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:
INTRODUCTION

BEarly work in elementary particle physics was con-
cerned with electrodynamics, that is with interactions
involving only electrons and photons. Here one can use
a Lagrangian or a Hamiltonian which is exactly similar
to its counterpart in classical physics. An integral
equation for transition amplitudes may then be obtained.
This may be solved formally and yield an infinite series
in powers of the coupling constant, which is a measure
of the strength of the interaction, There is a
difficulty in that each term of the series, the
perturbation series, consists of a divergent integrel.
However, a physically plausible prescription may be given
for separating out the infinities and then, since the
electrodynamic coupling constant is small, there is a
hope that the remaining series converges, at least
asymptotically, Calculations of the electron magnetic
moment and of the Lamb shift using the first few terms
of the series give results in miraculously close agree-
ment with experiment.

FPor interactions involving other particles the
gsituation is much less satisfactory. Classical analogy
ig now of little help in suggesting the nature of the

interaction. Even if a plausible guess is made the

perturbation series then derived has negligible change




of being convergent since the interaction is strong and
therefore the coupling constant is large (We do not dis-
éues here the weak interactions, In the context of
these even the concept of a particle is at present ill-
defined),

For the last six years, therefore, the tendency
has been to try a different approach, One inserts
no details of the nature of the imb eraction into the
theory, but only assumes some general principles which
surely cannot be violated in any local field theory.
The usual basic axioms aret
(1) 1Invariance of the theory under transformations
of the proper Poincaré group, so that the requirements
of special relativity are satisfied.
(1i) The absence of states of negative energy and the
uniqueness of the vacuum state. The concept of
energy follows as a result of the translation invariance
that is implied by the first axiom,
(1ii)Two boson field operators commute when their
arguments have spacelike separation, Fermion field
operators anticommute. This is generally supposed to

be in some way equivalent to the requirements of

causality.




(iv) The square of the norm of a state vector in the
Hilbert space of the field operators is non-negative.
This implies that there exist® no states occurring with
negative probability and is a non-trivial requirement
since such states are found in simple models that have
been constructed.

(v) In the remote past and the remote future the fields
behave as free fields. This cofresponds to the fact
that in an experiment the particles inveohved are so

far apart when they are actually observed that the inter-
actions between them are negligible. Problems in this
connection arise in the case of bound states.

A suitable mathematical expression of the last
axiom implies the existence of a unitary operator whose
matrix element between state vectors is the transition
amplitude. Matrix elements occurring in the theory must
be regarded as distributions and it is hoped that they
are temperate,

Simple heuristic arguments lead one to suppose
that the axioms imply the possibility of expressing
transition amplitudes as the real boundary values of
analytic functions of several complex variables, Such
functions then relate together values of a given

transition amplitude at different energies and

momentum transfers. Also, since there may be several




different boundary values according to how and where
the limit on the real boundary is taken, there arises
the possibility of relating together matrix elements
corresponding to apparently distinct physical processes
as different boundary values of the game anslytic function.
If the holomorphy domain of the complex function
is suitably large an application of the Cauchy formula
or of the Bergmann-Weyl formula yields an integral
equation, a dispersion relation, which may be of prac-
tical wvalue, In fact, dispersion relations have bheen
very widely used in the reduction of experimental data,
though very few have actually been proved to be valid.
Unfortunately, the problem of the computation of
the holomorphy domain is one of supreme difficulty.
The first three axioms result in the required domain
being the holomorphy envelope of a most complicated
initial domain and the snelytic completion has so far
only been performed for the three-point functiong. No
means have yet been found for incorporating the con-
gequences of the other axioms, nor the fact that the
values of the masses of the elementary particles form
a set of discrete numbers.,

Therefore, to obtain guidance on the general

problem, attention has been given to the analytic
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properties of the terms of the perturbation series.
This means, of course, that some detalls of the inter-
action are assumed, but all that is necessary is that
the Hamiltonian be a polynomial in the field operators
and a finite number of their derivatives., As it is so
unlikely that the perturbation series converges one
might be sceptical of the usefulness of deriving the
analytic properties of its individual terms, even though
these properties be common to all terms, However,

the results obtained are convincingly reasonable
physicselly, end in very good agreement with the limited

results of general theoryg. For example, anomalous

thresholds were first discovered in perturbation theorylo.
Their presence in the general theory has since been con-
firmed and they are recognised as being an inevitable
consequence of physics.

Recently a different philosophy has been developed,
Because dispersion relations have proved to be of
practical value and because it is not even certain that
there is any local field theory that satisfies the axioms,
it is proposed that field theory be discarded and that the
basic axioms be concerned directly with the analyticity

properties of the transition amplitudes*. It is pro-

posed that the domain of holomorphy be, in some sense,

# This philosophy has been favoured particularly by G.F. Chew




as large as possibleconsistent with the unitarity
requirements associated with conservation of probability.
It has been shewnll that this restriction demands at
least the presence of the singularities of perturbation
theory, so that with this approach it is again useful

to investigate the analytic properties of perturbation
theory.

In Chapter 1 are descrihbed the methods for
determining the positions of the possible singularities
of the Feynmaen integrals that are the terms of a
perturbation expansion. These methods are based on the
generalisation of a lemma of Hadamardlz. The positions
are found, in principle, by solving a set of simultaneous
equations known as the Landau equations. In practice,
it is too difficult to solve these equations algebraically
except in the simplegst cases and a geometrical method is
used., This method is known as the dual dlagram
analysisl3. The original form of the dual diagram
analysis is found, however, to omit a large class of

solutions of the Landau equations. These new solutions

are known as second-type solutions,

The analytic functions of which the transition
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amplitudes are the boundary values have singularities
to which must be attached cuts, so that the functions
have many Riemann sheets. The dispersion relations
that have been conjectured demand analyticity on only
one of these sheets, called the physical sheet. Hence
once the positions of the perturbation theory
singularities have been found, as is described in Chap-
ter 1, it is necessary to decide which singularities
are pregent on the physical sheet. A discussion of
this question is taken up in Chapter 2.

Chapter 3 deals with the application of some of
the techniques to production reactions, in which two
particles come in and more than two emerge. It is
found that there are singularities whose presence is a
severe embarrassment in t hat they invalidate simple dis-
persion relations. This is unfortunate in that it
seems to make even more difficult than one would hope
the task of evaluating the contributions, implied by
the unitarity condition, to the ordinary two-particle
two-particle scattering gmplitude from many-particle
intermediate states. The singularities may also up=
get certain extrapolations from experimental data for
production processes. These are performed to obtain

information about simple scattering processes which
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themselves cannot be conveniently performed in the
laboratory. Under certain conditions the singularities
can come so0 close to the boundary of complex variable
space at which the physical value of the production
amplitude is calculated that they may be expected to
produce an effect that could be directly ebserved
experimentally. Some examples are given of when this
might occur, but none represents an experiment that is

easily performed at present.



1. DPositions of Singularities

1.1 The Landau equations

A given term im g perturbation series may be
repregented by a Feynman graph. The corresponding
contribution to the transition amplitude is a
multiple intégral

o0 o =
| [ 2 & (Zag — 1)

T- | oy | Maw =25
e 4 \J ( ! ~«]' &2l Li/N (l)
-~ ¢
where™
Y(§ ) = o (37 —wmt) (2)

G

Here (iL;W“i are respectively the momentum 4-vector

th internal

and the mass associated with the i
line of the graph, there being N such lines, Each
line has an integration parameter oy associated with
it. A set of independent closed loops is chosen in
the graph and the integration variable ;gg is the
4-momentum running round the jth such loop. The
integral'I is a function of the scalar products =~
of the external vectors %; for the graph. The

function »» is a polynomial in the q{, the my and the

# Arrows above quantities denote that they are vectors in
Lorentz space.
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Dirac y-matrices, It is usually supposed that its
precise form has no effect on the analytic prope rties
of the integral, so that it suffices to take » = 1,

although under certain conditions this is not the case.

In principle it is possiﬁle to investigate the
analytic properties of I(z) by performing the
integrations involved and examining the resulting
function, However, even for the fourth order
scattering graph this function is prohibitively
complicated, being the sum of one hundred and ninety=-two
Spence functionsls. It is therefore necessary to find
a better method. Hadamard gave such a method for the

case of a single integration12 and we shall generalise

this to our multi-dimensional integral.

The integration is over a "hypercontour" A in real
(k,0) = space and I is evidently regular when the z are
suchh that the manifpld4)= 0 does not intersect A. A
congequence of Cauchy's theorem is thal when it does
intersect A an analytic continuation of I ie provided
by distorting A into the complex (k,a) - space so as to
qvoid\#: 0. The possibility of this
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distortion can only cease when the manifold w degenerates
and becomes locally cone-like, the hypercomtour A

being pinched between the two parts of\y at the

vertex of the cone. The necessary conditions for this

are the Hadamard equations:

8@%

oV .
X =0 (3)

for each j and

ob _ 4 (4)

(\‘)u(;
for each i.

Singularities of this type are known as leading
singularities of the graph. There are additional
singularities arising from the fact that the dis-
tortions of the edge of the hypercontour are restricted
to the analytic manifolds on which one of the a
vanishes, the edges of the edges are restricted to
those manifolds on which two « vanish, etc. These

are the lower-order singulerities for which (4) is

replaced by the condition ay = 0 for one or more i,
They are the leading singularities for the graphs
obtained from the original graphs by contracting
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the corresponding internal lines.

From the explicit expression (2) for(# we see
that (3) and (4) are equivalent to

2a=dd‘f£ =0 for each j (5)

end Qi = m for each i (6)

where, in (5), Ej indicates summation round the jth
closed loop of the graph. These two sets of
equations are the Landau equations;

The integration over the k. in (1) may be

J
simply performed. We write QIin the form

Y(pE0 - IR - ARTB 4T =)

where o = Eiaimi2. Here A, B, ' are respectively
L xL, Lx(E-~-1)end (E~-1) x (E ~1) matrices

whose elements are linear combinations of the «,

L is the number of independent loops in the graph
and in (7) there enter (E - 1) independent vectors
5: the last of the E external vectors being ex-

pressible in terms of the others because of energy-
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momentum conservation, Underlined quantities in
(7) denote matrices and vectors in the mstrix space.
g'and'ﬁ are vectors both in this space and in Lorentz

space so that, for example, the first term in (7) rep-

resents a double sum

both over the matrix indices i, J and over the Lorentz

index p. If we define

D=- (BB X Bp + (BTB-¢C (8)
where

X = adj A (9)

C = det A (10)

the result of performing the k - integration in (1)

is’ apart from & constant factor,
(Zu r-—i) C f""l.l(’ =il

e DN-2¢e (11)

In fact the expression (8) for D is equivalent

to

D = CD! _ (12)
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where D' is the result of eliminating k from U
according to (3), which in the new notation reads

e

Ak = B (13).

Thus we see that the Hadamard equations (3) and
(4) applicable to the representation (1) for 71(z)

are together equivalent to the equations

_a____D = 0 (14)
6(11

which are the Hadamard equations for the representation

(11),
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1.2 Dual Diagrams

The conditions (5) and (6) lead to the dusl
diagram analysis of Landau and of Taylorlzo A dual
diagram is a vector diagram in which each line is on
the mass shell, The E external momenta form a closed
polygon in the diagram, expressing the fact that energy-
momentum is conserved over all, The squaresof their
lengths, together with those of the diagonals of the
polygon, are the variables z of which I is a function.
The inclusion of the internal lines for the graph in
the dlagram imposes a single constraint on the polygon,
so that an equation is obtained connecting the z that
is the equation of an analytic manifold in z-space.

This manifold is known as the Landau curve. Its

equation evidently involves the internal masses my .

The condition (5) usually implies a geometrical
constraint on the lines in the dual diagram: without
it no equation connecting the z would be obteined.
For example, in the case of the single loop triangle

graph it demands that there be a vanishing linear

combination of the lines in the dual diagram that




16,

represent the three internal vectors. Hence they, and
therefore the whole diagram, must be drawn in a plane.
Unfortunately the geometrical constraints implied by

(5) are not always so simple.

The single loop graph is an example of a proper
graphé it may be drawn in such a way that its lines
are joined wherever they cross and the dual diagram may
be drawn using the standard Bow's notation for finding
the stresses in rigid frameworké. Such a diagram is
characterised by the fact that one line in the Feynman
graph corresponds to one line in the dual diagram and
the vectors round any loop of the graph all converge
at one point in the dual diagram. Improper dual diagrams,
corresponding to Feynman graphs which cannot be drawn
with all lines joined where they cross, do not have
these characteristics. The simplest example is the
improper graph of figure 1, whose dual diagram is drawn
in figure 2.

The space in which dual diagrams are drawn may con-
veniently be Euclidean. The coordinates of its vertices
in this space are not necessarily real so that, for

example, distinct points may be separated by zero distance,
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Fig., 1 Fig, 2

It is not always the case that dusl diagroms are
drawn in a space of the same dimensions as that spanned
by the external vectors of the graph. However, since
the integration over the k in (1) is four-dimensional,
corresponding to the fact that space has four dimensions,
the maximum number of dimensions available for the con-
struction of a dual diagram is four, Hence, for |
example the leading curve for the sixth order single
loop graph does not exist, though it would exist if
space were five dimensional} The effect of the
dimensionality of space on analyticity properties has

been noted beforelé.

We exemine further the case when fhe dwal diagraem

is drawn in a space of greater dimensions than that

spanned by the external vectors, An example is}the
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graph of figure 3, whose dual diagram is drawn in figure
4,

Fig, 3 Fig. 4

The duael diagram is over determined in a plamne
when AB,; BC, say, are fixed in advance, but may be
drawn in three dimensions with one degree of freedom,
The degree of freedom is taken up when condition (5)
is applied, and then the length BC is determined.

For a general dual diagram of this type, where the
external vectors spen a space of less than four
dimensions so that their fourth components may be taken
as zero, the fourth component of the equations (13)

gives a solution with the fourth components of the k

not all zero if and only if

A =0

C = det (15),
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This equation cannot be satisfied when all the « are
real and positive since C is the sum of products of

the a17. This may also be seen geometrically for .
proper dueal diagramsﬂa in the real subspace qf the
complex Euclidean space in which the diagram is drawn
one of the vertices of the diagram is furthest awgy from
the real subspace spanned by the externgl vectors. The
vectors converging at that point cannot have a vanisghing
linear combination with all the coefficients a positive.
This result has the important consequence that in the
case of propagator graphs the only singularities on the
physical sheet are the normal thredholds., Any other
propagator graph has a dual diagram which requires more
than one dimension for its construction and so doem net
yield a which are all positive. In the case of a
propagator this means the corresponding singularity

is not on the physical sheet, This can be seen using
the representation (11) and the fact that the expression
(S) for D contains the z linearly, the coefficients of
each 2 being a sum of products of the a17° Hence if,
as for a propagator, there is only one z, D does not

venish for complex z and real positive a. Thus the

% For improper dual diagrams a geometrical. proof is

not apparent.
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hypercontour of integration need never be distorted if
we let z tend to the real z-agxis., Further, D does not
vanish for z real and sufficiently negative, so that

we may cross the real axis in the continuation process.
This is sufficient to prove the statement; such
arguments will be used more elaborately in the next

chapter,
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1.3 Second=Type Solutions

The dual diagram analysis does not yield all
possible solutions of the Landau equations. The extra

golutions will be called sécond—type solutions and

correspond to infinite values for some of the components
of the internal momentaxz. This does not imply that
the resulting singularities of the Feynman integral

-

depend on the range of integration over the k being
infinite. They would be present also if the range of
integration were finite and arise from distortions of

the integration hypercontour, consequent on analytic
continuation, extending to infinity. In the case of

a finite integral there would be additional singularities
associated with the boundary of the region of integration.
The latter is absent in the infinite integral: the

hypercontour is topologically closed,

Second-type solutions fall into two classes:
pure second-type and mixed. The pmesence of the latter
may be deduced from that of the former as follows. Con-
sider a graph G that has more than one loop. It may

be divided (in a number of ways) into two subgraphse Gy

and G,. Let the Feynmen function for Gy be f.  Then
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the Feynman function for G is equal to a multiple
integral whose integrand is f multiplied by a prop-
agator for each line. that is internal to G but not to
Gye+ A mixed singularity occurs when a pure second-
type singularitif} pinches with the poles of the

propagators.

We shew that for a pure second-type singularity
the equation of the manifold in z-space is the Gram

determinantal relation
det ;. S& = 0 4, §=1, 2...(E=1) (16)

that arises when the dimensions of the space spanned

by the external vectors is less than (E-1), or more
generally when fhere exists a subspace of dimension
less than (E-1) such that the component of each external
vector p perpendicular to this subspace has zero length.
The equation does not involve the internal masses m,
unlike that of a Landau curve derived from a dual

di&gramo

He shew, then, that when C, defined by equation (10),
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is put equal to zero there are many solutions of the
equations (14)., If the L x L matrix A is of rank
(L -~ 1) its adjoint can be written |

z

X=KK (17)
where the column matrix K satisfies
AK=0 (18)

Let A be any column matrix and A a zero-length vector

in Lorentz~-space:
22

A =0 (19)
Suppose also
A3 =0 (20)

for each external vecter'i'of the graph,

Let & be vectors that are linear combinations of

the p and satisfy the qguation

Ak=Bp-A\ (21)
A necessary and sufficient condition for such'ﬁ)to

exist is that

Bp = MNEL N (22)
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Equations (20) and (22) together require there to be a
linear combination 6f_the p that is equal to a zero-
length vector whose scalar product with each'ﬁ'vanishes.

Thus they lead to the Gram condition (16),

If we denote differentiation with respect to ay

by the subseript i we obtain from (8)

D= - (BRT X Ak+ (L E-c)C  (23)

Here we have used the condition C = 0 and equations
(17), (18) and (21), together with the fact that the

matrix A is symmetric, Now

X4 = ¢
so that
X, A+ X A =Cy
and hence
D, = C4 W(py k, a) (24)

Thus the Hadamard equations D; = O are satisfied

for'f chosen as above provided alsoil= 0,

If in the above we choose i = 0 we may dispense

with the condition that the solution k to (21) be a




linear combination of the p and we obtain similar
results. Thus the Hademard equations (14) are solved
by applying (5) to any vector diagram such that the

(B - 1) vectors p that are generally independent fulfil

the Gram condition (16) and the single constraint
!;) (59 'E’ @) = O (25)

It is not necessary, however, that (6) be satis-
fied. This is at first sight mradoxical, since we
have said that (5) and (6) are together equivalent to
(14). To resolve this we consider the representation
(1) and shew that the second-type solutions arise out
of solutions of the Landau equations for which the ic
are infinite, In order to make infinity accessible
to our analysis it is convenient to introduce

homogeneous coordinates

k = £ 770 (26)

80 thet the hyperplane at infinity is
= 0

.

Define

A S - —
‘»t‘," (py kaj' t“) £ J,QT

A

I
]
N
BRI
o K3
£
¥
i
4
o
i
k3|
£
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Nt

The conditions for an extremum of q; are

@E:o ) ?E;o ; 3 _ g (28)
Bih o =0 give a5 "
AK = O )
£33 = 0 ) (29)
A K = O )

The equations (29) are given a solution in the
following way. Choose the « so that C = O, Then

there exists a column matrix K satisfying (18). Take

K = E» (30)
wherefg' is a Lorentz vector, chosen such that
2EBP = O (51)
to satisfy the second equation in (29) and such that
ANeao (32)

to satisfy the third equation in (29).

The above solution exists for all p and we can
therefore deduce that it does not correspond to a
singularity of tie Feynman integral. The reason for
this is as follows. The general idea behind the
Hadamard lemma is that a singularity of the multiple
integral arises for z such that the hypercontour of

integration is pinched by the singularities of the

integrand. The Landau equations are the necessary
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conditions for such a pinch to occur. But if they are
satisfied for all z and if the integral 1s known to exist
for some value Z, of z they are not sufficient to produce
a gingularity. This is because, since the integral is
defined at Zs the hypercontour is not trapped at Z,

and s0 as one continues analytically from z, it does not
become trapped unless there is a change in the topological
character of the intersection of the hypercontour with

the manifold of singularity of the integrand.

We therefore seek the condition for the equations
(28) to be satisfied also at a point in the integration
space adjacent to one of the solutions already found.

Let this point be

K+ B P ((J‘S , ol (B&
Then (28) requires _
A0K~V}u§ — BAKN

. A ‘-‘ e = v 1) t e
S (T - oS ~WRRSE] =0 O3

- 5
g

ﬂ/\
_?x
\
"C,
'\\‘“c |i

"‘A‘ K;‘f'“ A t< - A KTB &Y =0

The first of these equations is equivalent to (21)

=X é ‘( R
with k set equel to (. If )\ is made to satisfy

(20) rather than the weaker condition (31) the second




28,

equation in (33) is equivalent to (25). The third
equation in (33) is most simply satisfied by taking

7' = 0, or otherwise by making 5K a linear com-

bination of the.p.

We have thus reproduced the conditions for con-
gstruction of the vector diagram eesociated with equation
(25). The internal lines of this vector diagram are not
on the mass shell, but since they do not in fact rep-
resent the internal momenta for the Feynman graph, only
increments thereof, this does not imply that for second-

type singularities the internal vectors are not on the

mass shell,
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2. Physical Sheet Properties

2.1 Singularities and Cuts

We have seen how, in principle, we may find the
equation of the Landau curves in z -~ space on which the
singularities for a given graph may lie, It is more
difficult to decide which parts of the Landau curves
are actually singular on the physical sheet.

Let us consider how it is possible for one part of
a Landau curve to be singular and another not. The
Landau curve, 8, is the collection of points in z =
gspace for which the manifold D = 0 in a - space
degenerates and is locally conelike, 3 is actually
singular if the hypercontour A is pinched between the
two halves of D so that it caunnot be distorted away

from D.

Suppose we are at a point of S which is
singular and that we move away from it, remaining on
Se A was originally pinched between the two parts of
D end as we move D remains locally conelike, The vertax

of the cone moves, dragging A with it, so that we are

st111 at a singulaer point. There are two ways that
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this situation can change. - The first is that the
vertex of the cone falls off on edge of A. Such an
edge is in a subspace in which at least one a is zero.
Thus the criticel points are those in which S meets a
lower-order Landau curve, S', in such a way that the two
curves give common values of the a at their intersection.

This we call an effective intersection. It is easy

to shew that S and S' touch at an effective intersection.

The intersections of S with lower-order curves do
not form a set of sufficient dimensions to divide S into
gingular and non-singular sectionst a path on S may
always be chosen to connect any two points of S and not
pass through any effective intersection. However, such
a path may cross a cut and so leave the physical sheet,
Since our concern is with physics we must in fact not
crogs cuts but go around the singularities generating
them. Alternatively, if we cross a cut we must ensure
that we cross back esgain onto the physical sheet. (We
may think of this procedure as being equivalent to
temporarily pushing back the cut, whose precise location
ig in any case arbitrary - except for its branch point).
If both these alternatives fail we are forced to go

through the effective intersection with a singular lower-

order curve and so may change from
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singularity to non-singmlarity.

Thus we conclude that cuts attached to lowem=order
singularities may divide singular parts of S from non-
singular parts, Effective intersections with lower-
order curves that are not themselves singular at the
intersection need not concern us since these have no cuts

attached to them.

The second mechanism by which the singularity behaviour

along a path on S can change occurs at a"double pinch".

This is best illustrated for the case of a one-dimensionmal
integral. A pair of zeros of D that pinches the inte-
gretion contour meets a third zero of D. One of the

zerosg forming the pinch can then change its mate and

pair with the new zero. If the new zero is on the same
side of the contour this process "dissolves" the pinch,

s illustrated in figure 5. The Landau surface

e A AN RN, ©
A T ty N/ N
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requires only that a pair of zeros be coincident;
thus, if two pinching zeros meet a third zero, we have
a singular point of the Landsu curve (in the geometrical

sensge) .

We generalise this to a multidimensional integral.
We recall that l7D may be written in the form

D = Q fk Zk + K (34)

where the fk are in fact sums of products of the «a.

Hence on the Landau curve

N s — N2
d 'D : s ;‘ﬁf\dzh + Z cz-gg Clo(j (35)
dol; " O J Ot Ol

At a cusp of the Landau curve dzk = 0, so that

X .= %
(JU(L (Y

I.: d;/lJ Q) (36)
J

>(J'

Thus the N x N matrix Uﬂ%éM;EMS swhich is normelly

of rank (N ~ 1) at a point of the Landau curve, becomes
of rank (N - 2)., This implies that the cone on the
manifold D has degenerated and the intersection of D
with the hypercontour involves more points than is

necessary for the pinch.
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2.2 The Vertex Function

The singularities of the single loop triandle
graph were investigated by Kallen and Wightman9 in order
to obtain guidance as to the nature of the holomorphy
envelope, implied by the axioms, for the three-point
function. Calculation of the holomorphy envelope
would have been an impossible task without this guidance.
The perturbation theory singularities only give part of
the boundary of the holomorphy envelope; this is
probably because unitarity has not been fully incor-

porated in the general approach.

Kallen end Wightman obtained the information t hey
required by explicit integration. However, the result
of the integrations is unpleasant and we shall here use
our more general procedure to obtain the results which
we shall particularly need later in considering pro-
duction processes. Our methods were inspired by the
treatment of the single loop scattering graph given by

Tarskil8 and are a refinement of his techniques.

For the vertex function there are three scalar
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invariants, the squares of the masses of the external
particles. We shall allow two of them, zy and Zys

to vary and fix the third at a value Zog = M2 consistent
with stability. The leading Landau curve for the single
loop graph is particularly simple in form, its section
in t he real (zl, zz) plane being an ellipse (figure 6).
It touches the lines N which are the

N\
N ’gr
\ ;
My
S, | R
Za /
T ~—- - _[%
—
Zl \ ‘?7“1’ < ts)
N
- \ @ Pige 6
>3 \
(2) \

NS

(z)
N,
lower-order curves corresponding to the contractions

of the Feynman graph into propagators (figure 7)., Of
these, Nfl) and st) are the normal

M * M~
-~ / N /
f ’ Z >
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thresholds and so have cuts attached to them,running
by convention along the positive real Zyy 2, aXes and
extending to infinity, while NES) and Ng?) are not
singular on the physical sheet. The contacts P of the
ellipse with the lower-order curves N are effective

intersections.

In addition to the real ellipse the Landau curve
has complex portions. Consider its intersections with

the real searchline

z, = A Zo + B Ay B resl

and allow A, p to vary. The intersections are

either real points or pairs of complex conjugate points
and the transition from one case to the other takes
place when the searchline touches the ellipse. Thus

complex conjugate surfaces of S sprout out from the real

section and extend to infinity.
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For a searchline with A0, Im 7z s and Im 2, are
the same sign; if 1t is less than 0 they are opposite
in sign. Thus the sections S, and S4 of S sprouting
from the arcs P, P23 and P34 P4l of the ellipse (of
positive slope) have om them only pointé for which Im 7y
Im Z, are of the same sign, while the sections Sl and
S5 Jjoined to P,y P, and Pyy Py, (of negative slope)

give opposite signs. The divisions between these

sections (indicated schematicglly in figure 6 by broken

lines) correspond to intersections of S with searchlines

| of the form Z, = real and Z, = resal .

The searchline method is applicable to any real
algebraic curve. This is useful since the form of the
Landau curve in the four-dimensional complex (zl, z2)
| - space may usually be adequately represented by

drawing its real section.

We have said that the coefficients of Zq and Z,
in the Feynman denominator D are just sums of products
of the integration variables a. D does not vanish for

sufficiently negative Re Zq s Re z2‘and positive «.

In this region R of z-space the value on the physical
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sheet of the Feynman integral is obtained by inte-
grating over the undistorted hypercontour on which the
a are real and in the range (0, 1). Analytic con=-
tinuation out of this region is made by suitable
distortion of the hypercontour. We can also see that
D does not vanish for real, positive a when Im zl,

Im Z5 have the same sign. The immediate proof of the
existence of so large a region of analyticity is a
simplifying circumstance which unfortunately does not

generalise,

Since part of S3 lies in R the whole of that
section is not singular. Nor are S4 and S2 because
on them Im 29 9 Im Z5 have the same sign, but in any
cage there are no cuts dividing them from 83. However,
to get from 34 to Sl it is necessary to cross the cut
attached to Nfz), while to reach it from S, the cut
attached to Nﬁl). must be crossed. Consequently
Sl can be singular and in fact it is, This is because
the arc P12 P41 lies outside the cuts snd corresponds
to positive values of the a, which may be seen from

the fact that on N&l) and N$2) two of the « are

positive and one =zero. The argument of the end of
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section 1.2 implies that the arc, and therefore the whole
of Sl, is singular, a fact that will be seen in chapter
3 to have unfortunate consequences for production

processes,

The triangle graph also has a second-type singularity.

Its presence was first pointed out by Cutkosky19

s Who
finds that the discontinuity across the cut attached to

the leading singularity just discussed is

ZP e (37)
V M2 24, 23)
where
A (,/Z(.;Z,L,Zaf) = Zf‘* o+ ZQ = ZZZLZ:;—-J i’zﬁ_-z.: “«2”.11(38)
This expression has a singularity given by

"My 2 = O (39)

-

which is just the Gram determinantal condition (16).
Since (37) is the difference between the values of

the original Feynman function on two of its Riemann

sheets, the original function possesses this singularity




also, It does not appear on the physical sheet:

f this is a general property of pure second-type

gingularities that will be demonstrated in section 2.,5.




2.3 The General Scattering Graph

In a scattering process, involving four particles
of fixed mass, thore are three scalar invariants
s, t, u. These are linearly related: their sum is
equal to the sum of the sguares of the masses of the

external particles. For an improper graph all three

may appear in the denominator function D, so that in

‘ general, on elimination of u, say,
D= (f «=h)s + (g ~-h)t +K

where now £, g, h are sums of products of the «. Thus
it 1s no longer immediate that there exists a tube R
of z-space (zi, z, being any pair of s, t, u) in which
) does not vanish for real positive «a. Symanzik17,
however, has shewn that such a tube does exist provided

the masses of the external particles are not too large

compared with those of the internal particlesﬁ.

Basically the same techniques as described for the

F D does vanish when all the a corresponding to the
lines around any loop of the graph are zero. This leads
to difficulties, but not serious ones.
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single~loop. vertex graph may be applied to the
general scattering graph. Naturally the latter is con=-
siderably more complicated, but one property which
generalises is that when the Symanzik region R exists
a point on S and 1té complex conjugate (also on S) are
either both singular or non-singular on the physical
sheet . This is because, as we continue from a real
point in R to some point (zl, 22) elong some route in
z-space, we end up with a.certain configuration in a-
space of the hypercontour A and the manifold B of
zeros of the denominator, If we continue instead
to (zl, zz) along the complex conjugate route we
merely end up with the conjugate configuration. (This
may otherwise be seen by the reflection principle of
complex variable theory). It must be shewn that this
prescription gives the value of the Feynman amplitude
on the physical sheet; this has been discussed by

Polkinghorne and Screatonzo.

An improper scattering graph has normal threshold
cuts corresponding to each of the three invariants

8y T Vs However at any point in the real plane at

most two of'these cuts overlap. The corresponding
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invariants are the most appropriate for discussing
beheviour at the point, The reality property

implies that there ar; not more than two distinct
limits on the real section C of S at the point:

that in which the imaginary parts of the two variables
take the same sign and that in which they have opposite
sign. On C the limit defined by approach in the same
gense as the attached complex part @#f S is called the

appropriate limit. At points where there is only

one cut both limits must coincide, since the way in
which the limit is taken for the variables not having

the cut is immaterial.

Most of the work3’ 4, 22

on scattering graphs has
been devoted to attempts t0 prove a conjecture of
Mandelstam that the domain of holomorphy for the
scattering amplitude is the topological product of the
complex 8, %, u planes with cuts along their real

axes starting at the normal thresholds., An inductiom
procedure on the order of the graph is used: it

is supposed that there are no anomolous thresholds

(singularities arising from vertex graphs) and that

the Mandelstam conjecture is valid for each of the
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contracted graphs obtained from that under consideration.

Only the most important points in the work are
mentioned here. Further details may be found in
references 3, 4, 22. The basic method is to try
and divide the Landau cﬁrve into a number of sections,
each of which i1s either wholly singular or non-singular.
If a‘section intersects the manifold on which s, t, or
u corresponds to forward scattering the existence of
a forward scattering single-variable dispersion relation
suffices to prove the section non-singular for the
case of equal external masses. Other cases are treated
by analyticelly continuing from this one by varying
the external masses: they may even be varied beyond

the limit for the appearance of an anomalous threshold4. ;

An important property required for the discussion
of the division of S into sections is that the normal
threshold curves, which are inevitably singular, can
only have effective intersection with the leading
curve at infinity. This we may shew by noting that

when S has effective intersection with a normal

threshold it necessarily also has effective intersection
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at the same pointwith a curve corresponding to a vertex
graph. But both these lower-order curves are sets

of parallel straight lines, so this can only happen

at infinity.

The primitive sections into which S is divided
by the normel threshold cuts are linked together to
form a section that intersects a forward scattering

manifold. This process is illustrated by figure 8.
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Here y is a loop which is part of the real section
of 5, lying in the region where two cuts Cl and 02
overlap. From it sprouts a complex part of S which

is divided by Cl and 02 into four primitive sections,

We link Sl to S3 by a path lying in S.
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This can be done by following the type of path
P sketched in figure 8. At X we cross (., At Y
we cross y and move on to the complex conjugate half
of 82. In doing s0 we recross Cl and also cross 02.
At Z ve recross Cs. Between X and Z we have left the
physical sheet and are in a neighbouring unphysical
sheet, but at Z we re-enter the physical sheet and so
arrive at S3n on the physical sheet. The projections
of P-on the complex Zq and Z, planes are shewn in figure 9,

K
7~ A

\.5}_‘\_\-:{ ///w - N\.~\ /«_ o
NS Py, 4 A

No change in behaviour on P will have occurred unless

we have encountered a lower-ovder singularity between
X and Z. The induction hypothesis must be invoked

to demonstrate that this can be avoided.

The procedure just outlined is not sufficient to

prove the Mandelstam conjecture, The reason for this

will be shewn by an example in the next section.
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2.4 The Acnode Graph6

Congsider the graph of figure 10, whose dual
diagram is drawn in figure 11. We take each mass

equal to unity except for the two external

‘@3

ALY c
DN

magses8 BC and AD which we take to be M, We choose
a solution having Epp = aCQ and Tpp= aDQ and so0
obtain parametrically the equation of part of the

Landau curve:?

2

5+ 4 cosp+ 2 (2 -5 M

+ cos0 + cosd )
sin4;/sin@
. (40)

t = O t:—-—)g}z
where(9+(p = B, 6 andmp are in fact the angles i
between PQ and AP, BP produced. On this part of the
curve they are also equal to the angles between PQ and
€Q, DQ produced, It can be seen that when(?or(p

tends to zero, the curve is asymptotic to the normal

thresholds 8 = 9 or ¢t = 9.
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The Feynman parameters are given by

'—C{m::' = ‘C/'.GF__, = ‘Q'dp@ = Kew o di}&
s D = e — (41)
S\ / SN .B v’)‘;.r}, (%” "j“‘,"h‘ 63
All the « are real and positive when
O< el "3 , o< 3 (42)

The part of the real curve for whichﬁ?andc# are
in the range (42) is drawn in figure 12 for various
velues of M°, TFor M/ 4 + 2y2 = 6°828 it has the
form shewn in figure 12 (a). To obtain the form as
M2 increases past this value we take |

8 = ﬂ/6 &4 i',] (P = n/6 - iq (43)

When 4 + 2V2<:M%( 4 + 53 there are real non-

zero values of'q such that
Ime = Imt = O (44)

Thus at M° = 4 + 2{2 coincident acnodes appear on the

line 8 = t, and as M2 inereases further they separate,
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giving the arc and two acnodes shewn in figure 12 (b).
At the value M? =4 + 5/Y3 = 6-887 one of the acnodes

\ R | |
i Nane 7 | Y

Y ()
(w) (&) (©) Fige 12

lies on the curve, Above this value of M2, this

acnode has changed into a crunode and there are two
ceratoid cusps on the curve as in figure 12 (¢). The

positions of the cusps can be found from
ds/d6 = d4t/d6 =0 (45)

For M°Z_4 + 5/Y3, the equations (45) have a pair of
solutions that correspond to complex s, t. They are
complex cusps and play an important part in our dis-

cussion,

As M2 increases further, the two cusps cross the

normal thresholds; and for 7)>M%>4V3 = 6928 part

of the arc lies outside the crossed cuts (figure 12 (d) ).
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Above M2 = 7 there are anomalous thresholds and the

eharacter of the curve changes in a manner we need not

discuss here,

The curves drawn in figure 12 correspond to most of
the masses being equal, No radical change in their
character can be introduced by breaking the equalities
because this part of the Landau curve can have no
horizontal or vertical tangents. Because of the
explicit form of D in the present case such tangente
can only be the straight line Landau curves corresponding
to the vertex graphs obtained from figure 10 by con-
tracting one of the internal lines, These do not lie

above the normal thresholds.
The complex part of the Landau curve, attached
to the real arc in figure 12, is complicated in nature.

Congider intersections of the Landau curve with t he

gsearchlines
s+ t=1p (46)

whette 1 is a real parameter. The paths traced out

in the complex s (or t) plane as p is vyried are
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shewn in figure 13 for the case of figure 12 (b).

\
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The acnodes are labelled A, B, the midpoint of the
real arc is denoted C, and D, Dl are complex cusps.
The parts of the paths drawn in so0lid line correspond

to realq eand those in broken line to complexq .

When the Landau curve has the form shewn in
figure 12 (a) the real arc is singular in the
inappropriate limit but not in the appropriate limit,
If now M2 is increased the Landau surface changes
continuously and it is possible for a real or complex
part to become singular on the physical sheet only if
that part grows from zero size. As M2 increases
past the value 4 + 22 the two acnodes appear, at
first coincident, and so the complex piece T of Landau

curve between them may be singular, At first sight

one might hope that one could use the type of argument
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associated with figures 8 and 9 to shew that this is
not so, but this argument depended crucially on the two
portions of complex surface Joined tothe real curve
being connected by a path through the real curve such
that the a changed continuously on the path. Here

the arcs BAD and BADl share common values of the «
neither at A nor at B.

To determine whether T is in fact singular, we
increase M2 further until M2:>4V3, when the situation
of figure 12 (d) has been reached, During this
variation of Mz, T remains finite in size =nd does
not cross any cuts. The situation of figure 12 (&)
has part of the real Landau curve outside both
normal threshold cuts, and on this part of the
curve the « are positive, Hence this part is
gingular from any limit and therefore also the piece
of complex surface attached to it. This iz the piece

that T has grown into as M2 was increased. Hence T

is singular as soon as it appears.

This would not be possible were it not for the

pregence of the complex cusps D, Dl. "~ In the case
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associated with figures 8 and 9 to shew that this is
not so, but this argument depended crucially on the two
portions of complex surface joined tothe real curve
being connected by a path through the real curve such
that the @ chenged continuously on the path. Here

the arcs BAD and BAD1 share common values of the «

neither at A nor at.B.

To determine whether T is in fact singular, we
increase e further until M2:>4V3, when the situation
of figure 12 (d) has been reached. During this
veriation of M°, T remains finite in size znd does
not cross any cuts. The situation of figure 12 (a)
has part of the real Landau curve outside both
normal threshold cuts, and on this part of the
curve the a are positive, Hence this part is
singular from any limit and therefore also the piece
of complex surface attached to it. This is. the piece
that T has grown into as M2 was increased. Hence T

ig singular as soon as it appears.

This would not be possible were it not for the

presence of the complex cusps D, Dl. - In the case
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shewn in figure 12 (b) the real arc is not singular in
the inappropriate limit. Hence the part of complex
surface, represented by AD (or AD,) in figure 13,
attached to it and 1ying in the neighbouring unphysical
sheet is also nonsingular, We can follow a path on
this surface, passing through the complex cusp D to
remch the acnode A, We can then continue on this path
back into the physical sheet on to T and would conclude
that T is nonsingular were it not for the second
mechanism, involving passing through a cusp, by which
the singularity behaviour along a path on the Landau
curve can change, This was discussed in section 2.1,
If we choose a path that does not pass through the

cusp it can be verified™ that its projection on the
complex 8 or t plane necessarily goes round the cusp
in one or other variable but not in both. Hence such
a path goes through the cut attached to the singular
part of the Landau curve in the neighbourhood of the

cugp and ends up on the wrong Riemann sheet,

#We are grateful to Mr, P. Swinnerton-Dyer and
Mr. C, Paradine who performed computations on EDSAC II

in connection with this problemg

—
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2.5 Second-Type Singularities

The analysis of section 2.3 can be used to shew
that, at least for the three point and four point
functions, the pure second type curve is not singular

on the physical sheet.

For definiteness, consider the four-point
function. The existence of a forward scattering
gingle-variable dispersion relation shews that not
all the second-type curve C is singular on the
physical sheet. Since we know its explicit equation
we know that the curve C has neither acnodes nor
cusps. It cannot have effective intersection with
normal or anomalous threshold curves since these
are straight lines whose position depends on the
internal masses and so they cennot in general touch
C whose equation (16) is independent of these masses.
There remains the possibility that C has effective
intersection with leading curves for four point graphs.
However, we can assert that these curves are never
singular at these intersections. This is because C
is the curve to which the invariants z would be confin ed

if Lorentz space were two dimensional, and if space
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2.5 BSecond-Type Singularities

The analysis of section 2.3 can be used to shew
that, at least for the three point and four point
functions, the pure second type curve is not singular

on the physical sheet.

For definiteness, consider the four-point
function. The existence of a forward scattering
gingle-variable dispersion relation shews that not
all the second-type curve C is singular on the
physical sheet. Since we know its explicit equation
we know that the curve C has neither acnodes nor
cusps. It cannot have effective intersection with
normal or anomalous threshold curves since these
are s8traight lines whose position depends on the
internal masses and so they cannot in general touch
C whose equation (16) is independent of these masses.
There remains the possibility that C has effective
intersection with leading curves for four point graphs,
However, we can assert that these curves are never
singular at these intersections. This is because (
is the curve to which the invariants z would be confin ed

if Lorentz space were two dimensional, and if space
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wvere two dimensional it would not be possible to draw
dual diagrams for the leading curve of a scattering

graph.

A corrollary of this argument is that starting

from a non-singular point of C and moving on C one

cannot enter a sheet on which C is singular. This is
of significence in connection with analytic properties
of partial wave amplitudes since C is the boundary
of the region of integration when the partial wave

projection is made.,

No discussion has been given of the physical

sheet properties of mixed second-type singularities.

Acnodes =and cusps may be expected to occur.
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S Production Proceasses

% 1 Kinematics

An important difference between scattering and
production processes is that for the latter more
scalar variables are required to specify the con-
figuration of 4-momenta. For gcattering there are
only two independent variables, but when E> 4 ex-
ternal particles are involved (3E - 10) variables are
required, So even the simplest production process,
E = 5, regquires five variables, It will suffice

to consider this case here.

Let the 4-momenta of the two incoming particles be
P1s» Pp and of the three outgoing particles =Pz1 =Py»

~Pg» SO that Ip = 0. There are ten scalar products
of the form

Wij = Pi pj 17‘;3 (47)

There are several ways in which five of t hese may be

chosen as the independent variables: call them vij’ |

i3 may then

The remaining five redundant Variables, T
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immediately be expressed as linear combinations of the

vij by use of the identities

pi(p; + Py +p +p +pp) = O
(p; + b; + D + p)° = p° (48)
1T TR TR m 5
(p; + 25+ p) = (py + pp)
The result is
K1
ri,’j = }\ij Ve * BiJ (49)

where Aﬁ? is either + 1 or zero and ﬁij is composed of

squares of the masses of the particles.

Physically, the guantities Py w34, W5 w:,)5
represent energies and the others momentum transfers,
The range of physical values which a given Wij may take

depends in a very complicated way on the values assigned

to the others,
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362 Complex Singularities

Qur results for the vertex function, which was
treated in section 2.2, may be used to shew very simply
that production processes have complex singularities
as functions of two vij with the remaining three fixed,
This is because, however the variables vij are chosen,
there is always a graph of the type drawn in figure 14,

Here each of

,f
////\\\\\ Fig. 14
“/j//// I

. \N {

the scalar products W, wl is either one of the two

variables Vij or is one of the redundant variables that

varies with the latter by virtue of equation (49).

Hence figure 14 is just a single~loop vertex graph ;
with two variable masses, which we already know to have

complex singularities,

It takes rather more to rule out the possibility

of cutplane analyticity when four of the vij are fixed

—J
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at physicel values and only one is allowed to vary.
We shall call this one V. Consider a graph as in
figure 14 where now W varies with V, being either V
itself or a redundant variable depending on V through

(49), and W

is fixed and represents a physical energy.
This means that Wl has a value greater than that for
the corresponding normal threshold when wl is regarded
ag variable. Hence the gingularities in the complex
W-plane for the graph of figure 14 are obtained by

considering intersections of the W—Wl Landau curve with

a straight line (A) in figure 15.
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We recall from Section 2.2 that the Landau
curve is en ellipse, and that in the real plane only
the arc drawn in solid line is singular. Hence the

line (B) has one singular intersection with the Tandau

curve and one non-singular. If we move (B) towards
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the right, these two intersections come together when
(B) coincides with the normal threshold N(2) and
thereafter separate, moving into opposite halves of the
W-plane. In fact we must prevent (B) coinciding with
H(z) by giving Wl a small imaginary part. Then no
cuts have been crossed, so that when (B) has come into
coincidence with (A) one intersection is still singular
and the other not. We decide which is which by con-
sidering the Feynman prescription that the physical
value of the Feynman amplitude is obtained by giving
each internal mass a small negative imaginary part and
integrating over an undistorted hypercontour in a-space.
This also determines the sign of the imaginary part
given to Wl to avoid the normal threshold N(Q). The
result is that the singularity lies in the opposite
half-plane from that in which the approach is made to
the physical limit on the real axis, this being in
ImW>O0. Hence if W = +V + const, the complex singularity
lies in the lower half of the complex V-plane, while if

W= -V + consgt. it lies in the upper healf,

There is another simple type of breakdown of

analyticity, which is concerned with the normal threshold
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graphs, figure 16

My
#*

Fig. 16

These produce a cut in the W-plane and the physical
limit is to be taken on to the real axis from the upper
half plane. Consider the contribution to the
amplitude from two such gréphs, with corresponding
variables W, Wl. Supposge that W = +V + const. and

wl = =V + const. and also that W, wl represent energies
when they take physical values, Then in the V-plane
the two corresponding cuts overlap and the physical
region lies completely within the part of the real axis
on which they overlap (figure 17)
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Further,the physical limit is to be taken between

the two cuts, so that on the face of if the physical
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value of the amplitude is not the boundary of an
analytic function at all, However, this is not so
because we may distort the cuts to obtain at least some

region of analyticity (figure 18).

One might hope that one can in fact swing one cut round
through 2n so that the figure is again as in figure 17
but now the physical limit is taken from, say, the
lower half plane., But one can see that this is
certainly of no avail when there are other normal
thresholds corresponding to both W, W1 in the

physical regionsa, Even when there are not, new
complex 8ingularities are likely to be exposed when

the cut is swung round. For example, the graph

of figure 19 can be seen, from its dual diagram

WA— : >

P Fig. 19
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to have complex singularities on unphysical sheets, It
is thought that it has them on that unphysical sheet
which is exposed by the swinging round of the cut.

It is a matter of simple but very tedious
enumeration to shew that, whatever choice of vij is made
from the wij and whichever of them is chosen as the
variable V, one or other or both of the types of breask-
down of analyticity described above is encountered,
Further, when the first type occurs there are complex
singularities in both half planes. These singularities
are branch points and so have cuts attached to them,
Thus there is no possibility of a useful dispersien
relation when four scelar products are fixed and one
varies. We have not entirely ruled out the possibility
of a dispersion relation in terms of other "peculiar"

variables, but they could not be too peculiar for it to

be of any practical value.
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%e3 A Particular Process

23

At the suggestion of Chew and Low 7, much attention
has been given to the production process m + NN + ®m + 7,
Here extrapolation from experimental data is made to the
gingle pion pole in the nucleon-nucleon momentum trang-
fer, It is supposed that the nN interaction is peri-
pheral, so that the main contribution comes from the

diagram of figure 20, and that therefore the extra-

volation gives

e Fig.20

information ahout the m-n interaction.

For this procedure to be valid it is not necesgsary
that there be a dispersion relation, but that there

be sufficient analyticity for there to be no "spurious"

singularities near the pole to which extrapolétion is
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made, In fact, however, the complex singularities con-

sidered in the last section do appear near the pole.

With the particles labelled as in figure 20 the
basic set Vyss Vigy Vo Vays Vyz = V of scalar products
is used, The Feynman graph of interest for our purposes
ig8 the triangle-graph of figure 21. For this graph
Wl and W are respectively the fixed energy V34 and the

~
~ ~ 1
~ - ) P e
N W
F 4 e
” - ~ i;
T, Fig., 21
3 ‘\Af' h \ .
4

redundant variable
2
Tos = V= Vpy = Vg5 + 30
where p is the pion mass. A simple calculation shews

that the complex singularity occurs at

3
v f s o L 9 = PTT s
W = “‘/f Uy XU - /lM & = »Z&/LLZ\I(~ == 2 lame)
If one inserts into thisformula some typical values

encountered in experiments:
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vl _ 2 _ 2
V1o = l44p V45 = 12 Vay = 6lp

2
v24 = =10+.2un
one finds that the singularity occurs almost exactly

at

V= (1-1)p?

In fact this is even not the set of values of the
fixed v which brings the singularity nearest to the pole
at V = u2. To find this set of values would require an
involved calculation, because one has to check that it
is a physical set. This is best done using the centre-
of-mass system for the process; one has to check that

the angles hetween the outgoing J-momenta and between

the plane of the outgoing particles and the line of

the ingoing particles are physical,
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2.4 Experimental Predictions

It 18 our ohject here to discuss whether the
Landau singularities can ever be "noticed"
experimentally. The hope is thaf under favourable
kinematic circumsténces they may appreciably influence
the shape of a crogs-section curve, This may be
expected to happen when they are infinities rather than
mere branch points and they approach close to the
physical region. Only the simplest graphs produce

20 and we here confine

singularities that are infinite
ourselves to a discussion of the simple triangle
graphs, which are in fact the only graphs with three

vertices that do produce infinities.

Rather than cope with t he complicated generalities
of the structure of the physical manifold and of the
various singularity menifolds for different kinds of
graphs, let us turn directly to what is a particularly
simple class of graphs. Consider the production
reaction

ky + kprq+ (B + Ky + ouee)

where each letter represents a particle and also its




665

3.4 Experimental Predictions

It is our ohject here to discuss whether the
Landau singularities can ever be "noticed"
experimentally. The hope is that under favourable
kinematic circumstances they may appreciably influence
the shape of a crogs-section curve. This may be
expected to happen vhen they are infinities rather than
mere branch points and they approach close to the
physical region, Only the simplest graphs produce

20 and we here confine

singularities that are infinite
ourselves to a discussion of the simple triengle
graphs, which are in fact the only graphs with three

vertices that do produce infinities.

Rather than cope with t he complicated generalities
of the structure of the physical manifold and of the
various singularity manifolds for different kinds of
graphs, let us turn directly to what is a particularly
simple class of graphs. Congider the production
reaction

ky + kyrq+ (B + K, + § 5an)

where each letter represénts a particle and also its
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4~momentum, In particular we shall denote by m the
nass of the particle q. We now restrict ourselves

to triangle graphs (figure 22) in which the colliding
particles kl, k2 join at one vertex, the single particle

q emerges from & second

i
A}

Ka.

(%l .
N7 Pig.22

vertex, and the remaining particles Kl’ K2.... all

join at the third vertex. Aside from spins, the ampli-
tude for such a graph depends on only two independent
variables, which we take to be

Wl = (kl % k2)2; 8 = (Ki + K, + ...)2. (50)

We study the dependence of the amplitude on the variable

s, for fixed W2,

Let M denote the sum of the masses of the particles
K1 K2,.... . The physical range of the variable s,
for fixed W, is given by

Me¢ 8 < (W-m)° = s (51)

1
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Now the triangle graph in gquestion produces a normal
threshold singularity at
_ 2
8, = (ml + m2) . (52)
If W is large enough, and if the internal particles
are stable, as we assume,then the graph also produces
an anomalous singularity. For W>ml + m this occurs

at the complex point S given by

Tz miemy - 2wy L (53)
where
i 4 L T 'l..w"'/)-

- 77 (z272)Y 4~ 22) §
;Z gl > ] &4.[_ } 4 (54)

> M- Az - W
,.vamg (55)

t ‘W‘lz. -+ e w
Z = L5l ol a0 BN (56)

JWLY“;

For W = m + Mg y 8 is resl and we have

g - = ( (R ¥y [M 5‘}" [‘ ’M-\zz', e ('m 3 - YN \)‘1' ] (57)

=

- 3 )"V" (58)

As W decreases below m, + My § moves away from the

physical region, toward the normal threshold. This

is of course just what we do not want to happen, so we
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shall not consider the case w<ml + my any further,

However, we also note that the physical amplitude
is obtained by allowing the variable s to approach the
real axis from above, whereas for W)m, + m, the
singularity § lies in the lower half s-plane. Thus
the cage where Re E})sn is also uninteresting, since
here a normal cut intervenes between s and 5 even when
they are "close" to one another, Inspection of
squations (53) to (57) shews that for W»m, + m, the
gingularity B moves far away from the physieal region,
except when z'sl; but in the latter case Re §>>sn.
A1l of these considerations therefore suggest that the
most hppeful prospects for "detecting" the influence
of the anomalous singularity corresponds to choosing

W in a more or less narrow region near my + m3.

We can therefore most easily survey the possibilities
by taking the simple case W = m + m; and looking for
diagrams for which 8 - s, 1s small enough to be

interesting, e€.g. § - sl,é‘(pion mass)g.




76.

Some examples are shewn in figure 2% ond it is
easy enough, by inspection of the equations, to generate

others. All sre somewhat impracticable in that they

involve emission of photons or require very high (and
narrowly defined) incident particle energies or are con-
cerned with processes that are as yet not very common.
The sixth, a hyperfragment decay, involves a weak inter=-
action. Notice that, in the notation of figure 22, the
nunber and nature of the particles emitted at the

(ml, m2) vertex is irrelevant in determining the location
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of 8, and &, provided the choice is consistent with
selection rules and, for given W, with energy-momentum
conservation. Thus in figure 23a the particles emitted
at the (n, n) vertex could consist of any number of
pions and, say, KK pairs, up to the limit set by avail-
able energy. Similarly, the nature of the incident
particles in each graph has no effect on the location
of the singularity. Thus, again in figure 23%a, the
incident (m® n) could be replaced by (n &), This might
geem ideal for our purpose, since with our chosen value
for W the antinucleon would be at rest, as ig very
convenient for experimental study. However, our
triangle singularity 8 then coincides with the nucleon-
exchange pole in the diagram obtained by 'dissolving!
the (n d) interaction, so that our effect, although
expected to be there, would be swamped by another”,

The seme remark applies to the hypertriton decay
diagram of figure 23f if it is valid to regard the
hypernucleus as a (Ad) scattering state, One might,
however, gay that this model should be modified by
inclusion of the wave function for the /\ in the hyper=-
nucleus and that this could have the effect of changing

ke peie sinpulselvy provigely it oos of Vhe Yrldegie

# This was pointed out by Dr. R. Blankenbecler
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type.

We illustrate the way in which the anomslous
singularity influences the transition amplitude
by considering in detail one example, that of figure
2%a. We compute the Feynman smplitude for this graph
with neglect of structure effects at the vertices,
since we are only concerned with the variation of the
amplitude over a narrow rsnge near the singularity.
For the same reason we also neglect spin effects,
treating all particles es sgpinless. A closed form
for the Feynman integral has been obtained by A.C.T. Wu?4
This contains a large number of Spence functions,
however, and is unattractive for computation purposes.
We prefer instead to write down a dispersion relation
in the variable s. The weight function is easily
obtained in explicit form, and the dispersion integral

can readily be evaluated numerically, Details are set

out in the Appendix.

The results are most conveniently expressed, not
in terms of s, but rather in terms of a varisble T

which denotes the kinetic energy, in the overall

center of mass system, of the outgoing nucleon, This
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is related to the variables W and s by

. SyE=2
A 2W

For our simple choice W= + d ( % Bev) the transition
amplitude is real and its dependence on T is shewn in

figure 24. The sharp increase in the amplitude towards

small T will be noted: the amplitude is roughly

doubled in a width ATw»23 Mev. In the region of rapid
variation the squared amplitude varies as T-l, an

effect which should outweigh the phase volume effect,

1/2 ar, That is to say, insofar as the

which goes as T
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graph in question dominates all others at small T,
the experimental nucleon recoil spectrum should show
a noticeable, narrow bump at small T, We may also
remark here that, for fixed recoil nucleon energy T,
our amplitude is independent of the angle of emission
of the nucleon, This could be tested if one had
reason to suspect that the graph in question were in
fact dominating the reaction. Similar remarks hold

for all the graphs under discussion.

The sharp effect indicated in figure 24 corresponds
to the precise choice W=n +d., As W is increased, 8
becomes complex, but since zf is very nearly unity,
(z' =1 €, 1/800, Imn & remains small for a long
while, However, Re 8 very quickly moves past the normal
threshold at 4 n®. By the time thet W has increased
by 50 Mev above the value n + d, all noticeable peak
effacts have disappeared, even though Re & and 8, are
very close to one another, As we have already said
earlier, when the cut intervenes between 8 and a point

8 “near" to 8, the distance between the points must

reélly be measured along a path that goes around the

normal threshold, without crossing any cuts; that
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distance increases rapidly here with increasing W.

We also learn in this example that there is no
reason to suppose that only singularities that occur
on what is usually taken to be the physical sheet should
be effective. Singularities which are uncovered when
the normal cuts are distorted may well be important
if they lie near the physical region ("nearness" again
somehow being defined in terms of a distance along a
path that crosses no cuts)., In fact this observation
is relevant for the results of figure 24. The
singularity at 8 is only logarithmic , so that one might
have expected that no noticeable effect persiast at 81
What comes into play here, however, is the gecond type
gingularity at 8y oOn the unphysical sheet reached through
the cut attached to 5. It hehaves as l/(’:a.-—s)‘"L near
81 and it combines with the logarithmic singularity
at 8 in a subtle way to produce the sharp peaking
effects noted here, How this comes about can be
seen in more detail from the discussion given in the

Appendix,

We note finally that the general character of the

effects discussed above for the graph of figure 23%a
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holds also for the other graphs under considerations
a sharp peaking in the spectrum of the recoil particle
at low energies, for incident energy W in a narrow inter-

val near my + Do The effect rapidly disappears with

increasing energy W.
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Appendix to Section 3.4

The weight functions in the representation for the

triangle graph may be evaluated by the standard method

19

of Cutkosky. The result, when the singularity at s

appears on the physical sheet, is proportional to

-5|\ ()L :
X w s 2 K@Y ds'
3 \/m s'-8 JK(s) afs') s'-s5-ee
3 S‘n.
b
B ; f 5
+ ‘ i @c} als) 4 JKGsH L(sY) ’_9\’5___ (RY)
5 J- k() afs)— -k} List) s -
where

& = /\_“/,’-‘—-W? i

~ A

w i '._,‘A I\ ; o 3

K(s')= (275 Ys—si) , (h )
o Y 3 . L.’“

L(s) = [s a3 lst —(m-w0a)]

y L P ps L L2y
C-L(,Sl}':" S +5 (_Q"“.B'f-"m),*mz_ \U —-Mm

-+ Q&/ll‘wwl'B( w )

and 8., 8,, B are defined respectively in (51), (52), (53).
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We have written (Al) in the form directly applicable

to our computation discussed in section 3.4, where we
took W = m + mg; S0 that 8 was real and 8,48 . In this
cage the square roots in (Al) are to be taken to have
positive values and the logarithm is real, The
arctangent takes the value m at 8§ and 0 at sé, there
being a zero of a(s') in between these points. The

first integral in (Al) may be evaluated in closed form

and the result is

e

; = J(8s=8. Y(52 %) , _;k§~9J(S -<} -
'4‘1‘(_/ [t&\'\ lj}g__s_g(‘;J. — :‘1..-'\\/ __»j_»_ (A "_\,)

~KE) (5.7 $n )35 (s2-SKsi-$

where again the radicals are positive and the arctangents
lie between O and mn. The remaining two integrals in

(A1) must be estimated numerically.

When s; > s and when 8 is complex the equations
(A1) and (A3) are still formally correct. The sheets
of the logarithm and arctangents must be determined by

continuation from the previous case.

We may notice some gualitative features of our
function for the case discussed in section 3.4. The

value of (A3) at s = 8, is

1
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(h4)

L ( 58 ) i ( 52 Sa\ ™
93 = 5 5= By Sa - %

When, as in our case, 8 and s, are close together this
is large. The second integral in (A1) produces a

contribution of the same order of magnitude,

As s is taken below s, the contribution (A3) falls
of f rapidly, both because -K(s) increases and because
the arctangents become nearly equal. The second
integral, however, falls off more slowly, a(s') has
a zero at a point s© close to 8, and a substantial
part of the contribution from the second integral
arises from the range s to about 2s8*, A crude idea
of the behaviour may be obtained by approximating the
arctangent as m/2 in this range and then the result
of the integration is as in (A3), with s, replaced
by 25" and & by 8, AsSvaries over a small range
below 8y the arctangents are sensibly constant and
so we see that the behaviour ig as l/(EI:E'. This is
in accord with our assertions in section 3.4 concerning

the interplay of the singularity at 5 with the second

typesingularity at 8 . The effect of the nearness of
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the 8 singularity is mainly felt indirectly in that

it causes the zero s of a(s) to be close to S,
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