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Abstract

The aim of this paper is to test the performance of the standard version of CAPM
in an evolutionary framework. We imagine a heterogeneous population of long-lived
agents who invest their wealth according to different portfolio rules and we ask what is
the fate of those who happen to behave as prescribed by CAPM. In a complete secu-
rities’ market with aggregate uncertainty, we prove that traders who either “believe”
in CAPM and use it as a rule of thumb, or are endowed with genuine mean-variance
preferences, under some very weak conditions, vanish in the long run. We show that
a sufficient condition to drive CAPM or mean variance traders’ wealth shares to zero
is that an investor endowed with a logarithmic utility function enters the market. We
finally check the robustness of our results allowing for different kinds of heterogeneity
among traders.
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1 Introduction

1.1 Motivation

A major part of the research in financial economics is directed towards improving our un-
derstanding of how investors make their portfolio decisions and hence of how asset prices are
determined. Many capital asset-pricing models have been put forth in the literature. In par-
ticular, mean-variance analysis and the Sharpe-Lintner-Mossin CAPM! are widely viewed
as one of the “major contributions of academic research in the postwar era” [Jagannathan

and Wang (1996), p.4].

* T am deeply indebted to Luca Anderlini for his helpful guidance. I also benefited from discussion
with Robert Evans and Peter Sorensen. Useful comments came from participants to the St.John’s Theory
Workshops, University of Cambridge, to the Third International Conference on “Computation in Economics
and Finance”, Stanford University and to the Royal Economic Society 1999 Conference in Nottingham, UK.
All remaining errors are mine.

LSee Sharpe (1964), Lintner (1965) and Mossin (1996).



Over the past two decades a number of studies have examined the empirical performance
of CAPM, invariably providing strong evidence of its inability to explain (and therefore
to predict) the behaviour of financial markets®. Nevertheless, “[ijn spite of the lack of
empirical support, the CAPM is still the preferred model for classroom use in MBA and
other managerial finance courses. In a way it reminds us of cartoon characters like Wile E.
Coyote who have the ability to come back to original shape after being blown to pieces or
hammered out of shape”[Jagannathan and Wang (1996), p.4].

In this paper we are after Wile E. Coyote once again, but with a new device. In fact,
econometricians have empirically rejected its predictions and financial theorists have crit-
icised its restrictive assumptions, but no one to our knowledge has studied CAPM in an
evolutionary framework. The focus of our paper is to fill this gap in the literature and,
in particular, to test the performance of the standard version of CAPM in an evolutionary
setting.

Conventional financial theory shows that, under well-known assumptions, CAPM stems
from rational behaviour. However, a recent strand of literature on evolution and market
behaviour stresses that rationality is neither sufficient nor a necessary condition for survival.
Therefore an interesting question to ask is whether CAPM prescribes a behaviour which can
be considered “fit” in an evolutionary sense.

We imagine a heterogeneous population of long-lived agents who invest according to
different portfolio rules and we ask what is the asymptotic market share of those who happen
to behave as prescribed by CAPM. Namely we aim at detecting the asymptotic properties of
the wealth shares of traders that either “believe” in CAPM and use it as a rule of thumb for
their portfolio decisions, or display genuine mean-variance behaviour. Our results suggest
that there are several circumstances of economic interest in which their wealth share will
converge almost surely to zero. A sufficient condition to drive CAPM traders to extinction
is that an investor endowed with a logarithmic utility function enters the market.

We believe that this is an interesting result not only because it proves that CAPM is
not robust in an evolutionary sense, but also because it triggers once again the debate on
the normative appeal and descriptive appeal of logarithmic utility approach as opposed to
mean-variance approach in {inance. Since a seminal article by Kelly (1956), several {inancial
economists and applied probabilists have been debating whether maximising a logarithmic
utility function is “more rational” for a rational trader. The debate originates from the
dissatisfaction with the mean-variance approach which fails to single out a unique optimal
portfolio. In fact, the chosen mix between the risk free asset and the market portfolio depends
on each investor’s degree of risk aversion. Several authors® have argued that a rational long
run investor should maximise the expected growth rate of his wealth share and, therefore,
should behave as if he were endowed with a logarithmic utility function* (the so called Kelly
criterion). This yields a unique solution to the optimal portfolio problem. This claim has

2The empirical literature on CAPM is so vast that we will not attempt a review here. For a recent
account, see, for istance, Jagannathan and Wang (1996) and Fama and French (1996a, 1996b).

3See, for example, Latane (1959), Breiman (1961), Mossin (1968), Hakansson (1971), Finkelstein and
Whitley (1981) and Algoet and Cover (1988).

“Theoretical biologists [see Cooper and Kaplan (1982)] envisage an adaptive process which is similar to
the Kelly criterion as the fittest reaction of animals to a changing (and therefore risky) environment.



been opposed by Merton and Samuelson (1974) and Goldman (1974).

In particular, Merton and Samuelson’s critique stressed the obvious contradiction which
lies in arguing that rational traders should maximise a utility function which is different from
their own®. The evolutionary framework adopted in this paper suggests that maximising a
logarithmic utility function might not make you happy, but will definitely keep you alive!

1.2 Related Literature

The literature on evolution and market behaviour is in its relative infancy. The idea that
economic institutions could be modeled as biological organisms is not at all new. As E.
Penrose points out: “Economics has always drawn heavily on the natural sciences for analo-
gies designed to help in the understanding of economic phenomena. Biological analogies
in particular have been widely used in discussions of the firm”[E. Penrose (1952), p. 804].
However, the literature addressing producer® and consumer” theory with evolutionary tech-
niques has notably increased in recent years. The research effort in this direction has, in
fact, become so impressive and diverse that we will not attempt a review here. We will,
instead, concentrate on the more self-contained strand of literature to which the present
paper specifically contributes. In particular, we will focus on the literature that aims at
studying market forces as evolutionary forces and long run market outcomes as the result of
a process akin to natural selection.

Most of the literature on evolution and market behaviour stems from the debate on
bounded rationality in economics and finds motivation in the simple idea that individuals
“may be irrational and yet markets quite rational”[G. Becker (1962), p. 8]. Becker proved
that several basic features of orthodox economic theory can be derived as aggregate-level
consequences of agents’ behaviour, which need not to be rational in a strict sense and can,
in fact, even be random. This insight has been often backed up by experimental evidence.
Numerous studies on competitive market behaviour® suggested that the process which guides
markets (near) to equilibrium does not rest upon agents’ rationality.

A recent study by Luo (1995) proves that, in an evolutionary model of an industry where
firms choose their output randomly, provided that there are no barriers to entry and that
exit automatically occurs when a firm makes negative profits, the industry converges in
probability to a perfectly competitive equilibrium.

Furthermore, a related strand of literature has been concentrating on noise trading. Noise
traders in financial markets have been not only analysed from a welfare perspective, but also

5 Another interesting contribution to this debate is due to Luenberger (1993). He develops a model where
investors have preferences on infinite sequences of wealth rather than wealth at a fixed (but later taken to
the limit) terminal time; he assumes that those preferences display a tail property, so that investors are
interested only in the long run; and finally he shows that these asymptotic preferences can be represented
by the expected logarithm of returns.

5Following Penrose (1952)’s seminal article, several authors have addressed the problem of firms’ sur-
vival in an evolutionary setting. Both Witt (1986) and Schaffer (1989) test the common belief that profit
maximising firms exibit superior survival performance.

"For instance, Rogers (1994) studies the evolution of time-preference by natural selection. A recent paper
by Robson (1996) develops a biological model to determine the fittest attitude to risk.

8See Plott (1982) for a review of experimental results on competitive markets’ behaviour. Interesting
results on simulated financial markets are provided by Gode and Sunder (1993).



from an evolutionary point of view. Shefrin and Statman (1994) develop a model in which
sophisticated and informed Bayesian traders interact with traders that make systematic
cognitive errors. They show that, provided that noise traders are patient enough and that
they do not commit errors that are “too serious”, they will not be driven to extinction by
informed traders. De Long et al. (1990, 1991) prove that noise traders can eventually come
to dominate the market, if they unwillingly happen to make “good” cognitive mistakes.
Biais and Shadur (1994) consider a market where non-overlapping generations of buyers and
sellers trade to share risk. They show that irrational traders, who misperceive the risk but
enjoy a higher bargaining power, might outperform rational traders who correctly assess the
distribution of risk.

This paper is very close in spirit to Blume and Fasley (1992, 1993). They develop an
evolutionary model of a financial market, identify conditions for survival and prove false
the common belief that rational behaviour is always selected for and irrational behaviour is
always selected against by market forces. In particular, they show that the fittest behaviour
in a risky security market is prescribed by a logarithmic utility function’. Namely, traders
who follow the Kelly criterion dominate and determine equilibrium prices asymptotically.
On the other hand, whenever a logarithmic utility maximiser enters the market, all other
types of traders are driven to extinction unless they asymptotically behave as if they were
logarithmic utility maximisers. As a result, in the long run, traders who are endowed with
a logarithmic utility function will survive, as well as successful imitators.

In this paper, we adopt Blume and Easley’s framework and definitions of dominance,
survival and extinction of traders. However, in order to show that logarithmic traders
dominate and CAPM and mean-variance traders vanish, we cannot directly apply their
results. This is because of two major reasons.

In the first place, Blume and Easley’s results on logarithmic traders’” dominance do not
necessarily imply that CAPM traders would vanish. In fact, nothing in principle excludes
that CAPM traders will asymptotically behave as logarithmic utility maximisers. This
remark, which is certainly true for any general trading behaviour, is particularly biting
for CAPM behaviour because of its imitative nature. In fact, a trader who believes in
CAPM invests according to a risk-free and a market portfolio, where the most successful
trading strategies are better represented. There is, therefore, some sort of imitative behaviour
implicit in CAPM.

A second reason why our results do not stem from a direct application of Blume and
Fasley, is that both CAPM and mean-variance trading rules do not satisfy a crucial bound-
edness assumption which Blume and Easley impose. Their main theorem'?, in fact, requires
that the amount of wealth each trader invests in each asset has a uniform strictly positive
lower bound. This technical assumption is not exactly harmless since it prevents us from
applying their results to many interesting economic situations in which portfolio weights do
not display uniform boundedness!! of this type. In our setting, for instance, it prevents us
from comparing the relative fitness of CAPM and mean-variance behaviour as opposed to

In a recent paper, Canning (1997) develops a model of selection of choice rules by means of imitation.
He shows that the fittest choice rule is consistent with logarithmic utility maximisation.

19Theorem 4.1 in Blume and Easley (1992), p. 18.

"Without this boundedness assumption not even existence of equilibrium is guaranteed in their framework.



logarithmic utility maximisation.

1.3 Overview

The structure of the paper is as follows. In section 2 we present the model and develop the
evolutionary setting. Section 3 contains the main results for traders who believe in CAPM:
first of all some trivial cases are discussed, then our main result is proved in a simple setting,
and subsequently its robustness is checked removing some simplifying assumptions.

In particular, subsection 3.1 rules out two trivial special cases: in the absence of ag-
gregate uncertainty and/or when CAPM traders’ degree of risk aversion is such that they
invest all their wealth in the market portfolio, CAPM traders behave exactly as logarithmic
utility maximisers and, as immediate consequence, they survive. Subsection 3.2 deals with
existence of equilibrium in this simple economy: we show that there is no market clearing
equilibrium in a population of traders who believe in CAPM; on the contrary, existence and
uniqueness are guaranteed whenever both logarithmic utility maximisers and CAPM traders
are present in the market. Equilibrium prices are then characterised. Subsection 3.3 con-
tains the main results: we prove that logarithmic traders dominate, determine equilibrium
prices asymptotically, and drive to extinction the population of CAPM traders. Subsection
3.4 extends these results to n types of traders, to traders with heterogeneous risk attitudes
and finally to traders with different savings rates.

In section 4 we prove our main result for traders who display a genuine mean-variance
behaviour. Section 5 concludes the paper.

For ease of exposition, proofs are in the appendix.

2 The Model

Consider a complete securities market. Time is discrete and indexed by t = 0,1, 2,.... There
are S states of the world indexed by s = 1,2,...,5, one of which will occur at each date.
States follow an 1.i.d. process with distribution p = (p1, ps, ..., ps) where ps > 0 for all s. Let
Q= xg{1,2,...,S} with representative element w = (wg, w1, ..., w, ...) where wy is the state
at date t. Define QF = x{{1,2,...,5} with typical element w' for each t = 0,1,2,... . Let
3 denote the product-o-field on ; finally let Sy denote the sub-o-field o(w’) of S, so that
{8, t > 0} is a natural filtration.

Asset s € {1,2,..., S} pays ws > 0 when state s € {1,2,...,5} occurs and 0 otherwise.
At each date there is only one unit of each asset available, so that ws = ws will be the total
wealth in the economy at date ¢ if state s occurs. This wealth will be distributed among
the traders proportionately according to the share of asset s each trader owns. We assume,
unless otherwise stated, that there is aggregate uncertainty so that w, # w, for s # z: as
shown in section 3.1.1 the evolution of the system becomes trivial in absence of aggregate
risk. Moreover, without loss of generality, we assume: w; < wy < ... < wg. Let p,, be the
market price of (one unit of) asset s at date t.

There is a finite number of traders in this economy, indexed by i € {1,2,....I}. At datet,
trader 7 invests his savings from time ¢ — 1, w?_,, in the S available assets. He takes market



prices as given and chooses a portfolio {qét}il where ¢’, denotes his demand of (shares'? of)
asset s at time . Tt is often convenient to express his portfolio choice as a vector of portfolio
weights {ozét}f:l where o, denotes the percentage of wealth available for investment at time
t for trader 4, w! |, that he invests in asset s. Clearly, by definition, the following relation
holds: .

i _ QstPst

T (1)

e

Call 7%, trader 7’s investment income at date t if state s occurs and denote by 6it trader

i’s savings rate, defined as the percentage 77, saved for investment at date ¢ + 1:
s,=—t (2)
’ T4

In order to ensure that traders always have positive wealth, we assume that every agent

invests a strictly positive amount of savings in each of the available assets'®, so that ¢,
o', > 0, Vi, Vs, Vt. For the same reason, we assume that trader i’s savings rate &, is such

that &', € (0,1], Vi, Vs, Vt.

Flnaﬂy let Oéi E(aitu Oéétv Tt OéfS‘t)v 6; E(élltu 6121&7 Tt 6?5‘1&) ano% Pt E(pltup%v T pSt); we refer
to {ai};" | as trader i’s portfolio rule and to the pair {oz;, 6;} ., as trader i’s investment rule.

Recall that we defined w! ; as the wealth that is available for investment in period ¢ for
trader 1, after his savings decision; therefore, by definition, it will be entirely invested in the
available assets, so that Ele o, =1, Vi, Vt. Similarly: Ele ¢ py = wl |, Vi, Vt. At an

aggregate level, this implies:
s I
Zpst = Zwifl = W1 (3)
s=1 =1

Equation 3 provides us with a convenient normalisation for prices. We can, in fact, call
st the normalised market price of asset s at date ¢ and define it as follows:

pst pst (4>

Tt = 3 =
Es:l pst We-1

Finally define: 7, = (7, o, .., Ts1)-
In equilibrium, prices must be such that markets clear, i.e. total demand equals total
supply:

I i
Z Xt Wi1 _ (5)

Rewriting equation 5 we get:

1
Pst = Z T (6)
i—1

12Gince at each date there is only one unit of each asset available, traders’ portfolios contain shares rather
than units of assets.

13Tn this model, we are mostly interested in detecting the long run dynamics of wealth shares; therefore
we would like to rule out the possibility of any trader going bankrupt in finite time.



or, equivalently:
I

. wt
et = Xy — (7)
— W1
=1
Equation 7, which is central to the functioning of our model, shows us how market prices

are related to wealth shares.

traders make their consumption
and savings decisions: the
remaining wealth is available for
investment at date t+1

eeeee _ 1. L
t1 l l tr1

savings available for state s is realised,
investment at date t traders cash their
investment income

traders make portfolio
decisions taking market-
clearing prices as given

Figure 1: Time line.

2.1 The Dynamics of Wealth Shares

In this market there is a natural population dynamic that emerges from the process of
wealth accumulation. In particular, the evolution of wealth shares endogenously determines
an adaptive dynamic.

Trader i’s wealth share at date ? is defined as follows:

g = (8)

Wy

Recall that wy = Y, w! denotes total wealth available for investment at time ¢ + 1; for

example, if state s occurs at time ¢, then w; will be equal to dgwy, where d4 is the market
savings rate and represents the share of total asset payout w,, which is saved for investment:

ol
b= &, 1L 9)
2 pSt
Using 8 and 9 and recalling that, if state s occurs at date ¢, trader i’s wealth available
for investment at the beginning of date ¢ + 1 will be:
‘ A
w; — 6; st tilwst (10>
Ost



we obtaln that:

T __ 8 2
stOst
and, using our price normalisation:
. 8al,
t Vst
A iR (12)
6st7rst

Equation 12 clearly represents a fitness-monotonic dynamic: trader i’s wealth share will
increase if and only if he scores a payoff which is higher than the average population payoff.
In fact, if state s occurs at date ¢, 74 gives us a measure of the average population payoff.
The fittest behaviour, is therefore, that which maximises the expected growth rate of wealth
share accumulation. We are now ready to define a formal notion of “dominance” in our
model. We borrow the following definition from Blume and Easley (1992).

Definition 1 (a) Trader i dominates on the set of sample paths QQ €  if :

lim infe! > 0 a.s. on Q;

t— o0

(b) Trader i survives on the set of sample paths Q € S if :

lim sup el > 0 a.s. on Q;

t— o0

(¢) Trader i vanishes on the set of sample paths Q €  if :

lim supel =0 a.s. on Q.

t— o0

Therefore, in order to establish if trader i dominates on a sample path w = (wg, w1, ..., Wy, ...)
we need to consider the asymptotic behaviour of his wealth share: namely we have to check
whether it is bounded away from zero or not. Note that the wealth share of a dominating
trader does not necessarily converge to 1, as there might be other surviving traders.

Moreover, market dominance is clearly related to the process of price determination:
differential rates of wealth accumulation increase the relative significance of some individuals
in determining market outcomes and namely equilibrium prices. In particular, Blume and
Easley justify their use of the word “dominates” as follows: “When savings rates are identical,
a trader who dominates actually determines the price asymptotically. His wealth share need
not converge to one because there may be other traders who asymptotically have the same
portfolio rule, but prices adjust so that his conditional expected gains converge to zero”
[Blume and Easley (1992), p. 19]. This consideration also justifies the distinction between
dominance and mere survival.

Under the assumption that investment rules are measurable and satisfy a boundedness
property, Blume and Easley (1992) find sufficient conditions for dominance, survival and
extinction.

Assumption 1 For all t and all i, o} is S, 1-measurable and &, is -measurable.
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Assumption 2 There exists a real number ¢ > 0 such that, for all i, 8, o, > @ for all s
and t, a.s.

The dynamics of wealth shares is more easily described by introducing some additional
notation: let Xti = >, lstlog 6itozét and Y; = ) tglogbams where 1y is the indicator
function that is equal to 1 if state s occurs at date ¢ and equal to 0 otherwise. The expected
values of X! and Y; conditional on the information available at time ¢ — 1, can be computed
as follows:

S

E[X]|Si1] = ) pslogélal, (13)
s=1
S

EYi|Sia] = Y pologbamy (14)
s=1

E[X?] St 1] is a statistic that summarises information about trader i’s investment rule
at date t: it can be interpreted as an index that tells us how good player 7 is in maximising
the expected growth rate of his wealth share'*.

Similarly, we can interpret E[Y; | 3¢ 1] as an index that tells us how good players are
“on average” in maximising the expected growth rate of their wealth share. In fact:

OstTot = Z 6itaét5i—1 (15>

le. 64Ty 1s actually a weighted average across traders of 6%,0%,,

wealth shares at the beginning of period .

where weights are given by

We are now ready to state the following:

Theorem 1 Under assumptions 1 and 2,
(a) Trader i dominates on:

t
{w €Q: liminf Y E{X! -V, |S 4} > —oo}

t—o00
=1

and, if all traders have the same savings rate, then: lim; ., ™, = o} a.s.;
(b) Trader i survives on:

¢
{w e tligsupZE{X; - Y, | 3771} > —oo}
T=1
(¢) Trader i vanishes on:

t
EAY | S,
{wEQ:limsupzjtT1 { ,’\S 1}<1},
PR S BN [0, 1)

MNote that F [XZ | 31;1] as a function of {Ozit}j:l is globally concave and attains a global maximum at
al, =ps, Vs e {1,2,...,S}.



The intuition behind conditions (a), (b) and (c¢) in theorem 1 is as follows: the dominating
traders are those who are relatively better than the others in maximising the expected growth
rate of their wealth shares; this “ability” is, therefore, the fitness criterion the market selects
for. Note that condition (c¢) implies that conditions (b) and, a fortiori, (a) fail. In addition,
condition (c) puts a restriction on the rate at which 7, and of diverge.

Theorem 1 also states that, if all traders have the same savings rate'®, the dominating
trader determines market prices asymptotically. His wealth share, on the other hand, need
not converge to 1 because there might be other surviving traders.

A formal proof of theorem 1 can be found in Blume and Easley (1992). Here, we give
an intuitive account of the key steps in their argument. Let us consider, for example, the
dominance condition under the simplifying assumption that all traders have identical savings
rates. What the theorem tells us is that if liminf; . 22:1 E{X!'—Y,|S, 1} > —o0, then
liminf; . £} > 0 almost surely. In other words, trader i dominates.

To understand this result intuitively recall that, if state s occurs at date ¢, then:

st
so that we can write: <
t i
gp = H H Lsr—ey) (17)
7=18=1 ST
and finally:
t 8 » t 8 »
E[logel] = ZZpslogﬂ—s—ZZpsloga—;—l—loga(l): (18)
=1 s=1 ST =1 s=1 T

t
= Y E{X; Y| S} +logeg

T=1

As a result, on those sample paths where lim‘inftﬂoo 23:1 F{X!—=Y; | Sr 1} > —oo,
loge; is bounded away from —oo and therefore £} is bounded away from 0, which implies
dominance of i by definition.

2.2 Types of Traders

In our analysis we will consider three different types of traders.

The first type of agents is given by investors who believe in CAPM (type CAP M) and
use it as a rule of thumb!®: at the beginning of each period, they observe payoffs and market
prices and work out the composition of the market and the risk-free portfolios. Finally,
according to their degree of risk aversion they choose their preferred combination between

15 Blume and Easley (1992) also prove that the same result applies if traders do not have equal savings
rates but 8%, > 64 a.s.

18We can think of them as of traders who have been educated in business schools. They have been taught
the model so well in their finance courses that they believe it really works.



the two. Index CAPM traders by j; at date ¢, investor j chooses 7{ € [0,1] and invests in

asset s a portion oziAPM(j ) of his wealth such that:

oy M = yjal,+ (1= 1) alf (19)
where:
OéFt — Pst/Wst _ Tt /Wt (20)
° Zz ot Wt Ez Tt Wt
and
oM = Pt — 7, (21)

Zz pzt

The second type of traders is given by investors who are endowed with a logarithmic
utility function (type L) and who actually maximise the growth rate of their wealth share
and invest according to a “simple” portfolio rule:

ok = p, (22)
More generally, at each date ¢, a rational trader 7 will choose {qét}il so as to maximise:

g

> pa (ghws) (23)

s=1
subject to the constraint that investment expenditure at each date is less than or equal to
the amount of wealth saved in the previous period. If «* (+) is logarithmic, it follows that
% = (pu/pu) w0y and that'” of; = p,

Finally, we shall consider traders who display a genuine mean-variance behaviour (type

MYV, namely traders endowed with a quadratic utility function:

w(@) =@ — %152 (24)
where'® a < 1/wg.

Substituting 24 into 23 and solving for ¢V using the first order conditions, we obtain:

1 ky — asMV

MV 1
= - s 25
Tt aw, ahypsw? Trst (25)

where:
S 5.2

k=Y 2 d h=) —L 26
t £ w,s an t - pswﬁ ( )

and MY is the wealth share of mean-variance traders at (the beginning of) date ¢. Therefore:

MV
N ]\fv Tt ke —asty 7T2t (27)
3 acMVw,  ahypsw2eM) °
Clearly, if 7, — 0 for some s, then both a$4"™ — 0 and oY — 0 so that theorem 1

in section 2.1 [i.e. Theorem 4.1 of Blume and Easley (1992), p.18] does not apply.

I"Note that we are assuming that traders know the probability distribution p over the state space S. In
a more general framework, a trader who displays a logarithmic utility function bets his beliefs.
1% This bound guarantees that traders do not attain satiation.



3 Dynamics with Traders who Believe in CAPM

Suppose that there are only two types of traders in the economy: traders who believe in
CAPM and traders who are endowed with a logarithmic utility function. As usual, denote
by ¢’, > 0 the quantity (share) of each asset s that trader i demands at time ¢ > 0. Denote,
as in the more general case, total wealth available for investment at time ¢, by w;_;. Finally,
denote by £, the share of aggregate wealth w;_; which belongs to type L, and by (1 — ;1)
the fraction of w; ; which belongs to type CAPM at the beginning of period t.

As a temporary simplifying assumption, we will assume that the degree of risk aversion
is homogeneous in the population of traders who believe in CAPM, so that v/ = v, € 10,1],
V7, Vi and, consequently, o =y,

In this section we will analyse both the static equilibrium of this simple economy and
the intertemporal dynamic of wealth shares and prices. Before proceeding any further, we
rule out two special cases that yield trivial results.

3.1 Trivial Cases
3.1.1 No Aggregate Risk
If there is no aggregate uncertainty, i.e. if wg = wgy , Vs, 8 € S, we can state the following;:

Remark 1 With no aggregate risk, in a population of traders who believe in CAPM and
traders with logarithmic utility function, the behaviour of traders who believe in CAPM and

traders with a logarithmic utility function coincides. Formally, if wg = wgy, YVt > 0, Vs, 8’ €
{1,...,S}, then aSA"M = p,, Vt >0, Vs € {1,...,S}.

The proof of remark 1 is straightforward. The intuition is that in the absence of aggregate
risk, market and risk-free portfolio coincide, therefore traders who believe in CAPM actually
invest only according to the market portfolio, so that their behaviour is purely imitative. As
a result, when a logarithmic utility maximiser enters the economy, everyone invests according
to his portfolio rule.

3.1.2 Constant Absolute Risk Aversion

The degree of risk aversion affects the choice of v, € [0,1]. We will assume throughout
that all investors are risk averse. If traders who believe in CAPM are very risk averse, they
will invest most of their wealth in the riskless portfolio; as a result, a higher degree of risk
aversion implies a larger value of v,.

We will examine the implications of how risk aversion varies with wealth in more detail
in the following sections. Here we concentrate on a trivial case. In particular, assume that
the degree of risk aversion does not change with wealth so that traders display constant
absolute risk aversion. We can then state the following:

Remark 2 Under the CARA assumption, in a population of traders who believe in CAPM

and traders with logarithmic utility function, if v, = v =0, Vt, the behaviour of traders who

believe in CAPM and traders with a logarithmic utility function coincides, i.e. aS*T™M = p,,

Vs, Vt.



Therefore traders who believe in CAPM will behave as logarithmic utility maximisers.
On the other hand, it is straightforward to check that for any other value of v # 0, it follows
that a$A"M +£ p, and therefore traders who believe in CAPM will behave differently from
logarithmic utility maximisers.

3.2 Existence of Equilibrium

Consider a population where there are two types of traders: traders who believe in CAPM
and traders who are endowed with a logarithmic utility function. Their wealth shares at
(the beginning of) date t are respectively (1 —e,1) and &,1. We will show that, at each
date ¢ > 0, a market clearing equilibrium exists, provided that £, ; > 0 which, in turn, is
guaranteed for all ¢t > 1 provided that gy > 0.

Traders’ demands'? are as follows:

Ds€t—1We—1

pst
CAPM Wi—1
= (1—g — 1—e,4)(1— 29
Ay ( E¢ 1) e w, EZ pzt/wz + ( 2 1) ( /Yt) ( >

(28)

L
qst

Recall that at each date there is only one unit available of each asset, so that market
clearing requires:

CAPM -1

qSLt—I—qst , Vs e {1,2,...,5} (30)

which implies:

Doy = P&t 1 W 1Ws Ez pzt/wz
TN =M =) M=) ws >, par/we — (L= 201) Yywe 1

We can show that there exists a unique non-negative price vector that satisfies 31 for all
s € {1,..., 8} and therefore a unique market clearing equilibrium.

(31)

Definition 3 Market clearing equilibrium at date t for this economy is an array of portfolios
and assets’ prices {(qsLt, qSCtAPM) 7pst}j:1 such that, Vs € {1,2,....5}:

o gl satisfies 28;

o ¢GAPM satisfies 29;

o gl + qCAPM = 1
e prices are non-negative: py > 0.

Proposition 2 Provided that ¢y > 0, at each date t > 0 there exists a unique market
clearing equilibrium.

19Note that trader i’s demand of asset s at date t is equal to:

% %
Qg Wy

o =
ot pst

where !, is trader i’s portfolio weight in asset s.



Proof. See appendix.

An immediate corollary of equation 31 is that there is no market clearing equilibrium
if all traders behave according to CAPM rule. A clear intuition for this result is that in
such an economy every trader would like to invest his whole wealth in the risk-free portfolio.
However, in a risky world, not everybody can be fully insured: as long as there is aggregate
uncertainty, for an equilibrium to exist some traders must bear the risk.

On the other hand, a unique equilibrium always exists in an economy populated only by
traders who are endowed with a logarithmic utility function. In such a world, at each date,
(normalised) equilibrium prices are equal to probabilities: 74 = ps Vs, .

We can characterise the limiting behaviour of prices as £, — 0. When the wealth share
of logarithmic utility maximisers approaches zero, equilibrium prices move towards a vertex
of the price simplex. In particular, in the limit, only the market of asset 1 (in our notation,
the asset with the lowest payout) clears with a strictly positive price.

Proposition 3 When g, — 0, myy — 1 while 7y — 0, Vs € {2,..., S}. In compact notation:

1
‘ 0
L
0

Proof. See appendix.

In fact, in the limit, non-negativity of prices requires Ele Tst/Wws > 1/wy, while market
clearing requires Ele Tst/ws < 1/wy. The unique limiting value for Ele Tg/ws that
satisfies both is:

S 1
lim y — = — (32)
g—0 - Wy un
which, in turn, implies®® lim,, o7 = (1,0,...,0).

We can, finally, characterise traders’ demands as £, — 0.

Corollary 4

lim qL = v, —7 i
S st t o,
. CAPM _ wy
lim ¢qg; = 1=y +v—
6t~>0 w

Proof. See appendix.
Notice that lim., ¢ (qSLt + qSC;APM> = 1, so that there is market clearing Vs € {1,..., S}.
Both types of traders invest in assets s € {2,...,.5}; only CAPM traders invest in asset 1.

20The fact that all prices, except the price of the asset with the lowest payout, go to zero might seem
counter-intuitive. However, consider that, as ¢; — 0, we are left with an economy which is (almost) entirely
populated by traders who invest their (almost) whole wealth in the risk-free portfolio. In order to insure
themselves against aggregate risk, traders invest comparatively more in assets with lower payouts and higher
prices. As a result, the aggreate demand for the asset with the lowest payout increases as £; — 0, while
demand for the other assets decreases.



An immediate consequence of proposition 3 is that portfolio weights of traders who believe
in CAPM are not bounded away from zero on those sample paths where £, — 0. As a result,
theorem 1 by Blume and Fasley does not apply. In particular, we cannot use it to show that
logarithmic traders dominate, since we would need to assume their dominance (and namely
that &, - 0) in order to apply the theorem.

3.3 The Main Result

In this section we prove our results under a simplifying assumption which we will remove
in the following sections. In particular, in order to concentrate on portfolio rather than on
investment rules, we will assume that, almost surely, at every date and in every state of
nature, logarithmic utility maximisers and traders who believe in CAPM display the same
savings rate.

Assumption 3 For all i € {L,CAPM}, all s € {1,...,S} and all t > 0, &, = 64 a.s.

We present our main result as two separate propositions. The first one (proposition 5)
claims that in a population of traders who believe in CAPM and traders who are endowed
with a logarithmic utility function, the latter dominate almost surely. This result yields,
as main implication, that equilibrium prices converge a.s. to probabilities. The second
proposition (proposition 7) claims that in a population of traders who believe in CAPM and
traders who are endowed with a logarithmic utility function, in the presence of aggregate
uncertainty (and unless we are in the CARA special case of remark 2), the former vanish
almost surely. In fact, the wealth share of traders who believe in CAPM converges a.s. to
zero: market forces drive them to extinction.

The first of these two results accords with Blume and FEasley (1992): logarithmic utility
maximisers dominate and determine equilibrium prices asymptotically. This clearly backs
up the intuition that the fitness criterion market selects for is the “ability” to maximise the
expected growth rate of wealth shares. The fittest portfolio rule is, indeed, the one adopted
by logarithmic utility maximisers.

Proposition 5 Under assumptions 1 and 3, in a population of traders who believe in CAPM
and traders who are endowed with a logarithmic utility function, the latter dominate almost
surely. Formally: iminf, . &; > 0 a.s.

Proof. See appendix.
The proof of proposition 5 consists of two steps. We first show that the evolution of
logarithmic utility maximisers’ wealth share:

g = &51&71 (33>

Tst
follows a submartingale, so that for each date t > 0, F'[g; | §:—1] > &¢—1. This result (lemma
19 in the appendix) allows us to claim that e; will converge almost surely to some value
£*. Finally, we prove that, in presence of aggregate uncertainty, £* (w) # 0 a.s., so that
lim; o, &¢ > 0 almost surely and, by definition, logarithmic utility maximisers dominate.
The next proposition claims that an important implication of logarithmic utility max-

imisers’ dominance is that they determine equilibrium prices asymptotically.



Proposition 6 Under assumptions 1 and 3, in a population of traders who believe in CAPM
and traders who are endowed with a logarithmic utility function, the latter determine asset
prices asymptotically, so that, Vs € {1,....S}:

Mgt — Ps Q.S

Proof. See appendix.

This result is an immediate consequence of the fact that the wealth share of traders who
are endowed with a logarithmic utility function is bounded away from zero almost surely.
Note that the converse is not true: namely, the fact that prices converge to probabilities
does not guarantee that the wealth share of logarithmic utility maximisers is bounded away
from zero®!. It is in fact possible that:

S (34)

E¢t—1 Tst

and yet ¢, — 0.

Extinction of traders who believe in CAPM is a result that one could not directly an-
ticipate through Blume and Easley’s theorem 1. For example, a very sensible hypothesis
could have been that traders who use CAPM as a rule of thumb survive because they as-
ymptotically behave as logarithmic utility maximisers. As a matter of fact, we have already
examined two trivial cases? in which this actually happens not only asymptotically, but at
every date. What we need to prove here is that the imitative behaviour implicit in CAPM
is not powerful enough to prevent traders from vanishing.

In order to prove the next result, we need to make a further assumption®® on traders’
behaviour towards risk.

Assumption 4 The portion of wealth that traders who believe in CAPM decide to invest in
the risk free portfolio, vy,, is a monotonic (increasing or decreasing) function of their level of
wealth, wEAPM |

Proposition 7 Under assumptions 1, 3 and 4 and in presence of aggregale uncertainty, in
a population of traders who believe in CAPM and traders who are endowed with a logarithmic
utility function, the former vanish almost surely. Namely: lim; e, = 1, almost surely.

Proof. See appendix.
Intuitively, the proof of proposition 7 runs as follows. Dominance of logarithmic utility
maximisers and price convergence to probabilities requires that in the long run all surviving

21One could also directly prove price convergence to probabilities through lemma A.1 in Blume and Easley
(1992), p. 34. However, as we noted above, this would neither imply that logarithmic utility maximisers
dominate, nor directly result in CAPM traders’ extinction. The proof of proposition 6 which we provide
in the appendix is shorter and more straightforward than the one implicit in Blume and Easley (1992).
Moreover, we believe that the economic intuition behind proposition 6 is better captured by our proof,
which shows how market dominance implies equilibrium price determination in the long run.

?2See section 3.1.

23We believe that assumption 4 could be further relaxed: it constitutes a sufficient but not necessary
condition for proposition 7 to hold.



traders invest according to the Kelly criterion. We prove that the CAPM rule does not
succeed in fully imitating the behaviour of L traders, so that CAPM traders do not survive.

To characterise the long run behaviour prescribed by CAPM, we look at the asymptotic
weights in the market and in the risk-free portfolios. We find that the market portfolio
weights converge a.s. to probabilities; the risk-free portfolio weights, on the contrary, con-
verge a.s. to values which are different from probabilities if there is aggregate uncertainty.

The second step of the proof shows that, under assumption 4, there is no sample path
for 7, such that CAPM traders asymptotically invest only according to the market portfolio.
As a result, CAPM traders are driven to extinction.

3.4 Extensions

We proved proposition 5 and proposition 7 under some simplifying assumptions. In what
follows, our aim is to check the robustness of our main results, namely the dominance of
logarithmic utility maximisers and the extinction of traders who believe in CAPM, in three
more general settings, allowing for various kinds of heterogeneity among traders.

In the first place, we test whether the same result obtains when we consider a diversified
environment where in addition to logarithmic utility maximisers and traders who believe in
CAPM there are other types of traders as well.

Secondly, we remove our initial simplifying assumption on identical preferences within
the population of traders who believe in CAPM and ask whether our results still obtain
when we consider heterogeneous risk attitudes.

Finally, we check to what extent our previous analysis holds when heterogeneous savings
rates across traders are allowed.

3.4.1 A Multipopulation Model

Consider a richer environment where there are N + 2, with 0 < N < oo, types of traders:
traders who believe in CAPM, traders with logarithmic utility function and, finally, N other
types of traders who behave according to other portfolio rules that a.s. do not converge to
any of the previous two.

As in the two population framework, the trader with logarithmic utility function will
dominate and prices will eventually converge a.s. to probabilities. Moreover, if we exclude
special cases, dominance of L traders drives to extinction traders who believe in CAPM, no
matter which other types of traders might be around in the market.

Consider a population of traders who believe in CAPM and suppose that a trader with
logarithmic utility function enters the market along with /N other types of traders with
portfolio rules {oz?t}le and n=1,2, ..., N. For simplicity we also assume that:
Assumption 5 3p > 0] af, > ¢, Vs, t,n a.s.

Assumption 6 Vn € {1,.. N}, Vs € {1,...S}, o converges to p, or to aSA"M with
probability 0: Pr{w € Q| aZ, — p,} =0 and Pr{w e Q| a? — a5APM} =0.

The first assumption is technical: it is the same assumption that Blume and Easley
(1992) impose on each trader’s investment rules and allows us to apply corollary 4.1 in
Blume and Fasley (1992), p. 20. The second assumption requires that the other N traders’



portfolio rules almost surely do not converge either to logarithmic utility maximisers’ or to
CAPM traders’ portfolio rules. Assumption 6 is without loss of generality: suppose that
with positive probability, for some n, either o — p or a? — af4”M | then on those sample
paths where this happens, all the results in this section would still apply by propositions 9,
6 and 7. Therefore one could ideally split the sample space in two sets: the set of sample
paths where assumption 6 holds and the set of sample paths where it doesn’t, and still the
propositions in this section would hold on the whole sample space.

Denote by £l and 64PM the wealth shares at (the end of) date ¢ of traders with loga-
rithmic utility function and of traders who believe in CAPM respectively. Denote by e} the
wealth share of traders of type n, for n € {1,..., N}. Clearly:

N
Y e =1—sf =AM > 0, (35)

n=1

It is possible to show?® that, provided that £f > 0, then a market clearing equilibrium
exists at each date. In particular, as € — 0, equilibrium prices 74 — 0 for some s and
therefore portfolio rules aSA"™ — (0 for some s, so that, despite assumption 5, theorem 1
by Blume and Fasley is not applicable®.

However, we can extend to this multipopulation framework the result of proposition 5:

Proposition 8 Under assumptions 1, 3 and 5, given a population of traders who believe
in CAPM, suppose that a trader with logarithmic utility function and N other traders, with
portfolio rules o, and n = 1,.... N, enter the market. Traders endowed with a logarithmic
ulility function will dominate almost surely and determine asset prices asymptotically.

Proof. See appendix.

The proof of proposition 8 is in three steps. We first show that logarithmic utility
maximisers outperform each of the N new types of traders. In fact, for all n, the ratio
between of the wealth share of trader n and the wealth share of LOG traders converges
almost surely to zero. We then prove that LOG traders dominate by similar arguments to
those used for proposition 5. Finally dominance of logarithmic utility maximisers implies
that prices converge a.s. to probabilities.

Our next proposition shows that when logarithmic traders dominate, extinction of CAPM
traders is “generic” in a sense to be discussed below. In particular, CAPM traders will survive
only if the other portfolio rules represented in the market are such that all traders, in the
aggregate, asymptotically behave as logarithmic utility maximisers.

Let ef*, sCAPM* and ™ denote the limiting values®® of ¢, e947Mand 7 respectively, as

t — 00. We can then state the following:

24The proof is similar to the proof of proposition 2 and is therefore omitted.

25The result limEtLHO Tge = O stems from the fact that logarithmic utility maximisers dominate each of
the N populations of traders [corollary 4.1 in Blume and Easley (1992), p. 20]. Therefore, when the wealth
share of logarithmic utility maximisers goes to zero, a fortiori the wealth shares of the other NV populations
go to zero (see also the proof of proposition 8), so that the economy is only left with CAPM traders.

26We proved that e — ¢* a.s., so that such a limiting value for L traders’ wealth share exists. We will
show that etCAP Mand e?, Vn, almost surely converge to some values as well.



Proposition 9 Under assumptions 1, 3, 4, 5 and 6, given a population of traders who believe
in CAPM, suppose that a trader with logarithmic utility function and N other traders, with

portfolio rules of,, where n = 1,.... N, enter the market. Unless the evolution of the system

is such that, Vs € {1,...,5}:

N
Zgn*a?t — D <1 o 5L*> o €CAPM*a§;APM a.5. (36>
n=1

traders who believe in CAPM vanish. Formally: lim; ., e$APM =0 almost surely.

Proof. See appendix.
Note that the condition 36 in proposition 9 can also be expressed as follows:

N nk N CAPM=x,, CAPM
Zn:15 g €

ast
1— el*

— Ps a.8.

When this relation holds, even if none of the traders asymptotically behaves as a logarithmic
utility maximiser, the market as a whole does. In fact, what equation 36 requires is that
the N new rules represented in the market should complement CAPM behaviour so that
we could think of the N traders together with CAPM traders as of a single trader whose
portfolio rules are asymptotically equal to probabilities. As a result, all traders survive.

This condition clearly imposes severe restrictions on the class of portfolio rules that
should be represented in the market. For this reason, we claim that extinction of traders
who behave as prescribed by CAPM is “generic”. In fact, suppose we start with N types
of traders such that condition 36 holds. In case one of them, say trader n, is replaced by a
new type of trader with portfolio rule oz?t = o, + dg such that >’ dg = 0, then condition
36 is not necessarily satisfied. Therefore survival of C AP M traders is not robust to “small”
changes to the set of the new N types of traders introduced in the market.

3.4.2 Heterogeneous Risk Attitudes

Until now we have assumed that traders who believe in CAPM share the same degree of risk
aversion. Namely, we have been considering traders with identical preferences that would
choose the same combination of safe and risky portfolios. An interesting question to ask is
whether our results are robust when we allow for heterogeneity in the degree of risk aversion
among the population of traders who believe in CAPM.

We show that our results hold in this new setting. In fact, we can deal with heterogeneity
thinking of a population of traders endowed with different degrees of risk aversion as of a
single “average” trader whose portfolio rules are given by an appropriate weighted average
of each trader’s portfolio rules.

Consider a population of traders who believe in CAPM, indexed by j € {1,...,J}, and
who have heterogeneous risk attitudes; trader j’s portfolio rules at time ¢ will be:

o |
oMM — a4 (1 - y]) o (37)



where assumption 4 holds*” for each j € {1,...,J}.

As usual we assume that a logarithmic utility maximiser enters the market with portfolio
rule af, = p,. Denote by ¢, and 5{ the wealth shares at (the end of) date ¢ of LOG traders
and of CAPM trader j, respectively. We can claim the following;:

Proposition 10 Under assumptions 1, 3 and 4, logarithmic utility mazimisers dominate
and drive to extinction a population of heterogencous traders who belicve in CAPM. Formally,
limsup, . =0, forall j€{1,...,J}.

Proof. See appendix.

The proof of proposition 10 is in three steps. We first show that logarithmic utility
maximisers dominate in a world of aggregate uncertainty. Again, an immediate corollary of
this result is that prices converge a.s. to probabilities. The final part of the proof shows that,
assuming that 7{ is a monotonic (increasing or decreasing) function of wealth, Vj € {1, ..., J}
is a sufficient condition for all CAPM traders to vanish. In fact, dominance of logarithmic
utility maximisers and price convergence to probabilities imply:

-1
Z el vl — 0 as. (38)
=1

and, since for each j the set of sample paths where 7{ — 0 has measure zero, condition 38
requires £ — 0 a.s. for all j € {1,..., J}.

3.4.3 Traders with Different Savings Rates

If savings rates are different across traders, by theorem 1, trader ¢ dominates on those sample
paths where:

t

) &
Lim inf 2 I (m7) = I (o) + Z pslog 5_ > —o0 (39)
Not surprisingly, other things being equal, the market selects for the most patient investors,
1.e. those investors whose savings rate 6it is larger with respect to the average 6.

Let us consider now our original problem and namely: what can be said about the
asymptotic behaviour of wealth shares in a population of traders who believe in CAPM and
of logarithmic utility maximisers? If the savings rate of logarithmic utility maximisers (6%)
is such that (55Lt > 04 a.s., then a first answer to this question is trivial: they will dominate

and drive to extinction traders who believe in CAPM.

Proposition 11 Under assumptions 1 and 4, in a population of traders who believe in
CAPM and of logarithmic utility maximisers, the latter dominate, provided that their savings
rate is at least as large as the average savings rate, and drive to extinction the population
of traders who believe in CAPM. Formally, if 6% > 64 a.s. Vs € {1,...,S}, ¥Vt > 0, then

hmtﬂoo Er = 1.

2TWe need 'yi to be either an increasing function or a decreasing function of each trader’s wealth level, for
all j.



Proof. See appendix.
However, by assuming that 6% > 6 a.s., we actually ignore the fact that logarithmic
utility maximisers have a “comparative advantage” from an evolutionary point of view with
respect to any other trader, in that they adopt the fittest portfolio rule. In what follows,
we prove the dominance of logarithmic utility maximisers under a weaker assumption on
savings rates.
We can in fact prove that logarithmic utility maximisers dominate on those sample paths
where: < ,
CAPM cCAPM
gy fst S 1 ( 40>
s=1 65t

As we suggested, this condition is weaker than requiring (55Lt > 04. Namely:

S qCAPM §CAPM
6L > 64 as. = Z % <1 as. (41)
s=1 st

while the converse 1s not true.

Proposition 12 Under assumptions 1 and 4, in a population of traders who believe in
CAPM and traders who are endowed with a logarithmic utility function, the latter dominate
and drive CAPM traders to extinction if:

actAPMéctAPM

8 8

- <1 as. (42)
s=1 st

Proof. See appendix.

It should be noted that condition 42 is not the weakest one could impose. However,
proposition 12 shows that the condition &% > &, a.s. in Blume and Easley (1992) can be
relaxed.

4 Genuine Mean-Variance Behaviour

Traders who believe in CAPM do not display a genuine mean-variance behaviour: they
know what the two-fund separation theorem prescribes, believe it works in reality and only
partially optimise in their choice between the risk-free and the market portfolios.

In this section we consider a population of rational traders endowed with mean-variance
preferences and we show that, in an evolutionary framework, they will not do any better
than traders who believe in CAPM and use what the model prescribes as a rule of thumb.

4.1 Existence of Equilibrium

Suppose that there are two types of rational traders in the market: traders who are endowed
with a quadratic utility function (and therefore display a genuine mean-variance behaviour)
and traders who are endowed with a logarithmic utility function. Given their level of wealth
and market prices, traders choose their optimal portfolio composition in the available assets.



A first question we ask is whether a market clearing equilibrium always exists in this
economy. From an analytical point of view, the equilibrium existence problem in this setting
is equivalent to the general equilibrium existence problem in a pure exchange economy.

Definition 13 Al each date t > 0, an equilibrium for this economy is an array of portfolio
compositions {q };_ v roa € A%* 1 and a price vector p, € A5 such that:

S
g; = arg max {E [UZ (qétwsﬂ 5.1. ZpstQE} < wtil} ,  Vi={MV,LOG} (P1)
s=1

and markets clear:

dodh=1 Vse{1,2..,5)}

i=MV,LOG

This is clearly not a pure exchange economy: traders are not endowed with assets’
shares but with exogenous wealth. They only express demands, while supply is exogenous.
However, we can consider (5@71, gl s, 5;‘71) € A1 as if it was an endowment vector in
assets’ shares for trader ¢ and we can study equilibrium existence as if we were facing a pure
exchange general equilibrium model.

We can therefore state the following:

Proposition 14 When there are two types of traders - traders who are endowed with a
logarithmic wutility function (traders of type L) and traders who display a genuine mean-
variance behaviour (traders of type MV ) - there always exists an equilibrium.

Proof. See appendix.
We can actually characterise equilibrium prices, and prove the following:

Proposition 15 Fquilibrium prices have a strictly positive lower bound. Formally, Jv >
0| 7g>v,Vse{l,.., S} and ¥Vt > 0.

Proof. See appendix.

4.2 The Evolution of Wealth Shares

Recall that a rational trader endowed with a quadratic utility function chooses a portfolio:

L. . el ) LB (13)

ws(l—eiq)a  ahlpsw? (1 —e0 )

where £, 1s the wealth share of logarithmic utility maximisers at (the beginning of) date t.
Proposition 15 allows us to claim that the portfolio rules of traders who display a genuine
mean-variance behaviour are bounded away from zero. Therefore theorem 1 applies.

Proposition 16 Under assumption 1 and assuming that 6% > 6V a.s. for all s and
t, in a population of logarithmic utility maximisers and of traders who display a genuine
mean variance behaviour, the former dominate and determine asset prices asymptotically.
Formally: iminf, , & > 0 and 7wy — p almost surely.



Proof. By proposition 15 and theorem 1.
Our next result shows that mean-variance traders vanish almost surely.

Proposition 17 Under assumption 1 and assuming that 6% > 6V a.s. for all s and t,
a population of traders who display mean-variance behaviour will be driven to extinction by
traders who behave as logarithmic utility mazimisers. Formally: limsup, . MY =0 almost
surely.

Proof. See appendix.

The proof of proposition 17 relies on two steps. We first show (lemma 20 in the appendix)
that, in presence of aggregate uncertainty, ’?" a.s. will not converge to probabilities.
Namely:

Pr{weQ|al¥ —p}=0foralls (44)

We then prove that dominance of logarithmic traders and price convergence to probabilities
implies that the wealth share of mean-variance traders must converge to zero almost surely.

Corollary 18 In an economy where some traders display a genuine mean-variance behav-
iour and others believe in CAPM, both types will be driven to extinction, should a logarithmic
utility mazimiser enler the market. Formally limsup, .. &MY =0 and limsup, , 54" =

0 almost surely.

The proof of corollary 18 is straightforward since the results we proved in the multipop-
ulation framework apply.

5 Concluding Remarks

In the evolutionary setting for a financial market developed in Blume and Fasley (1992), we
consider three types of traders: traders who “believe” in CAPM and use its predictions as
a rule of thumb; traders who are endowed with a quadratic utility function and, therefore,
display a genuine mean-variance behaviour; finally, traders who are endowed with a loga-
rithmic utility function and therefore adopt the celebrated Kelly criterion for investment.
We are interested in the asymptotic behaviour of the wealth shares of these three types of
traders. Following Blume and Easley (1992), we define notions of dominance, survival and
extinction in the market through the limiting value of each trader’s wealth share. In par-
ticular, the wealth share of a dominating trader is asymptotically bounded away from zero,
while extinction occurs when the wealth share converges almost surely to zero.

Our main results are obtained in a simple setting where traders have constant and iden-
tical savings rates. Under this assumption we are able to prove that logarithmic utility
maximisers dominate on any sample path. Furthermore, in presence of aggregate uncer-
tainty, traders who believe in CAPM are driven to extinction.

We then check the robustness of these results removing some of the initial simplifying
assumptions. Firstly, we allow for more than two types of traders in the market and prove
that, generically, our results are robust in a multipopulation framework. Secondly, we allow
for heterogeneity among CAPM traders in their degree of risk aversion and we prove that



our results are robust in this setting. Finally, we allow for different savings rates across
traders. We find that the market selects for the most patient investor. Therefore our results
are obviously robust so long as logarithmic utility maximisers are relatively more patient
than CAPM traders. We prove, however, that this bound can be “relaxed”.

Finally, we deal with an economy populated by genuine mean-variance traders. We show
that, if a logarithmic utility maximiser enters the market, he dominates, determines market
prices asymptotically and drives to extinction the population of mean-variance traders.

Appendix

Proof of proposition 2. Define k;, = Zle st/ ws. Equation 31 becomes:

DsEr1Wr— 1 Weky

= 45
Pt T = (T2 0) (L vl wehe — (1— 20 1) 7, (45)
Divide through by ws and sum over s to get:
s
Ps€t-1Wr1
(k) = =1 46
¢ (k) ; 1= (1 —e 1) (T =) wske — (1 — 1) v (46)

A solution for k; to:
s
Fy(ke) = fu (k) =1 (47)
s=1

will be market clearing. Assuming that £, | > 0, there is only one value for k; such that
equation 47 holds and prices are non-negative. The graph of Fj (k) is shown in figure 2.
There are S vertical asymptotes, respectively in

Fi(k) ! ! !
1 E E ------ 3 \
0 i Xst i X(Sl)t an k*t k
1 1 1 t

Figure 2: Market clearing.
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for each s € {1,2,...,5}. Non-negativity of prices requires:

(1—e1)v
ke > vVse{l,...,8 49
T T () o
Therefore: )

ke > 0 ey, = a1y (50)

[1—(1—2e1) (L—v)]wn

A—= )y >
; 00 51
<[1 — (=&)L=l (51)
F; (kt) is monotonic decreasing between co and 0, so that there is a unique value 0 < k} < oo

such that 47 holds and prices are non-negative. So long as g, 1 > 0, such a value for k; will
always exist. On the other hand, if £, 1 = 0 then equation 47 cannot be satisfied. Finally:

In the open interval

t s
£ = H H LSTf:—Sé?() > g9, VE >0 (52)
7=1 s5=1 ST

so that, if £ > 0, then &, > 0, Vt. |

Proof of proposition 3. To characterise equilibrium prices as ¢, — 0, we need to know
the value of lim,, ,g k;. Notice that, by definition of k; and market clearing, we know that:

1 1
Wg gt—0 un
On the other hand, non-negativity of prices requires:
1; Pt 1We 1Wsky
im
0 [1— (1 =g 1) (1 —y)]wke = (1 — 1) v,

>0, Vs € {l,.., 5} (54)

Therefore:

: : (1—ec 1) 1
lim k; > lim = — 55
ke I e 0 Tm  m (55)

The only value for lim,, g k; that satisfies both 53 and 55 is:

1
gt—0 wl
which, in turn, implies lim,, o 7 = (1,0, ...,0). [
Proof of corollary 4. Recall that:
sE¢—1 Wy
qsLt:Ptltlz (57)
Pst

[1 - (1 - 5%1) (1 - ’71&71)} wgky — (1 - 51571) Tt
weky




Therefore:

o Ywsfwi =y o wn
sltlg}) g = ws/wl =%V . (58>
Recall now that:
g MM = (1 =)y + (1= 1) (1—7) (59)
wskt
so that, finally:
w
lim g5 =1 -7, +v,—. (60)
Etﬂo wS

Lemma 19 Under assumptions 1 and 3, the wealth share of logarithmic utility maximisers
g 18 a submartingale, so that F g, | S¢—1] > &1 for allt > 0.

Proof of lemma 19. If state s occurs at date ¢, the wealth share of L traders can be
expressed as follows:

gt = —E¢t1 (61>

Consider, now, E [logs; | S—1] = Zle pslog ps /mg+loge, 1 > loge, 1. Since Zle Pslog ps /T st
is always non-negative and log ¢, is a concave and increasing function of ¢, by Jensen’s in-
equality and simple algebra it follows that:

1) [éft ’ %tfl] Z Et—1, Vi Z 0 (62>

i.e. the process {4, t > 0} is a submartingale. [

Proof of proposition 5. By lemma 19 and the convergence theorem for submartingales
we know that:

Pr{3=* |V€> 0,37 >0Vt > T, |z — | < &} =1 (63)

or, equivalently, £, — £* almost surely. Call A C Q the set of sample paths w € Q such that,
on w, g¢ converges; call B C () the set of sample paths w €  such that, on w, each state
s € {1,..., 5} occurs infinitely often; call C = AN B. Clearly: Pr(A) =1, Pr(B) =1 and
Pr(C) = 1. To prove our claim it is sufficient to show that Vw € C, lim; ,,, & (w) > 0. By
way of contradiction suppose that 3 & € C' such that:

This implies that, given @:
lim £, | =0 (65)
t—o0 T st

Recall that qSLt = (ps/7st) £1—1 and that by corollary 4:

. w1
Jim g =7 = e (66)



Given @, consider now a subsequence t,, such that w;, # 1 V. (Since & € C the subsequence
t, is infinite). Using 66, since we are assuming that 64 holds, we obtain that for any s # 1:

DPs

lim
H— 00 Wstu

£t >0 (67)

which contradicts 65. |
Proof of proposition 6. Recall that, if state s occurred at date ¢, then:

Ps
st (W)

g1 (w) (68)

g (w) =

or, equivalently:
&t (w) _ Ds
g1 (w) e (w)

Since g4 converges almost surely and since {w € Q | £, (w) — 0} has measure zero, then:

(69)

g (w)
Et—1 (CU)

— 1 a.s. (70>

which, finally, implies: 7¢ (w) — ps a.s. |

Proof of proposition 7. Market clearing requires:

T = 2ps + (L= 201) [0l + (1= 7) 7] (71)

Define:

_ (I—2s 1)
P = (T =&1) v+ e (72)

and therefore rewrite equation 71 as:

Tst = Ps + 34 (O‘ft - ps) (73)

Recall that L traders dominate and, by proposition 6: w4 — ps almost surely. By eq. 73
we obtain that:

ot — Ps = By (Oéft - Ps) (74)

and since g — ps — 0 a.s. we need [, (ozft —p5> — 0 almost surely as well. Note that
(ozft — p5> converges almost surely to

Ps/Ws

> b

which is different from zero unless there is no aggregate uncertainty. Therefore, we will

— Ps (75)

have 3, (ozft — p5> — 0 a.s. iff 5, — 0 almost surely. By equation 72:

(1 —cr )7 +e1fi=1—c1) v, (76)



If 3, — 0 a.s., then, since (1 — &, 1) and 7, are bounded, (1 —&; 1) 7,0, + 215, — 0 a.s.
as well and therefore:

(1—21)v —0 as. (77)

Call A C Q) the set of sample paths w € € such that, on w, &, converges; call B C ) the set
of sample paths w € Q such that, on w, each state s € {1,..., 5} occurs infinitely often; call
D C Q the set of sample paths w € Q such that, on w, (1 —e¢1)y, — 0; call E = ANBND.
Clearly: Pr(A) = Pr(B) = Pr(D) = Pr(F) = 1. To prove our claim it is sufficient to
show that Yw € F, lim; ,, s (w) = 1. By way of contradiction suppose that 3 @ € E such
that ¢* (@) # 1. In order to have (1 —&; 1)7v, — 0, we need 7, (&) — 0. By assumption
4, v, (wtcﬁp M ) is a monotonic function of w&4rM Call w that level of wealth such that
v (@) = 0. If v, (@) — 0, then equivalently wCAPM (@) — w. Recall that w4 (&) =
[1 — i1 (@) wieq (@). Therefore, if v, (©) — 0, then [1 — g1 (©)] w1 (&) — W. We know
that e, (0) converges to £* (0) > 0. However wy, in presence of aggregate risk, does not
converge. As a result vy, (W) does not converge to 0. Finally, this implies that, in order to
have| 1 — g, 1 (©)]7, (©) — 0 we need [1 — &, 1 (©)] — 0 which contradicts e* (@) #1. ®

Proof of proposition 8. Write the portfolio rule of CAPM traders as follows:

7-[-5 ws
St = t—tk/ + (L= 7) Tt = Mgty (78)
¢
where k, = Ele st/ ws and mg = v, /wsky + (1 — y,). Market clearing requires:

N
CAPM [ CAPM
Tst = &1 Oy +5stps+ E £ 10 (79>

n=1

which can be rewritten as follows:

L N n n
_ &lPbs T+ D 1 Er 10

st = 80
st 1 —efAPMm, (80)
Recall that: AP
L_ Ps 1 _ L= 7 "me ]1
£ —_5#1—}75 n St—1 (81)
st LaPs + Do, S0
Define, for j € {L,{1,....N}}:
J
_ Ci1
lg71 - 1 5tC,AlPM (82>
so that equation 81 becomes:
SLE (1 — CAPM s (1 — cCAPM
éjtL:Pt1< t—1 t) P( t—1 t) (83)

lthlpS + Zn I o B ps + Zn <l?71/lthl> «Q

Call A C Q the set of sample paths w such that, on w € A, s, converges; call B C

the set of sample paths w such that, on w € B, all states occur infinitely often. Clearly
Pr(A) = Pr(B) = Pr(C=AnNB) = 1. To prove our claim it is suflicient to show that,



Vw € O, lim;_, o & (w) > 0. By way of contradiction suppose that for some @ € C, £, (©) — 0.
This requires:

either (1— /"M (&) my (@) — 0 (84)
lL - L 5
or @) _ et <Cﬁ) — 0 for some n (85)

@) e, (@)
Case 85 is ruled out by corollary 4.1 in Blume and Easley (1992), p. 20, which claims that*
liminf; .o el /P | > 0. Case 84 can be ruled out by what writing that:

1y, (1 ) "

Now, since when € — 0, by corollary 4.1 in Blume and Easley (1992), also €7 — 0, Vn, then
clearly hmstL*}O (1 — 5tCLA1PM> = 0, so that 86 requires either v, — 0, or limstL*}O (1 —1/wsky) =

wskt

0. The case 7y, — 0 has been ruled out in the proof of proposition 7. The caselim.z_, (1 — 1/wske)

= 0 clearly contradicts aggregate uncertainty. Therefore lim; ., & (&) > 0 which contradicts
our assumption. Moreover 5tL / 5th1 = ps/7st — L. |

Proof of proposition 9. Recall that:

N
Tg = el | pg 4 eTAPM G CAPM 4 Z ep (87)
n=1
Define:
Qg = OéggAPM — Vs (88>
by, = aL — s (89)

so that equation 87 becomes:
N
Tot —Ps = 01 Mg + Z i 10 (90)
n—1
Proposition 8 implies that 7, — p; — 0 a.s. and therefore:
N
cCAPM g + Zg;:lbg; — 0 a.s. (91)
n—1

We can show that £C47M and &" | Vn converge almost surely. In fact, for ¢/* and j =

CAPM {1,...., N}, we can prove the following:

o, i
+logel | = (92)
T st

S
Eflogsl] = ) p.log
s=1

s
j Ds Ps
= loge] |+ Zps log i Zps log —

s=1 Qg

28Corollary 4.1 in Blume and Easley (1992), p.20 actually claims that liminf; el [ /e? | > 0 a.s., but
then call F' C Q the set of sample paths such that liminf; .o, ef ;/e? ; > 0. Clearly Pr (F) = 1. Then take
W € (CNF) and the proof follows.



Note that Ele pslogps/me — 0 a.s. and that Ele pslogp,/al, will always be positive.
Therefore, no matter what happens in the short run, in the long run, because of the conver-
gence of prices to probabilities, €] must become a supermartingale. In fact:

lim [E (loge]) —loge] ] <0 as. (93)
As a result, 5{ converges?. We have therefore established that both eS47M and &7 | Vn €
{1,...,N} converge almost surely. Call €“APM* and ™ V¥n € {1,...,N} respectively their
limiting values. With aggregate uncertainty, clearly Pr{w € Q| as (w) — 0} = 0; finally, by
assumption 6: Pr{w € Q | 0%, (w) — 0 } =0, ¥Yn € {1,...,N}. Therefore 91 requires either
gCAPMY — () a.s. and €™ =0 a.s.,Vn € {1,..., N}, or:

N n*
5
Qgr — Z —CArin (—b7,) a.s. (94)
n=1
Equivalently: e¢APM#*qCAPM Z Moy, — (1 — 5L*) Ps a.s. [

Proof of proposition 10. We first show that logarithmic utility maximisers dominate.
Recall that, if state s occurred at date ¢:
P
g (w) = g1 (W) (95)

st (W)

Market clearing requires for all s € {1,...,5}:

T = PsEi— lwskt (96>
St —_— 3 3
wsky — ZJI igg i~ ZJI igg 1 (1 - ’Yi) wgky
where ky = ) Ty Jw,. Therefore equation 95 becomes:
1_Z§ igi 1 (1_%)} wsk‘t—2§ igi 1%
Er = (97>

Ws kt

By lemma 19 we know that ¢, — £* a.s. and we want to show that £* > 0 almost surely.
Call A C Q the set of sample paths w such that, on w € A, &, converges; call B C (Q the
set of sample paths w such that, on w € B, all states s € {1,..., 5} occur infinitely often.
Clearly Pr(A) = Pr(B) = Pr(C = An B) = 1. To prove our claim it is sufficient to show
that, Vw € C, e* (w) > 0. By way of contradiction, suppose, that for some @ € C, £* (&) = 0.
Given @, then:

I-1 I-1 5
j j doiiE 1%
1=> el (1-~) - = 0 (98)
=1

wskt

2°Tn fact limy— oo {E <log€f;) — logegfl} < 0 a.s. implies that with probability equal to 1, 3T | V¢ >

T:FE [log eg < log 5?5;1- Let us consider, then, the process starting at 7: by the martingale convergence

theorem, it will converge almost surely. Obviously the process starting in £ = 0 will converge a.s. as well
and to the same limit.



or, equivalently:

I-1 _j
o
th 1% E] 15— 1% 0 (99)

wskt

Since fyz — 0 (see proof of proposition 7), this can only be the case if wsky — 1. In presence
of aggregate uncertainty, this is clearly a contradiction. Dominance of logarithmic utility
maximisers implies that market prices converge a.s. to probabilities. In fact, by 95 and by
limg , o, & > 0 a.s., we get:
£t (w) _ Ds
&t-1 (w) Tst (w)

We can finally prove that CAPM traders vanish. We can write the price equation as follows:

— 1 a.s. (100)

Ty = = 1ps+25t 1aCAPM(J) (101>

= P Ps + (1 - %4) Ay

where ¢, | = g1/ [Q,l +3; 5{71 (1 — ’yi)} Convergence of prices to probabilities re-

quires:
(1—¢,1) (el —ps) =0 as. (102)
We know that ( p5> converges but not to zero, therefore eq. 102 requires:
¢, — 1 as. (103)

so that we need:

Zag (1 — fyi) — 0 as. (104)

Since we cannot have®” 7{ — 0 for any j € {1,...,J}, the asymptotic price equation only

holds if &/ — 0 a.s. for all j € {1,..., J}. [
Proof of proposition 11. If 6% > 6, a.s., then clearly:

65Lps Ds
&1 & T & .S.
¢ -1 > E¢t—1 a.s (105>

£y =
6stﬂ_st Tt

Finally, since by proposition 5 limy . (ps/7s) €1 > 0 a.s., a fortiori

L
lim Osibs ge—1 > 0 a.s. (106)
t—00 6st7rst
Therefore logarithmic utility maximisers dominate. Price convergence to probabilities can
be proved by lemma 19 in Blume and Fasley (1992), p.34. Finally, dominance of logarithmic
utility maximisers and price convergence to probabilities imply that CAPM traders vanish
in the same fashion as in the proof of proposition 7. [ |

30See proof of proposition 7.



Proof of proposition 12. We first prove price convergence to probabilities and then
dominance of logarithmic utility maximisers and extinction of CAPM traders. By lemma
A.1 in Blume and Easley (1992), p.34, prices converge almost surely to probabilities if:

Zps log b >0,V >0 (107)

stﬂ_st

Recall that: . CAPM
6stp5€t*1 + 651& OégtAPM (1 B 5t,1)

Ost = - (108)
so that condition 107 becomes:
. p
ps log - >0, Vt > 0. (109)
DO e e T ()

We can show that a sufficient condition for the left-hand side of 109 to achieve a non-negative
minimum is that:

6CAPM CAPM

0< Zpsé‘t L+ Z st Dt (1—g ) <1 (110)

L
652&

or equivalently:

S CCAPM
6 asctAPM

E¢t—1
—— < = = 1 111
1—eq ; 6@ - (111)

The first constraint does not bind (since the summation will always be positive). Therefore
the only binding inequality is the second one. We can finally prove extinction of CAPM

traders (and indirectly dominance of logarithmic utility maximisers) similarly to proposition
7. [ |

Proof of pr0p051t10n 14. In a pure exchange economy, each trader 7 has an endowment
in assets’ shares {%t} _, and chooses an optimal portfolio solving the following problem:

¢ = arg max {E [u' (gows)] st Zp‘gt i = 0} -

Moreover, market clearing requires for all s € {1,...,5}:
Z 0 = Z , (112)
i=MV,LOG i=MV.LOG

However, going back to definition 13, it is straightforward to show that problems P1 and P2
are equivalent from an analytical point of view, when one substitutes £, | for z%,. In fact,
since wy—1 = »_, Pgs, problem P1 can be rewritten as follows:

s=1

s
¢! = argmax {E [’ (gws)] st ZpSt (g = 210) < 0} o



Finally, the market clearing condition requires for all s € {1,..., S}:

Z Qo = Z g1 =1 (114)

=MV, LOG =MV.LOG

Therefore we can consider (5@71,5;1, ...,5i,1> € A ! as if it was an endowment vector
in assets’ shares for trader i and we can study equilibrium existence as if we were facing
a pure exchange general equilibrium model. Existence is guaranteed by strictly positive
endowments and continuous, strongly monotone and strictly convex preferences. |

Proof of proposition 15. Recall that demands are as follows:

1 k—a(l—=1)
MV ¢ -1
_ _ . 115
st aw, ahypsw? Trst (115)
L Et—1Ps
_ 116
qst Tt ( >

where k; = Zle Tst/Wws and hy = Ele 72, /psw?. Market clearing requires, Vs € {1,...,5}:

lft—CL(l—&t,l) 9 _< 1

¢
ahypsw? s aw,

— 1> Tet — €¢_1Ps = 0 (117)

Solving for equilibrium prices we find:

(1/aws — 1) + \/(1/aw5 — 1)2 +dey qps [k —a (1 — g4 1)] Jahpsw? .
T = 3 — o (1= = )] Jahepou? > (118)

1/aws —1
>
(ke —a (1 —24)] fahpsw?

Finally, since both k; and h; are bounded:

1 1

— < k< — (119)
Wg wn
L < < L (120)
max, {ps} wi *= min, {ps} w?
we find that Vs € {1,...,5},¢ > 0:
ming {ps} [ wy 3
Tt > (1 - aws) m w—s >0 (121>

Provided that satiation is not attained, namely provided that a < 1/wg, this lower bound
is strictly positive. |

Lemma 20 In presence of aggregale uncertainty o™V almost surely does not converge to
probabilities. Formally: if ws # wy for all s,s' € {1,...,S}, then Pr {w €Q| oV — ps} =
0.



Proof of lemma 20. Recall that mean-variance traders’ portfolio rules are as follows:

o ki—a(l—cg
oMV = ”_t M “; _5t ) 2, (122)
aws (1 —e4q)  ahpsw? (1 —e4 )

When prices converge to probabilities we get that:

MV — Dy [mt — E} a.s. (123)

Wy

where m,; and n; are defined as follows:

1
= — 124
TS =) (124)
l{?t —a (1 — 51&71)
_ 125
”t ahy (1 —£,1) (125)

Consider the set B C Q of sample paths w such that, on w € B, all states occur infinitely
often. This set has clearly measure one. By way of contradiction suppose that for some
& € B, aMV (©) — p,. This implies that, given @, (ps/ws) [my — n/w,] = p, or, equivalently,
w? — myw, — ny = 0. This equation yields a solution for w, that does not depend on s, which
contradicts aggregate uncertainty. |

Proof of proposition 17. Market clearing requires:
st = e—1Pps + (L — &4-1) Oéé\fv (126)

or equivalently:
Tat —Ps = (1 —2c1) (agf" — ps) (127)
Dominance of traders with a logarithmic utility function implies:

Mgt — Ps a@.S. (128>

and therefore:
(1 —ep1) (&Y —ps) = 0 as. (129)

By lemma 20, (aé\fv — p5> -+ 0. As aresult, (1 —2;) — 0 a.s. and g, — 1 as. |
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