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A theoretical model is constructed to predict the far-field sound generated by high-
frequency gust-aerofoil interaction in steady parallel shear flow, including the effects of
aerofoil thickness. Our approach is to use asymptotic analysis of the Euler equations
linearised about steady parallel shear flow, in the limits of high frequency and small, but
non-zero, aerofoil thickness and Mach number. The analysis splits the flow into various
regions around the aerofoil; local inner regions around the leading and the trailing edges
where sound is generated and scattered; a surface transition region accounting for the
curvature of the aerofoil; a wake transition region downstream of the aerofoil; and an outer
region through which the sound propagates to the observer. Solutions are constructed
in all regions, and matched using the principle of matched asymptotic expansions to
yield the first two terms in the expansion of both the amplitude and the phase of the
far-field pressure. Result are computed for the particular case of scattering of a gust by
a symmetric Joukowski aerofoil placed in symmetric Gaussian parallel shear flow. The
introduction of mean shear is shown to have a significant effect on the far-field directivity
and on the total radiated power.

1. Introduction

The fundamental problem of sound generation by aerofoils in flow is of great impor-
tance to the understanding of aircraft noise. One significant acoustic source, from within
the aereongine, corresponds to blade-blade interaction, when the wakes from a forward
blade row or structural element interact with a downstream blade row. This is seen to
be one of the key components of the total sound levels (Peake & Parry 2012), and has
received much attention. For instance, for a vortical wave (a so-called gust) interacting
with a single aerofoil, computational schemes, such as those of Hixon et al. (2006) and
Allampalli et al. (2009), have been developed to solve the full non-linear Navier-Stokes or
Euler equations for thin aerofoils with an incident gust of low- to mid-range frequency;
while analytical models include those of Myers & Kerschen (1997) and Tsai (1992) for
high-frequency gust-aerofoil interaction. The latter models have been related to the noise
generated by a gust interacting with a cascade of aerofoils by Peake & Kerschen (1997,
2004). These analytic models use Goldstein’s rapid distortion theory formulation of the
scattering problem, (Goldstein 1978). Bodony (2009) has also used Goldstein’s formula-
tion, but to develop a computational scheme for predicting noise generation by entropic
disturbances interacting with a symmetric aerofoil. This is highly relevant to turbine
noise. A second acoustic source connected with aerofoil-flow interaction, which has per-
haps received less attention, arises from the airframe at take-off or approach conditions,
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2 L. J. Ayton & N. Peake

whereby the deployed wing flaps might interact with the engine exhaust flow to produce
noise (Mengle et al. 2007; Semiletov et al. 2013).

In much of the work on gust-aerofoil interaction noise it is assumed that the background
flow is uniform far upstream. However, it is quite possible that the background flow
contains significant mean shear: in the internal aeroengine context this might be caused
by the wake of a large structural element upstream, or by the non-uniform flow entering
the aeroengine due to incidence or other installation effects; while in the context of flap-
exhaust noise, the bypass/jet exhaust flow is highly sheared. We therefore believe that
including the effects of mean shear in gust-aerofoil calculations is important. In a key
paper, Goldstein (1978), the interaction of a gust in a steady two-dimensional background
shear flow with a zero-thickness, zero-incidence semi-infinite flat plate is calculated for
the first time. Since then, this theory has been extended in two directions. First, by
Goldstein (1979) who considered the case of uni-directional, transversely-sheared mean
flow carrying gusts which interact with semi-infinite flat plates, and Goldstein et al.

(2013), who were particularly concerned with jet-edge interactions. One feature of these
papers is that the base flow is parallel and does not change in the streamwise direction, so
that scattering by bodies which modify the mean flow, i.e. nonzero thickness aerofoils, is
not included. Second, by Atassi & Grzedzinski (1989) who allow for aerofoil thickness by
considering a non-parallel potential mean flow, plus a small steady vortical perturbation.
This allows them to study the interaction of gusts with a realistic aerofoil leading edge
in the presence of weakly-sheared mean flow. The aim of the current paper is to extend
both these strands of work by considering (weakly) non-parallel shear flow with significant
mean vorticity, thereby allowing us to model noise generation by gusts interacting with
a nonzero thickness aerofoil in mean flow with significant shear.

In order to be able to complete an analytically-based solution a number of assumptions
are required. We will suppose that the aerofoil is thin, with thickness parameter denoted
by ǫ ≪ 1, and that the reduced frequency of the incident gust is high, denoted by
k ≫ 1. The preferred limit ǫk = O(1) is imposed, as in Myers & Kerschen (1997) and
Tsai (1992). We also assume that the flow is relatively low speed (such as the speeds
experienced during aircraft approach), with typical Mach numbers being O(ǫ1/2). We
believe that these limitations still allow us to study cases of practical interest, especially
since the high-frequency regime remains challenging for computational aeroacoustics. A
significant step in our analysis involves transformation from Cartesian coordinates, (x, y),
to pseudo-velocity potential and streamfunction coordinates, (φ, ψ), where φ is defined
such that surfaces of constant φ are everywhere normal to the mean streamlines. This
has the advantage that the aerofoil is mapped onto a flat plate, allowing the boundary
conditions to be applied more readily. We then use the method of matched asymptotic
expansions (Van Dyke 1975) to split the problem into several asymptotic regions around
the aerofoil (shown in Figure 1); local inner regions which scale as O(k−1) about the
leading and trailing edges of the aerofoil; a transition region whose thickness scales as
O(k−1/2) along the upper and lower surfaces of the aerofoil accounting for the effects
of aerofoil thickness; an acoustic outer region which describes the propagation into the
far field; and a wake transition region of thickness O(k−1/2) downstream. The solution
is determined in each region, and matched to surrounding regions using Van Dyke’s
matching rule (Van Dyke 1975). Our aim is to obtain the first two terms in both the
amplitude and the phase in each region.

The paper is organised as follows. In Section 2 we describe the formulation of the
problem, and apply our coordinate transformation to the linearised Euler equations gov-
erning the gust-aerofoil interaction. In Section 3 we outline the method used to obtain
the evolution of the gust through the shear flow; this is based on the Goldstein (1978)
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Figure 1: Asymptotic regions around the aerofoil; leading- and trailing-edge inner regions,
(i) and (iv), scale as O(k−1), and the width of the transition regions, (iii) scales as
O(k−1/2). The outer region (ii) is O(1). We solve for (i) in Section 4, then solve for a
leading-edge contribution to (iii) in Section 5. Region (iii) is solved for in Section 6, and
the trailing-edge contribution to (ii) along with regions (iv) and (v) are solved for in
Section 7.

.

parallel-shear gust solution, but with a correction term to account for the effects of the
aerofoil thickness on the steady flow. In Section 4 we solve the governing equations in the
inner leading-edge region. This inner solution is then matched to a leading-edge far-field
solution in Section 5, and the transition solution to account for the zero normal velocity
boundary condition on the aerofoil surface is constructed in Section 6. Rescattering at
the trailing edge is considered in Section 7. Results for the far-field acoustic directivity
are presented in Section 8.

2. Formulation and Governing Equations

We consider a thin symmetric aerofoil aligned parallel to the x axis, with surface
y = ±ǫy(x), 0 6 x 6 2. Here, lengths have been non-dimensionalised using the aerofoil
semi-chord b∗ (∗ denotes dimensional quantities). The aerofoil sits in a mean shear flow
of velocity U , which is aligned parallel to the aerofoil chord at infinity (velocities are
non-dimensionalised using U∗

∞, the uniform mean flow speed at infinity in the transverse
direction, and we explicitly exclude the case U∗

∞ = 0). We work in the orthogonal (φ, ψ)
coordinate system, where ψ is the non-dimensional mean-flow stream function and φ is the
non-dimensional pseudo-velocity potential, chosen such that surfaces of constant φ and
ψ are orthogonal. The origin in (φ, ψ) space is located at the leading edge of the aerofoil.
This coordinate system has the advantage of mapping the aerofoil surface onto the flat
plate ψ = 0, 0 6 φ 6 φe, where φe must be calculated from the mean-flow solution. Far
upstream the steady shear flow velocity is U0(ψ)eφ, where eφ is the unit vector in the φ
direction, and the shear profile U0(ψ) is a given function (with the property that U0 → 1
as ψ → ±∞). The presence of the thin aerofoil distorts the incident mean flow, and we
write the total mean velocity as

(

U0(ψ) + ǫq(φ, ψ) +O(ǫ2)
)

eφ. The local Mach number
is denoted M(ψ), which takes the value M∞ as ψ → ±∞; in what follows we shall be
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4 L. J. Ayton & N. Peake

considering low Mach number flow only, with M = O(ǫ1/2). This means that the steady
flow around the aerofoil can be determined to O(ǫ) using incompressible thin-aerofoil
theory, and it follows that (see Thwaites (1960))

q(z) =
U0(0)

π
Re

[∫ 2

0

dy(x)/dx

z − x
dx

]

, (2.1)

where z = φ+ iψ. Furthermore, the corrections to the otherwise uniform steady pressure,
density and sound speed due to the presence of the aerofoil are of O(ǫM2

∞) = O(ǫ2), and
to O(ǫ) are therefore ignored.

Let the incident gust have typical amplitude which is much less than ǫ, allowing
linearisation about the mean flow, and dimensional frequency ω∗. In what follows we
non-dimensionalise time using b∗/U∗

∞, to give non-dimensional hydrodynamic frequency
ω = ω∗b∗/U∗

∞, and we also introduce the non-dimensional acoustic frequency k = ωM∞,
where M∞ = U∗

∞/c
∗
∞. We suppose k is large, with preferred limit k = O(ǫ−1). The

unsteady velocity, pressure and density are written in the form

{u, v, p, ρ}(φ, ψ, t) = {u, v, p, ρ}(φ, ψ)e−iωt,

and we make the one further assumption that the flow is isentropic, which means that
the pressure and density fluctuations are connected by ρ =M2

∞p. The idea now is to sub-
stitute this unsteady perturbation into the equations of mass and (inviscid) momentum
conservation, linearised about the steady base flow. In order to transform these equations
into (φ, ψ) space, we use the well-known results for orthogonal curvilinear coordinates,
see for example Batchelor (1967, Appendix 2). The metric elements, given by Finnigan
(1983), for (φ, ψ)-space are

hφ = ζ|U | hψ = |U |, (2.2)

where ζ is defined by

Ω

|U |2 =
∂ log ζ

∂ψ
, (2.3)

and Ω = −∇
2
x
ψ is the mean vorticity (∇x denotes the differential operator with respect

to non-dimensional physical coordinates). This leads to

−iωu+ ζ|U |2 ∂u
∂φ

− Ωv + ζ|U | ∂p
∂φ

= −uζ ∂
∂φ

( |U |2
2

)

, (2.4a)

−iωv + ζ|U |2 ∂v
∂φ

+ |U | ∂p
∂ψ

= vζ
∂

∂φ

( |U |2
2

)

− 2v

(

Ω+
∂

∂ψ

( |U |2
2

))

, (2.4b)

−iωρ+ ζ|U |∂u
∂φ

+ |U | ∂v
∂ψ

+ ζ|U |2 ∂ρ
∂φ

=
v

|U |

(

Ω+
∂

∂ψ

( |U |2
2

))

+ uζ
∂|U |
∂φ

(2.4c)

for the two momentum and one mass equations respectively.
Since we are considering the case of a parallel shear flow disturbed by a thin aerofoil,

we make the expansions

ζ|U |2 = U0(ψ) + ǫN1(φ, ψ), (2.5a)

Ω = −U0
dU0

dψ
+ ǫN2(φ, ψ), (2.5b)

ζ|U | = 1 + ǫN3(φ, ψ), (2.5c)

where the first term on the right in each case is the parallel flow result and N1,2,3 = O(1)
are the aerofoil corrections. We note immediately that introducing the thin aerofoil into

Page 4 of 28



Gust-aerofoil interaction in shear flow 5

the inviscid parallel mean flow does not alter the mean vorticity, so that N2 ≡ 0. However,
the remaining corrections, N1,3, are non-zero and must be determined from the solution
for the mean flow. Furthermore, note that the right hand sides of (2.4) are O(ǫ), which
we shall denote by ǫN4,5,6 respectively. This allows us to rewrite (2.4) in the form

−iku+M(ψ)
∂u

∂φ
+
M(ψ)

M∞

dM

dψ
v + ǫσ1(φ, ψ) = −M∞

∂p

∂φ
, (2.6a)

−ikv +M(ψ)
∂v

∂ψ
+ ǫσ2(φ, ψ) = −M(ψ)

∂p

∂ψ
, (2.6b)

−ikM∞p+
∂u

∂φ
+
M(ψ)

M∞

∂v

∂ψ
+M(ψ)M∞

∂p

∂φ
+ ǫσ3(φ, ψ) = 0, (2.6c)

where

σ1(φ, ψ) = −M∞

(

N4 −N1
∂u

∂φ
−N3

∂p

∂φ

)

, (2.7a)

σ2(φ, ψ) = −M∞

(

N5 −N1
∂v

∂φ
− q

∂p

∂ψ

)

, (2.7b)

σ3(φ, ψ) = −
(

N6 −N3
∂u

∂φ
− q

∂v

∂ψ
−N1M

2
∞
∂p

∂φ

)

. (2.7c)

In order to complete our solution, we introduce the Fourier transform with respect to
φ,

F (α, ψ) =
1

2π

∫ ∞

−∞
e−iαφf(φ, ψ)dφ, (2.8)

with capital letters denoting transformed functions. Now taking the Fourier transform
of (2.6) and rearranging, we obtain a single equation for the transformed pressure in the
form

1

M

∂

∂ψ

(

M
∂P

∂ψ

)

+
2α

k − αM

dM

dψ

∂P

∂ψ
+
M2

∞
M2

(

(k − αM)2 − α2
)

P = ǫΣ(α, ψ), (2.9)

where

Σ(α, ψ) = −Σ2

M
− i(k − αM)

M∞
M2

Σ3 −
2αdM/dψ

M(k − αM)
Σ2 −

iαM∞
M2

Σ1. (2.10)

Recall that Σi denotes the Fourier transform of σi. Equations (2.6) and (2.9) are key
results, and the rest of this paper is concerned with determining their solution.

3. Form of the Incident Gust

The form of the incident gust in parallel shear flow has been given by Goldstein (1978).
Our flow is weakly non-parallel, thanks to the presence of the aerofoil, and this effect
appears in two ways in equation (2.6) - first, in the use of (φ, ψ) coordinates, which
captures the curvature of the mean streamlines, and second in the presence of the terms
σ1,2,3 representing the interaction of the unsteady flow with the non-uniform mean flow.
Even so, Goldstein’s method and solutions can be applied in our case, and we need only
briefly outline his approach and state the key results here. Although the equations we
have presented already are valid for arbitrary mean shear distributions, M(ψ), at this
point we restrict attention to the case in which M(ψ) is a symmetric function, which
will simplify both the form of the gust and our subsequent acoustic calculations. We also
suppose that the shear layer has a single maximum or minimum at ψ = 0, which limits
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6 L. J. Ayton & N. Peake

the number of critical layers where M(ψ) = k/α, and makes the construction of the gust
solution easier.

Let a triple of Fourier transformed solutions to equation (2.6) be denoted Z = {P,U, V }.
Equation (2.6) has two linearly independent solutions; one of them will be denoted Z1

say, and we construct a second linearly independent solution, Zout say, which has the
property that it consists of only outgoing waves as ψ → ±∞. These two solutions must
typically be computed numerically for a given mean shear profile, however we shall be
able to calculate an asymptotic approximation for Zout which is sufficient to obtain the
acoustic solution. Thanks to the symmetry of the shear layer, both solutions can be
written in the form

Z∗(α, ψ) = {P∗(α, |ψ|), (sgnψ)U∗(α, |ψ|), V∗(α, |ψ|)}. (3.1)

The gust solution is now written as

ζg(φ, ψ)e
−iwt = {pg(φ, ψ), ug(φ, ψ), vg(φ, ψ)}e−iwt, (3.2)

and we simply state the Goldstein (1978) result for the transverse gust velocity vg here,

vg =

∫ ∞

ψ

eikφ/M(η)Ω̃(η)

[

V1(k/M(η), ψ)− γ(η)Vout(k/M(η), ψ)

U1(k/M(η), η)

]

dη

−
∫ ψ

−∞
eikφ/M(η)Ω̃(η)γ(η)

Vout(k/M(η), ψ)

U1(k/M(η), η)
dη for ψ > 0. (3.3)

In equation (3.3) we have γ(η) = Γ±
+(k/M(η)) for η >< 0 with

Γ±
+(α) =

P1(α, 0±)Vout(α, 0−)− V1(α, 0±)Pout(α, 0−)

Pout(α, 0+)Vout(α, 0−)− Pout(α, 0−)Vout(α, 0+)
, (3.4)

and η is a function defined as the inverse of f(ψ) = k/M(ψ) (note that this is well-defined
since we consider symmetric a shear flow with a single turning point at ψ = 0), so

ψ = η±(k/M(ψ)) for ψ >
< 0. (3.5)

In (3.3), the function Ω̃(ψ) is an arbitrary vorticity distribution that is fixed by the form
of incident gust at upstream infinity. Given the symmetry of our problem we shall choose
to work solely in the upper half plane, ψ > 0, from this point on.

We mention that whilst the general form of the solution (3.3) is taken directly from
Goldstein’s work, the actual value of the solution is different, because terms dependent
on Z1 and Zout rely on the solutions to our perturbed governing equations, rather than
Goldstein’s flat-plate equations. The assumptions in Goldstein (1978) are consistent with
our perturbed equations, which ensures we are able use this form of the gust solution.

At this point we will expand the unsteady flow quantities, and their Fourier transforms,
in the form

f = f0 + ǫ
√
kf1 +O(ǫ) . (3.6)

This choice of expansion is inspired by the work of Myers & Kerschen (1997) for an
aerofoil in uniform flow, who showed that the leading effect of the aerofoil shape on the
amplitude of the unsteady flow is to introduce an O(ǫ

√
k) correction. This effect arises

from the interaction between the incident gust and the large mean-flow gradients close
to the leading edge (with the flow at the leading edge being represented by an inverse
square-root singularity in thin aerofoil theory). This interaction produces the O(ǫ

√
k)

term both close to the leading edge and throughout the flow. We now expand the gust
solution (3.3) in the form vg(φ, ψ) = v0g(φ, ψ) + ǫ

√
kv1g(φ, ψ) +O(ǫ), and expressions for
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Gust-aerofoil interaction in shear flow 7

v0,1g (φ, ψ) are given in Appendix A. In the next section we will describe how the gust
interacts with the leading-edge region to generate sound.

4. Leading-Edge Inner Solution

Here we investigate the sound generated by the interaction of the gust with the leading
edge of the aerofoil (region (i) in Figure 1). We move to a leading-edge inner coordinate
system, (Φ,Ψ) = (kφ, kψ), recalling that k ≫ 1 is the high-frequency parameter, and
write the scattered pressure as pa(Φ,Ψ) = p0a(Φ,Ψ) + ǫ

√
kp1a(Φ,Ψ) + O(ǫ), with the

suffix a denoting that this part of the solution contains the acoustic field generated by
the gust-aerofoil interaction. The leading-order solution, p0a(Φ,Ψ), represents the effect of
the blocking of the transverse momentum of the incident gust by the solid aerofoil surface
approximated as a flat plate, while the perturbation p1a(Φ,Ψ) represents the effects of
thickness.

In the inner region the magnitude of the perturbation to the mean velocity, q, is
determined by substituting inner (polar) variables into (2.1) and expanding, to give

q(R, θ) = − i
√
k

2
√
R

cos
θ

2
. (4.1)

Note how the perturbation to the mean flow, which is of size O(ǫ) in the outer region, has
been promoted to size O(ǫ

√
k) in the inner region, thanks to the presence of the inverse

square-root singularity at the leading edge. This is what gives rise to the expansion (3.6).

4.1. General Solution for Inner Leading-Edge Acoustic Pressure

In this inner region it appears that the aerofoil is a semi-infinite flat plate Φ > 0,Ψ = 0,
and hence we use the Wiener-Hopf method (Noble 1998) to solve for the leading-edge
inner acoustic solution. We write the solution as

pa(Φ,Ψ) = sgn(Ψ)

∫ ∞

−∞
eiαΦ/kA(α)Pout(α, |Ψ|)dα, (4.2a)

va(Φ,Ψ) =

∫ ∞

−∞
eiαΦ/kA(α)Vout(α, |Ψ|)dα, (4.2b)

demanding outgoing-wave behaviour at infinity. We also enforce the boundary conditions
that va = −vg on Φ > 0,Ψ = 0 (in order to cancel the incident gust transverse velocity
on the aerofoil surface), and that the pressure is continuous across Ψ = 0 for Φ < 0.
These two conditions lead to the integral equations

∫ ∞

−∞
eiαΦ/kA(α)Vout(α, 0)dα = −vg(Φ, 0) for Φ > 0

∫ ∞

−∞
eiαΦ/kA(α)Pout(α, 0)dα = 0 for Φ < 0 . (4.3)

The solution to this Wiener-Hopf problem is described in detail in Appendix B, and we
write

p0,1a (Φ,Ψ) =

∫ ∞

0

p0,1a (Φ,Ψ|η)dη, (4.4)

where the expression for p0,1a (Φ,Ψ|η) can be found in Appendix A. We have therefore
found the first two terms in the inner region.

When evaluating the far-field pressure, rather than integrating over η as required by
(4.4), we follow Goldstein (1978) and simply evaluate our expressions for p(φ, ψ|η) at
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8 L. J. Ayton & N. Peake

η = 0. This is motivated by the assumption that the gust vorticity distribution, Ω̃, is
sharply peaked at η = 0, so that the integration is dominated by the contribution from
η = 0. A sharp peak of vorticity at η = 0 is characteristic of turbulent shear layers; see
Goldstein (1978) for further details.

4.2. Outer limit of the inner solution

4.2.1. Solution for P 0

Taking (2.9) to O(1) gives an equation for the Fourier transform of the leading-order
pressure, P 0;

∂2P 0

∂ψ2
− 2M ′α

αM − k

∂P 0

∂ψ
+
M ′

M

∂P 0

∂ψ
+
M2

∞
M2

[

(αM − k)
2 − α2

]

P 0 = 0. (4.5)

All the terms in (4.5) balance provided α = O(k), and we therefore define β ≡ α/k with
β = O(1). This is a valid scaling of α in the inner region, since the Fourier phase, −iφα,
can then be written as −iΦβ in inner variables, allowing for O(1) variations in Φ to be
analysed. In inner coordinates, (4.5) becomes to leading order

∂2P 0

∂Ψ2
+
M2

∞
M2

0

[

(βM0 − 1)2 − β2
]

P 0 = 0, (4.6)

where M0 = M(0) is the Mach number in the inner region. Equation (4.6) has an
outgoing-wave solution

P 0
out

(α,Ψ) = C0(α) exp

[

i
√

(1− αM0/k)2 − (α/k)2
M∞
M0

|Ψ|
]

, (4.7)

where

C0(α) = c

[

(

1− αM0

k

)2

−
(α

k

)2
]−1/4

(4.8)

and c is an arbitrary constant. The reasons we include the factor defined in (4.8) are
two-fold. First, the factor is included in order to match with the form of solution used
by Goldstein (1978) in parallel shear flow - Goldstein developed a WKB solution and the
factor appears there as the usual WKB amplitude. Second, the factor is included in order
to recover the leading-order directivity known to be present in leading-edge scattering of
both vorticity and sound - we will return to this point later in this subsection.

Taking the form of solution (4.8), substituting into (A 2a) and using the method of
stationary phase (Bender & Orszag 1978), we find that the outer limit of the inner
acoustic solution is

p0a(r, θ|η) ∼ −
(

i

2πkr

)1/2
sin θeikrλ0(θ)

(1−M2
0 sin2 θ)3/4

Ω̃(η)Q̃0(η)M(η)

1− β0M(η)

κ0(k/M(η))+C
0(kβ0)

κ0(kβ0)+V 0
out

(kβ0, 0)
,

(4.9)
where (r, θ) are polar coordinates in (φ, ψ)−space centred on the leading edge. We note
that the arbitrary constant, c, is cancelled out in the term C0/V 0

out
in light of (B 5). In

(4.9) we have introduced the phase function, λ, defined as

λ(β,M) = β cos θ +
M∞
M

√

(1−Mβ)2 − β2 , (4.10)
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Gust-aerofoil interaction in shear flow 9

which has the point of stationary phase

βs(M) = − 1

1−M2



M − cos θ
√

cos2 θ +
M2

∞

M2 sin2 θ −M2
∞ sin2 θ



 . (4.11)

The functions λ0(θ) and β0(θ) are defined as

λ0(θ) = λ(β0,M0), β0 = βs(M0). (4.12)

The steady Mach number takes the value M0 throughout the inner region, and the phase
in (4.9) is therefore given by (4.10) and (4.11) with M = M0. Furthermore in (4.9),
the function κ0+(η) arises from the Wiener-Hopf solution of the inner problem, see (B 5),

while the function Q̃0(η) appears in the form of the incident gust and is defined following
equation (B 14).

We now return to the question of the choice of the factor in (4.8). We know from Tsai
(1992) and Ayton & Peake (2013) that the leading-order outer solution for gust-aerofoil
and sound-aerofoil interaction in uniform steady flow has directivity cos θ/2. In steady
shear flow, sound is produced at the leading edge both by the scattering of the vortical
gust (as in Tsai (1992)), and by the scattering of the the gust self-noise (similar to Ayton
& Peake (2013)). Throughout the inner region the mean shear does not appear, and the
mean flow is simply uniform with Mach number M0, and the cos θ/2 directivity must
therefore be recovered in the outer limit of the inner solution in the present problem too.
In fact, our choice of C0(α) gives

P 0 ∝ cos(θ/2)
(

1−M0/2 + (3 + cos 2θ)M2
0 /4 +O(M3

0 )
)

, (4.13)

confirming the required directivity.

4.2.2. Solution for P 1

Taking O(ǫ
√
k) terms in (2.9) and converting to inner coordinates gives an equation

for P 1;

∂2P 1

∂Ψ2
+
M2

∞
M2

0

(

1− 2M0β − β2(1−M2
0 )
)

P 1 = Σ(α,Ψ). (4.14)

Here we have used the fact that to leading order Σ(α,Ψ) ≡
√
kΣ(α, kψ), which follows

from the inverse square-root singularity of the steady flow at the leading edge.
We solve (4.14) using the Green’s function

G(Ψ,Ψ′) =
M0

2iM∞
√

1− 2M0β − β2(1−M2
0 )

ei

√
(1−M0β)2−β2M∞

M0
|Ψ−Ψ′|, (4.15)

which represents the desired outgoing wave field, to yield

P 1
out

(kβ,Ψ) =

∫ ∞

0

M0e
i

√
(1−M0β)2−β2M∞

M0
|Ψ−Ψ′|

2iM∞
√

(1−M0β)2 − β2
Σ(kβ,Ψ′)dΨ′

+ C1(β)ei

√
(1−M0β)2−β2M∞

M0
|Ψ|. (4.16)

From (2.10) we know that each term in Σ(α,Ψ) will have a phase function
√

(1−M0β)2 − β2M∞

M0
|Ψ| (since each σi is proportional to a linear combination of u0,v0,

and p0), and further, since Q is symmetric and Ω is antisymmetric with respect to ψ, we
know that Σ is symmetric with respect to ψ. Setting

Σ̂(α,Ψ) = Σ(α,Ψ)e−i

√
(1−M0β)2−β2M∞

M0
|Ψ|, (4.17)
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10 L. J. Ayton & N. Peake

so that Σ̂ is phase-less in the variable Ψ, and completing the Ψ′ integral in (4.16), we
find that the outer limit of the inner solution is

P 1
out

(kβ, kψ) ∼
(

d(kβ, kψ) + C1(kβ)
)

ei

√
(1−M0β)2−β2kM∞

M0
|ψ|, (4.18)

where d(kβ,Ψ) is given by

d(kβ, kψ) =
iΣ̂(kβ, kψ)M0

k ((1−M0β)2 − β2)M∞
. (4.19)

Following the same arguments as in the previous subsection, we choose C1(kβ) = C0(kβ),
and then repeating the method of stationary phase to invert the Fourier transform yields
an outer expansion for p1a in the form

p1a(r, θ|η) ∼−
(

i

2πkr

)1/2
sin θeikrλ0(θ)

(1−M2
0 sin2 θ)3/4

Ω̃(η)Q̃0(η)M(η)

1− β0M(η)

κ0(k/M(η))+C
0(kβ0)

κ0(kβ0)+V 0
out

(kβ0, 0)
[

Q̃1(η)

Q̃0(η)
+M ′(η)

(

P 1
out

(k/M(η), 0)

P 0
out

(k/M(η), 0)
− V 1

out
(k/M(η), 0)

V 0
out

(k/M(η), 0)

)

+
1

C0(kβ0)
(d(kβ0, kψ)− d(kβ0, 0))

]

, (4.20)

where β0 and λ0 are given in (4.12). Comparing (4.20) and (4.9), we see that p1a is
obtained by multiplying p0a by the correction factor given in square brackets in (4.20).
This correction factor has arisen from two separate effects; the first two sets of terms
inside the square brackets in (4.20) arise from the distortion of the incident gust by
the non-uniform mean flow round the aerofoil; while the third set of terms, involving the
function d(kβ, kψ), arises from the source terms in (2.9), i.e. from the interaction between
the leading-order scattered field and the non-uniform mean flow near the leading edge.
The correction term in (4.20) will have the important effect of introducing constructive
and destructive interference between the two leading-edge fields p0a and p1a, and we return
to this point in Section 8.

Note that whilst Σ, as defined in (2.10), has appeared in our solution through equation
(4.19), we only need to calculate the inner limit of Σ in order to establish (4.20). This
is in exact parallel to the work of Myers & Kerschen (1997) and Tsai (1992), who found
that in a uniform stream the leading contribution of the volume terms only appears close
to the leading edge where the mean flow gradients are large. Therefore, to calculate the
outer limit of the inner leading-edge solution we only need to find the correction terms
Ni, i = 1, .., 6 appearing in equation (2.6) close to the aerofoil. We first note that, since
U = U0(ψ) + ǫq(φ, ψ), we have

N1 = q + U0N3, (4.21)

while by using (2.3) we obtain the relation

q

U2
0

dU0

dψ
+
∂q

∂ψ

1

U0
=
∂N3

∂ψ
. (4.22)

In the leading-edge inner region, equation (4.22) can be integrated to yield

N3 =
q

U0(0)
, (4.23)

where an arbitrary function of φ has been set to zero to ensure consistency with N2 = 0.
It therefore follows that N1 = 2q. The quantities N4,5,6 can be found immediately from
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Gust-aerofoil interaction in shear flow 11

expressions we have obtained for ζ, q and Ω, with

N4 = u0
∂q

∂φ
, N5 = v0

∂q

∂φ
(1− 2U0(0)) , N6 =

∂q

∂φ

(

v0 +
u0

U0(0)

)

, (4.24)

again all evaluated in the inner region.
In summary, we have determined the first two terms in the outer limit of the inner

pressure field, given by equations (4.9) and (4.20) which are integrated in (4.4). As
mentioned previously, we assume the vorticity distribution is sharply peaked at η = 0,
allowing us to use Laplace’s method to evaluate (4.4). We will write the sum of these
two terms in the form

Pl(θ)√
kr

exp(ikrλ(β0)) , (4.25)

and we will match this expression onto the outer solution in the next section.

5. Leading-Edge Outer Solution

In this section we determine the leading-edge contribution to the acoustic pressure in
the far field. The sound generated by the gust-aerofoil interaction in the leading-edge
inner region, as determined in the previous section, propagates through the outer region,
denoted by region (ii) in Figure 1, and is distorted by the mean shear. The acoustic field
of a point source in a mean shear has been determined by Durbin (1983), and we use
those results here.

The outer solution which matches with the outer limit of the inner solution takes the
form

pl =
s(r, θ)Pl(θ)√

kr
exp(ik̺0 + ikǫ̺1) . (5.1)

Here Pl(θ) is the directivity of the inner solution as it emerges into the outer region,
as defined in (4.25). The factor s(r, θ) is the scaling factor derived by Durbin (1983) to
account for the distortion of the pressure amplitude due to variation in the ray tube area
through the shear, and is given by

s(r, θ) =

(

1−M2
0

1−M2
0 sin2 θ

)1/4




M −M ∂σ1

∂φ

M0 −M0
∂σ1

∂φ

∣

∣

∣

r→0





(

λ
√

1−M2
0 cosµ′ ∂µ

′

∂µ

)−1/2

.

(5.2)
In (5.2), µ is the local ray angle (and µ′ is its value at the leading edge) - see Durbin
(1983) equation (26b) - while λ is the local ray speed - see Durbin (1983), following
his equation (16). A factor in s(r, θ) involving the local sound speed, present in Durbin
(1983), has been set to unity for our low Mach number flow. Note that s(r, θ) → 1 as
r → 0, while in the limit r → ∞, s(r, θ) → s(θ), where the latter can easily be calculated
from (5.2).

We determine the first two terms phase terms, ̺0,1, in (5.1) by substituting the ansatz
(5.1) into an equation formed by rearranging (2.6) into a single equation for p. We then
take the real parts of the resulting equation at the first two asymptotic orders to form
two eikonal equations for ̺0,1. In what follows we will only require the acoustic pressure
in the far field (i.e. r → ∞), and we therefore write down expressions for the phase terms
which are valid there. The first eikonal equation can easily be solved to give the first
phase term in the form

̺0 = krλ(β∞,M∞) ≡ krλ∞(θ), (5.3)

Page 11 of 28



12 L. J. Ayton & N. Peake

where β∞ = βs(M∞).
The second eikonal equation is more complicated, since it includes contributions from

the terms σ1,2,3 in (2.6), which arise from the interaction between the leading-order
unsteady flow and the steady-flow non-uniformity caused by the presence of the aerofoil.
After some algebra we find that the second eikonal equation is

∂̺1

∂φ
+
∂̺1

∂ψ
=

1

2
L(φ, ψ), (5.4)

where the term L(φ, ψ) involves the terms σ1,2,3. Specifically, we introduce the quantity

M∞σ(φ, ψ) = −ikσ3 +M
∂σ3
∂φ

− ∂σ1
∂φ

− M

M∞

∂σ2
∂ψ

, (5.5)

which, in the light of (5.1), to leading-order in the outer region takes the form

σ(φ, ψ) =
k3/2L(φ, ψ)P(θ)s(θ)√

r
eik̺0(r,θ)+ikǫ̺1(r,θ), (5.6)

where

L(φ, ψ) =

(

∂̺0

∂φ

)2 [
q

U0
+

∫ ∞

ψ

2qU ′
0(ψ

′)

U0(ψ′)2
dψ′
]

+ q

(

∂̺0

∂ψ

)2

. (5.7)

The solution of (5.4) can now be determined using the method of characteristics in the
form

̺1(r, θ) =
1

2

∫ φ+ψ

0

L(χ, ψ)dχ, (5.8)

where χ = φ+ ψ is the characteristic variable.
We have therefore completed the construction of the far-field solution for the noise

emanating from the leading edge of the aerofoil, and we write finally the acoustic pressure
as r → ∞ in the form

Dl(θ)√
kr

exp

(

ikrλ∞(θ) +
1

2
ikǫ

∫ φ+ψ

0

L(χ, ψ)dχ

)

, (5.9)

where the leading-edge directivity is given by Dl(θ) = Pl(θ)s(θ). We emphasise that this
solution is not valid in the mid field, where the mean flow is sheared; it is only valid in
the far field, where M ≈M∞.

6. Leading-Edge Transition Solution

The transition solution (region (iii) in Figure 1) accounts for the curvature of the
surface of the aerofoil, in a very similar manner to the case of uniform flow considered
by Tsai (1992), and corrects for the boundary condition of zero normal velocity on the
aerofoil surface that is violated by the leading-edge outer solution. We therefore suppose
the transition solution takes the form

pltr = ǫG(φ, ξ)e
ikφ

1+M+ 1
2
ikǫ

∫ φ
0
L(φ′,0)dφ′

, (6.1)

where ξ =
√
kψ is the transition-region coordinate above the aerofoil in the direction

normal to the surface. The choice of phase in (6.1) arises from taking θ = 0 (equivalently
ψ = 0) in (5.3 and 5.8).

In the transition region the leading-order expansion of (2.6) tells us that G(φ, ξ) must
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Gust-aerofoil interaction in shear flow 13

satisfy

M2

M2
∞

∂2G

∂ξ2
+ 2i

∂G

∂φ
= 0, (6.2)

subject to boundary condition

− ǫ
√
k
∂G

∂ξ
e

ikφ
1+M+ 1

2
ikǫ

∫ φ
0
L(φ,0)dφ

∣

∣

∣

∣

ξ=0

= − ∂pl
∂ψ

∣

∣

∣

∣

ψ=0

, (6.3)

which enforces zero total normal velocity on the aerofoil surface. We now take the Laplace
transform of (6.2) with respect to φ, denoted by

G̃(S, ξ) =

∫ ∞

0

G(φ, ξ)e−Sφdφ, (6.4)

to find that

G̃(S, ξ) = B(S)e−e
−πi/4

√
2SM∞

M ξ, (6.5)

where

B(S) =
e3iπ/4

2
√
2S

∫ ∞

0

e−Sφ√
φ
s(φ, 0)P(φ, 0)

(

L(φ, 0) +

∫ φ

0

∂L(φ′ + ψ, ψ)

∂ψ

∣

∣

∣

∣

ψ=0

dφ′
)

dφ.

(6.6)

This Laplace transform can be inverted numerically to determine the transition solution.
We mention briefly here that the terms σ1,2,3 in (2.6) occur at higher order and do not

appear in this transition solution explicitly, although they do appear implicitly through
the forcing provided by the outer solution in (6.3). Physically this is because the dominant
effects of curvature arise in the leading-edge inner region, where the aerofoil is most
curved, and not along the upper and lower arcs of the aerofoil.

The total far-field acoustic pressure emanating from the leading edge is given as a sum
of the outer field determined in the previous section and the transition solution deter-
mined in this section. The transition solution does not appear directly in the acoustics
(note from (6.5) that the transition solution decays exponentially in the transverse direc-
tion away from the aerofoil surface). It does, however, introduce a pressure discontinuity
across the aerofoil, which must be corrected downstream of the trailing edge across the
wake. This is done by the introduction of trailing-edge inner and transition solutions, and
the inner solution matches onto an outgoing trailing-edge acoustic field. This is described
in the next section.

7. Trailing-Edge Inner and Outer Solutions

Here we determine the solution in the trailing-edge inner region and the trailing-edge
contribution to the outer region, denoted by (iv) and (ii) in Figure 1 respectively. The
transition solution in the wake (region (v) in Figure 1) is not required for the acoustic far
field, and is very similar to solutions found in uniform flow by Myers & Kerschen (1997)
and Tsai (1992), and will therefore not be presented here.

We shift coordinates to be aligned with the trailing edge, defining (φt, ψt) such that
(φ, ψ) = (2 + φt + ǫαt, ψt). Here αt = O(1) arises from the effect of thickness during the
mapping of coordinates from physical space to (φ, ψ)-space. By observing (2.1), αt can
be calculated in much the same way as was done by Tsai (1992) for uniform flow. The
transverse velocity of the incident gust solution at the trailing edge is still given by (A 1).
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14 L. J. Ayton & N. Peake

7.1. Trailing-Edge Inner Solution

We move to inner trailing-edge coordinates, (Φt,Ψt) = k(φt, ψt). The trailing-edge inner
acoustic solution, equivalent to (4.2), satisfies a dual integral equation equivalent to (4.3),
which is

∫ ∞

−∞
eiαΦt/kA(α)Pout(α, 0)dα = −∆p(Φt)/2 Φt > 0, (7.1a)

∫ ∞

−∞
eiαΦt/kA(α)Vout(α, 0)dα = −vg(Φt, 0) Φt < 0. (7.1b)

Here all functions are written in terms of trailing-edge coordinates, α is redefined accord-
ingly as the Fourier transform variable with respect to φt and ∆p(Φt) is the inner ap-
proximation for the pressure jump across the trailing edge generated by the leading-edge
solution. We separate the required inner solution, pa(Φt,Ψt), into a term that corrects
the pressure jump across the trailing edge, pa,p, and a term that corrects for the zero
normal velocity condition on the surface of the aerofoil, pa,H . Using the notation from
(4.2), we require

∫ ∞

−∞
eiαΦt/kAp(α)Pout(α, 0)dα = −∆p(Φt)/2 Φt > 0, (7.2a)

∫ ∞

−∞
eiαΦt/kAp(α)Vout(α, 0)dα = 0 Φt < 0, (7.2b)

and
∫ ∞

−∞
eiαΦt/kAH(α)Pout(α, 0)dα = 0 Φt > 0, (7.3a)

∫ ∞

−∞
eiαΦt/kAH(α)Vout(α, 0)dα = −vg(Φt, 0) Φt < 0. (7.3b)

The solution of (7.2) and (7.3) is obtained using identical methods to those used at the
leading edge in Section 4, and is presented in Appendix C. We use the solutions for P 0,1

out
as

previously obtained in Section 4.2, but translated to the trailing-edge inner coordinate
system. Taking the outer limit of the inner solutions, (C 1), and using the method of
steepest descents yields

pta(rt, θt|ηt) ∼
(

i

2πkrt

)1/2
κ0t (kβt0)− sin θt

(1−M2
0 sin2 θt)3/4

eikrtλt 0(θt)

1− βt0M(ηt)

C0(kβt0)Ω̃(ηt)Q̃
0(ηt)M(ηt)

κ0t (k/M(ηt))−V 0
out

(kβt0, 0)
[

1 + ǫ
√
k

{

Q̃1(ηt)

Q̃0(ηt)
+M ′(ηt)

(

P 1
out

(k/M(ηt), 0)

P 0
out

(k/M(ηt), 0)
− V 1

out
(k/M(ηt), 0)

V 0
out

(k/M(ηt), 0)

)

+
dt(kβt0,Ψt)− dt(kβt0, 0)

C0(kβt0)

}]

+

(

i

2πkrt

)1/2
κ0t (kβt0)− sin θte

ikrtλt 0(θt)

(1−M2
0 sin2 θt)3/4

Gt,p(kβt0)P
0
out

(kβt0)

V 0
out

(kβt0)
(7.4)

as krt → ∞, where λt 0 is the trailing-edge equivalent of λ0, and βt0 is the trailing-edge
equivalent of β0 as defined in (4.12). The final term in (7.4) is in fact O(k−1) due to the
scaling of the pressure jump term Gt,p. It will be shown later that the term involving
dt(kβt0,Ψt) in (7.4) is negligible to the orders retained here since in the trailing-edge
region the terms σi in (2.6) are negligible (because there is less curvature of the stream-
lines at the trailing edge than at the leading edge for the aerofoils we wish to consider,
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Gust-aerofoil interaction in shear flow 15

such as the Joukowski aerofoil or the NACA 4-digit series of aerofoils). The choice of
C0 is again given by (4.8), which now ensures that the trailing-edge inner solution has
a sin θ/2 directivity pattern. This is the same directivity pattern found for sound- and
gust-aerofoil interaction in steady uniform flow in Ayton & Peake (2013) and Myers &
Kerschen (1997) respectively. Once again we know that the shear flow directivity pattern
should match the uniform flow directivity pattern to leading order, since in the trailing-
edge inner region the aerofoil only experiences the local Mach number M0. Note that at
the trailing edge we only need a match to O(M0) = O(

√
ǫ) (as opposed to O(M2

0 ) = O(ǫ)
required for the inner leading-edge solution, (4.13)) since the trailing-edge scattered field
of gust-aerofoil interaction is O(k−1/2) smaller than the leading-edge field, and in the
uniform limit the first two terms in (7.4) tend to zero since (κ0t (k/M(ηt))−)−1 → 0 as
M(ψ) →M0.

The terms in square brackets in (7.4) represent the scattering of the pressure associated
purely with the gust in the shear flow by the aerofoil (in uniform flow a gust is pressure-
free, and these terms vanish). Whilst the contribution of these terms appears to be the
same order as the contribution of the leading-edge solution, (4.9), we in fact find that it is
at least O(M) smaller due to κ0t (k/M(ηt))− having a singularity at ηt = 0. We mentioned
at the end of Section 4.1 that to evaluate the pressure pa(r, θ) given as an integral over
η of pa(r, θ|η) in (4.4), we consider only sharply-peaked vorticity distributions where
contributions from η = 0 dominate. At η = 0, κ0t (k/M(η))− = 0, therefore before
applying Laplace’s method we must take an expansion of κ0t (k/M(ηt))− as η → 0. This
expansion reduces the apparent order of the first term in (7.4) by at least O(M) (the
true scaling will depend on how the vorticity distribution depends on k and η), thus the
contribution from the scattering of the gust pressure by the trailing edge is at least O(M)
smaller than the leading-edge contribution to the far-field acoustics. The final term in
(7.4) accounts for the rescattering of the leading-edge acoustic field by the trailing edge,
and, as expected by comparison with the uniform flow case, is O(k−1/2) smaller than the
leading-edge solution.

We write the outer limit of the trailing-edge inner solution (once integrated by ηt as
required in (4.4)) as

1√
krt

(

MPt1(θt) +
1√
k
Pt2(θt)

)

exp(ikrtλt 0(θt)), (7.5)

where Pt2 is formally the same order as Pl, but Pt1 could be smaller than Pl (depending
on the choice of vorticity distribution). We set Pt =MPt1 + k−1/2Pt2 .

7.2. Trailing-Edge Outer Solution

The trailing-edge outer solution is found in an identical way to the leading-edge outer
solution, assuming a form

pt = At(rt, θt)e
ik̺0t (rt,θt)+ikǫ̺t1(rt,θt)+O(ǫ). (7.6)

We find that

At(rt, θt) = Dt(θ)(krt)
−1/2, ̺0t (rt, θt) = rλt∞(θt), (7.7)

where λt∞(θt) is the corresponding trailing-edge function to λ∞(θ), and ̺1t is given by
the corresponding trailing-edge formulation of (5.8). We match this to the trailing-edge
inner solution by setting Dt(θt) equal to Pt(θt)st(rt, θt), where the first factor arises from
the directivity emerging from the inner region in (7.4) and the second factor accounts for
the variation in ray tube area as the sound propagates though the shear - see equation
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16 L. J. Ayton & N. Peake

(5.2). The total far-field acoustic pressure emanating from the trailing edge then takes
the form

Dt(θt)√
krt

exp

(

ikrtλt∞(θt) +
1

2
ikǫ

∫ φt+ψt

0

Lt(χ, ψt)dχ

)

. (7.8)

Again, this is only valid in the far field, where the Mach number approaches M∞.

7.3. Total far-field solution

The total far-field solution is obtained by summing the outer leading-edge solution, from
(4.9) and (4.20) substituted into (4.4), and the outer trailing-edge solution, from (7.4)
substituted into (4.4). In the far field, the coordinate transformation between leading-
edge and trailing-edge polar coordinates is given by

rt ≈ r − (2 + αtǫ) cos θ, θt ≈ θ − π + π sgn(ψ), (7.9)

which allows the final solution to be expressed in terms of leading-edge variables (r, θ).
The far-field acoustic pressure can then be written as

1√
kr

(

Dl(θ) +Dt(θ)e
ik̺s(r,θ)

)

eikrλ∞(θ)+ 1
2
ikǫ

∫ φ+ψ
0

L(χ,ψ)dχ, (7.10)

where Dl,t are defined in (5.9) and (7.8). In the far field, the leading- and trailing-edge
ray fields interact with a phase shift

k̺s(r, θ) = k(̺0t (rt, θt) + ǫ̺1t (rt, θt)− ̺0(r, θ)− ǫ̺1(r, θ)). (7.11)

The contribution to the phase shift given by the difference between the leading-order
leading- and trailing-edge far-field phase terms is

k(̺0t (rt, θt)− ̺0(r, θ)) = −(2 + αt)kλ∞(θ) cos θ (7.12)

in the far field. The O(ǫk) phase shift term, given by ǫk(̺1t − ̺1), is approximated by

ǫk

2

∫ 2

0

L(χ, ψ)dχ (7.13)

in the far field. Numerically integrating (7.13) for the cases we choose in the following
section, we find that this contribution is only non-negligible close to θ = 0 or π. Since
the directivity function close to θ = 0, π is small we shall not include (7.13) in our final
computed results.

8. Results

In this section we present results for the far-field pressure generated by gust-aerofoil
interaction in steady shear flow. We define the far field as being a distance, r, far enough
away from the aerofoil so that the mean flow is approximately uniform, and amplitude
terms of O(1/r) are negligible compared to the O(1/

√
r) terms retained in the asymptotic

solution. Since there is no Rayleigh distance for this gust-aerofoil problem (because no
Fresnel regions are present), we choose r = 25 in all of the following results to illustrate
the far-field behaviour. We choose non-dimensional frequency k = 10 throughout, which
is close to the peak frequency in the turbulent jet-plate interaction experiment of Davis
& Pan (1993, Fig. 3). Dimensionally, k = 10 corresponds in air to a frequency of about
2.2kHz for a chord of 0.5m, which is in the range of practical interest. The analysis
presented so far is applicable to a general thin uncambered aerofoil, and, subject to the
restrictions described in Section 3, to a general mean shear distribution. For definiteness,
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we now consider a gust interacting with a symmetric Joukowski aerofoil of thickness
ǫ≪ 1 and chord length 2 in a steady Gaussian shear flow defined by

U0(y) = (U0 − 1)e−y
2

+ 1. (8.1)

The streamfunction for this parallel shear flow, ψ0(y) say, is simply

ψ0(y) = (U0 − 1)

√
π

2
erf(y) + y, (8.2)

and let ǫψ1(x, y) be the perturbation to the streamfunction caused by the presence of
the thin Joukowski aerofoil. We first note that in our limit of low Mach number flow
the effects of compressibility on ǫψ1(x, y) do not arise to the order considered, and we
can therefore use the work of Sowyrda (1958), who considered the steady flow round an
aerofoil in incompressible shear flow. It is then straightforward to show that, close to the
leading edge of the Joukowski aerofoil,

ǫψ1(y) ∼ ǫU0

(

1

2r2
sin 2θ − 1

r
sin θ

)

+O(ǫ3, ǫM0), (8.3)

while in the far field ǫψ1(y) → 0. An integral expression for ǫψ1(y) at arbitrary positions
can also be found from Sowyrda (1958), but is not required here.

In Figure 2 we consider the effect of altering the strength of the mean shear, charac-
terised via the parameter S = (M∞ −M0)/M∞, on the leading-edge directivity. Here
we set ǫ = 0, so that the aerofoil reduces to a flat plate, and plot the quantity |Dl(θ)|
as defined in equation (5.9). When S = 0 the directivity pattern takes the familiar form
cos θ/2, which is characteristic of low Mach number uniform flow. Varying S away from
zero has a significant effect; when the shear is jet-like (S < 0) the directivity is par-
ticularly reduced in the downstream direction, with little effect upstream, whereas for
wake-like shear (S > 0) the directivity is reduced predominantly upstream. Mathemati-
cally, these directivity effects may be coming from two places; first, in (4.9) through the
terms dependent on β0; and second, from the ray-tube area scaling factor s(r, θ) in (5.1).
We have investigated the relative effects of both sets of terms, and have found that the
directivity variations seen in Figure 2 are arising primarily from the second effect of the
shear increasing the ray tube area (and therefore decreasing the pressure amplitude along
the ray) in the downstream/upstream directions for S positive and negative respectively.
In this case, the effect of varying S on the form of the incident gust being scattered, as
contained within the terms in (4.9), has less impact on the leading-edge directivity.

In Figure 3 the effects of aerofoil thickness on the leading-edge directivity are con-
sidered. For the case of very low mean shear, S = 0.033, the cos θ/2 directivity seen in
Figure 2 is regained in each case. The pressure amplitude increases as thickness increases,
which not surprisingly is consistent with the results of Tsai (1992), who considered uni-
form mean flow. In contrast, for the case of more significant shear, S = 0.333, increasing
the thickness from zero actually changes the shape of the directivity. The leading-edge
sound is made up of two contributions; the leading-order term corresponding to flat-plate
scattering, see (4.9), and an additive correction term of relative size O(ǫ

√
k) to account

for the effects of thickness in the leading-edge region, see (4.20). The interference between
these two sources in shear gives rise to the lobular directivity pattern seen in Figure 3b.
Note that the contribution from (4.20) takes the same form as the contribution from
(4.9), but with a multiplicative correction factor which involves several effects (see the
brief discussion following (4.20)). However, the variation with observer angle θ seen in
Figure 3b can only arise from the term in this correction factor involving d(kβ0, kψ),
which in turn arises from the term on the right hand side of equation (2.9), i.e. from the
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(a) Positive S, with M∞ = 0.3.

-0.001 0.001 0.002 0.003 0.004 0.005

0.001

0.002

0.003

0.004
S=-0.333

S=-0.167

S=-0.033

(b) Negative S, with M0 = 0.3.

Figure 2: Leading-edge far-field acoustic pressure generated by gust-aerofoil interaction
in a background steady parallel flow around a flat plate, ǫ = 0, with k = 10 and varying
strengths of shear, S.
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(a) M0 = 0.29, M∞ = 0.3, S = 0.033.
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(b) M0 = 0.2, M∞ = 0.3, S = 0.333.

Figure 3: Leading-edge far-field acoustic pressure generated by gust-aerofoil interaction
in background shear flows with k = 10, around Joukowski aerofoils of varying thickness,
denoted by ǫ.

interaction between the leading-order scattered field and the non-uniformity of the mean
shear flow near the leading edge. We stress that this interference within the leading-edge
field is only present in shear flow.

We must choose an upstream vorticity distribution in order to obtain quantitative
results for the trailing-edge term, Pt1 , in (7.5). We therefore choose the vorticity to be

Ω̃ ∼ e−kη
2

. In Figure 4 we see the relative effects of the two interactions which make up
the sound emanating from the trailing edge of the aerofoil. These two terms are given by
MPt1 and k−1/2Pt2 in (7.5). The latter term describes the sound reaching the observer
via the rescattering of the leading-edge field by the trailing edge and is familiar, as it is
the primary component of trailing-edge noise in uniform flow gust-aerofoil interaction.
However, the scattering of the pressure associated with the gust by the trailing edge (the
first term) is peculiar to shear flow interactions (since in zero mean shear the gust is
pressure-free), and as we see in Figure 4 has a non-negligible effect on the total trailing-
edge contribution upstream of the aerofoil. For our chosen vorticity distribution, MPt1 is
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Figure 4: Trailing-edge far-field pressure generated by gust-aerofoil interaction in back-
ground shear flow around a Joukowski aerofoil with S = 0.333, k = 10, ǫ = 0.1. The solid
line denotes the total trailing-edge directivity. The dashed line denotes the contribution
from the rescattering of the leading-edge field by the trailing edge, and the dotted line
denotes scattering by the trailing-edge of pressure associated with the gust.

O(k−1/4) smaller than k−1/2Pt2 in the upstream region. Downstream of the aerofoil the
effect is diminished, since the acoustic field from the scattering of the gust pressure by the
trailing edge has the characteristic sin θ/2 type directivity pattern. The two components
of trailing-edge sound could in principle interfere, as was seen at the leading edge in
Figure 3b. However, modulation of the trailing-edge directivity is not observed in Figure
4 due to the disparity between the relative magnitudes of the two components.

We now consider the total scattered acoustic pressure as the sum of leading- and
trailing-edge fields. In Figure 5 we consider the far-field pressure in the two very low shear
cases S = ±0.033 for the flat plate, ǫ = 0. The significant modulation of the directivity
is now caused by the interference between the leading- and trailing-edge fields, and is of
course absent in the comparable plots of just the leading-edge flat-plate field (see Figure
2). We repeat these flat-plate calculations in Figure 6, but now with significant shear,
and similar directivity patterns are again observed. Note that positive shear significantly
increases/decreases the sound level in the upstream/downstream directions respectively,
and vice versa for negative shear. This effect cannot be explained by simple ray tracing
arguments, which would suggest that rays in positive/negative shear flow would tend
to bend in the direction of decreasing/increasing θ, see Amiet (1978). Rather, changing
the shear flow is changing the phase shift, (7.12), between the leading- and trailing-edge
fields, which in turns changes the interference pattern observed in the far field.

In Figure 7 we again consider the total far-field scattered pressure but now introduce
non-zero thickness in the case of significant shear, S = 0.333. We see that the aerofoil
thickness has a strong effect on the directivity shape in the forward arc. In particular,
for ǫ = 0.2 note how the lobes labelled A,B,C,D have markedly differing amplitudes
(for instance, the relatively strong lobes A and C are separated by less pronounced
lobes B and D). This is in contrast to the case of zero thickness, where it can be seen
that the amplitude of the lobes in the forward arc are quite similar to each other. This
change in behaviour has arisen from the interference between the components of the
leading-edge source, as identified in Figure 3b: for zero thickness the far-field directivity
is determined by the interference between two sources, one at the leading edge and one
at the trailing edge, which leads to interference fringes of comparable size. In contrast,
inclusion of the third source (the thickness-related source at the leading edge) modulates
these interference fringes, leading to the modulated pattern of lobes observed in Figure
7.

In Figure 8 we vary the strength of the mean shear S by varying M∞ while fixing
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Figure 5: Far-field pressure at r = 25 gen-
erated by gust-aerofoil interaction in al-
most uniform Gaussian shear flow, M ≈
0.3, k = 10, and ǫ = 0.
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Figure 6: Far-field pressure at r = 25 gen-
erated by gust-aerofoil interaction in jet-
like and wake-like shear flows, at k = 10,
and ǫ = 0.
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Figure 7: Far-field pressure at r = 25 generated by gust-aerofoil interaction in Gaussian
shear flows with M0 = 0.2, M∞ = 0.3 (S = 0.333), and k = 10. Thickness is varied.

M0, and see that the directivity is again significantly affected. One key effect here is the
variation of the ray-tube area, as in Figure 2, but a second effect arises, just as in Figure
7, from the additional interference effect between the leading-edge sources (recall from
the discussion of Figure 3 that there is no mutual interference between the leading-edge
sources in the absence of mean shear). The angular position of the lobes changes as we
vary S, due to the variation of M∞; the location of the lobes is determined mainly by
the phase differences between waves travelling from the leading and trailing edges, which
is strongly dependent on the Mach number at infinity.

Finally, Figure 9 illustrates the effect of shear strength on the total sound power in the
far field (i.e. the sound power integrated over all observer angles). For each thickness, the
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Figure 8: Far-field pressure at r = 25 generated by gust-aerofoil interaction in Gaussian
shear flow with M0 = 0.2, k = 10, ǫ = 0.1 and varying S.
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Figure 9: Normalised total sound power, 10 log(P ), versus shear strength, S, for varying
aerofoil thickness, with k = 10 and M0 = 0.2. Each result is normalised by the power
produced in uniform flow (i.e. S = 0) for the given aerofoil thickness.

sound power increases with shear strength, since an increase in shear strength increases
the self-noise component of the unsteady flow. Once in moderate shear flow, the increase
in power for thicker aerofoils is lower than the increase in power for thinner aerofoils,
illustrating that the consequence of a strong non-uniform steady flow around the nose
of an aerofoil is to reduce the effectiveness of the self-noise component of the scattered
acoustics (recall, Figure 3b has also shown that the non-uniform flow around the nose
has a significant effect on the self-noise component). At low shear strength, however,
we see a different dependence of power level on thickness. This is due to the additional
competing effect of stronger gust mean-flow interaction near the nose for thicker aerofoils.
We believe that the key point to be taken away from Figure 9 is that significant mean
shear can increase the power level by up to 5 decibels, confirming the need for inclusion
of shear in our analysis.
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9. Conclusions

We have constructed a model for the sound generated by gust-aerofoil interaction
in background parallel shear flow, using asymptotic analysis in the limits of large gust
frequency, k, and small but non-zero aerofoil thickness and Mach number. We have deter-
mined the first two terms in both the amplitude and the phase of the scattered pressure
in the far field. Our key finding is that including mean shear has a significant effect, of
up to 5 decibels, on the power level, compared to the uniform flow case (Figure 9).

In uniform mean flow, as studied by Myers & Kerschen (1997) and Tsai (1992), the
sound is dominated by the interaction of the gust with the leading edge of the aerofoil
and the scattering of the leading-edge acoustic field by the trailing edge, with the latter
being formally O(k−1/2) smaller than the former. We have shown that this feature is also
present in shear flow, but that in addition the trailing edge itself acts as a noise source,
as it scatters the hydrodynamic pressure associated with the gust into out-going acoustic
waves propagating to infinity. This trailing-edge noise is formally the same order in k as
the leading-edge noise, but in practice we found it to be significantly smaller, although
it is certainly non-negligible.

We have not presented results for varying k, since this does not seem to introduce new
features; as in the case of uniform flow, increasing k within our high-frequency regime
reduces the acoustic amplitude and increases the number of lobes in the directivity. We
use the preferred limit ǫk = O(1); the very high frequency limit in therefore included
within this, provided we send the thickness to zero. The low frequency regime is not
covered at all, however in that case the aerofoil would become compact and one would
expect the shear effects to be much reduced.

We have seen that changing the shear flow can have a strong effect on the directivity.
This is evident in Figure 6, where we plot the far-field pressure for a zero-thickness aero-
foil for jet-like and wake-like shear. The lobed directivity pattern arises from the phase
shift associated with the differing paths from the leading and trailing edges to the ob-
server, and by changing the shear one can make significant changes to this phase shift and
hence to the interference pattern in the far field. We have calculated the first two terms
(specifically O(k) and O(1)) in the phase of the leading- and trailing-edge components,
and therefore effectively the first two terms in the phase shift between them. Changing
the shear base flow in fact changes the leading-order phase term, and therefore has a
more significant effect, as witnessed in Figure 6, than for instance changing the aerofoil
geometry, which will only affect the second-order phase term. The shear width has not
been varied in the presented results; the key parameter is really the shear amplitude, S,
measuring the relative shear between the aerofoil surface and the mean flow at infinity,
and we have seen that changing S does have a significant effect.

In addition, we have identified another mechanism by which the shear modifies the di-
rectivity, this time associated with the aerofoil thickness. This involves two stages. First,
the leading-order field from the leading edge (which is caused by the momentum-blocking
of the incident gust by the aerofoil surface) and the second-order field from the leading
edge (which is O(ǫ

√
k) smaller than the leading-order term and is caused by the interac-

tion between the unsteady flow and the non-uniform mean flow close to the thick leading
edge) interfere with each other (see Figure 3b). Second, this total leading-edge field inter-
feres with the trailing-edge field to produce a modulated far-field directivity, see Figure
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7. This effect is not present in zero shear, because in that case the two components of
the leading-edge field are in phase with each other, and the first stage of the interference
does not occur.

Our theory holds for more complicated parallel shear flows than the symmetric, single
maximum/minimum case presented here, but in that case more extensive analytical and
numerical calculations would have to be included in order to produce the far-field scat-
tered sound pressure. Similarly, it would also be possibly to consider asymmetric aerofoils
by including the effects of angle of attack and camber on the mean flow, the gust evo-
lution and the sound generation, but again significant additional complexity would be
introduced. The issue of extending our work to O(1) subsonic Mach numbers, however,
seems much more difficult, not least because the small Mach number limit has allowed
us to complete asymptotic calculations which otherwise appeared intractable at various
points. Even so, we believe that the physical insights we have derived have broad applica-
tion in a range of areas. We are not aware of any fully-computational approaches to this
problem, but given the experience of gust-aerofoil interaction in uniform flow we believe
that our approach would provide a useful complement to fully numerical computations
in the high-frequency regime.

The work in this paper was funded by EPSRC under grant EP/I010440/1. We are very
grateful for this support.

Appendix A

The first two terms in the transverse component of the gust velocity, vg(φ, ψ) =

v0g(φ, ψ) + ǫ
√
kv1g(φ, ψ) +O(ǫ), are given by

v0g(φ, ψ) =

∫ ∞

ψ

eikφ/M(η)Ω̃(η)

[

V 0
1 (k/M(η), ψ)

U0
1 (k/M(η), η)

− γ0(η)V 0
out

(k/M(η), ψ)

U0
1 (k/M(η), η)

]

dη

−
∫ ψ

−∞
eikφ/M(η)Ω̃(η)

γ0(η)V 0
out

(k/M(η), ψ)

U0
1 (k/M(η), η)

dη, (A 1a)

v1g(φ, ψ) =

∫ ∞

ψ

eikφ/M(η)Ω̃(η)

U0
1 (k/M(η), η)

[

V 1
1 (k/M(η), ψ)− γ1(η)V 0

out
(k/M(η), ψ)− γ0(η)V 1

out
(k/M(η), ψ)

− U1
1 (k/M(η), η)

(

V 0
1 (k/M(η), ψ)−γ0(η)V 0

out
(k/M(η), ψ)

)

]

dη

−
∫ ψ

−∞

eikφ/M(η)Ω̃(η)

U0
1 (k/M(η), η)

[

γ1(η)V 0
out

(k/M(η), ψ) + γ0(η)V 1
out

(k/M(η), ψ)

−γ0(η)V 0
out

(k/M(η), ψ)
U1
1 (k/M(η), η)

U0
1 (k/M(η), η)

]

dη, (A 1b)

for ψ > 0.
The acoustic pressure generated at the leading edge is found from (4.4), using

p0a(Φ,Ψ|η) = sgn(Ψ)
Ω̃(η)Q̃0(η)M(η)

2πi

∫ ∞

−∞

eiαΦ/kκ0(k/M(η))+P
0
out

(α, |Ψ|/k)
(k − αM(η))κ0(α)+V 0

out
(α, 0+)

dα,

(A 2a)
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p1a(Φ,Ψ|η) = sgn(Ψ)
Ω̃(η)Q̃0(η)M(η)

2πi

∫ ∞

−∞

eiαΦ/kκ0(k/M(η))+P
1
out

(α, |Ψ|/k)
(k − αM(η))κ0(α)+V 0

out
(α, 0+)

dα

+ sgn(Ψ)
Ω̃(η)Q̃1(η)M(η)

2πi

∫ ∞

−∞

eiαΦ/kP 0
out

(α, |Ψ|/k)κ0(k/M(η))+
(k − αM(η))κ0(α)+V 0

out
(α, 0+)

dα

− sgn(Ψ)
Ω̃(η)Q̃0(η)M(η)

2πi

∫ ∞

−∞

eiαΦ/kP 0
out

(α, |Ψ|/k)κ0(k/M(η))+
(k − αM(η))κ0(α)+V 0

out
(α, 0+)

P 1
out

(α, 0)

P 0
out

(α, 0)
dα

+ sgn(Ψ)
kM ′(η)G0(k/M(η))−

2πiM(η)

(

P 1
out

(k/M(η), 0)

P 0
out

(k/M(η), 0)
− V 1

out
(k/M(η), 0)

V 0
out

(k/M(η), 0)

)

∫ ∞

−∞

eiαΦ/kP 0
out

(α, |Ψ|/k)
(k − αM(η))κ0(α)+V 0

out
(α, 0+)

dα.

(A 2b)

The term p0a(Φ,Ψ|η) arises from the blocking of the incident transverse gust velocity
by the solid body, whilst the terms in p1a(Φ,Ψ|η) are effects of thickness; the first term
in (A 2b) occurs due to the gust interacting with the steady perturbation flow around
the nose of the aerofoil, the second term arises from the blocking of the chord-wise gust
velocity, and the third and final terms arise from the distortion of the sound generated
at the leading edge, p0a(Φ,Ψ|η), by the non-uniform flow around the nose of the aerofoil.
The Q̃0,1 are defined in (B 14) below.

Appendix B

From (4.3) we know that A(α)Pout(α, 0) is analytic in the lower half α plane. Denote
such a function by a − suffix, i.e. A(α)Pout(α, 0) = [A(α)Pout(α, 0)]−. If we take an
arbitrary minus function, κ(α)−, then

A(α)Pout(α, 0)κ(α)− = [A(α)Pout(α, 0)κ(α)−]− = G(α)−. (B 1)

We demand that κ(α)− has algebraic behaviour at infinity, and that G(α)± vanishes
at infinity. As before denote the O(1) term of any function by a superscript 0 and the
O(ǫ

√
k) term by a superscript 1.

Define

F (α)− = − 1

2πk

∫ ∞

0

e−iαΦ/kvg(Φ/k, 0)dΦ = F 0(α)− + ǫ
√
kF 1(α)−, (B 2)

so

A(α)Vout(α, 0) = F (α)− + F (α)+, (B 3)

where F (α)+ is analytic in the upper half α plane, and is unknown. Expanding (B 1) and
(B 3) to O(ǫ

√
k) and equating at each power yields

P 0
out

(α, 0)κ0(α)−A
0(α) = G0(α)−, (B 4a)

A0(α)V 0
out

(α, 0) = F 0(α)− + F 0(α)+, (B 4b)

to leading order, and

P 0
out

(α, 0)
[

κ1(α)−A
0(α) + κ0(α)−A

1(α)
]

+ P 1
out

(α, 0)κ0(α)−A
0(α) = G1(α)−, (B 4c)

A1(α)Vout(α, 0) +A0(α)V 1
out

(α, 0) = F 1(α)− + F 1(α)+, (B 4d)
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to O(ǫ
√
k). By demanding that κ0(α)− satisfies

P 0
out

(α, 0)

V 0
out

(α, 0)
=
κ0(α)+
κ0(α)−

, (B 5)

we find that

G0(α)− =
[

F 0(α)−κ
0(α)+

]

− . (B 6)

This determines G0(α)− and also κ0(α)− from known quantities, P and V . Hence

A0(α) =
G0(α)−

κ0(α)−Pout(α, 0)
(B 7)

is determined.
To next order

G0(α)−

[

P 1
out

(α, 0)

P 0
out

(α, 0)
− V 1

out
(α, 0)

V 0
out

(α, 0)
+
κ1(α)−
κ0(α)−

]

+ κ0(α)+F
1(α)+ + κ0(α)+F

1(α)− = G1(α)−.

(B 8)

We are free to choose κ1(α)− provided we have algebraic decay at infinity. Taking the
simplest case of κ1(α)− = 0 gives

G1(α)− =
[

κ0(α)+F
1(α)−

]

− +

[

G0(α)−

(

P 1
out

(α, 0)

P 0
out

(α, 0)
− V 1

out
(α, 0)

V 0
out

(α, 0)

)]

−
, (B 9)

so

A1(α) =
G1(α)− − P 1

out
(α, 0)κ0(α)−A0(α)

P 0
out

(α, 0)κ0(α)−
. (B 10)

We see a priori that our condition of G vanishing at infinity is satisfied. Goldstein(ref)
proves that G0 vanishes at infinity, and hence we only require that [κ0(α)+F

1(α)−]−
tends to zero as α → ∞. This is immediate if G0(α) → 0 as α → ∞, since F 1 will
behave asymptotically in a similar way to F 0 given the form of the velocity terms v0,1g .

We proceed using the same method as Goldstein (1978); define Ri(α) for i = 0, 1 by

vig(Φ/k, 0) =

∫ k/M∞

k/M0

eiαΦ/kΩ̃(η(α))Ri(α)
dη(α)

dα
dα, (B 11)

and from (B2) we see

F i(α)− = lim
δ→0+

1

2πi

∫ k/M∞

k/M0

Ω̃(η(α′))

α′ − α+ iδ
Ri(α′)

dη(α′)

dα′ dα′. (B 12)

Using the Plemelj formula (Ablowitz & Fokas 2003) we find

F i(α)− = F i(α)+ − (H(α− k/M0)−H(α− k/M∞))Ω̃(η(α))Ri(α)
dη(α)

dα
, (B 13)

where H is the Heaviside function and the F i(α)+ for i = 0, 1 are bounded at infinity in
the upper half plane. Using (B 6) we find

G0(α)− =
1

2πi

∫ ∞

0

M(η)
κ0(k/M(η))+
k − αM(η)

Ω̃(η)Q̃0(η)dη, (B 14)

where Q̃i(η) = Ri(k/M(η)). This is the solution presented in Goldstein (1978), in which k
is taken to have a small positive imaginary part to ensure convergence of all the integrals
(this imaginary part is set to zero at the end of the analysis).
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The solution for G1(α)− is more complicated, but is found using the same method; we
have

G1(α)− −G1(α)+ = G0(α)−

(

P 1(α, 0)

P 0(α, 0)
− V 1(α, 0)

V 0(α, 0)

)

− (H(α− k/M0)−H(α− k/M∞)) Ω̃(η(α))R1(α)
dη(α)

dα
, (B 15)

so

G1(α)− =
1

2πi

∫ ∞

0

M(η)
κ0(k/M(η))+
k − αM(η)

Ω̃(η)Q̃1(η)dη

+
1

2πi

∫ ∞

0

kM ′(η)G0(k/M(η))−
M(η)(k − αM(η))

(

P 1(k/M(η), 0)

P 0(k/M(η), 0)
− V 1(k/M(η), 0)

V 0(k/M(η), 0)

)

dη.

(B 16)

Appendix C

Here we present the Wiener-Hopf solutions to (7.2) and (7.3). Note that we need only
find Ap(α) correct to leading order, since the pressure jump of the leading-edge field

across the aerofoil, ∆p, is an order of
√
k smaller than the gust velocity vg. We have

p0a,H(Φt,Ψt) = −sgn(Ψt)

∫ ∞

0

Ω̃(ηt)Q̃
0(ηt)M(ηt)

2πi
∫ ∞

−∞

eiαΦt/kκ0t (α)−P
0
out

(α, |Ψt|/k)
(k − αM(ηt))κ0t (k/M(ηt))−V 0

out
(α, 0)

dαdηt, (C 1a)

p1a,H(Φt,Ψt) =− sgn(Ψt)

∫ ∞

0

Ω̃(ηt)Q̃
0(ηt)M(ηt)

2πi

{

∫ ∞

−∞

eiαΦt/kκ0t (α)−P
1
out

(α, |Ψt|/k)
(k − αM(ηt))κ0t (k/M(ηt))−V 0

out
(α, 0)

dαdηt

−
∫ ∞

−∞

eiαΦt/kP 0
out

(α, |Ψt|/k)κ0t (α)−
(k − αM(ηt))κ0t (k/M(ηt))−V 0

out
(α, 0)

P 1
out

(α, 0)

P 0
out

(α, 0)
dαdηt

}

− sgn(Ψt)

∫ ∞

0

Ω̃(ηt)Q̃
1(ηt)M(ηt)

2πi

∫ ∞

−∞

eiαΦt/kP 0
out

(α, |Ψt|/K)κ0t (α)−
(k − αM(ηt))κ0t (k/M(ηt))−V 0

out
(α, 0)

dαdηt

− sgn(Ψt)

∫ ∞

0

kM ′(ηt)G0
t (k/M(ηt))+

2πiM(ηt)

(

P 1
out

(k/M(ηt), 0)

P 0
out

(k/M(ηt), 0)
− V 1

out
(k/M(ηt), 0)

V 0
out

(k/M(ηt), 0)

)

∫ ∞

−∞

eiαΦt/kP 0
out

(α, |Ψt|/k)κ0t (α)−
(k − αM(ηt))κ0t (k/M(ηt))−V 0

out
(α, 0)

dαdηt,

(C 1b)

p0a,p(Φt,Ψt) =

∫ ∞

−∞
eiαΦt/k

κ0t (α)−Gt,p(α)−
V 0

out
(α, 0)

P 0
out

(α, |Ψt|/k)dα, (C 1c)
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where

κ0t (α)+κ
0
t (α)− =

V 0
out

(α, 0)

P 0
out

(α, 0)
, (C 2a)

G0(α)+ = − 1

2πi

∫ ∞

0

M(ηt)Ω̃(ηt)Q̃(ηt)

(k − αM(ηt))κ0t (k/M(ηt))−
dηt, (C 2b)

Gt,p(α)− =
[

κ0t (α)+Ft(α)−
]

− , (C 2c)

Ft(α)− = − 1

2πk

∫ ∞

0

∆p(Φt/k)e
−iαΦt/kdΦt. (C 2d)

Here ηt is the trailing-edge version of the variable η given in (3.5).
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