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Abstract

The Copula function is considered within the context of financial multi-
variate data sets that are not normally distributed. The Bernstein polyno-
mial approximation to copulae is given and motivated by its desirable prop-
erties. The multivariate convergence properties are analyzed. The concept
of Bernstein copula is introduced as a generalization of some bivariate and
higher dimensional families of copulae. Statistical properties of the Bernstein
copula are studied together with implementation issues related to portfolio

theory and expected utility optimization.
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1 Introduction

Multivariate normality is often assumed in portfolio theory in order to draw sim-
ple results. However, the normality assumption is violated in practice. Financial
returns are found to be leptokurtic, inter alia Mandelbrot (1963, 1997) and Fama
(1965). Therefore, a different kind of approach is needed in modeling multivariate
returns when constructing a portfolio. It is desirable to find a general form for
a distribution that would allow us both to describe the body of the distribution
and the tails. This is particularly true for multivariate data where the degree of
dispersion is high and the tails of a distribution become more important. In gen-
eral it is desirable to have a distribution that could be used to model both normal
and extreme events, a situation relevant to financial economics. Moreover, cross
dependence and association among assets cannot be fully captured by such linear
measures as correlation. Therefore, it is necessary to consider more general kinds
of dependences to model the joint distribution of financial returns. However, re-
sults should allow for further inference and practical implementation. The purpose
of this paper is to address the above problems allowing for solutions that can be
used for inference purposes. Our approach can be seen as a competitive alternative
to multivariate normality, or elliptic distributions in general when modeling the
construction of a portfolio.

We consider the use of copulae and their potential application to portfolio con-
struction. However, this is not a survey of copulae’s families. We present an
approximation to copulae that in some instances is exact for certain families up to
an additive term. This approximation is obtained through Bernstein polynomials.
It has some desirable properties like preserving convexity of all orders. Bernstein
polynomials are connected with the theory of singular integrals, with probabil-
ity (Feller, (1966) p. 218-230), with the sum of divergent series and with other
branches of mathematics, Lorentz (1953).

We will discuss the use of Bernstein polynomials to approximate functions on
the unit hyper-cube. We consider their speed of convergence to the approximated
function. Moreover, we establish the link between the copula function and Bern-
stein polynomials, subject to parameter restrictions.

Having discussed the necessary theoretical results, we concentrate on its practi-
cal use in financial economics. We theoretically derive the density and characteristic
function of an arbitrary k& dimensional portfolio with fixed marginals. For our pur-
pose the marginals are Weibull distributions. These find theoretical justification in

the theory of multiplicative processes and are particularly suited for fat tails and



extreme value theory; see Frisch and Sornette (1997), and Laherrére and Sornette
(1998). Regardless of the dimension and dependency complexity of the portfolio,
its characteristic function is easily derived. We show that once a result is estab-
lished for the univariate case its extension to k dimensions is trivial by virtue of the
use of the Bernstein approximation. Moreover, the characteristic function of the
portfolio can be transformed via the use of a constant risk aversion utility function
and optimized without discarding information as in mean-variance optimization.
A worked example shows the potential of our approach.

The plan for the paper is as follows: section 2 discusses the reasons for using
copulae in portfolio optimization; section 3 considers the approximation of continu-
ous functions in the £ dimensional hyper-cube; section 4 focuses on some technical
issues of copulae and defines parametric conditions on the Bernstein polynomial to
be a copula; section 5 uses the Bernstein approximation to derive results related to
portfolio optimization and presents a simple worked example; section 6 concludes
the paper. The appendix contains some proofs and give an alternative representa-
tion of the Bernstein copula through transcendental functions like the incomplete

beta function and Gauss’ hypergeometric series.

2 Portfolio Theory and Distributions

Results based on normality might not be appropriate for optimal portfolio con-
struction and management. Optimal portfolios occur in all areas of intertemporal
economics. It may be necessary to derive quantitative results that do not rely on
normality.

For example, the distribution of returns is of fundamental importance in the
capital asset pricing model (CAPM). As Hagerman (1978) puts it, "if the distribu-
tion of security returns is not stable under addition, it is hard to envision a theory
of how to combine securities optimally into portfolios.” Tobin (1958) showed that
if asset returns are normally distributed then the variance is the proper measure of
risk. Capital asset pricing models typically assume normality or ellipticity in the
distribution of returns. If this assumption is not validated, then the model might
deliver results that are not satisfactory.

The study of financial returns dates back to the beginning of the last century.
Bachelier (1900) was the first to rigorously study the behavior of speculative prices.
The results of his thesis implied that price changes are independent and identically

distributed. That is, returns are white noise. This does not imply that they are



Gaussian, i.e. strict white noise.

Mandelbrot (1963) started to revive interest in the time series properties of
assets prices. He observed that the unconditional distribution of many economic
and financial variables have thick tails. Further, he noticed that variances are not
constant and that they are correlated: large changes are followed by large changes
of either sign.

Serious examination of the normality assumption in the CAPM by Fama (1965)
confirmed Mandelbrot’s findings. Both of them proposed that security returns fol-
low a stable symmetric distribution with an infinite variance. Other two competing
hypotheses were proposed. One assumes that a mixture of normal underlying dis-
tributions is the result of the empirical distribution of returns. The second is that
daily security returns follow a student’s t-distribution with more than two degrees
of freedom. For further discussion and empirical study see Hagerman (1978) and
Kon (1984).

The implication for the stability on the tail of the distribution is discussed next.
For example, if W is an a-stable random variable, then for a < 2, Pr(W > w)
~ w L (w), where L(...) is a slowly varying function; see Feller (1966) p. 268.
However, if @ = 2 we have Brownian motion and the tail behavior differs from
the above case. Therefore, for o < 2, the returns can be closely approximated by
a line with slope equal to « in log-log plot. The finding of Mandelbrot for cotton
price changes showed o = 1.7 (see Mandelbrot (1997), p. 34). The interesting
implication is that if, for example, in the case of & = 2 the probability of ruin is
1072, for a@ = 1.7 the probability is approximately 10~!. This should make one
reflect before assuming normality.

Furthermore, it is necessary to use a measure that allows us to derive optimal
weights for a portfolio. In order to do so, it is fundamental to construct families of
multivariate distributions with a wide range of dependance properties that are not
restricted to have normal marginals. In fact, if marginal densities are not normal, it
is impossible to assume multivariate normality for their multidimensional extension.
However, returns that are not normally distributed will not have a straightforward
multivariate density extension. Therefore, it is important to find alternative ways
to characterize the joint distribution of financial returns.

Moreover, the concept of dependency must be completely revised once the nor-
mality assumption is dropped. While the covariance matrix captures the essence
of dependency for normally distributed assets, this does not hold for variables that
are not normally distributed. Basic probability shows that no dependency implies

zero covariance, but the other way does not follow. The reason lies in the particular
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kind of dependency measured by the covariance, namely linear dependency. See
Embrechts et al. (1999) for further discussion on this.

One way to tackle the problem is just to use some non parametric technique.
Usually, non parametric techniques are not scale invariant, a desirable property
when dealing with a complex range of dependency for several assets. Nonparametric
estimation is fully general, but because of this important information is discarded.
An improvement on this can be achieved by semiparametric estimation. We think
in particular of the case of known functional form for the marginal distributions.
Most important, multidimensional nonparametric estimation results in problems
due to the sparsity of data. Hence, the sample size necessary to obtain acceptable
mean square errors must be too large even for financial time series. Estimation of
a ten dimensional normal density through a normal kernel would require a sample
size of 842,000 to ensure a mean square error less than 0.1 at zero; see Silverman
(1986).

This is the reason for looking to some other alternatives, one of interest being
copulae. However, before explicitly looking at copulae and their definition, we
consider some results that will be important in the sequel and in the discussion of

the copula function.

3 Approximations

There are several ways to estimate multivariate distribution functions. The choice
should be based on how much one is willing to assume and how much efficiency
one is willing to give up. As it will be shown in a worked simulation, a parametric
copula function not only guaranties the efficiency of parametric estimation, but it
also allows for a complex range of dependance in the data.

In many cases the copula function might have a very complex form and fur-
ther calculations could be difficult to perform, for example portfolio optimization.
Therefore, it is necessary to approximate the estimated function. Here we suggest
the use of an operator with shape preserving property, i.e. that preserves con-
vexity of all orders. Such a property is indeed desirable, obviously not necessary.
Within the class of linear operators, we look at Bernstein polynomials. Bernstein
polynomials have a slower rate of convergence as compared to other polynomial

approximations.! However, they have the best rate of convergence within the class

!The simple Bernstein approximation can be improved by taking linear combitnations; see
Butzer (1952b). Let f) € Lipy be the 21 derivative of f, then, Buzter (1952b) shows that his



of all operators with the same shape preserving property; see Berens and DeVore
(1980). In the last two decades there has been some interest for approximation
theory in econometrics; inter alia Phillips (1982, 1983). Phillips advocate the use
of extended rational approximates, though for different purposes. However, in the
setting of portfolio optimization and copulae, we find the Bernstein approximation
more tractable and adequate than, for example, rational polynomials. We remark
on this later when we prove some convergence results. Moreover, simple restrictions
on the coefficients of the polynomial allow us to derive a generic family of copulae.
It is necessary to notice that some approximations to copulae including the Bern-
stein approximation have been recently considered in the mathematics literature
by Kulpa (1997) and Li et al. (1998) in order to define convergence notions that
would lead to joint continuity of the *-product defined by Darsow et al. (1992).

3.1 K Dimensional Bernstein Polynomials

The treatment in this paper is based on a condition that we make explicit.

Condition 1. f: A — C, AC RE, C C R, where f is continuous, A and C
are compact, i.e. f is defined on the Banach space Cly), the set of all continuous
bounded functions in A.

The following is a useful theorem on linear monotone operators. It is followed
by the Weierstrass approximation theorem for functions of k variables. These
theorems are fundamental to the understanding of our approximation strategy.

Theorem 1. Linear Monotone Operators for Functions of k Variables. Under
Condition 1, for any sequence of monotone linear operators G,on f the following
conditions are equivalent:

i Guof — f (uniformly) for any f €Ca
it Gnf — f for the following functions f =1, x;, x?
i1 Gpl — 1 and Gy (T) — 0 uniformly in T € RE, where ¢p(X) = ||T — X|*.

Proof. See the Appendix. =

Theorem 2. Weierstrass Approzimation for Functions of k Variables (Stone).
Under Condition 1, to each € > 0 there corresponds a polynomial P such that
|f(X)—P(X)| <e, forany X € A2

liner combination of one dimensional Bernstein polynomials (equation (10)) has error O (n='~7)
compared to O (nin*W) for the best polynomials of order n.

2This is a particular instance of the Stone Weierstrass theorem. The proof given by Stone relies
on the properties of the space where f is defined. It proves the existence of such polynomials, i.e.
that the set of polynomials is dense in the set of continuous functions in a compact space. The



Proof. See Appendix m

The proof we give in the appendix is through k& dimensional Bernstein polyno-
mials, which are defined next, inductively from the two dimensional definition of
Butzer (1953).

Definition. Let f be as in Condition 1, B, be a monotone linear operator, and

Py (75) = (”i)x?(l —x;)™ ", then

Vj

ni ng
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Bu)X)=> "> f (F’ n—> Py (1) -+ Py (1) (1)
v1=0 ’UkZO ‘1 k
18 a k dimensional Bernstein polynomial.
Before concluding this section we notice the following representation in terms
of a Riemann Stieltjes integral of a one dimensional Bernstein polynomial (the &

dimensional extension trivially follows).
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where
Kn(xz,t) = Z (n)x”(l — )",
v
v<nt
Kn(z,0) = 0
is the kernel function that is constant for > <t < ”—;1 and has a jump of (Z) x¥(1—
x)""" at t = 2. This representation establishes some clear parallels to kernel

density estimation in statistics. However, here the term kernel function is used in

the language of singular integrals. We now turn to some convergence issues.

3.2 Convergence

By the convergence of the Bernstein polynomial it follows (e.g. see Feller (1966)
p. 481) that ¢, (t) — ¢(t), where ¢,(t) and ¢(t) are the characteristic functions
of (B,f)(X) and f(X). Therefore, convergence of all moments is guaranteed.

Obviously, the necessary and sufficient condition is that ¢(t) exists.

proof given in the appendix is directly relevant and more concrete for our purposes.



Moreover, it is of interest to know the speed of convergence. Here, we present
some results on convergence of the Bernstein polynomial approximating functions
of k variables under the Tchebysheft’s norm. The L., norm is the most common

choice of norm in this approximation context.

(Baf)(X)— FX) = 30> Poms@) - Pop (22)

v1 k
v v
X {f (n—ll,,n—l;> —f(wl,...,xk)}
n1 ng, (:}&’ 7le)
= D D P (@) Pogne () / V fdr
v Vi

(x1,,2k)

Vi = [f"(s1,0086) ey 5 (81,000, 88)], Where f9 (sq,...,8,) = ‘M%S']f’sk), and r

is a vector valued function that defines the path between the end points of the
integral. By definition, V f is a conservative vector field, so the path of integration
is irrelevant. The above line integral can be split into &k integrals along any paths

parallel to the axis and perpendicular to each other. For example, we can write

Vfdr = /f (81, T2, X3, ..., xk) ds + ...
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Now,
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From here a crude result can be obtained by assuming that f7 € Lipy;1, i.e. f9

satisfies the Lipschitz condition with constant M; and exponent 1: |f"* (s1,...,8; + hj, ..., sx) — f* (:
b

M; |hj| . It follows that the last integral in (3) does not exceed M; [ (s; — x;) ds; =

Tj
1 v 2
= 2L — .
M (2 - )
Therefore,

(Buf)(X) = FXO] < D oY P (@1) -+~ Poge e ()

1< v 2
j

3 (3 n)

7j=1
1 r1(1—2 (1l —x
- = [Ml—l( Dy +Mk—’“( )
2 nq N
for any X. This is just the multivariate analog of the standard univariate result.
Therefore, we have just proved the following.

Theorem 3. Let f be as in Condition 1, and f" € Lipy;,1, then

k

zj (1 —xy)
[(Baf)(X) — f(X)| < ;M"Tj’

where B,, 1s the Bernstein operator and the M;’s are constants.
Remark. We only required f to be defined on a Banach space without restric-

tion to the k dimensional unit hyper-cube. This can be achieved by a simple trans-

formation: x € [a,b] =t € [0,1], t = £=2. In general, we can define a transfor-
mation that makes the real line isomorphic to the unit interval: x € R =t € [0, 1],
I 1—x
=1z = -



Remark. The reader should note that we are interested in applying this ap-
prozimation to the copula function. The copula is a special case of a t-norm as
studied in probabilistic metric spaces (see Schweizer (1991) for a short review).
Therefore, modeling the copula confine our attention to modeling the distance be-
tween the marginal distributions. It is the case that sharp changes in the gradient
of a copula density are located in the tail area. This is exactly where, unlike other
kind of approrimations, the Bernstein approximation is relatively superior.

A better result can be achieved by the use of Theorem 3.1 in Schurer and
Steutel (1977) for the univariate case:

B0 |y (7.5)

sup =

wl(f§5)

where

wi(f;6) = sup{|f’ (x +h) — f' ()| : |n| < 6}

is the modulus of continuity of f’,

Ay (f50)

(Bnf)(z) =
= Zpkn

()

)d7

H\me Kh

and f is defined for = € R by
( ) = 0,
= l+_

fa
2’
(16 < z—a9<(I+1)6, 1 =0,£1,£2,...).

khz

1

\/

Then, f(z) = Sl — x| + X (lz — 0| — 16) ., g+ = max (g,0). Heuristically, this
i=1

function is an extremal function such that f' (z) is equal to sup ——= ( f 5 see Schurer
and Steutel (1977) for details.
Let

wy, (f;6;) = sup {|f7 (z1, ..., x5 + hyj, ooy mp) = f7 (21, oy, )| 2 Thy] < 65}

Therefore,

(l]6 < 5 — T < (l] + 1)6, lj =0,£1,+£2, )
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Now,

.....

and the result for the & dimensional case follows. See Schurer and Steutel (1980)
for a detailed treatment of the two dimensional case. Their approach is slightly
different than ours. However, the actual calculations become prohibitive very soon.

An alternative proof that is instrumental in showing the properties of the Bern-
stein operator is through its Riemann Stieltjes integral representation. Its extension
can be used for showing results related to nonparametric estimation (Sancetta and
Satchell, 2001). We show it for the univariate case and then extend it to the k

dimensional space. The error in the approximation can be written as follows,

(Buf)(a /f A Kn(z,t) — f ().

Taking a Taylor expansion of f(¢) around z and using the fact that d;Kn(z,t)
integrates to one, we write

(Buf)(2) = f(z) = /[f(w) + f'(@) (¢ =) + f"(2) (t = 2)°

FFR) (¢ — o) — £ (@)]dKn(z, 1)
- / () (t—2) + f"(z) (t - 2)?

+"(h) (t = 2)’|d K n(z, 1),

where h = pz + (1 —p)t, p € [0,1]. Then we just use a recurrence formula as in
Lorentz (1953), p. 14. We state a version of it that is relevant to our calculations.
Lemmal. Let T, (x) = i (v —na)” (Du’(1—u)"™", n=1,2,... and s=0,1,...,
then Tro(z) = 1, Tor(2) = 0, T () = nz(l— 1), Tns(z) = nz(l— )
(1 —2z), and in general T oy (2) = x (1 —z) [T}, (x) + nsT 1 ()] -
Asn— oo |t —z| < %, then clearly the third term in the expansion is smaller

then the second. Therefore, (B, f)(z) — f(z) = @f”(m) + £

n°
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The multivariate extension follows by noticing the following.

(Bof)(X)= [ -+ [ f(t1, ., tp)dy, Kn(z1,t1) - - - dy, Kn(zp, tr),
[+]

i.e. the operator can be applied recursively. Therefore, the multivariate Bernstein
operator is a k iterate of the Bernstein operator. Writing the multivariate Taylor
series expansion, the multivariate extension can be found to be o (%) , for fixed k,
as in the theorem above when n; = n; for all ¢ and j.

As we increase the dimension of the operator, it is apparent that its performance
at the end points is relatively superior. Moreover, to establish the approximation
it is only required to evaluate the function at different points and take a sum.
Computationally, this is an easy task to perform even for high dimensions. This is

not the case for other approximations that have a faster rate of convergence.

4 The Copula Function

We are now in the position of considering the Bernstein approximation in conjunc-
tion with the copula function as outlined in Section 2. We start by giving a brief
overview of copulae.

Copula functions were first used in the study of metric spaces. A classical article
on their use in statistics is Sklar (1973). All the relevant basic theory is explained
there. Therefore, the reader is referred to it for a brief self-contained discussion.
Details and further references can be found in Joe (1993, 1997) and Nelsen (1997,
1998). Some articles of interest are in Dall’Aglio et al. (1991).

Theorem 4. Sklar (1973). Let H be an n dimensional distribution function
with 1-dimensional margins Fy, Fs, ..., F,,, then there exists a function C from the

unit n-cube to the unit cube such that
H(Z’l, Z’l, ceny Z’l) = C (Fl(l'l), FQ(.CEQ), ceey Fn(.CEn)) N

C 1is referred to as the n-Copula. If each Fy is continuous, the copula is unique.
Proof. See Sklar (1973) =
Some properties will be discussed as we consider the properties of the Bernstein
approximation. There are many families of copulae. In general a parametric family
can be constructed by mixtures. To make the statement more clear we state the

following theorem.
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Theorem 5. Marshall and Olkin (1988). Let Hy, ..., H, be univariate distribu-
tion functions, and let G be an n-variate distribution function such that G(0, ...,0) =
1, with univariate marginals G; (i = 1,...,n). Denote the Laplace transform of G
and G, respectively, by ¢ and ¢; (i =1,...,n). Let K be an n-variate distribution
function with all univariate marginals uniform on [0,1]. If Fy(x) = exp|—¢; ' Hi(z)]
(i=1,...,n), then

H(xy, ..., x,) :/---/K(F{’l(xl),...,an(xn))dG(el,...,en)

18 an n-variate distribution function with marginals Hy, ..., H,.
Proof. See Marshall and Olkin (1988). m

As a consequence of the above theorem,
_ ~1 —1
H(xlw“amn) _¢(¢1 Hl(ml)"“7¢n Hn(l'n))

when K(xq,...,x,) = [[ ;. Clearly C(uy,...,ux) = ¢ (¢f1u1, s ¢;1u1) is a copula,
i=1

where u; = Hj(z;).

4.1 The Bernstein Approximation to the Copula Function

By the Weierstrass theorem it is possible to approximate the above k& dimensional

copula by a Bernstein polynomial, i.e.
1 _1 Vg
(BaC)(us, ooyup) =Y o> ¢ <¢1 1n—q, “"¢k1n_k) Py (1) -+ Py (1),
V1 %%

where P, . (u;) is defined as in the previous section. However, it is interesting
to note that some simple families of copulae have a particular structure that very
much resemble a Bernstein polynomial. These are families with quadratic, cubic
and hyper-cubic sections, i.e. multivariate polynomials of quadratic or cubic order.
A simple example of a copula with polynomial structure is the Farlie-Gumbel-

Morgenstern copula:
O(Ul, Ug) = UUg + 9U1U2(1 - Ul)(l — Uz), (4)

with |f| < 1 being a measure of either positive or negative dependance. However,
the Farlie-Gumbel-Morgenstern copula has very little application to real problems.

It is only a simple perturbation of the independence copula wjus. Its Spearman’s
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rho is bounded in absolute value by 1/3.% Subject to specific constraints the above
copula can be generalized to a polynomial of arbitrary order.

Copulae with polynomial structure have a nice interpretation in terms of condi-
tional probabilities. In fact, the conditional copula is basically the same copula but
with a lower dimensional section in the variable we condition on. For the copula
in (4) this implies

0C (uq, us)
Ous

As it can be seen, (5) has linear sections in uy. For a treatment of copulae with

=uy + Ouy (1 — uy) (1 — 2uy). (5)

polynomial structure and their properties see Nelsen (1998).
The following generalization can be proved to be a copula with hyper-cubic

section in u;:
Clug, ooyup) =ty g+ Y o> 0y Loy (1) -+ Py, () (6)
U1 Vg

Clearly, its resemblance to a Bernstein polynomial up to the additive term w; - - - uy,

is apparent. From section 3.1 we know that for finite n;’s f (%, s Z—’Z) in (1)

is a step function in virtue of its arguments. If we legitimately let oy, . ., =

Q (%, e Z—’;) we just have a Bernstein polynomial. Therefore, we can refer to it
as the Bernstein copula. However, its implementation as a copula function would
require an estimation procedure that is more in the spirit of non semiparametric
than parametric estimation.

It follows from the properties of the Bernstein linear operator that a (¢4, ta, ..., tg)
plays a crucial role in determining the dependence structure of the vector of uni-
form random variables U = (ug, - - - ,uk)/. For the above to be a copula, restrictions
have to be imposed on « (1, s, ...,t;). Then, the parallel with a copula is direct.
By an application of set theory to the probability of events, copulae satisfy the
following inequality, see Joe (1997) or Nelsen (1998),

max {0, u; +---+up — (E— 1)} < C(uq, ..., ug) < min(uy ..., u) ,

uj

3Spearman’s rho is a bivariate measure of dependence. For a copula C(uq,uz), it is defined as
1
pg = 12/u1u2d0(u1,u2) -3
0

—

- 12/C(U1,U2)duldUQ -3
0

where C(uy,us) = 1 —uy — ug + C(uy,ug) is the survival copula.
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which are the Fréchet bounds. Moreover, C(1,...,u;, ...,1) = u; ought to be sat-
isfied. The latter condition just says that integrating out all the other variables,
we are just left with one marginal, that marginal being the distribution function
of a uniform [0, 1] random variable. Therefore, a (t1,...,tx) = 0 in (6) if at least
k — 1 of its k arguments are one. Notice that the Fréchet bounds apply if any of
the arguments in C(uq, ..., uy) is zero, then o (tq,...,t;) = 0 if any of its arguments
is equal to zero.

It follows from section 3.1 that (6) can be regarded as an approximation to a

copula with the following structure:
C(ugy ey ug) = ug - up + @ (Ug, ..., ug) -

Notice that for C(uq,...,ux) = uq - - - ug the approximation is exact (see the proof
of theorem 2 in the appendix), this is why we can just subtract wu; - --u; from
C(uy, ..., ux) and add it outside the Bernstein operator. Then, what we obtain is
(6). The reason for explicitly extracting the term wu; - - - uy is to give an intuitive
representation of a copula as the sum of the independence copula and a perturbation
factor that can be very complex in nature. We can state this in a lemma.

Lemma 2. Any copula C(uy,...,ux) can be written as uy - - - ux+G (uy, ..., ug) ,
where uy - - - uy represents the case of independence and G (uq,...,u) is a pertur-
bation factor containing all information about the dependence of (uq, ..., uy) .

Proof. It follows by the uniform convergence of the Bernstein operator. m

Remark. Notice that G (uy, ...,ux) is the distance of the copula from the in-
dependent copula. This is bounded above and below by the Fréchet bounds. For a
2-copula, the Fréchet bounds define a skewed quadrilateral where the product copula
1s the paraboloid inside it.

For the Bernstein approximation, some particular care is needed for the per-
turbation factor to allow for a valid copula. Without loss of generality, we focus
on the bivariate case. Write « (%, Z—z) = (%, Z—i) — %Z—z, where for all practical
matters we know that v (...) is very much related to some copula C (...). However,
for the time being, we want to treat the Bernstein approximation as a copula itself

and therefore we use this notation. The following conditions must hold:

V1 V2 . V1 V2
YN/ — S mmn | —, —
niy nNng niy nNo
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V1 + My Vo + Mo V1 Vg V1 +mq vy V1 Vg + Mo
’y ) + ’y _7 - 2 7 Y - + 7 _7 - 9
ny w) niy nNo n1 o n1 o

for any 0 <m; <n; —vy;

and

. V1 V2
lim~y|—,— ] =0,
v;—0 n1 N9

where if 7 = 1 then —j5 = 2. The first condition is a consequence of the upper
Frechét bound. The second follows by cumulative distribution functions satisfying
the rectangle inequality. The third is necessary for having fixed marginals. The
fourth is trivial.

Moreover,

V1 V2 Vj V1 V2 . .
a|l—,—=])=—=———=, j=min(u,us)
ni nNo n; T No J

is the Frechét upper bound. For no simple restriction on « (%, Z—i) is the Frechét

lower bound attained. A few other characteristics are as follows: permutation
symmetry if « (t1, to, ..., t) is symmetric in its arguments; symmetry about medians

ifor (2,2, ) = (=0 e B p, = p; for any ¢ and .

n’n?’»' I n n ' n n

Dependance properties can be checked for the Bernstein copula. The termi-
nology is standard in multivariate analysis. For a review see Joe (1997) or Nelsen
(1998). A bivariate copula is positive quadrant dependent (PQD) if

Pr(u; > ay,us > as) > Pr(u; > ay) Pr(ug > as),

ie. G(up,u) > 0. It is negative quadrant dependent (NQD) if the inequality is
reversed. PQD implies that large (small) values of one variable are likely to occur
with large (small) values of the other. NQD implies the opposite, then it is a

measure of discordance. It is stochastically increasing (SI) in say uo, if
Pr(uy > ai|ug = as) = 1 — C (a1]as) (7)

is decreasing in ay for any a;. Stochastically decreasing is obtained when (7) is

decreasing in ay for any a;. Therefore, the Bernstein copula is SI if

V1 Vg nq N9 _ _ _
E E afl —,— aqul(]. — Gl)nl ”%152 1(1 — CLQ)”Q v2
niy ng V1 V2

v1 V2
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is decreasing in ay for any a;. These properties and a few other important ones can
be established once the parameters of the polynomial are known or some functional
form to generate the parameters is specified. For simplicity we just mentioned some
properties for the bivariate case. Indeed, dependence properties are easier to handle
for the bivariate case, but they also provide a better intuition behind the concepts
for the multivariate extension. However, some generality is lost and not all defini-
tions will directly extend to the multivariate case. The reason for being interested
in these measure of dependence is that they provide a link with stochastic orders.
Stochastic orders can often be defined for variables having common copula. The
fact that the copula is invariant under increasing transformations of the marginals
allows us to apply it not only to intertemporal optimization, but also to areas of
economics such as income distribution and applications of stochastic orders. We

conclude this subsection and turn our interest to the density.

4.2 The Bernstein Density Copula

Differentiating (6) with respect to each variable and rearranging we can easily see

the close link in structure with the density,

ni—1 mnp—1
okC (uy, ..., ux) _ i vy Vg
= 1+”1"'”/~c E E ACI{17”.7]€ I
8u1 s 8uk nq N

v1=0 v =0

X Py my—1(u1) -+ - Py 1 (up).

Differentiating, a term in the summation is lost and the coefficients of the polyno-
mial are written as a difference form which is directly linked to the generalization

of the rectangle inequality,

1 1
U1 Vg \ ykmLt v +my UV + My,

k|l — = = E g (—1) Q y s )
ni N ni N

m1=0 mg=0

The above result follows by applying the difference operator A recursively. There-
fore, we can easily find any derivative with respect to any of the variables. See
Lorentz (1953) for the univariate case.

However, if interest lies on the density, it is more convenient to use the following
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definition for the density,

c(ug,...,up) = 1_|_Z Z <“1 W)

v1=0 v =0

xH() (1 — )" (8)

Here, we keep the one outside the operator for expositional convenience in what
follows. The necessary and sufficient conditions for it to be a copula density are
c(uq, ...,ug) > 0 everywhere, and that integrating out all variables we are left with
one marginal. The second condition is worth exploring. We proceed in an heuristic
way. Assume that (8) is a valid copula density with univariate marginals u;, - - - , uy.
Integrating all the variables (see Appendix B for some details) and taking limits

over their support for £k — 1 of them,

w = ul—l—z Zﬁ(“l. k)H(Z?)B(ijrl,nj—ijrl)

v1=0 v =0 Gl J
n,

X < l)Bul(l)l + 1,nl — v+ 1),
(Y

where B(a,b) and B.(a,b) are the beta and incomplete beta function. Though it is
written in a complex way, the above expression is just a polynomial of order n + 1.

It can be written (see the appendix) as

u = ul—}-z Zﬂ(vl Uk)

1)10 ’UkO

X H (;;)B(Uj +1,n; —v; +1)

J#

v /) U
n+1

= ul+§ a,uy,
p=1

ny uf’“
X +12F1(1)l—|—1,1)l—nl;vl—|—2;ul)

where

0 Z Y Zﬁ(”l _)

v1=0 Ul<p 1 V= =0

X H (7;>B(1)j +1,n; —v;+1)

J#l
« i (nl> (q + 1)p—q—1 (q - n)p—q—l
q=0 q q + 1 (q + 2)p7q71
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which is a scalar obtained by collecting terms of the same order, where (§), is
Pochhammer’s symbol and is defined in the appendix. Since the set of monomials
{u — u”|v < n} is linearly independent, then it must be true that a, = 0 for all p’s.
However, it is not clear if there exist a solution to a, = 0. By the Binomial theorem,
which can be shown to hold for k& dimensions (for example see Cheney and Ward,
2000), we know that the integral of a k dimensional Bernstein operator is equal to
u; when we integrate out all other variables. In fact, the sum of all monomials is
equal to zero except for z° which is equal to one. Therefore, it can easily be shown
that there exists a solution to the above problem which guaranties the density to be
positive everywhere. One might argue that imposing the above restriction does not
allow the density to be exactly zero at the limits of its compact support. However,
we are concerned with a copula density and its tails differ substantially from usual
densities. For an example, the reader is referred to the appendix for the three
dimensional graph of the Kimeldorf and Sampson copula density. The Kimeldorf
and Sampson copula is defined in the next subsection. Its density is unbounded at
the origin. Therefore the Bernstein approximation cannot be directly applied to it,
but just to the cumulative distribution. In a worked example below, we will use a
copula with bounded density.

While very general, attempting to estimate a copula directly from a Bernstein
polynomial might be computationaly infeasible and not efficient. It is probably
more reasonable to use it as an approximation after having estimated a copula
through maximum likelihood or some maximum entropy approach to guarantee
fixed marginals; see Joe (1987). Indeed the choice is quite vast and should depend
on several factors like data and computing power. Moreover, in multidimensional
density estimation, it is known that data are much more dispersed and large sample
data are required even for semiparametric or parametric estimation. Techniques
and specific methodologies for estimating a k£ dimensional copula will be provided

in future work.
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4.3 Spearman’s Rho and the Moment Generating Function
of the Bernstein Copula

At this point some light can be shed on the dependency properties of the Bernstein
copula. The copula is

Clu i) — ot 353 (2)

V1= 0 V= 0
XH ( ) (1 —uy)™™,

and its bivariate marginal distribution, say for u; and us, is

v1=0 v9=0

< 1] < ) (1 — )Y

j=1,2

We now calculate Spearman’s rho. Spearman’s rho is a bivariate non-linear measure
of dependence. It is the covariance of the distribution of two random variables under
their joint probability measure. Therefore, assets which have zero covariance, could
have positive Spearman’s rho. Its use is advocated on the basis of the documented
non-liniarities in finance and its easy practical calculation. For the Bernstein copula
it is equal to,

11
Pg 12//[1—u1—u2—I—C'(ul,uz,l,...,l)]dulduz—3
00

R v v
1 2

= 12 E al—,—,1,...,1
niy nNng

X
/‘\
3
.
\_/
\H
O\H
:
)—l
|
I
b
E
S
<8
N
=
<8
<
(3]

0
AR ’U1 1)2
= 12 «
v1=0 v2=0 771 n2
ny
X B(v]+177]+1—1)])
7j=1,2
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The first equality follows by the definition of a Bernstein copula as the sum of the

case of independence and a complex perturbation term, i.e.

1 1
12 / / (1 — Uy — U2 + U1U2) duldu2 =3.
0 0

All dependency information is contained in the perturbation term. Even when the
Bernstein copula is used as an approximation, the above Spearman’s rho can be
used as an approximation to the true Spearman’s rho of any copula. If enough
terms are included, Spearman’s rho can be easily found to any degree of accuracy
without the need of evaluating complicated integrals. However, care has to be used

in defining
a (ury oy up) = C(ug, oy up) — Uy -+ - g

For the sake of completeness the moment generating function of the density in (8)
is found. We do it for the one variable case. Then we just extend it to the k

dimensional case.
1

M,(t) = /exp {tu} c(u)du

_ ZZ; 3 (%) (Z) / exp {tu} u (1 — u)""du,

where without loss of generality we have omitted the first term and absorbed it into
B = — 1. Before proceeding any further, we notice the following (see Marichev
(1983), p. 87),
1
Fi(a;¢;2) B(a,c) = /exp {zr} %7 (1 — 1) tdr,
0
Re ¢ >Re a > 0, where 1 Fi(a; ¢; z) is Kummer’s confluent hypergeometric function
and T" (c) is the gamma function. For a = v+ 1, ¢ =n + 2, and z = ¢ this implies
1
/exp {tu}u’(1 —w)" du=Fr(v+Lin+2;t) Blv+1,n—v+1).
0

Therefore,

M,t)=Y j (2) <n>1F1 (v+1Lin+2;t)Bv+1,n—v+1)
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To obtain the moment generating function for the k£ dimensional Bernstein approx-

imation just replace the univariate result in the multivariate definition,

M,(t) = / /exp{t up + - +uk}z Zﬁ(vl ”’f)

V1= 0 ’U*O

k
xH(n]) (1 — )" " duy - - - duy,
7j=1
__ = nzkﬁ U1 Vg
— o

01=0  vp=0
k
X H1F1 (v;+1;n; +2;t) B(v; +1,n; —v; +1).
j=1
These results can be used to further investigate the properties of the Bernstein
copula and its approximations. Notice that in the case of approximations the results
are qualitatively good but quantitatively misleading if a large order of polynomials
is not used. However, approximation by higher order of polynomials is trivial
and numerically feasible. Deriving results on the joint moments of the Bernstein
copula is quite easy in virtue of its incomplete Beta function representation. The
joint moments are important to study the scale free dependence properties of the
variables.
To give a simple example of the viability of the Bernstein approximation and
its range of dependance we approximate the Kimeldorf and Sampson copula (see
e.g. Joe (1997) p. 141), which is equal to

DI

C(u,v)=(u’+0v?—1)"

Figure I shows the 3 dimensional graph of the Kimeldorf and Sampson copula den-
sity. 'We report the values of Spearman’s rho as a function of the dependance
parameter 6 in the approximation for n; = ns of order 10, 30, 50 and the cor-
responding ones for the Kimeldorf and Sampson copula (KS). Figure II and III
show the contourplot of the two copulae when 6 = 1.06 and n = 30. In Table
I, values for Spearman’s rho in KS are from Joe (1997), values for the Bernstein
copula (B,,) were calculated on a Pentium 150 MHz. Because of computational
difficulties the limit of the dependence parameter to infinity was not calculated for

the approximation. Differences are found as a result of polynomials being fairly

4Figures and Tables are in the Appendix.
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slow in adjusting at turning points. In this case, improvements can be achieved by
increasing the order of the polynomial. Though the polynomial might be of large
order, its actual calculation is straightforward. Indeed, all computations required
between a fraction of a second and 20 seconds. The evaluation of the integral for
the computation of Sperman’s rho for the Kimeldorf and Sampson copula could not
be performed on the same computer using Maple. By contrast, for the Bernstein
copula, the calculations on the same computer are straightforward. A polynomial
of order fifty increases the computational time to about twenty seconds, and the
error is not too great.

Even though we restricted ourself to Spearman’s rho, other estimators can be
employed to investigate non linear dependence properties. See Embrechts et al.
(1999), Joe (1997) and Nelsen (1998) for a description of other measures of depen-
dence.

5 Implementing an Extreme Portfolio Density:
the Case of Marginal Weibull Distributions

In this section we consider a k x n matrix X = [X;, X, ..., Xi], where X is the ;%
column. We assume that the variables in each column j =1, ..., k are 7id copies of
some random variable z;. However, no restriction is imposed on the dependance
among column variables. Notice that this assumption is realistic. We can usually
find a linear or non linear time series model such that the innovations are iid.
GARCH models are an example. On the other hand, a multivariate standardization
to generate a matrix of iid copies is often not feasible to implement and in any case
not adequate for our purposes. We think about X, as being a vector of relative
prices. Let the distribution for each random variable have the following functional
form as z; — 0:

F(z)) ~ ajzy (9)
defined on the positive real axis, where a;,b; € .., 1 < 7 < k. We choose this
limiting functional form bg:ause of its fat tails properties. The above (9) is a power
function with E(x27) = a;? ( bjbiT

of Z; = min(Xy;, Xaj, ..., Xyj) as n — oo. In order to find the limiting distribution

). We are interested in the limiting distribution

of X, it is necessary to find a suitable standardization. Standardizing by mean
and standard deviation is not adequate in this case since interest lies in the local

behavior in the neighborhood of zero. Choose Z7 = Z;n. Now,
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z)=1- Pr(le > 2, X0 > 2, .., Xy > z)
= 1-[1-F(2)]".

Then,

Pr(Z; < 2)=Pr(Z < —)

j
distribution. Such a distribution has theoretical justification in the description of

for ¢; = % ,Pr(Zy < 2) ~1-— exp{—aij-j}, as n — oo, which is a Weibull

multiplicative processes in nature and economics. The exponent b; is the reciprocal
of the number of multiplicative processes. See Frisch and Sornette (1997) for the-
oretical justifications, and Laherrére and Sornette (1998) for empirical evidence.?
However, a characterization for the returns that allows for a great deal of gen-
erality can be obtained by the use of the following modified Weibull density,

a;b; (|2 — +m)" j
i (17 2]\ ) exp{_aj(\%j_ujum)b}, (10)

1
b—1\3
. ab ) ’
if b > 1, m = 0 otherwise, is equal to the maximum of a Weibull.® The parameter

»; =In(z;), E (5) = p, where 3; € R is assumed to be ergodic, and m = (

is such that the two sided distribution is unimodal. Further generalizations can
be achieved allowing for asymmetry and bimodality. In that case further care is
needed in defining the shifting parameter. For simplicity, we will not pursue these
generalizations. However, even if a modified Weibull is used the calculations and

results are basically the same. Therefore, no generality is loss in the sequel.

°In the terminology of these authors a Weibull distribution is called stretched exponential.

OTf relative prices have a Weibull distribution, then the returns (i.e. the log of relative prices)
have a Fisher-Tippet density. Nevertheless, a modified Weibull is defined on the real numbers
and all results presented directly apply to it. Fisher-Tippet density can be used in this framework
as well. Notice that Laherrére and Sornette (1998) used a Weibull distribution in log rank plot
for the returns (i.e. they divided the sample into positive and negative data) and showed a very
good fit. Therefore, the use of a modified Weibull is consistent with their results.
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Restricting ourself to the Weibull distribution, let u; =1 —exp {—ajx?-j }, then

we can write the multivariate density of X as (15),

S p( )

v1=0 v =0

H< )u LFo(v; —ngyuy) .

C(uh ) uk)

Then,

c(xy, ., xp) = ZZB(Z—II,,:—Z)

v1=0 v =0

k
where [] (ajbjx?j 71) exp {—ajx?-j } is the Jacobian of u; — z;. The expression
j=1
above has the disadvantage of being written in powers of 1 —exp { a;T } There-

fore, directly from (8) we write,

ol v v
b 1 k
C(.Tl,...,.fﬂk) = E E ﬁ(n—l,,n—k>

v1=0 ’Uk*O

I ()

j=1s;=0

o ) n;j—v;+1+s;
X (ajbjacjj 1) (exp{—aja:?]}) S (11)

However, interest does not directly lie in the joint density of the assets, but in
k

the following random variable: S = Z w;xj, the portfolio return, where w; € .
j=
Formally, the general solution for the densaty of such a random variable is

k
pdf (S / / (1, .oy k)0 (S—ij%) dxy -+ - dxg
j=1

where 6 (...) is the Dirac delta function. We now turn to finding its characteristic

function.
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5.1 The Characteristic Function

k

Here, we find the characteristic function of S = ) w;z; where w; € . We shall

7j=1

find the Fourier transform of (ajbjx?j _1) exp {—Avjsjaij.j }, Ays; = (0

j
s; +1):

[e.°]

s, (1) = / (ajbjx?j_l) exp {—Avjsjajx[;-j } exp {itz;} dx;

0

vj +

We do not consider the moment generating function because this does not exist

for b; < 1. For our purposes b; will often be less than 1; see Frisch and Sornette

(1997). We note that the above integral always converges. Let y = A, s a;x

= Ay, s,a5b;x ", and expanding exp {itx;} around zero,

oo l

6., (1) = /‘TJ;(AQ )”_j(ilt!)ldy

iy 5. Qs
V8 v;5; Uj
0 77 77

l+bj

B g; (A;j)b_j (%)

Therefore, the characteristic function of S is

os(t) = S .. B (% Z—i)

v1=0 vk:O

o-lN

EU ) S 1\
n/J) J/s; < ) j
X
]Hlsjz_;(% I (s;) IZ; Ay,
X i E[‘ i+1 (ijt)l
a; b; I
B ni i B (7)1 ’l)k)
= = n, 3 9 ng
koo vj ( ) ] I4by
nj) —Uj ( ) bj
X
]1_[1 lz(; ;=0 <Uj r (SJ) AUJSJ

2 N
(L)
b; Il

bj
7o

(12)

The above expression can be easily differentiated with respect to ¢ evaluated at

zero, and then with respect to w; if some kind of index notation is introduced. The

26



procedure is tedious, but straightforward. In the appendix we calculate the first

two moments.

5.2 Maximizing the Negative Exponential Expected Utility

Function

The characteristic function of S allows us to find moments and minimize them with
respect to the weights given a first moment constraint. However, such a procedure
is highly arbitrary and irrational from the point of view of a utility maximizer.

Assume an agent having the following utility function,
U= —exp{—S}

that is a negative exponential utility function. This function is characterized by a
constant Arrow-Pratt coefficient of risk aversion equal to . It could be argued that
this function is superior to quadratic utility functions in representing preferences.
Quadratic utility functions exhibit increasing absolute risk aversion implying sati-
ation and moreover that risky assets are inferior goods. However, they are often
used to derive tractable results whose risk characteristics are questionable.

The expected negative exponential utility function is equal to
EU = —Fexp{—S} (13)

which is just equal to minus the Laplace transform of the wealth’s probability
density function. Notice that the Laplace transform is directly related to the Fourier
transform by a change of variables. Let —y = ¢t and the Laplace transform, say
£s (), can be minimized. Since ¢g (t) is written as a linear combination of an

infinite non convergent series, it is impossible to find a solution to this problem
k
sup —Fexp —vz W;T; o .
wj, 1<j<k =

Moreover, ¢g (t) is characterized by oscillations of hyper-exponential order, i.e. it
is not a nicely behaved function. However, in the appendix we prove the following
result.

Proposition.

¢q; (1) = / (ajbjm?-jfl) exp {—Avjsjajxl;j} exp {itz;} dx;
0

B' 1 3 1 2,![1,+T,! . A})/g] T
- J ,_'qu TjQ (27) o Y {(qjjrjj) (— 2 ,
j
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where
1 &
qu(;) = > 7T [0) by, (@) + b
i=1

()
Xojlaj ((a)’ + b 1+ b; — (b)'; ) )

T

(a) = (O,%,%,..., rj?;l), (b) = (qij,q%,...,l) , a; is the i entry in vector (a),
similarly for b;, and the empty product is replaced by 1.

Proof. See the Appendix m

The above expression is convergent for 7 # 0 when ¢; > r;, which is the value
we are interested in: 0 < b < 1. Nevertheless, for ¢; < r; an alternative form can

be easily found. Therefore, a numerical package could be used to minimize

SRS () e,

v1=0 v=0 j=1s;=0

k
with respect to the weights subject to Y  w; = 1. Notice that there is no gen-
j=1
eral closed form solution to this problem. A solution can only be found numer-
02 exp{—yw,z;}

Bw? o
(vz;)? exp { —yw;x;}, which is one standard result of Laplace transforms of densi-

ically. To see that the solution is a minimum just recall that

ties with semicompact support being convex completely monotone functions. By
the properties of Laplace transform we can further argue that there exist a real w,

such that lim M < 0 subject to Z w; = 1. The result holding for the

W,
mult1var1até cajse estabhshes the existence of]séch a w.

The procedure advocated above has firmer economic ground than the simple
mean-variance optimization. Moreover, the value of v has direct economic inter-
pretation. We feel that the above optimization has not been feasible because of
difficulties caused by multivariate non-normal densities. However, the use of the
copula function and the Bernstein operator makes this possible.

If we wish to simultaneously compute value at risk or utility free optimal

weights,” this can be done by inverting the characteristic function to find the den-

"We use the term utility free optimal weights to indicate the solution to the following problem,

o [ P95
A
k
sty wy=1, w; >0, 1<j<k
j=1
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sity of the portfolio,

pdf (S) = % / exp {—iSt} ¢g (it) dt.

The calculation is tedious but, in this case, straightforward because of the polyno-

mial structure of the characteristic function.

5.3 A Simple Illustrative Example

Optimal portfolio weights for the simple two dimensional case are calculated from a
simulated random series. The results derived through our approach and the use of
normality are compared to the optimal weights derived from minimizing the empir-

ical Laplace transform. Under suitable conditions, the empirical Laplace transform
N

is a consistent estimator of the true Laplace transform: plim > exp {—7S;} —
t=1

E (exp{—~S:}). In fact, allowing for several simulated observations that are er-
godic and epoch uncorrelated, this seems to be the best available criterion for
assessing the performance of our methodology versus normality. Two thousands
observations for two data series were generated using the following data generating

process:
Z; = )\Z + ti + fj (t])

for i # j where f;(...) is some function and ¢; is a t-distributed random variable.
The Appendix contains details about it, plus summary statistics and a few details.
The above specification will guaranty non ellipticity for a non trivial choice of
fi (...). The correlation for the generated series is equal to 0.2516, where the first
series has lower mean with lower variance. The data are defined over the real line
and can be thought as log differences in prices. Therefore, a modified Weibull is
used. As mentioned before, a modified Weibull allows for much generality. In fact
it can capture fat tails and approximate densities that are both strictly convex or
bell shaped.

Although in portfolio problems it is appropriate to use arithmetic returns, we
use geometric returns. Arithmetic returns have the irritating prospect of being
bounded below. Since one of our competing models is normal returns, we have
chosen to use geometric returns so that both models have the same range. The

economic rationale for not bounding returns below is to jettison the free disposal

where A ={5:5 <¢}.
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assumption. Thus we model an investor who considers optimizing a portfolio of
forward contracts, ownership of which confers a liability on the holder.

For simplicity, the parameters were estimated in a two step procedure. The
likelihood for the univariate marginals were separately maximized. Using the es-
timated parameters from the univariate likelihoods, the likelihood for the copula
was optimized with respect to the dependence parameter; see Joe (1997) p. 299-
301 for details. The best fit, under the constraint b > 1, gives b = 1 for both
series, and a; = 1.1695 and a, = 1.0839 for the first and the second, respectively.
We use b > 1 as constraint in order to simplify the calculations. However, the
fit still remains good. Figure IV shows the graph of the first series; clearly, it is
highly peaked. Actually more complex features emerge, but for simplicity we do
not try to model them. Therefore, we just assume symmetry. The copula function

is estimated parametrically and a Plackett copula is used,

C(u,v;0) = %{(«9—1)1—}—(9—1)(11—}—7))

Nl=

— [+ (0 —1) (u+v))*—40(0 — 1) uv]®}.

Figure V shows the 3 dimensional graph of the Plackett copula density. The depen-
dence parameter estimated for this copula is # =2.1459. Then, we approximate the
above copula by a Bernstein polynomial. The order of the Bernstein polynomial is
n = 10. Because of the low dependence of the two series, this order of polynomial

is adequate. Indeed, similar result up to 3 decimal point were found using a larger

30



polynomial.® The Bernstein approximation to the copula density is the following,

c(s1,519) ~ ZZ (U—l U—29)

v1=0v2=0
v]
(1)
j=1,25;=0
n—v;+1+s;
Ly (en{a, w—m} e
2 2 ’
if »¢; > ij
)
V1= 0’!)2 0
’UJ ’)sj
Y1) S
j=1,25;=0
vj+1+s;
Ly (e {o; (g =)} )
2 2 ’
if 25 < py,
where ¢ (u,v;0) = %. Therefore, the problem is reduced to the evaluation

of the Laplace transform of a simple exponential function. However, care has to
be used in evaluating the integral since the function is not centered at the origin
and it is not differentiable at its maximum. Therefore, the integral was split into
two parts. Details of the calculations are available upon request. The function was
maximized with respect to the weight w; which is associated with the first asset.
The same calculation was carried out assuming normality, and optimizing the em-
pirical Laplace transform. The coefficient chosen for the expected utility function
as defined in (13) was v = 0.5. The results are shown in Table I1.” The results
show that under the normality assumption the risk is underestimated. Normal-
ity chooses a lower weight for the variable that is safer according to the empirical
Laplace transform, but which has lower mean. By construction we can expect the
first series to be representative of a less risky asset. In fact, this was generated
using a t-distribution with 9 degrees of freedom plus a perturbation term, versus

the 7 degrees of freedom of the second one. The reader is referred to the appendix

8Often, the order of polynomial improves the fit in terms of curvature. In simple cases like
this one, the stationary point of the function would almost be the same as we increase the order
of the polynomial.

9For n = 20, w was found to be 0.5255.
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for details on the data generating process. As mentioned before, the risk of ruin
is much higher, but normality does not capture this. Further, not looking at all
higher order moments does not allow us to effectively assess risk. Indeed the second
series has a lower kurtosis, but higher variance. These two alone do not allow for
rigorous probabilistic assessment of risk.

Better results could be obtained, but the purpose of this simple exercise was just
to show that results might be extremely different under the two approaches and
that our method gives a quite close answer to the true even when just a small order
of polynomial is used. We recall that the empirical Laplace transform does not gives
the exact answer, but the estimated weight converges asymptotically to the true
value by the continuity of the utility function and the epoch uncorrelation of the
data series. This can be easily shown by delta method. Empirical applications will

be provided in the future.

6 Concluding Thoughts

A specific technique to estimate dependencies and portfolio densities was discussed.
This can be achieved either through semiparametric or parametric estimation. In
the former case an empirical copula would be estimated, in the latter a parametric
one.

Tractable results were derived by the introduction of the Bernstein operator.
Indeed, parametric families of copulae allow for very complex dependency structure.
However, when the dimension increases and symmetry in the dependence structure
is ruled out, then big parametric models have to be estimated. The problem with
expressions having complex structure is that it might be impossible to derive any
further results. On the other hand the use of Bernstein polynomials allows results to
be tractable. Moreover, some parametric families of copulae have a structure that
is identical to a Bernstein polynomial plus a known additional term. As described
in the paper, feasible restrictions can be imposed to the parameters in order to
define a copula function. This allows to define generalized families of multivariate
distribution.

The convergence properties of the Bernstein approximation were investigated
for the arbitrary k£ dimensional case. There is a vast literature on convergence of
Bernstein polynomials. However we did not find specific results for the k dimen-
sional case. For the sake of completeness, we preferred to introduce them explicitly.

As mentioned in the introduction, Bernstein polynomials are objects that arise
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in many branches of mathematics and probability. The representation of Bernstein
polynomials through transcendental functions is convenient to derive some results.
For example we easily found the covariance of marginals using Bernstein polyno-
mials. By the definition of copula, the joint moments with respect to the marginals
are of interest, but do not tell the full story about dependence.

We also provided an application to the construction of a general portfolio. Fixed
Weibull marginals were chosen because of their documented adequacy to capture
the distribution of financial returns. It was shown that the problem is a univariate
problem in virtue of the use of the Bernstein operator. We established the existence
of optimal real weights for the portfolio according to economic theory without the
restrictive use of quadratic utility. Finally, we worked a simple simulation example
to show that the optimal weights derived under normality and our approach can give
very different answers. Indeed, the answer under Normality might be misleading,
while the results for the Bernstein copula were pleasingly close to the empirical
Lapace transform which is known to converge to the true value under the stationary
conditions of our experiment. Moreover, we remark that only a small order of
polynomial was used in order to derive our results. The intuition is that while slow
to adjust, the Bernstein polynomials capture fairly well the turning points of the
function.

Several issues were only briefly considered. We just mentioned their parallel
with non parametric estimation as a consequence of their singular integral rep-
resentation. In fact, an empirical copula could be estimated using a Bernstein
polynomial as smoother. We did that in a companion paper whose results are
very promising in comparison to kernel estimation. In a way, this is a new idea
in density estimation in the econometrics literature. Copulae open a door for the
use of multivariate semiparametric estimation, i.e. if the marginals are known, the
copula estimation can be carried out nonparametrically partially avoiding the curse
of dimensionality, (Sancetta and Satchell, 2001). There is a large choice of estima-
tion methods, however the best should be chosen on the basis of its feasibility and
consistency with the data.

It is also necessary to remark on the limits of our approach. The direct con-
struction of a copula through Bernstein polynomials might be difficult requiring
the estimation of many parameters if strongly dependent variables are considered.
Nevertheless, if Bernstein polynomials are used as an approximation after copula
estimation, it is possible to let the order of the polynomial go to a large number
still allowing for tractable results. Other better approximations would require sev-

eral computations as the numerical evaluation of some complicated integrals and
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moreover they could not provide a clear parallel with the copula function itself.

It is felt that there is scope for applications of Bernstein copula to many prob-

lems concerning the aggregation of asset returns. We leave all these problems to

further research. In particular, further empirical assessment of derived results is

required as the principal test of effectiveness of the suggested techniques.
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Proof of Theorems and Proposition

Proof. Theorem 1. i = 47 : by the condition given in 1.

11 = 117 :write

k k k
Or(X) = Bfo—2> tfi+ > fi
i=1 i=1 i=1
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wheref; = z7; then

(Gnopr) = th nfo —2Zt Guf1) + D _(Guf3).
Now,
k
(Gn¢T) - ZtQ nfO _1 _2Zt nfl 2] +Z[(an§)_tﬂ

k
< Zt? (G fo)(T) — 1 +2Z\m [(Gufi) = til] + > (Gufs) — 8
i=1 i=1 =1

Therefore, by the conditions stated in i, (Gn¢,)(T) — 0 uniformly.
111 = 1: by the continuity of f, 36 > 0 such that

1T = X|| <6 = |(T) = F(X)| <
for any € > 0. Let T be an arbitrary fixed point in A.
IT = X|| > 6 = |f(T) = F(X) < 2|/ <2IfIIT - X|* /&%,
which for any X in A satisfies the following inequality:

[f(T) = f(X)] < e+ agp(X),

where o = 2| f|| /6*. Multiply both sides by fo = 1, apply the linear operator G,
and then let X — T'. Hence,

[F(T)(Grnfo) = (Guf )T < e(Gufo) + (Gndr)(T),

(Gnor)(T) — 0 uniformly, by the conditions stated in éii; so the following inequal-
ity is satisfied:

[f(T) = (Gnf)(T)] < e,

for any arbitrary 7', which proves the last part of the theorem. m
Proof. Theorem 2. Without loss of generality, attention is restricted to the
k* dimensional unit hyper-cube. Consider the following k¥ dimensional Bernstein

Polynomial:

=3 S () B ) P )

’U10 ’UKO
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where P, . (z;) = (;‘j)x;“(l — xz;)™ %. By the theorem on Linear Monotone

Operators it is sufficient to show uniform convergence to f for the following cases:
f(X)=1z;,25,1<j<k

Z val ny .131 'UK HK(:'E/C) =1,

by the binomial theorem.

(Buz)(X) = Z Z Z() e (01) e Po (53) - Pone (21
B (@) (-

. — 1! _
= 7y n 2L — )

(n; —vj)l(v; =11

where the first equality follows by the binomial theorem.

(Bu?)(X) = Z Z z() o (e0) e+ Po o (53) - Poone (20
S () (-

vj=1
n; —1 ! v; —1 n; — 1\ o, -~
= 1— T —Vj
n; Z(n]—l v;—1 a:]( 7))
vi=1

1 & 1\ ..

+— (”ﬂ )x;u )
n; c= \v; — 1
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Proof. Proposition. Let —itz; =y, = x; = %, % = _%t = % y U= ﬁ,
then B
T B (gAY iy AV idy;
(v) = J J4v58; e _ I35 e sV 2
r B; ( v >bj ( v )bj dy,
(2) el (L) b (g
O/Ai]/.i’; Yi Ui "y
Bj —1 * * .
= 1/b; M {ﬁl(l)ij(l)’ U} )
Avjis;

which is recognized as a Mellin convolution type of integral, where $7(s) and $5(s)

are respectively the Mellin transforms of the functions with arguments i and y;.

Make the following change of variables, bj:Z—;, AN=0v" 2= Yy, % =y’ -
B, 1 [(A\% A\ \d
o (AT_J) = 1—”1)—/ (—) ’ exp{— <—> J}exp{—zj” } ]
’ AL \% Zj Zj
227 0
Bj 1 _1 1
= - e
AT

Now,

o= [(2) e (5) 7)),

1

1
-1 (A) i ', therefore

zj
H1(l) =g /eXp {7} 9ldr =T (—q;l +1).
0
Now,
syt = [e {2 a,
0
= 1
Let 7 = zj”' = z; =779, %Tj — TLijTj _ therefore
ﬁ;(l) =T /eXp{—T} il g =1 (le) )
0
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Then
f')*(l) = QjTjF (]_ — qjl) F (T’jl) 3

and using the Gauss multiplication formula for I' (1 — ¢;{) and I" (r;1) (see Marichev
(1983), p. 110) we can write,

31 2= (aj+75) g T\
57)*([) = q]'Q rj2 (27T) 2 (q]'J Tjj)
1 2 1 2 —1
T ——z,——z,...,l—z} T {z,—+z,—+z,...,” 1.
qj qj Tj rj T
We need to find the following inverse Mellin transform,
Y4ioco
9(l) = / H* (DALl
¥—100

Notice that if Q()) is the inverse Mellin transform of I'[...], then Q(%) is the
inverse Mellin transform of N°I'[...]. Now choose v € (0, é) and deform the path
of integration of the above integral to be the close contour comprising of the line
~ parallel to the imaginary axis and a loop surrounding either all left or right
singularities of the integrand. The integral along the arc will tend to zero as its
radius goes to infinity; therefore,

Y+ioco

/ O (DAl = 7{ O (DALl

Y—ioo ‘

It follows that the value of the above integral is equal to the sum of the residues
surrounded by the loop. To avoid convergence issues, we just apply Slater’s theorem
(see Marichev (1983)). By Slater’s theorem,

T

Qlr) = /Ooij(l)fl—lm

/ / (_1)_qj
erqu-l (a) + bz; 1 + bz — (b) ),

where in our case (a) = (O L2 ,E), (b) = (qi 2 ...,1), and 7 = qA]T_JT =

77-]7,,-]7 j ]7%7 _(qj 7‘]])
1 t
Ty - M
(qj Ty )“41)]‘5;‘
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B Transcendental Functions and the Bernstein

Operator

An alternative representation of the Bernstein copula is through incomplete beta

functions,

T

B:(p,q) = /tp‘l(l—t)q_ldt

0
P

X
= ?Fl(p,l —¢p+ 1)

where 2F'1 is Gauss’ hypergeometric series, or simply the hypergeometric function,
i.e. the probability generating function of an hypergeometric distribution; see
Abadir (1999) for an introduction for economists and references therein. Here
we recall that

= '
pFq(ay,...;ap;c1, ..., cq ) Z ), -
=0 q)" v
where (a), = % and similarly for (c),. Note that throughout the paper the

following convention is used, (0), = 0.

Integrating (8) we can write the Bernstein copula as

Clu, oyuy) = uk—i—z Zﬁ(“l “’“)

v1=0 vE=0
k

n.
X H (vj)Buj(vj +1,n; —v; + 1)

Jj=1

_ uk—l—z Zﬁ(m ”’“)

v1=0 vE=0

k v3+1

X H (m) >F1(7J] + 1,05 — nj; 05 + 25 uy). (14)
j=1

It should be noticed that for v; < n;, which is the case of the Bernstein copula,
:Fi(v; + 1,v; — nj;v; + 2;u;) is a polynomial of order n; — v; The value of this
representation through transcendental functions should not be underestimated. In
fact, this always allows one to directly write the Bernstein copula in powers of

the marginal distributions only. Therefore, it is possible to work with distributions
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that can be regarded as multivariate distribution functions of 72d random variables.
Moreover, in this case the Gauss hypergeometric series is a finite polynomial, then
any convergence issue is avoided. A similar result can be obtained by writing
(1—u)? = ZU: (—1)*(?)u* which is the familiar binomial expansion, and substituting
it in the cé??ﬂa distribution. Remember that when we differentiate we loose one
factor in the summation.

Differentiating (14) we can find a useful expression for the Bernstein density

copula

akC’(ul,.. uk vy vk
Ou 0usy - - - 1+Z Zﬂ( ' )

1)10 ’UkO

k ’Uj-‘rl
n U,
XH( ]) (3—%) ;.+12F1(Uj+1=Uj—”j?”j+25“j)

- 1+Z Zﬁ(”l ”’“)

V1= 0 1)*0

xH( ) 7 Fo(vy — ny;ug). (15)

C The First Two Moments of the Portfolio

The first two moments can be easily calculated from (12). Remember that E (S™) is
the coefficient corresponding to t”. Therefore, instead of multiplying all polynomials
in (12) and find the corresponding coefficient, it is easier to take a subset of the
above polynomials, i.e. the polynomials of order n at most and multiply them.

This considerably reduces the calculations. Moreover, we can write

f1[5n 5] = HE[E () ()

j=1 j=11=0 |[s;=0 Visi

X 1 r i+1 (ijt),
aj bj l'

where the summation goes to n and not to infinity, i.e. it is a subset of the equivalent

term in (12). Since the dummy suffix [ in g;, uniquely identifies the order of ¢, we
9u, 91,
Tl lg!

can say that the coefficient in g;; of t" is the sum of all partitions of such

k
that Z l] = n.
J
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To give a manageable example we only consider the first two moments. Usually
interest lies just on these two. The first moment is given by the different ways of
choosing one object out of k, i.e. k. This means that the first moment is given

by the sum of the sum of the following &k terms, g1,9o, - - - o, + 90,915 * * - go,, + --- +
901902 " - 91,

U1 Vi

E (S) = Z B <_7 ) _) (911902 9oy, (wl) + 90,915 - * * 9oy, (U)Q) + ..

nq Nk
+901902 g1y, (wk))u

where g;, is as defined above. The second moment is given by the sum of the sum

of the following k+ (15) terms, (921902'-'90k+901922"2'gok+"~+901902"'92k) + (911912 g, +

91,90,915 -+ Jo, + - + 90,905 - 91,1 91, )

B(s) = 130305 (“1 ”’f)

’U10 ’UkO

(92,905 * - 9o, (W1)* + Go,92, - - go, (w2)” + ...
+901902 © g2, (wk)Q)
v v
£33 (L)
v1= 0 Vi =0
X (91,91 - - - go,, (W1w2) + g1,90,915 * - - Jo, (Wrws) + ...

+901902 e glk_lglk (wk—lwk))~

For higher order the notation is lengthy and use of tensor notation is necessary.
However, these first two moments are sufficient if mean variance optimization is

performed.

D Estimation results and Graphs

The parameters for the data generating process were chosen as follows. Let z; =
Ni +ti+ fi(t;). Then, t; ~ t(9), ta ~ t(7), My = 50/N, Xy = T0/N, fo(t2) =
1/10 (|to] + 2t2) , £1 (t1) = 1/30 (|t1|% + %tl), where ¢ (n) is a randomly generated
variable from a t-distribution with n degrees of freedom.

In order to give an idea of the distribution of the data generated, Table III
contains descriptive statistics. Parameter estimates for the marginal distributions

and the copula function are in Table IV.
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Table I. Spearman’s rho for different values of the dependance parameter 6

0 0 .14 .31 .51 .76 1.06 1.51 2.14 3.19 556 oo
ps(KS) 0 1 2 3 4 5 6 7 8 9 1
ps(Bw) 0 .79 .16 24 32 4 .48 57 65 .73 ¥
ps(Bzx) 0 .09 .19 28 .37 .46 .56 .65 .75 .84 *
ps(Bsg) 0 .09 .19 29 .38 .48 58 .67 .77 .86 *

Table II. Optimal portfolio weight for a negative exponential utility function
Empirical Multivariate Plackett Copula

Laplace Normal (Bernstein Approximation)
wy  0.5197 0.4485 0.5258

Table ITI. Descriptive Statistics
Min 1st Qu. Mean Median 3rd Qu Max

7, -5.282 -0.607  0.061 0.057 0.722 6.543
7o -5.323 -0.621 0.104 0.131 0.815 6.419
Variance Kurtosis N
1.286 4.8506 2000
1.486 4.675027 2000
Variance Kurtosis N
71 1.286 4.8506 2000
7o  1.486 4.675027 2000

Table I'V. Parameter Estimates
aq bl a9 bQ 0

1.1695 1 1.0839 1 2.1459
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Figurel. Kimeldorf and Sampson (KS) copula density (q
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Figurell. KScopula(q
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Figurelll. Bernstein approximation to the KS copula (g=1.06, n=30), contour plot

FigurelV. First series of smulated random data
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FigureV. Plackett copula (q=2.14)
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