2)4

x′
3(x

′
3 − Rs)x

′2
1 − x′2

1 x′2
2

(rr̃)2
(Π′

1)
2(Π′

2)
2 . (B.42)

K̃ikjh =
2

(1 + Π1 + Π2)4

(
x′2

3 (x′
3 − Rs)

2 + 3x′2
1 x′2

2 − x′2
3 x′2

1

−(x′
3 − Rs)

2x′2
1 − 4x′

3(x
′
3 − Rs)x

′2
1

) 1

(rr̃)2
(Π′

1)
2(Π′

2)
2 . (B.43)

K̃tkjk =
2

(1 + Π1 + Π2)4

x′
3x

′2
1

rr̃2
Π̇1Π

′
1(Π

′
2)

2 . (B.44)

K̃tkjj = K̃tjjh =
2

(1 + Π1 + Π2)4

(x′
3 − Rs)x

′2
1

rr̃2
Π̇1Π

′
1(Π

′
2)

2 . (B.45)

K̃tkjh =
2

(1 + Π1 + Π2)4

(
x′

3(x
′
3 − Rs)

2 − x′
3x

′2
1

−2(x′
3 − Rs)x

′2
1

) 1

rr̃2
Π̇1Π

′
1(Π

′
2)

2 . (B.46)

K̃itjj = K̃itji =
2

(1 + Π1 + Π2)4

x′
3x

′2
1

r2r̃
(Π′

1)
2Π̇2Π

′
2 . (B.47)
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K̃itih =
2

(1 + Π1 + Π2)4

(x′
3 − Rs)x

′2
1

r2r̃
(Π′

1)
2Π̇2Π

′
2 . (B.48)

K̃itjh =
2

(1 + Π1 + Π2)4

(
x′

3(x
′
3 − Rs)

2 − x′
3x

′2
1

−2(x′
3 − Rs)x

′2
1

) 1

r2r̃
(Π′

1)
2Π̇2Π

′
2 . (B.49)

K̃ttjj = K̃tjjt =
8

(1 + Π1 + Π2)4

x′2
1

rr̃
Π̇1Π

′
1Π̇2Π

′
2 . (B.50)

K̃ttjh = K̃tkjt =
8

(1 + Π1 + Π2)4

x′
3(x

′
3 − Rs) − x′2

1

rr̃
Π̇1Π

′
1Π̇2Π

′
2 . (B.51)

K̃tktk =
2

(1 + Π1 + Π2)4

x′2
1

r̃2
(Π̇1)

2(Π′
2)

2 . (B.52)

K̃tkth =
2

(1 + Π1 + Π2)4

(x′
3 − Rs)

2 − x′2
1

r̃2
(Π̇1)

2(Π′
2)

2 . (B.53)

K̃itit =
2

(1 + Π1 + Π2)4

x′2
1

r2
(Π′

1)
2(Π̇2)

2 . (B.54)

K̃itjt =
2

(1 + Π1 + Π2)4

x′2
3 − x′2

1

r2
(Π′

1)
2(Π̇2)

2 . (B.55)
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K̃tktt =
4

(1 + Π1 + Π2)4

x′
3 − Rs

r̃
(Π̇1)

2Π̇2Π
′
2 . (B.56)

K̃ittt =
4

(1 + Π1 + Π2)4

x′
3

r
Π̇1Π

′
1(Π̇2)

2 . (B.57)

K̃tttt =
2

(1 + Π1 + Π2)4
(Π̇1)

2(Π̇2)
2 . (B.58)

B.1.2 Asymptotic Interactions

As explained in the main text, the small separation asymptotic formulas get

contributions which have the same functional form as those for the large sep-

aration asymptotics but with different explicit integration limits, see Fig. 5.9.

We will therefore start with the large separation formulas and not evaluate

the integrals explicitly.

Large Separation

As explained in Fig. 5.7, the ’t Hooft potential is approximated by the T =

0 BPST form for small arguments up to r4d =
√

xµxµ = β/2; for larger

arguments we use the r3d → ∞ asymptotic form of the T 6= 0 potential.

These simple rational expressions allow us to factor out completely the ’t

Hooft potential of the partner instanton, whose argument is kept fixed, except

for its contribution to the integration limit. For fixed I2, and depending on

the integration region, this leads to the two integration limits

z2
4d =

1 + Π2

ρ2
1

r2
4d , (B.59)

z3d =
1 + Π2

ρ̃1

r3d . (B.60)

We have defined ρ̃ = πρ2/β. In the following we will encounter the integrals
∫ z ≡

∫ z

0
and

∫

z
≡

∫ ∞
z

.
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Finally, for r3d > β/2 the approximate ’t Hooft potential is independent of

t. This will lead to some indices only running over the spatial set i = {1, 2, 3}
whenever we use roman letters.

The integral over I contains terms that do not mix the ’t Hooft potential

Π1 and Π2 except for the denominators. Just as in the T = 0 case, these

can be transformed to exactly match the single instanton contributions by

exploiting scale invariance and independence of the action on β. Remem-

bering that we actually subtract the one-instanton contributions to get the

interactions, we can neglect these terms altogether. We then end up with

the following formulas

∫

I = 72π2ρ2 ∂µΠ∂µΠ

(1 + Π)3

∫ z4d s5ds

(s2 + 1)4

+

(

32πβρ̃
∂µΠ∂µΠ

(1 + Π)3
+

16

3
πβρ̃

∂iΠ∂iΠ

(1 + Π)3

) ∫

z3d

s2ds

(s + 1)4
+ sym . (B.61)

∫

J = 16π2ρ2 ∂µΠ∂µΠ

(1 + Π)3

∫ z4d s5ds

(s2 + 1)4

+ 8πβρ̃
∂µΠ∂µΠ

(1 + Π)3

∫

z3d

s2ds

(s + 1)4
+ sym . (B.62)

∫

Iµν = 16π2ρ2 ∂µ∂νΠ

(1 + Π)2

∫ z4d s3ds

(s2 + 1)3

−
(

8π2ρ2δµν
∂σΠ∂σΠ

(1 + Π)3
+ 8π2ρ2 (∂µΠ)(∂νΠ)

(1 + Π)3

) ∫ z4d s5ds

(s2 + 1)4

+

(

16πβρ̃
∂µ∂νΠ

(1 + Π)2
− 32

3
πβρ̃

∂i∂νΠ

(1 + Π)2

) ∫

z3d

sds

(s + 1)3

−
(

16

3
πβρ̃δij

∂σΠ∂σΠ

(1 + Π)3
+ 16πβρ̃

(∂µΠ)(∂νΠ)

(1 + Π)3

−16πβρ̃
(∂iΠ)(∂νΠ)

(1 + Π)3

) ∫

z3d

s2ds

(s + 1)4
+ sym . (B.63)

At zeroth order, partial integration and the antisymmetry of the ’t Hooft
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symbols can be used to simplify

Iµρνσ → 8

(1 + Π1 + Π2)4
(∂µΠ1)(∂ρΠ2)(∂νΠ1)(∂σΠ2) . (B.64)

With asymptotic behaviour

∫

Iµρνσ = 16π2ρ2δµν
(∂ρΠ)(∂σΠ)

(1 + Π)3

∫ z4d s5ds

(s2 + 1)4

+
32

3
πβρ̃δij

(∂ρΠ)(∂σΠ)

(1 + Π)3

∫

z3d

s2ds

(s + 1)4
+ sym . (B.65)

∫

Jµρνσ = 4π2ρ2δµν
(∂ρΠ)(∂σΠ)

(1 + Π)3

∫ z4d s5ds

(s2 + 1)4

+
8

3
πβρ̃δij

(∂ρΠ)(∂σΠ)

(1 + Π)3

∫

z3d

s2ds

(s + 1)4
+ sym . (B.66)

For Kµρνσ no ’t Hooft symbols can be used to exchange the index pairs

(µ, ν) ↔ (ρ, σ), and so we cannot simplify with a symmetry argument any-

more

∫

Kµρνσ = 4π2ρ2
1δµν

(∂ρΠ2)(∂σΠ2)

(1 + Π2)3

∫ z4d
1 s5ds

(s2 + 1)4

+ 4π2ρ2
2δρσ

(∂µΠ1)(∂νΠ1)

(1 + Π1)3

∫ z4d
2 s5ds

(s2 + 1)4

+
8

3
πβρ̃1δij

(∂ρΠ2)(∂σΠ2)

(1 + Π2)3

∫

z3d
1

s2ds

(s + 1)4

+
8

3
πβρ̃2δkh

(∂µΠ1)(∂νΠ1)

(1 + Π1)3

∫

z3d
2

s2ds

(s + 1)4
. (B.67)

Small Separation

As explained in Fig. 5.9, the small separation asymptotic formulas get con-

tributions from the large asymptotics. Also, in this case we have performed

a global translation so that the instantons sit at ±Rµ/2. For the terms in
∫ z

the integration limit is given by z2 = 1+Π
ρ2 (R/2)2. The T 6= 0 terms given
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by the
∫

z
integrals are to be interpreted as θH(R − β/2)

∫

z
, i.e. they only

contribute if the separation R is bigger than β/2. In practice, these terms do

not contribute because they are covered by the look-up tables. The proper

small separation asymptotic formulas, that encode the repulsion through the

gauge singularity, are then given by the T = 0 formulas, which we repeat

here for convenience.

Introducing another explicit upper limit z

z2 =
R2

ρ2
1 + ρ2

2

, z2
i =

R2

ρ2
i

, (B.68)

and approximating the arguments xµ ± Rµ/2 → xµ, we arrive at

∫

I = 384π2

[
ρ4

1 + ρ4
2

(ρ2
1 + ρ2

2)
2

∫

z

ds

s(s2 + 1)2

−
(

ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
2

+ 2
ρ6

1 + ρ6
2

(ρ2
1 + ρ2

2)
3

) ∫

z

ds

s(s2 + 1)3

ρ8
1 + ρ8

2 + ρ4
1ρ

4
2 + ρ6

1ρ
2
2 + ρ2

1ρ
6
2

(ρ2
1 + ρ2

2)
4

∫

z

ds

s(s2 + 1)4

−
∫

z1

s4ds

s(s2 + 1)4
−−

∫

z2

s4ds

s(s2 + 1)4

]

. (B.69)

∫

J = 64π2 ρ4
1ρ

4
2

(ρ2
1 + ρ2

2)
4

∫

z

ds

s(s2 + 1)4
. (B.70)

∫

Iµν = δµν

[

96π2 ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
2

∫

z

ds

s(s2 + 1)2

−192π2 ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
2

∫

z

ds

s(s2 + 1)3

+32π2ρ4
1ρ

4
2 + 3ρ6

1ρ
2
2 + 3ρ2

1ρ
6
2

(ρ2
1 + ρ2

2)
4

∫

z

ds

s(s2 + 1)4

]

. (B.71)
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∫

Iµρνσ = δµνδρσ

[

−32π2 ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
2

∫

z

ds

s(s2 + 1)2

+32π2 ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
2

∫

z

ds

s(s2 + 1)3

]

. (B.72)

∫

Jµρνσ = 0 . (B.73)

∫

Kµρνσ =
8

3
π2(δµνδρσ + δµρδνσ + δµσδνρ)

ρ4
1ρ

4
2

(ρ2
1 + ρ2

2)
4

∫

z

ds

s(s2 + 1)4
. (B.74)

B.2 Fermionic Interactions

The Dirac overlap matrix elements are given by

TIA =

∫

R3×S1

1

4π2ρIρA

(
1

2
Tr (Uτ+

β )Iβ − i

2
Tr (Uτ+

β τa)η̄
a
µαJβµα

+
i

2
Tr (Uτaτ

+
β )ηa

µαKβµα

)

. (B.75)

Some straightforward algebra leads to

Iβ =
−3

(1 + ΠI + ΠA)(1 + ΠI)1/2(1 + ΠA)1/2

[
ΠA

1 + ΠI

(

(∂µΠA∂µχA) − (∂µΠI∂µΠI)χA

1 + ΠI

)(

∂βχA − (∂βΠA)χA

1 + ΠA

)

+

(

(∂µΠA∂µχA) − (∂µΠA∂µΠA)χI

1 + ΠA

)(

∂βχI −
(∂βΠI)χI

1 + ΠI

)]

. (B.76)

Jβµα =
1

(1 + ΠI + ΠA)(1 + ΠI)1/2(1 + ΠA)1/2

ΠA

1 + ΠI

(∂µχI∂αΠI)

(

∂βχA − (∂βΠA)χA

1 + ΠA

)

. (B.77)
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Kβµα =
1

(1 + ΠI + ΠA)(1 + ΠI)1/2(1 + ΠA)1/2

(∂µχA∂αΠA)

(

∂βχI −
(∂βΠI)χI

1 + ΠI

)

. (B.78)

B.2.1 Exact Interactions

The three contributions give rise to two different colour structures which can

be combined with the help of the colour four-vector iuβ ≡ 1
2
Tr (Uτ+

β ), used

for instance in [157]; we have that

TIA = i

∫

R3×S1

(

ub
Rb

Rs

T̃s + u4T̃t

)

, (B.79)

with

T̃s =
−1

(1 + ΠI + ΠA)(1 + ΠI)1/2(1 + ΠA)1/2

[

x′
3

r

{

ΠA

1 + ΠI

(

χ̇A − Π̇AχA

1 + ΠA

)
(

χ̇IΠ
′
I − χ′

IΠ̇I

)

+3

(

χ′
I −

Π′
IχI

1 + ΠI

) (

Π′
Aχ′

A + Π̇Aχ̇A − ((Π′
A)2 + (Π̇A)2)χA

1 + ΠA

)}

+
x′

3 − Rs

r̃

{(

χ̇I −
Π̇IχI

1 + ΠI

)
(

χ̇AΠ′
A − χ′

AΠ̇A

)

+3
ΠA

1 + ΠI

(

χ′
A − Π′

AχA

1 + ΠA

) (

Π′
Iχ

′
I + Π̇I χ̇I −

((Π′
I)

2 + (Π̇I)
2)χI

1 + ΠI

)}]

.

(B.80)
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T̃t =
1

(1 + ΠI + ΠA)(1 + ΠI)1/2(1 + ΠA)1/2

[
x′

3(x
′
3 − rs) + 2x′2

1

rr̃

{
ΠA

1 + ΠI

(

χ′
A − Π′

AχA

1 + ΠA

)

(χ̇IΠ
′
I − χ′

IΠ̇I)

+

(

χ′
I −

Π′
IχI

1 + ΠI

)

(χ̇AΠ′
A − χ′

AΠ̇A)

}

−3
ΠA

1 + ΠI

(

χ̇A − Π̇AχA

1 + ΠA

) (

Π′
Iχ

′
I + Π̇I χ̇I −

((Π′
I)

2 + (Π̇I)
2)χI

1 + ΠI

)

−3

(

χ̇I −
Π̇IχI

1 + ΠI

) (

Π′
Aχ′

A + Π̇Aχ̇A − ((Π′
A)2 + (Π̇A)2)χA

1 + ΠA

)]

. (B.81)

B.2.2 Asymptotic Interactions

Large Separation

At T 6= 0 the quark zero mode has an additional factor χ ∝ exp(−r/β).

Therefore we completely neglect the contributions from r > β/2, and recover

the T = 0 formulas. For convenience we display the final results again here;

details are given in section 3.3.1 and appendix A.2. The only difference with

the T = 0 formulas is that the upper limit z ∝ β/2 instead of infinity

∫

Iβ = 8π2ρ2
I

ΠA∂βΠA

(1 + ΠA)3/2

∫ zI s4ds

(s2 + 1)7/2

− 8π2ρ2
A

∂βΠI

(1 + ΠI)3/2

∫ zA s4ds

(s2 + 1)5/2
. (B.82)

At zeroth order, we have that
∫

Jβµα =
∫

Kβµα = 0. For Jβµα this follows

from the fact that within the r < β/2 region we approximate χ → Π and

so the integration over II yields zero because of the anti-symmetry of the ’t

Hooft symbols. Integration over IA vanishes too because of O(4) symmetry.

Small Separation

At zeroth order, i.e. xµ±Rµ/2 → xµ, the contribution to Iβ vanishes because

of O(4) symmetry. It turns out the large separation asymptotics falls off too
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quickly as R → 0. However this is not important because in this regime the

gluonic interaction is dominant.



Appendix C

Cholesky decomposition update

In this appendix we look in detail at how the structure suitable for the

Cholesky decomposition update comes about. We will also see that insertion

can be performed faster whereas deletions will be the most costly.

C.1 Canonical Moves

Upon updating instanton I, we have that T → T +∆T , with (∆T )ij = δiIξ
∗
j .

This induces the following changes

(T †T )ij → (T †T )ij + T †
iIξ

∗
j + ξiTIj + ξiξ

∗
j , (C.1)

ψi ≡ T ∗
Ii , (C.2)

φi ≡ ξi + ψi , (C.3)

T †T → T †T + φφ† − ψψ† . (C.4)

(TT †)ij → (TT †)ij + δiIξ
∗
kT

†
kj + TikξkδIj + δiIδjI , (C.5)

ψi ≡ 1

|ξ|(Tξ)i , (C.6)

φi ≡ δIi|ξ| + ψi , (C.7)

T †T → T †T + φφ† − ψψ† . (C.8)

271
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Changes in an anti-instanton will have analogous formulas.

C.2 Insertion

We focus on inserting an instanton. Insertion of an anti-instanton is then

similar. Since in the code we always add an instanton at the end of the

arrays, an insertion corresponds to adding a row to T .

T →
(

T

ξ†

)

, (C.9)

TT † →
(

T

ξ†

)
(

T † ξ
)

=

(

TT † Tξ

ξ†T † ξ†ξ

)

. (C.10)

On the level of the Cholesky decomposition

L → =

(

L 0

χ† 1

)

, (C.11)

D → =

(

D 0

0 d

)

, (C.12)

LDL† → =

(

LDL† LDχ

χ†DL† χ†Dχ + d

)

. (C.13)

Remembering that the insertion also adds a mass term in the diagonal,

we have to solve the following system

{

LDχ = Tξ

d = ξ†ξ + m2 − χ†Dχ
, (C.14)

which can be solved in O(N2) by using backsubstitution. The case for T †T

is simply given by

T †T →
(

T † ξ
)

(

T

ξ†

)

= T †T + ξξ† , (C.15)

which is a rank-1 update.
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C.3 Deletion

We focus again on an instanton. Deletion will be a two step process. We first

delete the last instanton and then swap it with that instanton that has been

selected for deletion. The swapping is similar to a canonical move, where

now ξ is given by the difference between the last instanton and the selected

instanton.

The proper deletion part is given by

TT † → =

(

TT † 0

0 0

)

, (C.16)

L → =

(

L 0

0 1

)

, (C.17)

D → =

(

D 0

0 0

)

. (C.18)

The T †T part is again simply related to a rank-1 update because, upon

rearranging the result from the insertion part, we get

T †T → T †T − ξξ† . (C.19)
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