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Astrocyte response to motor neuron injury
promotes structural synaptic plasticity via
STAT3-regulated TSP-1 expression
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Chao Zhao1,2, Robin J.M. Franklin1,2, Ragnhildur T. Karadottir1,2, James W. Fawcett1 & András Lakatos1

The role of remote astrocyte (AC) reaction to central or peripheral axonal insult is not clearly

understood. Here we use a transgenic approach to compare the direct influence of normal

with diminished AC reactivity on neuronal integrity and synapse recovery following extra-

cranial facial nerve transection in mice. Our model allows straightforward interpretations of

AC–neuron signalling by reducing confounding effects imposed by inflammatory cells. We

show direct evidence that perineuronal reactive ACs play a major role in maintaining neuronal

circuitry following distant axotomy. We reveal a novel function of astrocytic signal transducer

and activator of transcription-3 (STAT3). STAT3 regulates perineuronal astrocytic process

formation and re-expression of a synaptogenic molecule, thrombospondin-1 (TSP-1), apart

from supporting neuronal integrity. We demonstrate that, through this new pathway, TSP-1 is

responsible for the remote AC-mediated recovery of excitatory synapses onto axotomized

motor neurons in adult mice. These data provide new targets for neuroprotective therapies

via optimizing AC-driven plasticity.
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P
lasticity of synaptic input around cell bodies of neurons
occurs rapidly following injury to their central or peripheral
axon projections. Proximal to the lesion, this adaptive

remodelling mechanism may both switch functioning neurons
into the circuitry1,2 and enhance neuronal viability3. A critical but
unresolved issue is the role of perineuronal AC reactivity in this
process. Could remotely activated grey matter glial cells
orchestrate dynamic structural changes in neuronal
connections? Synapse elimination and rearrangement around
the neuronal soma and dendrites occur concomitantly with glial
cell activation4–6. Similar to microglia, perineuronal ACs are
known to respond to distant insults by extending hypertrophic
processes around synapses. However, the extent to which this
type of reactive transformation represents a detrimental or a
protective response for neuronal function and integrity in the
adult central nervous system (CNS) has never been directly
addressed. This is highly pertinent, as targeting reactive AC–
neuronal interactions proximal to damage is a plausible
alternative approach for facilitating neuronal survival and
repair. This is due to the relative lack of negative influence
from other invading cell types6,7. Thus, understanding the precise
mechanisms and consequences of remote AC activation may hold
the key to optimizing the efficiency of functional recovery.

Most reports on the astrocytic behaviour have derived from
studies on ACs residing in the vicinity of a lesion, but often led to
conflicting views. Although reactive ACs have been shown to
express a number of molecules inhibitory for plasticity8,9, recent
studies argue that they can also be beneficial for repair. Within
traumatic spinal cord lesions, signal transducer and activator of
transcription-3 (STAT3) signalling was found to regulate AC acti-
vation, which was also shown to be necessary for wound healing
and functional recovery10–12. The exact mechanism underlying
synapse recovery in the vicinity of these lesions is unknown. AC-
derived thrombospondin-1/2 (TSP-1/2) attracted interest as they
have been found to increase excitatory synapse density in the
developing CNS13,14. Recent studies using experimental
ischaemic CNS damage reported that thrombospondin-1/2 can
be re-expressed locally at the lesion site15,16, but their regulation
in reactive ACs also remains unresolved.

The complexity of these lesions may cloud direct interpreta-
tions of default AC behaviour, and the above findings may not be
relevant to situations when ACs are remotely activated in a less
inflammatory environment17–19. The influx of other cells around
the lesion and the release of cytokines that may reach distant
areas by diffusion and via the cerebrospinal fluid can influence
both AC response and synaptic recovery.

We directly addressed the effect of remote AC reactivity on
neuronal integrity and recovery of their synaptic input while
reducing potential confounding factors. We used unilateral
extracranial facial nerve transection where the AC response is
distant and predominantly triggered by neuronal insults in a less
inflammatory environment. By selectively impeding AC activa-
tion in an established transgenic system12, we could reliably
examine its effect on neuronal function. We show that remotely
activated grey matter ACs directly promote structural synaptic
plasticity and support network integrity. We also provide the
underlying mechanism, showing that STAT3 activation
upregulates astrocytic TSP-1 re-expression and release, which is
required to facilitate the recovery of synaptic input onto surviving
motor neurons after their distant axonal insult.

Results
STAT3 induces AC process formation after axotomy. To
explore whether STAT3 signalling plays a key role in the AC
response to remote axonal injury, we used glial fibrillary acidic

protein (GFAP)-Cre/STAT3-loxP conditional knockout (CKO)
mice in comparison with wild-type (WT) controls. Astrocytic
STAT3 activation was verified by nuclear translocation of
immunoreactivity (IR) in the facial nuclei (FN) 14 days after
facial axotomy (Fig. 1a–f). To identify all ACs, tissue sections
were immunostained for ALDH1L1, a pan-astrocytic marker that
is less dependent on STAT3 activity20 (Fig. 1a–d). In WT mice
(n¼ 3) the proportion of ACs with STAT3 activation was
significantly higher at 49.44±5.26% compared with the
contralateral (CL) side (4.6±0.54%) or for unlesioned controls
(7.51±1.9%; n¼ 3, Po0.001; Fig. 1a,c,g). In CKO mice (n¼ 5),
STAT3 activation was effectively abolished in ACs (Fig. 1b,d,g).

We then addressed whether STAT3 activation is associated
with characteristic features of reactive AC transformation, such as
GFAP expression. First, we examined whether the STAT3-
activated population overlaps with GFAP-expressing ACs
(Fig. 1e,f). In WT mice, 43.77±5.84% of GFAP-positive cells
displayed nuclear STAT3 (nSTAT3) IR at day 5, which rose to
60.9±1.54% at day 14 when compared with the CL side at each
time point (n¼ 3, Po0.001; Fig. 1e,h). In CKO mice, this
response was negligible or absent (Fig. 1f,h). Quantifications of
AC reaction assessed by intensity (optical density) measurements
of GFAP immunoreactivity showed that intensity values were
equally (P¼ 0.49) increased 7-fold and 5.8-fold in the affected FN
of WT C57BL/6 mice and WT littermate controls compared to
the CL side (n¼ 3; Fig. 1k,l). By contrast, in the CKO group,
GFAP density values only rose 2.5-fold (n¼ 6, Po0.01). AC
death was not the cause of decreased GFAP immunoreactivity, as
pyknosis in this population was equally marginal in the two
groups (P¼ 0.634; Fig. 1j,k). Furthermore, AC numbers were also
comparable as assessed by labelling for ALDH1L1 (n¼ 4, P40.05
for all; Fig. 1i).

We also tested whether STAT3 phosphorylation, another
aspect of STAT3 activation, is associated with increased GFAP
expression by immunoblotting whole FN tissue samples. In the
ipsilateral (IL) FN of WT mice, the density of pSTAT3 IR bands
was increased by 9.6-fold (P¼ 0.001) when compared with the CL
side. While this response was much lower in CKO mice, overall
STAT3 phosphorylation was not entirely abolished (n¼ 3,
Fig. 1m,n). This mirrors the diminished extent of nSTAT3 IR
observed in CKO mice, and it also indicates that other cells, such
as neurons can efficiently activate STAT3 after axotomy
(Fig. 1e,f,o). We also found a positive correlation (R¼ 0.9,
P¼ 0.004) between the density of pSTAT3 and GFAP IR bands in
the axotomized FN. The latter was greater (Po0.001) by 2.9-fold
in WT mice than in CKO mice (n¼ 3; Fig. 1m,n).

By electron microscopy we then determined whether STAT3
activation can influence AC process availability, a sensitive
measure of AC reaction. The abundance of AC processes was
confirmed by ultrastructural studies in which the proportion of
neuronal membrane contacted by AC endfeet was quantified21.
We detected a significantly greater (Po0.001) neuronal coverage
by WT AC processes in the axotomized FN compared with that
seen for the CKO mice (WT IL: 44.7±2.94%, CKO IL:
31.2±2.79%, n¼ 14 cells; Fig. 2a,b). The astrocytic coverage in
the non-affected FN was comparable between the groups
(Fig. 2a,b). Having confirmed that the abundance of
perineuronal processes depends on astrocytic STAT3 activity,
we examined whether it also correlates with changes in
cytoskeletal filament content, such as GFAP, in individual ACs.
The number of AC processes that were positively labelled for
GFAP was quantified 15mm away from their soma (63–90 cells
per group analysed, n¼ 3; Fig. 2c). We found a 1.74-fold increase
in process numbers in the WT group where ACs displayed an
average of 10.02±0.46 processes (P¼ 0.009) compared with
5.75±0.15 processes seen for the CKO mice. To assess whether
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Figure 1 | STAT3 activation is necessary for reactive transformation of perineuronal ACs after remote injury. (a–f,k) Grey matter AC response in the facial

nucleus (FN) 14 days post-facial nerve transection. (a–d) Nuclear localization of STAT3 in Aldh1L1 IR ACs (fluorescent microscopy), (e,f) in GFAP IR reactive

ACs (thin arrows; confocal images) and in motor neurons (arrowheads) in the IL FN of WTmice (a,e) and its relative absence (empty arrows) in the CL side in

WT mice (c) and in CKO mice (b,d,f). (g) Proportion of Aldh1L1 IR ACs and (h) GFAP IR ACs displaying nSTAT3 labelling at day 5 or 14 post axotomy in WT

mice (n¼ 3) and in CKO mice (n¼ 5) (g, ***Po0.001, one-way analysis of variance (ANOVA); h, n¼ 3, ***Po0.001, one-way ANOVA Po0.0001). (i) AC

density is expressed as mean of Aldh1L1 IR cell count (mm� 2), which is comparable in WT and CKO groups and remains unchanged after axotomy (n¼4,
NSP¼0.645, one-way ANOVA). (j) Numbers of intact non-neuronal nuclei (n¼ 3, NSP¼0.39, t-test ) and the proportion of pyknotic ACs in both groups

(n¼ 3, NSP¼0.634, t-test ). (k) GFAP immunoreactivity in the axotomized and CL FN in WT mice and in CKO mice. GFAP IR ACs (arrowheads) surround

axotomized neurons (full arrows) and display marginal pyknosis (thin arrows) in the two groups. (l) Mean intensity (optical density) values for IL GFAP

immunoreactivity normalized to the CL side within the same section (WT n¼ 3, CKO n¼ 6, NSP¼0.49, t-test; **Po0.01, one-way ANOVA P¼0.0013).

(m) Means of band densities for pSTAT3 and GFAP immunoblots (n, Supplementary Fig. 1) of IL and CL FN tissue samples, demonstrating overall STAT3

phosphorylation induced by axotomy in WT mice and to a lesser extent in CKO mice (n¼ 3, ***Po0.001, *Po0.05, one-way ANOVA). (o) Mean percentages

of neurons displaying nSTAT3 labeling. Scale bar, 30mm for a–f; 250mm and 20mm for k; n¼mice per group. Data represent mean±s.e.m.
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the increase in the number of GFAP IR processes correspond
with STAT3-induced dynamic cytoskeletal changes, we quantified
the number of cells displaying cortical F-actin assembly with
connections to radial filaments in cultured ACs activated by
interleukin-6 (IL-6). At 24 h, significantly more WT ACs retained
their reorganized cytoskeleton (P¼ 0.043), while CKO cells did
not respond and showed flat morphology with parallel filaments
(n¼ 3 experiments per replicate cultures; Fig. 2d). We conclude
that STAT3 activation transforms grey matter ACs into a reactive
phenotype, thereby increasing their perineuronal presence
following axotomy.

Finally, we asked whether there are differences in the relative
availability of reactive ACs to microglia to define the degree of
specific astrocytic influence on neurons. Thus, we assessed the
microglial response in WT and CKO mice after axotomy. We
quantified both the density of CD11b-positive areas and the
presence of activated proinflammatory microglia/macrophages
labelled for IBA1/Arg1 or for IBA1/Lamp2, respectively. We
found comparable density values for CD11b immunoreactivity in
the axotomized FN in the two groups at day 14 (n¼ 3, P¼ 0.299;
Fig. 2e). Although there was a more than 5.6-fold increase
(P¼ 0.001) in density of total IBA1-positive activated microglia
after axotomy, their numbers were comparable (P¼ 0.82) in the
presence of normal and diminished AC reactivity (n¼ 4;
Fig. 2f,g). Moreover, the proportions of Arg1-labelled cells
among IBA1-positive microglia was equal between the two
groups as early as day 5 (n¼ 3, P¼ 0.098) and also at day 14
when cell densities significantly declined (Po0.001) by more than
3.5-fold (n¼ 4, P¼ 0.307; Fig. 2f,h). We did not find differences
in the fraction of IBA1/Lamp2-positive microglia/macrophages
up to day 14 (n¼ 3, P¼ 0.218; Fig. 2f,i). These results indicate
that microglia/macrophage numbers were not affected signifi-
cantly by the reduction in astrocytic STAT3 activation.

ACs support neuronal integrity via STAT3 signalling. We
addressed whether ACs maintain neuronal viability through
STAT3 signalling. First, we compared neuronal integrity in the
FN of WT mice and CKO mice with diminished AC reactivity
and STAT3 activation (Fig. 3a). Viable, non-atrophic neurons
were defined by strong NeuN IR and intact nuclei at days 1, 7, 14
(Fig. 3a,b) and 28 post-facial nerve transection. From day 7, the
preservation of neuronal integrity was nearly twofold greater
(Po0.0001) in the vicinity of activated WT ACs (Fig. 3a,b). In
CKO mice, the proportion of pyknotic nuclei with weak NeuN
immunoreactivity was 2.63-times higher (P¼ 0.041) than in WT
mice at day 14 (n¼ 7; Fig. 3a,c). Neuronal death was also con-
firmed by activated caspase-3/NeuN co-labelling. 30.14±1.93%
of neurons displayed activated caspase-3 immunoreactivity in the
IL FN of CKO mice, which was 1.7-fold greater than that seen for
WT mice (n¼ 3, P¼ 0.025; Fig. 3d–f).

We also addressed whether Schwann cells (SCs) could be
affected by GFAP-Cre-dependent reduction in STAT3 activation
in CKO mice, which could potentially contribute to neuronal
death by the loss in their trophic influence at the nerve stump.
We found a reduction in the density of nSTAT3-positive and
S100 IR myelinating or non-myelinating SCs in axotomized
nerves sampled 1 mm proximal to the stump (P¼ 0.002).
However, the overall density of SCs raised to equal values in
WT and CKO mice following axotomy (n¼ 3, P¼ 0.857;
Fig. 3g,h).

We then sought to determine in vitro whether ACs via STAT3
can exert a direct neuroprotective effect independently of SCs. We
set up a purified AC–neuron co-culture system in which ACs
were initially ablated by AraC and then replaced either by WT,
CKO or no ACs for comparison (n¼ 3). Cortical neurons derived
from neonatal mice are known to be vulnerable in culture,
especially without the presence of astrocytic factors, providing a
simple survival assay22. Viable neurons were defined by the
criteria used in our in vivo experiments (Fig. 4a–f). Consistent
with our in vivo findings, WT ACs were nearly 1.73 times more
efficient (Po0.01) than CKO ACs in supporting neuronal
integrity (Fig. 4g). This was also mirrored by a significantly
reduced proportion of activated caspase-3-positive neurons in the
presence of WT ACs (10.1±1.4%; n¼ 3, P¼ 0.001) when
compared with the CKO group (33.8±2.49%) or to cultures
with no added ACs (38.1±4.04%; n¼ 4, Po0.01; Fig. 4h), while
the number of re-plated ACs in the WT and CKO groups was
equal (Fig. 4i). Together, these results suggest that ACs exert an
independent STAT3-mediated protective effect.

AC reaction is associated with synaptic recovery. We also asked
whether the AC reaction enhances the maintenance or recovery
of synaptic input on neurons to help restore function. To address
this question, initially we compared synapse densities in WT and
CKO mice at day 14 post axotomy. This time point correlates
with accelerated synapse formation, which follows the initial
phase of synapse stripping6. At the ultrastructural level
axosomatic synapse density was defined by the number of
synapses along a 1 mm length of the neuronal membrane (Fig. 5a).
The values were equal in the CL sides in the two groups,
suggesting normal developmental synaptogenesis in the CKO
group. However, synapse density in the injured side was 1.54-fold
higher in WT mice (n¼ 12 cells) compared with CKO mice
(n¼ 17 cells, Po0.05; Fig. 5b). The density of axodendritic
synapses reached the values of the CL side in WT mice (n¼ 13
dendrites), whereas this was still reduced by 1.76-fold in the CKO
group (n¼ 12 dendrites, Po0.001; Fig. 5c). These results suggest
that AC reactivity promotes structural synaptic rearrangements.

To assess whether these observed changes represent functional
synapses, we measured frequencies of excitatory postsynaptic

Figure 2 | STAT3 mediates reactive AC process formation. (a,b) Differential increase in perineuronal AC process availability 14 days post facial nerve

transection in WT and CKO mice. (a) Electron micrographs of AC endfeet (green) along the neuronal membrane (blue) in the IL and CL FN. (b)

Ultrastructural analysis: percentage of neuronal perimeter contacted by AC endfeet (CL n¼ 12, IL n¼ 14 cells, ***Po0.001, **Po0.01, one-way analysis of

variance (ANOVA) Po0.0001). (c) Mean number of AC processes that are GFAP IR 15 mm beyond the soma (n¼ 3 mice, 63–90 cells in total, **P¼0.009,

t-test). (d) In vitro examples of activated ACs displaying cortical F-actin fibres (phalloidin, empty arrow) with connections to radial filaments (small arrow)

and phosphorylated focal adhesion kinase (pFAK) 24 h after IL-6 treatment. Non-activated ACs retain their flat morphology with mostly parallel filaments

(full arrow). Mean numbers of WT or CKO ACs that retained their activated phenotype 24 h after activation by IL-6 or in serum-free medium (Sato) (n¼ 3

experiments per replicate cultures, *P¼0.043, t-test). (e) CD11b immunolabelling in the CL and IL FN in WT and CKO mice. Lower panel represents

confocal images of the axotomized FN. In WT mice, CD11b IR structures (full arrows) appear to intermingle with processes that are strongly positive for

GFAP (empty arrows). Mean density values for CD11b IR areas normalized to the CL FN in WT and CKO mice at day 14 post axotomy. (f) Illustrations of

IBA1 IR-activated microglia in IL FN (green) and of its subtypes co-labelled (arrows) for markers, Arg1 or Lamp2 (red) in WT and CKO mice at day 14 post

axotomy. (g) Means of cell densities for IBA1 IR-activated microglia at day 14. (h,i) Means of percentages of Arg1/IBA1 (h) or Lamp2/IBA1 (i) double-

labelled microglia/macrophages over the total number of IBA1-positive cells in the IL FN (day 5 n¼4 and day 14 n¼ 3, ***Po0.001, **Po0.01, one-way

ANOVA). Scale bar, 0.25mm for a; 20mm for d; 100 and 20mm for e; 200 and 25mm for f. Data represent mean±s.e.m.
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currents in surviving motor neurons 10–14 days after axotomy.
Whole-cell patch clamp recording was performed on acute
brainstem slice preparations taken from axotomized postnatal mice
(P20–P24). In CKO mice, there was a clear reduction in synaptic

activity (3.67±1.25 Hz, n¼ 6, P¼ 0.036) in surviving neurons
when compared with that seen in WT mice (9.47±1.87 Hz, n¼ 5;
Fig. 5d). This suggests a more abundant excitatory synaptic input
post axotomy in WT animals over CKO mice, which also correlates
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with a 1.45-fold greater density of PSD-95-labelled postsynaptic
puncta in WT mice (P¼ 0.036), while the density of dendrites has
not changed (Fig. 5e–g).

Next, we addressed whether the greater excitatory input in WT
mice represents synapse recovery rather than maintenance of
connections in adult animals. We identified synapses by
synaptotagmin-1/PSD-95 co-labelling during synapse stripping
(day 5) and the re-organization phase (day 14) in both IL (Fig. 6a)
and CL FN (Fig. 6e). Synapse densities were defined by the
number of IR puncta per 0.01 mm2 area, and were normalized to
the CL measurements to demonstrate the efficacy of synapse
recovery. Initially synapse densities declined equally (P¼ 0.125)
to values of 0.68±0.03 and 0.61±0.02 for WT and CKO mice
(n¼ 3), respectively. However, significant recovery was only
observed in WT mice to a ratio of 0.84±0.02 (n¼ 6, P¼ 0.001;

Fig. 6b). In contrast, in areas of STAT3-deficient AC populations,
this ratio remained as low as 0.54±0.05 (n¼ 4), 30% lower when
compared with that seen in the WT mice (Fig. 6b). Despite
greater neuronal degeneration in the CKO mice, the IL/CL ratios
of MAP-2-positive dendritic areas (Fig. 6a) did not differ
significantly in the two groups (n¼ 4; Fig. 6c). This may suggest
dendritic compensatory mechanisms23 in surviving neurons in
CKO mice; however, synapse recovery was still abolished. Our
results indicate that surviving neurons in the CKO mice receive
significantly less excitatory input per cell than their WT
counterparts.

TSP-1 is required for synapse recovery following axotomy. We
then asked what factors are directly responsible for the observed
synaptic changes mediated by reactive ACs. TSP-1, an AC-
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derived molecule responsible for excitatory synaptogenesis during
development, was recently shown to be re-expressed locally in
CNS injuries16,24. Thus, we hypothesized that TSP-1 plays a role
in the plasticity of synaptic input on axotomized motor neurons
in adult mice. To explore this possibility, we compared synaptic
densities in the FN of TSP-1 KO mice with those found in WT
and CKO mice at days 5 and 14 (Fig. 6a,b). Successful TSP-1
protein depletion in ACs derived from TSP-1 KO mice was
verified by immunoblots (Fig. 7m). Synapse recovery was
significantly impaired in TSP-1 KO mice, but to a smaller
degree than that found in the CKO group (see above). Between
days 5 and 14, the normalized synapse density values had only
returned to 0.74±0.03 from 0.69±0.01 (n¼ 4, Po0.05; Fig. 6b).

The IL/CL ratio of MAP-2 IR dendritic areas was also comparable
with the values seen in all other groups (Fig. 6c). In addition,
synapse density and MAP-2 area fraction values measured in the
CL FN of all groups were equal, which reflects no differences in
developmental excitatory synaptogenesis or dendritic areas
between WT and CKO or TSP-1 mice (Fig. 6e–i).
In summary, our findings provide evidence that TSP-1 plays an
important role in adult plasticity following axonal insults.

Astrocytic STAT3 induces TSP-1 expression and release. We
asked whether TSP-1 could be responsible for reactive AC-driven
synaptic recovery via STAT3 signalling. TSP-1 (Thbs1) messenger
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RNA (mRNA) expression was examined in the FN of WT and
CKO mice at day 14 post axotomy. By in situ hybridization, we
detected a 6.73-fold increase in the number of Thbs1 mRNA/
GFAP-expressing ACs (Fig. 7a–c) in the WT mice when com-
pared with the CL side (n¼ 3, P¼ 0.039). This increase was
reduced to 2.21-fold in reactive ACs with impaired STAT3 acti-
vation in the CKO mice. Motor neurons also displayed Thbs1
mRNA expression, however, their numbers were only marginally
increased by 1.71-fold on the axotomized side and was equal in
the two groups (n¼ 3; P¼ 0.407; Fig. 7b,c). The number of

Thbs1 mRNA-positive cells excluding ACs and neurons were
negligible.

To confirm the link between astrocytic STAT3 activation and
Thbs1 expression, we also quantified mRNA levels by quantitative
PCR (qPCR) from FN tissue samples. In WT mice, Thbs1 mRNA
levels were B3-fold greater in the axotomized FN when
compared with the non-affected FN or to the FN of CKO mice
(n¼ 3, P¼ 0.035; Fig. 7d). This response to axotomy was also
reflected by increased TSP-1 protein expression indicated by a
1.9-fold higher band density value in immunoblots from IL FN

C
L 

F
N

-M
A

P
-2

C
L 

F
N

-S
Y

T
-1

/P
S

D
-9

5
IL

 F
N

-S
Y

T
-1

/P
S

D
-9

5
IL

 F
N

-M
A

P
-2

M
A

P
-2

 IR
 a

re
a 

fr
ac

tio
n

 p
er

 0
.0

1 
m

m
2

P
S

D
-9

5 
IR

 p
un

ct
a

pe
r 

ar
ea

 (
0.

01
 m

m
2 )

S
Y

T
-1

 IR
 p

un
ct

a
pe

r 
ar

ea
 (

0.
01

 m
m

2 )

S
Y

T
-1

/P
S

D
-9

5 
IR

 p
un

ct
a

pe
r 

ar
ea

 (
0.

01
 m

m
2 )

PSD-95 density

0

500

400

300

200

100

0

800

600

400

200

SYT-1 density

0.05

0.00

0.25

0.20

0.15

0.10

GFAP-STAT3-CKO

0

50

100

150

Synapse density MAP-2 area

WT GFAP-STAT3-CKO TSP-1 KO

*

M
A

P
-2

 IR
 a

re
a

(I
L/

C
L 

ra
tio

)

NS

S
Y

T
-1

/P
S

D
-9

5 
IR

 p
un

ct
a

(I
L/

C
L 

ra
tio

)

*
Synapse density

***

1.0

0.8

0.6

0.4

0.2

0.0
WT CKO TSP1 KO

0.8

W
T

CKO

TSP1 
KO

0.6

0.4

0.2

0.0

Day 14

Day 5

3D
 v

ie
w

 o
f M

A
P

-2
/P

S
D

-9
5 

IR
 d

en
dr

ite
s

NS NS

NSNS
**

Ipsilateral facial nucleus

Contralateral facial nucleus

WT GFAP-STAT3-CKO TSP-1 KO

NS NS

NS NS

TSP-1 KO

WT

Figure 6 | Recovery of excitatory synaptic density is associated with astrocytic STAT3 activation and is TSP-1 dependent. (a) Confocal images of

synapses (arrowheads) demonstrated by colocalization of synaptotagmin-1 (SYT-1) and PSD-95 IR puncta and the MAP-2 IR dendritic tree in the IL FN in

WT, CKO and TSP-1 KO mice 14 days post axotomy. (b) Means of ratios of synapses in the IL FN relative to the CL FN at day 5 (n¼ 3 mice, one-way

analysis of variance (ANOVA) P¼0.299) and at day 14 post axotomy (WT n¼ 6, CKO and TSP-1 KO n¼4 mice, ***Po0.001, *Po0.05, one-way ANOVA

P¼0.0002 and t-test between day 5 and day 14 values: **P¼0.001). (c) Means of ratios of MAP-2 IR areas (n¼4 mice, NSP¼0.272, one-way ANOVA).

(d) Three-dimensional reconstruction of confocal images showing a MAP-2 IR dendrite (grey) with areas of PSD-95 immunoreactivity at shaft and spinal

synapses (green) in the WT IL FN. (e) Images showing synapses illustrated by SYT-1 and PSD-95 immunoreactivity and MAP-2 labeling (white) in the CL

FN in adult WT, CKO and TSP-1 KO mice. Quantification of (f) PSD-95, (g) SYT-1, (h) SYT-1/PSD-95 IR puncta and (i) MAP-2 area fraction in the CL FN in

the three groups (n¼4, NSP40.05 for all, one-way ANOVA). Data represent the mean of number of synaptic puncta or MAP-2 IR area per 0.01 mm2 field.

Scale bar, 10mm and 25 mm for a; 1mm for d; 25 mm for e. Data represent mean±s.e.m.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5294 ARTICLE

NATURE COMMUNICATIONS | 5:4294 | DOI: 10.1038/ncomms5294 | www.nature.com/naturecommunications 9

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


tissue samples of WT mice (n¼ 3, P¼ 0.002; Fig. 7e,f). Selective
reduction of AC reactivity in CKO mice resulted in no response
in Thbs1 mRNA (P¼ 0.589) and almost completely abolished
TSP-1 protein expression when compared with that seen in WT
mice (P¼ 0.001).

We then asked whether STAT3 directly regulates Thbs1
expression in ACs. We tested this by a series of molecular studies
using purified ACs cultured with or without the STAT3 activator
IL-6. First, chromatin immunoprecipitation (ChIP) assay was
performed using DNA samples from cultured ACs activated by
IL-6. The TSP-1 promoter PCR product was enriched in the
STAT3 pull-down sample, indicating that STAT3 specifically
binds to the promoter sequence (Fig. 7g). To confirm that STAT3
binding also initiates transcription, we then measured Thbs1
mRNA levels from these samples by qPCR. We found a 2.2-fold
increase in WT ACs cultures in the presence of IL-6 when
compared with controls (n¼ 3, Po0.001; Fig. 7h). Inhibition of
STAT3 activation in CKO ACs abolished the increase in Thbs1
mRNA (n¼ 3, P40.05), suggesting a tight link between STAT3
activation and Thbs1 expression (Fig. 7h).

Next, we examined the TSP-1 protein content in non-activated
and IL-6-activated astrocyte cultures. ACs were identified by
GFAP/Aldh1L1 co-immunolabelling, as grey matter ACs may
express no or low levels of GFAP25. IL-6 induced a significant rise
(P¼ 0.001) in the proportion of ACs with nSTAT3 labelling in
WT cultures to 82.1±1.66% from 8.67±2.59% (n¼ 3; Fig. 7i,j),
whereas this was negligible or absent in all CKO ACs regardless
the presence of IL-6 (P¼ 0.521). In WT cultures, STAT3
activation resulted in significantly greater (P¼ 0.025) propor-
tion of ACs displaying TSP-1 immunoreactivity (42.42±3.4%)
over non-treated cells (27.82±2.41%) or when compared with
CKO cultures (Po0.001). In CKO ACs, there was no response to
IL-6 (n¼ 3, experiments/replicate cultures, P¼ 0.292; Fig. 7i–k).
These results indicate that TSP-1 protein expression in ACs is
STAT3 driven.

Since TSP-1 can be secreted, we addressed whether it is released
from ACs. Along with the increase of TSP-1 mRNA levels in
activated ACs, immunoblotting and confocal imaging revealed that
the intracellular TSP-1 content was reduced while TSP-1 was
deposited on AC surfaces or in the extracellular matrix (Fig. 7l,m).
In contrast, CKO ACs already had weaker TSP-1 bands, and this
was not reduced upon activation to the extent seen for the WT
cultures. We then measured the amount of TSP-1 released from
ACs by enzyme-linked immunosorbent assay (ELISA). We
observed significantly higher levels of TSP-1 concentration
(2.08±0.10 pg ml� 1) in the supernatant of IL-6-treated ACs in
the WT group over the CKO cultures (1.53±0.09 pg ml� 1) or
controls (n¼ 3, Po0.01; Fig. 7n). In summary, our experiments
provide novel evidence that TSP-1 is re-expressed via STAT3
signalling, and it is also concomitantly released from the cells.

Discussion
We provide definitive evidence that, despite the histological
resemblance to ACs found in inhibitory glial scars in direct CNS
injuries, remotely activated grey matter ACs promote structural
plasticity and circuit integrity in the adult CNS. We describe
novel mechanisms underlying this effect by showing that: (1)
remote activation of ACs and their process formation in the
vicinity of axotomized facial neuronal cell bodies is STAT3
dependent, despite the limited inflammatory response; (2)
STAT3-dependent AC activation is required for the recovery of
functional synaptic input onto surviving motor neurons, and not
only for supporting neuronal preservation; (3) a direct regulatory
link exists between astrocytic STAT3 activation and the re-
expression/release of the synaptogenic molecule TSP-1; (4) TSP-1
re-expression, in part, is directly responsible for the remote AC-
mediated recovery of excitatory input onto facial motor neurons
in adult plasticity.

ACs responding to remote cues extend processes and tend to
remain in their original domains without proliferation6,19. We
provide both ultrastructural and immunohistochemical evidence
that the formation of perineuronal astrocytic processes is
mediated via STAT3 phosphorylation despite the lack of a
significant inflammatory response. In our in vivo experiments, the
majority of reactive ACs displayed nSTAT3 labelling, leading to a
cascade of transcriptional events26. However, cytoplasmic
pSTAT3 may also directly influence cell migration and process
outgrowth, as found in fibroblasts, by binding to Rac1 activator
b-PIX, modulating cytoskeletal re-organization27. Our findings
show that STAT3 signalling is also a key element in remote
reactive transformation of ACs, explaining the role of STAT3
activation seen in previous studies18,28. This could be potentially
triggered by injured neurons via release of cytokines, such as IL-6
(refs 29–31).

What are the effects that remotely activated ACs exert through
this pathway then? ACs with a reactive phenotype have often
been regarded as cells inhibitory for repair9. However, recent
evidence suggests that the outcome of glial reaction to CNS
damage may vary depending on regional differences32,33 and on
the severity of injury, and may contribute to tissue preservation
in cases of moderate insults to neurons34,35. Our findings are in
line with these observations. It is possible that the limited
inflammatory cell response in the facial nucleus36 allows ACs to
display a reactive but neuroprotective phenotype, indicating a
default protective role of AC activation.

We provide evidence that astrocytic STAT3 signalling plays a
direct and important role in supporting the integrity of the
neuronal network, albeit they are likely to do so in conjunction
with other cells. We demonstrate that ACs can independently
support neuronal integrity via STAT3 signalling, using purified
AC–neuron co-cultures. Indeed, microarray studies indicate that

Figure 7 | STAT3 activation directly regulates TSP-1 expression in ACs. (a,b) In situ hybridization for Thbs1 in the FN 7 days post axotomy in WT and CKO

mice. (b) Triple-labelling shows co-localization of Thbs1 mRNA with GFAP (empty arrows) or NeuN immunoreactivity (arrows). (c) Quantification of ACs

and neurons expressing Thbs1 mRNA (n¼ 3 mice, *P¼0.039, NSP¼0.407, t-test). (d) Thbs1 mRNA measured by qPCR in IL and CL FN tissue samples in

WT and CKO mice at day 14 (n¼ 3, *Po0.05, one-way analysis of variance (ANOVA) P¼0.035). (e) Immunoblots of samples taken from FN tissues at

day 14, representing TSP-1 content against pSTAT3, STAT3 and b-actin immunoreactivity. (f) Mean density values for TSP-1 immunoblots of IL and CL FN

(n¼ 3, **Po0.01, ***P¼0.0002, one-way ANOVA). (g) ChIP demonstrates specific STAT3 binding to the TSP-1 promoter by showing PCR product

enrichment in the STAT3 pull-down sample. Positive control: sonicated/non-precipitated input sample. Negative controls: normal rabbit immunoglobulin G

and ‘No DNA’ samples. (h) Thbs1 mRNA levels measured by qPCR in purified WT (n¼ 3) and CKO AC cultures (n¼6) with or without IL-6 treatment

(***Po0.001, one-way ANOVA Po0.001). (i) Aldh1L1/GFAP/DAPI- and pSTAT3 or TSP-1 quadruple labelling in WT and CKO ACs activated by IL-6 or in

serum-free conditions (Sato). Proportion of GFAP/Aldh1L1 IR ACs displaying (j) pSTAT3 (empty arrows) or (k) TSP-1 immunoreactivity in Sato and IL-6-

activated conditions (n¼ 3 experiments per replicate cultures, ***Po0.001, *Po0.05, one-way ANOVA P¼0.0012). (l) Confocal images illustrating

intracellular or extracellular distribution of TSP-1 immunoreactivity in non-activated or IL-6-treated WT ACs, respectively. (m) TSP-1, pSTAT3 and STAT3

immunoblots for WT, CKO and TSP-1 KO ACs treated with Sato or IL-6. (n) ELISA: mean concentrations of TSP-1 (pg ml� 1) released into supernatants by

WT and CKO ACs after treatment with Sato or IL-6. Dots represent chemiluminescence (n¼ 3 experiments per replicate samples, **Po0.01, one-way

ANOVA P¼0.002). Scale bar, 200mm for a; 50mm for b; 40mm for i; 20mm for l. Data represent mean±s.e.m. Supplementary Figs 2–4.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5294

10 NATURE COMMUNICATIONS | 5:4294 | DOI: 10.1038/ncomms5294 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


astrocytic STAT3 activation may induce neuronal survival by
expression of molecules responsible for antioxidant defence37.
This includes glutathione synthase, whose deficiency leads to less
efficient protection against glutamate excitotoxicity38. Although,
SCs can also support neuronal viability via c-Jun39, we cannot be
entirely certain whether reduction in STAT3 activation in SCs
could have contributed to an impaired trophic effect in CKO
mice. The relevance of this possibility is yet to be addressed.

Furthermore, it is plausible that ACs exert their protective effects
in combination with microglia, too. Their interaction through
purinergic gliotransmission has been shown to be protective40.
We also found that the relative increase of the availability of
reactive ACs to microglia corresponds with enhanced neuronal
preservation. Other factors, such as limited lymphocyte influx,
have shown to be less relevant in influencing survival in this
model36.
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Apart from protecting against the harmful environment, ACs
can directly boost neuronal viability. Several reactive AC-derived
trophic factors and cytokines have also been implicated in
contributing to neuron survival41. There is also evidence for
AC-induced long-term potentiation42–45, which may increase
synaptic activity-induced neuronal survival46,47. This may occur
when glutamatergic synapses are restored on neurons48–52.
Whether ACs can also mediate survival by re-establishing
balanced excitatory synaptic input needs to be examined in
more detail.

Do perineuronal reactive ACs orchestrate structural plasticity
to support circuit integrity? The involvement of reactive processes
in reorganizing connections is suggested by descriptive studies
showing enhanced glial process extension in areas with active
synapse formation17,19,53,54. Initially, reactive microglial and
perhaps AC processes may remove synapses from injured motor
neurons during the first stages of synaptic rearrangements55,56.
Our findings suggest the possibility that during the early phases of
synapse stripping, microglial cells play a more significant role than
do reactive ACs as the initial reduction in synapses was
independent from the extent of early astrocytic response.
However, the eventual structural recovery of synaptic input on
motor neurons corresponded well with the relative availability of
reactive ACs and their processes over microglial presence. Indeed,
the numbers of activated microglia/macrophages were equal in the
WT and CKO groups, yet synapse densities were reduced in the
latter. These results suggest that reactive ACs promote the recovery
of neuronal connections. Specifically, our electrophysiological
findings and synapse density analysis indicate the restoration of
functional afferents on motor neurons.

Thus, it was pertinent to ask whether AC activation can
directly and independently facilitate excitatory synaptic rearran-
gements. AC-derived synaptogenic molecules were shown to
stabilize excitatory synapses in vitro14 and in development13,57,58.
Although the joint action of TSP-1 and TSP-2 is required for
postnatal plasticity58, using TSP-1 knockout mice, we show that
TSP-1 alone has a significant role in synaptic rearrangements in
the adult brainstem. We therefore asked whether reactive ACs
can supply TSP-1 to neurons in the recovery phase. We show that
reactive ACs are the major populations that significantly
upregulate TSP-1 expression proximal to the site of axotomy.
The contribution of cells other than ACs in TSP-1-mediated adult
plasticity is less likely, although in development, TSP-1 was seen
in phagocytic cells and thrombospondin immunoreactivity could
be also detected in microglia around dying neurons in adult
mice24. Our study suggests that it is possibly a result of
phagocytic internalization of neuronal debris or extracellular
TSP-1 content, as Thbs1 mRNA was almost exclusively detected
in ACs and neurons. We propose that contribution by neurons to
the increase of TSP-1 expression is modest. The number of Thbs1
mRNA-labelled neurons was only marginally raised upon injury,
and individual neurons did not seem to increase TSP-1
production. Indeed, in CKO mice in which neuronal STAT3
function is not affected, the increase in both TSP-1 mRNA and
protein levels was almost abolished in tissue samples. These
results indicate that the main source of TSP-1 is reactive ACs
following axotomy, and our experiments conducted using
purified AC cultures strengthen our conclusion. Using IL-6-
stimulated ACs in culture, we demonstrated direct STAT3
binding to the TSP-1 promoter, increased mRNA levels and
rapid loss of intracellular TSP-1 content concomitant with raised
TSP-1 protein levels in supernatants upon astrocytic STAT3
activation. Our work provides direct evidence for STAT3-
regulated TSP-1 expression and release.

Other mechanisms or factors may also be responsible for
synaptic remodelling via activated ACs. Our study indicated a

greater reduction in synapse recovery in CKO mice with impaired
AC activation compared with that seen in TSP-1 KO mice. Recent
evidence suggests that other AC-derived factors, such as glypican
4 and 6, may also play a role in neonatal plasticity59. In vitro PY2
purinergic signalling and type IV collagen/a1b1 integrin-
mediated cascades also lead to an increase in TSP-1
expression60,61. We provide a novel regulatory mechanism for
TSP-1 and show direct evidence for its involvement in reactive
AC-mediated structural synaptic plasticity in adulthood.

Finally, what is the relevance to novel therapies in neurology? A
common characteristic feature of CNS trauma or advanced
neurodegenerative disease is widespread AC activation. It is
essential to understand to what degree these astrocytic phenotypic
changes represent pathology rather than an adaptive protective
response. Emerging evidence suggests that the astrocytic effect may
vary, even if the primary pathogenic trigger is derived from glia62.
Microarray studies based on selective sampling of ACs in various
neurodegenerative conditions have revealed both degeneration-
and regeneration-related features63,64. In our reductionist
paradigm of selective motor neuron injury, in which ACs are
activated primarily by neuronal injury, reactivity leads to a
restorative outcome. This approach provided an opportunity to
dissect out the beneficial aspects of AC reaction that may also be
relevant in disease. We present a novel regulatory mechanism
mediated via astrocytic STAT3 signalling, which plays a key role in
adult plasticity and network integrity in combination with other
cells. Remotely activated ACs promote the recovery of excitatory
input on surviving motor neurons by upregulation of TSP-1
expression. Further genomic and proteomic approaches are
necessary to better understand the complexity of the AC
response in neurodegeneration and trauma. This may open up
opportunities to develop new neuroprotective strategies.

Methods
Animals and transgenic models. For modelling diminished AC activation, 8–10-
week-old adult male GFAP-STAT3-CKO mice (CKO) were used (received from
Prof. M. Sofroniew). Briefly, the transgenic mice were generated by crossing the
73.12 GFAP-Cre mouse line65 with STAT3-loxP mice using C57BL/6 mice as
background. The loxP sites flanked exon 22 of the STAT3 gene encoding a tyrosine
residue (tyr705) that is critical for its activation, resulting in the inhibition of
STAT3 activation specifically in GFAP-expressing cells in crossed CKO mice.
These mice show comparable development and phenotypes of ACs to that seen for
adult WT mice12. For WT control, 8–10 week-old adult male GFAP-Cre� /� /
STAT3-loxP littermates and/or age-matched background C57BL/6 mice were used.
For synapse recovery analysis, in addition to the above, 8–10-week-old adult male
Thbs1tm1Hyn mice (TSP-1 KO, C57BL/6J background) were also used. These mice
are homozygous for Thbs1 deletion (Jackson Labs).

Surgical facial axotomy. All experimental procedures were carried out in accor-
dance with the UK Scientific Procedures Act (1986) and guidelines set out by the
International Association for the Study of Pain guidelines for the care and use of
animals. The right facial nerve of 8–10-week-old male mice or postnatal P11–12 male
mice was transected at its extracranial course near the stylomastoid foramen under
fluothane (2%) anaesthesia with oxygen (1.5 l h� 1). Before surgery, a subcutaneous
injection of buprenorphine (Vetergesic; 0.1 mg kg� 1) was administered to minimize
pain and discomfort together with antibiotics (penicillin and streptomycin) to
minimize potential infection. The adult animals were killed by a lethal injection of
phenobarbital (300 mg kg� 1) in humane conditions following brief anaesthesia by
fluothane (2%) at different time points post axotomy (1, 5, 7, 14, 28 days).

AC cultures. To generate ACs for both monocultures and neuronal co-cultures,
cerebral cortices of P1 transgenic GFAP-STAT3-CKO mice, WT littermates,
C57BL/6 WT mice (Harlan Olac & Charles River) and TSP-1 KO mice (Jackson
Lab) were prepared as described in previous studies66. In general, this method
establishes a purity of over 95% for ACs with less than 1% microglia. For our
in vitro experiments, 98% pure AC cultures were used. In some cases, further
purification steps were necessary to achieve this. To do so, immunopanning or
complement-mediated cell lysis methods were applied to remove fibroblasts
according to published protocols (Supplementary Methods). ACs were cultured for
6 weeks (mature ACs) in 10% fetal bovine serum, 1 mM GlutaMAX in Dulbecco’s
modified Eagle medium (Life Technologies) to provide cells for in vitro assays. To
evaluate the effects of AC reactivity, mature ACs were plated onto PDL coated
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coverslips (5� 103cells per well) in 24 well plates or in T25 flasks. After 2–3 days,
the medium was replaced with Sato’s serum-free medium before treatment with
IL-6 (50 ng ml� 1), after which the cells were either immunostained or lysed for
protein (complete lysis-M, EDTA-free buffer, Roche, UK) or RNA extraction. The
supernatants were kept for analysing TSP-1 content by ELISA.

AC–neuron co-culture assays. To produce purified cortical AC–neuron co-cul-
tures in which ACs were replaced by their GFAP-STAT3-CKO or littermate
counterparts, initially a mixed glial–neuron co-culture was produced using WT E18
embryos, similarly to previously published protocols22. To ablate contaminating
and proliferating cell populations such as ACs, progenitor cells, fibroblasts and
microglia, cytosine arabinoside (1 mM AraC, Sigma-Aldrich) was added to the
cultures between days 5–7, while the medium was supplemented with AC-
conditioned medium. This significantly reduced the number of ACs in the cultures
(o6%). For the survival assays, mature ACs derived from either GFAP-STAT3-
CKO mice or their WT littermates were re-added to the purified neuronal cultures.
Cells were cultured for 21 days in total. See also Supplementary Methods.

ChIP. To detect physical binding of STAT3 to the TSP-1 promoter region in ACs
activated by IL-6, ChIP was performed using the Magna ChIP A/G Kit (Millipore)
according to the manufacturer’s instructions. Briefly, 107 mature ACs were fixed in
1% formaldehyde for 10 minutes followed by quenching with glycine for 5 min.
ACs were washed in phosphate-buffered saline (PBS) before cell and nuclear lysis,
which was performed in the presence of protease and phosphatase inhibitors. The
isolated chromatin was sonicated to obtain DNA fragments of 200–1,000 base
pairs. Then, immunoprecipitation was performed overnight at 4 �C, using a rabbit
anti-STAT3 antibody (Cell Signalling, clone 79D7) bound to A/G magnetic beads.
After isolation and elution, reverse cross-linking was performed according to
standard protocols. DNA was then purified and analysed by PCR using a primer
pair designed to detect a predicted STAT3 binding site67 along the TSP-1
promoter. The size of the PCR product was 176 bp. Forward primer: 50-TGGCTTC
CTCTGTGGTCTCT-30 . Reverse primer: 50-GTCAAGGTCATGGGATGGTC-30.

Synthesis of digoxigenin-labelled RNA probes. To synthesize the probe for TSP-
1 in situ hybridization, RNA from the brain of a P8 mouse was extracted using
ISOLATE RNA Mini Kit (Bioline, UK), following the manufacturer’s instructions
for RNA isolation. The isolated RNA was reverse transcribed into complementary
DNA (cDNA) using the cDNA Synthesis Kit (Bioline) using a standard protocol
for the Oligo dT primer. The resultant cDNA was amplified using standard PCR
protocols. Murine TSP-1-specific primer sequences used were 50-GTTCGTCG
GAAGGATTGTTA-30 for the forward primer and 50-TCTATTCCAATGGCA
ACGAG-30 for the reverse primer68. The size of the PCR product was 733 bp.
Adaptor sequences were added to the original pair of primers to create attachment
sites for the SP6 and T7 polymerases for the synthesis of RNA probes. cDNA from
the first round of PCR was further amplified to produce the template for RNA
probe synthesis, using the above forward primer with T7 phage promoter sequence
(50-TAATACGACTCACTATAGG-30) added to its 50 end and the above reverse
primer with SP6 sequence (50-ATTTAGGTGACACTATAGA-30) added to its 50

end. The SP6 and T7 promoter sequence allowed the antisense and sense RNA
probe to be synthesized respectively. After confirming the identity of the PCR
product by sequencing, digoxigenin (DIG)-labelled RNA probes were synthesized
using the DIG RNA Labelling Kit (SP6/T7) (Roche) according to the
manufacturer’s instructions. The yield of labelling (31.25 ngml� 1) was estimated
using standardized dot blot protocol.

In situ hybridization. TSP-1-specific in situ hybridization was performed fol-
lowing instructions described previously69, with minor modifications. In brief,
frozen coronal mice brain sections (10 mm) were treated with proteinase K
(200 ng ml� 1 in PBS; Roche) for 20 s before fixing in 4% paraformaldehyde (PFA).
After permeabilization, acetylation and prehybridization treatments, hybridization
with prepared DIG-labelled probes (1:400 in hybridization buffer) was carried out
at 60 �C overnight. Following stringency washing, the hybridized probe was
recognized with alkaline phosphatase-conjugated DIG-specific antibody (1:5,000;
Roche) for 1 h at 25 �C and the signal was then visualized with NBT/BCIP (Roche).

Reverse transcription and qPCR. For measurements of Thbs1 mRNA levels,
mouse brainstems were snap-frozen and 300-mm thick coronal sections were cut,
including the FN, using a cryostat (Leica). CL and IL FN were isolated using a
purpose-made 0.8 mm punch needle; then, the tissue was triturated using a pestle.
For in vitro samples, RNA was extracted from 5� 105 ACs.

Total RNA was isolated using the ISOLATE II RNA Mini Kit (Bioline)
according to the manufacturer’s instructions. Reverse transcription was performed
using 0.1–1 mg of total RNA, with the Tetro cDNA Synthesis Kit (Bioline)
according to the defined protocol. qPCR was performed using SsoAdvanced
Universal SYBR Green Supermix (Bio-Rad) in the Bio-Rad CFX96 thermocycler.
Primers were chosen from the primePCR library (Bio-Rad) with a preference
of intron-spanning primers when available. The Thbs1 assay ID was
qMmuCID0014108 and the GAPDH (glyceraldehyde 3-phosphate dehydrogenase)

assay ID was qMmuCED0027497. Gene expression data were analysed using the
relative quantification (ddCt) method using GAPDH as housekeeping gene to
evaluate quantitative variation.

Tissue processing. For immunohistochemistry, mice were perfused with 4% PFA
solution in PBS under phenobarbital anaesthesia. Frozen blocks were cut at 10-mm
thickness to gain a series of coronal brainstem sections, using a cryostat (Leica). For
electron microscopy, after the same anaesthesia, mice were preperfused with 20 ml
of 0.1 M HEPES buffer containing nitrates followed by perfusion with 6%
formaldehyde in 0.1 M HEPES buffer at pH 7.4 containing 2 mmol l� 1 calcium
chloride 4 weeks post axotomy. The brains were kept in 0.1 M HEPES buffer for 1 h
before trimming. Following infiltration by Lowicryl HM20 (Taab Laboratories)
selected resin blocks were trimmed for ultrathin sectioning (Leica Ultracut UCT,
Leica), stained with lead citrate/uranyl acetate, mounted on nickel grids and viewed
by electron microscopy.

Immunolabelling and imaging. For immunohistochemistry, following standard
protocols, frozen sections were blocked in 10% normal goat serum (NGS) and
permeabilized in 0.3% Triton X-100 (Sigma-Aldrich; in PBS) at RT for 30 min.
They were then stained with primary antibodies in NGS (3%) and Triton X-100
(0.1% in PBS) at 4 �C overnight followed by species-specific secondary antibodies
in PBS for 1 h and DAPI/Hoechst (100 ng ml� 1) for 5–10 min at RT. For
immunocytochemistry, on day 21, the coverslips were washed in PBS four times
before fixing in 4% PFA (Sigma-Aldrich), then were blocked in 5% NGS in PBS.
The cells were permeabilized in conjunction with the application of primary
antibodies at RT for 45 min (2% NGS, 0.1% Triton X-100 in PBS, Sigma-Aldrich).
Primary antibodies were used as follows: rabbit anti-Aldh1l1, 1:200 (Abcam,
ab87117), goat anti-Arginase1, 1:100 (Abcam, ab60176), rabbit anti-activated
caspase-3, 1:300 (Cell Signalling, P175), rat monoclonal anti-CD11b, 1:1,000
(Serotec, clone 5C6), rabbit anti-p-FAK, 1:1,000 (Life Technologies, 44624G),
rabbit anti-GFAP, 1:500 (DAKO, Z0334), mouse monoclonal anti-GFAP, Cy3-
conjugated, 1:500 (Sigma-Aldrich, clone FN-15), rabbit anti-IBA1, 1:500 (Wako,
019-19741), rat anti-Lamp2, 1:500 (Abcam, clone GL2A7), mouse anti-MAP-2,
1:100 (Sigma-Aldrich, clone HM-2), mouse monoclonal anti-NeuN, 1:200 (Milli-
pore, clone A60), rabbit anti-PSD-95, 1:200 (Thermo Scientific, clone 6G6-1C9),
mouse anti-S100, 1:500 (BD Biosciences, clone 19/S100B), rabbit monoclonal and
mouse monoclonal anti-STAT3, 1:200 (Cell Signalling, clones 79D7 and 126H6,
respectively), rabbit monoclonal anti-pSTAT3 (Tyr705), 1:100 (Cell Signalling,
clone D3A7), mouse anti-SYT-1, 1:250 (Synaptic Systems, clone 41.1), mouse
monoclonal anti-TSP-1, 1:50 (Santa Cruz, clone A6.1). This was followed by
incubation with species-specific secondary antibodies for 30 min at RT. Images
were taken either by light, fluorescent or confocal microscopes (Leica). The spe-
cificity for all antibodies were pretested by the companies. At first applications of
primary antibodies, secondary antibodies alone were also used as negative controls.
For analysis, either the Leica Application Suite software (Leica), Fiji or ImageJ v1.26
software was used.

Western blotting and ELISA. Western blots were performed according to stan-
dard protocols (Life Technologies). Electrophoresis was run in 4–12% gradient
NuPAGE Novex Bis-Tris Pre-Cast Gels (Life Technologies) and followed by pro-
tein transfer to a PDVF membrane (Life Technologies) according to standard
protocols. Membranes were then washed three times in PBS 1�with 0.2% Tween
at pH 7.4. Blocking was performed in PBS 1� , 0.2% Tween, 5% dry milk powder
(Marvel). Membranes were stained with the primary and secondary antibodies
diluted in the same blocking solution. Primary antibodies used were as follows:
mouse monoclonal anti-b-actin, 1:20,000 (Abcam), mouse monoclonal anti-GFAP,
1:500 (Sigma-Aldrich), rabbit monoclonal anti-STAT3, 1:1,000 (Cell Signalling),
rabbit monoclonal anti-pSTAT3 (Tyr705), 1:1,000 (Cell Signalling), mouse
monoclonal anti-TSP-1, 1:200 (Santa Cruz). Detection was performed by exposing
the membrane to the Amersham ECL Prime Western Blotting Detection Reagents
(GE Healthcare). Chemiluminescence on membranes was detected and imaged
with the Alliance 4.7 CCD Image System (UVITEC).

To detect TSP-1 release by ACs, a sensitive chemiluminescent ELISA was used
according to standard protocols provided by Thermo Scientific. Briefly, the
supernatants were ultracentrifuged first to concentrate the content of molecules
above 50 kDa, using Amicon Ultra tubes (Millipore). Ninety-six well plates were
coated with either standard dilutions of TSP-1 (0.5–20 pg ml� 1 range) or with the
concentrated samples (1:5 volume) in the coating buffer (0.2 M Na carbonate/
bicarbonate, pH 9.4) at 4 �C overnight. TSP-1 dilution served as positive control
and coating with buffer alone represented negative control. Non-specific binding
sites were blocked in 2% BSA in the standard diluent (0.1 M phosphate, 0.15 M Na-
chloride, 0.05% Tween 20, pH7.2; Sigma-Aldrich). For specific TSP-1 detection, a
mouse TSP-1-specific antibody (1:1,000; Santa Cruz, clone A6.1) was applied,
followed by a HRP-conjugated mouse-specific secondary antibody (1:50,000;
Vector). The SuperSignal ELISA Femto chemiluminescent substrate (Thermo
Scientific) was used for chemiluminescent detection, which was analysed by the
GloMax plate-reader (Promega) at the wavelength of 420 nm. The antibodies were
diluted in 1:5 strength of the standard diluent (50 ml total volume). The
experiments included technical duplicates with biological triplicates.
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Image analysis for immunohistochemistry and western blots. In general at
least 3–4 sections were taken for analysis 150 mm apart along the whole ros-
trocaudal axis of the FN. Cell counts, measurements of MAP-2 IR area fraction,
intensity (optical density) of GFAP labelling and integrated density measurements
for CD11b immunoreactivity were carried out in both axotomized and CL sides.
LASAF (Leica) and ImageJ/Fiji applications were used to analyse areas of the entire
FN in each tissue section according to stereotaxic parameters. The values were
normalized to the non-axotomized CL side/background in the same section for
accurate comparison between the groups. The methods for cell identification and
counts for ACs, microglia, SCs and neurons have been described in the results.
Western blot densitometry was performed by standard protocols using ImageJ/Fiji
applications. Quantitative comparisons were performed based on normalization to
density values of b-actin within the same blot.

Analysis of AC processes and synapse density. We used classical ultrastructural
criteria21 for quantifying AC processes and synapses. Astrocytic processes were
identified by their irregular, concave shape, glycogen granules and intermediate
filament bundles in a relatively electron-lucent cytoplasm. Electron microscopic
images (86–112) were analysed per group, and the proportion of neuronal
perimeter contacted by astrocytic endfeet was determined for 12–14 neurons. To
examine STAT3-induced cytoskeletal changes, GFAP immunoreactivity was
analysed in vivo in AC processes and F-actin was visualized by phalloidin in
cultured ACs. In axotomized FN, AC processes showing GFAP immunoreactivity
were counted 15 mm away from the soma19. For in vitro analysis, we counted ACs
with strong cortical F-actin fibres, which were rounding up but kept connections
with radial fibres extending to filopodia or processes. This represented the activated
phenotype in contrast to resting cells that displayed flat morphology with mostly
parallel filaments.

Axosomal and axodendritic synapses were identified by the presence of
presynaptic vesicles and electron-dense postsynaptic densities. Synapse density was
expressed as number of synapses per 1 micrometre length along the cell body or
dendritic membrane. For immunohistochemistry-based synapse quantification, we
followed a previously developed method58. Briefly, for quantification of synapse
densities in the FN of mouse brains, four coronal sections per animal were
immunostained for pre- and postsynaptic markers, synaptotagmin-1 and PSD-95,
respectively. Then sections were scanned by confocal laser microscopy in 5 mm
depth (optical section width 0.5 mm, 10 optical sections each). The parameters for
scanning were set up for WT brain sections, and the same imaging parameters were
used for transgenic animals. Merged single optical section images at 1 mm intervals
were analysed using ImageJ (v1.0, NIH) for which the ImageJ puncta analyzer
plug-in application was provided by Dr C. Eroglu70 (developed by B. Wark in Prof
B. Barres’ laboratory). Threshold values were set to the CL side in each section. The
number of colocalized pre- and postsynaptic puncta (five optical planes per section;
20 images per brain) was counted. Average synaptic density per imaged area
(0.01 mm2) was calculated for each condition, and was normalized to the non-
affected CL side.

Electrophysiology. Whole-cell patch clamp recording of facial motor neurons was
performed on coronal brainstem slices (225-mm thick) prepared from WT and
CKO P21–24 old male mice 2 weeks following axotomy. Mice were killed by
decapitation, in accordance with UK animal usage legislation. Tissue samples for
genotyping were collected during tissue preparation. Synaptic currents were ana-
lysed and fitted using Electrophysiology Data Recorder V3.2.1 and Whole Cell
Analysis Program V4.2.7 (Strathclyde Electrophysiology Software, Strathclyde
University, UK), and were defined to occur if their amplitude was 41.5 times the
s.d. of the current noise and their 10–90% decay time was longer than their rise
time. Solutions used in electrophysiological studies were obtained from Sigma-
Aldrich and described as follows. Slices were prepared in bicarbonate-buffered
solution containing (mM) 126 NaCl, 24 NaHCO3, 1 NaH2PO4, 2.5 KCl, 1 MgCl2,
2 CaCl2, 1 Na-kynurenate to block glutamate receptors bubbled with 95% O2/5%
CO2, pH 7.4. Electrodes contained internal solution comprising (mM) 130 Cs-
gluconate, 4 NaCl, 0.5 CaCl2, 10 HEPES, 10 BAPTA, 4 MgATP, 0.5 Na2GTP, 2
K-Lucifer yellow, pH set to 7.3 with CsOH (ECl¼ � 88 mV). Pipette series resis-
tance was 5–9 MO and electrode junction potentials were compensated. Slices were
superfused at 24±1 �C with HEPES-buffered solution containing (mM) 144 NaCl,
2.5 KCl, 10 HEPES, 1 NaH2PO4, 2.5 CaCl2, 10 glucose, 0.1 glycine (to co-activate
NMDA receptors), 0.005 strychnine (to block glycine receptors), pH set to 7.4 with
NaOH, bubbled with 100% O2.

Statistical analysis. All experiments included both biological and technical
replicates, and were repeated three times at least. For in vivo experiments, the
subjects were not randomized and two animals have been excluded from analysis
due to an unsuccessful surgical procedure. The assessor was blinded by another
investigator to the allocation of assays or animals during outcome assessment. The
sample size was estimated from pilot experiments. Data and graphs are presented
as mean±s.e.m, and ‘n’ values refer to the number of cells, cultures, tissue samples
or animals analysed per group. GraphPad Prism 5 (GraphPad Software) was used
to generate graphs and to perform tests for distribution and statistical significance.
Data were analysed using two-tailed, unpaired t-test for comparison of two groups,

which was referred to as ‘t-test’ in the text. One-way analysis of variance was
applied for comparison of multiple groups and two-way analysis of variance was
used to analyse independent variables in different groups. Bonferroni post hoc test
was applied to analyse data pairs unless stated otherwise. Statistical significance was
accepted at P-values of o0.05. *P, **P, ***P indicate o0.05, o0.01, o0.001,
respectively. Non-significant P-values were labelled as NSP in the text.
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