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Abstract

This paper proposes a modi…ed version of Swamy’s test of slope
homogeneity for panel data models where the cross section dimension
(N) could be large relative to the time series dimension (T ). The
proposed test exploits the cross section dispersion of individual slopes
weighted by their relative precision. In the case of models with
strictly exogenous regressors and normally distributed errors, the test
is shown to have a standard normal distribution as (N;T )

j! 1.
Under non-normal errors and in the case of stationary dynamic models,
the condition on the relative expansion rates of N and T for the
test to be valid is given by

p
N=T ! 0, as (N; T)

j! 1. Using
Monte Carlo experiments, it is shown that the test has the correct
size and satisfactory power in panels with strictly exogenous regressors
for various combinations of N and T . For autoregressive (AR) models
the proposed test performs well for moderate values of the root of the
autoregressive process. But for AR models with roots near unity a bias-
corrected bootstrapped version of the test is proposed which performs
well even if N is large relative to T . The proposed cross section
dispersion tests are applied to testing the homogeneity of slopes in
autoregressive models of individual earnings using the PSID data. The
results show statistically signi…cant evidence of slope heterogeneity in
the earnings dynamics, even when individuals with similar educational
backgrounds are considered as sub-sets.
JEL-Classi…cation: C12, C33.
Keywords: Testing Slope Homogeneity, Hausman Type Tests, Cross
Section Dispersion Tests, Monte Carlo Results, PSID Earnings Dynam-
ics
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1. Introduction

In many empirical studies, it is assumed that the slope coe¢cients
of interest in panel data models are homogeneous across individual
units. When the cross section dimension (N) is relatively small and
the time series dimension of the panel (T) large, the hypothesis of
slope homogeneity can be tested using the SURE (seemingly unrelated
regression equation) framework of Zellner (1962). This framework is
particularly attractive as it also automatically deals with the possibility
of cross section error correlations and dynamics when N is reasonably
small (around 5-10) and T su¢ciently large (around 80-100). However,
in many empirical applications N is often (much) larger than T and the
SURE approach would not be applicable.

In view of this Pesaran, Smith and Im (1996) proposed the applica-
tion of the Hausman (1978) testing procedure where the standard …xed
e¤ects estimator is compared to the mean group estimator. However, as
will be discussed below, such a procedure is not applicable in the case
of panel data models that contain only strictly exogenous regressors
and/or in the case of pure autoregressive models.

Recently Phillips and Sul (2003) have also proposed a ‘Hausman
type’ test for slope homogeneity for stationary …rst-order autoregression
(AR(1)) panel data models in presence of cross section dependence, with

1We would like to thank Ron Smith and Aman Ullah for helpful discussions. We are also grateful
to Costas Meghir and Luigi Pistaferri for kindly providing us with their processed PSID data set.
Also our thanks go to Donggyu Sul for the Gauss codes used for the implementation of Phillips
and Sul’s G test. Financial support from the ESRC (Grant No. RES-000-23-0135) is gratefully
acknowledged.
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N …xed as T goes to in…nity. It will be shown below that their testing
approach is not valid under cross section independence.

This paper proposes a modi…ed version of the test proposed by
Swamy (1970) that applies to panel data models where the cross
section dimension could be large relative to the time series dimension.
The proposed test is applicable to static as well as to stationary
dynamic panel data models, possibly with heteroskedastic errors. In
the case of models with strictly exogenous regressors and normally
distributed errors, the proposed test is shown to have a standard normal
distribution as (N;T)

j! 1, where (N;T )
j! 1 denotes N and T ! 1

jointly. Under non-normal errors and in the case of stationary dynamic
models, the condition on the relative expansion rates of N and T for
the test to be valid is given by

p
N=T ! 0 , as (N;T )

j! 1.
The small sample properties of the proposed test are investigated

by means of Monte Carlo experiments. It is shown that the test has
satisfactory size and power for T as small as 10 with N as large as 200
in panel data models containing only strictly exogenous regressors, even
with non-normal errors. For autoregressive (AR) models the proposed
test performs well for moderate values of the root of the AR process
under various N and T combinations. But for AR panels with T < N,
and roots near unity, a bias-corrected bootstrapped version of the test
is proposed which is shown to perform well even if N is large relative
to T .

The use of slope homogeneity tests in empirical contexts is illustrated
by applying them to testing the homogeneity of slopes in autoregressive
models of earnings using the Panel Study of Income Dynamics (PSID)
data. The results show evidence of slope heterogeneity in the real
earnings dynamics, even when individuals with similar educational
backgrounds are considered as sub-sets.

The plan of the paper is as follows. Section 2 sets up the model
and reviews existing tests of slope homogeneity. Section 3 considers
the asymptotic distribution of alternative dispersion type tests of
slope homogeneity and establishes their asymptotic distribution in
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the context of panel data models where N could be large relative
to T . Section 4 considers the application of the proposed ~¢ test
to stationary dynamic panel data models and develops the biased-
corrected bootstrapped version of the test. Section 5 sets up the
Monte Carlo design and summarizes the results. Section 6 discusses the
empirical application, and Section 7 provides some concluding remarks.

2. The Model and Existing Tests of Slope Homogeneity

Consider the panel data model with …xed e¤ects and heterogeneous
slopes

yit = ®i + ¯0
ixit + "it, i = 1; :::;N , t = 1; :::; T (2.1)

where ®i is bounded on a compact set, xit is a k£1 vector of regressors,
¯i is a k £ 1 vector of unknown slope coe¢cients. Stacking the time
series observations for i yields

yi = ®i¿ T +Xi¯i + "i, i = 1; 2; ::;N; (2.2)

where yi = (yi1; :::; yiT )
0, ¿ T is a T£1 vector of ones, Xi = (xi1; :::;xiT )

0,
and "i = ("i1; :::; "iT )

0. Let

QiT = T¡1 ¡
X0

iM¿Xi
¢
; »iT = T¡1=2X0

iM¿"i; (2.3)

and

QN = (NT )¡1

Ã NX

i=1
¾¡2

i X0
iM¿Xi

!
; (2.4)

where M¿ = IT ¡ ¿ T
¡
¿ 0

T ¿T
¢¡1 ¿ 0

T , and IT is an identity matrix of
order T .

Consider now the following assumptions:
Assumption 1: "it » IID(0; ¾2

i ) with 0 < ¾2
i <1 for all i, and "it

and "js are independently distributed for i 6= j and/or t 6= s.
Assumption 2: The k £ k matrices QiT , i = 1; 2; :::; N , de…ned

by (2.3) are positive de…nite, Q¡1
iT has …nite second order moments for

each i, and QiT tends to a non-stochastic positive de…nite matrix, Qi,
as T ! 1.
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Assumption 3: The k £ 1 vectors »iT , i = 1; 2; :::;N de…ned
by (2.3) are independently distributed across i, and for each i, »iT
!d N

¡
0;¾2

iQi
¢
, as T ! 1.

Assumption 4: The k£k pooled observation matrix QN de…ned by
(2.4) is positive de…nite, and tends to a non-stochastic positive de…nite

matrix, Q, as (N;T )
j! 1.2

Assumption 5: (T¡1) ("0
iM¿"i)

¡1 has …nite second order moments
for each i.

The null hypothesis of interest is

H0 : ¯i = ¯ for all i; k¯k < K <1; (2.5)

against the alternatives

H1 : ¯i 6= ¯, for a non-zero fraction of slopes.

Assumption 6: Under H1, the fraction of slopes that are not the
same does not tend to zero as N ! 1.

Remark 1. In the case of randomly distributed slopes, where ¯i »
IID(¯;§¯), the null and the alternative hypothesis can be character-
ized by H0 : §¯ = 0, and H1 : §¯ 6= 0, respectively.

Remark 2. The above assumptions cover both cases of strictly exoge-
nous regressors, as well as when xit contains lagged values of yit.

Remark 3. In the case where the errors, "it, are normally distributed
Assumption 5 is met if T > 5. See, for example, Smith (1988) for a
proof.3

2.1. The Standard F Test

There are a number of procedures that can be used to testH0, the most
familiar of which is the standard F test de…ned by

F =
·
N (T ¡ k ¡ 1)
k (N ¡ 1)

¸ µ
RSSR ¡ USSR

USSR

¶
, (2.6)

2(N; T ) j! denotes joint asymptotics with N and T ! 1 in no particular order.
3Under normality, the rth moment of the inverse of "0

iA"i exits if rank(A) > 2r , where A is a
T £ T positive semi-de…nite symmetric matrix.
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where RSSR and USSR are restricted and unrestricted residual sum
of squares, respectively, obtained under the null (¯i = ¯) and the
alternative hypotheses. This test is applicable when the regressors are
strictly exogenous and the error variances homoskedastic, ¾2

i = ¾2.
But it is likely to perform rather poorly in cases where the regressors
might contain lagged values of the dependent variable and/or if the
error variances are cross sectionally heteroskedastic.

2.2. Hausman Type Test by Pesaran, Smith and Im

For cases where N > T , Pesaran, Smith and Im (1996) propose
using the Hausman (1978) test where the standard …xed e¤ects (FE)
estimator of ¯,

^̄FE =

Ã NX

i=1

X0
iM¿Xi

!¡1 NX

i=1

X0
iM¿yi, (2.7)

is compared to the mean group (MG) estimator de…ned by

^̄MG = N¡1
NX

i=1

^̄i; (2.8)

where
^̄i =

¡
X0

iM¿Xi
¢¡1X0

iM¿yi: (2.9)

For the Hausman test to have the correct size and be consistent two
conditions must be met, however.

(a) Under the null hypothesis, ^̄FE and ^̄MG must both be consistent,
with ^̄FE being asymptotically more e¢cient such that

Avar
³
^̄MG ¡ ^̄FE

´
= Avar

³
^̄MG

´
¡ Avar

³
^̄FE

´
> 0:

(b) Under the alternative hypothesis ^̄MG ¡ ^̄FE should tend to a
non-zero vector.
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In the context of dynamic panel data models with exogenous
regressors both of these conditions are met, so long as the exogenous
regressors are not drawn from the same distribution, and a Hausman
type test based on the di¤erence ^̄

FE ¡ ^̄
MG would be valid and is

shown to have reasonable small sample properties. See Pesaran, Smith
and Im (1996) and Hsiao and Pesaran (2004).

However, there are two major concerns with the routine use of
the Hausman procedure as a test of slope homogeneity. It could
lack power for certain parameter values, as its implicit null does not
necessarily coincide with the null hypothesis of interest. Second, and
more importantly, the Hausman test will not be applicable in the case
of panel data models containing only strictly exogenous regressors,
and/or in the case of pure autoregressive models. In the former case,
both estimators, ^̄FE and ^̄MG; are unbiased under the null and the
alternative hypotheses and condition (b) will not be satis…ed. Whilst,
in the case of pure autoregressive panel data models

p
NT

³
^̄FE ¡ ¯

´

and
p
NT

³
^̄MG ¡ ¯

´
will be asymptotically equivalent and condition

(a) will not be met.

2.3. G Test of Phillips and Sul

Phillips and Sul (2003) propose a di¤erent type of Hausman test where
instead of comparing two di¤erent pooled estimators of the regression
coe¢cients (as discussed above), they propose basing the test of slope
homogeneity on the di¤erence between the individual estimates and a
suitably de…ned pooled estimator. In the context of the panel regression
model (2.2), their test statistic can be written as

G =
³
^̄N ¡ ¿ N ­ ^̄pooled

´0
§̂¡1

g

³
^̄N ¡ ¿N ­ ^̄pooled

´
;

where ^̄N = ( ^̄
0
1; ^̄

0
2; :::; ^̄

0
N)0 is an Nk £ 1 stacked vector of all the

N individual estimates, ^̄pooled is a suitable pooled estimator of ¯
(= ¯i) ; and §̂g is a consistent estimator of §g, the asymptotic variance
matrix of ^̄N ¡ ¿N ­ ^̄pooled, under H0. Under Assumptions 1-4 and
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assuming H0 holds and N is …xed, then G!d Â2
Nk as T ! 1; so long

as the §g is a non-stochastic positive de…nite matrix.
As compared to the Hausman test based on ^̄MG ¡ ^̄FE , the G

test is likely to be more powerful; but its use will be limited to panel
data models where N is small relative to T . Also, the G test will not
be valid in the case of pure dynamic models, very much for the same
kind of reasons noted above in relation to the Hausman test based on
^̄MG¡ ^̄FE. This is easily established in the case of the stationary …rst
order autoregressive panel data model considered by Phillips and Sul
(2003) where

yit = ®i (1 ¡ ¸i) + ¸iyit¡1 + "it; j¸ij < 1;

and the aim is to test H0 : ¸i = ¸. Phillips and Sul also consider
the case where the errors, "it, are cross sectionally dependent through
a single factor model. But, given the focus of our analysis, we shall
abstract from this problem and continue to assume that "it are cross
sectionally independent. Under this set up the appropriate form of the
G statistic is given by

G =
³
^̧N ¡ ¿N ^̧pooled

´0
§̂¡1

g

³
^̧N ¡ ¿ N ^̧pooled

´
;

where ^̧N =
³
^̧1; ^̧2; :::; ^̧N

´0
is the N £ 1 vector of the individual

estimates and ^̧pooled is a pooled estimator, such that (^̧
0
N ; ^̧pooled)0 !p

¸¿N+1 under the null hypothesis. Phillips and Sul consider a number
of di¤erent estimators, including Andrew’s (1993) median unbiased
estimator and its extension to panels. But, as they note, all such
estimators yield the same asymptotic covariance matrix as T ! 1.
Using the …xed e¤ects estimator for ^̧pooled, and the least squares
estimators of ¸i for ^̧i, it is easily veri…ed that under H0

Avar
hp
T

³
^̧
i ¡ ^̧

FE

´i
= Avar

hp
T

³
^̧
i ¡¸

´
¡

p
T

³
^̧
FE ¡ ¸

´i

=
¡
1 ¡ ¸2

¢
¡

µ
1¡ ¸2
N

¶
;

Acov
hp
T

³
^̧
i ¡ ^̧

FE

´
;
p
T

³
^̧
j ¡ ^̧

FE

´i
= ¡

µ
1 ¡ ¸2
N

¶
:
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Therefore

§g =
µ
1¡ ¸2

T

¶¡
IN ¡N¡1¿ N¿ 0

N
¢
;

where Rank(§g) = N ¡ 1 and §g is non-invertible.

2.4. Swamy’s Test

Swamy (1970) bases his test of slope homogeneity on the dispersion of
individual slope estimates from a suitable pooled estimator. Like the
F test, Swamy’s test is developed for panels where N is small relative
to T , but allows for cross section heteroskedasticity. Swamy’s statistic
applied to the slope coe¢cients can be written as

Ŝ =
NX

i=1

³
^̄

i ¡ ^̄
WFE

´0 X0
iM¿Xi

¾̂2
i

³
^̄

i ¡ ^̄
WFE

´
, (2.10)

where

¾̂2
i =

³
yi ¡Xi ^̄i

´0
M¿

³
yi ¡Xi ^̄i

´

(T ¡ k ¡ 1)
; (2.11)

and ^̄WFE is the weighted FE (WFE) pooled estimator of slope
coe¢cients de…ned by

^̄WFE =

Ã NX

i=1

X0
iM¿Xi

¾̂2
i

!¡1 NX

i=1

X0
iM¿yi

¾̂2
i

.

In the case where N is …xed and T tends to in…nity, underH0 the Swamy
statistic, Ŝ, is asymptotically chi-square-distributed with k (N ¡ 1)
degrees of freedom.4

3. Dispersion Type Tests for Large Panels

Our survey of the literature suggests that there are no satisfactory tests
of slope homogeneity in panels where N is large relative to T . The
standard F test and its extension by Swamy (1970) are appropriate for

4See also Hsiao (2003, p.149).
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panels where N is small relative to T . Hausman type tests advanced
by Pesaran, Smith and Im (1996) apply to large N panels, but are
not generally applicable and can su¤er from low power. In this paper
we propose standardized dispersion statistics that are asymptotically
normally distributed as (N;T )

j! 1.
In addition to Swamy’s test statistic, Ŝ, de…ned by (2.10), we also

consider the following version

~S =
NX

i=1

³
^̄i ¡ ~̄WFE

´0 X0
iM¿Xi

~¾2
i

³
^̄i ¡ ~̄WFE

´
(3.1)

where ~¾2
i is an estimator of ¾2

i based on ^̄FE , namely

~¾2
i =

³
yi ¡Xi ^̄FE

´0
M¿

³
yi ¡Xi ^̄FE

´

T ¡ 1
, (3.2)

and ~̄WFE is the weighted FE estimator also computed using ~¾2
i ,

namely

~̄WFE =

Ã NX

i=1

X0
iM¿Xi

~¾2
i

!¡1 NX

i=1

X0
iM¿yi

~¾2
i
: (3.3)

Although the di¤erence between Ŝ and ~S might appear slight at …rst,
the choice of the estimator of ¾2

i has important implications for the
properties of the two dispersion tests as N and T tends to in…nity.

To establish the asymptotic results for the Swamy’s version of
the dispersion test we need the following more restrictive version of
Assumption 5:

Assumption 50: ¾̂2
i is a consistent estimator of ¾2

i such that

¾2
i
¾̂2

i
= 1 + Op

¡
T¡1¢ ; (3.4)

and E
¡
1=¾̂2

i
¢

exists and is bounded.
We also note that under Assumptions 1-4

»0
iTQ

¡1
iT »iT = Op(1); N¡1

NX

i=1

¾¡2
i QiT = QN = Op(1); (3.5)
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and

Avar

Ã
N¡1=2

NX

i=1
¾¡2

i »iT

!
= lim

N!1

Ã
N¡1

NX

i=1
¾¡2

i Qi

!
= Q = O(1):

(3.6)
Consider …rst the Swamy’s version of the dispersion test. Under H0

we have

³
^̄
i ¡ ^̄

WFE

´
= T¡1=2Q¡1

iT »iT ¡ T¡1=2N¡1=2
Ã

N¡1
NX

i=1
¾̂¡2i QiT

!¡1 Ã
N¡1=2

NX

i=1
¾̂¡2i »iT

!
,

(3.7)

where QiT and »iT are given by (2.3). Using this result in (2.10) it is
easily seen that

1p
N

Ŝ = 1p
N

NX

i=1

»0iTQ
¡1
iT »iT

¾̂2i
¡ 1p

N

ÃPN
i=1 ¾̂¡2i »iTp

N

!0ÃPN
i=1 ¾̂¡2i QiT

N

!¡1ÃPN
i=1 ¾̂¡2i »iTp

N

!
:

In view of (3.5) and (3.6) and using (3.4) we have,

N¡1=2
NX

i=1

¾̂¡2
i »0

iTQ
¡1
iT »iT = N¡1=2

NX

i=1

Ã
»0

iTQ
¡1
iT »iT
¾2

i

!
+ Op

Ãp
N
T

!
;

N¡1=2
NX

i=1
¾̂¡2

i »iT = N¡1=2
NX

i=1
¾¡2

i »iT + Op

Ãp
N
T

!
;

and

N¡1
NX

i=1
¾̂¡2

i QiT = N¡1
NX

i=1
¾¡2

i QiT + Op

µ
1
T

¶
:

Hence (again using (3.5) and (3.6))

N¡1=2Ŝ = N¡1=2
NX

i=1

Ã
» 0

iTQ
¡1
iT »iT
¾2

i

!
+Op

Ãp
N
T

!
+Op

µ
1p
N

¶
;

or equivalently

N¡1=2Ŝ = N¡1=2
NX

i=1

µ
"0

iPi"i

¾2
i

¶
+ Op

Ãp
N
T

!
+ Op

µ
1p
N

¶
; (3.8)
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where
Pi = M¿Xi

¡
X0

iM¿Xi
¢¡1X0

iM¿ : (3.9)

Consider now our modi…ed version of Swamy’s statistic, ~S, which
under H0 can be similarly written as

1p
N

~S =
1p
N

NX

i=1

»0iTQ
¡1
iT »iT

~¾2i
¡ 1p

N

ÃPN
i=1 ~¾¡2i »iTp

N

!0ÃPN
i=1 ~¾¡2i QiT

N

!¡1ÃPN
i=1 ~¾¡2i »iTp

N

!
:

(3.10)

Using (3.2) …rst note that after some algebra under H0 we have

(T ¡ 1)~¾2
i = "0

iM¿"i ¡ 2N¡1=2»¤0
NQ

¤¡1
N »iT + N¡1»¤0

NQ
¤¡1
N QiTQ¤¡1

N »¤
N:

where

Q¤
N = N¡1

NX

i=1
QiT ; »¤

N = N¡1=2
NX

i=1
»iT :

But using results in (3.5) and (3.6) and recalling that 0 < ¾2
i <1, we

also have5

Q¤
N = Op(1); »¤

N = Op(1):

Therefore,

~¾2
i =

"0
iM¿"i
T ¡ 1

+Op

³
N¡1=2T¡1

´
: (3.11)

It is also clear from (3.11) that for N su¢ciently large ~¾¡2
i has second

order moments for any T so long as Assumption 5 is satis…ed. Therefore,
under Assumptions 2 and 3 the second order moments of ~¾¡2

i »iT and
~¾¡2

i QiT will exist for N large and we have

N¡1=2
NX

i=1

~¾¡2
i » 0iTQ

¡1
iT »iT = N¡1=2

NX

i=1

µ
"0iM¿"i
T ¡ 1

¶¡1

»0iTQ
¡1
iT »iT+Op

¡
T¡1

¢
;

N¡1=2
NX

i=1
~¾¡2

i »iT = N¡1=2
NX

i=1

µ
"0

iM¿"i
T ¡ 1

¶¡1
»iT + Op

¡
T¡1¢ ,

5Note that by assumption QiT and »iT have …nite second order moments.
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and

N¡1
NX

i=1

~¾¡2
i QiT = N¡1

NX

i=1

µ
"0

iM¿"i
T ¡ 1

¶¡1
QiT + Op

³
N¡1=2T¡1

´
:

Using these results in (3.10)

N¡1=2 ~S = N¡1=2
NX

i=1

µ
"0

iM¿"i
T ¡ 1

¶¡1
»0

iTQ
¡1
iT »iT+Op

¡
T¡1¢+Op

³
N¡1=2

´
;

or equivalently, since » 0
iTQ

¡1
iT »iT = "0

iPi"i,

N¡1=2 ~S = N¡1=2
NX

i=1
zi + Op

¡
T¡1¢ + Op

³
N¡1=2

´
; (3.12)

where

zi =
µ

"0
iM¿"i
T ¡ 1

¶¡1
"0

iPi"i: (3.13)

A comparison of (3.8) and (3.12) clearly shows that for N and T
large the ~S version of the dispersion test could be preferable to the Ŝ
version since the latter requires N and T to increase at the same rates
whilst the former does not necessarily require this condition. In fact,
as we shall see below, in the case of strictly exogenous regressors the
slope homogeneity test based on ~S would be valid for (N;T)

j! 1,
whilst a test based on Ŝ, in addition to (N; T)

j! 1 would also require
that

p
N=T ! 0. In the case of dynamic panels both versions of the

dispersion test require the additional condition
p
N=T ! 0, and a bias-

corrected bootstrapped test will be considered.
Before proceeding further we summarize the above results in the

following theorem.

Theorem 3.1. Consider the panel data model (2.1), and suppose that
Assumptions 1-5 hold. Then the dispersion statistics Ŝ and ~S de…ned
by (2.10) and (3.1), respectively, can be written as

N¡1=2Ŝ = N¡1=2
NX

i=1

µ
"0

iPi"i

¾2
i

¶
+ Op

³
N1=2T¡1

´
+ Op

³
N¡1=2

´
;

(3.14)
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N¡1=2 ~S = N¡1=2
NX

i=1
zi + Op

¡
T¡1¢ + Op

³
N¡1=2

´
; (3.15)

where Pi and zi are de…ned by (3.9) and (3.13), respectively.

This theorem is fairly general and applies irrespective of whether the
regressors are strictly exogenous or contain lagged dependent variables,
and holds for non-normal errors.

Consider now the case where the regressors are strictly exogenous
and the errors are normally distributed, "i » IIDN

¡
0;¾2

i IT
¢
. In this

case ¾¡2
i "0

iPi"i has a chi-square distribution with k degrees of freedom
and the following standardized version of Ŝ could be used when N and
T are both large

¢̂ =
p
N

Ã
N¡1Ŝ ¡ k

2k

!
: (3.16)

Using (3.14) it is easily seen that

¢̂ = N¡1=2
NX

i=1

Ã
¾¡2

i "0
iPi"i ¡ k
2k

!
+Op

³
N1=2T¡1

´
+ Op

³
N¡1=2

´
;

and under H0, ¢̂ !d N(0; 1) as (N; T)
j! 1 such that

p
N=T ! 0.

Turning to the ~S version of the test, using well known results in
von Neumann (1941) on moments of the ratio of quadratic forms in
standard normal variates, we …rst note that

E (zi) =
E ("0

iPi"i)
E

¡
"0

iM¿"i
¢
= (T ¡ 1)

=
(T ¡ 1)tr (Pi)
tr (M¿)

= k,

and

E
¡
z2i

¢
=

E ("0
iPi"i"0

iPi"i)

E
¡
"0

iM¿"i"0
iM¿"i

¢
= (T ¡ 1)2

=
µ
T ¡ 1
T + 1

¶¡
k2 + 2k

¢
;

so that

var (zi) = v2(T; k) =
2k (T ¡ 1)¡ 2k2

T + 1
. (3.17)

13



These results, therefore, motivate the following standardized version of
the ~S statistic

~¢ =
p
N

Ã
N¡1 ~S ¡ k
v(T; k)

!
; (3.18)

which in view of (3.15) can also be written as

~¢ =
1p
N

NX

i=1

µ
zi ¡ k
v(T; k)

¶
+ Op

¡
T¡1¢ + Op

³
N¡1=2

´
:

Since (zi ¡ k)=v(T; k) » IID(0; 1), using standard central limit
theorems it follows that under H0, ~¢ !d N (0; 1) as (N;T )

j! 1.
The following theorem provides a formal statement of these results.

Theorem 3.2. Consider the panel data model (2.1), suppose that the
k £ 1 regressors xit are strictly exogenous, "i » IIDN

¡
0;¾2

i IT
¢
, and

Assumptions 1-5 hold. Then under H0

¢̂ !d N (0; 1) ; as (N; T)
j! 1; such that

p
N=T ! 0;

and
~¢ !d N (0; 1) ; as (N;T )

j! 1;
where the standardized dispersion statistics, ¢̂ and ~¢ are de…ned by
(3.16) and (3.18), respectively.

Under strictly exogenous regressors and normal errors the null
distribution of the ~¢ statistic does not depend on the relative expansion
rates of N and T , whilst the same is not true of the Swamy version of
the test. The di¤erences between the two versions are, however, less
clear cut as the exogeniety and the normality assumptions are relaxed.
For example, if the normality assumption is relaxed, to eliminate the
dependence of ~¢ on the higher order moments of "it, we also needp
N=T ! 0, as (N; T)

j! 1. This result is summarized in the following
corollary to Theorem 3.2.
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Corollary 3.3. Suppose that the conditions of Theorem 3.2 are met,
but the errors, "it; are not necessarily normally distributed. Instead
assume that they are independently distributed over i and t and have …-
nite fourth order moments. Then as (N;T )

j! 1;
p
N

³
N¡1 ~S ¡ k

´
!d

N(0; var(zi)); if it is also required that
p
N=T ! 0, as (N;T )

j! 1.
The …nite T expression for var(zi) in the case of non-normal errors
would be rather complicated to obtain, but the result in (3.17) derived
for the normal error case is likely to provide a reasonable approximation
in practice.

See Appendix A.1 for a proof.

Remark 4. The proposed testing approach can be readily extended to
testing the homogeneity of a sub-set of slope coe¢cients. Consider the
following partitioned form of (2.1):

yi
T£1

= ®i¿ T + Xi1
T£k1

¯i1 + Xi2
T£k2

¯i2 + "i, i = 1; 2; ::;N;

or
yi

T£1
= X¤

i1
T£(k1+1)

µi + Xi2
T£k2

¯i2 + "i;

where X¤
i1 = (¿T ;Xi1) and µi =

¡
®i; ¯0

i1
¢0. Suppose the slope

homogeneity hypothesis of interest is given by

H0 : ¯i2 = ¯2, for i = 1; 2; :::;N: (3.19)

Our version of the dispersion test statistic in this case is given by

~S2 =
NX

i=1

³
^̄i2 ¡ ~̄2;WFE

´0 X0
i2M

¤
i1Xi2

~¾2
i

³
^̄i2 ¡ ~̄2;WFE

´
,

where
^̄i2 =

¡
X0

i2M
¤
i1Xi2

¢¡1X0
i2M

¤
i1yi.

~̄2;WFE =

Ã NX

i=1

X0
i2M

¤
i1Xi2

~¾2
i

!¡1 NX

i=1

X0
i2M

¤
i1yi

~¾2
i

;

15



M¤
i1 = IT ¡X¤

i1
¡
X¤0

i1X
¤
i1

¢¡1 X¤0
i1,

~¾2
i =

³
yi ¡Xi2^̄2;FE

´0
M¤

i1

³
yi ¡ Xi2^̄2;FE

´

Ti ¡ k1 ¡ 1
;

and

^̄2;FE =

Ã NX

i=1

X0
i2M

¤
i1Xi2

!¡1 NX

i=1

X0
i2M

¤
i1yi.

Using a similar line of reasoning as above, it is now easily seen that
under H0 de…ned by (3.19)

~¢2 =
p
N

Ã
N¡1 ~S2 ¡ k2
v(T; k1; k2)

!
!d N (0; 1) ; as (N; T)

j! 1;

where

v2(T; k1; k2) =
2k2 (T ¡ k1 ¡ 1)¡ 2k22

T ¡ k1 +1
:

Remark 5. The proposed slope homogeneity tests can also be ex-
tended to unbalanced panels. Denoting the number of time series ob-
servations on the ith cross section by Ti, our version of the standardized
dispersion statistic is given by

~¢ =
1p
N

NX

i=1

Ã
~di ¡ k
v(Ti; k)

!
; (3.20)

where

v2(Ti; k) =
2k (Ti ¡ 1) ¡ 2k2

Ti + 1
;

~di =
³
^̄i ¡ ~̄WFE

´0 X0
iM¿ iXi

~¾2
i

³
^̄i ¡ ~̄WFE

´
,

Xi = (xi1; xi2; :::;xiTi), M¿ i = ITi ¡ ¿ Ti

³
¿ 0

Ti¿ Ti

´¡1
¿ 0

Ti with ¿Ti being
a Ti £ 1 vector of unity,

^̄i =
¡
X0

iM¿ iXi
¢¡1X0

iM¿ iyi; (3.21)
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~̄WFE =

Ã NX

i=1

X0
iM¿ iXi

~¾2
i

!¡1 NX

i=1

X0
iM¿ iyi

~¾2
i
; (3.22)

yi = (yi1; yi2; :::; yiTi)
0

~¾2
i =

³
yi ¡Xi ^̄FE

´0
M¿ i

³
yi ¡Xi ^̄FE

´

Ti ¡ 1
;

and

^̄FE =

Ã NX

i=1
X0

iM¿ iXi

!¡1 NX

i=1
X0

iM¿ iyi: (3.23)

An extension to testing the homogeneity of a sub-set of slope coe¢cients
in the case of the unbalanced panels is straightforward and is easily
derived using the result in Remark 4.

3.1. Asymptotic Local Power of the ~¢ Test

For the analysis of the asymptotic power of the ~¢ test, we adopt the
following local alternatives6

H1;NT : ¯i = ¯ +
±i

N1=4T 1=2 ; i = 1; 2; :::;N; (3.24)

where ±i, i = 1; 2; :::;N are k£1 vectors of …xed constants. As we shall
with N ! 1, it is not necessary that ±i are non-zero for all i.

Under the above local alternatives and assuming that the regressors
are strictly exogenous we have7

~¢ =
1p
N

NX

i=1

µ
zi ¡ k
v(T; k)

¶
+
ÃNT
v(T; k)

+ Op

³
N¡1=4

´
+ Op

¡
T¡1¢ ;

where

ÃNT =
1
N

NX

i=1

~¾¡2i ±0iQiT±i¡
Ã

1
N

NX

i=1

~¾¡2i ±0iQiT

!Ã
1
N

NX

i=1

~¾¡2i QiT

!¡1 Ã
1
N

NX

i=1

~¾¡2i QiT±i

!
:

6Similar results also hold for the ¢̂ version of the test.
7For a proof see Appendix A.2.

17



Hence, it readily follows that under H1;NT

~¢ !d N
µ
Ãp
2k
; 1

¶
; as (N; T)

j! 1;

where

Ã = lim
N!1

8
<
:

1
N

NX

i=1

¾¡2i ±0iQi±i¡
Ã

1
N

NX

i=1

¾¡2i ±0iQi

!Ã
1
N

NX

i=1

¾¡2i Qi

!¡1 Ã
1
N

NX

i=1

¾¡2i Qi±i

!9
=
; .

Recall that Qi = p limT!1
¡
T¡1X0

iM¿Xi
¢
. The ~¢ test has power

against local alternatives if Ã > 0. Since Qi is a symmetric positive
de…nite matrix, using the the Cholesky decomposition, Qi = C0

iCi,
and setting ~±i =Ci±i=¾i; and Wi = ¾¡1

i Ci we have

Ã = lim
N!1

8
<
:

1
N

NX

i=1

~±
0
i
~±i ¡

Ã
1
N

NX

i=1

~±
0
iWi

!Ã
1
N

NX

i=1

W0
iWi

!¡1 Ã
1
N

NX

i=1

W0
i
~±i

!9
=
;

= lim
N!1

1
N

8
<
:
NX

i=1

~±
0
i
~±i ¡

Ã
NX

i=1

~±
0
iWi

!Ã
NX

i=1

W0
iWi

!¡1 Ã
NX

i=1

W0
i
~±i

!9
=
; :

Let ~± =
³
~±

0
1;~±

0
2; :::;~±

0
N

´0
; and W =

¡
W0

1;W
0
2; ::::;W

0
N

¢0, and write Ã
as

Ã = lim
N!1

Ã
~±

0
Mw~±
N

!
;

where Mw = IT¡W (W0W)¡1W. Hence, Ã ¸ 0, and in general the
~¢ test is asymptotically powerful if ±i 6= 0 for a non-zero fraction of the
cross section units in the limit, as speci…ed under Assumption 6. Such
an alternative, for example, allows a sub-set of the slope coe¢cients
and/or a sub-set of cross section units to be homogeneous.

The above result also suggests that the power of the ~¢ test is likely
to increase faster with T than with N .
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4. Testing Slope Homogeneity in Autoregressive Models

Consider the stationary pth order autoregressive (AR(p)) processes

yit = ®i +
pX

j=1

¸ijyi;t¡j + "it, (4.1)

i = 1; 2; :::; N , where the roots of the characteristic equation 1 =Pp
j=1 ¸ijxj, fall outside the unit circle, and assume that "it »

IIDN
¡
0; ¾2

i
¢
. Testing the homogeneity of the slopes

H0 : ¸ij = ¸j for all i = 1; 2; :::;N and j = 1; 2; :::; p; (4.2)

can be carried out as computing the dispersion statistic, (3.1), with

Xi = (yi;¡1;yi;¡2; :::;yi;¡p) ;

yi;¡j = (yi;¡j+1; yi;¡j+2; ::::; yi;T¡j)0 ; j = 1; 2; :::; p:

Using standard results from the literature of stationary autoregressive
processes, it is easily established that Assumptions 1-5 are satis…ed in
the case of stationary autoregressive processes, and as a result Theorem
3.1 continues to hold in this case as well. In particular we have

N¡1=2 ~S =
1p
N

NX

i=1

zi + Op
¡
T¡1¢ + Op

³
N¡1=2

´
; (4.3)

where zi is de…ned by (3.13), with Xi = (yi;¡1;yi;¡2; :::; yi;¡p).
However, in the case of AR processes exact expressions for the mean
and variance of zi are not easy to derive, and more importantly such
exact results would in general depend on the unknown autoregressive
coe¢cients, ¸ij , which further complicates any test that is directly
based on the Swamy statistic, ~S. To deal with this problem we explore
two alternative approaches. (i) An asymptotic procedure where E(zi)
and V ar(zi) are approximated by terms of up to order T¡1. (ii)
A bootstrap approach where the small sample dependence of E(zi)
and V ar(zi) on ¸i = (¸i1; ¸i2; :::; ¸ip)0 is taken into account using re-
sampling techniques based on bias-corrected estimates of ^̧i.
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4.1. An Asymptotic ~¢ Test for AR(p) Panel Data Models

In the case of dynamic models the two versions of the dispersion tests,
¢̂ and ~¢, are asymptotically equivalent. Consider the ~¢ version of the
test and using (3.9) in (3.13) …rst note that

zi =

³
"0iM¿Xip

T

´ ³
X0
iM¿Xi

T

´¡1 ³
X0
iM¿"ip

T

´

(T ¡ 1)¡1 "0
iM¿"i

: (4.4)

Since (4.1) is a stationary process it then readily follows that under H0

zi !d Â2
p, as T ! 1.

Therefore, it is reasonable to conjecture that up to order T¡1, E(zi)
and V ar(zi) are given by p and 2p, respectively. The proof of this
conjecture turns out to be quite complicated. A rigorous proof is given
in Appendix A.3 for the AR(1) case where it is established that indeed

E (zi) = 1 + O
¡
T¡1¢ :

Supposing now that this result holds more generally, namely

E (zi) = p + O
¡
T¡1¢ , (4.5)

and write (4.3) as

p
N

Ã
N¡1 ~S ¡ p
vz

!
=

1p
N

NX

i=1

µ
zi ¡ E(zi)
vz

¶
+

1
N

NX

i=1

p
N [E(zi)¡ p]
vz

+Op
¡
T ¡1

¢
;

where V ar(zi) = v2z . Hence, using (4.5) we have

p
N

Ã
N¡1 ~S ¡ p
vz

!
=

1p
N

NX

i=1

µ
zi ¡ E(zi)
vz

¶
+O

Ãp
N
T

!
+ Op

¡
T¡1¢ :

Under H0, the …rst term in this expression is scaled sums of i.i.d.
random variables and tends to N(0; 1) as N ! 1. Therefore, under
Assumptions 1-4, and assuming that (4.5) holds, we have (under H0):
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~¢ =
p
N

Ã
N¡1 ~S ¡ pp

2p

!
!d N (0; 1) as (N; T) j! 1, such that

p
N
T

! 0. (4.6)

One important implication of this result is that the test is valid even
when N increases faster than T , so long as

p
N=T ! 0. The ~¢ test is

clearly more restrictive when applied to dynamic models and requires
T to be su¢ciently large so that the small sample bias of E(zi) and
V ar(zi) become negligible relative to

p
N .

4.2. Bias-Corrected Bootstrap Tests of Slope Homogeneity for the AR(1)
Model

One possible way of improving over the asymptotic test developed
for the AR models would be to follow the recent literature and use
bootstrap techniques.8 Here we make use of a bias-corrected version of
the recursive bootstrap procedure.9

One of the main problems in application of bootstrap techniques to
dynamic models in small T samples is the fact that the OLS estimates
of the individual coe¢cients, ¸i, or their FE (or WFE) counterparts
are biased when T is small; a bias that persists with N ! 1.
To deal with this problem we focus on the AR(1) case and use the
bias-corrected version of ~̧WFE as proposed by Hahn and Kuersteiner
(2002).10 Denoting the bias-corrected version of ~̧WFE by ±, we have

º̧WFE = ~̧WFE +
1
T

³
1 + ~̧WFE

´
; (4.7)

and estimate the associated intercepts as

º®i;WFE = ¹yi ¡ º̧WFE ¹yi;¡1;
8For example, see Beran (1988), Horowitz (1994), Li and Maddala (1996) and Bun (2004),

although none of these authors make any bias corrections in their bootstrapping procedures.
9Bias-corrected estimates are also used in the literature on the derivation of the bootstrap

con…dence intervals to generate the bootstrap samples in dynamic AR(p) models. See Kilian (1998),
among others.

10Bias corrections for the OLS estimates of individual ¸i are provided by Marriott and Pope (1954),
and further elaborated by Kendall (1954) and Orcutt and Winokur (1969). Bias corrections for the
OLS estimates in the case of higher order AR processes are provided in Shaman and Stine (1988).
No bias corrections seem to be available for FE or WFE estimates of AR(p) panel data models in
the case of p ¸ 2.
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where ¹yi = T¡1 PT
t=1 yit, and ¹yi;¡1 = T¡1 PT

t=1 yi;t¡1. The residuals
are given by

ºeit = yit ¡º®i;WFE ¡ º̧WFE yi;t¡1;

with the associated bias-corrected estimator of ¾2
i given by º¾2

i =
(T ¡ 1)¡1 PT

t=1 (ºeit)
2. The bth bootstrap sample, y(b)it for i = 1; 2; :::; N

and t = 1; 2; :::; T can now be generated as

y(b)it = º®i;WFE + º̧WFE y
(b)
i;t¡1 +º¾i³

(b)
it ; for t = 1; 2; :::; T ;

where y(b)i0 = yi0, and ³ (b)it are random draws with replacements from
the set of pooled standardized residuals, ºeit=º¾i, i = 1; 2; :::; N , and
t = 1; 2; :::; T . With y(b)it , for i = 1; 2; :::; N and t = 1; 2; :::; T the
bootstrap statistics

~¢(b) =
p
N

Ã
N¡1 ~S(b) ¡ 1p

2

!
; b = 1; 2; :::;B;

can be computed using (3.1) to obtain the bootstrap p-values

pB =
1
B

BX

b=1
I

³
~¢(b) ¡ ¢

´
,

where B is the number of bootstrap sample, I(A) takes the value of
unity if A > 0 or zero otherwise, and ~¢ is the standardized dispersion
statistic applied to the actual observations. If pB < 0:05, say, we reject
the null hypothesis of slope homogeneity.

5. Finite Sample Properties of Slope Homogeneity Tests

In this section we shall use Monte Carlo techniques to evaluate the
…nite sample properties of the alternative tests of slope homogeneity.
We shall focus on our proposed test, ~¢ de…ned by (3.18) and compare its
performance to the Swamy and Hausman tests of slope homogeneity.
We also considered the G test of Phillips and Sul (2003), but the G
statistic could not be computed due to the singularity problem discussed
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in Section 2.3.11 The Swamy’s Ŝ statistic is de…ned by (2.10) which we
consider to be distributed as Â2

k(N¡1) under H0. For the Hausman test
(called H test) we make use of the following statistic12

H =
³
^̄MG¡~̄WFE

´0
V̂¡1

H

³
^̄MG¡~̄WFE

´
as Â2

k; (5.1)

where ^̄
MG and ~̄

WFE are given by (2.8) and (3.3), respectively, and

V̂H =
1
N2

NX

i=1
¾̂2

i
¡
X0

iM¿Xi
¢¡1 ¡

Ã NX

i=1

X0
iM¿Xi

~¾2
i

!¡1

; (5.2)

with ¾̂2
i and ~¾2

i being de…ned by (2.11) and (3.2), respectively. We
report empirical size and power of these tests at 5% nominal level, for
various pairs ofN and T , including cases where N is much larger than T
which is often encountered with micro data sets, as well as when T > N
which is more prevalent in the case of macro data sets. We consider
panels with strictly exogenous regressors, as well as simple dynamic
panels.

Initially, we consider the following simple data generating process
(DGP):

yit = ®i + ¯ixit + "it, t = 1; 2; :::; T , i = 1; 2; :::; N;

where ®i » N (1; 1), with xit generated as

xit = ®i(1¡ ½i) + ½ixit¡1 +
¡
1 ¡ ½2i

¢1=2 vit; t = ¡49; :::; 0; :::; T , i = 1; 2; :::; N; (5.3)

where ½i » IIDU (0:05; 0:95), vit » IIDN
¡
0; ¾2

ix
¢

with ¾2
ix »

IIDÂ2(1). ½i and ¾2
ix are …xed across replications. The …rst 50

observations are discarded to reduce the e¤ect of initial value on the
generated values of xit. "it » IID

¡
0; ¾2

i
¢

is drawn from (i) standard
normal distribution and (ii)

¡
Â2(2)¡ 2

¢
=2, and ¾2

i » IIDÂ2(2)=2.
11 In e-mail correspondences Dr. Sul has con…rmed to us that there is an error in equation (27) in

Phillips and Sul (2003) that de…nes the G statistic.
12We also tried a number of other variants of the Hausman test. But they all performed very

similarly.
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Under the null hypothesis, ¯i = 1 for all i, and under the alternative
hypothesis, ¯i = 1 for i = 1; :::; [2N=3], and ¯j » N (1; 0:04), for
j = [2N=3] + 1; :::;N , where [2N=3] is the nearest integer value.
®i, ¯i, and ¾2

i are …xed across replications. All combinations of
T = 10; 20; 30; 50; 100; 200 and N = 20; 30; 50; 100; 200 are used as
sample sizes.

For examining empirical size and power of the tests in the case of
regression models with di¤erent numbers of covariates, the following
DGP is used:

yit = ®i +
kX

`=1

xi`t¯i` + "it; i = 1; 2; :::;N; t = 1; 2; :::; T ;

where, as before, ®i » IIDN (1; 1), xi`t is generated as speci…ed in
(5.3), "it » IIDN

¡
0; ¾2

i
¢
, ¾2

i » IID
¡
kÂ2 (2)=2

¢
, k = 1; ::; 4, so that

the population R2 of individual equations in the panel are invariant
to the number of included regressors. Under the null hypothesis
¯i` = 1 for all i and `, and under the alternative hypothesis we
set ¯i1 » IIDN (1; 0:04) and ¯i` = ¯i1 for ` = 2; 3; 4. ®i, xi`t,
¯i`, and ¾2

i are …xed across replications. For these experiments the
sample sizes being considered are the combinations of T = 20, 30 and
N = 20; 30; 50; 100; 200.

In the case of dynamic models, two speci…cations are considered.
The …rst is the AR(1) speci…cation

yit = (1¡ ¸i)®i + ¸iyit¡1 + "it, t = ¡49; :::; 0; :::; T , i = 1; 2; :::;N;

where ®i » N (1; 1), ¸i is speci…ed as (i) ¸i = ¸ = 0:2; 0:4; 0:6; 0:8; 0:9
under the null hypothesis, and (ii) ¸i » IIDU (¸¡ 0:2; ¸ +0:2) for
¸ = 0:2; 0:4; 0:6; 0:8 and ¸i » IIDU (0:0; 1:0), under the alternative
hypothesis. "it » IIDN

¡
0; ¾2

i
¢

with ¾2
i » IIDÂ2(2)=2. ®i, ¸i, and ¾2

i
are …xed across replications. The …rst 49 observations are discarded.
For these experiments, we consider the combinations of sample sizes N
and T = 20, 30, 50, 100, 200. For bootstrap, 499 bootstrap samples are
generated and the combinations of the sample sizes T = 20, 30, 50 and
N = 20, 30, 50, 100, 200 are considered.
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The second dynamic DGP is:

yit = (1¡ ¸i1 ¡ ¸2) ®i + ¸i1yit¡1 + ¸2yit¡2 + "it, t = ¡49; :::; 0; :::; T ,
i = 1; :::; N;

where ®i » N (1; 1), ¸2 = 0:2, and (i) ¸1i = 0:6 for all i under the
null hypothesis, and (ii) ¸1i » IIDU (0:4; 0:8) under the alternative.
"it » IIDN

¡
0; ¾2

i
¢

with ¾2
i » IIDÂ2(2)=2. ®i, ¸1i, and ¾2

i are …xed
across replications. The …rst 48 observations are discarded. For these
experiments, we consider the combinations of sample sizes N and T =
20, 30, 50, 100, 200.

For all experiments 2; 000 replications are used.

5.1. Results

Tables 1 to 3 summarize the results for the DGP with strictly exogenous
regressors. First, as predicted by the asymptotic theory, Swamy’s Ŝ test
tends to over-reject when N is small relative to T , with the extent of
over-rejection diminishing as T is increased relative to T . In the case of
T = 20 and N = 200, more typical of micro data sets, the empirical size
of the Ŝ test is as much as 34%, and only approaches its nominal size
of 5% when T is increased to 200. The standardized dispersion test, ~¢;
and the Hausman test, H , both have correct sizes. The power of the ~¢
test also seems to be satisfactory. However, as our theory predicts, the
H test has no power in the case of these experiments. Table 2 suggests
that the e¤ect of non-normal errors might not be very important for
the ~¢ test. Size and power estimates in Tables 1 and 2 are very similar.
Even when N = 200 and T = 10, where Corollary 3.3 predicts that the
e¤ects of error non-normality can be most serious for the ~¢ test, the
empirical size of the ~¢ test is 4:50%. Table 3 reports the size and power
of the tests in the case of regression models with di¤erent numbers of
covariates, k = 1; 2; 3; 4. The results are similar to those provided in
Table 1, although, considering that we have controlled for the overall
…t of the regressions, the power of the ~¢ test decreases as k increases.
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The results for the dynamic DGPs are given in Tables 4 and 5.
In the case of these experiments the H test is not valid, and the Ŝ
and ~¢ tests are asymptotically equivalent and their validity requires
that

p
N=T ! 0 as (N;T )

j! 1. The results of the Monte Carlo
experiments are in line with our theoretical …ndings. The H statistic
is often negative, particularly for values of ¸ below 0:4, and in cases
where it is positive (and hence applicable), the H test exhibits serious
over-rejections. The dispersion tests have satisfactory sizes for most
combinations of N and T , so long as ¸ is relatively small, namely
¸ · 0:4. For these values of ¸ the Ŝ test tends to be more powerful than
the ~¢ test. The Ŝ test starts to over-reject as ¸ is increased to 0:6 and
beyond. By comparison, the ~¢ test only shows evidence of signi…cant
over-rejection when ¸ is increased to 0:9 and only for values of N that
are considerably larger than T . For the value of ¸ in the range of 0:6 to
0:8, the size of the ~¢ test continues to be close to its nominal value for all
N and T . The same table also illustrates that the ~¢ test has reasonable
power. Under the alternatives of ¸i » IIDU (¸¡0:2; ¸+0:2), the power
increases as ¸ increases, purely because the explanatory power of the
estimated model increases. A power comparison of the Ŝ and ~¢ tests
for values of ¸ ¸ 0:6 is complicated by the over-rejection tendency of
the former test. Table 5 reports the performance of the tests for the
heteroskedastic AR(2) case. Basically the results are similar to those
summarized in Table 4 for the AR(1) case.

Table 6 compares the standard normal approximation, (conventional)
bootstrap approximation, and Hahn and Kuersteiner (2002) bias-corrected
bootstrap approximation of the ~¢ test.13 The bias-corrected bootstrap
procedure controls the size remarkably well, even when the value of ¸
is above 0:8. On the other hand, the conventional bootstrap (non-bias-
corrected version) fails to reduce the size distortion of the test. Except
when ¸ = 0:2 and T = 20, the bias-corrected bootstrap method yields
reasonable power.

Therefore, in practice, when N · T and it is believed that ¸ is
13A bias-corrected bootstrapped test based on Ŝ could also be considered, but was not pursued as

we expected it to perform very similarly to the bias-corrected bootstrapped test based on ~¢.
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not close to unity (say the value of ¸ is below 0:8), the asymptotic
version of the ~¢ test is recommended. For all N and T , and with the
value of ¸ around 0:9, the Hahn and Kuersteiner (2002) bias-corrected
bootstrapped ~¢ test seems to be more appropriate.

6. Application: Testing Slope Homogeneity in Earnings Dy-
namics

In this section we examine the slope homogeneity of the dynamic
earnings equations using the Panel Study of Income Dynamics (PSID)
data set used in Meghir and Pistaferri (2004). Brie‡y, these authors
select male heads aged 25 to 55 with at least nine years of usable
earnings data. The selection process leads to a sample of 2; 069
individuals and 31; 631 individual-year observations. We further select
the individuals who have at least 15 observations, and this leaves us with
1; 031 individuals and 19; 992 individual-year observations. Following
Meghir and Pistaferri (2004), we also categorize the individuals into
three education groups: High School Dropouts (HSD, those with less
than 12 grades of schooling), High School Graduates (HSG, those with
at least a high school diploma, but no college degree), and College
Graduates (CLG, those with a college degree or more). In what follows
the earning equations for the di¤erent educational backgrounds; HSD,
HSG, and CLG are denoted by the superscripts e = 1; 2; and 3, and
for the pooled sample by 0. The number of individuals in the three
categories are N (1) = 249, N (2) = 531, and N (3) = 251. The panel is
unbalanced with t = 1; :::T (e)

i and i = 1; :::; N (e), and an average time
period of around 18 years.

In the research on earnings dynamics, it is standard to adopt a two-
step procedure where in the …rst stage log of real earnings is regressed
on a number of control variables such as age, race and year dummies.
The dynamics are then modelled based on the residuals from this …rst
stage regression. The use of the control variables and the grouping
of the individuals by educational backgrounds is aimed at eliminating
(minimizing) the e¤ects of individual heterogeneities at the second
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stage.
It is, therefore, of interest to examine the extent to which the two-

step strategy has been successful in dealing with the heterogeneity
problem. With this in mind we follow closely the two-step procedure
adopted by Meghir and Pistaferri (2004) and …rst run regressions
of log real earnings, w(e)

it , on the control variables: a square of
“age” (AGE(e)2

it ), race (WHITE(e)
i ), year dummies (Y EAR(t)), region

of residence (NE(e)
it ; CE

(e)
it ; STH

(e)
it ), and residence in a Standard

Metropolitan Statistical Area, (SMSA(e)
it ), for each education group

e = 0; 1; 2; 3, separately.14 The residuals from these regressions, which
we denote by y(e)it , are then used in the second stage to estimate
dynamics of the earnings process.

Speci…cally,

y(e)it = ®(e)
i + ¸(e)y(e)it¡1 + ¾(e)

i "
(e)
it , e = 0; 1; 2; 3,

where within each education group ¸(e) is assumed to be homogeneous
across the di¤erent individuals. Our interest is to test the hypothesis
that ¸(e) = ¸(e)

i for all i in e.
The test results are given in the …rst panel of Table 7. The ~¢

statistics and the associated bootstrapped p values by education groups
all lead to strong rejections of the homogeneity hypothesis. Judging by
the size of the ~¢ statistics, the rejection is stronger for the pooled
sample as compared to the sub-samples, con…rming the importance
of education as a discriminatory factor in the characterizations of
heterogeneity of earnings dynamics across individuals. The test results
also indicate the possibility of other statistically signi…cant sources of
heterogeneity within each of the education groups, and casts some
doubt on the two-step estimation procedure adopted in the literature
for dealing with heterogeneity; a point recently emphasized by Alvarez,
Browning and Ejrnæs (2002).

In Table 7 we also provide a number of di¤erent FE estimates of ¸(e);
14Log real earnings are computed as w(e)

it = ln
³
LABY (e)

it =PCEDt

´
, where LABY (e)

it is earnings
in current US dollar, and PCEDt is the personal consumption expenditure de‡ator, base year 1992.
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e = 0; 1; 2; 3, on the assumption of within group slope homogeneity.
Given the relatively small number of time series observations available
(on average 18), the bias corrections to the FE estimates are quite
large. The cross section error variance heterogeneity also plays an
important role in this application, as can be seen from a comparison
of FE and WFE estimates with the latter being larger. Focussing on
the bias-corrected WFE estimates, we also observe that the persistence
of earnings dynamics rises systematically from 0.52 in the case of the
school drop outs to 0.72 for the college graduates. This seems sensible,
and partly re‡ects the more reliable job prospects that are usually open
to individuals with a higher level of education.

The homogeneity test results suggest that further e¤orts are needed
also to take account of within group heterogeneity. One possibility
would be to adopt a Bayesian approach, assuming that ¸(e)

i ; i =
1; 2; :::; N (e) are draws from a common probability distribution and
focus attention on the whole posterior density function of the persistent
coe¢cients, rather than the average estimates that tend to divert
attention from the heterogeneity problem. Another possibility would be
to follow Alvarez, Browning and Ejrnæs (2002) and consider particular
parametric functions, relating ¸(e)

i to individual characteristics as a way
of capturing within group heterogeneity. Finally, one could consider
a …ner categorization of the individuals in the panel; say by further
splitting of the education groups or by introducing new categories such
as occupational classi…cations. The slope homogeneity tests provide an
indication of the statistical importance of the heterogeneity problem,
but are silent as how best to deal with the problem.

7. Concluding Remarks

In this paper we have developed simple tests of slope homogeneity
in linear panel data models where N could be much larger than T .
The proposed tests are based on modi…cations of Swamy’s dispersion
statistic and examine the cross section “dispersion” of individual slopes
weighted by their relative precisions. It is shown that this test is
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valid when earlier tests based on Hausman (1978) procedure fail to
be applicable. The Monte Carlo evidence shows that the proposed ~¢
test has good small sample properties in the case of panel data models
with strictly exogenous regressors even if N is much larger than T .
The ~¢ test has satisfactory performance for moderately large T and
N of similar orders of magnitude in the case of stationary dynamic
models, when the dominant root of the process is not close to unity. In
cases where N is much larger than T and/or the dominant root of the
dynamic process is near unity, a bias-corrected bootstrap procedure is
proposed which seems to perform reasonably well based on Monte Carlo
experiments.

The proposed tests are applied to testing the slope homogeneity
of the dynamic earnings equations using PSID data, and the results
show evidence of slope heterogeneity, even if attention is con…ned to
the individuals with similar educational backgrounds.

An important further extension of the tests developed in this paper is
to consider testing slope homogeneity in panel data models with multi-
factor error structures recently examined in Pesaran (2004). This is,
however, beyond the scope of the present paper.
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. Appendix A: Mathematical Proofs

A.1. Proof of Corollary 3.3
We …rst note, suppressing the subscript i to simplify the notations, that zi de…ned by (3.13)
can be write as

z = À0PÀ
À0M¿À= (T ¡ 1)

= À0PÀ
(1 +WT )

= À0PÀ
µ

1 ¡ WT +
W 2
T

1 + WT

¶
(A.1)

where
WT =

À0M¿À
(T ¡ 1)

¡ 1;

À » IID (0;IT ) and P is de…ned by (3.9). Note also that in this case P is a function of
strictly exogenous regressors and by Assumption 5 E [1= (1 +WT )] is bounded.

By using the moments of the quadratic forms in i.i.d. random variables15

E
¡
À0PÀ

¢
= k,

and
E

£¡
À0PÀ

¢ ¡
À0M¿À

¢¤
= °2tr (P ¯M¿ ) + tr (P) tr (M¿ ) + 2tr (PM¿ ) ,

where °2 is the Pearson’s measures of kurtosis, which is zero for normal distributions,
and ¯ signi…es Hadamard product. Since tr (P ¯M¿ ) = tr

¡
P ¯ IT ¡P ¯T¡1¿ T¿ 0T

¢
=

T¡1 (T ¡ 1)¡1k, tr (M¿) = T ¡ 1, PM¿ = P;

E
£¡

À0PÀ
¢ ¡

À0M¿À
¢¤

= °2
T ¡ 1

T
k + k (T ¡ 1) + 2k,

so that the expectation of the second term of (A.1) is

E
£¡

À0PÀ
¢
WT

¤
=

°2k
T

+
2k

T ¡ 1
,

which is O
¡
T¡1

¢
. Also,

E
·
À0PÀ

µ
W 2
T

1 + WT

¶¸
· E

¯̄
À0PÀ

¯̄
E

¯̄
W 2
T
¯̄
E

¯̄
¯̄ 1
1 + WT

¯̄
¯̄

= O
¡
T¡1

¢

since E jÀ0PÀj = O (1) and E j1=(1 +WT )j = O (1), and E
¡
W2
T
¢

= °2=T + 2= (T ¡ 1) =
O

¡
T¡1

¢
; using results in Appendix A.5 of Ullah (2004). Hence,

E (zi) = k +O
¡
T¡1

¢
. (A.2)

15For example, see Appendix A.5 in Ullah (2004).
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Using (3.15) note that

p
N

³
N¡1~S ¡k

´
= 1p

N

NX

i=1

[zi ¡E (zi)] +
p

N
T

(
1
N

NX

i=1

T [E (zi) ¡ k]

)
+Op

¡
T¡1

¢
:

However, in the light of (A.2) it is clear that

1
N

NX

i=1

T [k ¡E (zi)] = O(1);

and if
p

N=T ! 0 as (N;T) j! 1 it will also follows that
p

N
³
N¡1 ~S ¡ k

´
!d N(0; var(zi)) as (N; T) j! 1 such that

p
N=T ! 0:

A.2. Proof of Asymptotic Power

Under the local alternatives (de…ned by (3.24))

¯i = ¯ +
±i

N 1=4T 1=2
;

we …rst note that16 p
T

³
^̄
i ¡ ~̄

WFE

´
= ·iNT +{iNT ,

where
·iNT = ~Q¡1

iT
~»iT ¡ N¡1=2 ~Q¡1

N
~»N ;

and

{iNT = ±i
N1=4

¡ 1
N1=4

~Q¡1
N

ÃPN
i=1

~QiT±i
N

!
;

with
~QiT = ~¾¡2i QiT ; ~»iT = ~¾¡2i »iT ; (A.3)

and

~QN = N¡1
NX

i=1

~QiT ; ~»N = N¡1=2
NX

i=1

~»iT . (A.4)

Hence

N¡1=2 ~S =
Tp
N

NX

i=1

³
^̄
i ¡ ~̄

WFE

´0 ~QiT
³
^̄
i ¡ ~̄

WFE

´

=
1p
N

NX

i=1

·0iNT ~QiT·iNT +
1p
N

NX

i=1

{0iNT ~QiT{iNT

+
2p
N

NX

i=1

·0iNT ~QiT{iNT :

16This relation generalizes (3.7).
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The …rst term is the component of the test statistic that remains under the null hypothesis
and is already shown to be given by

1p
N

NX

i=1
·0iNT ~QiT·iNT =

1p
N

NX

i=1
zi + Op

¡
T¡1¢ +Op

³
N¡1=2

´
:

Similarly,

1p
N

NX

i=1
·0iNT ~QiT{iNT = N¡1=4

"ÃPN
i=1

~»
0
iT±ip

N

!
¡~»

0
N

~Q¡1
N

ÃPN
i=1

~QiT±i
N

!#
= Op

³
N¡1=4

´
;

and
1p
N

NX

i=1
{0iNT ~QiT{iNT = ÃNT ;

where

ÃNT =
1
N

NX

i=1

±0i ~QiT±i ¡
Ã

1
N

NX

i=1

± 0i~QiT

!Ã
1
N

NX

i=1

~QiT

!¡1Ã
1
N

NX

i=1

~QiT±i

!
:

Therefore

N¡1=2~S =
1p
N

NX

i=1

zi + ÃNT +Op
³
N¡1=4

´
+ Op

¡
T¡1

¢
:

Using this result in (3.18) we have

~¢ = 1p
N

NX

i=1

µ
zi ¡k
v(T; k)

¶
+ ÃNT

v(T; k)
+ Op

³
N¡1=4

´
+Op

¡
T¡1

¢
,

as required.

A.3. Derivation of E (zi) in the Case of AR(1) Models with Normal Errors
Suppressing the subscript i to simplify the notations, the AR(1) model is given by

yt = ®(1 ¡ ¸) + ¸yt¡1 + "t, t = 1;2; :::;T; (A.5)

where ® is bounded on a compact set, j j̧ < 1, "t » IIDN
¡
0; ¾2

¢
with 0 < ¾2 < 1, and it is

assumed that the process is initialized with y0 = ®+"0, and "0 » IIDN
¡
0; ±2

¢
. The choice

of ± depends on the initialization of the process and will be given by ± = ¾
¡
1 ¡¸2¢¡1=2 if

the process has started at t = ¡M, with M ! 1. For this model speci…cation z de…ned in
(3.13) can be written as

z =
¡
T¡1=2"0M¿y¡1

¢2
h
(T ¡ 1)¡1"0M¿"

i ¡
T¡1y0¡1M¿y¡1

¢;

where " = ("1; :::; "T )0, y¡1 = (y0; y1; :::; yT¡1)0; and as before M¿ = IT ¡ ¿ T (¿ 0T¿T )
¡1¿ 0T ,

with ¿ T being a T £ 1 vector of unity.
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Rewrite the AR(1) processes in matrix notations as

y¤ = ®¿T+1 +B¡1DÀ; (A.6)

where y¤ = (y0; y1; :::; yT )0, À = ("0=±; "1=¾; :::; "T=¾)0 so that À » N (0T+1£1; IT+1), 0T+1£1
is a (T +1)£1 vector of zeros, IT+1 is an identity matrix of order T +1, ¿ T+1 is a (T +1)£1
vector of ones, D is a (T +1) £ (T +1) diagonal matrix with its …rst element equal to ±
and the remaining elements equal to ¾, and

B =

2
666664

1 0 ¢ ¢ ¢ 0 0
¡¸ 1 ¢ ¢ ¢ 0 0
...

... .. . ...
...

0 0 ¢ ¢ ¢ 1 0
0 0 ¢ ¢ ¢ ¡¸ 1

3
777775

.

Also y = G0y¤, y¡1 = G1y¤, where G0 = (0T£1; IT ) and G1 = (IT ;0T£1). Hence, noting
that M¿G1¿T+1 = 0 we have

z =
(À0AÀ)2

(À0BÀ) (À0CÀ)
,

where

A =
G0

0M¿G1B¡1Dp
T

; (A.7)

B =
G0

0M¿G0

T ¡ 1
; (A.8)

C =
DB¡10G0

1M¿G1B¡1D
T

. (A.9)

Proposition A.1. Under the stationary AR(1) speci…cation with normal errors given by
(A.5), we have

E (z) = E

Ã
4 (À0AÀ)2

bc
¡ 2 (À0AÀ)2 (À0BÀ)

b2c

¡2 (À0AÀ)2 (À0CÀ)
bc2

+
(À0AÀ)2 (À0BÀ) (À0CÀ)

b2c2

!
+O

¡
T¡1

¢
(A.10)

= 1 + O
¡
T¡1¢ , (A.11)

where À, A, B, C are de…ned in (A.6), (A.7), (A.8), (A.9), respectively, and tr (B) = b
(= 1); and tr (C) = c > 0.

Proof. Firstly we show (A.10), then (A.11). De…ne17

À0BÀ = b (1 +XT ) ;
À0CÀ = c (1 +YT ) ;

17Note that b = 1 and c is O(1). See Appendix B.
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where XT = b¡1 (À0BÀ ¡ b), YT = c¡1 (À0CÀ ¡ c). We also note that since by the
assumption À » N

¡
0(T+1)£1; IT+1

¢
, and B and C are symmetric positive semi-de…nite

matrices with rank T ¡ 1, then

E
µ

b
À0BÀ

¶
= O (1) ;

and
E

³ c
À0CÀ

´
= O (1) ,

so long as T > 3 (Smith 1988).
Also

z = (À0AÀ)2

bc

µ
1 ¡XT +

X2
T

1 +XT

¶µ
1 ¡ YT +

Y 2
T

1 +YT

¶

=
(À0AÀ)2

bc

·
(1 ¡ XT ) (1 ¡YT )+

Y 2
T

1 + YT
¡ XTY 2

T
1 + YT

+
X2
T

1 +XT
¡ YTX2

T
1 +XT

+
Y 2
TX

2
T

(1 + XT) (1 +YT )

¸
:

As B and C are symmetric positive semi-de…nite matrices, by Lemma B.1 in Appendix B

E
£
X2
T
¤

=
tr

¡
B2

¢

[tr (B)]2
= O

¡
T¡1¢ , E

£
Y 2
T

¤
=

tr
¡
C2

¢

[tr (C)]2
= O

¡
T¡1

¢
,

so that

E [z] = E

"
(À0AÀ)2

bc
(1 ¡ XT) (1 ¡YT)

#
+O

¡
T¡1¢

= E

"
4 (À0AÀ)2

bc
¡ 2(À0AÀ)2 (À0BÀ)

b2c
¡ 2 (À0AÀ)2 (À0CÀ)

bc2
+

(À0AÀ)2 (À0BÀ) (À0CÀ)
b2c2

#

+O
¡
T¡1¢ ,

since

E

¯̄
¯̄
¯
(À0AÀ)2

bc
Y 2
T

1 + YT

¯̄
¯̄
¯ < E

¯̄
¯̄
¯
(À0AÀ)2

bc

¯̄
¯̄
¯E

¯̄
¯̄ 1
1 + YT

¯̄
¯̄E

¯̄
Y 2
T

¯̄

= O
¡
E

¯̄
Y 2
T

¯̄¢
= O

¡
T¡1¢ ,

and

E

¯̄
¯̄
¯
(À0AÀ)2

bc
XTY 2

T
1 + XT

¯̄
¯̄
¯ < E

¯̄
¯̄
¯
(À0AÀ)2

bc

¯̄
¯̄
¯ E jXTj E

¯̄
¯̄ 1
1 +XT

¯̄
¯̄E

¯̄
Y 2
T

¯̄

= O
¡
T¡1¢ :

Similarly E
¯̄
¯
h
b¡1c¡1 (À0AÀ)2

ih
X2
T (1 + XT )¡1

i¯̄
¯ and E

¯̄
¯
h
b¡1c¡1 (À0AÀ)2

ih
YTX2

T (1 + YT )¡1
ī̄
¯

are at most O
¡
T¡1¢, and

E

¯̄
¯̄
¯
(À0AÀ)2

bc
Y 2
TX

2
T

(1 + XT ) (1 + YT )

¯̄
¯̄
¯ < E

¯̄
¯̄
¯
(À0AÀ)2

bc

¯̄
¯̄
¯ E

¯̄
¯̄ 1
1 +YT

¯̄
¯̄E

¯̄
¯̄ 1
1 + XT

¯̄
¯̄E

¯̄
Y 2
T
¯̄
E

¯̄
X2
T
¯̄

= O
¡
E

¯̄
Y 2
T
¯̄
E

¯̄
X2
T
¯̄¢

= O
¡
T¡2

¢
:
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Consider now (A.11). By using the moments of the quadratic forms in i.i.d. standard
normal random variables18

E
h¡

À0AÀ
¢2i = [tr (A)]2 + tr

¡
A2+A0A

¢
:

Using (B.2) in Appendix B

E
h¡

À0AÀ
¢2i = c + O

¡
T¡1¢ .

Also, using results in Ullah (2004, Appendix A.4), together with (B.2) and (B.3) in Appendix
B, and noting that tr (AC) = tr (A0C),

E
h¡

À0AÀ
¢2 ¡

À0CÀ
¢i

= [tr (A)]2 tr (C) +4tr
¡
A2C

¢
+2tr

¡
A0AC

¢
+ 2tr

¡
AA0C

¢

+4tr (A) tr (AC) + tr (C) tr
¡
A2 +A0A

¢

= tr (C) tr
¡
A0A

¢
+O(T¡1)

= c2 +O(T¡1).

Next, again using results in Ullah (2004, Appendix A.4), together with (B.2) and (B.4) in
Appendix B

E
h¡

À0AÀ
¢2 ¡

À0BÀ
¢i

= [tr (A)]2 tr (B) +4tr
¡
A2B

¢
+ 2tr

¡
A0AB

¢
+ 2tr

¡
AA0B

¢

+4tr (A) tr (AB)+ tr (B) tr
¡
A2 +A0A

¢

= tr (B) tr
¡
A0A

¢
+O(T¡1)

= bc +O(T¡1).

Finally, using results in Ullah (2004, Appendix A.4), together with (B.2) - (B.6) in Appendix
B,

E
h¡

"0A"
¢2 ¡

"0B"
¢ ¡

"0C"
¢i

= [tr (A)]2 tr (B) tr (C)
+8tr (A) tr

¡
ABC+A0BC

¢

+ tr (B)
£
4tr

¡
A2C

¢
+ 2tr

¡
A0AC

¢
+2tr

¡
AA0C

¢¤

+ tr (C)
£
4tr

¡
A2B

¢
+ 2tr

¡
A0AB

¢
+ 2tr

¡
AA0B

¢¤

+2tr
¡
A2¢ tr (BC) + 2tr

¡
A0A

¢
tr (BC) +8tr (AB) tr (AC)

+2 [tr (A)]2 tr (BC) +4tr (A) tr (B) tr (AC) + 4tr (A) tr (C) tr (AB)
+ tr (B) tr (C) tr

¡
A2¢ + tr (B) tr (C) tr

¡
A0A

¢

+8tr
¡
A2BC

¢
+8tr

¡
A0ABC

¢
+8tr

¡
AA0BC

¢
+8tr

¡
A2CB

¢

+8tr (ABAC) +4tr
¡
A0BAC

¢
+ 4tr

¡
ABA0C

¢

= tr (B) tr (C) tr
¡
A0A

¢
+ O(T¡1)

= bc2 + O(T¡1).

Therefore, we can conclude
E (z) = 1 +O(T¡1);

as required.
18For example, see Appendix A.4 Ullah (2004).
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. Appendix B: Lemmas

Lemma B.1 Suppose H is a (T £T ) symmetric positive semi-de…nite matrix with bounded
eigenvalues where º t(H) ¸ 0 for t = 0; 1; :::;T , where ºt(H) = O (1). Then,

tr
¡
H2

¢

[tr (H)]2
= O

¡
T¡1

¢
. (B.1)

Proof. We …rst note that

tr
¡
H2

¢

[tr (H)]2
=

PT
t=1 º2t (H)³PT
t=1 ºt(H)

´2 =
T¡1 PT

t=1 º2t (H)

T
³
T¡1PT

t=1ºt(H)
2́ .

But Ã
TX

t=1

º t(H)

!2

=
TX

t=1

º2t (H)+ 2
X

t>t0
ºt(H)ºt0(H);

so Ã
TX

t=1
ºt(H)

!2

¸
TX

t=1
º2t (H).

Hence (B.1) allows considering that
PT
t=1 ºt(H) = O (T ) and

PT
t=1º2t (H) = O(T ).

Lemma B.2 Consider the non-stochastic matrices A, B, and C de…ned by (A.7),
(A.8), and (A.9) in Appendix A.3, respectively. Then,

tr (B) = 1; tr
¡
A0A

¢
= tr (C) = O (1) ; tr (A) = O

³
T¡1=2

´
; tr

¡
A2¢ = O

¡
T¡1¢ ; (B.2)

tr
¡
A0C

¢
= O

³
T¡1=2

´
; tr

¡
A0AC

¢
= O

¡
T¡1

¢
; tr

¡
AA0C

¢
= O

¡
T¡1

¢
; tr

¡
A2C

¢
= O

¡
T¡1

¢
;

(B.3)
tr

¡
A0AB

¢
= O

¡
T¡1

¢
; tr

¡
AA0B

¢
= O

¡
T¡1

¢
; tr (AB) = O

³
T¡3=2

´
; tr

¡
A2B

¢
= O

¡
T¡1

¢
;

(B.4)
tr (BC) = O

¡
T¡1¢ ; tr

¡
A0BC

¢
= O

³
T¡3=2

´
; tr (ABC) = O

³
T¡3=2

´
; (B.5)

and

tr
¡
A2BC

¢
; tr

¡
A0ABC

¢
; tr

¡
AA0BC

¢
; tr

¡
A2CB

¢
;

tr (ABAC) ; tr
¡
A0BAC

¢
; tr

¡
ABA0C

¢
are at most O

¡
T¡2

¢
: (B.6)

Proof.
We …rst note that

H01 = G0
0M¿G1 =

µ
01£T 01£1
M¿ 0T£1

¶
;

and
G0

0M¿G0 =
µ

01£1 01£T
0T£1 M¿

¶
; G0

1M¿G1 =
µ

M¿ 0T£1
01£T 01£1

¶
:

The matrices G0
0M¿G0 and G0

1M¿G1 are idempotent with two zero eigenvalues and T ¡ 1
unit eigenvalues. Therefore, noting that B is a lower triangular matrix with unit diagonal
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elements and D is a diagonal matrix with ¾max = Max(¾;±) < K < 1 we have, using
(A.9),

0 · º t(C) · ¾max
T

;

where ºt(C) for t = 0; 1; :::;T are the eigenvalues of C. Also it is easily veri…ed that

G0G0
0 = IT , A0A = C; (B.7)

and
A0B =

B0¡1G0
1M¿G0G0

0M¿G0

T 1=2(T ¡ 1)
= (T ¡ 1)¡1A0; (B.8)

AA0B = (T ¡ 1)¡1AA0: (B.9)

To prove the results in (B.2), we …rst note that

tr(B) = 1; tr(C) =
TX

t=0

ºt(C) · (T +1)¾max
T

= O(1). (B.10)

Since ¾max is bounded, to simplify the derivations and without loss of generality in what
follows we set ± = ¾ = 1; (so that D = IT+1) and note that

B¡1 =

2
666664

1 0 ¢ ¢ ¢ 0 0
¸ 1 ¢ ¢ ¢ 0 0
...

... . .. ...
...

¸T¡1 ¸T¡2 ¢ ¢ ¢ 1 0
¸T ¸T¡1 ¢ ¢ ¢ ¸ 1

3
777775

;

A = T¡1=2G0
0M¿G1B¡1

= T¡1=2 (E¡ F) , (B.11)

E =

2
66666664

0 0 ¢ ¢ ¢ 0 0 0
1 0 ¢ ¢ ¢ 0 0 0
¸ 1 ¢ ¢ ¢ 0 0 0
...

... . .. ...
...

...
¸T¡2 ¸T¡3 ¢ ¢ ¢ 1 0 0
¸T¡1 ¸T¡2 ¢ ¢ ¢ ¸ 1 0

3
77777775

, F =

2
666664

0 0 ¢ ¢ ¢ 0 0
gT¡1 gT¡2 ¢ ¢ ¢ g0 0

...
...

. .. ...
...

gT¡2 gT¡2 ¢ ¢ ¢ g0 0
gT¡1 gT¡2 ¢ ¢ ¢ g0 0

3
777775

,

where

g` =
1
T

X̀

j=0
¸j =

1
T

Ã
1 ¡¸`+1

1 ¡ ¸

!
= O

¡
T¡1¢ (since j j̧ < 1), for ` = 0; 1; :::;T ¡ 1.

Therefore,

tr (A) =
¡1p

T

T¡2X

`=0

g` =
¡1

T
p

T

T¡2X

`=0

Ã
1 ¡ ¸`+1

1 ¡ ¸

!
= O(T¡1=2): (B.12)
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Consider now tr
¡
A2

¢
. Using (B.11)

tr
¡
A2¢ = T¡1

£
tr

¡
E2¢ + tr

¡
F2¢ ¡ 2tr (EF)

¤
: (B.13)

But it is easily seen that

tr
¡
E2¢ = 0;

tr
¡
F2¢ =

Ã
T¡1X

`=0

g`

!Ã
T¡2X

`=0

g̀

!
= O(1);

tr (EF) =
T¡3X

`=0

Ã
1 ¡ ¸T¡`¡2

1 ¡ ¸

!
g` =

1
T

T¡3X

`=0

Ã
1 ¡¸T¡`¡2

1 ¡¸

!Ã
1 ¡ `̧+1

1 ¡ ¸

!
= O(1);

which together with (B.13) establishes that tr
¡
A2¢ = O

¡
T¡1

¢
.

To prove the results in (B.3), we observe that19

tr
¡
A0AC

¢
= tr

¡
C2¢ =

TX

t=0
º2t (C) · ¾max

T
= O

¡
T¡1

¢
:

By Cauchy-Schwarz inequality

£
tr

¡
AA0C

¢¤2 · tr
¡
AA0AA0¢ tr

¡
C0C

¢
= tr

³£
A0A

¤2´ tr
¡
C2¢ =

£
tr

¡
C2¢¤2 ;

which establishes jtr (AA0C)j = O
¡
T¡1

¢
. Similarly, again by Cauchy-Schwarz inequality

and noting that A0A = C,

£
tr

¡
A2C

¢¤2 · tr
¡
AAA0A0¢ tr

¡
C2¢ = tr

¡
AA0C

¢
tr

¡
C2¢ ;

which establishes
¯̄
tr

¡
A2C

¢¯̄
= O

¡
T¡1¢. To derive the order of tr (A0C), again by Cauchy-

Schwarz inequality
£
tr

¡
A0C

¢¤2 · tr
¡
A0A

¢
tr

¡
C0C

¢
= tr(C)tr(C2):

Therefore, since tr(C) =O(1), it follows that jtr (A0C)j = O(T¡1=2).
To establish the results in (B.4), by Cauchy-Schwarz inequality

£
tr

¡
A2B

¢¤2 · tr
¡
AA0C

¢
tr

¡
B2¢ .

But

tr
¡
B2¢ =

tr
h
(G0

0M¿G0)2
i

(T ¡ 1)2
=

tr [(G0
0M¿G0)]

(T ¡ 1)2
=

1
T ¡ 1

= O
¡
T¡1

¢
,

hence,
¯̄
tr

¡
A2B

¢¯̄
= O

¡
T¡1

¢
. Similarly,

£
tr

¡
A0AB

¢¤2 = [tr (CB)]2 · tr
¡
C2¢ tr

¡
B2¢ = O

¡
T¡2¢ ;

19Recall that C0 = C and A0A = C.
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which establishes jtr (A0AB)j = O
¡
T¡1

¢
. Using (B.9)

tr
¡
AA0B

¢
=(T ¡ 1)¡1tr

¡
A0A

¢
= (T ¡ 1)¡1tr (C) = O

¡
T¡1

¢
:

Also

tr (AB) = T¡1=2(T ¡ 1)¡1tr
¡
G0

0M¿G1B0¡1G0
0M¿G0

¢

= T¡1=2(T ¡ 1)¡1tr
¡
G0

0M¿G1B0¡1
¢

=
1

T ¡ 1
tr (A) = O

³
T¡3=2

´
:

To prove the results in (B.5), a further application of the Cauchy-Schwarz inequality to
A and BCnow yields

£
tr

¡
A0BC

¢¤2 · tr
¡
A0A

¢
tr

¡
C0B0BC

¢
= tr(C)tr

¡
B2C2¢ ;

[tr (ABC)]2 · tr
¡
AA0¢ tr

¡
C0B0BC

¢
= tr(C)tr

¡
B2C2¢ :

But as easily seen £
tr

¡
B2C2¢¤2 · tr

¡
B4¢ tr

¡
C4¢ · O

¡
T¡6¢

so that ¯̄
tr

¡
B2C2¢¯̄ · O

¡
T¡3

¢
,

and hence ¯̄
tr

¡
A0BC

¢¯̄
= O(T¡3=2); and jtr (ABC)j = O(T¡3=2):

Similarly,
[tr (BC)]2 · tr

¡
B2¢ tr

¡
C2¢ = O

¡
T¡2

¢
;

and jtr (BC)j = O(T¡1):
Finally, the various higher order terms in (B.6) can be established following similar lines.

Firstly,
tr

¡
A0ABC

¢
= tr(BC2) · tr(B2)tr(C4) = O(T¡4);

so that
¯̄
tr(BC2)

¯̄
= O(T¡2); and

£
tr

¡
A2BC

¢¤2 · tr
¡
AA0C

¢
tr

¡
C2B2¢ = O

¡
T¡4

¢
;

£
tr

¡
A2CB

¢¤2 · tr
¡
AA0C

¢
tr

¡
C2B2¢ = O

¡
T¡4

¢
:

Similarly,

[tr (ABAC)]2 · tr
¡
ABB0A0¢ tr

¡
C0A0AC

¢
= tr

¡
B2C

¢
tr

¡
C3¢ = O(T¡4):

Furthermore,
£
tr

¡
AA0BC

¢¤2 =
£
tr

¡
A0BCA

¢¤2 · tr
¡
A0BB0A

¢
tr

¡
A0C0CA

¢
= tr

¡
B2AA0¢ tr

¡
C2AA0¢ ;

and
£
tr

¡
A0BAC

¢¤2 · tr
¡
A0BB0A

¢
tr

¡
C0A0AC

¢
= tr

¡
B2AA0¢ tr

¡
C3¢ ;

£
tr

¡
ABA0C

¢¤2 · tr
¡
ABB0A0¢ tr

¡
C0AA0C

¢
= tr

¡
B2C

¢
tr

¡
C2AA0¢ :
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Also using (B.8) and (B.9) we have

tr
¡
AA0B2¢=

1
T ¡ 1

tr
¡
AA0B

¢
=

1
(T ¡ 1)2

tr
¡
AA0¢ =

tr(A0A)
(T ¡ 1)2

= O(T¡2):

£
tr

¡
C2AA0¢¤2 =

£
tr

¡
AA0C2¢¤2 · tr

¡
AA0AA0¢ tr

¡
C4¢ = tr

¡
A0AA0A

¢
tr

¡
C4¢

= tr(C2)tr
¡
C4¢ = O(T¡4):

Finally, it is easily established that

tr
¡
B2C

¢
= O(T¡2); tr

¡
C3¢ = O(T¡2):

Hence all the terms in (B.6) are of order O(T¡2).
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Table 1 : Size and Power of the Slope Homogeneity Tests,
with Strictly Exogenous Regressors: Normal Errors

NnT 10 20 30 50 100 200
Size

Ŝ test
20 25:25 11:70 9:75 7:70 6:00 6:40
30 31:20 13:45 10:60 8:10 5:45 5:00
50 39:45 17:75 10:70 8:70 6:50 6:00

100 61:05 21:15 15:00 10:65 7:50 5:95
200 82:35 33:90 18:30 12:90 7:95 6:65

H test
20 7:95 6:55 4:55 6:35 5:20 4:10
30 8:75 6:95 6:50 4:70 4:90 5:35
50 6:60 5:25 5:95 4:80 5:15 5:50

100 6:85 6:20 5:85 5:00 5:30 5:40
200 9:10 5:90 5:40 6:30 5:80 5:30

~¢ test
20 4:60 4:20 3:70 3:95 3:80 4:05
30 4:95 4:50 4:30 4:75 3:80 4:15
50 4:85 4:80 4:05 4:35 4:60 4:90

100 4:40 5:00 4:95 5:60 5:00 4:80
200 5:20 5:75 4:55 4:85 4:70 4:95

Power
Ŝ test

20 29:05 21:80 23:30 31:00 58:65 88:80
30 43:45 45:25 52:40 81:80 99:10 100:00
50 64:50 68:05 80:15 96:65 100:00 100:00

100 100:00 100:00 100:00 100:00 100:00 100:00
200 100:00 100:00 100:00 100:00 100:00 100:00

H test
20 6:65 5:15 5:60 5:70 5:40 3:55
30 7:15 5:70 5:55 5:20 5:30 5:90
50 6:70 5:75 5:20 5:10 5:90 5:05

100 6:00 6:30 5:90 5:20 5:85 5:45
200 6:35 6:30 4:65 5:00 6:10 5:70

~¢ test
20 4:65 6:90 9:45 16:60 43:65 82:55
30 7:10 15:65 26:45 65:65 98:15 100:00
50 8:55 26:85 46:80 85:95 99:90 100:00

100 26:80 71:35 99:25 100:00 100:00 100:00
200 44:95 99:15 100:00 100:00 100:00 100:00

Notes: Ŝ test, ~¢ test; and H test statistics are de…ned in (2.10), (3.18), and (5.1),
respectively. The DGP is speci…ed as yit = ®i + ¯ ixit + "it, t = 1; 2; :::; T , i = 1; 2; : ::; N where
®i » N (1; 1), with xit generated as xit = ®i(1 ¡ ½i) + ½ixit¡1 +

(
1 ¡ ½2

i

)1=2
vit; t = ¡49; :::; 0; :::; T , i = 1; 2; :::; N

where ½i » I IDU (0:05; 0:95), vit » I IDN
(
0; ¾2

ix

)
with ¾2

ix » I IDÂ2(1). ½i and ¾2
ix are …xed across the

replications. The …rst 50 observations are discarded to reduce the e¤ect of initial value on
the generated values of xit. "it » IIDN

(
0; ¾2

i

)
, with ¾2

i » IIDÂ2(2)=2. Under the null hypothesis,
¯ i = 1 for all i, and under the alternative hypothesis, ¯i = 1 for i = 1; ::: ; [2N=3], and ¯j » N (1;0:04),
for j = [2N=3] + 1; ::: ; N , where [2N=3] is the nearest integer value. ®i , ¯i, and ¾2

i are …xed across
replications. All tests are conducted at 5% nominal level. All the experiments are based on
2; 000 replications.
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Table 2 : Size and Power of Slope Homogeneity Tests,
with Strictly Exogenous Regressors:

¡
Â2(2) ¡ 2

¢
=2 Errors

NnT 10 20 30 50 100 200
Size

Ŝ test
20 23:85 13:45 8:50 5:85 5:30 5:55
30 30:90 13:10 10:15 8:40 6:40 4:75
50 40:70 15:50 11:15 8:85 6:30 6:80

100 59:65 23:00 14:70 9:55 7:35 5:35
200 81:50 32:35 19:30 11:40 8:60 6:40

H test
20 6:45 6:60 6:45 4:95 4:90 5:90
30 7:60 5:75 5:90 5:20 5:00 5:05
50 7:35 6:10 5:70 5:15 5:30 4:50

100 6:75 6:55 5:25 5:05 5:25 4:40
200 8:05 6:35 6:15 5:40 4:70 5:60

~¢ test
20 3:50 4:35 3:30 3:35 3:95 3:80
30 4:65 3:75 4:10 4:30 4:45 4:20
50 5:25 3:95 4:45 4:60 4:80 5:20

100 6:15 4:70 4:60 4:65 3:65 4:65
200 4:50 4:40 3:65 4:40 4:55 4:70

Power
Ŝ test

20 28:55 23:15 24:20 33:15 61:85 89:90
30 49:95 49:90 59:10 75:85 99:20 100:00
50 67:10 67:95 84:30 91:95 100:00 100:00

100 99:75 99:95 100:00 100:00 100:00 100:00
200 100:00 100:00 100:00 100:00 100:00 100:00

H test
20 6:20 5:40 5:05 4:30 4:75 6:25
30 7:30 6:00 5:20 5:45 5:25 6:30
50 7:40 6:20 5:10 5:65 5:50 5:70

100 6:80 5:40 4:80 5:30 6:20 5:55
200 6:40 5:20 5:35 5:15 5:30 5:70

~¢ test
20 4:40 7:10 9:95 18:65 48:30 84:25
30 7:00 19:15 33:15 60:40 98:10 100:00
50 9:95 26:15 54:40 79:35 99:95 100:00

100 26:55 77:40 99:00 100:00 100:00 100:00
200 62:25 99:60 100:00 100:00 100:00 100:00

Notes: See the notes on Table 1. The design is the same as that of Table 1 except
"it » IID

¡¡
Â2(2) ¡ 2

¢
=2

¢
.
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Table 3 : Size and Power of the Slope Homogeneity Tests with Strictly Exogenous
Regressors

with Di¤erent Numbers of Covariates (k)
k=1 k=2 k=3 k=4

NnT 20 30 20 30 20 30 20 30
SIZE

Ŝ test
20 11:40 8:35 16:55 10:80 20:40 13:70 26:50 16:30
30 13:40 11:20 21:25 13:10 25:70 15:70 31:90 17:05
50 15:80 11:60 24:85 15:90 36:45 20:15 43:00 22:45

100 22:45 15:25 35:90 20:90 48:90 26:85 60:90 33:95
200 34:50 20:10 54:55 30:05 72:10 41:95 83:10 50:30

H test
20 5:60 5:40 6:20 6:45 6:50 5:40 5:45 5:90
30 5:50 6:00 6:45 5:30 6:55 5:95 6:75 6:40
50 5:45 5:75 6:85 6:30 6:75 6:30 7:65 8:15

100 6:90 5:80 7:10 5:60 6:50 5:85 6:10 6:05
200 5:60 5:70 6:20 5:15 5:75 6:70 7:05 6:05

~¢ test
20 3:80 3:20 5:00 4:75 5:20 5:35 5:60 6:05
30 3:55 4:75 5:50 4:70 5:10 5:05 5:00 5:20
50 4:60 4:15 5:55 4:75 5:40 6:05 4:70 5:05

100 4:80 4:35 5:25 5:65 5:15 5:05 5:60 5:20
200 5:05 5:25 4:80 5:50 5:30 5:25 4:70 4:75

Power
Ŝ test

20 75:15 94:15 75:65 90:25 71:40 87:10 62:70 69:60
30 94:25 98:95 74:00 93:85 81:55 92:00 94:50 98:70
50 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00

100 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00
200 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00

H test
20 6:90 8:40 6:40 7:05 6:25 6:90 6:75 5:90
30 5:95 4:55 7:35 5:95 6:45 6:15 6:20 5:80
50 6:30 5:40 6:70 5:85 6:90 6:65 6:35 5:75

100 4:85 5:65 6:00 4:95 6:55 6:75 6:80 6:30
200 6:10 5:10 6:90 5:25 6:00 5:80 5:95 5:65

~¢ test
20 46:35 84:50 38:10 67:30 21:70 52:80 10:40 25:05
30 70:15 94:25 28:50 68:35 26:55 58:15 32:05 73:05
50 100:00 100:00 99:05 100:00 94:85 100:00 75:70 99:90

100 99:65 100:00 98:70 100:00 98:25 100:00 98:45 100:00
200 100:00 100:00 100:00 100:00 100:00 100:00 99:95 100:00

Notes: The DGP is speci…ed as yit = ®i +
Pk

`=1 x ì t¯i` + "it ; i = 1; 2; :::; N; t = 1; 2; :::; T ,
where ®i » IIDN (1; 1), xi`t is generated as speci…ed in the notes to Table 1, "it »
IIDN

¡
0; ¾2

i
¢
, where ¾2

i » IID
¡
kÂ2 (2)=2

¢
, k = 1; ::; 4, so that the goodness of …t for

each equation in the panel i is invariant to the number of regressors. Under the null
hypothesis ¯i` = 1 for all i and `, and under the alternative hypothesis we generates ¯i`
as ¯ i1 » IIDN (1; 0:04) and ¯i` = ¯i1 for ` = 2; 3; 4. ®i, xi`t, ¯i`, and ¾2

i are …xed across
replications.
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Table 4 : Size and Power of the Slope Homogeneity Tests
for Heteroskedastic AR(1) Speci…cations

Size Power
NnT 20 30 50 100 200 20 30 50 100 200

¸i = 0:2 for all i i̧ » IIDU(0:0; 0:4)
Ŝ test

20 4:60 5:10 5:60 4:35 4:50 13:85 22:55 42:95 82:55 99:75
30 5:50 5:60 4:40 4:80 6:30 20:25 35:25 62:70 96:45 100:00
50 4:50 4:90 4:05 4:60 4:15 24:75 45:30 78:85 99:70 100:00

100 3:55 4:60 4:40 5:50 4:75 41:75 74:90 98:45 100:00 100:00
200 3:30 5:00 4:85 5:00 5:80 62:30 93:85 99:95 100:00 100:00

H test
20 38:50 53:40 65:75 73:40 78:00 51:35 75:05 93:80 99:40 100:00
30 45:55 65:25 79:75 88:30 91:45 64:70 89:45 99:00 100:00 100:00
50 62:80 85:25 96:30 98:60 99:50 93:80 99:60 100:00 100:00 100:00

100 89:15 98:85 100:00 100:00 100:00 97:70 99:95 100:00 100:00 100:00
200 99:65 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00
~¢ test

20 2:55 2:20 2:80 3:10 2:90 2:40 8:80 25:80 71:75 99:20
30 3:05 2:95 3:15 4:00 3:95 3:70 14:25 43:55 92:55 100:00
50 4:55 4:10 4:05 4:40 3:70 3:75 18:10 59:00 99:30 100:00

100 8:90 5:80 4:65 4:40 4:35 6:50 39:85 93:55 100:00 100:00
200 18:95 8:95 6:45 4:25 4:55 9:25 65:90 99:80 100:00 100:00

i̧ = 0:4 for all i i̧ » IIDU(0:2; 0:6)
Ŝ test

20 5:70 5:55 6:25 4:70 4:25 16:15 26:10 49:25 87:45 99:95
30 5:95 6:20 5:55 4:75 6:50 24:05 41:40 71:90 98:55 100:00
50 6:40 6:15 5:10 5:80 4:75 31:55 53:40 85:95 99:85 100:00

100 5:65 6:40 5:60 6:15 5:35 54:15 82:75 99:35 100:00 100:00
200 6:60 6:40 6:80 5:55 5:60 85:80 98:70 100:00 100:00 100:00

H test
20 73:25 87:20 92:80 94:65 96:20 83:45 95:55 99:65 100:00 100:00
30 90:30 96:45 99:15 99:40 99:70 96:75 99:65 100:00 100:00 100:00
50 99:15 99:95 100:00 100:00 100:00 99:95 100:00 100:00 100:00 100:00

100 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00
200 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00
~¢ test

20 2:80 2:20 3:00 3:20 3:15 3:70 11:05 31:75 78:75 99:85
30 2:70 3:05 3:40 3:85 4:70 4:60 18:40 53:15 96:60 100:00
50 3:40 3:65 3:95 4:55 3:40 6:35 25:15 69:35 99:70 100:00

100 6:35 4:65 4:15 4:05 4:70 10:15 54:00 97:60 100:00 100:00
200 12:50 6:30 5:65 4:05 5:00 18:45 81:30 99:95 100:00 100:00

Notes: See notes to Table 1. Ŝ test, ~¢ test; and H test statistics are de…ned in (2.10), (4.6),
and (5.1), respectively. TheDGP is speci…ed as yit = (1 ¡ ¸i) ®i+¸iyit¡1+"it, t = ¡49; :::; 0; :::; T ,
i = 1;2; :::; N , where; ®i » N (1; 1); ¸i are as speci…ed in the table; "it » IIDN

¡
0; ¾2

i
¢

with
¾2

i » IIDÂ2(2)=2. ®i, ¸i, and ¾2
i are …xed for replications. yi;¡49 = ®i , and the …rst 49

observations are discarded. We reject the null hypothesis when we obtain negative (H test)
statistics (due to negative variance estimates, V̂H).
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(Continued)
Size Power

NnT 20 30 50 100 200 20 30 50 100 200
¸i = 0:6 for all i i̧ » IIDU(0:4; 0:8)

Ŝ test
20 7:50 7:60 7:10 5:40 4:85 21:90 35:50 62:00 95:10 99:95
30 9:15 8:40 6:65 5:45 6:45 34:10 55:40 85:55 99:90 100:00
50 9:55 9:55 7:65 6:15 5:15 45:70 69:60 94:70 100:00 100:00

100 11:00 10:50 8:00 6:70 6:50 73:65 95:10 100:00 100:00 100:00
200 15:75 13:20 10:60 7:10 7:60 93:10 99:65 100:00 100:00 100:00

H test
20 91:45 97:00 98:50 98:95 99:35 96:45 99:50 100:00 100:00 100:00
30 98:95 99:70 100:00 100:00 100:00 99:90 100:00 100:00 100:00 100:00
50 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00

100 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00
200 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00
~¢ test

20 2:40 2:35 4:15 3:05 3:05 5:95 16:00 44:60 90:50 99:95
30 2:35 3:10 3:60 3:40 5:10 8:75 29:40 72:90 99:40 100:00
50 2:65 3:75 3:95 4:15 4:40 12:15 40:30 87:10 100:00 100:00

100 4:35 3:65 3:80 4:40 4:90 25:30 77:30 99:90 100:00 100:00
200 6:15 4:00 4:80 3:90 4:70 44:35 96:20 100:00 100:00 100:00

i̧ = 0:8 for all i i̧ » IIDU(0:6; 1:0)
Ŝ test

20 13:40 11:45 10:05 6:35 5:50 34:55 54:20 84:45 99:95 100:00
30 16:10 14:25 11:35 7:35 8:20 54:75 78:65 98:10 100:00 100:00
50 20:75 17:00 12:40 9:25 7:05 73:15 94:05 100:00 100:00 100:00

100 29:55 24:40 17:90 10:50 9:20 93:80 99:90 100:00 100:00 100:00
200 46:30 35:30 25:45 13:70 11:45 99:85 100:00 100:00 100:00 100:00

H test
20 96:30 99:15 99:40 99:85 99:90 98:50 100:00 100:00 100:00 100:00
30 99:70 100:00 100:00 100:00 100:00 99:95 100:00 100:00 100:00 100:00
50 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00

100 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00
200 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00
~¢ test

20 3:05 3:70 4:95 3:90 3:60 11:70 32:55 72:35 99:85 100:00
30 3:45 4:45 4:45 4:00 4:90 21:55 56:90 95:20 100:00 100:00
50 2:95 5:35 4:35 4:75 4:85 36:35 78:95 99:40 100:00 100:00

100 4:35 5:70 5:55 4:75 5:80 64:95 97:90 100:00 100:00 100:00
200 4:70 7:05 8:30 5:95 6:25 89:90 100:00 100:00 100:00 100:00
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(Continued)
Size Power

NnT 20 30 50 100 200 20 30 50 100 200
¸i = 0:9 for all i i̧ » IIDU(0:0; 1:0)

Ŝ test
20 20:40 18:20 15:30 9:50 7:70 89:15 99:55 100:00 100:00 100:00
30 27:30 22:10 18:40 10:65 9:40 99:30 100:00 100:00 100:00 100:00
50 37:80 30:35 22:60 15:20 10:00 99:95 100:00 100:00 100:00 100:00

100 56:40 47:20 36:50 21:30 14:35 100:00 100:00 100:00 100:00 100:00
200 79:40 70:50 54:65 33:10 19:90 100:00 100:00 100:00 100:00 100:00

H test
20 97:40 99:05 99:80 100:00 99:95 99:80 100:00 100:00 100:00 100:00
30 99:80 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00
50 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00

100 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00
200 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00
~¢ test

20 4:85 6:10 6:75 5:20 4:60 69:00 97:55 100:00 100:00 100:00
30 6:00 7:55 8:00 5:95 6:25 94:70 100:00 100:00 100:00 100:00
50 8:15 9:70 10:05 8:10 5:95 99:65 100:00 100:00 100:00 100:00

100 13:85 15:90 14:95 11:30 8:95 100:00 100:00 100:00 100:00 100:00
200 24:00 26:35 25:05 16:25 10:80 100:00 100:00 100:00 100:00 100:00

Table 5 : Size and Power of the Slope Homogeneity Tests
for Heteroskedastic AR(2) Speci…cations

Size Power
NnT 20 30 50 100 200 20 30 50 100 200

¸1i = 0:6 for all i ¸1i » IIDU (0:4; 0:8)
Ŝ test

20 14:60 13:30 10:40 6:80 6:50 30:45 39:60 63:70 96:90 100:00
30 18:65 16:20 11:05 7:00 6:50 46:15 59:25 88:80 100:00 100:00
50 25:75 19:85 13:25 8:75 6:15 60:50 78:50 97:75 100:00 100:00

100 37:05 26:95 19:10 12:05 9:25 85:05 97:20 99:95 100:00 100:00
200 56:50 42:45 26:90 15:50 10:05 97:60 100:00 100:00 100:00 100:00

H test
20 90:65 96:25 98:35 98:45 97:60 95:00 98:60 96:80 98:05 100:00
30 98:45 99:55 99:50 99:35 99:00 99:60 99:25 97:90 99:75 100:00
50 100:00 100:00 99:90 99:80 99:75 99:95 99:55 99:20 100:00 100:00

100 100:00 100:00 100:00 99:95 100:00 100:00 99:80 99:45 100:00 100:00
200 100:00 100:00 100:00 100:00 100:00 100:00 100:00 99:80 100:00 100:00
~¢ test

20 3:10 3:05 4:10 4:00 4:80 4:70 12:50 38:00 92:30 100:00
30 2:95 3:55 3:95 3:65 4:45 7:25 24:05 71:30 99:80 100:00
50 2:20 3:65 3:90 5:05 5:15 13:30 38:70 88:90 100:00 100:00

100 2:65 3:80 5:10 5:40 5:90 25:20 74:90 99:85 100:00 100:00
200 3:40 4:55 5:75 5:95 4:65 43:55 96:50 100:00 100:00 100:00

Notes: See notes to Table 1 and 4. The DGP is yit = (1 ¡ ¸i1 ¡ ¸2)®i + ¸i1yit¡1 +
¸2yit¡2 + "it, t = ¡49; :::; 0; :::; T , i = 1; :::; N , ¸1i is as speci…ed in the table, ¸2 = 0:2. The …rst
48 observations are discarded.
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Table 6 : Size and Power of the Bootstrap Test of Slope Homogeneity
for Heteroskedastic AR(1) Speci…cations

Size Power
NnT 20 30 50 20 30 50

¸i = 0:2 for all i i̧ » IIDU(0:0; 0:4)
Standard Normal

20 1:60 1:65 2:60 3:50 8:45 26:85
30 3:30 3:40 2:75 4:05 12:90 42:85
50 5:20 3:60 4:35 3:95 17:35 58:35

100 9:20 4:90 4:65 7:00 40:25 92:30
200 19:25 10:75 6:75 9:55 67:75 99:80

Bootstrap
20 4:30 4:45 4:80 5:40 11:10 30:60
30 4:90 5:05 4:45 5:60 16:25 47:40
50 5:05 5:05 5:45 4:45 18:70 61:95

100 5:20 4:40 5:00 4:55 38:35 92:60
200 6:15 5:35 5:30 2:85 57:20 99:80

Bias-Corrected Bootstrap
20 4:25 4:55 4:70 5:20 11:30 30:75
30 5:00 5:20 4:70 5:90 16:35 47:35
50 5:40 5:30 5:75 4:85 18:75 61:55

100 5:75 4:25 5:10 5:00 38:90 92:50
200 7:30 5:50 5:45 2:80 58:00 99:80

¸i = 0:4 for all i i̧ » IIDU(0:2; 0:6)
Standard Normal

20 2:45 2:65 2:75 3:60 10:40 29:05
30 2:35 3:05 3:15 4:85 18:75 52:85
50 4:50 3:90 3:70 6:10 23:15 69:55

100 7:90 5:85 4:15 11:60 52:50 97:60
200 12:75 6:95 5:90 18:85 82:00 99:95

Bootstrap
20 5:40 5:50 4:65 6:35 13:95 33:90
30 4:25 5:45 4:95 6:50 22:50 56:70
50 5:25 5:35 5:05 7:15 25:50 72:25

100 5:65 5:65 5:15 9:60 51:90 97:80
200 5:20 4:80 5:35 9:90 78:30 99:95

Bias-Corrected Bootstrap
20 5:80 5:55 4:90 6:15 13:85 34:10
30 4:70 5:35 4:75 6:75 22:25 56:40
50 5:40 5:80 4:65 7:15 25:70 72:15

100 6:35 6:10 5:05 10:25 53:20 98:00
200 6:00 5:30 5:80 11:85 79:20 99:95

Notes: See the notes to Table 4. 499 bootstrap samples are generated, and rejection
frequencies are based on 2,000 replications. “Bootstrap” is based on the bootstrap samples
generated using ~̧WFE . The “Bias-Corrected Bootstrap” is based on the bootstrap samples
generated using the bias-corrected estimator, º̧WF E . For further details see Section 4.2.
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(Continued)
Size Power

NnT 20 30 50 20 30 50
¸i = 0:6 for all i ¸i » IIDU(0:4;0:8)

Standard Normal
20 1:40 2:75 3:85 5:40 15:55 43:75
30 2:60 3:80 2:55 7:50 30:50 73:65
50 2:45 3:55 3:35 11:30 40:45 87:50

100 4:25 3:55 4:15 28:00 78:50 99:80
200 5:75 3:65 4:30 45:45 96:75 100:00

Bootstrap
20 4:25 6:05 5:20 8:70 19:85 48:15
30 4:85 5:70 3:70 10:40 34:65 76:40
50 4:30 5:40 4:95 14:25 45:80 89:15

100 4:50 4:60 4:90 29:75 80:50 99:85
200 4:30 4:30 4:95 40:80 96:80 100:00

Bias-Corrected Bootstrap
20 4:35 5:50 5:35 8:80 19:60 48:05
30 4:90 5:20 3:85 10:75 35:35 76:10
50 4:40 5:35 4:85 14:85 45:80 89:55

100 5:50 5:25 4:95 31:85 80:80 99:85
200 5:55 4:45 5:20 45:40 97:05 100:00

¸i = 0:8 for all i ¸i » IIDU(0:6;1:0)
Standard Normal

20 2:40 3:80 4:80 12:60 31:05 71:85
30 2:95 3:85 5:45 22:05 55:10 95:75
50 3:20 5:25 5:25 36:90 76:70 99:70

100 4:65 5:75 5:90 64:90 98:20 100:00
200 4:65 7:50 8:25 90:55 100:00 100:00

Bootstrap
20 5:20 5:65 5:70 17:10 35:00 73:70
30 4:70 5:15 6:25 26:15 58:05 95:70
50 4:70 6:40 5:60 40:05 75:25 99:70

100 6:40 6:50 5:75 69:70 98:20 100:00
200 6:70 8:60 7:55 92:25 100:00 100:00

Bias-Corrected Bootstrap
20 4:50 5:10 5:20 15:50 34:15 73:25
30 4:25 4:65 5:65 23:85 55:35 95:30
50 4:20 5:50 5:25 32:95 71:15 99:45

100 5:55 5:15 4:85 63:10 97:60 100:00
200 5:00 5:55 6:05 87:45 99:95 100:00
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(Continued)
Size Power

NnT 20 30 50 20 30 50
¸i = 0:9 for all i ¸i » IIDU(0:0;1:0)

Standard Normal
20 5:30 6:20 7:60 68:35 97:95 100:00
30 7:25 7:35 9:35 94:85 99:95 100:00
50 7:90 9:25 8:95 99:35 100:00 100:00

100 12:55 15:80 15:45 100:00 100:00 100:00
200 21:30 27:65 25:40 100:00 100:00 100:00

Bootstrap
20 6:00 6:10 7:50 74:15 98:50 100:00
30 7:95 6:95 7:85 96:05 99:95 100:00
50 8:45 7:30 6:55 99:60 100:00 100:00

100 11:95 9:95 8:50 100:00 100:00 100:00
200 18:35 16:25 10:55 100:00 100:00 100:00

Bias-Corrected Bootstrap
20 4:45 4:70 6:25 74:20 98:60 100:00
30 5:20 4:50 6:05 96:30 99:95 100:00
50 4:45 3:60 5:35 99:60 100:00 100:00

100 5:05 4:80 4:95 100:00 100:00 100:00
200 4:50 5:75 5:65 100:00 100:00 100:00
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Table 7: Slope Homogeneity Tests and Alternative Estimates of the Autoregressive
Coe¢cient

of the Real Earnings Equations

Pooled High School High School College
Sample Dropout Graduate Graduate

e = 0 e = 1 e = 2 e = 3
N 1; 031 249 531 251
Average Ti 18:39 18:36 18:22 18:79
Total Observations 18; 961 4; 572 9; 673 4; 716

Tests for Slope Homogeneity
~¢ test Statistic 25:59 7:20 13:65 18:32

Normal approximation p-value [0:0000] [0:0000] [0:0000] [0:0000]
Bias-corrected bootstrap p-value [0:0000] [0:0000] [0:0000] [0:0000]

Autoregressive Coe¢cient (¸)
FE Estimates ( ^̧

FE) 0:4841
(0:0065)

0:4056
(0:0147)

0:4497
(0:0095)

0:5538
(0:0106)

WFE Estimates (~̧WFE) 0:5429
(0:0056)

0:4246
(0:0133)

0:5169
(0:0086)

0:6002
(0:0095)

Bias-Corrected WFE (º̧W FE) 0:6504
(0:0055)

0:5188
(0:0126)

0:6192
(0:0080)

0:7214
(0:0101)

Notes: Noting PSID data we used are unbalanced, FE estimator, and WFE estimator
are de…ned by (3.23), and (3.22) in Remark 5, respectively, and their associated standard
errors (shown in round brackets) are based on V̂

³
^̧F E

´
= ¾̂2

³PN
i=1 y0

i;¡1M¿ iyi;¡1

´¡1
, where

¾̂2 = (T ¡ N ¡ 1)¡1
NX

i=1

³
yi ¡ ^̧FEyi;¡1

´0
M¿ i

³
y i ¡ ^̧FEyi;¡1

´
;

T =
PN

i=1 Ti , and V̂
³
~̧W FE

´
=

³PN
i=1 ~¾¡2

i y0
i;¡1M¿ iyi;¡1

´¡1
.

Bias corrected estimates are based on º̧
WFE = ~̧

WFE+(T =N )
³
1 + ~̧

W FE

´
and V̂

³
º̧

W FE

´
=

T ¡1
³
1 ¡ º̧2

WFE

´
. Bias-corrected bootstrapped tests also use º̧W FE and the associated esti-

mates to generate bootstrap samples (see Section 4.2 for further details).
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