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External prestressed carbon fibre reinforced polymer straps can be used to strengthen shear-deficient reinforced

concrete structures. For an efficient shear retrofitting system, the optimum combinations of parameters such as the

number of straps, strap locations, strap stiffness and initial strap prestress need to be identified. The modified

compression field theory and the shear friction theory have previously been applied to carbon fibre reinforced

polymer strap strengthened beams. As implemented, both of these methods are iterative. Particle swarm optimisa-

tion and genetic algorithm stochastic optimisation methods were used to reduce the computational cost associated

with the shear strength evaluation and also to search the design space for carbon fibre reinforced polymer strap

strengthened beams. An initial comparison across several test functions showed that the preferred optimisation

algorithm depended on the characteristics of the design space. When applied to a reinforced concrete case study, the

genetic algorithm was better for searching the shear friction theory shear strength design space that was

characterised by several peaks. However, for the smoother modified compression field theory shear strength

evaluation space, and for the design space for the carbon fibre reinforced polymer strengthened beams calculated

using either the modified compression field theory or the shear friction theory, the particle swarm optimisation

converged more quickly and accurately. The optimised solutions reflect the assumptions within the underlying

evaluation methods.

Notation
a shear span

a g aggregate size

bw beam web width

c1, c2 learning factors

Es Young’s modulus of elasticity of steel

FFRP strap force

f 9c concrete cylinder compressive strength

fsx, fsz, fz_FRP stress in the longitudinal steel, stress in the

transverse steel, mid-depth transverse stress due

to the strap force

fsxcr, fszcr stresses at crack in the x and z directions

fx, fz average stress in the x and z directions

fyx, fyz steel yield stress in x and z directions

f1, f2 principal concrete stresses

gbest best solution achieved by all the particles

h beam height

k shear friction coefficient

kc confined area ratio

N population size

Nv, Np force due to internal stresses and force in the

longitudinal reinforcement

nL, nP, nS number of layers per strap, level of initial

prestress and number of straps

Pc, Pi, Pm crossover, inversion and mutation probabilities

pbest best solution each particle has achieved

R force perpendicular to shear crack plane

rand random number between 0 and 1

S resultant force along shear crack plane

S1, S2, S3 CFRP strap spacings

sx, sz, sŁ crack spacing in x, z and Ł directions

Tv force in internal steel stirrup

V shear strength

Vfle shear force associated with flexural failure

Vmax, Vmin velocity limits

Vt velocity at the tth iteration

v shear stress

vci shear stress along the crack

w crack width

wIF inertia factor

X distance from support

Xrange range

Xt position at the tth iteration

xopt_algo, yopt_algo

algorithm optimum

xopt, yopt actual optimum

� shear crack angle

ªxz shear strain

�x, �z strain in longitudinal and transverse directions

� z_ini initial vertical strain
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�1, �2 principal strains

Ł inclination of the principal compressive strain

direction relative to the x (longitudinal) direction

rx, rz steel reinforcement ratio in the longitudinal and

transverse directions

1. Introduction
Shear failures in reinforced concrete (RC) structures are typically

brittle and sudden. Shear deficiencies can arise due to increased

loading, corrosion of the internal steel reinforcement and less

conservative designs based on earlier design codes (Lees et al.,

2002). A lack of strength leads to the need either to impose

weight limits, to strengthen the structure or to demolish and

replace it. The strengthening of structures with insufficient shear

capacity is therefore an attractive option. Various fibre reinforced

polymer retrofitting systems including surface bonded systems

(Teng et al., 2004), near surface mounted systems (De Lorenzis

and Nanni, 2001) and unbonded strap systems (Lees et al., 2002)

have been investigated.

A carbon fibre reinforced polymer (CFRP) strap system is the

subject of the current work and is shown schematically in Figure 1.

The straps are unbonded and can be prestressed to augment the

confinement supplied to the concrete and to mitigate crack opening

and propagation. The system has been investigated for rectangular

(Kesse and Lees, 2007a) or slab-on-beam structures (Hoult and

Lees, 2009a). The CFRP strap is made by winding layers of thin

(between 0.12 mm and 0.16 mm thick) continuous CFRP thermo-

plastic tape around the beam. Profiled steel bearing pads provide a

smooth support for the CFRP strap. The two outermost tape layers

are welded so as to form a complete self-anchored non-laminated

loop (Lees and Winistörfer, 2011; Winistörfer, 1999). More details

about the system and the method of prestressing can be found

elsewhere (Kesse and Lees, 2007a; Yapa, 2011).

In an unstrengthened RC structure the internal steel reinforcement

is in the form of discrete units with a particular size (bar

diameter) that resist tensile forces. The CFRP straps add further

discrete units of transverse reinforcement in which the number of

straps, strap location, strap stiffness and initial strap prestress can

vary. The challenge is to ascertain both the base strength of the

unstrengthened structure and the design of the required strength-

ening system that will be most efficient. There is no common

agreement about the best evaluation method to determine the

shear capacity of unstrengthened or strengthened RC beams.

However, with some modifications, the shear friction theory

(SFT) (Loov, 1998) and the modified compression field theory

(MCFT) (Vecchio and Collins, 1986) have been adapted to

predict the capacity of CFRP strap strengthened beams (Hoult

and Lees, 2009b; Lees et al., 2002; Yapa, 2011). Finite-element

analysis methods (Dirar et al., 2013; Kesse and Lees, 2007b)

were not considered further in the current study due to the

computational complexity in meshing and analysing a multitude

of strengthening combinations (in the context of optimum param-

eter search), the difficulty in the selection of appropriate input

parameters and the desirability of an analytical model.

Stochastic optimisation methods will be investigated to help

streamline the shear strength evaluation and CFRP strap strengthen-

ing design processes. Stochastic methods do not use derivative

information and the objective function does not need to be explicitly

defined in terms of the design variables. The exact optimum cannot

be guaranteed but often an exact solution is not necessary and a near

solution can be attained even for highly constrained problems with

many variables (Rafiq and Southcombe, 1998). Stochastic optimisa-

tion has been previously applied to RC structural engineering

applications including RC beam design optimisation (Matous et al.,

2000), RC frame design optimisation (Govindaraj and Ramasami,

2007) and the cost optimisation of RC flat slabs (Sahab et al., 2005).

In the current work, optimisation methods will be used for two

separate purposes: to reduce the number of iterations in the

theoretical evaluation of the shear strength of RC beams; and to

identify the strengthening system locations and parameters to

achieve the largest shear capacity enhancement.

2. Stochastic optimisation methods
Common stochastic optimisation methods for engineering include

Monte Carlo sampling (MCS), genetic algorithms (GA), particle

swarm optimisation (PSO), simulated annealing and Tabu search

(Yang et al., 2006). However, Wolpert and Macready (1997) state

that

. . .if some algorithm a1’s performance is superior to that of another

algorithm a2 over some set of optimization problems, then the reverse

must be true over the set of all other optimization problems.

This means that there is no universally superior algorithm for all

possible cost functions. The potential trade-offs between two

selected optimisation methods in the context of the shear behav-

iour of CFRP strengthened RC structures will be studied. The

particular focus will be the GA and PSO methods because they

are robust, they work with a set of solutions rather than a single

solution and can possess a fast convergence rate when compared

with other stochastic optimisation techniques (Hu, 2006).

2.1 Particle swarm optimisation

PSO is a technique inspired by the social behaviour of flocks of

birds or schools of fish (Hu, 2006). PSO is based on cooperation

rather than competition (Liu et al., 2007) and the PSO population

is stable. Hence individuals are neither destroyed nor created but

CFRP straps Support
pad

Figure 1. Prestressed carbon fibre reinforced polymer strap shear

strengthening system
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instead are updated. Updating is mainly influenced by the best

performance of solution neighbours. Advantages of the PSO

method include: it works with real numbers; there are relatively

few control parameters that need to be tuned; the algorithm is

comparatively easy to implement; and for most problems, ten

particles (solutions) are sufficient to achieve a good result so the

associated computational cost is low (Hu, 2006).

The PSO is initialised with a group of random particle positions.

The algorithm then searches for the optima by updating the solution

group. The pbest solution is the best solution each particle has

achieved so far and the gbest solution is the best solution achieved by

all the particles. The position (value) and velocity at the tth iteration

are defined as Xt and Vt, respectively. To make the algorithm more

efficient Shi and Eberhart (1998) introduced a linearly decreasing

inertia factor, wIF, into the velocity update equation in which

V tþ1 ¼ wIF 3 V t þ c1 3 rand 3 ( pbest � X t)

þ c2 3 rand 3 (gbest � X t)1:

and c1 and c2 are learning factors, usually equal to two (Hu,

2006), rand is a random number between 0 and 1, and wIF

decreases linearly from 0.9 to 0.4 through the iteration process.

The latter measure is taken to allow the particles to move freely

at the initial stage of the search to avoid becoming trapped in a

local minimum and to control the particle movements at the later

stage of the search to ensure a fast convergence.

For each particle, the new particle position at the next iteration

(after a unit time increment) Xtþ1 is found as

X tþ1 ¼ X t þ V tþ1 3 12:

The initial velocity of each particle is set to zero and the

subsequent updated velocities are bounded within the range of

Vmax and Vmin where

V max ¼
X range

2
; V min ¼ �

X range

23:

and Xrange is the specified potential range for the variable (Liu et

al., 2007). If the velocity exceeds either of these thresholds, the

corresponding threshold value is assigned.

2.2 Genetic algorithms

GAs are based on the mechanics of natural selection and natural

genetics (Goldberg, 1989). GAs are good at handling cases in

which the objective function is characterised by a number of sharp

peaks (Keane, 1995). Although GAs locate the neighbourhood of

the global optimum efficiently there can be problems in conver-

gence onto the optimum itself (Rafiq and Southcombe, 1998). GAs

differ from other stochastic optimisation procedures primarily

because they work with a coding of the parameter set and not the

parameters themselves, and they search for multiple points from a

population so the probability of finding a false peak is reduced.

Traditionally, GA solutions are represented by binary bit strings,

but can also work with natural numbers (Matous et al., 2000). Full

details of the method can be found elsewhere (Goldberg, 1989).

An initial population of solutions is generated. The algorithm

evaluates the fitness of these solutions by comparing the objective

function value of the solution with the sum of the objective

function values of all the solutions in the population where

Fitness ¼ f (solution)P
all f (solution)4:

The fittest solutions are then selected through a reproduction

process. These reproduced solutions are directed to a mating

pool, which is subsequently subjected to genetic operations. The

genetic operations include crossover, inversion and mutation. In

the crossover operator two parent individuals are selected with a

probability ‘Pc’ from the population and recombined to form two

new individuals. Although there are different crossover methods

(Goldberg, 1989) the traditional ‘one point crossover’ is used in

the current work. Inversion is an advanced optional GA operator

that can make the algorithm more efficient but comes at an

increased computational cost (Goldberg, 1989). A single string is

selected with a probability ‘Pi’ and two arbitrary points are

chosen along the length of the string. The string is then cut at

these points, and replaced in the reverse order. Mutation helps to

avoid the trapping of the GA in a local optimum by changing

single bits of individuals to another value.

2.2.1 Control parameters

The efficiency of a GA is highly dependent on the algorithm’s

control parameter values. Assuming that features such as the

selection procedure (reproduction) are predetermined, the adjus-

table control parameters are the population size N, crossover

probability Pc, mutation probability Pm and inversion probability

Pi: Exact values for these control parameters are not defined but,

for an efficient search, potential ranges have been proposed:

20 < N < 60, 0.75 < Pc < 0.95, Pi � 0.5 and 0.001 < Pm < 0.05

(Goldberg, 1989). Suitable control parameter values can be

chosen from experience or through a trial and error process.

2.3 Verification

The PSO and GA were coded and verified using six test functions

that represent a diverse range of topologies. These functions were

(see also Figure 2)

Rosenbrock function

f (x, y) ¼ (1� x)2 þ 100(y� x2)25:
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Griewank function

f (x, y) ¼ x2 þ y2

4000
� cos(x) cos

yffiffiffi
2
p
� �

þ 1
6:

Hump function

f (x, y) ¼ 4x2 � 2:1x4 þ 1

3
x6 þ xy� 4y2 þ 4y4

7:

Keane function

f (x, y) ¼ sin2(x� y) sin2(xþ y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2y2

p
8:

Michalewicz function

f (x, y) ¼ sin(x) sin20 x2

�

� �
þ sin(y) sin20 2y2

�

� �
9:
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Figure 2. Test functions: (a) Rosenbrock function; (b) Griewank

function; (c) Hump function; (d) Keane function; (e) Michalewicz

function; (f) Rastrigin function
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Rastrigin function

f (x, y) ¼ x2 þ y2 � 10 cos(2�x)� 10 cos(2�y)þ 2010:

In the test function verification process, the GA control parameter

values were varied within the potential ranges and the computa-

tional cost to generate the target optimum was compared for each

test function. It was found that, Pc ¼ 0.8, Pi ¼ 0.5 and Pm ¼ 0.05

were reasonable GA control parameter values. A population size

N ¼ 40 was generally found to be sufficient and for some test

functions was in excess of what was necessary.

Ten repeat runs were undertaken and the resulting mean and

standard deviation of the error has been summarised in Table 1

for the coded PSO and GA algorithms. The number of evalua-

tions for each search (rounded to the nearest thousand) is also

noted. Convergence was considered to have been achieved when

no new best solutions were found for three consecutive genera-

tions. The error of the solution was calculated as

Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xopt � xopt_algo)2 þ (yopt � yopt_algo)2

q
11:

where xopt_algo, yopt_algo and xopt, yopt are the optimum found by

the algorithm and the actual optimum in terms of the x and y

coordinates, respectively.

The verification results illustrate that, with the exception of the

Griewank function, which has many identical local optimums, the

PSO generally found the optima for the functions efficiently at a

relatively low computational cost. The PSO became trapped in a

local optimum in the Griewank function in one of the test runs,

which led to a large error. The GA performed better than the

PSO for the Griewank function both in terms of the number of

evaluations until convergence and the error. The GA also found

the optimum for the Rastrigin function, which had many local

optima, with fewer evaluations. However, for the other four test

functions, the PSO error was smaller after the same number of

evaluations. The GA located the neighbourhood of the optimum

in these functions but was not as efficient in converging onto the

optimum itself.

3. Shear strength evaluation methods
As discussed, the shear behaviour of RC is complex and there is

no universal agreement on the best shear model. A common

feature of the more advanced methods is that iterations are

required to evaluate the credible shear strength. Perera et al.

(2009) showed that stochastic methods can be used to generate

initial random solutions for an evaluation process associated with

iterations, and the final solution can be achieved by updating

these solutions. So optimisation can play a role in reducing the

length of time for the evaluation process (hereafter referred to as

‘evaluation’). The MCFT and the SFT will be used as examples

of evaluation methods for unstrengthened and CFRP strengthened

beams. Once the predicted strength for a given set of parameters

has been calculated, optimisation methods can also be used to

investigate different combinations of parameters to seek the most

critical combination (‘parameter searching’). The preferred opti-

misation technique will depend on the characteristics of the

strength evaluation and parameter searching design space.

3.1 Modified compression field theory

The MCFT developed by Vecchio and Collins (1986) is capable

of predicting the full response of cracked RC members subjected

to shear and/or torsion. The theory consists of 15 main equations

that are shown in Figure 3. When modelling a RC beam subjected

to both bending and shear the longitudinal stress varies through

the beam depth, which introduces further solution steps. In the

current work the stress–strain conditions at the beam mid-depth

are used and it is assumed that the shear stress and crack angle

are uniform across the beam depth (Collins and Mitchell, 1987).

As the theory considers strain compatibility, Lees et al. (2002)

showed that in an average sense the unbonded CFRP strap

Test function Rosenbrock Griewank Hump Keane Michalewicz Rastrigin

PSO

No. of evaluations 8000 8000 4000 2000 2000 4000

Error

Mean 0.001 0.001 0.000 0.000 0.000 0.000

SD 0.002 0.004 0.000 0.000 0.000 0.000

GA

No. of evaluations 8000 1000 4000 2000 2000 1000

Error

Mean 0.014 0.000 0.006 0.028 0.006 0.000

SD 0.034 0.000 0.004 0.041 0.005 0.000

Table 1. Particle swarm optimisation (PSO) and genetic algorithm

(GA) validation results
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contribution can be included in the equation for vertical equili-

brium (equation 2 in Figure 3)

f z ¼ rz f sz þ f z_FRP þ f 1 � v tan Ł12:

where fz, rz, fsz, fz_FRP, f1, v and Ł are the total stress in the z

direction, steel reinforcement ratio in the z direction, stress in the

transverse steel, average transverse stress created at the mid-depth

of the beam due to the strap force, principal tensile stress of

concrete, shear stress, and inclination of the principal compressive

strain direction relative to the x (longitudinal) direction. Yapa and

Lees (2014) proposed an approach to model RC beams retrofitted

with either uniform or non-uniform strap configurations. For non-

uniform or large strap spacing configurations, the shear span was

considered as regions bounded by either the support and a strap,

two straps, or a strap and a load point. The MCFT analysis was

performed for each region and the critical region with the

minimum shear strength is identified. When the strap spacing is

large, the influence of the imposed vertical stress distribution

becomes weak. To reflect this, a smeared vertical stress is defined

using a confined area ratio (kc). Full details of the MCFT as

applied to unstrengthened (Collins and Mitchell, 1987) and CFRP

strengthened beams (Yapa, 2011; Yapa and Lees, 2014) can be

found elsewhere.

3.2 Shear friction theory

The SFT developed by Loov (1998) considers the shear reinforce-

ment as discrete elements. Loov argues that the concrete

contribution along the crack interface is a function of the normal

stress on the crack plane, the concrete strength and a shear

friction coefficient. When extending the SFT for the CFRP strap

strengthening system, the CFRP straps are represented as addi-

tional discrete web reinforcement elements (Hoult and Lees,

2009b) and the force in the straps along the crack plane defines

the CFRP strap contribution (see Figure 4). To include the strap

contribution, if the force in an individual strap is FFRP, the total

force carried by all the straps crossing the crack is �FFRP: The

total shear strength V for a given crack plane is then

V ¼ 0:25k2 f 9cbwh tan �þ
X

T vþ
X

FFRP13:

where k is the shear friction coefficient (which was taken as

k ¼ 0.55 in the current work), f 9c is the concrete cylinder

compressive strength, bw is the web width, h is the height of

the beam and � is the shear crack angle relative to the

horizontal. The SFT assumes that the internal shear links

crossed by the shear crack have yielded at the crack so �Tv

can be calculated. The CFRP straps do not have a yield

z

fz

v

v
fx

θ

x

Equilibrium
Average stresses:

(1)

(2)

(3)

f f f vx x x cot� � �ρ s 1 θ

f f f vz z z tan� � �ρ s 1 θ

v f f( )/(tan� �1 2 θ � cot )θ

Stresses at cracks:

f f v vs cr cix x x( cot cot /� � �θ θ ρ)
f f v vs cr ciz z z( tan tan /� � �θ θ ρ)

(4)
(5)

Geometric conditions
Average strains:

Stress–strain relationships
Reinforcement:

ε1
εz

ε2

εx

sθ

Stress Stress

Steel
fy

Strain Strain

Concrete
f �c

tan2 θ �
ε εx � 2

εz � ε2

ε ε ε ε1 2� � �x z

(6)

(7)

Crack widths:

(8)

w s� θε1 (9)

(10)

γ ε ε θxz x2( ) cot� � 2

(11)

(12)

(13)

(14)

(15)

f E fs s yx x x� �ε
f E fs s yz z z� �ε

Concrete:

Shear stress on crack:

��f2 � 2� �
2f �c

0·8 170� ε1

ε2

ε�c

ε2

ε�c
�

f f1 c 10·33 (1 500 )� � ε� ��

v fci c0·18� �� �0·31 �
24w

ag 16�
�

ε�c

sθ 1�
sin θ

sx
�

cos θ
sz ��

Figure 3. Main equations in the modified compression field

theory, after Bentz and Collins (2006)
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point and are not bonded to the structure. So the crack

opening results in an increase in strain along the entire

length of the strap. Hoult and Lees (2009b) calibrated Loov’s

shear friction model with the model of Vecchio and Collins

(1986), which enabled Hoult and Lees to identify the crack

width variation corresponding to a given average shear stress

in the SFT. The initial strap prestrain is added to the strain

due to the crack opening to obtain the total strap strain

which leads to FFRP for a given strap (for full details please

see Hoult and Lees, 2009b). In the SFT solution procedure

all the potential shear crack planes must be evaluated to

identify the critical shear crack associated with the minimum

strength (see Figure 4).

4. Application of stochastic optimisation to
shear strength evaluation

The use of stochastic methods for the evaluation of shear strength

was investigated using a case study consisting of an RC beam

strengthened with two CFRP straps in fixed locations. The RC

beam ( f 9c ¼ 35 MPa) had a cross-section of 105 3 280 mm, a

shear span of 690 mm, longitudinal reinforcement ratio of 3.3%

( fy ¼ 500 MPa) and 4 mm diameter ( fy ¼ 475 MPa) steel shear

links with a spacing of 200 mm. The first shear link was 70 mm

away from the support. The concrete cover was 25 mm. The two

ten-layer 25% prestressed CFRP straps were located at

S1 ¼ 270 mm and S2 ¼ 470 mm. The elastic modulus of the

CFRP material was 120 GPa and the bearing pad width was

100 mm. Note that this beam design is similar to beam B2 from

an experimental investigation reported elsewhere (Yapa and Lees,

2014).

4.1 MCFT evaluations

For assumed increments of �1, MCFT solutions are obtained by

iterating through other parameters until equilibrium is satisfied.

In the current work, Ł and �z are the parameters for iteration and

the focus is to find a solution that satisfies equilibrium, compat-

ibility and the material laws thereby to identify the load capacity

of the beam. The region bounded by the straps was identified as

the critical shear region (see Figure 5) and �1 ¼ 0.005 was

associated with the ultimate load capacity of the beam. The

confined area ratio (kc) for this region was found to be 0.95 (see

Yapa and Lees, 2014). This ratio depends only on the strap

locations so therefore was a fixed value for the subsequent

evaluations. The solution space was mapped (see Figure 5(b)) to

assess the performance of the algorithms. This step would other-

wise not be necessary. For the specified value of �1 the PSO and

GA were used to generate initial random solutions for Ł and �z

and subsequently update the solutions to minimise the associated

error (defined in Equation 14). In the GA, the solutions are coded

as floating point numbers. A population of 20 initial random

solutions were generated subject to: 228 < Ł < 458 and

0.05 3 10–3 < �z < 10 3 10–3, see Figure 5(c). The objective

function was the total error associated with the axial load

equilibrium, which is calculated in terms of the force due to

T

Potential
shear crack

CFRP strap

Potential
crack planes

Potential
crack
planes

(a)
v

�

S
R
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x
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r 
ca

pa
ci

ty

Sh
ea

r 
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Figure 4. Shear friction theory: (a) conditions along crack plane;

(b) and (c) crack plane resistance variation with x and �. CFRP,

carbon fibre reinforced polymer
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internal stresses (Nv) and force in the longitudinal reinforcement

(Np), and the initial vertical strain (�z_ini) and the resulting

vertical strain �z where

Total error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N v � Np

Nv

� �2

þ �z_ini � �z

�z

� �2
s

14:

One potential issue with this normalisation is that the force error

generally dominates. However, for the cases studied here, the

minima in the force and strain error matrices tended to occur in

close proximity. Figures 5(d) and 5(e), respectively, show the GA

and PSO solutions during 46–50 generations. Within 50 genera-

tions (a total of 1000 evaluations), the PSO converged to a

solution in which Ł ¼ 26.38 and �z ¼ 3.9 3 10–3 corresponding to

a shear capacity of 105.2 kN. Convergence was assumed to have

been achieved when no new best solutions were found for three

consecutive generations. Extending the convergence window to

ten consecutive generations did not yield any new best solutions.

The GA could not produce a converged solution after a similar

number of evaluations. The gradual, smooth behaviour in the
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Figure 5. Use of optimisation algorithms for modified compression field theory evaluations: (a) beam design; (b) design space; (c) initial

genetic algorithm (GA) and particle swarm optimisation (PSO) solutions; (d) GA solutions over 46–50 generations; (e) PSO solutions over

46–50 generations
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design space was the expected reason for the better performance

of the PSO.

4.2 SFT evaluations

In the SFT, the design variables are the starting point of the crack

(x) and the crack angle (�), and the objective function is the shear

strength for a given crack plane. An example design space is

shown in Figure 6. To improve the visualisation of the design

space, the shear force has been plotted as a negative quantity. An

initial random population of 20 solutions was generated, in which

50 mm < x < 650 mm and 208 < � < 758. The GA seemed to

perform better with the SFT evaluations than the PSO. For

example, the GA finds the shear strength for the critical shear

crack to be 87.7 kN after 20 generations, whereas after a similar

number of generations the PSO had yet to converge and suggests

a critical capacity of 92.5 kN. Figure 6 shows the values of the

best solution in each algorithm through the generations. As the

focus was to reach the minimum strength value, the result

suggests that the PSO has been trapped in a local optimum. The

discrete nature of the objective function and the existence of

several local optima could be the reason for the better perform-

ance of the GA than the PSO in this example.

It is of note that the experimental beam (B2), which had similar

characteristics to the case study beam, failed in shear at 104.7 kN

(Yapa and Lees, 2014). Thus the MCFT prediction is closer to

the observed experimental value. More generally, Yapa (2011)

showed that for the CFRP retrofitted beams considered in his

study, the SFT fundamentally predicts a lower failure load level

than the ultimate load.

5. Application to parameter searching:
optimum strap locations

Stochastic methods were also used for parameter searching to

identify the CFRP strap locations that would deliver the greatest

shear strength enhancement. The methodology to find the optimum

CFRP strap locations for a RC beam with a given strap stiffness

and initial prestress level is summarised in the flow diagrams in

Figure 7. Based on the outcomes of the previous section, the shear

strengths are evaluated using the MCFT + PSO or SFT + GA for

an initial random generation of CFRP strap locations. Subse-

quently, new solutions (strap locations) are generated by updating

the initial solutions using either the PSO or GA optimisation

algorithms for parameter searching. The evaluation and parameter

optimisation steps are then repeated until the optimum shear

strength of the beam is found. In the following sections, this

process is described using a case study consisting of an RC beam

retrofitted with two CFRP straps.

The beam dimensions, internal longitudinal and transverse steel

were fixed to be the same as the previous evaluation case study.

The beam flexural capacity was calculated as 114 kN and the

MCFT and SFT shear strength predictions (unstrengthened) for

the design were 60.9 kN and 57.7 kN, respectively. The strap

area, stiffness and initial prestress level were the same for all

the CFRP straps in a given retrofitting layout and the variables
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are the CFRP strap locations (100 mm < S1, S2 < 600 mm).

The shear capacity for a given strap layout is the objective

function. To visualise the context, the overall design space was

mapped using the different evaluation techniques. A comparison

of Figures 8(a) and 9(a) shows how the topology of the design

space differs depending on the evaluation method. This high-

lights once again that the most efficient parameter searching

optimisation algorithm will depend on the strengthened design

shape. Ten initial random solutions were generated for S1 and

S2 as shown in Figures 8(b) and 9(b), and the solutions were

updated using the GA or PSO. The distribution of the GA and

PSO solutions over 16–20 generations has also been plotted in

the figures.

5.1 MCFT and PSO with PSO or GA parameter

searching

Using the MCFT, the PSO parameter search found a converged

optimum solution for S1 ¼ 460 mm and S2 ¼ 290 mm within 20

generations (see Figure 8(d)). This layout corresponded to a shear

strength of 111.2 kN. The GA found an approximate optimum

solution for the strap locations after a similar number of

generations but the convergence was not as good (see Figure

8(c)). So the PSO was more efficient than the GA when finding

the optimum strap locations for the relatively smooth MCFT

strengthened design space.

5.2 SFT and GA with PSO or GA parameter searching

For the strengthened beams evaluated using the SFT, the PSO

was also more efficient than the GA when finding the exact

optimum solution, see Figure 9. The PSO found a converged

solution after only 20 iterations where S1 ¼ 270 mm and

S2 ¼ 420 mm, corresponding to a shear strength of 96.0 kN. The

GA was unable to find the exact optimum after a similar number

of iterations. Note that, as observed previously, the GA has also

approached the optimum in the design space, but has been unable

to converge onto the optimum.
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(PSO)
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Figure 7. Flow diagrams for the optimum carbon fibre reinforced polymer (CFRP) strap location search: (a) CFRP strap configuration;

(b) modified compression field theory (MCFT)-based evaluation; (c) shear friction theory (SFT)-based evaluation: GA, genetic algorithm;

PSO, particle swarm optimisation
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6. Discussion and further parametric studies
Trade-offs associated with the cost of the CFRP material, the

strap installation, the strap prestressing and labour were investi-

gated. Using the beam parameters described previously, the

number of straps nS (two or three), the number of layers per strap

nL (five, 10, 15 or 20) and the level of initial prestress nP (5%,

25% or 50%) were varied. The internal reinforcement was fixed

throughout. For the three-strap case, S1, S2 and S3 denote the

distance to each strap from the beam support. The maximum

shear strength is highlighted in Tables 2 and 3 where a and Vfle

denote the shear span length and shear force associated with the

flexural capacity, respectively.

The ultimate shear strength predictions of the MCFT and SFT

methods differ. For example, the MCFT results (Table 2) reveal

that the full flexural strength can be achieved with either two ten-

layer CFRP straps or three five-layer CFRP straps, with a 50%

initial prestress level at their optimum locations. While these are

also good combinations according to the SFT (Table 3), the

predicted SFT shear strengths are lower than the flexural capacity.

Note that, as previously mentioned, Yapa (2011) argued that SFT

slightly underpredicts the shear capacity of CFRP retrofitted

beams. For both theories, the similar capacities of the two ten-

layer and the three five-layer strap results suggest that with 50%

prestress the CFRP material usage could be optimised by using

less stiff straps at closer spacings. If only a nominal prestress is

possible (nP ¼ 5%), the MCFT results suggest that the flexural

strength can instead be achieved by using either two 20-layer or

three 15-layer CFRP straps at their optimum locations. The SFT

predictions suggest that of these two options, the three-strap

combination would be preferable.

Regardless of the number of straps, CFRP tape layers or initial

prestress level, the optimum CFRP strap locations from the two

approaches are fairly similar for a given number of straps. For the

two-strap case, the average optimum locations are 0.41a and

0.66a compared with 0.40a and 0.60a for the MCFT and SFT,

respectively. For the three-strap case, the average optimum

locations are 0.37a, 0.54a and 0.71a compared with 0.38a, 0.51a

and 0.63a for the MCFT and SFT, respectively. The standard

deviation for all the strap locations is less than 2%. The optimum

strap locations differ from what would be expected if the
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Figure 8. Optimum carbon fibre reinforced polymer strap location search in the modified compression field theory design space:

(a) design space; (b) initial random solutions for the genetic algorithm (GA) and particle swarm optimisation (PSO); (c) GA solutions over

16–20 generations; (d) PSO solutions over 16–20 generations
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locations were evenly spaced (0.33a, 0.67a for a two-strap case

and 0.25a, 0.50a, 0.75a for a three-strap case) and this deviation

is more significant in the three-strap case. The optimum spacing

between the straps is smaller than the spacing between a strap

and either the support or load point. The MCFT optimum strap

locations are also not symmetric around the mid-length of the

shear span because the MCFT predicted shear strength reduces

with increasing bending moment (Yapa, 2011). Unlike in the

MCFT results, all the SFT optimum strap locations are fairly

symmetric around the mid-length of the beam but, as implemen-

ted, the SFT formulation does not consider the influence of the

bending moment on the shear strength. So it is important to note

that the optimisation reflects the underlying evaluation method.

As the prestress was varied as a percentage of the strap capacity,

when the number of CFRP strap layers increases, both the initial

preforce and the force generated in the strap due to cracking

increase. The MCFT results in Table 2 demonstrate that when the

total CFRP strap force increases due either to an increase in the

number of layers or prestress, the optimum locations move

outwards and the spacing between the straps increases. The

vertical stress in the regions bounded by straps is influenced by

the strap force, whereas the vertical stress in the regions adjacent

to the beam support and load point reflect both the strap force

and total shear force (Yapa and Lees, 2014). Therefore, with

increasing strap force, the balance between the shear strength of

the regions alters and the shear strength capacities of the strap

regions become greater than those of the other regions. To

rebalance the shear strengths between the regions, the optimum

locations of the CFRP straps have to move outwards. When the

strap force increases (due to increase in the strap stiffness or

initial prestress level), the SFT also predicts an increase in the

spacing between the CFRP straps. According to the SFT, at the

optimum CFRP strap locations, the shear strength of the potential

shear cracks associated with the strap locations becomes similar.

As the force in the straps increases, the shear strength of the

crack planes that intersect the straps becomes greater than the

shear strength of the crack planes that do not intersect the straps.
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Figure 9. Optimum carbon fibre reinforced polymer strap location search for the shear friction theory design space: (a) design space;

(b) initial random solutions for the genetic algorithm (GA) and particle swarm optimisation (PSO); (c) GA solutions over 16–20

generations; (d) PSO solutions over 16–20 generations
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To rebalance the shear strength associated with these cracks, the

optimum strap locations change. Hence for both the MCFT and

SFT results the optimum strap locations are influenced by the

force in the CFRP straps.

7. Conclusions
The use of stochastic optimisation methods for the evaluation and

optimisation of RC beams retrofitted with prestressed CFRP

straps was investigated. Two stochastic optimisation algorithms,

Strap design Optimum strap locations V: kN
V

V fle

nS nL nP S1/a S2/a S3/a

2 5 25 0.45 0.64 — 98.7 0.86

2 5 50 0.42 0.65 — 105.4 0.91

2 10 25 0.42 0.67 — 111.2 0.96

2 10 50 0.39 0.68 — 114.0 1.00

2 15 5 0.41 0.65 — 108.5 0.94

2 20 5 0.39 0.67 — 114.0 1.00

Mean 0.41 0.66 — — —

SD 0.02 0.02 — — —

3 5 25 0.39 0.54 0.69 106.3 0.92

3 5 50 0.36 0.54 0.72 114.0 1.00

3 10 5 0.36 0.53 0.69 109.0 0.95

3 10 25 0.36 0.53 0.72 114.0 1.00

3 15 5 0.36 0.54 0.72 114.0 1.00

Mean 0.37 0.54 0.71 — —

SD 0.01 0.01 0.02 — —

Table 2. Optimum carbon fibre reinforced polymer strap

locations predicted by the modified compression field theory

(based on ultimate shear strength predictions)

Strap design Optimum strap locations V: kN
V

V fle

nS nL nP S1/a S2/a S3/a

2 5 25 0.42 0.58 — 83.3 0.73

2 5 50 0.40 0.60 — 92.8 0.81

2 10 25 0.39 0.61 — 96.0 0.84

2 10 50 0.38 0.61 — 107.1 0.94

2 15 5 0.42 0.58 — 91.6 0.80

2 20 5 0.39 0.60 — 94.7 0.83

Mean 0.40 0.60 — — —

SD 0.02 0.01 — — —

3 5 25 0.39 0.51 0.61 93.7 0.82

3 5 50 0.36 0.51 0.64 105.7 0.93

3 10 5 0.39 0.51 0.61 91.1 0.80

3 10 25 0.36 0.51 0.65 109.1 0.96

3 15 5 0.38 0.51 0.62 102.3 0.90

Mean 0.38 0.51 0.63 — —

SD 0.01 0.00 0.02 — —

Table 3. Optimum carbon fibre reinforced polymer strap

locations predicted by the shear friction theory
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namely the PSO and GA, were used in conjunction with two

shear strength evaluation methods, the MCFT and SFT. It was

found that the stochastic optimisation methods could be used to

reduce the computational cost associated with the evaluation of

the shear strength capacity and the search for the optimum CFRP

strap layouts. The preferred algorithm, in terms of speed of

convergence and the proximity of the converged solution to the

optimum, depended on the topology of the design space. Whereas

the PSO performed better with the MCFT evaluations, the GA

was superior in conjunction with the SFT evaluations. Irrespective

of the evaluation method, when searching the strengthened design

space the PSO converged more quickly than the GA on the

strengthening layouts associated with the highest shear strength

capacity. The ‘optimum’ CFRP strap layouts necessarily reflect

the underlying shear theory. So the small differences between the

most efficient MCFT and SFT strengthened layouts were due to

the different assumptions and theoretical basis for the two

evaluation models.
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