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1. Introduction

In modern particle physics experiments it is important to have a Monte Carlo simula-

tion which accurately predicts the results of the experiment for both those processes

which have already been observed and any new physics which may be discovered.

As higher energies are probed this often means the production of heavy particles

which decay before hadronizing giving decay products which are detected, e.g. the

top quark.

As these particles are often fermions the distributions of the decay products

are affected by correlations between the production and decay of the fermion. In

most Monte Carlo event generators these correlations are neglected. In the Standard

Model (SM) this only applies to the top quark and tau lepton. However, in most

models of new physics, for example supersymmetry, there are heavy fermions which

decay and correlations between the production and decay of these fermions may be

important [1–4].

There have been a number of calculations of the spin correlation effects for

specific processes, but these calculations all require the hard collision process and the

decay of the heavy fermions to be performed in the same step which is problematic

in Monte Carlo event generators.

There are however methods [5–8] which have previously been used in order to

correlate all the partons produced in the QCD parton shower. In this paper we shall

show how a very similar algorithm can be used in order to correlate the spins of all

the heavy particle decays in the event while still maintaining both the step-by-step

approach of the Monte Carlo event generator and an algorithm whose complexity

grows only linearly with the number of particles.

In the next section we will review the ideas of Monte Carlo simulations and

discuss the current implementation of heavy particle decays in event generators.

This is followed by a discussion of the algorithm we will use in Section 3. We

provide several examples of the results of this algorithm for both Standard Model and

supersymmetric (SUSY) processes in Section 4. We then discuss how to incorporate

spin correlations in the decay of heavy particles as well as the spin correlations inside

and between jets which are already included in some Monte Carlo event generators

[9, 10] using the algorithm of [5–8]. Finally, we present the necessary results in

order to implement this algorithm for both Standard and Minimal Supersymmetric

Standard Model processes.

2. Monte Carlo Event Generation

There are a number of general purpose Monte Carlo event generators available [9–

13]. The structure of the event generation procedure is basically the same in all

these programs. The differences are in the algorithms used in the different steps of
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generating the event. In general the Monte Carlo event generation process can be

divided into five phases:

1. The hard process where the particles in the hard collision and their momenta

are generated, usually according to the leading-order matrix element. This

can be of either the incoming fundamental particles in lepton collisions or of a

parton extracted from a hadron in hadron-initiated processes. In the example

event shown in Fig. 1 the hard process is e+e− → tt̄.

2. The parton-shower phase where the coloured particles in the event are per-

turbatively evolved from the hard scale of the collision to the infrared cut-off.

This is done for both the particles produced in the collision, the final-state

shower, and the initial partons involved in the collision for processes with in-

coming hadrons, the initial-state shower. In the example shown in Fig. 1 the

top quarks radiate gluons and the gluons branch.

3. Those particles which decay before hadronizing, e.g. the top quark and SUSY

particles, are then decayed. Any coloured particles produced in these secondary

decays are evolved by the parton-shower algorithm. These decays are usually

performed according to a calculated branching ratio and often use a matrix

element to give the momenta of the decay products. The example in Fig. 1

shows the semi-leptonic decay of both top quarks.

4. A hadronization phase in which the partons left after the perturbative evo-

lution are formed into the observed hadrons. For processes with hadrons in

the initial state after the removal of the partons in the hard process, we are

left with a hadron remnant. This remnant is also formed into hadrons by the

hadronization model. In the example shown in Fig. 1 the cluster model [14],

which is used in HERWIG [9,10], is shown.

5. Those unstable hadrons which are produced in the hadronization phase must

also be decayed. These decays are usually performed using the experimentally

measured branching ratios and a phase-space distribution for the momenta

of the decay products. Any coloured particles produced in these decays are

evolved according to the parton-shower algorithm and hadronized. This pro-

cedure is repeated until all the unstable particles have been decayed.

In the Standard Model the only quark which decays before hadronizing is the

top quark. It is therefore possible to include tt̄ production, including spin effects, as

a 2 → 6 process, i.e. including the decay of the top quarks, in a Monte Carlo event

generator. However this leads to problems when including QCD radiation from the

top quark before it decays.

In all Monte Carlo event generators the particles are produced and then QCD

radiation is generated via the parton-shower algorithm. Any unstable particles are
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Figure 1: Example of a Monte Carlo event. This example shows the production of t̄t

in e+e− collisions followed by the semi-leptonic decay of the top quarks. The cluster

hadronization model [14] is shown where the gluons left after the parton-shower phase are

non-perturbatively split into quark-antiquark pairs. The quarks and antiquarks are then

paired into colour-singlet clusters using the colour flow information in the event. These

clusters decay to give the observed hadrons.

then decayed. This is the main problem for the inclusion of spin correlations, i.e.

we want to be able generate the production and decay of the particles as separate

processes rather than in one step so that QCD radiation can be generated for the

particles before they decay.

The problem is somewhat different for the inclusion of tau decays due to the large

number of tau decay modes. This makes it impossible to include all the possible decay

channels as 2 → n body processes.

The situation in SUSY models is similar to that for tau decays. In order to

facilitate the experimental search for supersymmetry a number of Monte Carlo event

generators have either been extended to include supersymmetric processes [9–13,15,

16], or written specifically for the study of supersymmetry [17, 18].

These event generators have become increasingly sophisticated in their treatment

of supersymmetric processes. In general, the decays of the supersymmetric particles

produced in the hard collision process are assumed to take place independently.

The event generators differ in how these decays are performed. While HERWIG

[9,10,16] continues to use a phase-space distribution for the three-body decays of the

supersymmetric particles ISAJET [13], PYTHIA [11, 12, 15] and SUSYGEN [17, 18]

use the full three-body matrix element.

A number of studies have also been performed in which spin correlation effects are

included, and these have been shown to be important for a future linear collider [1–4].
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Some spin correlation effects have been included in SUSYGEN [17, 18]. However in

order to accomplished this both the production process and decays must be generated

at the same time which limits both the number of processes and final-state particles

that can be simulated in this way.

In general SUSY models, particularly in hadron collisions, very complicated de-

cay chains can occur and it is impossible to generate them all as 2 → n particle

processes. We therefore need an algorithm which both preserves the step-by-step

approach of the traditional Monte Carlo event generators and a complexity which

does not grow exponentially with the number of final-state particles.

In this paper we will show that a completely general algorithm can be imple-

mented which takes all these effects into account while still maintaining the step-by-

step approach of the Monte Carlo event generation process. The results from the

implementation of this algorithm in the HERWIG event generator are then compared

to matrix element calculations from a number of observables.

3. Spin Correlation Algorithm

The spin correlation algorithm we will use is essentially identical to that presented

in [5–8] for the case of spin correlations in the QCD parton-shower phase of the

Monte Carlo event generation process. However, the algorithm presented in [5–8]

only considers the case of 1 → 2 branchings, as these are all that occur in the QCD

parton shower.

The algorithm can be formulated entirely in terms of the matrix elements for the

hard process and the various decays, spin density and decay matrices. The algorithm

is defined as follows:

1. The momenta of the particles in the hard process are generated according to

the matrix element1

ρ1
κ1κ′

1
ρ2

κ2κ′
2
Mκ1κ2;λ1...λn

M∗
κ′
1κ′

2;λ′
1...λ′

n

∏

i=1,n

Di
λiλ′

i
, (3.1)

where Mκ1,κ2;λ1...λn
is the matrix element for the 2 → n body process, κi is

the helicity of the ith incoming particle, λi is the helicity of the ith outgoing

particle, ρi
κiκ′

i
is the spin density matrix for the ith incoming particle and Di

λiλ′
i

is the decay matrix for the ith outgoing particle.

In the initial stage of the algorithm the momenta of the particles involved

in the hard collision are generated according to Eqn. 3.1 with Di
λiλ′

i
= δλiλ′

i

1Throughout this paper we will use the Einstein summation convention where repeated indices

are summed over.
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and ρi
κiκ′

i
= 1

2
δκiκ′

i
for unpolarized incoming particles. For polarized incoming

particles

ρκκ′ =

(

1
2
(1 + P3) 0

0 1
2
(1 −P3)

)

, (3.2)

where P3 is the component of the polarization vector parallel to the beam

direction. For incoming antiparticles the sign of P3 must be changed.

2. One of the outgoing particles is chosen at random and a spin density matrix

ρλjλ′
j

=
1

Nρ
ρ1

κ1κ′
1
ρ2

κ2κ′
2
Mκ1κ2;λ1...λj ...λn

M∗
κ′
1κ′

2;λ′
1...λ′

j
...λ′

n

∏

i6=j

Di
λiλ′

i
, (3.3)

calculated for the decay of this particle. The normalization

Nρ = ρ1
κ1κ′

1
ρ2

κ2κ′
2
Mκ1κ2;λ1...λj ...λn

M∗
κ′
1κ′

2;λ
′
1...λj ...λ′

n

∏

i6=j

Di
λiλ′

i
, (3.4)

is chosen so that the trace of the spin density matrix is one.

3. The decay mode of this particle is selected according to the branching ratios

and the momenta of the particles produced in the n-body decay generated

according to

ρλ0λ′
0
Mλ0;λ1...λn

M∗
λ′
0;λ′

1...λ′
n

∏

i=1,n

Di
λiλ′

i
, (3.5)

where λ0 is the helicity of the decaying particle and λi is the helicity of the ith

decay product. As before the decay matrices are taken to be Di
λiλ′

i
= δλiλ′

i
for

the initial step of the algorithm.

4. One of the particles produced in this decay is selected and a spin density matrix

ρλjλ′
j

=
1

NDρ
ρλ0λ′

0
Mλ0;λ1...λj ...λn

M∗
λ′
0;λ

′
1...λ′

j ...λ′
n

∏

i6=j

Di
λiλ′

i
(3.6)

calculated. Again the normalization

NDρ = ρλ0λ′
0
Mλ0;λ1...λj ...λn

M∗
λ′
0;λ

′
1...λj ...λ′

n

∏

i6=j

Di
λiλ′

i
, (3.7)

is chosen such that the spin density matrix has unit trace. This spin density

matrix is used as the input to the third step of the algorithm.

5. The third and fourth steps are repeated until the particle selected in step four

is stable. When this occurs the decay matrix for this stable particle is set to
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Di
λiλ′

i
= δλiλ′

i
and another particle from that decay selected to be decayed next

using a spin density matrix for this particle calculated using Eqn. 3.6. When

all the particles produced in a given decay have been developed a decay matrix

Dλ0λ′
0

=
1

ND

Mλ0;λ1...λn
M∗

λ′
0;λ′

1...λ′
n

∏

i=1,n

Di
λiλ′

i
, (3.8)

is calculated for the decay. Again the normalization

ND = Mλ0;λ1...λn
M∗

λ0;λ′
1...λ′

n

∏

i=1,n

Di
λiλ′

i
, (3.9)

is chosen such that the trace of the decay matrix is one.

6. A new particle is selected from the decay which produced the decaying particle.

This new particle has a spin density matrix given by Eqn. 3.6 using the decay

matrix calculated from Eqn. 3.8 for the particles which have already been de-

cayed rather than the identity. In this way the decay products of this particle

will have the correct correlations with the decay products of the other parti-

cles produced in the same decay. This step is repeated until all the particles

produced in a decay are developed. Eqn. 3.8 is then used to compute the decay

matrix for this decay and the previous decay in the chain is developed.

7. Eventually this will give a decay matrix for the particle produced in the hard

process. At this point a new particle from the hard process is selected to

be decayed with a spin density matrix given by Eqn. 3.3 with the identity

replaced by the calculated decay matrix for those particles which have already

been decayed. In this way the correlations between the decays of the particles

produced in the hard process are generated. This is repeated until all the

particles produced in the hard process have been decayed.

At each point in the algorithm the normalization is chosen such that the trace

of the spin density and decay matrices is one. This is necessary in order to maintain

the probabilistic interpretation of the spin density matrices and proves to be usefully

for the decay matrices.

4. Examples

There are many quantities for which it is interesting to calculate the spin correlations.

In this section we will merely show a few examples of the method we propose for

including the spin correlations and comparisons with the full analytic result for these

quantities. Due to the complexities in calculating these full results this will limit us to

relatively simple observables, although in principle much more complicated quantities

can be calculated. The quantities have been chosen to both illustrate the technique

and be phenomenogically important.
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Figure 2: Feynman Diagrams for the decay q̃L → qχ̃0
2 → qℓ±ℓ̃∓R.

4.1 q̃L → qχ̃0
2

→ qℓ±ℓ̃
∓
R

In hadron-hadron collisions the coloured SUSY particles, i.e. the squarks and gluinos,

are preferentially produced and therefore the main source of electroweak gaugino and

slepton production can be in the cascade decays of the coloured sparticles.

In many models the decay chain q̃L → qχ̃0
2 → qℓ±ℓ̃∓R → qℓ+ℓ−χ̃0

1, Fig. 2, is

important because by studying edges in the ℓ+ℓ−, qℓ± and qℓ+ℓ− mass distributions

the masses of the lightest two neutralinos, squark and slepton can be reconstructed

[19–23].

However, if we consider the spins of the particles involved the quark produced

in the squark decay will be left-handed in the massless limit. The lepton produced

in the neutralino decay will be right-handed. This will lead to very different decay

distributions for the charge conjugate decay modes of the neutralino.

This difference is most noticeable in distribution of the mass of the quark and the

lepton produced in the neutralino decay, Fig. 3. The results in Fig. 3 were generated

at SUGRA point 5 [20, 24], i.e. M0 = 200 GeV, M1/2 = 300 GeV, A0 = 300 GeV,

tan β = 2.1 and sgn µ+, where M0 is the universal SUSY breaking scalar mass at the

Grand Unified Theory (GUT) scale, M1/2 is the universal SUSY breaking gaugino

mass at the GUT scale, A0 is the universal tri-linear soft SUSY breaking parameter

at the GUT scale, sgn µ is the sign of the µ parameter and tan β is the ratio of

the two Higgs vacuum expectation values. At this SUGRA point the squark mass

Mq̃L
= 833.8 GeV, the lightest neutralino mass Mχ̃0

1
= 115.5 GeV and the next-

to-lightest neutralino mass Mχ̃0
2

= 213.2 GeV. The SUSY spectrum was generated

using ISAJET7.51 [13].

The differences in the shapes of the two distributions in Fig. 3 can be understood

by considering the helicities of the particles, the quark is left-handed while the pro-

duced lepton/antilepton is right-handed. In the case of an antilepton this means that

if the antilepton and the quark are back-to-back they have no net spin and therefore

this configuration which gives the edge in the mass distribution shown in Fig. 3a is

favoured. However, if a lepton is produced this configuration has net spin one and

therefore cannot be produced in the decay of a scalar so the distribution in Fig. 3b

8



Figure 3: Distribution of the mass of quark and lepton produced in the decay

q̃L → qχ̃0
2 → qℓ±ℓ̃∓R. The solid line gives the result of phase space, the dashed line gives

the full result and the dotted line the result of the spin correlation algorithm.

vanishes at the end point.

Unfortunately in any experiment there is no way to distinguish between a quark

and an antiquark. Hence the average of the distributions in Fig. 3 will be observed.

This average is in good agreement with the phase-space distribution.

This is the simplest, non-trivial, application of the spin correlation algorithm.

Here all that is necessary is that the spin density matrix for the production of the

neutralino in the scalar decay is used to perform the decay of the neutralino to a

scalar and a fermion. The matrix elements are therefore relatively simple. Indeed

the matrix elements are simple enough to allow us to compare the results of the

algorithm and the full result analytically. The matrix element for the 3-body process

q̃L → qχ̃0
2 → qℓ+ℓ̃−R is given by

Mq̃L→qχ̃0
2→qℓ+ℓ̃−

R
= ū(pq)a

λPλ (p6 χ − Mχ) bλ′

Pλ′v(pℓ), (4.1)

where pχ̃ is the four-momentum of the neutralino, pq is the four-momentum of the

quark, pℓ is the four-momentum of the produced lepton, Pλ = 1
2
(1+ λγ5) , aλ and bλ

are the couplings for the production and decay of the neutralino, respectively. In the

notation used in Appendix B, aλ = a∗−λ
χ̃0

2q̃i1qi
and bλ = aλ

χ̃0
2 ℓ̃i2ℓi

where in the limit that

we neglect left/right sfermion mixing Qi
αβ = δα,β=1 for left squarks and Li

αβ = δα,β=2

9



for right sleptons. As the width of the neutralino is small compared to its mass we

have assumed that it is on-mass-shell.

We can now consider how the spin correlation algorithm attempts to reproduce

this result. The matrix element for the first step of the process is

Mq̃L→qχ̃0
2

= ū(pq)a
λPλv(pχ̃), (4.2a)

= − 1

2
√

pχ̃ · lχ̃pq · lq
ū−λq

(lq)
(

p6 qa
λq + mqa

−λq
)

(pχ̃ − mχ̃)uλχ̃
(lχ̃), (4.2b)

where λχ̃ is the helicity of the neutralino, λq is the helicity of the quark, lq and

lχ̃ are the reference vectors for the quark and neutralino, respectively. The use of

these reference vectors in defining the spinors for massive fermions is described in

Appendix A. The sign of the helicity of the neutralino has be chosen in order for the

outgoing neutralino to be considered as a particle rather than an antiparticle.

In the first stage of the algorithm the momenta of the neutralino and quark are

generated according to the spin averaged matrix element

∑

spins

|Mq̃L→qχ̃0
2
|2 = 2

[

pq · pχ̃

(

a+2
+ a−2

)

− 2a+a−mqmχ̃

]

. (4.3)

As the quark is stable we can average over its spin and produce the spin density

matrix needed to perform the decay of the neutralino,

ρλχ̃λ′
χ̃

=
1

N

1

2pχ̃ · lχ̃
ūλ′

χ̃
(lχ̃)(p6 χ̃ − mχ̃) (4.4)

[(

p6 qa
−2

+ mqa
+a−

)

P+ +
(

p6 qa
+2

+ mqa
+a−

)

P−

]

(p6 χ̃ − mχ̃)uλχ̃
(lχ̃),

where the normalization N is chosen to give
∑

λ ρλλ = 1 and is therefore equal to

the spin averaged matrix element, Eqn. 4.3.

The matrix element for the decay of the neutralino is given by

Mλχ̃

χ̃0
2→ℓ+ℓ̃−

R

= ū(pχ̃)bλPλv(pℓ), (4.5a)

= − 1

2
√

pχ̃ · lχ̃pℓ · lℓ
ūλχ̃

(lχ̃) (p6 χ̃ − mχ̃)
[

p6 ℓb
λℓ − mℓb

−λℓ
]

uλℓ
(lℓ), (4.5b)

where pℓ is the four-momentum of the lepton, lℓ is the reference vector used to define

the direction of the lepton’s spin and λℓ is the helicity of the lepton.

As with the quark because the produced lepton is stable we can average over its

helicities giving

Mλχ̃

χ̃0
2→ℓ+ℓ̃−

R

Mλ′
χ̃
∗

χ̃0
2→ℓ+ℓ̃−

R

=
1

2pχ̃ · lχ̃
ūλχ̃

(lχ̃) (p6 χ̃ − mχ̃) (4.6)

[(

p6 ℓb
+2 − mℓb

+b−
)

P− +
(

p6 ℓb
−2 − mℓb

+b−
)

P+

]

(p6 χ̃ − mχ̃)uλ′
χ̃
(lχ̃).
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Figure 4: Feynman diagrams for the production of χ̃0
2χ̃

0
1 in e+e− collisions.

This can now be contracted with the spin density matrix and the sum over the

helicities of the neutralino performed giving

ρλχ̃λ′
χ̃
Mλχ̃

χ̃0
2→ℓ+ℓ̃−

R

Mλ′
χ̃
∗

χ̃0
2→ℓ+ ℓ̃−

R

= (4.7)

1

N
Tr

{

(p6 χ̃ − mχ̃)
[(

p6 qa
−2

+ mqa
+a−

)

P+ +
(

p6 qa
+2

+ mqa
+a−

)

P−

]

(p6 χ̃ − mχ̃)
[(

p6 ℓb
+2 − mℓb

+b−
)

P− +
(

p6 ℓb
−2 − mℓb

+b−
)

P+

]}

.

The second decay is generated according to this formula. The normalization of the

spin density matrix is cancelled by the matrix element which is used to generate

the first decay. If we compare the above result with the matrix element for the full

3-body process we can see that it agrees with the amplitude squared. Hence, the

decay products will have the same distribution as the full three-body matrix element.

This can be seen in Fig. 3 where the result of the full 3-body matrix element and the

spin correlation algorithm are in very good agreement.

4.2 e+e−
→ χ̃0

2
χ̃0

1

In the MSSM the lightest supersymmetric particle (LSP), usually taken to be the

lightest neutralino, is stable and weakly interacting. It therefore escapes from the

detector without interacting giving missing transverse energy. This means that in

a future linear collider the production of χ̃0
2χ̃

0
1, Fig. 4, may well be the detectable

supersymmetric final state which requires the smallest centre-of-mass energy. The

production of the second-to-lightest-neutralino will be followed by its decay to the

lightest neutralino. This decay will be χ̃0
2 → χ̃0

1f f̄ via either real or virtual sfermions,

Higgs or Z bosons, Fig. 5.

There have been a number of studies of spin correlations for this process both

with [3, 4] and without [1] beam polarization. The study of both the decay correla-

tions and polarization effects is important because it would allow the nature of the

neutralinos to be determined.

This is a more complicated example of the use of the spin correlation algorithm

than the squark decay we studied in the previous section. Instead of being produced

in a scalar decay the neutralino is produced in a 2 → 2 process where there are a

number of Feynman diagrams and the possibility of polarizing the incoming particles.
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Figure 5: Feynman diagrams for the decay χ̃0
2 → f f̄χ̃0

1. The exchange of the MSSM Higgs

bosons is only important for the third generation of fermions.

However, as before the spin correlation algorithm only has to compute the spin

density matrix for the production and use this to generate the decay of the neutralino

which may be via either a two or three body process, Fig. 5.

The easiest case to consider first is the decay of the neutralino to a lepton and

a right-handed slepton, as in Section 4.1, again using SUGRA Point 5. As can be

seen in Fig. 6 there is a correlation between the direction of the produced lepton and

the beam direction and this correlation is affected by the polarization of the beam.

It should be noted that fully polarized beams are not achievable in practice and are

only shown in order to illustrate the results of the algorithm. As with the results in

Section 4.1 the result of the spin correlation algorithm is in good agreement with the

result from a 4-body matrix element including the decay of both the neutralino and

slepton.

It is also possible that neither the gauge boson or sleptons in the diagrams in

Fig. 5 can be real. As an example we considered a SUGRA point with non-universal

gaugino masses at the GUT scale in order to decrease the mass difference between

the lightest two neutralinos. We used the point M0 = 210 GeV, A0 = 0 GeV,

tan β = 10, M1 = 450 GeV, M2 = 350 GeV, M3 = 350 GeV, where M1 is the soft

SUSY breaking mass for the bino at the GUT scale, M2 is the soft SUSY breaking

mass for the wino at the GUT scale and M3 is the soft SUSY breaking mass for the

gluino at the GUT scale. At this point the lightest neutralino is dominantly bino-like

and the next-to-lightest neutralino is dominantly wino-like, the lightest neutralino

mass is Mχ̃0
1

= 182.4 GeV, the next-to-lightest neutralino mass is Mχ̃0
2

= 264.2 GeV,

the right-slepton mass is Mℓ̃R
= 271.3 GeV and the left-slepton mass is Mℓ̃L

=

12



Figure 6: Angle between the lepton produced in e+e− → χ̃0
2χ̃

0
1 → ℓ̃+

Rℓ−χ̃0
1 and the incom-

ing electron beam in the laboratory frame for a centre-of-mass energy of 500 GeV with (a)

no polarization, (b) negatively polarized electrons and positively polarized positrons and

(c) positively polarized electrons and negatively polarized positrons. The solid line shows

the default result from HERWIG which treats the production and decay as independent,

the dashed line gives the full result from the 4-body matrix element and the dotted line

the result of the spin correlation algorithm.

322.5 GeV. This point was chosen so that both the right-handed slepton and the Z

boson could be almost on mass-shell in the three body decay χ̃0
2 → χ̃0

1ℓ
+ℓ−.

The angle between the lepton produced in the χ̃0
2 decay and the beam is shown in

Fig. 7 for a three choices of polarization for the incoming beams. The angle between

the produced leptons is shown in Fig. 8 for the same choices of beam polarization.

The default treatment of this process in the HERWIG event generator is that the

production and decay of the next-to-lightest neutralino take place independently and

the neutralino is decayed using a phase-space distribution for the decay products.

We have therefore shown the result of using a matrix element to perform this decay,

while still treating the production and decay as independent, as well as the result of

the spin correlation algorithm and a full calculation of the process in Figs. 7 and 8.

As can be seen in Fig. 7 the inclusion of the matrix element for the decay on

its own has no effect on the angle between the lepton and the beam, whereas the

inclusion of this matrix element significantly improves the agreement between the

result of HERWIG and the full result for the distribution of the angles between the

produced lepton and antilepton, Fig. 8. Indeed the inclusion of the matrix element

seems to be all that is required in order for the Monte Carlo simulation to reproduce

the full result for this distribution. The full spin correlation algorithm is necessary

to reproduce the correlation between the beam direction and the direction of the

produced lepton. Again, there is good agreement between the full 4-body matrix
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Figure 7: Angle between the lepton produced in e+e− → χ̃0
2χ̃

0
1 → ℓ+ℓ−χ̃0

1χ̃
0
1 and the in-

coming electron beam in the laboratory frame for a centre-of-mass energy of 500 GeV with

(a) no polarization, (b) negatively polarized electrons and positively polarized positrons

and (c) positively polarized electrons and negatively polarized positrons. The solid line

shows the default result from HERWIG which treats the production and decay as inde-

pendent and uses a phase-space distribution for the decay products of the neutralino, the

dot-dashed line also includes a matrix element for the neutralino decay, the dashed line

gives the full result from the 4-body matrix element and the dotted line the result of the

spin correlation algorithm.

Figure 8: Angle between the lepton and antilepton produced in

e+e− → χ̃0
2χ̃

0
1 → ℓ+ℓ−χ̃0

1χ̃
0
1 in the laboratory frame for a centre-of-mass energy of

500 GeV with (a) no polarization, (b) negatively polarized electrons and positively polar-

ized positrons and (c) positively polarized electrons and negatively polarized positrons.

The lines are described in the caption of Fig. 7.
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Figure 9: Angle between the lepton produced in e+e− → t̄t → bb̄ℓ+νℓℓ
−ν̄ℓ and the incom-

ing electron beam in the laboratory frame for a centre-of-mass energy of 500 GeV with (a)

no polarization, (b) negatively polarized electrons and positively polarized positrons and

(c) positively polarized electrons and negatively polarized positrons. The solid line shows

the default result from HERWIG which treats the production and decay as independent

but includes a matrix element for the weak decay of the top, the dashed line gives the full

result from the 6-body matrix element, the dotted line the result of the spin correlation

algorithm and the dot-dashed line the result of the spin correlation algorithm when the

decay matrix for the first quark is neglected.

element result and the spin correlation algorithm for both distributions.

4.3 e+e−
→ tt̄

A future linear collider will have both the energy to produce top quark pairs and the

possibility of polarized incoming beams. An accurate measurement of the top quark

mass by either scanning the threshold or reconstructing the decay products will be a

goal of such an experiment. There have been a number of studies of spin correlations

in top quark production at such a machine [25].

Here we are mainly concerned with this process as an example of the application

of the spin correlation algorithm. In this process in addition to the complications of

the 2 → 2 process, which can have polarization of the incoming particles, there is the

problem of correlating the decay of the top quarks with each other. In addition to

using the spin density matrix for the top production to perform the decays the decay

matrix from the first decay must be used in calculating the spin density matrix used

for the decay of the second quark. In the default treatment of this process HERWIG

performs the production and decay of the quarks independently but uses the full

3-body matrix element for the quark decays.

Fig. 9 shows the angle of the lepton produced in the top antiquark decay with
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Figure 10: Angle between the lepton and top quark produced in e+e− → t̄t → bb̄ℓ+νℓℓ
−ν̄ℓ

in the laboratory frame for a centre-of-mass energy of 500 GeV with (a) no polarization,

(b) negatively polarized electrons and positively polarized positrons and (c) positively

polarized electrons and negatively polarized positrons. The lines are described in the

caption of Fig. 9.

Figure 11: Angle between the leptons produced in e+e− → t̄t → bb̄ℓ+νℓℓ
−ν̄ℓ in the labora-

tory frame for a centre-of-mass energy of 500 GeV with (a) no polarization, (b) negatively

polarized electrons and positively polarized positrons and (c) positively polarized electrons

and negatively polarized positrons. The lines are described in the caption of Fig. 9.

respect to the incoming electron beam, Fig. 10 shows the angle between the lepton

and the top quark and Fig. 11 shows the angle between the lepton and the antilepton.

The result of the spin correlation algorithm agrees well with the full 6-body matrix
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element for all these distributions. Again the major discrepancies between the default

treatment in HERWIG and the full result are for the correlation of the direction of

the outgoing leptons with the beam and the correlation between the direction of the

produced lepton and the second quark in the event.

In addition to the full result of the spin correlation algorithm we have also

included the results of the algorithm where the identity is used rather than the decay

matrix calculated for the decay of the first quark when calculating the spin density

matrix for the decay of the second quark. Neglecting this step of the algorithm

still gives good agreement with the matrix-element calculation for the correlation

between the direction of the produced lepton and the beam direction, Fig. 9, and

the correlation between the direction of the top quark and the lepton, Fig. 10. This

is because these correlations mainly depend on the details of the hard production

process and not how the first quark decayed.

However, in order to reproduce the result of the matrix element for the angle

between the produced lepton and antilepton, Fig. 11, it is essential to include the

decay matrix from the first quark as this is a correlation between the two decays.

This effect is most noticeable when there is no beam polarization and both possible

initial-state spin configurations contribute to the result.

4.4 tt̄ production in Hadron-Hadron Collisions

Since the discovery of the top quark at the Tevatron there have been a number

of studies of spin correlations in top quark pair production for both Run II of the

Tevatron and the LHC. There are two processes which contribute to tt̄ production

in hadron collisions

qq̄ −→ tt̄, (4.8a)

gg −→ tt̄. (4.8b)

The qq̄ annihilation process presents no additional complications and is very similar

to the e+e− annihilation we discussed in the previous section.

However the colour flows in the three diagrams for tt̄ production via gluon scat-

tering, Fig. 12, are very different. It is easiest to extract the colour matrices from

the helicity amplitudes and perform the colour sum/averages separately. The colour

matrices for the three diagrams, shown in Fig. 12, are

Ct
ab
c1c2 = tac1c′t

b
c′c2

t−channel, (4.9a)

Cu
ab
c1c2 = tbc1c′t

a
c′c2

u−channel, (4.9b)

Cs
ab
c1c2

= ifabctcc1c2
s−channel, (4.9c)

where fabc is the SU(3) structure constant, ta is the SU(3) colour matrix in the

fundamental representation, Cs,t,u
ab
c1c2

are the colour matrices for the s-, t- and u-

channel colour flows respectively, a is the colour of the first incoming gluon, b is the
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Figure 12: Feynman diagrams for gg → t̄t.

colour of the second incoming gluon, c1 is the colour of the outgoing quark, c′ is the

colour of the intermediate quark and c2 is the colour of the outgoing antiquark.

In general the colour flow for diagrams involving the triple gluon vertex, i.e.

the s-channel diagram, is not unique and can be rewritten in terms of the t- and

u-channel colour flows using the definition of the structure constants

ifabctcc1c2 = tac1c′t
b
c′c2 − tbc1c′t

a
c′c2, (4.10)

giving

Cs
ab
c1c2

= Ct
ab
c1c2

− Cu
ab
c1c2

, (4.11)

so that we only have two different colour flows to deal with.

In principle the presence of different colour flows could be a significant problem

to the algorithm we are using. We should keep track of the colour flow in the

production processes and decays and calculate spin density matrices for each of the

flows and sum over them. If the decays have one than one colour flow, in addition

to the different colour flows in the hard process, this could lead to an increase in

the complexity of the algorithm with the number of final state particles, i.e. the

number of colour flows would grow exponentially. However, in both the Standard

and Minimal Supersymmetric Standard Models, provided we only consider three-

body decays as we are doing, there can only be different colour flows in the hard

production process and it is therefore sufficient to replace Eqn. 3.1 with

∑

a,b=1,CN

Cabρ
1
κ1κ′

1
ρ2

κ2κ′
2
Ma

κ1κ2;λ1...λn
Mb∗

κ′
1κ′

2;λ
′
1...λ′

n

∏

i=1,n

Di
λiλ′

i
, (4.12)

where Ma is the matrix element for colour flow a, CN is the number of colour flows

and Cab is the colour factor for the matrix elements. Eqns. 3.3 and 3.4 must also be

modified in the same way.
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For example in tt̄ collisions

Ctt = 1
(N2

c −1)2
tac1c′t

b
c′c2

tac′′c1t
b
c2c′′ =

1

4Nc
, (4.13a)

Cuu = 1
(N2

c −1)2
tbc1c′t

a
c′c2

tbc′′c1t
a
c2c′′ =

1

4Nc
, (4.13b)

Ctu = 1
(N2

c −1)2
tac1c′t

b
c′c2

tbc′′c1t
a
c2c′′ = − 1

4Nc(N2
c − 1)

, (4.13c)

the colour factor Cut = Cut.
2

Another option which would be necessary if the decays have more than one

possible colour flow, in for example R-parity violating SUSY models [26, 27], is to

select one of the colour flows in the same way as is already done for the production of

QCD radiation [28]. In this procedure we would first select a colour flow, a, using [28]

Caaρ
1
κ1κ′

1
ρ2

κ2κ′
2
Ma

κ1κ2;λ1...λn
Ma∗

κ′
1κ′

2;λ1...λn
Aa, (4.14)

where

Aa =

∑

b,c=1,CN
Cbcρ

1
κ1κ′

1
ρ2

κ2κ′
2
Mb

κ1κ2;λ1...λn
Mc∗

κ′
1κ′

2;λ1...λn
∑

b=1,CN
CbbMb

κ1κ2;λ1...λn
Mb∗

κ′
1κ′

2;λ1...λn

. (4.15)

This procedure ensures that the sum over the redefined colour flows reproduces the

full result, Eqn. 4.12. This is used to select the colour flow a for the process and

instead of Eqn. 3.1 to give the distributions of the particles produced in the hard

process. The matrix element for the selected colour flow is then used with Eqn. 3.3

to calculate the spin density matrices for the decays of the particles produced in the

hard process.

In models where there is more than one colour flow in a decay we would select the

colour flow for the decay and generate the momenta of the decay products according

to

ρλ0λ′
0
CaaMa

λ0;λ1...λn
Ma∗

λ′
0;λ1...λn

Ea, (4.16)

where

Ea =

∑

b,c=1,CN
CbcMb

λ0;λ1...λn
Mc∗

λ′
0;λ1...λn

∑

b=1,CN
CbbMb

λ0;λ1...λn
Mb∗

λ′
0;λ1...λn

. (4.17)

The matrix element for the selected colour flow is then used to calculate the spin

density matrices for the particles produced in the decay and the decay matrix for

this decay once all the particles produced in the decay have been developed.

2The sign of Ctu is different to that given in Table 12 because it proved easier to absorb this sign

as a change of sign of the u-channel matrix element.
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O/% Ō/%

Full Spin 1 Spin 2 Full Spin 1 Spin 2

O1 2.46 ± 0.04 2.45 ± 0.02 2.41 ± 0.02 2.42 ± 0.04 2.46 ± 0.02 2.44 ± 0.02

O2 2.94 ± 0.02 2.92 ± 0.01 2.90 ± 0.01 2.91 ± 0.02 2.91 ± 0.01 2.89 ± 0.01

O3 1.68 ± 0.02 1.67 ± 0.01 1.64 ± 0.01 1.67 ± 0.02 1.68 ± 0.01 1.65 ± 0.01

O4 0.03 ± 0.02 0.01 ± 0.01 0.01 ± 0.01 −0.01 ± 0.02 0.00 ± 0.01 −0.01± 0.01

O5 1.95 ± 0.02 1.94 ± 0.01 1.92 ± 0.01 1.92 ± 0.02 1.93 ± 0.01 1.92 ± 0.01

O6 −0.48 ± 0.03 −0.47 ± 0.02 −0.46 ± 0.02 −0.49 ± 0.03 −0.45± 0.02 −0.48± 0.02

Table 1: Average values of the observables O1−6 and Ō1−6 at Run II of the Tevatron.

The top (antitop) quark was required to have rapidity |y| < 2.0 and transverse momentum

pT > 15 GeV for the observables O1−6 and Ō1−6, respectively. Spin 1 gives the results

of the spin correlation algorithm using Eqn. 4.12 and spin 2 gives the results of the spin

correlation algorithm using Eqn. 4.14.

This approach neglects the interference between the different colour flows in

generating the spin correlations, just as they are neglected when generating the QCD

radiation. As this procedure is not necessary for the processes we are considering we

will use the first procedure in processes where the hard process has more than one

colour flow.

There have been many studies of spin correlations in hadron-hadron collisions.

In order to study the results of the spin correlation algorithm we have chosen to

follow the approach of [29,30] in which the following observables were defined for top

quark pair production followed by t → bW+ → bqq̄ and t̄ → b̄W− → b̄ℓ−ν̄:

O1 = q̂∗
b · q̂ℓ−; (4.18a)

O2 = (q̂∗
b · p̂p) (q̂ℓ− · p̂p) ; (4.18b)

O3 =
(

q̂∗
b · k̂t

)(

q̂ℓ− · k̂t

)

; (4.18c)

O4 =
1

2

[

(q̂∗
b · p̂p)

(

q̂ℓ− · k̂t

)

+
(

q̂∗
b · k̂t

)

(q̂ℓ− · p̂p)
]

; (4.18d)

O5 = sgn yt O4; (4.18e)

O6 = (p̂p × q̂∗
b) · (p̂p × q̂ℓ−) = O1 −O2. (4.18f)

All the hatted vectors are unit vectors and the quantities without an asterisk are

measured in the laboratory frame, p̂p is the beam direction, q̂ℓ− is the direction of

the charged lepton, k̂t is the direction of the top quark and yt is the rapidity of the

top quark. The asterisked quantities are measured in the top quark rest frame and q̂∗
b

is the direction of the bottom quark. In a similar way the quantities Ō1−6 are defined

for the charge conjugate decay modes. The observable O4 is zero when integrated

over a symmetric rapidity interval which is why the observable O5 is defined.

The results for these observables at Run II of the Tevatron with a centre-of-

mass energy of 2TeV are shown in Table 1 where for events with t → bW+ → bqq̄
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O/% Ō/%

Full Spin 1 Spin 2 Full Spin 1 Spin 2

O1 −2.01 ± 0.02 −2.04 ± 0.02 −2.04 ± 0.02 −2.03 ± 0.02 −2.04± 0.02 −2.02± 0.02

O2 −0.16 ± 0.02 −0.16 ± 0.02 −0.18 ± 0.02 −0.18 ± 0.02 −0.19± 0.02 −0.16± 0.02

O3 −0.55 ± 0.02 −0.56 ± 0.02 −0.57 ± 0.01 −0.57 ± 0.02 −0.59± 0.02 −0.57± 0.01

O4 0.00 ± 0.02 −0.01 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.02 0.00 ± 0.01 0.01 ± 0.01

O5 −0.23 ± 0.02 −0.25 ± 0.01 −0.25 ± 0.01 −0.26 ± 0.02 −0.28± 0.01 −0.25± 0.01

O6 −1.85 ± 0.02 −1.87 ± 0.02 −1.86 ± 0.01 −1.85 ± 0.02 −1.85± 0.02 −1.85± 0.01

Table 2: Average values of the observables O1−6 and Ō1−6 at the LHC. The top (antitop)

quark was required to have rapidity |y| < 3.0 and transverse momentum pT > 20 GeV for

the observables O1−6 and Ō1−6, respectively. Spin 1 gives the results of the spin correlation

algorithm using Eqn. 4.12 and spin 2 gives the results of the spin correlation algorithm using

Eqn. 4.14.

and t̄ → b̄W− → b̄ℓ−ν̄ we have required the top quark to have rapidity |yt| < 2.0

and transverse momentum pT > 15GeV. For the charge conjugate decay modes the

antitop quark was required to have rapidity |yt̄| < 2.0 and transverse momentum

pT > 15GeV.

The results for the same observables at the LHC with a centre-of-mass energy of

14TeV are shown in Table 2. For events with t → bW+ → bqq̄ and t̄ → b̄W− → b̄ℓ−ν̄

we have required the top quark to have rapidity |yt| < 3.0 and transverse momentum

pT > 20GeV. For the charge conjugate decay modes the antitop quark was required

to have rapidity |yt̄| < 3.0 and transverse momentum pT > 20GeV.

All the results were generated using a top quark mass of 175GeV and the default

parton distribution functions in HERWIG6.3 [10] which are the average of the central

and higher gluon leading-order fits of [31].

As can be seen in both Tables 1 and 2 the results of the spin correlation algorithm,

with either method of handling the different colour flows, are in good agreement with

the result of the 6-body matrix element. The default result from HERWIG for all

these observables was consistent with zero. This is because these observables are

designed to be sensitive to the spin correlations and zero in the absence of such

correlations.

At the Tevatron the most significant of these observables is O2 whereas the

observable O6 is the most important at the LHC. At the LHC this is because while

the average value of O1 is greater the fluctuations are also greater which gives a

greater statistical sensitivity for O6 [29, 30].

4.5 e+e−
→ χ̃+χ̃−

So far we have only considered processes in which the fermions have small widths

relative to their masses, the next-to-lightest neutralino in most SUSY models has a

width of less than one hundred MeV and the top quark width is about one GeV. We
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Figure 13: Angle between the lepton produced in e+e− → χ̃+
1 χ̃−

1 → ℓ+νℓχ̃
0
1ℓ

−ν̄ℓχ̃
0
1 and the

incoming electron beam in the laboratory frame for a centre-of-mass energy of 500 GeV with

(a) no polarization, (b) negatively polarized electrons and positively polarized positrons

and (c) positively polarized electrons and negatively polarized positrons. The solid line

shows the default result from HERWIG, the dashed line gives the full result from the

6-body matrix element and the dotted line the result of the spin correlation algorithm.

Figure 14: Angle between the leptons produced in e+e− → χ̃+
1 χ̃−

1 → ℓ+νℓχ̃
0
1ℓ

−ν̄ℓχ̃
0
1 in

the laboratory frame for a centre-of-mass energy of 500 GeV with (a) no polarization,

(b) negatively polarized electrons and positively polarized positrons and (c) positively

polarized electrons and negatively polarized positrons. The solid line shows the default

result from HERWIG, the dashed line gives the full result from the 6-body matrix element

and the dotted line the result of the spin correlation algorithm.
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can therefore neglect the width in top quark and neutralino production processes. In

the limit that the width of the decaying fermion can be neglected the helicity ampli-

tudes for the production processes, including the fermion decays, can be factorized

into a production and decay helicity amplitude. The spin correlation algorithm is in

good agreement with the full matrix element in these cases.

However, if the decaying fermion is not on mass-shell the process cannot be

factorized and the result of the spin correlation algorithm may not give such good

agreement with the 2 → n body matrix elements. This should not be a serious

problem because even in SUSY models the electroweak gauginos tend to have widths

of at most a few GeV, for the heavier gauginos. The gluino width tends to be larger,

but the gluino is heavier, and therefore the effect is the same. The particles which

usually have the largest widths in most SUSY models are the squarks and these

effects can be taken into account because they are scalars.

In order to study the effects of the widths of the decaying fermions it is easiest

to study chargino production in e+e− collisions because this allows us to consider

the production of χ̃±
1 χ̃∓

2 in which the lighter chargino has a very small width and the

heavier chargino has a much greater width. Spin and polarization effects in chargino

pair production in e+e− collisions have been previously considered in [2, 4].

We used the following SUSY parameters in this study: M1 = 78GeV,

M2 = 158GeV, µ = 330GeV, tan β = 3, MLL
= 171GeV and MeR

= 180GeV,

where the soft SUSY breaking masses for the gauginos and the µ parameter are

given at the electroweak scale, MLL
is the soft SUSY breaking mass for the lepton

doublet at the electroweak scale and MeR
is the soft SUSY breaking mass for the

right-handed electron singlet at the electroweak scale.

At this point the lightest neutralino mass is Mχ̃0
1

= 71.6GeV, the lightest

chargino mass is Mχ̃+
1

= 127.8GeV, the heaviest chargino mass is Mχ̃+
2

= 357.6GeV,

the sneutrino mass is Mν̃L
= 160.9GeV, the left selectron mass is Mℓ̃L

= 176.1GeV

and the right selectron mass is Mℓ̃R
= 184.2GeV. The width of the lightest chargino

is Γχ̃+
1

= 73MeV and the heaviest chargino is Γχ̃+
2

= 2.9GeV.

This point was chosen to have a negligible lightest chargino width and a variety

of leptonic decay modes, i.e. χ̃+
2 → ℓ+ν̃L → ℓ+ℓ−χ̃0

1, χ̃+
2 → ℓ̃+

Lν → ℓ+ℓ−χ̃0
1 and

χ̃+
2 → χ̃0

1W
+ → ℓ+ℓ−χ̃0

1, of the heaviest chargino.

It is interesting to first consider χ̃+
1 χ̃−

1 production, where there are no width

effects. Fig. 13 shows the angle between the lepton produced in e+e− → χ̃+
1 χ̃−

1 →
χ̃0

1ℓ
+νχ̃0

1ℓ
−ν̄ and the beam direction and Fig. 14 shows the angle between the lepton

and the antilepton. As before there is good agreement between the full result and

the spin correlation algorithm.

In a Monte Carlo simulation however we need to include the widths of the un-

stable particles as these widths can potentially be measured. When we include the

effect of the width in the spin correlation algorithm we have two choices. We can

use the off-mass shell momentum in Eqn.A.2 for the spinor of the massive particle
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Figure 15: Angle between the lepton produced in e+e− → χ̃+
1 χ̃−

2 → ℓ+νℓχ̃
0
1ℓ

−ν̄ℓχ̃
0
1 and the

incoming electron beam in the laboratory frame for a centre-of-mass energy of 500 GeV with

(a) no polarization, (b) negatively polarized electrons and positively polarized positrons

and (c) positively polarized electrons and negatively polarized positrons. The solid line

shows the default result from HERWIG, the dashed line gives the full result from the

6-body matrix element and the dotted line the result of the spin correlation algorithm.

together with either the physical mass of the particle or the off-shell mass of the

particle.

In the first case this gives

∑

λ

uλ(p)ūλ(p) = p6 +m +
l6

2p · l (m
2 − p2), (4.19)

where p is the off-shell four-momentum, m is the on-shell mass and l is the reference

vector. This form reduces to the correct spin sum if the particle is on-mass shell.

However for off-mass shell particles there is an additional component which depends

on the choice of the reference vector and is related to how off-mass shell the particle

is.

If we choose to use the off-shell mass rather than the physical mass in Eqn.A.2

we obtain

∑

λ

uλ(p)ūλ(p) = p6 +moff , (4.20)

where moff is the off-shell mass. Here the result again fails to reproduce the correct

result by an amount which depends on the how far off-shell the particle is, however

it does not depend on the arbitrary reference vector. We have studied the effects of

both these choices.
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Figure 16: Angle between the lepton produced in e+e− → χ̃+
1 χ̃−

2 → ℓ+νℓχ̃
0
1ℓ

−ν̄ℓχ̃
0
1 and the

incoming electron beam in the laboratory frame for a centre-of-mass energy of 500 GeV with

(a) no polarization, (b) negatively polarized electrons and positively polarized positrons

and (c) positively polarized electrons and negatively polarized positrons. The physical χ̃±
2

width was used. The solid line shows the full result, the dotted line shows the result of the

spin correlation algorithm with the physical mass and the dashed line shows the result of

the spin correlation algorithm with the off-shell mass of the chargino.

Figure 17: Angle between the lepton produced in e+e− → χ̃+
1 χ̃−

2 → ℓ+νℓχ̃
0
1ℓ

−ν̄ℓχ̃
0
1 and the

incoming electron beam in the laboratory frame for a centre-of-mass energy of 500 GeV with

(a) no polarization, (b) negatively polarized electrons and positively polarized positrons

and (c) positively polarized electrons and negatively polarized positrons. Ten times the

physical χ̃±
2 width was used. The lines are described in the caption on Fig. 16.
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We considered χ̃±
1 χ̃∓

2 production followed by the decay of the lightest chargino

χ̃±
1 → ℓ±νχ̃0

1 via a three-body decay and heaviest chargino χ̃±
1 → W±χ̃0

1 → ℓ±νχ̃0
1.

The angle of the lepton produced in the χ̃±
2 decay with respect to the beam direction

is shown in Fig. 15 where we have neglected the widths of the decaying charginos.

We then considered the effect of including the width of the decay chargino.

Fig. 16 shows the result for the physical width of the heaviest chargino and Fig. 17

shows the effect of increasing the width by a factor of ten.

These results show that there is still good agreement between the full result

and the spin correlation algorithm even when particles with fairly large widths are

included, despite the potential problems. The result does not significantly depend on

the choice of the spinor for the unstable particle and therefore we will use the second

choice in order to avoid any dependence on the reference vector used to define the

particle’s spin.

5. Tau Decays

So far we have only discussed spin correlations in the SM for the top quark which

is the only quark which decays before hadronization. However spin correlations can

also be important for the decay of the tau. The tau will undergo a weak decay to a

tau neutrino and either an electron/muon and its associated antineutrino or hadrons.

Due to the relatively small mass of the tau only a small number of hadrons can be

produced in its decay.

The matrix elements for the leptonic decay of the tau and many of the hadronic

decay modes are known, either theoretically or from experimental measurements of

the distributions of the decay products. The helicity of the decaying tau can affect

the distribution of the decay products. There is a package TAUOLA [32] which

includes the matrix elements for the leptonic and many of the hadronic modes and

includes the helicity of the decaying tau.

In order to implement the algorithm we have suggested in full for tau decays

we would need to completely rewrite the TAUOLA package to use the spin density

matrices for the decays and return the decay matrix after performing the decays.

Given the number of decay modes and the sophisticated treatment of the decays in

TAUOLA this would be a major project and is beyond the scope of this study.

However as TAUOLA makes use of the helicity of the decay tau to perform the

decays we can use the diagonal entries of the spin density matrices, which give the

probability the tau has a given helicity, to select the helicity of the decaying tau.

6. Including Correlations with the Parton Shower

Given the similarities between the algorithm we are using in order to include spin

correlations from heavy particle decays and the algorithm of [5–8] for spin correlations
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in the QCD parton shower it should be possible to produce an algorithm which

includes both effects, i.e. correctly includes correlations from both heavy particle

decays and in the QCD shower.

In order to construct such an algorithm it is helpful to first review the algorithm

of [5–8] for correlations in the QCD parton shower. The full algorithm is given for

both forward and backward evolution in [7]. The algorithm proceeds in the following

way:

1. The momenta of the particles in the hard collision process are generated ac-

cording to Eqn. 3.1.

2. One of the outgoing partons is chosen at random and given a spin density

matrix according to Eqn. 3.3.

3. The type of the branching, i → j + k, together with the azimuthal angle φ and

momentum fraction z, are generated according to

ρi
λiλ′

i
V jk

λiλjλk
(z, φ)V jk∗

λ′
iλ

′
jλ′

k
(z, φ)Dj

λjλ′
j
Dk

λkλ′
k
, (6.1)

where V jk
λiλjλk

(z, φ) is the splitting function for the branching given the helicities,

λi, λj , λk of the partons, ρi
λiλ′

i
is the spin density matrix of the parton entering

the vertex and Dj
λjλ′

j
is the decay matrix for the partons leaving the vertex.

As before in the first stage of the algorithm the decay matrix is taken to be

Dj
λjλ′

j
= δλjλ′

j
.

4. One of the outgoing partons is selected to be developed and a spin density

matrix calculated for this parton using

ρj
λjλ′

j
=

1

NρQCD
ρi

λiλ′
i
V jk

λiλjλk
(z, φ)V jk∗

λ′
iλ

′
jλ′

k
(z, φ)Dk

λkλ′
k
, (6.2)

where the normalization

NρQCD = ρi
λiλ′

i
V jk

λiλjλk
(z, φ)V jk∗

λ′
iλjλ′

k
(z, φ)Dk

λkλ′
k
, (6.3)

is chosen so that the spin density matrix has unit trace. This procedure is

repeated until the parton to be developed reaches the cut-off scale. As before

the decay matrix for this parton is then set to δλiλ′
i
.

5. Another parton from the branching which produced the parton which reached

the cut-off scale is now developed with a spin density matrix calculated for this

parton using Eqn. 6.2. When all the outgoing partons in a branching have been

developed a decay matrix for that branching is calculated using

Di
λiλ′

i
=

1

NDQCD

V jk
λiλjλk

(z, φ)V jk∗
λ′

iλ
′
jλ′

k
(z, φ)Dj

λjλ′
j
Dk

λkλ′
k
, (6.4)
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where the normalization

NDQCD = V jk
λiλjλk

(z, φ)V jk∗
λiλ′

jλ′
k
(z, φ)Dj

λjλ′
j
Dk

λkλ′
k

(6.5)

is chosen so that the trace of the decay matrix is one. The other outgoing

partons from the previous branching are now developed with a spin density

matrix calculated using Eqn. 6.2 and the calculated decay matrix rather than

the identity for those partons which have been developed.

6. This procedure is repeated until the hard process is reached. Another outgoing

parton is selected and a spin density matrix calculated for it using Eqn. 3.3 and

the calculated decay matrices for those particles which have already been de-

veloped rather than the identity. Step three of the algorithm is then performed

for this particle. This procedure is repeated until all the outgoing particles in

the hard process have been developed.

This is the algorithm for the forward evolution of outgoing time-like partons. A

similar algorithm [7] can be used to develop the incoming space-like partons. This

algorithm starts the development with a decay matrix calculated according to

Dκjκ′
j
=

1

NI
ρi6=j

κiκ′
i
Mκiκj ;λ1...λn

M∗
κ′

iκ
′
j ;λ

′
1...λ′

n

∏

k=1,n

Dk
λkλ′

k
. (6.6)

The normalization

NI = ρi6=j
κiκ′

i
Mκiκj ;λ1...λn

M∗
κ′

iκj ;λ′
1...λ′

n

∏

k=1,n

Di
λkλ′

k
(6.7)

is again chosen such that the decay matrix has unit trace. We will not discuss the

details of this backward evolution algorithm here, it is described in [7]. It is sufficient

to note that when a space-like parton has been completely developed the algorithm

returns a spin density matrix for the developed parton. So the full algorithm for spin

correlations in the QCD shower is that the outgoing time-like partons are developed

according to the algorithm described above and then using the decay matrices re-

turned by this algorithm the incoming space-like partons are developed according to

the algorithm of [7].

In order to treat the spin correlations the best possible approach would be as

follows:

1. The momenta of the particles in the hard collision are generated according to

Eqn. 3.1.

2. One of the outgoing particles is selected at random and a spin density matrix

calculated for it according to Eqn. 3.3.
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3. If the particle is colourless and unstable step four is performed, if the particle

is coloured step five is performed, otherwise the decay matrix for this particle

is set to δλiλ′
i
, another particle selected and this step repeated.

4. The decay mode of the particle is selected according to the branching ratios

and the momenta of the particles produced in the n−body decay generated

according to Eqn. 3.5.

(a) A particle from this decay is selected and a spin density matrix calculated

for it using Eqn. 3.6.

(b) If this particle is unstable and colourless we perform step four.

(c) If the particle is coloured step five is performed.

(d) If the particle is stable and colourless its decay matrix is set to δλiλ′
i

and another particle from the decay which produced it is selected to be

developed. Once all the particles in a given decay have been developed a

decay matrix is calculated for the decay using Eqn. 3.8 and another particle

from the decay or branching which produced this particle selected to be

developed. A spin density matrix is calculated for the development of

this particle with the calculated decay matrix rather than the identity for

those particles which have been developed. Step three is then performed

for this particle.

5. If the particle is coloured and has not reached the cut-off scale its branching,

i → jk, is generated according to Eqn. 6.1. If the parton has reached the cut-off

scale then:

(a) If the particle is stable its decay matrix is set to δλiλ′
i
and another particle

from the branching or decay which produced this parton selected to be

developed. If all the particles in a branching have been developed a decay

matrix for the parton which branches is calculated using Eqn. 6.4 and

another particle from the decay or branching which produced it selected to

be developed. Similarly if all the particles in a decay have been developed

a decay matrix is calculated for the decay using Eqn. 3.8 and another

particle from the decay or branching which produced it selected to be

developed. A spin density matrix is calculated for the development of

this particle with the calculated decay matrix rather than the identity for

those particles which have been developed. Step three is then performed

for this particle.

(b) If the particle is unstable step four is performed for the particle.

If a branching occurs the following procedure is performed:
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(a) One of the outgoing particles is selected to be developed and a spin density

matrix calculated using Eqn. 6.2.

(b) Step five is then performed for this particle.

6. Eventually this algorithm will return a decay matrix for one of the particles

produced in the hard process. If there are still outgoing particles which have

not been developed then another outgoing particle is selected to be developed

and step two performed for this particle.

7. If all the outgoing particles have been developed then one of the incoming par-

ticles is selected and a decay matrix calculated using Eqn. 6.6. The algorithm

described in [7] is used to develop the incoming particle. This is repeated until

all the incoming particles have been developed.

As with both the QCD and heavy particle decay algorithms we have already

described the decay matrix for any particle which has not been developed is taken

to be δλiλ′
i
.

While this algorithm is the most efficient way in which to include the spin cor-

relations it presents problems in generating the parton shower. This is because the

parton shower algorithm needs to produce the QCD radiation from all the particles

produced in the same hard collision or decay at the same time. There are several

reasons for this:

1. The scale used for the strong coupling constant in the parton shower algorithm

depends on the energy of the collision, or mass of the decaying particle.

2. In the angular-ordered parton shower used in HERWIG [33–35] the maximum

angle for the emission of QCD radiation from a parton is determined by the

direction of its colour partner, which is defined by the colour flow in the hard

process or decay.

3. The parton-shower algorithm does not conserve energy and momentum. There-

fore after the radiation from all the partons in a process has been generated

the momenta of the resulting jets must be adjusted in order to ensure energy

and momentum conservation.

We need to consider an algorithm in which this is possible. While this algorithm

will be less efficient in the way it implements the spin correlations it should prove

much easier to interface with the QCD parton shower. The algorithm will proceed

in the following way:

1. First the algorithm for spin correlations in the both the initial- and final-state

QCD parton shower is run as before.
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2. Then if there are any unstable particles produced one of them is selected at

random and a spin density matrix calculated in the following way:

(a) The decay matrices for the other undecayed particles are set to δλiλ′
i
.

(b) We then use the matrix elements of all the vertices to produce the decay

matrices of the particles in the hard process, apart from the particle which

produced the one we have selected, and the spin density matrices for the

incoming partons. This should be straightforward as these decay matrices

will have already been calculated by the QCD spin correlation algorithm.

(c) Using these decay matrices and Eqn. 3.3 we construct the spin density ma-

trix for the parton which initiated the shower which produced the selected

particle.

(d) We then move down the branch that produced the particle we have se-

lected using Eqn. 6.2 and the decay matrices which have already been

calculated for the side-branches.

(e) Eventually we will reach the particle we have selected with a spin density

matrix calculated according to Eqn. 6.2.

3. The decay mode of this particle is selected according to the branching ratios

and the momenta of the decay products generated according to Eqn. 3.5.

4. If any coloured particles are produced the QCD parton-shower algorithm is

run. If the decay produces unstable particles we perform steps two and three

for this decay, using Eqn. 3.6 rather than Eqn. 3.3.

5. Eventually we will perform a decay in which only stable particles are produced.

When this happens we set the decay matrices for the stable particles to δλiλ′
i

and use the decay matrices calculated by the QCD algorithm and Eqn. 3.8 to

calculate a decay matrix for this decay.

6. We then select another unstable particle produced in the previous decay, or

the parton shower initiated by that decay, and repeat the procedure with the

decay matrix calculated from Eqn. 3.8 for the particles for which the decays

have been performed. If there are no further unstable particles to decay we use

Eqn. 3.8 to calculate the decay matrix and move up the chain.

7. Eventually we will reach a particle which was produced in the parton shower

after the hard collision. We then select another unstable particle and repeat

the process using the calculated decay matrix rather than the identity for those

particles which have been decayed.

8. This procedure is repeated until all the unstable particles produced in the

parton shower initiated by the hard process have been decayed.
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This procedure is more complicated as additional spin density and decay matrices

have to be stored and recalculated but it should prove easier to implement the parton

shower with this procedure.

The implementation of either of the algorithms we have described in this sec-

tion would involve a major rewrite of the HERWIG, or any other, event genera-

tor. As there are currently projects under way to rewrite the current generation of

FORTRAN event generators in C++ [36,37] it would be pointless to undertake this

rewrite. Hopefully, one of the algorithms we have described here can be implemented

in the next generation of C++ event generators.

7. Conclusions

We have shown that it is possible to construct an algorithm for spin correlations

in a Monte Carlo event generator that both allows us to generate the production

and decay of the heavy particles as separate steps and has a complexity which only

grows linearly with the number of final-state particles. An additional advantage of

this algorithm is that we only have to calculate the helicity amplitudes for 2 → 2

collision processes and, at least for the processes we have studied, at most three body

decays rather than the calculation of n−body matrix elements.

This algorithm gives results that are in good agreement with the full calcula-

tions of the n−body matrix elements for all the processes we have studied. In the

appendix we have given the helicity amplitudes necessary to implement this algo-

rithm in a Monte Carlo event generator. These results have been incorporated into

the HERWIG event generator and will be available in the next version.

Finally, we have proposed an algorithm to include both the spin correlations in

heavy particle decays which we have considered here as well the correlations in and

between jets which are already included in the HERWIG event generator. This algo-

rithm, which would require a major rewrite of the current generation of FORTRAN

event generators, can hopefully be included in the next generation of C++ event

generators which are currently being written [36, 37].
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A. Spinor Conventions

In general we will use the conventions of [38, 39] for the spinors in the helicity am-

plitudes for the matrix elements. However it is more convenient for us to define

sλ(p1, p2) = ūλ(p1)u−λ(p2), (A.1)

rather than the s and t functions of [38].

We will use the following notation for massive fermions,

u(p, λ) =
1√

2p · ℓ (p6 +m) u−λ(l), (A.2a)

v(p, λ) = − 1√
2p · ℓ (p6 −m) u−λ(l), (A.2b)

where p is the four-momentum of the fermion, m is its mass, λ is the spin of the

fermion and ℓµ is a light-like four-vector. This choice for the massive fermions both

reproduces the standard spin sums for Dirac particles

∑

λ

uλ(p)ūλ(p) = (p6 +m) , (A.3a)

∑

λ

vλ(p)v̄λ(p) = (p6 −m) , (A.3b)

and the additional spin sums required in SUSY models which have Majorana fermions

[40]

∑

λ

uλ(p)vT
λ (p) = (p6 +m) CT , (A.4a)

∑

λ

ūT
λ (p)v̄λ(p) = C−1 (p6 −m) , (A.4b)

∑

λ

v̄T
λ (p)ūλ(p) = C−1 (p6 +m) , (A.4c)

∑

λ

vλ(p)uT
λ (p) = (p6 −m) CT . (A.4d)

Given this choice it is useful to define

pµ = p̃µ + ℓµ, (A.5)

where p̃2 = 0 and ℓ2 = 0. In this notation the spin vector for the particle is given by

sµ =
1

m
(p̃µ − lµ). (A.6)

The choice of the spin vector is completely arbitrary in our case provided that we are

consistent, i.e. we use the same choice for the production and decay of the particle.
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In the expressions for the amplitudes it will often be convenient to express the

results in terms of the function

F (λ1, p1, k, m, λ2, p2) = ūλ1
(p1) (k6 +m) uλ2

(p2), (A.7)

where p1,2 are massless four vectors, λ1,2 are helicities and k is an arbitrary four-

vector. This function can be evaluated in terms of spinors as follows [39]

F (λ, p1, k, m,−λ, p2) = msλ(p1, p2) (A.8a)

F (λ, p1, k, m, λ, p2) = sλ(p1, k̃)s−λ(k̃, p2), (A.8b)

where

k̃µ = kµ − k2

2k · p2
pµ

2 . (A.9)

We will use the same notation as [38] for the polarization vectors of the massless

gauge bosons

ǫµ
λ(p) =

1

2
√

p · l ūλ(p)γµuλ(l), (A.10)

where p is the four-momentum of the gauge boson and l is an arbitrary light-like four-

vector which is not collinear to p. The choice of this light-like vector corresponds to

the making a choice of gauge and therefore we can either chose lµ in order to simplify

the calculation or vary it in order to test the gauge invariance of the results.

The choice of the representation for the polarizations of the massive gauge bosons

is discussed in [38]. However, as this representation basically replaces the gauge boson

with two massless fermions, into which the boson decays, we will not include any

on-shell massive gauge bosons but replace them with their decay products.

B. Couplings

In this section we will give the couplings for both the SM and MSSM in a format

suitable for use in the helicity amplitudes for both the production and decay of the

particles.

In order to specify the matrix elements we need the couplings for the vertices

involved. In general we have taken the form of a vector-fermion-fermion vertex to be

iaλγµPλ. (B.1)

The couplings of the gauge bosons to the Standard Model fermions are given in

Table 3 where e is the magnitude of the electron’s charge, g the weak coupling and

θW the weak mixing angle.
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aBff̄ a+
Bff̄

a−
Bff̄

aWff̄′ 0 − g√
2
Vff′

aZff̄
gef sin2 θW

cos θW
− g

cos θW
(t3f − ef sin2 θW )

Table 3: Couplings of the SM fermions to the gauge bosons, where t3f is the weak isospin

of the fermion and ef is its electric charge in units of the magnitude of the electron’s charge.

The isospin partner of the fermion f is denoted by f ′. Vff′ is the relevant element of the

Cabibbo-Kobayashi-Maskawa (CKM) matrix.

aBχ̃χ̃ a+
Bχ̃χ̃ a−

Bχ̃χ̃

aZχ̃+
i χ̃−

j
− g

cos θW

(

U∗
i1Uj1 + 1

2
U∗

i2Uj2 − δij sin2 θW

)

− gηiηj

cos θW

(

Vi1V
∗
j1 + 1

2
Vi2V

∗
j2 − δij sin2 θW

)

aZχ̃0
i χ̃0

j

g
2 cos θW

(N∗
i3Nj3 − N∗

i4Nj4) −ǫiǫja
+∗
Zχ̃0

i
χ̃0

j

aWχ̃0
i χ̃−

j
g

(

1√
2
N∗

i3Uj2 + N∗
i2Uj1

)

−gǫiηj

(

1√
2
Ni4V

∗
j2 − Ni2V

∗
j1

)

Table 4: Couplings of the gauge bosons to the electroweak gauginos. The mixing matrices

for the neutralinos, N , and charginos, U and V , are defined in the notation of [40–42].

In the MSSM there are a lot more couplings which must be specified and this

is complicated by the mixing of the particles involved. The physical electroweak

gauginos are mixings of the interaction eigenstates. There are mixing matrices: N

for the neutralinos; and U and V for the charginos. In general our conventions for the

mixing of the gauginos follow those of [40–42]. In performing the diagonalization to

go from the interaction to mass eigenstates there is a choice: we can either take the

mixing matrices to be complex, in which case the masses are positive; or the mixing

matrices to be real and let the masses be positive or negative, in which case we must

redefine the field χ̃ → γ5χ̃ if the mass is negative [40–42]. As the calculations will

be implemented numerically it is more convenient to deal with real mixing matrices

and we must therefore keep track of the sign of the gaugino masses and change the

sign of certain couplings. We will denote the sign of the mass of the ith neutralino

by ǫi and the ith chargino by ηi. The couplings of the gauge bosons to the gauginos

of the MSSM are given in Table 4.

In general there can be mixing between all the sfermions with the same electric

and colour charges. However, we will only consider mixing between the left and right

scalar partners of the same fermion. We use the same convention as the HERWIG

event generator for this left/right mixing, this is discussed in [16, 26, 27]. In this

notation the mixing matrix for the squarks is Qi
αβ , where i = 1− 6 for the d, u, s, c,

b and t squarks, α is the left/right eigenstate and β is the mass eigenstate. Similarly

the mixing matrix for the sleptons is Li
αβ , where i = 1 − 6 for the e, νe, µ, νµ, τ, ντ

sleptons, α is the left/right eigenstate and β is the mass eigenstate.
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aBf̃f̃∗ aBf̃f̃∗

aZq̃iαq̃∗
iβ

− g
cos θW

(

t3qQ
i
1αQi∗

1β − eq sin2 θW δαβ

)

aWd̃iαũ∗
iβ

− g√
2
Q2i−1

1α Q2i∗
1β

aZℓ̃iα ℓ̃∗
iβ

− g
cos θW

(

t3ℓL
i
1αLi∗

1β − eℓ sin2 θW δαβ

)

aWℓ̃iαν̃iL
− g√

2
L2i−1

1α

aγ f̃ f̃∗ −ieef

Table 5: Couplings of the sfermions to the electroweak gauge bosons. These couplings

are taken from [40]. The flavour of the sfermion is denoted by i and α, β gives the mass

eigenstate.

aBHH aBHH

aW±H±h0 ∓g
2
cos(β − α) aW±H±A0 −ig

2

aW±H±H0 ±g
2
sin(β − α) aZA0h0 −ig cos(β−α)

2 cos θW

aZA0H0 ig sin(β−α)
2 cos θW

Table 6: Couplings of the Higgs bosons to the electroweak gauge bosons. These couplings

are taken from [43,44]. The angle α is the mixing between interaction and mass eigenstates

of the two neutral scalar Higgs bosons.

The form of the boson-scalar-scalar vertex is taken to be

ia(p + p′)µ, (B.2)

where the momentum p is taken to be flowing into the vertex and p′ is taken to be

flowing out of the vertex. The couplings of the sfermions to the electroweak gauge

bosons are given in Table 5 and of the Higgs bosons to the gauge bosons in Table 6.

The form of the scalar-fermion-fermion vertex is

iaλPλ. (B.3)

The couplings of the neutralinos to the sfermions are given in Table 7, of the charginos

to the sfermions in Table 8 and of the gluino to the squarks in Table 9. In order to

define the couplings of the sfermions to the neutralinos it is useful to define the

following functions

S+
fχ̃0

i

= −N ′
i1eef + N ′

i2a
+
Zff̄

, (B.4a)

S−
fχ̃0

i

= N ′∗
i1eef − N ′∗

i2a
−
Zff̄

, (B.4b)

for the couplings of the gaugino part of the neutralinos to the fermions. The functions

Hfχ̃0
i

=











gmfNi4

2MW sin β
for up − type quarks and neutrinos,

gmfNi3

2MW cos β
for down − type quarks and charged leptons,

(B.5)

36



aχ̃0
l
f̃ f a+

χ̃0
l
f̃f

a−
χ̃0

l
f̃ f

aχ̃0
l
q̃iαqi

−
√

2ǫl

(

Qi
1αHqiχ̃0

l
+ Qi

2αS+
qiχ̃0

l

)

−
√

2
(

Qi
2αH∗

qiχ̃0
l

+ Qi
1αS−

qiχ̃0
l

)

aχ̃0
l
ℓ̃iαℓi

−
√

2ǫl

(

Li
1αHℓiχ̃0

l
+ Li

2αS+
ℓiχ̃0

l

)

−
√

2
(

Li
2αH∗

ℓiχ̃0
l

+ Li
1αS−

ℓiχ̃0
l

)

Table 7: Couplings of the neutralinos to the sfermions and fermions. The flavour of the

sfermion is denoted by i and α gives the mass eigenstate.

give the couplings of the fermions to the Higgsino part of the neutralinos.

The couplings of the Higgs boson of the MSSM to the electroweak gauginos are

given in Table 10 where

Qij =
ηi√
2
Vi1Uj2, (B.6a)

Sij =
ηi√
2
Vi2Uj1, (B.6b)

Q′L
ij = ηj

[

Ni4Vj1 +
1√
2
Vj2 (Ni2 + Ni1 tan θW )

]

, (B.6c)

Q′R
ij = ǫi

[

Ni3Uj1 −
1√
2
Uj2 (Ni2 + Ni1 tan θW )

]

, (B.6d)

Q′′
ij =

ǫi

2
[Ni3 (Nj2 − Nj1 tan θW ) + Nj3 (Ni2 − Ni1 tan θW )] , (B.6e)

S ′′
ij =

ǫi

2
[Ni4 (Nj2 − Nj1 tan θW ) + Nj4 (Ni2 − Ni1 tan θW )] , (B.6f)

taken from [43].

The couplings of the Higgs bosons to the Standard Model fermions are given in

Table 11.

We also need the couplings of the MSSM Higgs bosons to gauge boson pairs.

The coupling has the form iagµν with the couplings gMW sin(β − α) for the lightest

Higgs boson to a pair of either W or Z bosons. The coupling of the heavier scalar

Higgs boson is gMW cos(β − α).

C. Production Matrix Elements

There are a large number of both SM and MSSM processes implemented in most

general purpose Monte Carlo event generators. In the case of the Standard Model

most of these processes do not involve the production of the top quark or tau lepton

which are the only fermions for which the spin correlations are relevant. There are

a number of other processes involving three or four particles in the final state, for

example production of a gauge or Higgs boson in association with a tt̄ pair which

have much smaller cross sections.
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aχ̃+
l

f̃ f a+

χ̃+
i

f̃ f
a−

χ̃+
i

f̃ f

aχ̃+
l

ũiαdi

g√
2MW cos β

mdi
Ul2Q

2i
1α −gηl

(

V ∗
l1Q

2i
1α − 1√

2MW sinβ
mui

V ∗
l2Q

2i
2α

)

aχ̃+
l

d̃iαui

gηl√
2MW sinβ

mui
Vl2Q

2i−1
1α −g

(

U∗
l1Q

2i−1
1α − 1√

2MW cos β
mdi

U∗
l2Q

2i−1
2α

)

aχ̃+
l

ν̃iLℓi

g√
2MW cos β

mℓi
Ul2 −gηlV

∗
l1

aχ̃+
l

ℓ̃iανi
0 −g

(

U∗
l1L

2i−1
1α − 1√

2MW cos β
mℓi

U∗
l2L

2i−1
2α

)

Table 8: Couplings of the sfermions to the charginos. The generation of the sfermion is

given by i and α is its mass eigenstate.

ag̃q̃q a+
g̃q̃q a−

g̃q̃q

ag̃ũiui
gs

√
2Q2i

2α −gs

√
2Q2i

1α

ag̃d̃idi
gs

√
2Q2i−1

2α −gs

√
2Q2i−1

1α

Table 9: Couplings of the squarks to the gluino. The flavour of the squark is given by i

and α is the mass eigenstate of the squark.

aHχ̃χ̃ a+
Hχ̃χ̃ a−

Hχ̃χ̃

ah0χ̃0
i χ̃0

j
g

(

Q′′
ij sin α + S ′′

ij cos α
)

g
(

Q′′∗
ji sin α + S ′′∗

ji cos α
)

aH0χ̃0
i χ̃0

j
g

(

S ′′
ij sin α − Q′′

ij cos α
)

g
(

S ′′∗
ji sin α − Q′′∗

ji cos α
)

aA0χ̃0
i χ̃0

j
−ig

(

Q′′
ij sin β − S ′′

ij cos β
)

ig
(

Q′′∗
ji sin β − S ′′∗

ji cos β
)

ah0χ̃+
i χ̃−

j
g (Qij sin α − Sij cos α) g

(

Q∗
ji sin α − S∗

ji cos α
)

aH0χ̃+
i χ̃−

j
−g (Qij cos α + Sij sin α) −g

(

Q∗
ji cos α + S∗

ji sin α
)

aA0χ̃+
i χ̃−

j
−ig (Qij sin β + Sij cos β) ig

(

Q∗
ji sin β + S∗

ji cos β
)

aH−χ̃0
i χ̃−

j
−gQ′R

ij sin β −gQ′L
ij cos β

Table 10: Couplings of the MSSM Higgs bosons to the gauginos.

aHff̄ a+
Hff̄

a−
Hff̄

aHff̄ a+
Hff̄

a−
Hff̄

ah0uiūi
−gmui

cos α

2MW sin β
a+

h0uiūi
aH0uiūi

− gmui
sinα

2MW sinβ
a+

H0uiūi

ah0did̄i

gmdi
sin α

2MW cos β
a+

h0did̄i
aH0did̄i

− gmdi
cos α

2MW cos β
a+

H0did̄i

ah0ℓiℓ̄i

gmℓi
sin α

2MW cos β
a+

h0ℓi ℓ̄i
aH0ℓiℓ̄i

− gmℓi
cos α

2MW cos β
a+

H0ℓiℓ̄i

aA0uiūi
i
gmui

cot β

2MW
−a+

A0uiūi
aH+uid̄i

gmdi
tan β√

2MW

gmui
cot β√

2MW

aA0did̄i
i
gmdi

tan β

2MW
−a+

A0did̄i
aH+νiℓ̄i

gmℓi
tan β√

2MW
0

aA0ℓi ℓ̄i
i
gmℓi

tan β

2MW
−a+

A0ℓiℓ̄i

Table 11: Couplings of the MSSM Higgs bosons to the Standard Model fermions.
A large number of the MSSM production processes involve the production of a

pair of scalar particles, and therefore we do not need the matrix elements for these
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processes.3 This leaves a reasonably small number of 2 → 2 processes for which we

must calculate the matrix elements.

In this section we will first present the helicity amplitude expressions for all the

Feynman diagrams which occur in the 2 → 2 processes we are considering. These

amplitudes can then be combined to give all the matrix elements we will need. In all

the matrix elements pi and mi are the four-momentum and mass of the ith particle,

respectively. The vector li is used to define the direction of the particle’s spin and

λi is the helicity of the ith particle.

C.1 Feynman Diagrams

C.1.1 Diagram 1

1

2

3

4

aλ bλ

Figure 18: Feynman diagram for f(p1)̄f(p2) → f ′(p3)f̄ ′(p4) via s-channel gauge boson

exchange, where f and f ′ can be any fermion.

The Feynman diagram for ff̄ → f ′f̄ ′ via s-channel gauge boson exchange is shown

in Fig. 18. The form of the first and second vertices are taken to be iaλγµPλ and

ibλγµPλ. The amplitude is given by

M = − δλ1λ2
aλ1

√
p3 · l3p4 · l4

1

ŝ − M2
B + iΓBMB

(C.1)

[

b−λ1F (−λ3, l3, p3, m3, λ1, p1)F ( λ1, p2, p4,−m4,−λ4, l4)

+bλ1 F (−λ3, l3, p3, m3,−λ1, p2)F (−λ1, p1, p4,−m4,−λ4, l4)
]

,

where ŝ = (p1 + p2)
2, MB is the mass of the exchanged boson and ΓB is the width of

the exchanged boson. The masses of the incoming particles have been neglected. If

we wish to consider both the outgoing particles to be fermions rather than a fermion

and an antifermion, in for example gaugino pair production, the sign of λ4 should be

changed.

C.1.2 Diagram 2

The Feynman diagram for ff̄ → f ′f̄ ′ via t-channel scalar exchange is shown in Fig. 19.

We will take the form of the upper vertex to be iaλPλ and the lower vertex to be

3The matrix elements used for these processes in HERWIG are given in [16, 28].
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1

2

3

4

aλ

bλ

Figure 19: Feynman diagram for f(p1)̄f(p2) → f ′(p3)f̄ ′(p4) via t-channel scalar exchange,

where f and f ′ can be any fermion.

ibλPλ. The matrix element is given by

M = − aλ1b−λ2

2
√

p3 · l3p4 · l4
1

t̂ − M2
Φ

(C.2)

F (−λ3, l3, p3, m3, λ1, p1)F (λ2, p2, p4,−m4,−λ4, l4),

where t̂ = (p1 − p3)
2 and MΦ is the mass of the exchanged scalar. The incoming

particles have been taken to be massless. As before if we wish to regard particle four

as a fermion rather than an antifermion the sign of its helicity should be changed.

C.1.3 Diagram 3

1

2 3

4aλ

aλ

Figure 20: Feynman diagram for f(p1)̄f(p2) → f ′(p3)f̄ ′(p4) via u-channel scalar exchange,

where f and f ′ can be any fermion.

The Feynman diagram for ff̄ → f ′f̄ ′ via u-channel scalar exchange is shown in

Fig. 20. As for the previous diagram we will take the form of the upper vertex to be

iaλPλ and the lower vertex to be ibλPλ. The amplitude is given by

M =
aλ1b−λ2

2
√

p3 · l3p4 · l4
1

û − M2
Φ

(C.3)

F (λ4, l4, p4, m4, λ1, p1)F (p2, λ2, p3,−m3, λ3, l3),

where û = (p1−p4)
2, MΦ is the mass of the exchanged sfermion and we have assumed

the incoming particles are massless. The sign of λ4 should be changed if we wish to

consider both outgoing particles as fermions.
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1

2 4

3

Figure 21: Feynman diagram for g(p1)g(p2) → f(p3)̄f(p4) via t-channel fermion exchange.

C.1.4 Diagram 4

The Feynman diagram for gg → f f̄ via t-channel fermion exchange is shown in Fig. 21.

In this case the form of the gluon-quark-quark vertex is taken to be −igsγ
µ, where gs

is the strong coupling. The colour matrices are not included as it is easier to handle

the colour sums/averages for the diagrams separately. This would also allow us to

use the same matrix elements for fermion-antifermion production in photon-photon

collisions by replacing the strong coupling with the electric charge. The matrix

element is given by

M =
g2

s

2
√

p1 · l1p2 · l2p3 · l3p4 · l4
1

t̂ − m2
3

(C.4)

[ F (−λ3, l3, p3, m3, λ1, l1)

{ F ( λ1, p1, p2 − p4, m3, λ2, l2)F ( λ2, p2, p4,−m4,−λ4, l4)

+F ( λ1, p1, p2 − p4, m3,−λ2, p2)F (−λ2, l2, p4,−m4,−λ4, l4)}
+F (−λ3, l3, p3, m3,−λ1, p1)

{ F (−λ1, l1, p2 − p4, m3, λ2, l2)F ( λ2, p2, p4,−m4,−λ4, l4)

+F (−λ1, l1, p2 − p4, m3,−λ2, p2)F (−λ2, l2, p4,−m4,−λ4, l4)}] .

As before if we wish to regard the outgoing antifermion as a fermion, in for example

gluino pair production, then we must change the sign of λ4.

C.1.5 Diagram 5

1

2 4

3

Figure 22: Feynman diagram for g(p1)g(p2) → f(p3)̄f(p4) via u-channel fermion exchange.

The Feynman diagram for gg → f f̄ via u-channel fermion exchange is shown in

Fig. 22. As with the previous diagram we have not included the colour matrices in the
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expression for the helicity amplitude. In this case the form of the gluon-quark-quark

vertex is taken to be −igsγ
µ. The matrix element is given by

M = − g2
s

2
√

p1 · l1p2 · l2p3 · l3p4 · l4
1

û − m2
3

(C.5)

[ F (−λ3, l3, p3, m3, λ2, l2)

{ F ( λ2, p2, p1 − p4, m3, λ1, l1)F ( λ1, p1, p4,−m4,−λ4, l4)

+F ( λ2, p2, p1 − p4, m3,−λ1, p1)F (−λ1, l1, p4,−m4,−λ4, l4)}
+F (−λ3, l3, p3, m3,−λ2, p2)

{ F (−λ2, l2, p1 − p4, m3, λ1, l1)F ( λ1, p1, p4,−m4,−λ4, l4)

+F (−λ2, l2, p1 − p4, m3,−λ1, p1)F (−λ1, l1, p4,−m4,−λ4, l4)}] .

As before if we wish to regard the outgoing antifermion as a fermion, in for example

gluino pair production, then we must change the sign of λ4. The sign of this matrix

element has been changed in order to simplify the combination of the matrix elements

with the colour factors.

C.1.6 Diagram 6

1

2

3

4

Figure 23: Feynman diagram for g(p1)g(p2) → f(p3)̄f(p4) via s-channel gluon exchange.

The Feynman diagram for gg → f f̄ via s-channel gluon exchange is shown in

Fig. 23. In this case the form gluon-quark-quark vertex is taken to be −igsγ
µ and

the triple gluon vertex to be igs

[

(p1 − p2)
γgαβ + (p1 + 2p2)

αgβγ − (2p1 + p2)
βgαγ

]

,

where p1, α, p2, β and p1 + p2, γ are the momenta and Lorentz indices of the three

gluons. The colour matrices are not included in the expression for the amplitude

in order to allow us to use the same matrix element for both quark and gluino
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production. The matrix element is given by4

M =
g2

s

4
√

p1 · l1p2 · l2p3 · l3p4 · l4
1

ŝ
(C.6)

[( δλ1−λ2
sλ1

(p1, l2)s−λ1
(p2, l1) + δλ1λ2

sλ1
(p1, p2)s−λ1

(l2, l1))

( F (−λ3, l3, p3, m3, λ, p1)F (λ, p1, p4,−m4,−λ4, l4)

−F (−λ3, l3, p3, m3, λ, p2)F (λ, p2, p4,−m4,−λ4, l4))

+2sλ1
(p1, p2)s−λ1

(p2, l1)

( F (−λ3, l3, p3, m3, λ2, l2)F ( λ2, p2, p4,−m4,−λ4, l4)

+F (−λ3, l3, p3, m3,−λ2, p2)F (−λ2, l2, p4,−m4,−λ4, l4))

−2sλ2
(p2, p1)s−λ2

(p1, l2)

( F (−λ3, l3, p3, m3, λ1, l1)F ( λ1, p1, p4,−m4,−λ4, l4)

+F (−λ3, l3, p3, m3,−λ1, p1)F (−λ1, l1, p4,−m4,−λ4, l4))] .

As before if we wish to regard the outgoing antifermion as a fermion, in for example

gluino pair production, then we must change the sign of λ4.

The expressions we have given for gg → f f̄ via t- and u-channel fermion exchange

and s-channel gluon exchange are given in a general gauge. While we used these

results to check the gauge invariance of the various production processes, in HERWIG

we made the gauge choice l1 = p2 and l2 = p1 which simplifies the expression given in

Eqn.C.6 for the s-channel gluon exchange which involves the triple gluon vertex [38].

C.1.7 Diagram 7

1

2 4

3

Figure 24: Feynman diagram for f(p1)g(p2) → χ̃(p3)̃f(p4) via t-channel sfermion ex-

change.

The Feynman diagram for fg → χ̃f̃ via t-channel sfermion exchange, where χ̃

can be any of the gauginos, is given in Fig. 24. The form of the fermion-gaugino-

scalar coupling is iaλPλ and the form of the scalar-scalar-gauge boson vertex is

−igs(p + p′)µ. As before the colour matrices are not included in the amplitude.

The helicity amplitude is given by

M =
gs√

2p2 · l2p3 · l3
aλ1

t̂ − m2
4

F (−λ3, l3, p3, m3, λ1, p1)F (λ2, p2, p4, 0, λ2, l2), (C.7)

4The polarization λ should be summed over.
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where the incoming fermion is assumed to be massless.

C.1.8 Diagram 8

1

2

3

4

Figure 25: Feynman diagram for f(p1)g(p2) → χ̃(p3)̃f(p4) via s-channel quark exchange.

The Feynman diagram for fg → χ̃f̃ via s-channel quark exchange is shown in

Fig. 25. The form of the fermion-fermion-gauge boson vertex is −igsγ
µ and the form

of the fermion-fermion-scalar vertex is iaλPλ. Again χ̃ can be any of the gauginos

and the colour matrices are not included in the amplitude. The helicity amplitude

is given by

M =
gs√

2p2 · l2p3 · l3
1

ŝ
(C.8)

[

δλ1λ2
aλ2sλ2

(p1, p2)F (−λ3, l3, p3, m3, λ2, p1)s−λ2
(l2, p1)

+δλ1−λ2
a−λ2sλ2

(p2, p1) ( F (−λ3, l3, p3, m3,−λ2, p1)s−λ2
(p1, l2)

+ F (−λ3, l3, p3, m3,−λ2, p2)s−λ2
(p2, l2)

)]

,

where the incoming fermion is assumed to be massless.

C.1.9 Diagram 9

1

2 3

4

Figure 26: Feynman diagram for f(p1)g(p2) → χ̃(p3)̃f(p4) via u-channel gaugino exchange.

The Feynman diagram for fg → χ̃f̃ via u-channel gaugino exchange is shown in

Fig. 26, due to the couplings this diagram only occurs when the outgoing gaugino

is the gluino. The form of the fermion-fermion-scalar vertex is taken to be iaλPλ

and the form of the gaugino-gaugino-gauge boson vertex is taken to be igSγµ. As
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before the colour matrices are not included in the amplitude. The helicity amplitude

is given by

M = − gs√
2p2 · l2p3 · l3

aλ1

û − m2
3

(C.9)

[ F (−λ3, l3, p3, m3, λ2, l2)F ( λ2, p2, p1 − p4, m3, λ1, p1)

+F (−λ3, l3, p3, m3,−λ2, p2)F (−λ2, l2, p1 − p4, m3, λ1, p1)] ,

where the incoming fermion is assumed to be massless.

As with the diagrams for gg → f f̄ the amplitudes were implemented with a

general choice of the gauge vector for the incoming gluon and checked for gauge

invariance. However it is again convenient to make the gauge choice l2 = p1 in order

to simplify the Feynman diagrams.

C.1.10 Diagram 10

1

2 4

3

Figure 27: Feynman diagram for f̄(p1)g(p2) → χ̃(p3)̃f
∗(p4) via t-channel sfermion ex-

change.

The Feynman diagram for f̄g → χ̃f̃∗ via t-channel sfermion exchange is shown in

Fig. 27. The outgoing gaugino can be any of the gauginos. The form of the fermion-

fermion-scalar vertex is taken to be iaλPλ and the scalar-scalar-gauge boson vertex

is taken to be −igs(p + p′)µ, where we have not included the colour matrices in the

amplitude. The helicity amplitude is given by

M =
gs√

2p2 · l2p3 · l3
a−λ1

t̂ − m2
4

F (λ1, p1, p3,−m3, λ3, l3)F (λ2, p2, p4, 0, λ2, p2), (C.10)

where the incoming antifermion is assume to be massless.

C.1.11 Diagram 11

The Feynman diagram for f̄g → χ̃f̃∗ via s-channel fermion exchange is shown in

Fig. 28. The outgoing gaugino can be any of the gauginos. The form of the fermion-

fermion-gauge boson vertex is taken to be −igsγ
µ and the form of the fermion-

fermion-scalar vertex is taken to be iaλPλ. As before the colour matrices are not
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1

2

3

4

Figure 28: Feynman diagram for f̄(p1)g(p2) → χ̃(p3)̃f
∗(p4) via s-channel quark exchange.

included in the amplitude. The helicity amplitude is given by

M =
gs√

2p2 · l2p3 · l3
1

ŝ
(C.11)

[

δλ1λ2
a−λ2sλ1

(p1, p2) ( s−λ2
(l2, p1)F (λ2, p1, p3,−m3, λ3, l3)

+s−λ2
(l2, p2)F (λ2, p2, p3,−m3, λ3, l3))

+δλ1−λ2
aλ2sλ1

(p1, l2)sλ2
(p2, p1)F (−λ2, p1, p3,−m3, λ3, l3)

]

,

where the incoming antifermion is assumed to be massless.

C.1.12 Diagram 12

1

2 3

4

Figure 29: Feynman diagram for f̄(p1)g(p2) → χ̃(p3)̃f
∗(p4) via u-channel gaugino ex-

change.

The Feynman diagram for f̄g → χ̃f̃∗ via u-channel gaugino exchange is shown in

Fig. 29, due to the couplings in this case the outgoing gaugino must be the gluino.

The form of the fermion-fermion-scalar vertex is taken to be iaλPλ and the form of

the gaugino-gaugino-gauge boson vertex is taken to be igsγ
µ. The colour matrices

are not included in the expression for the amplitude. The helicity amplitude is given

by

M = − gs√
2p2 · l2p3 · l3

a−λ1

û − m2
3

(C.12)

[ F (λ1, p1, p1 − p4,−m3, λ2, l2)F ( λ2, p2, p3,−m3, λ3, l3)

+F (λ1, p1, p1 − p4,−m3,−λ2, p2)F (−λ2, l2, p3,−m3, λ3, l3)] ,

where the incoming antifermion is assumed to be massless.
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As with the diagrams for gg → f f̄ and fg → χ̃f̃ the amplitudes were implemented

with a general choice of the gauge vector for the incoming gluon and checked for

gauge invariance. However it is again convenient to make the gauge choice l2 = p1

in order to simplify the Feynman diagrams.

C.1.13 Diagram 13

1

2

3

4

aλ

bλ

Figure 30: Feynman diagram for f(p1)f
′(p2) → f(p3)f

′(p4) via t-channel gauge boson ex-

change.

The Feynman diagram for ff ′ → ff ′ via t-channel gauge boson exchange is shown

in Fig. 30. This diagram occurs in single top quark production via t-channel W

exchange. The helicity amplitude is

M =

√
2aλ1bλ2δλ2λ4

t̂ − M2
W

1√
p3 · l3

[ δλ1−λ2
F (−λ3, l3, p3, m3, λ2, p2)sλ2

(p4, p1) (C.13)

+δλ1λ2
F (−λ3, l3, p3, m3,−λ2, p4)s−λ2

(p2, p1)] ,

where in addition to neglecting the masses of the incoming particles the mass of

particle four, which will be a light quark in single top production, has also been

neglected.

C.1.14 Diagram 14

1

2

3

4

aλ

bλ

Figure 31: Feynman diagram for f(p1)̄f
′(p2) → f(p3)̄f

′(p4) via t-channel gauge boson ex-

change.

The Feynman diagram for ff̄ ′ → f f̄ ′ via t-channel gauge boson exchange is shown

in Fig. 31. This diagram occurs in single top quark production via t-channel W
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exchange. The helicity amplitude is

M =

√
2aλ1bλ2δλ2λ4

t̂ − M2
W

1√
p3 · l3

[ δλ1−λ2
F (−λ3, l3, p3, m3, λ2, p4)sλ2

(p2, p1) (C.14)

+δλ1λ2
F (−λ3, l3, p3, m3,−λ2, p2)s−λ2

(p4, p1)] ,

where in addition to neglecting the masses of the incoming particles the mass of

particle four, which will be a light quark in single top production, has also been

neglected.

C.1.15 Diagram 15

1

2

3

4

aλ

bλ

Figure 32: Feynman diagram for f̄(p1)f
′(p2) → f̄(p3)f

′(p4) via t-channel gauge boson ex-

change.

The Feynman diagram for f̄f ′ → f̄ f ′ via t-channel gauge boson exchange is shown

in Fig. 32. This process occurs in single top quark production via t-channel W ex-

change. The helicity amplitude is

M =

√
2aλ1bλ2δλ2λ4

t̂ − M2
W

1√
p3 · l3

[ δλ1−λ2
sλ1

(p1, p2)F ( λ2, p4, p3,−m3,−λ3, l3) (C.15)

+δλ1λ2
sλ1

(p1, p4)F (−λ2, p2, p3,−m3,−λ3, l3)] ,

where in addition to neglecting the masses of the incoming particles the mass of

particle four, which will be a light quark in single top production, has also been

neglected.

C.1.16 Diagram 16

The Feynman diagram for f̄ f̄ ′ → f̄ f̄ ′ via t-channel gauge boson exchange is shown

in Fig. 33. This diagram occurs in single top quark production via t-channel W

exchange. The helicity amplitude is

M =

√
2aλ1bλ2δλ2λ4

t̂ − M2
W

1√
p3 · l3

[ δλ1−λ2
sλ1

(p1, p4)F ( λ2, p2, p3,−m3,−λ3, l3) (C.16)

+δλ1λ2
sλ1

(p1, p2)F (−λ2, p4, p3,−m3,−λ3, l3)] ,

where in addition to neglecting the masses of the incoming particles the mass of

particle four, which will be a light quark in single top production, has also been

neglected.
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3

4

aλ

bλ

Figure 33: Feynman diagram for f̄(p1)̄f
′(p2) → f̄(p3)̄f

′(p4) via t-channel gauge boson ex-

change.

C.2 Matrix Elements

We can now combine the amplitudes given in the previous section to give the matrix

elements for the various processes.

The matrix elements for the 2 → 2 Standard Model top quark and tau lepton

production processes are given in Table 12. It is easiest to extract the colour matrices

from the diagrams and perform the traces separately. This leads to matrix elements

for the different colour flows in the process and colour factors of the squares of

the helicity amplitudes for the individual colour flows and the interferences between

them. The colour flows for gg → tt̄ are discussed in Section 4.4.

The matrix elements for the 2 → 2 MSSM electroweak gaugino pair, elec-

troweak gaugino and gluino, and gluino pair production processes are given in Ta-

bles 13, 14 and 15, respectively. The discussion in Section 4.4 on the colour flows also

applies to qq̄ → g̃g̃ which has the same colour structure as gg → tt̄, after crossing.

The situation is slightly different for gg → g̃g̃. As with qq̄ → g̃g̃ the s-channel

diagram which again involves the triple gluon vertex contributes to both colour flows.

In this case the colour matrices which occur in the s-channel diagram can be rewritten

using the Jacobi identity

fabef ecd = f bcefaed − f bedface, (C.17)

where a is the colour of the first incoming gluon, b is the colour of the second incoming

gluon, c is the colour of the first outgoing gluino and d is the colour of the second

outgoing gluino. This allows us to write the colour matrices for the s-channel diagram

in terms of those for the t- and u-channel diagrams which means we can write the

s-channel diagram as a piece which contributes to the t-channel colour flow and one

which contributes to the u-channel colour flow.

The matrix elements for the sfermion-gaugino production processes are given in

Table 16. The colour flows of the gluino-squark production processes are the same,

after crossing, as those in gg → tt̄.

D. Decay Matrix Elements

In the Standard Model, for the processes we are considering, there are only two
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Process NCF Colour Factors ID CF VP aλ bλ

C11 C22 C12

f f̄ → nn̄ 1 1 - - 1 1 γ −eef −een

1 1 Z aλ
Zff̄

aλ
Znn̄

qq̄′ → f f̄ ′ 1 1 - - 1 1 W± aλ
Wqq̄′ aλ

Wff̄′

qq̄ → tt̄ 1 N2
c −1

4N2
c

- - 1 1 g 1 1

gg → tt̄ 2 1
4Nc

1
4Nc

1
4Nc(N2

c −1)
4 1 t - -

5 2 t - -

6 1 g - -

6 2 g - -

bu → td 1 1 - - 13 1 W aλ
Wtb̄

aλ
Wdū

bd̄ → tū 1 1 - - 14 1 W aλ
Wtb̄

aλ
Wdū

b̄d → t̄u 1 1 - - 15 1 W aλ
Wtb̄

aλ
Wdū

b̄ū → t̄d̄ 1 1 - - 16 1 W aλ
Wtb̄

aλ
Wdū

Table 12: Matrix elements for the Standard Model production processes. The number of

different colour flows is given by NCF , ID gives the type of diagram, CF gives the colour

flow for a given diagram and VP gives the virtual particle exchanged in the s-, t- or u-

channels depending on the diagram. The isospin partner of a fermion is denoted with a

prime and n can be any fermion. The colour factor given for ff̄ → nn̄ is for tau production

in lepton collisions or electroweak production of top quark pairs in qq̄ annihilation. The

corresponding colour factor is 1/Nc for tau production in qq̄ annihilation. The colour factor

given for f f̄ ′ production is for the production of tb̄ or bt̄, the corresponding colour factor

for τ−ν̄τ or τ+ντ production is 1/Nc. In the single top quark production processes the up

and down quarks can be any of the quarks with the same weak isospin.

decay modes, i.e. the decays of top and antitop quarks via a W boson. In the MSSM

however, there are a large number of decay modes which must be calculated. As

before we will only calculate those decay modes for which there are fermions and the

use of the spin correlation algorithm becomes important.

Despite the large number of decay modes there are only a small number of

Feynman diagrams. We have calculated these with arbitrary couplings which can

then be specified for particular decay modes. We will first give the helicity amplitudes

for these processes and then the diagrams and couplings involved for particular decay

modes.

D.1 Two Body Decay Feynman Diagrams

There are only five two body decay processes for which we need the helicity ampli-
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NCF Colour Factors ID CF VP

Process aλ bλ

C11 C22 C12

f f̄ → χ̃0
i χ̃

0
j 1 1 - - 1 1 Z aλ

Zff̄
aλ

Zχ̃0
i χ̃0

j

2 1 f̃α aλ
χ̃0

i f̃αf
a∗−λ

χ̃0
j f̃αf

3 1 f̃α ǫja
λ
χ̃0

j f̃αf
ǫia

∗−λ

χ̃0
i f̃αf

f f̄ → χ̃+
i χ̃−

j 1 1 - - 1 1 γ −eef −eδij

1 1 Z aλ
Zff̄

aλ
Zχ̃+

i χ̃−

j

only u-type quarks 2 1 f̃ ′α aλ
χ̃+

i f̃′αf
a∗−λ

χ̃+
j

f̃′αf

only d-type quarks/leptons 3 1 f̃ ′α aλ
χ̃+

j f̃′αf
a∗−λ

χ̃+
i f̃′αf

ud̄ → χ̃+
i χ̃0

j 1 1
Nc

- - 1 1 W aλ
Wud̄

a∗λ
Wχ̃0

j χ̃−

i

2 1 d̃α aλ
χ̃+

i d̃αu
a∗−λ

χ̃0
j d̃αd

3 1 ũα ǫja
λ
χ̃0

j
ũαu

a∗−λ

χ̃+
i ũαd

dū → χ̃0
j χ̃

−
i 1 1

Nc
- - 1 1 W aλ

Wdū aλ
Wχ̃0

j χ̃−

i

3 1 ũα aλ
χ̃+

i ũαd
a∗−λ

χ̃0
j ũαu

2 1 d̃α ǫja
λ
χ̃0

j d̃αd
a∗−λ

χ̃+
i

d̃αu

Table 13: Matrix elements for the Minimal Supersymmetric Standard Model electroweak

gaugino pair production processes. The number of different colour flows is given by NCF ,

ID gives the type of diagram, CF gives the colour flow for a given diagram and VP gives

the virtual particle exchanged in the s-, t- or u-channels depending on the diagram. The

colour factors given for χ̃0χ̃0 and χ̃+χ̃− production are for incoming leptons, the colour

factor is 1/Nc for incoming quarks. The mass eigenstate of the sfermion is given by α and

where the sfermions appear in u- and t-channel propagators the mass eigenstates should

be summed over. The isospin partner of a fermion, or sfermion, is denoted by a prime. An

identical particle symmetry factor of one half must also be included for the production of

χ̃0
i χ̃

0
i .

tudes and most of these processes are relatively simple as they involve scalars. The

four-momentum, mass, helicity and reference vector used to define the ith particle’s

spin are pi, mi, λi and li, respectively.

D.1.1 Diagram 1

The decay of a fermion to a fermion and a scalar is shown in Fig. 34. This process

is common in SUSY models involving the decays of the gauginos to either a fermion

and an antisfermion or to a gaugino and a Higgs boson. As before we will take the
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NCF Colour Factors ID CF VP

Process aλ bλ

C11 C22 C12

qq̄ → χ̃0
i g̃ 1 (N2

c −1)
2N2

c
- - 2 1 q̃α aλ

χ̃0
i q̃αq

a∗−λ
g̃q̃αq

3 1 q̃α aλ
g̃q̃αq ǫia

∗−λ
χ̃0

i
q̃αq

ud̄ → χ̃+
i g̃ 1 (N2

c −1)
2N2

c
- - 2 1 d̃α aλ

χ̃+
i d̃αu

a∗−λ

g̃d̃αd

3 1 ũα aλ
g̃ũαu a∗−λ

χ̃+
i ũαd

dū → χ̃−
i g̃ 1 (N2

c −1)
2N2

c
- - 2 1 ũα aλ

χ̃+
i ũαd

a∗−λ
g̃ũαu

3 1 d̃α aλ
g̃d̃αd

a∗−λ

χ̃+
i d̃αu

Table 14: Matrix elements for the Minimal Supersymmetric Standard Model electroweak

gaugino production in association with a gluino. The number of different colour flows is

given by NCF , ID gives the type of diagram, CF gives the colour flow for a given diagram

and VP gives the virtual particle exchanged in the s-, t- or u-channels depending on the

diagram. The mass eigenstate of the squark is given by α and when the squarks appear

in u- and t-channel propagators the mass eigenstates should be summed over. The isospin

partner of a fermion, or sfermion, is denoted by a prime.

NCF Colour Factors ID CF VP

Process aλ bλ

C11 C22 C12

qq̄ → g̃g̃ 2 (N2
c −1)2

8N3
c

(N2
c −1)2

8N3
c

− (N2
c −1)

8N3
c

1 1 g 1 1

1 2 g −1 1

2 1 q̃α aλ
g̃q̃αq a∗−λ

g̃q̃αq

3 1 q̃α aλ
g̃q̃αq a∗−λ

g̃q̃αq

gg → g̃g̃ 2 N2
c

2(N2
c −1)

N2
c

2(N2
c −1)

− N2
c

4(N2
c −1)

4 1 g̃ - -

5 2 g̃ - -

6 1 g - -

6 2 g - -

Table 15: Matrix elements for the Minimal Supersymmetric Standard Model gluino pair

production processes. The number of different colour flows is given by NCF , ID gives

the type of diagram, CF gives the colour flow for a given diagram and VP gives the

virtual particle exchanged in the s-, t- or u-channels depending on the diagram. The mass

eigenstate of the squark is given by α and where the squarks appear in u- and t-channel

propagators the mass eigenstates should be summed over. The isospin partner of a quark,

or squark, is denoted by a prime. The identical particle symmetry factor for g̃g̃ production

has been included in the colour factor.
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NCF Colour Factors ID CF VP

Process aλ

C11 C22 C12

qg → χ̃0
i q̃α 1 1

2Nc
- - 7 1 q̃α aλ

χ̃0
i q̃αq

8 1 q aλ
χ̃0

i q̃αq

ug → χ̃+
i d̃α 1 1

2Nc
- - 7 1 d̃α aλ

χ̃+
i d̃αu

8 1 q aλ
χ̃+

i d̃αu

dg → χ̃−
i ũα 1 1

2Nc
- - 7 1 ũα aλ

χ̃+
i ũαd

8 1 q aλ
χ̃+

i ũαd

qg → g̃q̃α 2 (N2
c −1)

4N2
c

(N2
c −1)

4N2
c

− 1
4N2

c
7 1 q̃α aλ

g̃q̃αq

8 2 q aλ
g̃q̃αq

9 1 g̃ aλ
g̃q̃αq

9 2 g̃ −aλ
g̃q̃αq

q̄g → χ̃0
i q̃

∗
α 1 1

2Nc
- - 10 1 q̃∗

α a∗−λ
χ̃0

i q̃αq

11 1 q̄ a∗−λ
χ̃0

i
q̃αq

ūg → χ̃−
i d̃∗

α 1 1
2Nc

- - 10 1 d̃∗
α a∗−λ

χ̃+
i d̃αu

11 1 ū a∗−λ

χ̃+
i d̃αu

d̄g → χ̃+
i ũ∗

α 1 1
2Nc

- - 10 1 ũ∗
α a∗−λ

χ̃+
i ũαd

11 1 d̄ a∗−λ

χ̃+
i ũαd

q̄g → g̃q̃∗
α 2 (N2

c −1)
4N2

c

(N2
c −1)

4N2
c

− 1
4N2

c
10 1 q̃∗

α a∗−λ
g̃q̃αq

11 2 q̄ a∗−λ
g̃q̃αq

12 1 g̃ a∗−λ
g̃q̃αq

12 2 g̃ −a∗−λ
g̃q̃αq

Table 16: Matrix elements for the Minimal Supersymmetric Standard Model gaugino

squark production processes. The number of different colour flows is given by NCF , ID

gives the type of diagram, CF gives the colour flow for a given diagram and VP gives the

virtual particle exchanged in the s-, t- or u-channels depending on the diagram. As before

the mass eigenstate of the squark is given by α.

form of the vertex to be iaλPλ. The helicity amplitude is given by

M =
1

2
√

p0 · l0p1 · l1
(D.1)

[

a−λ1s−λ1
(l1, p̃1)F (λ1, p̃1, p0, m0,−λ0, l0) + aλ1m1F (−λ1, l1, p0, m0,−λ0, l0)

]

.
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0

1

2

Figure 34: Two body decay of a fermion to a fermion and a scalar.

D.1.2 Diagram 2

0

1

2

Figure 35: Two body decay of an antifermion to an antifermion and a scalar.

The decay of an antifermion to an antifermion and a scalar is shown in Fig. 35.

In the MSSM this process occurs in the decay of a gaugino to an antifermion and

a sfermion when we regard the incoming gaugino as an antifermion. The helicity

amplitude is given by

M =
1

2
√

p0 · l0p1 · l1
[

a−λ0s−λ0
(l0, p̃0)F (λ0, p̃0, p1,−m1,−λ1, l1) (D.2)

−aλ0m0F (−λ0, l0, p1,−m1,−λ1, l1)
]

.

As we will usually consider the incoming gaugino to be a particle rather than an

antiparticle the sign of λ0 will be opposite.

D.1.3 Diagram 3

0

1

2

Figure 36: Two body decay of a fermion to a fermion and a scalar.

The decay of a fermion to a fermion and a massless gauge boson, Fig. 36, cannot

occur in either the Standard or Minimal Supersymmetric Standard Models at tree

level. However, the processes χ̃0
i → χ̃0

jγ and g̃ → χ̃0
i g via loop diagrams can be

important in the MSSM.
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The matrix elements for these processes must have the following form [45]

M =
igeff

M0
ū(p1) (PR − ǫ0ǫ1PL) σµνp2µǫ∗νu(p0), (D.3)

by gauge invariance, where ǫ0 is the sign of the mass of the decaying fermion, ǫ1 is the

sign of the mass of the fermion produced in the decay, and σµν = i
2
(γµγν − γνγµ).

The effective coupling geff is given in [45] for the decays of the neutralino to a neu-

tralino and a photon, and in [46] for the decay of a gluino to a neutralino and a

gluon.

We can write the helicity amplitude for this decay in terms of the effective

coupling giving

M =
geff

2M0

√
p0 · l0p1 · l1p2 · l2

(D.4)

[δλ2−F (−λ1, l1, p1, m1, +, p2)s+(p2, l2)F (−, p2, p0, m0,−λ0, l0)

−δλ2+ǫ0ǫ1F (−λ1, l1, p1, m1,−, p2)s−(p2, k2)F (+, p2, p0, m0,−λ0, l0)] .

D.1.4 Diagram 4

0

1

2

Figure 37: Two body decay of a scalar to a fermion and an antifermion.

The decay of a scalar to a fermion and an antifermion occurs in the MSSM in

either the decays of the Higgs bosons or the sfermions. The matrix element is given

by

M = − 1

2
√

p1 · l1p2 · l2
[

a−λ1s−λ1
(l1, p̃1)F (λ1, p̃1, p2,−m2,−λ2, l2)

+aλ1m1F (−λ1, l1, p2,−m2,−λ2, l2)
]

.

For the decay of the Higgs bosons to two gauginos we will wish to treat both outgoing

gauginos as particles in which case the sign of λ4 must be changed.

D.1.5 Diagram 5

In anomaly mediated SUSY breaking (AMSB) models [47,48] the mass splitting be-

tween the lightest neutralino and chargino can be very small. The dominant decay

mode of the lightest chargino is χ̃±
1 → χ̃0

1π
±. The Monte Carlo event generators

usually contain the three body decay modes χ̃+ → χ̃0ud̄ and χ̃− → χ̃0dū using the
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χ̃±
j

χ̃0
i

π±

Figure 38: Feynman diagram for the decay χ̃±
j → χ̃0

i π
±.

constituent quark masses. In AMSB models this decay mode, with constituent quark

masses, is not kinematically accessible which means that the decay of the chargino to

a pion cannot be described by the three body decay mode followed by the hadroniza-

tion of the quarks.

The decay χ̃±
1 → χ̃0

1π
± must therefore be included as a 1 → 2 process using

chiral perturbation theory. The matrix element for this process is

M =
gfπ

2M2
W

ū(p1)p6 2a
λPλu(p0), (D.5)

where fπ is the pion decay constant.5 The helicity amplitude for this process can be

written as

M =
gfπ

4M2
W

√
p0 · l0p1 · l1

(D.6)

[

m0a
−λ0 {s−λ1

(l1, p̃1)F (λ1, p̃1, p2, 0,−λ0, l0) + m1F (−λ1, l1, p2, 0,−λ0, l0)}
+aλ0sλ0

(p̃0, l0) {s−λ1
(l1, p̃1)F (λ1, p̃1, p2, 0, λ0, p̃0) + m1F (−λ1, l1, p2, 0, λ0, p̃0)}

]

.

D.2 Three Body Decay Feynman Diagrams

There are six Feynman diagrams we will need for the SM and MSSM three body

decays we consider. Four of these diagrams are for the decays of fermions via either

virtual gauge boson or scalar exchange, one diagram for the decay of an antifermion

via gauge boson exchange and one diagram for scalar decay via gauge boson exchange.

As we are considering all the gauginos to be particles this means we do not need the

diagrams for antifermion decay via virtual scalar exchange. In all these diagrams pi

is the four-momentum of the ith particle, li is the reference vector used to define the

direction of the ith particle’s spin, mi is the the mass of the ith particle, λi is the

helicity of the ith particle and m2
ij = (pi + pj)

2.

D.2.1 Diagram 1

The Feynman diagram for fermion decay via gauge boson exchange is shown in

Fig. 39. This process occurs for both the top quark, via W exchange, and the MSSM

5We have defined the pion decay constant in an isospin basis and therefore the pion decay

constant in [49] should be divided by
√

2.
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Figure 39: Feynman diagram for fermion decay via gauge boson exchange.

electroweak gauginos, via either W or Z exchange. The form of the first and second

vertices are iaλγµPλ and ibλγµPλ, respectively. It is useful to define a number of

functions in order to simplify the expression for the amplitude

b12
++ = δλ1λ2

bλ2s−λ1
(l1, p̃1)sλ1

(p̃2, l2), (D.7a)

b12
+− = δλ1−λ2

bλ2m1s−λ1
(p̃2, l2), (D.7b)

b12
−+ = −δλ1−λ2

b−λ2m2s−λ1
(l1, p̃1), (D.7c)

b12
−− = −δλ1λ2

b−λ2m1m2, (D.7d)

and

A01 = δλ0λ1

{

aλ0
[

m2
0s−λ1

(l1, p̃1)sλ1
(p̃1, l0) − m2

1s−λ1
(l1, p̃0)sλ1

(p̃0, l0)
]

(D.8a)

+ a−λ0m0m1 [s−λ1
(l1, p̃0)sλ1

(p̃0, l0) − s−λ1
(l1, p̃1)sλ1

(p̃1, l0)]
}

+δλ0−λ1

{

aλ0m1

[

−s−λ1
(l1, p̃1)sλ1

(p̃1, p̃0)s−λ1
(p̃0, l0) + m2

0s−λ1
(l1, l0)

]

+ a−λ0m0

[

s−λ1
(l1, p̃1)sλ1

(p̃1, p̃0)s−λ1
(p̃0, l0) − m2

1s−λ1
(l1, l0)

]}

,

B12 = − 1

M2
W

[

δλ1λ2

{

bλ2
[

m2
1s−λ1

(l1, p̃2)sλ1
(p̃2, l2) + m2

2s−λ1
(l1, p̃1)sλ1

(p̃1, l2)
]

(D.8b)

− b−λ2m1m2 [s−λ1
(l1, p̃1)sλ1

(p̃1, l2) + s−λ1
(l1, p̃2)sλ1

(p̃2, l2)]
}

+δλ1−λ2

{

bλ2m1

[

s−λ1
(l1, p̃1)sλ1

(p̃1, p̃2)s−λ1
(p̃2, l2) + m2

2s−λ1
(l1, l2)

]

− b−λ2m2

[

s−λ1
(l1, p̃1)sλ1

(p̃1, p̃2)s−λ1
(p̃2, l2) + m2

1s−λ1
(l1, l2)

]}

]

,

where MB and ΓB are the mass and width the of the boson, respectively.
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The amplitude is given by

M = − 1

2
√

p0 · l0p1 · l1p2 · l2p3 · l3
1

m2
23 − M2

B + iΓBMB

[

(D.9)

b23
++

{

a−λ2F (−λ1, l1, p1, m1, λ2, p̃3)F ( λ2, p̃2, p0, m0,−λ0, l0)

+ aλ2 F (−λ1, l1, p1, m1,−λ2, p̃2)F (−λ2, p̃3, p0, m0,−λ0, l0)
}

+b23
+−

{

aλ2 F (−λ1, l1, p1, m1,−λ2, p̃3)F (−λ2, l2, p0, m0,−λ0, l0)

+ a−λ2F (−λ1, l1, p1, m1, λ2, l2)F ( λ2, p̃3, p0, m0,−λ0, l0)
}

+b23
−+

{

a−λ2F (−λ1, l1, p1, m1, λ2, l3)F ( λ2, p̃2, p0, m0,−λ0, l0)

+ aλ2 F (−λ1, l1, p1, m1,−λ2, p̃2)F (−λ2, l3, p0, m0,−λ0, l0)
}

+b23
−−

{

aλ2 F (−λ1, l1, p1, m1,−λ2, l3)F (−λ2, l2, p0, m0,−λ0, l0)

+ a−λ2F (−λ1, l1, p1, m1, λ2, l2)F ( λ2, l3, p0, m0,−λ0, l0)
}

+
1

2
A01B23

]

.

D.2.2 Diagram 2

0

1

2

3

aλ

bλ

Figure 40: Feynman diagram for fermion decay via Higgs boson exchange.

The Feynman diagram for fermion decay via Higgs boson exchange is given in

Fig. 40. This process occurs in the MSSM for electroweak gaugino decay into a

different electroweak gaugino and SM fermions. The form of the first vertex is iaλPλ

and the second vertex ibλPλ. It is easiest to express the matrix element for this

diagram in terms of a function of each of the two vertices

V λ0λ1

1 = aλ0F (−λ1, l1, p1, m1, λ0, p̃0)sλ0
(p̃0, l0) (D.10a)

+a−λ0m0F (−λ1, l1, p1, m1,−λ0, l0),

V λ2λ3

2 = bλ3F (−λ2, l2, p2, m2, λ3, p̃3)sλ3
(p̃3, l3) (D.10b)

−b−λ3m3F (−λ2, l2, p2, m2,−λ3, l3).

The matrix element is given by

M = − 1

4
√

p0 · l0p1 · l1p2 · l2p3 · l3
1

m2
23 − M2

Φ + iΓΦMΦ
V λ0λ1

1 V λ2λ3

2 , (D.11)

where MΦ and ΓΦ are the mass and width of the exchanged scalar, respectively.
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D.2.3 Diagram 3

0

2

1

3

aλ

bλ

Figure 41: Feynman diagram for fermion decay via antisfermion exchange.

The Feynman diagram for fermion decay via antisfermion exchange is shown in

Fig. 41. This process occurs in the MSSM for the decay of a gaugino to a different

gaugino and SM fermions. As before we will take the first vertex to be iaλPλ and

the second vertex to be ibλPλ. As this diagram involves scalar exchange it can be

written in terms of a function for each of the vertices

V λ0λ2

1 = aλ0F (−λ2, l2, p2, m2, λ0, p̃0)sλ0
(p̃0, l0) (D.12a)

+a−λ0m0F (−λ2, l2, p2, m2,−λ0, l0),

V λ1λ3

2 = bλ3F (−λ1, l1, p1, m1, λ3, p̃3)sλ3
(p̃3, l3) (D.12b)

−b−λ3m3F (−λ1, l1, p1, m1,−λ3, l3).

The matrix element is given by

M = − 1

4
√

p0 · l0p1 · l1p2 · l2p3 · l3
1

m2
13 − M2

Φ + iΓΦMΦ
V λ0λ2

1 V λ1λ3

2 , (D.13)

where MΦ and ΓΦ are the mass and width of the exchanged scalar, respectively.

D.2.4 Diagram 4

0

3

2

1

aλ

bλ

Figure 42: Feynman diagram for fermion decay via sfermion exchange.

The Feynman diagram for fermion decay via sfermion exchange is shown in

Fig. 42. This process occurs in the decay of a gaugino to SM fermions and a different
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gaugino. As before we will take the first vertex to be iaλPλ and the second vertex

to be ibλPλ. As this diagram involves scalar exchange it can be written in terms of

a function for each of the vertices

V λ0λ3

1 = aλ3F (λ0, l0, p0,−m0, λ3, p̃3)sλ3
(p̃3, l3) (D.14a)

−a−λ3m3F (λ0, l0, p0,−m0,−λ3, l3),

V λ1λ2

2 = b−λ1F (−λ2, l2, p2, m2,−λ1, p̃1)s−λ1
(p̃1, l1) (D.14b)

−bλ1m1F (−λ2, l2, p2, m2, λ1, l1).

The matrix element is given by

M =
1

4
√

p0 · l0p1 · l1p2 · l2p3 · l3
1

m2
12 − M2

Φ + iΓΦMΦ
V λ0λ3

1 V λ1λ2

2 , (D.15)

where MΦ and ΓΦ are the mass and width of the exchanged scalar, respectively.

D.2.5 Diagram 5

0

1

2

3

aλ

bλ

Figure 43: Feynman diagram for antifermion decay via gauge boson exchange.

The Feynman diagram for antifermion decay via gauge boson exchange is shown

in Fig. 43. This diagram only occurs in the decay of a top antiquark via W exchange

because we are treating all decaying gauginos as particles. The amplitude for this

diagram can be expressed using many of the same functions as for diagram one except

for

E01 = δλ0λ1

{

aλ1
[

m2
0s−λ0

(l0, p̃1)sλ0
(p̃1, l1) − m2

1s−λ0
(l0, p̃0)sλ0

(p̃0, l1)
]

(D.16)

+a−λ1m0m1 [s−λ0
(l0, p̃0)sλ0

(p̃0, l1) − s−λ0
(l0, p̃1)sλ0

(p̃1, l1)]
}

+δλ0−λ1

{

aλ1m0

[

m2
1s−λ0

(l0, l1) − s−λ0
(l0, p̃0)sλ0

(p̃0, p̃1)s−λ0
(p̃1, l1)

]

−a−λ1m1

[

m2
0s−λ0

(l0, l1) − s−λ0
(l0, p̃0)sλ0

(p̃0, p̃1)s−λ0
(p̃1, l1)

]}

.
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The amplitude is given by

M = − 1

2
√

p0 · l0p1 · l1p2 · l2p3 · l3
1

m2
23 − M2

B + iΓBMB

[

(D.17)

b23
++

[

a−λ2F (−λ0, l0, p0,−m0, λ2, p̃3)F ( λ2, p̃2, p1,−m1,−λ1, l1)

+ aλ2 F (−λ0, l0, p0,−m0,−λ2, p̃2)F (−λ2, p̃3, p1,−m1,−λ1, l1)
]

+b23
+−

[

aλ2 F (−λ0, l0, p0,−m0,−λ2, p̃3)F (−λ2, l2, p1,−m1,−λ1, l1)

+a−λ2F (−λ0, l0, p0,−m0, λ2, l2)F ( λ2, p̃3, p1,−m1,−λ1, l1)
]

+b23
−+

[

a−λ2F (−λ0, l0, p0,−m0, λ2, l3)F ( λ2, p̃2, p1,−m1,−λ1, l1)

+aλ2 F (−λ0, l0, p0,−m0,−λ2, p̃2)F (−λ2, l3, p1,−m1,−λ1, l1)
]

+b23
−−

[

aλ2 F (−λ0, l0, p0,−m0,−λ2, l3)F (−λ2, l2, p1,−m1,−λ1, l1)

+a−λ2F (−λ0, l0, p0,−m0, λ2, l2)F ( λ2, l3, p1,−m1,−λ1, l1)
]

+
1

2
E01B23

]

,

where MB and ΓB are the mass and width of the gauge boson, respectively.

D.2.6 Diagram 6

0

1

2

3

a

bλ

Figure 44: Feynman diagram for scalar decay via gauge boson exchange.

The Feynman diagram for scalar decay via gauge boson exchange is shown in

Fig. 44. This process occurs in the decay of both the Higgs bosons of the MSSM,

to another Higgs boson and SM fermions, and of the sfermions, to another sfermion

and SM fermions. Again the amplitude for this diagram can be written using many

of the same functions as for diagram one. The form of the first vertex is ia(p0 + p1)
µ

and the second vertex ibλγµPλ. The amplitude is

M = − a

2
√

p2 · l2p3 · l3
1

m2
23 − M2

B + iΓBMB
(D.18)

[

b23
++F (λ2, p̃2, p0 + p1, 0, λ2, p̃3) + b23

+−F (−λ2, l2, p0 + p1, 0,−λ2, p̃3)

+b23
−+F (λ2, p̃2, p0 + p1, 0, λ2, l3) + b23

−−F (−λ2, l2, p0 + p1, 0,−λ2, l3)

+(p0 + p1) · (p2 + p3)B
23

]

.
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D.3 Four Body Decay Feynman Diagrams

There is only one four body decay process which we consider. This is the decay of the

MSSM Higgs bosons to gauge boson pairs, either W or Z, followed by the decay of

the gauge bosons to fermions. As before pi is the four-momentum of the ith particle,

li is the reference vector for the ith particle, mi is the mass of the ith particle, λi is

the helicity of the ith particle and m2
ij = (pi + pj)

2.

0

1

2

3

4

Figure 45: Four body Higgs boson decay to a gauge pair followed by the decay of the

gauge bosons.

The Feynman diagram for this process is shown in Fig. 45. We will take the

form of the Higgs boson-gauge boson pair vertex to be iagµν , the form of the vertex

between the first gauge boson and fermion-antifermion to be ibλγµPλ and the form

of the vertex between the second gauge boson and the fermion-antifermion to be

icλγµPλ. It is useful to define the functions c12
±± and C12 which are the functions b12

±±
and B12 with the coupling bλ replaced by cλ.

The helicity amplitude is given by

M = (D.19)
a

2
√

p1 · l1p2 · l2p3 · l3p4 · l4
1

m2
12 − M2

B1
+ iΓB1

MB1

1

m2
34 − M2

B2
+ iΓB2

MB2
{

δλ1λ3

[

b12
++

(

sλ1
(p̃1, p̃3)

[

c34
++s−λ1

(p̃4, p̃2) + c34
−+s−λ1

(l4, p̃2)
]

+s−λ1
(l3, p̃2)

[

c34
+−sλ1

(p̃1, p̃4) + c34
−−sλ1

(p̃1, l4)
])

+ b12
+−

(

sλ1
(p̃3, p̃2)

[

c34
++s−λ1

(l1, p̃4) + c34
−+s−λ1

(l1, l4)
]

+s−λ1
(l1, l3)

[

c34
+−sλ1

(p̃4, p̃2) + c34
−−sλ1

(l4, p̃2)
])

+ b12
−+

(

sλ1
(p̃1, p̃3)

[

c34
++s−λ1

(p̃4, l2) + c34
−+s−λ1

(l4, l2)
]

+ s−λ1
(l3, l2)

[

c34
+−sλ1

(p̃1, p̃4) + c34
−−sλ1

(p̃1, l4)
])

+ b12
−−

(

sλ1
(p̃3, l2)

[

c34
++s−λ1

(l1, p̃4) + c34
−+s−λ1

(l1, l4)
]

+s−λ1
(l1, l3)

[

c34
+−sλ1

(p̃4, l2) + c34
−−sλ1

(l4, l2)
])]
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Decay Colour Factor Diagram Type aλ

g̃ → qq̃∗
α

1
2

1 a∗−λ
g̃q̃αq

g̃ → q̄q̃α
1
2

2 aλ
g̃q̃αq

g̃ → χ̃0
i g

1
4

3 -

Table 17: Two body decays of the gluino. As we are treating the gluino as a particle

the sign of the gluino’s helicity should be changed in the expression for the second decay

amplitude. In the decays of the gluino to squarks α gives the mass eigenstate of the squark.

+δλ1−λ3

[

b12
++

(

s−λ1
(p̃3, p̃2)

[

c34
++sλ1

(p̃1, p̃4) + c34
−+sλ1

(p̃1, l4)
]

+ sλ1
(p̃1, l3)

[

c34
+−s−λ1

(p̃4, p̃2) + c34
−−s−λ1

(l4, p̃2)
])

+ b12
+−

(

s−λ1
(l1, p̃3)

[

c34
++sλ1

(p̃4, p̃2) + c34
−+sλ1

(l4, p̃2)
]

+sλ1
(l3, p̃2)

[

c34
+−s−λ1

(l1, p̃4) + c34
−−s−λ1

(l1, l4)
])

+ b12
−+

(

s−λ1
(p̃3, l2)

[

c34
++sλ1

(p̃1, p̃4) + c34
−+sλ1

(p̃1, l4)
]

+ sλ1
(p̃1, l3)

[

c34
+−s−λ1

(p̃4, l2) + c34
−−s−λ1

(l4, l2)
])

+ b12
−−

(

s−λ1
(l1, p̃3)

[

c34
++sλ1

(p̃4, l2) + c34
−+sλ1

(l4, l2)
]

+sλ1
(l3, l2)

[

c34
+−s−λ1

(l1, p̃4) + c34
−−s−λ1

(l1, l4)
])]

+
1

2
B12

[

c34
++F (λ3, p̃3, p1 + p2, 0, λ3, p̃4) + c34

+−F (−λ3, l3, p1 + p2, 0,−λ3, p̃4)

+c34
−+F (λ3, p̃3, p1 + p2, 0, λ3, l4) + c34

−−F (−λ3, l3, p1 + p2, 0,−λ3, l4)
]

+
1

2
C34

[

b12
++F (λ1, p̃1, p3 + p4, 0, λ1, p̃2) + b12

+−F (−λ1, l1, p3 + p4, 0,−λ1, p̃2)
]

+b12
−+F (λ1, p̃1, p3 + p4, 0, λ1, l2) + b12

−−F (−λ1, l1, p3 + p4, 0,−λ1, l2)
]

+
1

2
(p1 + p2) · (p3 + p4)B

12C34

}

,

where MBi
and ΓBi

are the mass and width of the ith gauge boson.

D.4 Matrix Elements

We can now use the amplitudes for the two and three body decays in order to express

the matrix elements for decay processes we are interested in. As with the hard

processes this is simply a matter of listing the Feynman diagrams which contribute

to a given decay and the various colour factors. This is somewhat easier here because

the SM and MSSM decays we are considering have only one colour flow so we do not

have the additional complication of dealing with different colour flows as we did in

the hard production processes.

The two body decays are particularly simple to specify because there is only

one Feynman diagram for each decay mode. The two body decay modes of the

gluino, neutralinos and charginos are given in Tables 17, 18 and 19, respectively. The
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Decay Colour Factor Diagram Type aλ

χ̃0
j → χ̃0

i h
0 1 1 aλ

h0χ̃0
i χ̃0

j

χ̃0
j → χ̃0

i H
0 1 1 aλ

H0χ̃0
i χ̃0

j

χ̃0
j → χ̃0

i A
0 1 1 aλ

A0χ̃0
i χ̃0

j

χ̃0
i → χ̃+

j H− 1 1 a∗−λ

H−χ̃0
i
χ̃−

j

χ̃0
i → χ̃−

j H+ 1 1 aλ
H−χ̃0

i χ̃−

j

χ̃0
i → f f̃∗α 1 1 a∗−λ

χ̃0
i f̃αf

χ̃0
i → f̄ f̃α 1 2 aλ

χ̃0
i f̃αf

χ̃0
j → χ̃0

i γ 1 3 -

Table 18: Two body decays of the neutralinos. As we are treating the neutralino as a

particle the sign of the neutralino’s helicity should be changed in the expression for the

second type of decay amplitude. In the decay modes of the neutralino to sfermions α gives

the mass eigenstate of the sfermion. The colour factor given for sfermion production is

for the production of sleptons, the corresponding colour factor is Nc for the production of

squarks.

two body decays of the Higgs bosons are given in Table 20 and of the sfermions in

Table. 21.

The three body decays are more complicated as there is often more than one

diagram contributing to a given decay mode. The three body SM decay modes of

the top quarks and antiquarks are given in Table 22. The three body decays of

the gluinos to quarks and electroweak gauginos are given in Table 23. The three

body decays of the neutralinos to fermions and gauginos are given in Table 24. The

chargino three body decay modes to gauginos are given in Table 25.

The decays of the MSSM Higgs bosons via gauge boson exchange are given

in Table 26. The decays of the sfermions via gauge boson exchange are given in

Table 27. It should be noted that for processes in which the fermions produced in

these sfermion decays have the same flavour as the decaying sfermion there can be

additional diagrams involving gaugino exchange which we have neglected.

We have only considered the four body decays of Higgs bosons, via either real

or virtual gauge boson pairs. These decay modes are given in Table 28.
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Decay Colour Factor Diagram Type aλ

h0 → χ̃0
i χ̃

0
j 1 4 aλ

h0χ̃0
i χ̃0

j

H0 → χ̃0
i χ̃

0
j 1 4 aλ

H0χ̃0
i χ̃0

j

A0 → χ̃0
i χ̃

0
j 1 4 aλ

A0χ̃0
i χ̃0

j

h0 → χ̃+
i χ̃−

j 1 4 aλ
h0χ̃+

i χ̃−

j

H0 → χ̃+
i χ̃−

j 1 4 aλ
H0χ̃+

i χ̃−

j

A0 → χ̃+
i χ̃−

j 1 4 aλ
A0χ̃+

i χ̃−

j

h0 → f f̄ 1 4 aλ
h0f f̄

H0 → f f̄ 1 4 aλ
H0f f̄

A0 → f f̄ 1 4 aλ
A0f f̄

H+ → χ̃+
j χ̃0

i 1 4 a∗−λ

H−χ̃0
i χ̃−

j

H+ → f f̄ ′ 1 4 a∗−λ
H−f f̄′

H− → χ̃−
j χ̃0

i 1 4 aλ
H−χ̃0

i χ̃−

j

H− → f f̄ ′ 1 4 aλ
H−f f̄′

Table 20: Two body decays of the MSSM Higgs bosons. As we are treating the electroweak

gauginos as particles the sign of the second outgoing particle’s helicity should be changed

for the Higgs boson to two gaugino decay modes. The colour factor given for fermion

production is for the production of leptons, the corresponding colour factor is Nc for quark

production.

Decay Colour Factor Diagram Type aλ

q̃α → qg̃ (N2
c −1)

2Nc
4 a∗−λ

g̃q̃αq

q̃∗
α → g̃q̄ (N2

c −1)
2Nc
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g̃q̃αq
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χ̃+
i f̃αf′

Table 21: Two body decays of the sfermions. Again as we are treating the gauginos as

particles the sign of the second particle’s helicity should be changed in the sfermion to

fermion gaugino processes. The mass eigenstate of the decaying sfermion is given by α and

f ′ is the isospin partner of f.
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Decay Colour Factor Diagram Type Virtual Particle aλ bλ
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Wtb̄

aλ
Wff̄′

t̄ → b̄f f̄ ′ 1 5 W aλ
Wtb̄

aλ
Wff̄′

Table 22: Three body top quark decay modes. The colour factors given are for the

production of leptons in the decays, the colour factor is Nc for the production of quarks.

The isospin partner of f is f ′.

Decay Colour Factor Diagram Type Virtual Particle aλ bλ

g̃ → χ̃0
l qq̄ 1

2
3 q̃∗
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Decay Colour Factor Diagram Type Virtual Particle aλ bλ
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j f̃′αf

χ̃0
i → χ̃−
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Table 24: Three body neutralino decay modes. We have only included the Higgs boson

exchange diagrams for neutralino decays. These diagrams are only important for the
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Decay Colour Factor Diagram Type Virtual Particle aλ bλ

χ̃+
j → χ̃0

i f f̄
′ 1 leptons 1 W aλ

Wχ̃0
i χ̃−

j

aλ
Wff̄′

Nc quarks 3 f̃ ′∗α a∗−λ

χ̃+
j f̃′αf

aλ
χ̃0

i f̃′αf′

4 f̃α aλ
χ̃+

j f̃αf′
ǫia

∗−λ

χ̃0
i f̃αf

χ̃+
j → χ̃+

i f f̄ 1 leptons 1 Z aλ
Zχ̃+

i χ̃−

j

aλ
Zff̄

Nc quarks 3 f̃ ′∗α a∗−λ

χ̃+
j

f̃′αf
aλ

χ̃+
i f̃′αf

4 f̃ ′α aλ
χ̃+

j f̃′αf
a∗−λ

χ̃+
i f̃′αf

χ̃−
j → χ̃0

i f f̄
′ 1 leptons 1 W −a−λ

Wχ̃0
i χ̃−

j

aλ
Wff̄′

Nc quarks 3 f̃ ′∗α a∗−λ

χ̃+
j f̃′αf

aλ
χ̃0

i f̃′αf′

4 f̃α aλ
χ̃+

j f̃αf′
ǫia

∗−λ

χ̃0
i f̃αf

χ̃−
j → χ̃−

i f f̄ 1 leptons 1 Z −a−λ

Zχ̃+
j χ̃−

i

aλ
Zff̄

Nc quarks 3 f̃ ′∗α a∗−λ

χ̃+
j

f̃′αf
aλ

χ̃+
i f̃′αf

4 f̃ ′α aλ
χ̃+

j f̃′αf
a∗−λ

χ̃+
i f̃′αf

Table 25: Three body chargino decay modes. The positive chargino can decay to χ̃0
l ud̄

or χ̃0
l νℓ+ and the negative chargino to χ̃0

l dū or χ̃0
l ℓ

−ν̄. The gluinos are usually heavier

than the charginos in SUSY models and we have therefore not included the decay modes

χ̃±
j → g̃qq̄′. The mass eigenstate, α, of the intermediate sfermions must be summed over.

As before the isospin partner of a fermion or sfermion is denoted with a prime.

Decay Colour Factor Diagram Type Virtual Particle a bλ

A0 → h0f f̄ 1 6 Z −aA0h0Z aλ
Zff̄

A0 → H0f f̄ 1 6 Z −aA0H0Z aλ
Zff̄

h0 → A0f f̄ 1 6 Z aA0h0Z aλ
Zff̄

H0 → A0f f̄ 1 6 Z aA0H0Z aλ
Zff̄

H+ → h0f f̄ ′ 1 6 W+ −aH−h0W− aλ
Wff̄′

H+ → H0f f̄ ′ 1 6 W+ −aH−H0W− aλ
Wff̄′

H+ → A0f f̄ ′ 1 6 W+ −aH−A0W− aλ
Wff̄′

H− → h0f f̄ ′ 1 6 W− −aH+h0W+ aλ
Wff̄′

H− → H0f f̄ ′ 1 6 W− −aH+H0W+ aλ
Wff̄′

H− → A0f f̄ ′ 1 6 W− −aH+A0W+ aλ
Wff̄′

h0 → H±f f̄ ′ 1 6 W± aH±h0W± aλ
Wff̄′

H0 → H±f f̄ ′ 1 6 W± aH±H0W± aλ
Wff̄′

A0 → H±f f̄ ′ 1 6 W± aH±A0W± aλ
Wff̄′

Table 26: Three body MSSM Higgs boson decay modes. The colour factors given are for

the decay of the Higgs boson to a different Higgs boson and leptons. For the decay of the

Higgs boson to another Higgs boson and quarks the colour factor is Nc. As before f ′ is the

isospin partner of f.
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Decay Colour Factor Diagram Type Virtual Particle a bλ

f̃α → f̃βnn̄ 1 6 Z aZf̃β f̃∗α
aλ

Znn̄

f̃∗α → f̃∗βnn̄ 1 6 Z aZf̃α f̃∗
β

aλ
Znn̄

f̃α → f̃ ′βnn̄′ 1 6 W aWf̃′
β
f̃∗α

aλ
Wnn̄′

f̃∗α → f̃ ′∗β nn̄′ 1 6 W aWf̃α f̃′∗
β

aλ
Wnn̄′

Table 27: Three body decays modes of the sfermions. The fermion n and antifermion

n̄ produced in the sfermion decay need not be the same as the flavour decaying sfermion.

The isospin partner of n is denoted by n′. In fact if the produced fermion is of the same

flavour as the decaying sfermion there are additional Feynman diagrams which we have not

included. As before the colour factors given are for the production of leptons, the colour

factor is Nc for the production of quarks.

Decay First Second a bλ cλ

Virtual Virtual

Particle Particle

h0 → W+W− → f f̄ ′nn̄′ W+ W− gMW sin(β − α) aλ
W f f̄′

aλ
Wnn̄′

H0 → W+W− → f f̄ ′nn̄′ W+ W− gMW cos(β − α) aλ
W f f̄′

aλ
Wnn̄′

h0 → ZZ → f f̄nn̄ Z Z gMW sin(β − α) aλ
Zf f̄

aλ
Znn̄

H0 → ZZ → f f̄nn̄ Z Z gMW cos(β − α) aλ
Zf f̄

aλ
Znn̄

Table 28: Four body Higgs boson decay modes. The colour factor is 1 if all the produced

fermions are leptons, Nc if a lepton and neutrino and a quark/antiquark pair are produced

and N2
c is all the produced particles are quarks. The isospin partners of n and f are denoted

by n′ and f ′, respectively.
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