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Abstract 
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Improvements: The Case of the UK Electricity 
Distribution Companies 

EPRG Working Paper    1027 

Cambridge Working Paper in Economics  1052        

Tooraj Jamasb, Luis Orea and Michael G. Pollitt  

 

The main aim of this paper is to develop an econometric approach to 

estimation of marginal costs of improving quality of service. We 

implement this methodology by way of applying it to the case of the UK 

electricity distribution networks. The estimated marginal costs allow us 

to shed light on the effectiveness of the current UK incentive regulation 

to improve quality, and to derive optimal quality levels and welfare 

losses due to sub-optimal quality levels. The proposed method also 

allows us to measure the welfare effect of the observed quality 

improvements in the UK between 1995 and 2003. Our results suggest 

that while the incentive schemes established by the regulator to 

encourage utilities to reduce network energy losses leads to 

improvement in sector performance, they do not provide utilities with 

sufficient incentives to avoid power interruptions. We find that the 

observed improvements in quality during the period of this study only 

represented 30% of the potential customer welfare gains, and hence 

there was still significant scope for quality improvements. 
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1. Introduction  

 

Since the 1990s, many regulators of infrastructure industries around the world 
have implemented incentive-based regulation models that mimic market 
mechanisms and promote efficiency improvements in natural monopolies. Such 
schemes have in particular been adopted in the regulation of electricity 
transmission and distribution networks (Jamasb and Pollitt, 2001). Service quality 
is an important attribute of electricity distribution for residential, commercial and 
industrial customers as many functions of the modern society depend on 
electricity. The incentive schemes incentivize the network utilities to undertake 
cost savings. However, the striving for cost savings may result in lower service 
quality as maintaining or improving upon a given level of quality of service is 
costly (see Ter-Martirosyan, 2003). The likely effects of traditional incentive 
regulation on service quality has recently attracted regulators’ interest and a 
number of electricity regulators have made considerable effort to design incneitve 
regulation mechanisms for quality of service in electricity transmission and 
distribution networks (see Yu et al., 2009a). 
 

In an ideal competitive electricity market, the socio-economic optimum occurs at a 
quality level where the sum of the total cost of quality provision by the network 
and the total quality induced costs to consumers is minimized. However, in the 
absence of (incentive) regulation, distribution companies may operate at sub-
optimal quality and social cost levels. In principle, the companies should be 
incentivized to provide the optimal quality level – i.e. where the marginal benefit of 
an extra unit of quality received by the customer is equal to its marginal cost 
(Ajohia et al., 2005). As shown in Figure 1, ineffective incentives might result in 
under-supply or over-supply of quality, and higher or lower than optimum levels 
of quality will result in welfare losses.  
 

Figure 1. WTP, marginal costs and optimal quality levels 
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Sappington (2005) concludes that there are no simple policy solutions for effective 
regulation of quality of service but they depend on the information available to the 
regulator on consumer preferences and production technologies. Indeed, in 
designing quality-incorporated regulatory mechanisms, regulators are faced with 
the task of determining a market demand curve for service quality (i.e. the price 
customers are willing to pay for quality) and marginal cost of quality 
improvements. On the demand side, several studies have attempted to quantify the 
value of service reliability using the direct costs incurred by customers from 
service interruptions (Allan et al., 1999; Kariuki et al., 1996) or estimation of the 
consumers willingness-to-pay (WTP) to avoid power interruptions (Yu et al. 
2009a). On the cost side, while previous papers have incorporated WTP and 
quality of service variables in non-parametric regulatory benchmarking (Giannakis 
et al., 2005; and Yu et al. 2009a, 2009b), marginal cost of quality improvements 
were not explicitly estimated. While the non-parametric approach to measure 
firms’ efficiency does not provide information about the production characteristics 
or cost frontier, except for the returns to scale nature of the technology, aggregate 
inefficiency scores that include inefficient quality allocation can be obtained. 
 
Previous studies have showed that utilities respond to quality of service incentives 
(Jamasb and Pollitt, 2007; Tangeras, 2009). However, in order to provide regulated 
utilities with proper reward and penalty for service quality it is crucial to have 
information on other technology characteristics and in particular on marginal 
costs of quality improvement. Indeed, the marginal cost of quality improvement 
can be viewed as a lower bound for setting incentive targets, as basing rewards or 
penalties merely on marginal benefit of improvement may provide utilities with 
overly generous incentive for socially efficient quality improvement. Hence, the 
aim of this paper is to estimate econometrically marginal costs of improving 
quality services of the UK electricity distribution utilities, and to shed light on the 
effectiveness of the current incentives to improve quality. Moreover, estimates of 
marginal costs indicate how far the utilities are from their optimal quality level 
(given the marginal benefit of quality improvement) and allow for computing 
welfare losses due to sub-optimal quality. We also measure the effect on welfare of 
quality improvements in the UK. 
 
Section 2 introduces the empirical model and discusses several theoretical and 
econometrical issues concerning the estimation of marginal costs. Section 3 
describes the data and variables used in the empirical exercise. Section 4 presents 
the parameter estimates using different specifications and estimators. Section 5 
summarizes the results, and presents the main conclusions. 
 

2. Specification of the empirical model  

 

In this section we specify an empirical model to estimate marginal costs of 
improving quality service and apply this to case of the UK electricity distribution 
companies.  
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An important issue to address is that, while accurate information about 
operational and capital costs and quality services might be available, the 
explanatory variable i.e. the marginal cost of quality improvements, is not 
observed. However, although we cannot estimate the marginal cost function 
directly, it may be inferred from previous estimations of the utilities’ cost function. 
This means that while we can estimate “reasonably well” the cost level of a 
particular utility, the inferred marginal costs are less accurate – i.e. the confidence 
intervals and prediction errors are larger than in the cost function.1 The basic cost 
function to be estimated can be written as: 
 

),,,,(lnln tqenyCC      (1) 

where C is a measure of utility costs, y is the energy delivered, n is the network 
length, e stands for network energy losses, and q is a measure of service quality 
(measured by the customers minutes lost), and t is a time trend.2 We include 
network length to reflect the size of service area and network and has been used 
(as an output of networks) by Ofgem in benchmarking of the utilities’ operating 
costs. An alternative way to write the cost function (1) is: 
 

),,,,(lnln tqednCC      (2) 

where d=y/n is a measure of network density.3 Functions (1) and (2) are 
equivalent. But the interpretation of some coefficients changes, for example, while 
energy delivered in equation (1) is expressed in absolute terms, in equation (2) it 
is expressed in relative terms. The advantage of (2) is that it makes easier to 
measure both economies of scale and economies of density. 
 

                                                 
1
 In technical terms, this means that while translog and quadratic cost functions can be viewed as second-

order approximations to the underlying, and true, cost function, their first derivatives (i.e. elasticities or 

marginal cost) are only first-order approximations to elasticities or marginal costs.  
2
 Customer numbers (cu) and units of energy delivered (y) are the most commonly used outputs in 

benchmarking of distribution network utilities (Giannakis et al., 2005; and Yu et al. 2009a, 2009b). These 

output variables are important cost drivers and influence the pricing of distribution services. However, the 

statistical correlation between these two outputs is very large in the present application (over 97%). In this 

case we have four options. The first is to estimate the cost function with both outputs, as in some previous 

studies. With this strategy not only we are not coping with a significant collinearity problem, but also cu 

cannot be interpreted as an output because, given that energy delivered is the product of customer number 

times per capita demand, the derivative of cost with respect to cu captures a substitution effect, i.e. the 

effect of an increase in the number of customers and simultaneously a reduction in per capita demand. 

The second option is to drop energy delivered as explanatory variable. This would create an endogeneity 

problem in the present application as network energy losses depend on total demand and changes in total 

demand caused by changes in per capita demand - that now belong to the error term- are correlated with 

energy losses. Hence, if we estimate a cost function by just including customer numbers as output, the 

parameter of energy losses will be overestimated. The third option, followed in this paper, is to drop 

customer numbers as output. This does not imply that we ignore cu as it is already included in y, and the 

main driver of change in energy delivered is by far cu. On the other hand, as y includes per capita 

demand, we do not have an endogeneity problem. The fourth option is to add per capita demand as an 

additional cost driver, but given the small size of our sample and that the coefficient of this variable was 

always statistically insignificant, we drop this.  
3
 Network density is often measured as the ratio of customer numbers to network length. As the 

correlation between customer numbers and energy delivered is almost 100%, our density measure can be 

loosely interpreted as the number of customers per network kilometer. 
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We use the sum of operational and capital expenditures (Totex) as the dependent 
variable. Improving quality of services involves operating cost (Opex) and capital 
cost (Capex) for the utilities. Due to the presence of possible trade-offs between 
Opex and Capex (Giannakis et al. 2005), utilities might adopt different strategies to 
combine operating and capital inputs to improve service quality. These strategies 
might be affected by the regulatory incentives. For example, in the UK a firm 
receives greater benefits from saving Opex than by an equal amount of Capex 
reduction (Ofgem, 2003a). Hence, in order to examine existence of different 
strategies in the UK utilities to improve quality, and to ascertain whether the 
current regulation has distorted the allocation of operating and capital inputs we 
also consider Capex and Opex as dependent variables. In a previous study (see 
Jamasb et al., 2010) we added the cost of energy distribution losses to the Totex. 
Here we use energy losses, e, as a cost determinant as we are interested in 
estimating its effect on total cost of reducing distribution losses.  
 
Both n and d allow us to distinguish between economies of scale and economies of 
density. The first type is related to system expansion at constant density, e.g. urban 
fringe expansion. As network density is held constant, this type of expansion 
requires enlarging the current network to meet extra demand. These economies 
that involve increases in demand and network can be measured by (partial) 
elasticity of cost with respect to network length, n. The second type involves 
simultaneously expanding the output and service density, i.e. expansion in the 
existing serviced area where additional network is not required. These economies 
can be measured by the (partial) elasticity of cost with respect the network 
density, d. It is expected that the economies in distribution are mostly from 
increased densities. 
 
Yu et al. (2009b) treated the social cost of customer minutes lost as a cost to be 
minimized together with private costs.4 We treat social and private costs 
somewhat differently, and include customer minutes lost, q, as a determinant of 
private costs. This allows us to obtain a measure of the private marginal costs of 
quality improvements.5 We multiply the per-customer minutes lost by the number 

                                                 
4
 This requires an estimate of customer willingness-to-pay (WTP) for quality improvement. See Yu et al. 

(2009a) for more details about how WTP can be estimated and problems of obtaining accurate 

measurement. 
5
 Indeed, note that actually customer minutes lost, q, is the “inverse” of a real quality measure. If we call 

this quality measure as Q, the marginal cost of quality improvements can be computed as: 

Q

q

q

(·)C

Q

(·)C
MC














  

If the relationship between q and Q can be represented by the linear function Q=A-q, where A can be 

viewed as the maximum quality level, the above marginal cost reduces to: 

q

(·)C
MC




  

In order to get a positive marginal cost of quality improvements, the derivative of the cost function with 

respect to q should be negative. It is argued before that this might not be the case as q cost might be 

negatively and positively correlated. 
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of customers, in order to scale the variable and include it as a determinant of 
network company costs.  
 
The coefficient of the time trend is normally interpreted as capturing the cost 
effect of improvements in technology. In this paper we use a broad definition of 
technology as the estimated cost function likely reflects both the underlying 
(physical) technology and the (consequences of the) regulatory regime that 
conditions utilities’ performance. In this sense, the time trend coefficient of the 
model may also reflect improvements in cost efficiency in response to regulatory 
incentives.  
 
Unfortunately input price data for operating and capital inputs is not available. By 
convention, many papers using non-parametric techniques set the price of 
operating and capital inputs to unity. If we followed the same strategy in a 
parametric framework (i.e. including invariant input prices), we would not able to 
distinguish their effect from those of other explanatory variables. In general, we 
expect that the price effect of operational and capital inputs is captured by the time 
trend as many industrial prices tend to increase gradually over time, i.e. as with a 
time trend. Hence, the coefficient of the time trend variable might be capturing the 
net effect of improvements in technology or cost efficiency and input prices 
(changes). 
 
Another issue is to control for the effect of differences among utilities in 
environmental factors, such as the weather, geography, etc. In Jamasb et al. (2010) 
we show that weather conditions should be included as determinants of 
distribution costs as they have shown a statistically significant effect on costs, and 
because ignoring the effect of weather on distribution costs might bias the 
parameter estimates of other relevant variables. This endogeneity appears because 
bad weather conditions tend to increase costs but also lead to lower quality.  
 
This case is presented in Figure 2 where we draw two hypothetical cost functions, 
one for good weather and other bad weather. If the random data generation 
process behind service quality were completely independent of weather, we would 
have observations along both cost functions. However, bad weather conditions 
tend to reduce service quality.  
 
In order to estimate consistently a cost function in the electricity distribution 
sector, we include weather data as cost determinants.6 More specifically, we simply 
add the weather variables to the cost function as in Jamasb et al. (2010) we could 
not reject separability and a linear functional form for the weather variables. Our 
cost function can then be written as.7  

                                                 
6
 We also show in Jamasb et al. (2010) how to proceed when weather information is not available in an 

instrumental variable framework. 
7 We do not use weather composites as in Yu et al. (2009b) as we found that statistical weather 

composites do not have any cost effect even though some of their components have a significant effect on 

costs. Moreover, the inclusion of weather composites did not allow us to estimate consistently the 

marginal cost of quality improvements. 
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)(),,,,(lnln wgtqednCC      (3) 

 
where g(w) is a linear function and w is a set of weather variables that might affect 
costs. According to (3), the vertical distance between both good and bad weather 
cost functions in Figure 2 is now captured by g(w), and consequently the 
simultaneity biases should now disappear. 
 
 

Figure 2. Distribution cost, service quality and weather conditions 
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A final issue is that there is a feed-back between service quality and cost, making it 
difficult to formulate hypotheses with respect to the effect of quality on cost. This 
is illustrated in Figure 3, where an increase in power interruptions caused by 
severe weather conditions or equipment decay require corrective costs associated 
with the steps needed to replace the damaged equipment and to restore power. As 
a result, we expect a positive (negative) correlation between the number and 
duration of power interruptions (quality services level) and cost.  
 
At the same time, Yu et al. (2009b) argue that, over time, utilities might adapt their 
operating and investment practices to prevent power interruptions. As a result, we 
also expect a positive correlation between quality of service and cost. Hence, 
quality of service is likely negatively correlated with corrective costs, but positively 
correlated with preventative costs.  
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Figure 3. Preventative vs. corrective cost 
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We attempt to distinguish between the types of cost by taking into account that 
each cost maintains a different relationship with quality of service (number and 
duration of power interruptions) over time. In other words, some costs are likely 
correlated with contemporaneous interruptions, while other costs with future or 
expected interruptions. These (inter)temporal relationships are represented in 
Figure 4. The figure assumes that corrective costs are logically explained just by 
contemporaneous power interruptions – i.e. number of minutes lost per customer 
for planned and unplanned interruptions lasting three minutes or longer, q=CML.8 
On the other hand, the distribution utilities were incentivized to reduce both the 
number and duration of interruptions during the period analyzed in the present 
paper. In 1999, the distribution performance standards were introduced, and the 
third price review period (2000-2005) introduced an incentive scheme of 
penalties and rewards focuses on improving rather than maintaining the level of 
quality.9 Given this incentive scheme, it is reasonable to assume that each utility 
has invested in specific equipment every period to prevent power interruptions in 
the future.10 Obviously, these preventative costs might have also a 
contemporaneous effect on q, resulting in the contemporaneous relationship 
between total cost and customer minutes lost being indeterminate as the 
relationship of q with preventative cost is negative, while it is positive with 
corrective costs. 
 

 

                                                 
8 From 2005/06 Ofgem adds 50% of planned interruptions to planned interruptions as consumer 
surveys showed that electricity consumers are less affected by the latter. 
9 It is noteworthy that Ofgem assigned a higher incentive percentage to customer minutes lost rather than 

number of customers interrupted targets, which shows the relative importance of reducing the length as 

opposed to the number of interruptions (Yu et al., 2009a). 
10 In this sense, it is important to recall that previous studies have showed that utilities have responded to 

quality of service incentives (Jamasb and Pollitt, 2007; Tangeras, 2009). 
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Figure 4. Theoretical framework  
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Before describing the implications of this theoretical framework for the 
specification of the cost function (3), we test whether it is supported by the data. If 
the above framework is correct: i) the dependence of q on contemporaneous 
expenditures is likely not statistically significant because not all new equipment to 
prevent power interruptions are available at the beginning of the period and the 
negative, although weak, effect on q of preventative costs offsets the positive effect 
of corrective cost; and ii) customer minutes lost reductions should depend on past 
rather than contemporaneous expenditures.  
 

In order to test these hypotheses we estimate several models using q=CML as a 
dependent variable, and past and contemporaneous values of Totex as explanatory 
variables. A summary of the results are shown in Table 1.11 In all models, Totex 
lagged one period is always statistically significant, indicating that changes in q 
depend indeed on past expenditures, as predicted by the framework outlined 
above. Note, however, that Totex lagged two periods is not statistically significant, 
even when other cost variables are not included in the model. Also, as expected, 
the contemporaneous value of Totex does not have a significant effect on current q. 
 

Table 1. Relationship between quality service and contemporaneous and past expenditures 

 Model 1 Model 2 Model 3 Model 4 Model 5 
Totex No  No  - - - 
Totex(-1) Yes  - Yes  - Yes  
Totex(-2) No  - - No  No  
 R-squared 10.6% 7.8% 10.4% 6.8% 10.4% 
Notes: Yes (No) indicates that the coefficient is (not) statistically significant at 5%. Dependent variable: 

q=CML 

                                                 
11

 The details of these estimations are available upon request. In order to control for the effect of weather 

conditions on CML we included weather variables in all models. A fixed-effect (FE) estimator was used 

as we are interested in temporal changes (i.e. within-firm variations) rather than differences among the 

utilities. The R-squared statistic is always very low (<11%), indicating the existence of other factors not 

accounted by weather variables and past and contemporaneous values of Totex influencing CML. 
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The results in Table 1 seem to support the theoretical framework described in 
Figure 4.12 Next we examine the implications of this theoretical framework on the 
specification of the cost function (3). In particular, we can hypothesize from Figure 
4 that: i) corrective cost depends exclusively on contemporaneous customer 
minutes lost, q; ii) preventative cost depends on expected customer minutes lost; 
iii) Totex depends on both contemporaneous and expected customer minutes 
lost;13 and iv) while the effect of contemporaneous customer minutes lost on Totex 
might be both positive or negative, the effect of expected customer minutes lost on 
Totex should be negative and larger in absolute terms. 
In summary, if the above framework holds, the cost function in (3) should be written as: 

 

)(),,,,,(lnln wgtEqqednCC      (4) 

 
where Eq is the expectation in t about customer minutes lost in t+1. In this 
specification, the derivative of cost with respect to Eq allows us to measure, once 
we change its sign, the real marginal cost of quality improvements as this 
derivative is not “contaminated” by corrective cost effects.14 The sign of the 
derivative of cost with respect to q is unknown as it captures both corrective and 
preventative effects.  
 
The magnitude of power interruptions in the future is not observed by the utilities 
(but it is observed by the researchers). For this reason their decisions are likely 
based on expected values. These expected values are in turn conditioned by the 
firm-specific targets set by Ofgem to incentivize improvements in service quality. 
The expected values, however, are not observed by the researchers. Hence, we 
replace Eq by q at t+1, that is, 
 

itititititititit wgtqqednCC   )(),,,,,(lnln 1    (5) 

 
where subscript i stands for utilities, subscript t stands for time period, and it is 
the classical error term. We expect the classical errors-in-variables attenuation 
bias where the coefficient of the variable measured with error is biased toward 
zero (Wooldridge, 2002). Therefore, the marginal cost of quality of service 
improvement estimated using (5) can be viewed as a lower-bound of the real 
marginal costs.  
 

 

 

                                                 
12

 Since preventive and corrective costs might be also applied for reducing energy losses, we have carried 

out a similar analysis for energy losses as dependent variable. However, none of the coefficients of past 

and contemporaneous values of Totex were statistically significant.  
13 The difference between expected and future customer minutes lost is explained below. 
14

 One can argue that some corrective costs might have a preventative effect. In this case, however, its 

relationship with future customer minutes lost is of the same sign as the pure preventative costs. 
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3. Estimation strategy 

 

In addition to including weather variables as cost determinants, a fixed-effect type 
estimator is used to control for unobserved heterogeneity among firms that might 
be correlated with the explanatory variables. The traditional fixed-effect (FE) 
estimator in the present application may be inappropriate as many crucial 
determinants of utility costs, such as the energy delivered, the number of 
customers, or the network length are persistent or rarely variant variables. 
Plumper and Troeger (2007) pointed out that the FE estimator may be 
inappropriate because the information between firms is mostly ignored, and the 
estimates of rarely changing variables are inefficient. In order to address this issue, 
they propose using the Fixed Effect Vector Decomposition (FEVD) method. They 
show, through a Monte Carlo analysis, that FEVD has a better performance than 
OLS, Random Effect Estimator, and the Hausman–Taylor Estimator if time variant 
and time invariant variables are correlated with fixed effects. 
If we use the traditional FE estimator to estimate our cost function, the model to be 

estimated can be re-written as follow: 

 

  itiititit zxC  ln     (6) 

 
In this equation we have re-label the cost explanatory variables according to their 
time (within-firm) variability: xit stands for variables that vary notably over time 
(such as prices or service quality), and zit stands for rarely variant variables or 
time-invariant (e.g. number of customers or network length). The key 
characteristic of the FE estimator is that it eliminates the concern about any 
individual fixed error term, i, by focusing solely on how much companies vary 
from their time-means. This is known as the within-firm variation and shown in 
equation (7): 

iitiitiitiit zzxxCC
___________

lnln  
















    (7) 

where 





T

t

iti

T

t

iti

T

t

iti

T

t

iti

T
z

T
zx

T
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T
C

1

__

1

__

1

__

1

_____ 1
,

1
,

1
,ln

1
ln   

By eliminating the unobserved fixed effect, i, unbiased estimates of the x variables 
can be obtained even if the explanatory variables are correlated with the fixed 
error effect. Since the FE model focuses solely on explaining the within-firm 
variation, and all of the between-firm information is mostly ignored, it is not 
possible to obtain reliable estimates on variables that have low within-firm 
variation using a FE estimator. Moreover, in the extreme case that zit=zi, the FE 
estimator is not able to distinguish the effect of time-invariant explanatory 
variables from the fixed effects. The coefficients of persistent variables or rarely 
variant variables usually become statistically insignificant as their effect are being 
also captured by the fixed effects. 
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However, in our present application rarely variant variables such as the energy 
delivered, the number of customers, or the network length are crucial cost 
determinants, and their parameters should be estimated properly. In order to 
address this issue, Plumper and Troeger (2007) proposed using the FEVD 
estimator, based on the former FE estimator. The FEVD is a three-stage estimator. 
In first stage, the fixed effects vector decomposition procedure carries out a 
standard FE model to obtain estimates of the fixed effects. These can be obtained 
using the following expression:15 

__

i

__

i

_____

ii zˆxˆClnˆ       (8) 

The estimated fixed effects using (8) are not the same as the true unobservable 
heterogeneity outlined in equation (6) as they also contain the intercept, the 
eliminated information contained in time-invariant variables, as well as the mean 
effects of the rarely variant variables. For this reason, Plumper and Troeger (2007) 
suggest decomposing in a second stage the estimated fixed effects into a part that 
is observable and a part that is not. The decomposition takes place using both 
time-invariant and rarely invariant variables to predict the estimated fixed effects 
obtained from stage one: 

iii z  
__

0ˆ      (9) 

The error term ωi in equation (9) captures the true unobservable component i. In 
the third stage, the full model (time variant, time invariant, rarely changing 
variables) is estimated by OLS, including the unexplained part of the decomposed 
fixed effect vector obtained in the second stage: 
 

  itiititit zxC   ˆln     (10) 

 

 

4. Data and sample 

 

We utilize the same dataset as in Yu et al. (2009b) and Jamasb et al. (2010) on 12 
distribution networks in the UK for the 1995/96 to 2002/03 period. The cross-
sectional and time dimension of our panel data set is conditioned by availability of 
weather data. Two companies were excluded as complete data records of weather 
in their service areas were not available. In addition, we excluded the 2003/04 
data from the analysis, which had been subject to adjustment in order to control 
for weather related atypical costs.16  
 

Two weather stations in the service area of the companies were selected to 
represent each firm and the averages of their measurements was taken (if two 

                                                 
15

 Here we assume that all z variables have a, albeit low, within-firm variation. Otherwise, the fixed 

effects should be obtained using only the average values of the high-within-firm-variation variables. 
16

 It should be noted that we use data on service quality for the years 2003/2004 in order to compute the 

expected customer minutes in the future. 
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weather stations were not available, one weather station was used). All yearly 
weather data is used to maximize the use of the information available for each 
company. We use four weather variables, viz. minimum air temperature (mate),the 
number of days when minimum concrete temperatures were below zero degrees 
(dcte), the number of days with heavy hail (dhail), and the number of days with 
heard thunder (dthu). In Jamasb et al. (2010) we have shown that these were 
sufficient to control for most of the effect of weather conditions on costs.  
 
Table 2 reports the summary statistics of the data used. The monetary and physical 
data for the inputs and outputs are based on publications and information from 
Ofgem. The data on service quality is mainly based on information from Ofgem’s 
annual Electricity Distribution Quality of Service Report. The weather data were 
obtained from the UK Meteorological office for most observation stations. All 
monetary variables are expressed in 2003 real terms. Temperatures are expressed 
in degrees Celsius and the remaining variables are expressed in number of days 
per year. 
 

Table 2: Descriptive Statistics (96 Observations)  

Description Variable Unit Mean Std. 
dev. 

Min Max 

Total expenditures Totex Million £ 177.38 62.80 74.86 373.88 

Capital expenditures Capex Million £ 85.92 33.00 36.00 203.94 

Operational 
expenditures 

Opex Million £ 91.46 43.52 30.64 267.02 

Network length n 
Thousand 

Km 
55.84 15.27 32.002      92.121 

Network density= 
(Energy delivered) / 
Network length) 

d GWh /Km 0.37 0.07 0.15 0.48 

Energy Distribution 
Losses 

e 
Thousand 

GWh 
1.53 0.58 0.36 2.61 

CML=(Customer 
minutes lost) x (no of 
customers) 

q 
Million 
Minutes 

163.75 76.58 60.67    670.58 

Minimum air 
temperature 

mate Degrees C 1.06 1.57 -1.9 5.7 

Hail dhail Days 2.25 2.66 0 14 

Thunder dthu Days 10.57 5.93 2 27.4 

Concrete temperature dcte Days 57.76 22.97 14.6 107.5 

Willingness-to-pay WTP £/min  1.93 0.61 0.87 3.82 
Description of the Weather Variables:  mate=Minimum air temperature (lowest monthly average). 

dcte=Number of days when minimum concrete temperature was below zero degrees C. dhail=Number 

of days when hail fell (00-24 GMT) ie. solid precipitation with a diameter 5mm or more. dthu=Number 

of days when thunder was heard. 
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5. Empirical results 

 

According to Section 2 we estimate a translog specification of the cost function (5). 
This function can be interpreted as second-order approximation to the companies’ 
underlying cost function. All explanatory variables were divided by the sample 
geometric mean, so the first order parameters can be interpreted as elasticities at 
the sample geometric means. Table 3 shows the parameter estimates. Using the 
Breusch-Pagan LM chi-squared test we reject the null hypothesis of no 
heteroskedasticity at the 5% percent level of significance for all specifications of 
the cost function. Although accounting for heteroskedasticity does not produce 
significant changes in inference, we report the White heteroskedasticity-consistent 
t-ratios. 
 
Table 3 shows the estimated coefficients using OLS, FE and FEVD. All elasticities in 
the OLS model have their expected signs at the sample geometric mean: the 
estimated first-order coefficients of network length (nit) and network density (dit) 
are positive and statistically significant, and the coefficient of energy losses (eit) 
and lead of the customer minutes lost (qit+1) are negative, suggesting a positive 
marginal cost of quality improvements that we discuss later. As expected, the effect 
of contemporaneous customer minutes lost (qit) on Totex is not statistically 
significant. This suggests that contemporaneous power interruptions are positively 
correlated with corrective cost, but negatively correlated with costs caused by the 
acquisition of new equipment to prevent power interruptions (in the future). 
Overall, these results seem to support the theoretical framework described in 
Figure 4. 
 

Table 3. Translog cost function parameter estimates. Dependent variable: lnTotex 

 OLS FE FEVD 

Variable parameter robust-t parameter robust-t parameter robust-t 

ln nit 1.3137 8.7892 0.6714 0.4663 1.2086 7.7896 

ln dit 0.7845 4.2300 -0.1387 -0.2491 0.6808 3.7828 

ln eit -0.2969 -2.8668 -0.0737 -0.3475 -0.2568 -2.4902 

ln qit -0.0341 -0.4747 0.0010 0.0126 0.0093 0.1257 

ln qit+1 -0.2480 -3.0383 -0.1919 -2.2565 -0.2160 -2.7604 

1/2(ln nit)^2 1.7211 1.0945 5.5295 1.4673 1.6463 1.1039 

1/2(ln dit)^2 -0.4202 -0.3202 1.4715 1.0862 -0.5422 -0.4197 

1/2(ln eit)^2 -0.6036 -1.2321 -0.1490 -0.2008 -0.3739 -0.8167 

1/2(ln qit)^2 0.6710 1.9141 0.3854 0.9031 0.4614 1.3446 

1/2(ln qit+1)^2 0.3961 1.1266 0.4137 1.1734 0.4154 1.2001 

ln nit  ln dit 0.6638 0.5203 0.2362 0.1496 0.9398 0.7790 

ln nit  ln eit -0.2116 -0.2246 -0.7062 -0.6110 -0.3896 -0.4481 

ln nit  ln qit -0.2797 -0.5321 0.0875 0.1586 -0.0816 -0.1545 

ln nit  ln qit+1 0.1543 0.2289 -0.0574 -0.0841 -0.0805 -0.1183 

ln dit  ln eit 0.5495 0.7925 -0.0393 -0.0561 0.3875 0.6240 

ln dit  ln qit 0.7856 1.8963 0.8472 1.9838 0.8426 2.0387 

ln dit  ln qit+1 -0.7298 -1.5345 -0.0947 -0.1783 -0.6232 -1.3349 

ln eit  ln qit -0.4021 -1.8871 -0.3348 -1.4702 -0.4003 -1.8977 

ln eit  ln qit+1 0.2077 0.6096 0.2728 0.7830 0.1867 0.5505 
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ln qit  ln qit+1 -0.8958 -2.6992 -0.9303 -2.4735 -0.8400 -2.6355 

t -0.0875 -10.2738 -0.0895 -6.1815 -0.0873 -10.243 

mateit 0.0827 3.6185 0.1170 5.3073 0.0877 4.0957 

dcteit 0.0318 3.9541 0.0216 1.7615 0.0336 4.2502 

dhailit 0.0047 1.1771 0.0072 1.2156 0.0087 1.6125 

dthuit 0.0060 3.8060 0.0051 2.4659 0.0063 4.0806 

Intercept 5.5325 147.241 - - 5.5462 139.267 

Fixed Effects - - - - 0.8983 1.7664 

        

R-squared 0.8332 0.7192 0.8389 

 

 

The FE estimator allows us to control for unobserved heterogeneity among firms 
that may be correlated with the explanatory variables. The use of the FE estimator 
in the present application is clearly inappropriate as the first-order coefficients of 
network length (nit), network density (dit) and energy losses (eit) are not 
statistically significant. This is caused by the fact that the within variation of these 
variables (i.e. the variation over time with respect to the respective firm average) 
is very low (Table 4). Indeed, the within firm variation of network length, network 
density and energy losses is much lower than the variation among firms, i.e. the 
between variation. As many relevant cost determinants have large between-to-
within variations, a large amount of observable information will be discarded 
when using the FE model. Depending on the correlation between the unobservable 
heterogeneity and any cost determinant, estimation using FEVD might be the 
preferred estimation strategy.17 
 

Table 4. Between and within standard deviations 

Variable Between Within Between-to-within ratio 
ln nit 0.27620 0.02693 10.25509 
ln dit 0.24396 0.06310 3.86661 
ln eit 0.42712 0.14131 3.02259 
ln qit 0.28697 0.25465 1.12693 
ln qit+1 0.32038 0.24386 1.31382 
 

Since the between-to-within variation of network length is larger than 10, it is 
larger than 3 for network density and energy losses, FEVD is likely a better 
estimator than FE. For this reason, we estimate a FEVD model using these three 
variables, their squares and their interactions as regressors in the second stage. 
The final estimates are obtained by estimating (5) including, as an additional 
regressor, the unexplained part of the decomposed fixed effect vector obtained in 
the second stage. The FEVD results are shown in the last two columns in Table 3. 
 

                                                 
17

 Plumper and Troeger (2007) advocate using the ratio between-to-within variation as a way of 

distinguishing whether a particular variable can be better estimated using FEVD. Using Monte Carlo 

simulations, they show that this ratio, however, depends on how well the particular variable in question is 

correlated with the unobservable heterogeneity. For example, when the correlation is 0.5 the between-to-

within ratio must exceed 2.8 for the FEVD to be the superior estimator. When the correlation drops to 0.3 

the between-to-within the person ratio only needs to be 1.7. 
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The last two columns in Table 3 show that all elasticities of Totex with respect 
network length, network density, energy losses and the lead of the customer 
minutes have again their expected signs at the sample geometric mean, i.e. the 
coefficients of nit and dit are positive, the coefficients of eit and qit+1 are negative, 
and the effect of qit on Totex is not statistically significant. The coefficient of the 
residual fixed effects is close to unity. We use this result as evidence that the FEVD 
model is well specified. Although the magnitudes of the first-order FEVD 
coefficients are somewhat less than the OLS counterparts, they are quite similar, 
indicating that most of the fixed effects are explained by rarely variant variables 
(i.e. network length, network density and energy losses)18, and that the use of the 
FE estimator is not appropriate in the present application.  
 
On the other hand, the coefficient of the time trend is negative and statistically 
significant, indicating either a general increase in cost efficiency or the existence of 
technical progress in the sector. This improvement in performance may be caused 
by the current regulatory regime in the UK as each firm is incentivized to save both 
operating cost and capital cost. It is worth mentioning that when Capex is used as 
the dependent variable (see Appendix) the improvement in performance is lower 
(about 3%) than when we use Totex (about 8%). This implies that the rate of 
improvement in Opex is much larger than in Capex.This is a reasonable result as in 
the UK a firm receives greater benefits from saving Opex than Capex (Ofgem, 2003) 
over the sample period19. Hence, this result seems to support the former notion 
that the current regulation framework in the UK has distorted significantly the 
allocation of operating and capital inputs. Regarding the weather factors, most 
weather coefficients are statistically significant (even when we control for 
unobserved time-invariant variables) indicating that weather conditions matter 
and that they should be included as cost determinants.20 
 

Network length (nit) and network density (dit) allow us to measure respectively 
economies of scale and economies of density. Economies of scale are related to 
system expansion at constant density and hence it can be measured by the partial 
elasticity of cost with respect to network length. The first-order coefficient of 
network length is 1.2086. That is, the technology exhibits decreasing returns to 
scale at the sample mean when expansion requires enlarging the current network 
to meet extra demand. Some previous studies have found diseconomies of scale in 
the electricity distribution (see e.g. Yatchev, 2000; Cronin and Motluk, 2007). On 
the other hand, economies of density involve simultaneously output expansion and 
service densification, i.e. expansion in the existing service areas where additional 
network is not required. The first-order coefficient of network density is 0.6808, 
indicating that economies of density are higher than economies of scale 
                                                 
18

 The R-square statistic of the second stage is about 97%. 
19

 This has been altered for the price control period beginning in April 2010 (see Ofgem, 2009). 
20 As weather is a complex phenomenon and its overall effect on cost is unknown, we take an agnostic 

position and do not make specific assumptions about the probable (partial) effect of each weather variable 

on distribution costs. Alternatively, given the large correlation among some of the weather variables, a 

particular weather variable may be capturing not only their own effect but also the effect of other 

(correlated) variables that might have a non expected sign or magnitude. In this sense, what matters is the 

overall effect and not the effect of each particular weather variable. 
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(Guldmann, 1985; Filippini, 1998), and that increasing returns arise from 
increased densities. That is, given network infrastructure, electricity distribution 
networks have natural monopoly characteristics.21 
 

Figure 5 depicts the elasticity of total cost with respect to network length 
estimated for each observation, sorted by network length.22 Using the parameter 
estimates of the model with Capex as dependent variable (see Appendix) we also 
compute the elasticity of capital cost with respect to network length. In order to be 
consistent with the previous two equations, the elasticity of operational cost is 
then obtained using the equation (11): 
 

2

11
2

s

selaselas
elas


      (11) 

where elas is the elasticity of total cost, elas1 is the elasticity of capital cost, elas2 is 
the elasticity of operational cost, and s1 and s2 are respectively the share of Capex 
and Opex on total cost.23 Figure 5 shows that firstly, Totex elasticity of scale 
increases with size (in terms of network length) where the smallest companies 
exhibit increasing returns to scale, and medium to large companies exhibit 
decreasing returns to scale. Secondly, both Capex scale elasticity and Opex scale 
elasticity are positive, indicating that both types of cost increase (i.e. they are 
complementary) when additional network is required to meet extra demand. 
Finally, while Opex scale elasticity is lower than unity, Capex scale elasticity is 
increasingly higher than one, indicating that the “decreasing nature” of Totex scale 
elasticity is caused by decreasing returns to scale in Capex. 
 
Using the parameter estimates of the model with Totex and Capex as dependent 
variables and the equation (11) we depict in Figure 6 the three types of density 
elasticities, sorted by network density.24 The negative values and the abrupt 
changes on the left in both Capex and Opex density elasticities should be viewed 
with caution as they correspond to some observations exhibiting a network 
density far away from the sample mean.25 With this caution in mind, we can see 

                                                 
21

 Also Salvanes and Tjøtta (1998) find evidence of natural monopoly characteristics in the Norwegian 

electricity distribution networks. 
22

 We note again that our elasticity function (i.e. the first derivative of our cost function) just provides a 

first-order approximation to the underlying elasticity at the sample mean, and hence the estimated 

elasticities tend to lose reliability when we move away from the sample mean.  
23

 In order to smooth the series we control for changes in other variables and evaluate the other cost 

determinants at the sample mean. Hence, the decomposition in Figure 5 (and following figures) allows us 

to analyze changes in elasticities or marginal costs of a “representative” utility that increases or reduces 

its size (or its density or quality level in the following figures). Similar results are obtained, however, if 

we do not control for changes in other variables. 
24

 Again we evaluate the other cost determinants at the sample mean in order to compute these elasticities. 
25 For most functional forms (e.g., the translog function) there is a fundamental trade-off between 

flexibility and theoretical consistency. For instance, maintaining global monotonicity (e.g. positive 

elasticities and marginal costs) is impossible without losing second order flexibility. For example, Barnett 

et al. (1996) show that the monotonicity requirement is by no means automatically satisfied for most 

functional forms, and that violations are frequent. 
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that, in contrast to Figure 5, Opex density elasticity is normally negative, 
suggesting that Opex decreases when network density increases.  
 

Figure 5.  Elasticities of scale 

 

 
In addition, since Capex density elasticity is positive, as seen from Figure 6, and in 
contrast to Figure 5 again, we can conclude that utilities tend to substitute Capex 
for Opex as network density increases. This means that low and high network 
density utilities adopt different combinations of operating and capital inputs. The 
less operating intensive strategy followed by high network density utilities may be 
explained by different consumer mix (e.g. household vs. industrial users) or 
differences in service areas (e.g. urban vs. rural). Huang et al. (2009) also found 
two different cost structures for low and high network density utilities in their 
study of electricity distribution firms in Taiwan.  

 

Figure 6.  Density elasticities 
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We aim to estimate econometrically marginal costs of improving quality services of 
the utilities in order to shed light on the effectiveness of the current regulatory 
incentives in the UK to improve quality. Once we estimate the translog cost model, 
a marginal cost value can be obtained for each firm using the following equation: 
 

z

C
ELMC       (12) 

where EL is the elasticity of cost with respect to z, and z stands for either network 
energy losses or total customer minutes lost.  
 
Using the parameter estimates of the FEVD model in Table 3 we compute the 
marginal costs of reducing energy losses for each firm as shown in Figure 7. The 
last two columns in Table 3 show that the first-order coefficient of energy losses 
(in logs) is negative and statistically different from zero. This suggests that, on 
average, the marginal cost of reducing electricity losses is positive. The average 
marginal cost in our sample is about 2.8 pence per kWh. Note that the magnitude is 
smaller than the 4.8 pence per kWh set by the regulator to reward (penalize) loss 
reductions (increases) in the fourth control period (Joskow, 2006 and Yu et al. 
2009a). Hence, we can conclude that the scheme established by regulators to 
incentive utilities to reduce their levels of electricity distribution losses is sufficient 
to improve performance. However, we might expect that this improvement will not 
be homogeneous as many observations in Figure 7 have higher marginal costs than 
4.8 pence per kWh, and hence they are not sufficiently incentivized to reduce their 
electrical losses, though we note that the value of loss reduction should relate to 
the wholesale cost of power and any un-priced associated environmental 
externality. 
 

Figure 7.  Marginal cost of reducing electricity distribution losses 
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Using the parameter estimates of the model with Totex and Capex as dependent 
variables and equation (12) we compute the total, capital and operational marginal 
costs of reducing energy losses for each firm. The computed values are shown in 
Figure 8. With the same caution regarding the values on the left, we can identify 
three different regions in Figure 8, according to the relative weight of Capex and 
Opex in total marginal cost. These regions loosely correspond to small, medium, 
and large utilities, and suggest different strategies to reduce energy losses. Indeed, 
in the first region, i.e. small utilities, reducing losses mainly implies operational 
expenses because Opex marginal cost is positive, while Capex marginal cost is 
negative. In the second region, i.e. medium utilities, both Capex and Opex marginal 
costs are similar in magnitude and positive indicating that improving quality 
service implies an investment in both capital and operational inputs. For large 
utilities, i.e. the third region, Capex marginal cost is considerably larger than Opex 
marginal cost, indicating that for low quality utilities (in absolute terms) reducing 
losses mostly requires capital investments. Overall, these results suggest the 
presence of different strategies among the UK distribution utilities to improve 
service quality. 
 

 

Figure 8.  Decomposing marginal cost of reducing electricity distribution losses 

 

The blue dots in Figure 9 represent the estimated marginal costs of reducing the 
customer minutes lost by one minute. These values were obtained using the 
parameter estimates of the FEVD model in Table 3 and equation (12). The 
marginal costs were obtained by computing the elasticity of cost with respect to 
the lead customer minutes lost, qt+1, as this elasticity is not “contaminated” by 
corrective costs and, hence, it tends to capture preventative marginal costs. The 
green dots simulate the marginal cost in case other cost determinants are 
evaluated at the sample mean. Two comments are in order. First, the green dots 
suggest a decreasing relationship between marginal cost and customer minutes 
lost. This implies that, as shown in Figure 1, higher quality level is associated with 
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higher marginal cost of quality improvement (see Yu et al., 2009a). Second, the 
large dispersion of the blue dots around the green dots indicates that the marginal 
cost of improving quality varies considerably across utilities due to their different 
configuration (i.e. network length, network density, weather conditions, etc.). 
However, given their own configuration, all of them have similar downward 
marginal cost curves to that represented in Figure 9 for the “representative” utility. 
 

Figure 9.  Marginal cost of reducing customer minutes lost 

 

The last two columns in Table 3 show that the first-order coefficient of lnqt+1 is 
negative and statistically different from zero. This suggests that, on average, the 
marginal cost of reducing customer minutes lost is positive and statistically 
significant. In particular, the average marginal cost in our sample is about 25.6 
pence per minute lost. Multiplying this by the number of customers we get the 
marginal cost of avoiding one minute across all customers. This marginal cost of 
one minute per customer is equal to 0.56 million pounds for the average utility in 
our sample (6.72 million pounds for the 12 analyzed utilities). Hence, the marginal 
costs estimated here are considerably larger than the incentive rates established 
by the UK regulator for each utility in the most recent price review to reduce 
customer minute lost (see, Joskow, 2006, p.56). Indeed, using the period 2004/5 as 
a reference, the average incentive for one minute per customer is 0.18 million 
pounds, i.e. a third of the estimated marginal cost per customer. As Yu et al. 
(2009a) already found, we can conclude as well that the UK incentives are not 
sufficiently strong to incentivise improvements in service quality. In particular, Yu 
et al. (2009a) found that the social cost of outages (measured by multiplying 
business and domestic willingness-to-pay by total customer minutes lost) was 
considerably higher than the utilities’ current incentive/penalty. 
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originate from. However, it is expected that they are correlated with utilities’ 
marginal cost. Indeed, using the incentive rates for the period 2004/5, the 
coefficient of correlation with our marginal costs is quite high, about 46%. This 
coefficient rises until 55% if we compare the incentive rates with the marginal cost 
of avoiding one minute per customer. This suggests that, although the estimated 
cost function in Table 3 only provides at the sample mean a first-order 
approximation to the underlying marginal costs, the estimated differences among 
utilities seem to be reliable. Conversely, since marginal costs of improving quality 
vary across utilities as different (higher) quality levels are associated with 
different (higher) marginal costs and there are large differences among utilities in 
size and network characteristics, our results suggest tailoring the incentives for 
each utility. The high correlation between incentive rates and estimated marginal 
costs seems to indicate that the regulator has taken, to some extent, into account 
the differences in marginal costs to design the incentive schemes in the UK.  
 
Using the parameter estimates of the model with Totex and Capex as dependent 
variables and equation (12) we have computed the total, capital and operating 
marginal costs of reducing customer minute lost for each observation. The 
computed values are shown in Figure 10. The left side of Figure 10 corresponds to 
high quality utilities, and movements to the right represent deteriorations in 
quality. As in Figure 6, the different weight of Capex and Opex in total marginal 
cost, and its evolution, suggests presence of different strategies to improve 
consumer service quality. Indeed, for low quality utilities, reducing customer 
minutes lost mostly implies increasing operational inputs. In contrast, when 
service quality is already high, reducing customer minutes lost even more mostly 
implies investing in capital inputs. This investment might imply, for instance, 
acquiring sophisticated equipment or undergrounding activities which are likely 
quite expensive. This also explains why the marginal cost of quality improvement 
for high quality utilities is larger than for low quality companies. 
 

Figure 10.  Decomposing marginal cost of avoiding power interruptions 
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Finally, as illustrated in Figure 11, the estimated marginal costs allow us to know 
how far the utilities are from their optimal quality level and to compute welfare 
losses due to sub-optimal quality levels. This requires an estimate of customer 
willingness-to-pay (WTP) for quality improvement. To this end, we use the WTP 
data used by Yu et al. (2009a). This data covers domestic and business customers 
and was obtained from the Ofgem-Accent’s customer survey of WTP for quality of 
service in 2004 (Ofgem, 2004).26 For the sample analyzed in the present paper, the 
WTP for avoidance of a one minute power interruption is on average about 1.92 
pounds. However, the preliminary results from the last survey carried out in 2008 
seem to suggest that the former WTP is overestimated (see Accent, 2008, p.103). 
For this reason, we also simulate the optimal quality levels assuming that 
underlying WTP might be 75 and 50% of the former WTP.27  
 
 

Figure 11.  Optimal vs. actual quality levels and welfare gains 

 

 

 
 
The simulation results are presented in Table 5. Any of the WTP values shown in 
Table 5 when compared to the estimated marginal costs suggest that actual service 
quality is on average far from the optimal levels. The results are per company. In 
particular, while actual customer minutes lost is about 161 million on average, the 
optimal customer minute lost is 29-45% less than the actual levels. Moving from 

                                                 
26

 See Yu et al. (2009a) for more details about how WTP can be estimated and problems of obtaining 

accurate measurement. 
27 These adjustments can also be justified as our marginal cost of quality improvement might be 

underestimated due to the variable-in-error problem mentioned in the model specification section. 
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actual levels to the optimal ones would yield a customer welfare gain of £48-144 
million. This improvement in quality would cost about £23-57 million, which 
represent an increase of 13-32% in total cost for each utility. Overall the social 
welfare would be higher as the social welfare gains are valued between £25 and 87 
million.28  
 
 

Table 5. Simulation results: Optimal quality levels (averages for 12 utilities). 

Variable Units 100% WTP 75% WTP 50% WTP 

WTP £/min 1.92 1.44 0.96  
Marginal Cost £/min 0.25 0.25 0.25 

Actual CML Million minutes 161.2 161.2 161.2 
Optimal CML Million minutes 80.2 69.8 53.5 

% Reduction CML Percentage 45.5 % 39.0 % 29.1 % 
Customer gains £ million 143.7 94.01 48.32 
Additional costs £ million 56.5 40.54 22.90 

Welfare gains £ million 87.2 53.47 25.42 

 

 

In addition, the estimated marginal costs allow us to measure the effect on welfare 
of the quality improvements in the UK. The simulation results using the original 
WTP are shown in Table 6. Similar conclusions stem from the adjusted WTPs. The 
average quality improvement in our sample was about 9.1% from 1995/6 to 
2002/3, which represent one fifth of the optimal reduction in customer minute 
lost. This improvement has yielded a customer welfare gain of 43 million of 
pounds, which represents 30% of the potential customer welfare gains. This 
improvement in quality has cost about 10 million pounds, which represents a 5.6% 
of utilities total costs. Overall, the social welfare has increased in 33 million of 
pounds. 
 
 

Table 6. Simulation results: Welfare gains in period 1995/96-2002/3 (averages for 12 utilities). 

Variable Units Potential 
gains 

Observed 
performance 

Difference 

% Reduction 
CML 

Percentage 45.5 % 9.1 % 36.4% 

Customer gains £ million 143.7 43.0 100.7 
Additional costs £ million 56.5 9.9 46.6 

Welfare gains £ million 87.2 33.1 54.1 
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 These numbers were obtained assuming constant WTP. The optimal values can be computed as, given 

other variables to be constant, marginal cost of quality improvement rises with quality (see Figure 9). It 

should be also noted that the optimal quality of service levels might be overestimated if WTP decreases 

with quality. This provides an additional justification for carrying out our simulations using an adjusted 

WTP. 
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6. Summary and conclusions 

 

Quality of service in electricity distribution networks is important for residential, 
commercial, and industrial customers alike, as many functions of modern society 
depend on electricity. However, improving upon a given level of quality of service 
has a cost. The likely effects of incentive regulation on service quality has recently 
attracted regulators’ interest and a number of electricity regulators have made 
considerable effort to design appropriate regulation mechanisms of quality of 
service in electricity transmission and distribution networks. In designing quality-
incorporated regulatory mechanisms, regulators are faced with the task of 
determining a market demand curve for service as well as marginal cost of quality 
improvements.  
 
The main aim of this paper is to estimate econometrically marginal costs of 
improving quality services in the UK electricity distribution networks. The 
estimated marginal costs allow us to shed light on the effectiveness of the current 
UK incentives to improve quality, and to compute optimal quality levels and 
welfare losses due to sub-optimal quality levels. Our parameter estimates also 
allow us to measure the effect on welfare of the quality improvements observed in 
the UK.  
 
In order to achieve these objectives we addressed several issues. First, while 
accurate information about operational and capital costs and quality services may 
be available, the marginal cost of quality improvements is not directly observed. 
For this reason, it is inferred from a previous estimation of the utilities’ cost 
function that reflects both the underlying (physical) technology and the 
(consequences of the) regulatory environment that conditions utilities’ 
performance. A second issue is that service quality is likely to be negatively 
correlated with corrective costs, but positively correlated with preventative costs. 
We attempted to distinguish between both types of cost by including current and 
(a proxy of) expected levels of quality services as cost determinants. A third issue 
is to control for the effect of differences among utilities in environmental factors, 
such as weather, geography, etc. In order to estimate consistently a cost function in 
the electricity distribution networks, we included weather variables as cost 
determinants. In addition, we use a fixed-effect type estimator to control for 
unobserved heterogeneity among firms that might be correlated with the 
explanatory variables. However, the use of the traditional Fixed Effect estimator in 
the present application is not inappropriate as many crucial determinants of 
electricity distribution costs, such as the energy delivered, number of customers, 
or network length are persistent variables. In order to address this issue we have 
used the FEVD estimator introduced by Plumper and Troeger (2007). 
 
All elasticities have the expected signs at the sample geometric mean, i.e. the 
coefficients of network length and network density are positive, the coefficients of 
energy losses and lead of the customer minutes lost are negative, and the effect of 
contemporaneous customer minutes lost on cost is also not statistically significant. 
As in previous studies, we found that technology exhibits decreasing returns to 
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scale when expansion requires enlarge the current network to meet extra demand, 
but increasing returns when network density increases. That is, given network 
infrastructure, electricity distribution has characteristics of a natural monopoly. 
 
We also found that Totex elasticity of scale increases with size, and that Capex and 
Opex have a complementary relationship when additional network is required to 
meet extra demand. However, utilities tend to substitute Capex for Opex when 
network density increases, indicating that low and high network density utilities 
adopt different combinations of operating and capital inputs.  
 
The estimated marginal costs suggest that the incentives offered by the UK 
regulator to reduce their network energy losses are sufficient to yield an 
improvement in sector performance. However, this improvement is likely not 
homogeneously distributed among utilities as some of them seem to be 
insufficiently incentivized to reduce their energy losses. Our results also suggest 
the existence of different strategies in the UK electricity distribution networks to 
undertake reductions in network energy losses. 
 
On the other hand, we found that while higher service quality level is associated 
with higher marginal cost of quality improvement, the marginal cost of improving 
quality varies considerably across utilities due to their different configuration. Our 
results hence suggest tailoring the incentives for each utility. The high correlation 
between incentive rates and estimated marginal costs seems to indicate that they 
took into account differences in marginal costs to design the incentive schemes in 
the UK. However, based on our results, we conclude that the UK incentive scheme 
is not sufficiently strong to incentivise reductions in customer minutes lost as the 
marginal costs estimated in this paper are much larger than the incentive rates 
established by the UK regulator. We also found different strategies to tackle 
reductions in customer minutes lost. Indeed, for low quality utilities, reducing 
customer minutes lost mostly implies increasing operating cost. In contrast, when 
service quality is already high, reducing customer minutes lost mostly implies 
investing in capital inputs.  
 
Finally, we also found that the optimal customer minutes lost is 29-45% less than 
the actual levels, based on the willingness to pay estimate relating to the sample 
period. The observed improvements in quality during the period of this study only 
represented a 30% of the potential customer welfare gains, and hence there is still 
a large range for quality improvements. But, achieving the optimal level of 
customer minutes lost would represent an increase of 13-32% in total cost for 
each utility. Use of more recent data on costs, quality and willingness pay might 
however give different results, as there appears to have been a significant fall in 
customer willingness to pay for quality in more recent years. 
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APPENDIX 

 

 
Table A1. Translog cost function parameter estimates. Dependent variable: lnCapex 

 

 OLS FE FEVD 

Variable 
paramete
r 

robust-
t 

paramete
r 

robust-
t 

paramete
r 

robust-
t 

ln nit 1.6560  8.3045  1.8343  1.2732  1.6317  9.2007  
ln dit 1.3917  6.2157  1.0804  1.6628  1.4107  6.5654  
ln eit -0.1584  -1.2271  -0.2304  -1.0092  -0.2122  -1.6543  
ln qit -0.0793  -0.7828  0.0420  0.4606  0.0023  0.0227  
ln qit+1 -0.5378  -4.7037  -0.3864  -3.3487  -0.4655  -4.8458  
1/2(ln nit)^2 3.3095  2.1820  6.9322  2.0269  3.0068  2.0394  
1/2(ln dit)^2 4.2910  2.6745  2.5718  1.4217  3.9116  2.3764  
1/2(ln eit)^2 -1.1858  -2.1307  -1.8420  -2.3083  -0.9430  -1.8655  
1/2(ln qit)^2 1.3186  2.7242  0.5861  1.0321  1.0841  2.2375  
1/2(ln 
qit+1)^2 1.6904  3.4367  1.3788  3.0876  1.6825  3.7125  
ln nit  ln dit 1.9745  1.4090  -3.3852  -1.6723  1.3479  0.9605  
ln nit  ln eit 0.7602  0.8285  2.2896  1.8710  0.6737  0.7800  
ln nit  ln qit -0.3623  -0.5236  0.6071  0.7924  -0.1704  -0.2483  
ln nit  ln qit+1 -1.2721  -1.4902  -1.2801  -1.6657  -1.1844  -1.4752  
ln dit  ln eit -0.1580  -0.2013  0.8733  0.9222  -0.0781  -0.1001  
ln dit  ln qit 0.9753  1.6106  1.3199  2.2348  1.3158  2.1876  
ln dit  ln qit+1 -1.4544  -2.3183  -1.0576  -1.7285  -1.1479  -2.1873  
ln eit  ln qit -0.6975  -2.3640  -0.9998  -3.0933  -0.8231  -2.8296  
ln eit  ln qit+1 0.6835  1.5040  0.6259  1.5070  0.4923  1.2456  
ln qit  ln qit+1 -1.6510  -3.3329  -1.2881  -2.5756  -1.6619  -3.5853  
t -0.0268  -2.6245  -0.0312  -2.1420  -0.0309  -3.1380  
mateit 0.1362  4.9184  0.1671  5.2466  0.1789  5.3962  
dcteit 0.0277  3.1491  0.0059  0.4074  0.0270  3.2227  
dhailit 0.0010  0.2096  0.0078  1.4268  0.0023  0.4718  
dthuit 0.0086  4.7980  0.0101  4.3459  0.0114  5.0927  

Intercept 
4.3555  

85.736
9    4.3932  

80.832
8  

Fixed Effects     0.9435  2.8413  
        
R-squared 0.7741  0.5639 0.7928 
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