
In this paper we develop a test of in�nite degree stochastic dominance

based on the use of the empirical moment generating function. Two ap-

plications are considered. One uses the income data of Anderson (1996)

and derives results consistent with his. In the other application we exam-

ine the dominance between the U.S. and U.K. stock markets. Using data

on the S&P 500 and the FTALL-Share we show that the U.S. displays

in�nite degree stochastic dominance of the U.K.
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Economists have always been interested in the measurement and comparison of in-

come inequality across groups and it is well known that di�culties in using inappropri-

ate inequality measures can be avoided by the use of notions of stochastic dominance.

Such measurement of inequality across income distributions has close parallels in the

measurement of risk in payo�s or returns when we consider problems of decision

making under uncertainty. However, the parallel breaks down in the following sense.

While it may be natural to assume that the income distribution of, say, Latvia should

be uncorrelated with the income distribution of New Zealand, it is not appropriate

to assume that their stock indices are independent since they will both be correlated

with the global market. Thus, stochastic dominance procedures that are based on

the comparison of two marginal distributions and do not utilize the extra information

in the joint distribution may well be inferior to procedures based on all the informa-

tion. We present a dominance testing procedure that allows for cross-correlations.

The procedure we discuss may well be useful in inequality studies. In the context

of income inequality, a correlated example may be where we wish to compare the

wage versus the dividend distribution for the same group of individuals. Indeed, the

di�culties with independence have been recognized in recent work by Davidson and

Duclos (1997) who present a Lorenz analysis for the correlated case. A number of

papers have discussed the econometric techniques appropriate for testing stochastic

dominance between two independent income distributions, see Anderson (1996) and

Davidson and Duclos (op. cit.). In what follows we shall not only consider testing

stochastic dominance over two distributions but we shall also re�ne the

de�nition of stochastic dominance used in our tests.

The notion of stochastic dominance we use is that of in�nite degree stochastic

dominance. This is well known, see Thistle (1993), to be equivalent to completely

monotone marginal utility for wealth, an assumption deemed to be desirable by Scott

and Horvath (1980) and Pratt and Zeckhauser (1987) among many others. These
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authors present many arguments in favour of the class of utility functions associated

with the dominance concept, the simplest being that these utility functions include as

examples, those members of the hyperbolic absolute risk aversion (HARA) class that

have sensible comparative statics such as decreasing absolute risk aversion. Another

argument being what is called proper risk aversion, which is de�ned as a situation

where an undesirable lottery can never be made desirable by the presence of an inde-

pendent undesirable lottery. It is proved by Pratt and Zeckhauser (1987, Theorem 2,

p. 148) that marginal utility being completely monotone, which they call completely

proper, will be proper in the above sense. Such an assumption has the behavioural

implication that if we can hedge out some unfavourable risks, then agents will be

more tolerant to other, independent, unfavourable risks.

In income inequality the precise nature of the social welfare function is not dis-

cussed too much, it is required to be convex but its detailed mathematical properties

are rarely enunciated. In �nance, the agents' utility function analogue is of central

importance and a great deal of research, as discussed earlier, has been devoted to

checking the implications of assumptions on the optimal portfolio chosen. In Section

2 we present a brief overview of the relevant ideas from utility theory before present-

ing our testing procedure in Section 3. Conclusions and examples follow in section

4.

The authors would like to thank Gordon Anderson and Amartya Sen for helpful

comments.

We �rst de�ne our class of completely proper utility functions. The most general

representation for any ( ) is

( ) = ( ( ) ) ( )(1)

where is an arbitrary function, is non-decreasing and = if = 0. An

equivalent form to (1) is

( ) = ( ) + ( ) ( )(2)
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2. Utility and Stochastic Dominance
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Z
for any where ( ) is �nite. Di�erentiating (1), we see that

( ) = ( )(3)

By Bernstein's Theorem (see Feller, 1966, pp. 415-416), ( ) is completelymono-

tone on ( ) if and only if it is the Laplace transform of a measure on [0 ) and

the Laplace transform is �nite for . Since von Neumann-Morgenstern utility

is invariant to positive a�ne transformations, we can regard ( ) as a probability

distribution of a positive random variable.

It is an immediate consequence of (3) that ( ) 0 is positive as are all odd

derivatives whilst all even derivatives are negative. This would imply that more

positive skewness is preferred in returns and income. Whilst the preference for

positive skewness in returns is well-understood, it is not so clear to the authors that

the same property is deemed desirable for social welfare functions, a topic which we

discuss next.

The following considerations generally support the view that skewness is preferred

in the social welfare function and that in�nite stochastic dominance may be an inter-

esting issue.

Firstly, the empirical prevalence of positive skewness in earnings, see Atkinson

(1983, pg. 101, xx 5.2.), for example, suggest that a welfare function which involved

higher order terms would have a non-zero contribution die to moments higher then

two.

Secondly stochastic dominance where expected utility is now reinterpreted as

group welfare is used in inequality economics to order income distributions. So

for example, third order stochastic dominance, which implies in�nite order stochastic

dominance follows from second order stochastic dominance and an additional con-

dition called transfer sensitivity. This is discussed in Sen (1997, pg 138); where

he describes transfer sensitivity as the requirement that a �xed-size income transfer

should have a greater e�ect on social welfare when it occurs at a lower level of income,

see also Shorrocks and Foster (1987).

Having established that in�nite stochastic dominance is an interesting concept
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in both decision making under uncertainty and inequality economics we proceed with

de�nitions.

Following Thistle (1993), in�nite stochastic dominance is now de�ned for pairwise

comparisons between two distribution functions ( ) and ( ) as follows. We as-

sume that the distributions have support in = [ ] where 0 and may

be in�nite. We de�ne

( ) = ( ) = 1 2

where ( ) = ( ), with a similar de�nition for ( ). Let denote that ,

degree , stochastically dominates . This can be de�ned by

a) ( ) ( ) with ( ) ( ) for some and 3.

b) ( ) ( ), = 1 2 2.

We now de�ne in�nite stochastic dominance by letting , we denote this as

. This is equivalent to ( ( )) ( ( )) for all completely proper utility

functions as de�ned by 1. Thistle (op. cit., Proposition 4, p. 307) proves that

if and only if: ( ) ( ) where ( ) = ( ) and

( ) is de�ned similarly. He also shows that the above applies to the logarithms

of ( ) and ( ).

Concluding, our above discussion has shown that a test for in�nite degree stochas-

tic dominance can be reduced to testing whether the Laplace transform of one wealth,

income or asset price distribution is less than another at all values of . This is now

a problem of basing a test on multiple comparisons which we shall discuss next in

section 3.
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With a de�nition of stochastic dominance there is associated an appropriate class

of utility functions and an e�cient set. The e�cient set is the set of portfolios or

distributions which are not dominated by any other distribution. This means that

there is no particular distribution preferred to the distribution in the e�cient set for

all utility functions in the class. It is interesting to note that as we consider higher

degrees of stochastic dominance the class of utility functions becomes smaller and the

e�cient set becomes larger.

Tests of stochastic dominance typically have as their null hypothesis indi�erence

between the two distributions for all utility functions in the class. Thus rejection

will not necessarily imply stochastic dominance and we need to re�ne the tests to

build in a decision rule to allow for this. For second order stochastic dominance,

Bishop, Formby, and Thistle (1992) suggest that one accept the hypothesis that one

distribution dominates another based on the ordinates of the Lorenz curves of the two

distributions. They compute -statistics for the null of indi�erence. They suggest a

procedure of accepting (second degree) dominance if there is at least one signi�cant

-statistic with the right sign and no such signi�cant -statistic with the \wrong"

(non-dominant) sign.

In this section we develop a testing procedure for in�nite degree stochastic dom-

inance. Our procedure is based on the empirical moment generating function in

keeping with the fact that if and only if ( ) ( ), for all .

Letting

( ) = ( ) ( )(4)

our hypothesis of interest is

: ( ) = 0 = 1 2(5)

Testing such a hypothesis is akin to the multiple comparison testing procedures where

the test statistic often used is the maximum \ test".

In our case, since we are really interested in knowing whether ( ) ( )

or vice versa, formulating our null hypothesis as above may not lead to a de�nite

6

3. Testing In�nite Degree Stochastic Dominance
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conclusion. Consequently, we propose a procedure where the decision rule has four

parts and is based on the outcome of both the max test and min test. Thus

a) If both max and min lead to rejection then the test is inconclusive

b) If max rejects but min does not reject then this implies .

c) If max does not reject but min does reject then this implies

d) If both max and min do not reject then ( ) and ( ), i.e.,

does not dominate and does not dominate .

We now consider the form of the max and min test statistics. De�ne the

empirical functions for and as

^ ( ) =
1

(6)

^ ( ) =
1

The empirical counterpart of is given by

^( ) = ^ ( ) ^ ( )(7)

Letting ^ ( ) be the vector of ^( ) for di�erent values, denoted by the vector ,

the following lemma gives the asymptotic distribution of ^( )

^ ( ) ^ ( ) ^( )

(^ ( ) ( )) (0 �)

� = 2 ( ) ( ) ( )

( )
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See Appendix.

From the above distribution, under ( ) = 0 i.e., ( ) = ( ) and

we need to adjust the elements of the covariance matrix �. That is, we use a pooled

estimator for ( ) using both the and distributions. Thus under we

estimate � as

�̂ = ( ^ ( ) + ^ ( )) ^ ( ) ^ ( )

where

^ ( ) =
1

Therefore de�ning ( ) as our standardized statistic with unit variance we have

( ) =

...

(0 
)

where


 = 1 for =

=
(^( ) ^( ))

(^( )) (^( ))
for =

Since ( ) has a multivariate Normal distribution, we can easily calculate critical

values associated with max ( ) as follows:

(max ( ) ) = ( ( ) ( ) )

= (2 ) 
 exp(
1

2

 )

To calculate the critical value for min ( ) we can merely interchange the and

distributions and use the max ( ) results. Also note that in the special case that

and are independent then under

� = 2 ( ) 2 ( ) ( )

and there is very little simpli�cation to our procedure.
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To implement the above testing procedure, the major issue is how many points

should we choose for the vector and what should be their value. The issue of how

many points, i.e., value of is probably limited by available software to calculate

multivariate Normal distribution functions. Which points should be chosen is indeed

a di�cult question and we can only be guided by the literature on using the empirical

moment generating function and characteristic function for estimation. Here the

consensus is that they should be su�ciently �ne and extended. (See Feuerverger and

McDunnough (1981).)

In this section we consider two applications of the testing procedure outlined

above. The �rst application is one from an income distribution comparison where we

use the same data as Anderson (1996). The second application is a �nancial one in

which we examine the dominance, if any, between the UK and US stock markets.

From the discussion in the previous section it is clear that to implement the mgf

test we need to choose both the number of points for the comparison as well as the

value of the points. There is no clearcut way to make these choices so we decided

to set the number of points at �ve and to choose their value by maximizing the

value of �, the covariance matrix. For the number of points, we are constrained by

available software for calculating the orthant probabilities of the multivariate Normal

distribution. While the software, for example the NAG Library subroutine G01HBF,

allows a dimension up to ten we found that there was very little gain from the test

using values close to ten as opposed to the chosen value of �ve.

For the income distribution application we used the same data as in Anderson

(1996) and compared the distributions of both pre and post tax incomes for the years

a) 1973-1977, b) 1981-1985, c) 1981-1989.

For our pre-tax distribution comparison, the above outlined procedure for the

choice of points always gave the same values viz 0.10, 1.90, 3.40, 7.00, 40.00. Table

9
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1 gives the \min " and \max " values along with their prob. values for the three

pairs of yearly comparisons. We notice immediately, for the 77 to 73 comparison that

\max " does not reject but \min " does which implies 1977 1973. For the 85 to

81 comparison we have the exact opposite result, so that 1981 1985. Both these

conclusions are consistent with the �ndings of Anderson (1996). For the 1989 to 1981

comparison we notice that both \min " and \max " reject so that in this instance

the test is inconclusive. For this comparison in the Anderson (1996) study he found

only marginally signi�cant dominance of 1989 over 1981.

The results for the post-tax comparisons are given in Table 2. (Here we �rst make

the point that our point selection procedure did not produce the same points in each

case.) The results for the 77 to 73 and 85 to 81 comparisons are similar to the pre-tax

case although the level of signi�cance is greatly reduced. For the 89 to 81 case the

results show that there is no stochastic dominance. Again, these results are consistent

with those of Anderson (1996).

For the stock market comparisons we wish to compare the S&P 500 index from

the U.S. with the FTALL share index from the U.K. We use 373 monthly observa-

tions on these indexes excluding dividends from December 1964 up to and including

December 1995. Since we need a positive random variable for comparison purposes

we consider the arithmetic return +1 viz for each series. Table 3 gives some

summary statistics associated with for each series.

Table 4 gives some results associated with the comparison using di�erent numbers

of points. We note that there is very little di�erence in the results from using 3 or 5

points. \min " rejects consistently while \max " does not reject, albeit marginally

at the 5% signi�cance level. Thus we conclude, although not surprising that SP 500

FTALL share, at least for the period examined.

Department of Economics, University of Western Ontario, London, Ontario, Canada

and

Trinity College, University of Cambridge
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4.2 Stock Market Comparisons
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Since the elements in the vector ^ ( ) are merely sums of di�erences of exponeni-

ated data it is clear that ((^ ( ) ( ( ) will have a limiting Normal distribution.

Therefore our only concern is in calculating the covariance matrix.

Consider �rst

(^( ) ^( )) = [(^( ) (^( )))(^( ) (^( )))]

= [( ^ ( ) ^ ( ) ( ^ ( ) ^ ( )))

( ^ ( ) ^ ( ) ( ^ ( ) ^ ( )))]

= [( ^ ( ) ( ^ ( )) ( ^ ( ) ( ^ ( ))))

( ^ ( ) ( ^ ( )) ( ^ ( ) ( ^ ( ))))]

= ( ^ ( ) ^ ( )) ( ^ ( ) ^ ( ))

( ^ ( ) ^ ( )) + ( ^ ( ) ^ ( ))

Now

( ^ ( ) ^ ( ))

= [ ^ ( ) ^ ( )] [ ^ ( )] [ ^ ( )]

=
1 1 1

i.e.

( ^ ( ) ^ ( )) =
1
[ ( ) ( ) ( )]

since

1
+

=
1

( ( + )) +
( 1)

( ) ( )

Similarly,

( ^ ( ) ^ ( )) =
1
( ( ) ( ) ( ))
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( ^ ( ) ^ ( ) =
1
( ( ) ( ) ( ))

( ^ ( ) ^ ( )) =
1
( ( ) ( ) ( ))

i.e.

(^( ) ^( )) =
1

( ) + ( ))

( ) ( ) ( ) ( )

( ) ( )

+ ( ) ( ) + ( ) ( )

Under : ( ) = 0 and ( ) = ( ) thus.

(^( ) ^( )) =
1

2 ( ) ( ) ( )

and

(^( )) =
2
( ( 2 ) ( ))

Letting ^ ( ) be the vector of ( ) for di�erent values, denoted by the vector ,

we have via standard Central Limit Theorems that

(^ ( ) ( ) (0 )

where

= 2 ( ) ( ) ( )
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77-73 85-81 89-81
\min " -10.268 -0.458 -4.787
Prob 2.05E-4 0.645 1.04E-4

\max " -0.823 3.430 -2.073
Prob 0.1398 1.33E-3 1.33E-4

77-73 85-81 89-81
\min " -11.942 -0.999 -2.84E-2
Prob 9.72E-5 0.388 0.763

\max " -0.781 4.340 1.210
Prob 2.63E-2 1.26E-4 0.249
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Table 1

Income Comparisons (Pre-Tax)

Table 2

Income Comparisons (Post-Tax)



S&P 500 FTALL Share
mean 4.166E-3 4.473E-3
st. dev. 4.547E-3 5.174E-3
skewness 0.484 0.926
kurtosis -1.048 0.939
min 0.0 0.0
max 2.038E-2 3.058E-2
Autocorrelations
lag 1 0.812 0.743
2 0.841 0.741
3 0.816 0.737
4 0.804 0.718
5 0.809 0.718
6 0.809 0.722
7 0.779 0.698
8 0.786 0.714
9 0.768 0.679
10 0.761 0.701

# of pts. \min " Prob \max " Prob
3 -2.88 4.492E-3 -1.00 5.409E-2
4 -2.86 5.047E-3 -1.00 5.390E-2
5 -2.90 8.313E-3 -1.00 5.320E-2
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Table 3

Summary Statistics

Table 4

Comparison of S&P 500 to FTALL Share


