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Summary 46 

The Oomycota include many economically significant microbial pathogens of crop species. 47 

Understanding the  mechanisms by which oomycetes infect plants and identifying methods 48 

to provide durable resistance are major research goals. Over the last few years, many 49 

elicitors that trigger plant immunity have been identified, as well as host genes that mediate 50 

susceptibility to oomycete pathogens. The mechanisms behind these processes have 51 

subsequently been investigated and many new discoveries made, marking a period of 52 

exciting research in the oomycete pathology field. This review provides an introduction to our 53 

current knowledge of the pathogenic mechanisms used by oomycetes, including elicitors and 54 

effectors, plus an overview of the major principles of host resistance: the established R gene 55 

hypothesis and the more recently defined susceptibility (S) gene model. Future directions for 56 

development of oomycete-resistant plants are discussed, along with ways that recent 57 

discoveries in the field of oomycete-plant interactions are generating novel means of 58 

studying how pathogen and symbiont colonizations overlap. 59 

Abstract 60 

The Oomycota include many economically significant microbial pathogens of crop species. 61 

Understanding the mechanisms by which oomycetes infect and identifying methods to 62 

provide durable resistance is a major research goal. Over the last few years many elicitors 63 

that trigger plant immunity have been identified as well as host genes that mediate 64 

susceptibility to oomycete pathogens. The mechanisms behind these processes have 65 

subsequently been investigated and many new discoveries made, marking a period of 66 

exciting research in the oomycete pathology field. This review provides an introduction to our 67 

current knowledge of the pathogenic mechanisms used by oomycetes, including elicitors and 68 

effectors, plus an overview of the major principles of host resistance: the established R gene 69 

hypothesis and the more recently defined susceptibility (S) gene model. Future directions for 70 

developing oomycete-resistant plants will be discussed, alongside how recent discoveries in 71 

the oomycete-plant interactions field are generating novel ways of studying how pathogen 72 

and symbiont colonisations overlap. 73 

 74 

Introduction 75 

The Oomycota are a distinct class of fungal-like eukaryotic microbes, many of which are 76 

highly destructive plant or animal pathogens. They share a range of morphological features 77 

with fungi, but possess various unique characteristics which set them apart (1). Cellulose is 78 

a major component of oomycete cell walls. By contrast, chitin, but not cellulose, is a major 79 
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cell wall component of true fungi. However, oomycetes also possess chitin synthases that 80 

are activated during tip morphogenesis (2, 3). Oomycetes are diploid during their vegetative 81 

mycelial stage, whereas fungi predominantly produce haploid thalli, although exceptions do 82 

exist (2, 4). Cells of oomycetes can be distinguished morphologically from true fungi by their 83 

mitochondria, possessing tubular cristae as opposed to the flattened cristae of fungi (5) or 84 

their hyphae which are always non-septate (6).  85 

Typical structural features guided identification of oomycetes in the fossil record. The oldest 86 

existing evidence for oomycete-like structures dates back to the Devonian period, c. ~400-87 

360 Ma (7) and there is evidence of oomycete parasitism occurring during the Carboniferous 88 

period, c. ~300 Ma (8). Molecular clock estimates position the origin of oomycetes as early 89 

as the Silurian period, c. ~430-400 Ma (9). 90 

This review provides an overview of our current knowledge of oomycete plant pathogens. 91 

We introduce the elicitors, effector proteins and disease resistance and susceptibility 92 

principles involved in our current understanding of how oomycetes interact with their plant 93 

hosts. We also present strategies for developing oomycete-resistant crop plants and 94 

highlight the potential of oomycetes as tools to investigate common and contrasting 95 

mechanisms of pathogenic and mutualistic filamentous microbes. 96 

 97 

Phylogeny 98 

Analysis of conserved DNA sequences such as mitochondrial COX2 (10-12), LSU rDNA (13) 99 

and SSU rDNA (14) have confirmed that oomycetes belong outside the fungal kingdom, 100 

within the Chromalveolata. The Chromalveolata kingdom contains mainly photosynthetic 101 

species, a result of ancestral ‘enslavement’ of red algae (15), but oomycetes have since lost 102 

their chloroplasts (16). Availability of several sequenced genomes for some genera (see 103 

Table 1), in particular Phytophthora, has greatly facilitated multilocus assessment of 104 

oomycete taxonomic relationships (17). The Oomycota are broadly divided into two 105 

subclasses. The Saprolegniomycetidae, referred to as the ‘water moulds’, include the orders 106 

Eurychasmales, Leptomitales and Saprolegniales, whilst the Peronosporomycetidae are 107 

mostly plant pathogen orders and consist of the Rhipidiales, Pythiales and Peronosporales. 108 

The existence of early diverging genera of marine parasites within the mainly terrestrial 109 

Saprolegniales and Peronosporales orders has led evolutionary biologists to suggest that 110 

oomycetes made their migration onto the land and into the soil via parasitism of nematode 111 

hosts or by switching from colonisation of estuarine seaweed to the roots or shoots of early 112 

coastal vegetation (18) .  113 
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 114 

Early life cycle stages: asexual reproduction and infection structures 115 

Dispersal of oomycetes by wind or water is achieved through asexual sporangia. 116 

Germination of sporangia can either occur directly, forming invasive hyphae or indirectly, 117 

releasing motile zoospores, which are chemotactically and electrotactically attracted to the 118 

surfaces of host plants (19). Zoospores swim until reaching the plant surface at which point 119 

they shed their flagella and encyst, firmly attaching themselves to the plant surface via 120 

secretion of adhesion molecules (20), as visualised in Figure 1. 121 

Upon germination of a zoospore, a germ tube emerges and grows across the plant surface 122 

until the development of an appressorium is induced by surface topology and/or 123 

hydrophobicity (6). In general, oomycete appressoria function in the penetration of the 124 

outermost, epidermal cell layers. Exceptions to this include Albugo candida, a leaf infecting 125 

pathogen of Arabidopsis thaliana, which enters through stomata and then forms appressoria 126 

in order to penetrate the mesophyll cells below (21) and Aphanomyces euteiches, which 127 

does not form distinct appressoria. 128 

Oomycete plant pathogens exhibit biotrophic, necrotrophic or hemibiotrophic (a combination 129 

of both) lifestyles. Many biotrophic oomycetes are completely reliant on host tissues 130 

(obligate biotrophy). This is a feature of the downy mildews Hyaloperonospora arabidopsidis, 131 

H. parasitica, and Plasmopara viticola as well as A. candida that causes white rust. 132 

Hemibiotrophs commonly have the ability to survive in axenic culture (facultative) such as 133 

Phytophthora spp, as do necrotrophs like Pythium ultimum. A summary of the lifestyles of 134 

important plant-colonising oomycetes is provided in Table 2. 135 

Obligate biotrophs such as H. parasitica must maintain a close interaction with their hosts 136 

whilst keeping the plant alive for their own survival, meaning that highly specific infection 137 

mechanisms exist, significantly restricting their host range. This is in contrast to 138 

hemibiotrophic pathogens, for example those of the Phytophthora genus, some of which 139 

have the ability to infect hundreds of different plant species, growing initially as a biotroph 140 

but later switching to a necrotrophic phase. Following penetration of the cell wall by 141 

appressoria, oomycetes generate vegetative hyphae that grow intercellularly and haustoria 142 

develop as side branches from intercellular and epicuticular hyphae, terminating inside 143 

penetrated host cells (22) (23) (Figure 1; Figure 2). Haustoria can be observed during 144 

colonisation by most obligate biotrophs (24) and have been implied in nutrient uptake in 145 

fungi where haustorium-specific sugar transporters have been described (25), although in 146 

oomycetes little is known about haustorium-specific transport processes. However, a 147 
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number of hemibiotrophs and necrotrophs do not form haustoria, for example Aphanomyces 148 

euteiches and Pythium ultimum. 149 

 150 

Plants recognise oomycete-derived molecules 151 

Elicitors are molecules which stimulate a defence response in a host plant (Table 3). Most of 152 

them constitute PAMPs (pathogen associated molecular patterns) (26) because they are 153 

structurally conserved and thought to be indispensable components or products of a 154 

pathogen’s lifecycle or infection process. Elicitors are perceived by some plants as a 155 

microbial signature, likely through peripheral receptors, some of which require BAK1/SERK3 156 

for their activity (27, 28). The following paragraphs describe a number of oomycete elicitors 157 

and their receptors, if known. 158 

The elicitor Pep-13 was isolated from Phytophthora sojae and is a thirteen amino acid 159 

peptide of a surface exposed stretch of a transglutaminase protein (29-31). Mutation in just 160 

one of these amino acids is sufficient to impair transglutaminase-mediated recognition of P. 161 

sojae and to avoid induction of plant-defence responses (29). Although Pep-13 was 162 

identified over 10 years ago, its plant receptor(s) have yet to be discovered. 163 

Some parasitic oomycetes, including Phytophthora species, have lost the ability to 164 

synthesise their own sterols, which are essential molecules for many cellular functions. They 165 

must therefore acquire sterols from host cell membranes (32). Phytophthora infestans INF1 166 

is a member of a family of conserved lipid transfer proteins with sterol-binding and elicitor 167 

capacity including Cryptogein from Phytophthora cryptogea, CAP1 from Phytophthora 168 

capsici and PAL1 from Phytophthora palmivora, amongst others. INF1 binds in vitro 169 

dehydroergosterol and catalyses sterol transfer between liposomes (33). However, there is 170 

still no in vivo evidence of INF1 involvement in sterol uptake and INF1-lacking P. infestans 171 

strains remain pathogenic (34, 35). INF1 is known to be secreted by P. infestans through its 172 

N-terminal signal peptide, initially localising to the extracellular space (36), and it has been 173 

shown by in vitro immunocytochemistry that the INF1-like Quercinin of Phytophthora 174 

quercina appears to be transported inside the host (29). INF1 was reported to interact with 175 

the cytoplasmic domain of NbLRK1, a lectin-like receptor kinase that is localised to the 176 

plasma membrane (37). However, requirement of BAK1/SERK3 for INF1-triggered immune 177 

responses rather points to a LRR containing receptor (27, 28), leaving open whether it is a 178 

receptor-like protein (RLP) or a receptor-like kinase (RLK). The identification of SlSOBIR1 as 179 

a required component for responses elicited by the P. parasitica INF1-like ParA1 (38) 180 

suggested that INF1 perception is mediated through a receptor-like protein (RLP) rather than 181 



7 
 

a receptor like-kinase (RLK), since SOBIR1 was previously reported to be a co-receptor of 182 

RLPs (39). Then, the discovery of ELR, a wild potato RLP that associates with 183 

BAK1/SERK3, mediating broad-spectrum recognition and induction of cell death, triggered 184 

by four P. infestans elicitins (INF1, INF2A, INF5 and INF6) as well as eleven elicitins of 185 

diverse other Phytophthora species, added a new chapter in our understanding of INF1 186 

perception (40). 187 

OPEL is a recently described secreted protein from culture filtrates of Phytophthora 188 

parasitica with homologs in other oomycetes but not in fungi (41). This 556 amino acid 189 

protein is inducibly expressed during plant invasion. Infiltration of OPEL proteins into 190 

Nicotiana tabacum leaves led to callose deposition, cell death, synthesis of reactive oxygen 191 

species (ROS) and induction of PTI response marker genes as well as salicylic acid-192 

responsive defence genes (41); all characteristics of a plant defence response. OPEL is 193 

therefore considered a microbial signature that is recognised in tobacco leaves. Infiltration of 194 

OPEL also stimulates resistance to viruses, bacteria and the oomycete pathogen P. 195 

parasitica. OPEL contains three domains in addition to its signal peptide, a thaumatin-like 196 

domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain with 197 

laminarinase activity. Recombinant OPEL protein infiltration resulted in enhanced plant 198 

immune reponse and resistance to P. parasitica. Chang et al. (41) conclude that the 199 

predicted laminarinase activity of OPEL triggers plant immune responses, presumably by 200 

generating degradation products in the apoplast that act as damage associated molecular 201 

patterns (DAMPs). However, the authors were unable to show any enzymatic activity from 202 

the wildtype OPEL protein using laminarin or 1,3-β-glucan as a substrate. OPEL might have 203 

a specific polysaccharide substrate in the plant cell wall whose degradation is detected by 204 

plant immunity. Alternatively, co-evolution of plant and oomycete may have led to perception 205 

of OPEL via its enzymatic active site. 206 

The cellulose binding elicitor lectin (CBEL) of P. parasitica is an apoplastic elicitor that 207 

possesses two carbohydrate-binding modules belonging to  family 1 (CBM1) domains, 208 

allowing binding to cellulose and lectin-like hemagglutinating activity (42). CBM1 domains 209 

occur commonly in oomycete and fungal proteins, although CBM1-containing fungal proteins 210 

function in plant cellulose degradation, whereas those of oomycetes (including CBEL) play a 211 

role in adhesion (43). There is downstream signalling following CBEL perception in tobacco 212 

cells, but not in cell wall-lacking protoplasts, suggesting that plant cell wall binding is 213 

required for CBEL-induced defence reactions (44). Alternatively, CBEL detection might 214 

require other cell wall-dependent processes such as polar exo- or endocytosis which cannot 215 

properly take place in non-polar protoplasts (45). 216 
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β-glucans represent PAMPs originating from cell wall fractions of filamentous pathogens 217 

(fungi and oomycetes). Soybean perceives branched heptaglucans with β(1-6) backbone 218 

linkages from Phytophthora sojae, and, in particular, its three non-reducing terminal glycosyl 219 

residues (46).  Conversely, this glucan does not elicit defence responses in tobacco cells, 220 

but a linear β(1-3) glucan does (47). Branched glucan-chitosaccharides from cell wall 221 

fractions of Aphanomyces euteiches induce defence gene expression and nuclear calcium 222 

oscillation in Medicago truncatula root epidermis (48), similar, but not identical, to those 223 

elicited by lipochito-oligosaccharides produced by arbuscular mycorrhiza fungi. 224 

 225 

Effectors suppress host immunity 226 

In order to sustain an intimate association with the host plant, oomycetes must suppress 227 

immune responses triggered by their own elicitors. By secreting effector proteins that can act 228 

in many different cellular compartments, pathogens alter the plant’s physiological state to 229 

benefit colonisation. Descriptions of effector function are often defined by the available 230 

approaches used to study them. Here, we mention some recent effector studies that focus 231 

on the localisation and stability of effectors and their target proteins, as well as overall 232 

transcriptional changes and virulence effects, all of which are summarised in Table 4. 233 

The P. infestans effector AVR3a suppresses perception of the PAMP, INF1, through 234 

stabilisation of the U-box protein CMPG1 (49). AVR3a was also found to interact with 235 

Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated 236 

endocytosis, that, when overexpressed, attenuated PAMP-triggered ROS accumulation (50). 237 

It appears from these findings that AVR3a can suppress BAK1/SERK3-mediated immunity 238 

via two different methods. 239 

P. infestans PexRD2 interacts with the kinase domain of MAPKKK, a positive regulator of 240 

cell death associated with plant immunity. This in turn disrupts the signalling pathways 241 

triggered by, or dependent on, MAPKKK, increasing the susceptibility of N. benthamiana to 242 

P. infestans (51).  243 

When expressed in plant cells, P. infestans AVRblb2 displays an intriguing localisation at 244 

haustoria and renders plants more susceptible to infection. Furthermore, AVRblb2 prevents 245 

secretion of the plant defence protease C14, resulting in lower C14 levels in the apoplast 246 

and accumulation of C14-loaded secretory compartments around haustoria (52). 247 

The nuclear-localized effector HaRxL44 of H. arabidopsidis interacts with Mediator subunit 248 

19a (MED19a), resulting in degradation of MED19a. The Mediator complex consists of 249 



9 
 

around 25 protein subunits and is broadly conserved in eukaryotes, functioning as a 250 

mediator in the interaction between transcriptional regulators and RNA polymerase II. 251 

MED19a was found to be a positive regulator of immunity against H. arabidopsidis and 252 

responsible for transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling 253 

when in the presence of HaRxL44. It was concluded that HaRxL44 attenuates salicylic acid–254 

triggered immunity in Arabidopsis by degrading MED19, shifting the balance of defence 255 

transcription to JA/ET-signalling. (53). 256 

Two P. sojae effectors, PsCRN63 and PsCRN115 (for crinkling- and necrosis-inducing 257 

proteins), which are suggested to be secreted, were shown to regulate plant-programmed 258 

cell death and H2O2 homeostasis. The effectors act through direct interaction with catalases 259 

to overcome host immune responses (54). 260 

The identification of two putative membrane-associated NAC transcription factors (TF) as the 261 

host targets of the effector Pi03192 is one example of oomycete effectors targeting 262 

transcriptional responses. The effector interacts with NAC Targeted by Phytophthora (NTP) 263 

1 and NTP2 at the endoplasmic reticulum (ER) membrane, where these proteins are 264 

localised. The proposed mechanism by which Pi03192 promotes disease progression is the 265 

prevention of relocalisation of NTP1 and 2 from the ER to the nucleus, that appears to be 266 

key for immunity. Few plant pathogen effectors have been shown to influence such re-267 

localisation events or target transcriptional regulators of plant immunity (55).  268 

Two effectors from P. sojae, PSR1 and PSR2, suppress RNA silencing by inhibiting the 269 

biogenesis of small RNAs (56). Very recently the host target of PSR1, PSR1-Interacting 270 

Protein 1 (PINP1), was identified and shown to regulate accumulation of microRNAs and 271 

small interfering RNAs in Arabidopsis (57). When overexpressed, PSR1 enhanced 272 

susceptibility of Arabidopsis to P. capsici and also enhanced susceptibility of N. 273 

benthamiana to P. infestans. A target for PSR2 has yet to be discovered, although PSR2 is 274 

known to be required for full virulence of P. sojae on soybean (56).  275 

Recent research has also established that numerous Phytophthora and Hyaloperonospora 276 

effectors can suppress PTI against the bacterial PAMP derived peptide flg22 at different 277 

steps of the downstream signal cascade (58, 59). Other features of effector interference with 278 

plant defences are protease and peroxidase inhibition, targeting of the ubiquitination system, 279 

salicylate signalling or the disruption of plant cell wall to plasma membrane attachment (60-280 

63).  281 

 282 
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How are effectors deployed in the host? 283 

By definition, effectors are encoded by the oomycete but act inside the host. Accordingly, the 284 

majority of identified oomycete effectors carry an N-terminal signal peptide that mediates 285 

secretion from the microbe. A notable exception is the P. sojae effector PsIsc1, a putative 286 

isochorismatase that does not have a predicted secretory leader peptide but, nevertheless, 287 

can be detected in P. sojae secretion supernatants (62).  288 

Once secreted, apoplastic effectors act in the apoplast surrounding plant and microbial cells, 289 

while cytoplasmic effectors enter the plant cell and would have to cross the plant cell wall 290 

and the plant plasma membrane or alternatively the extrahaustorial matrix and the 291 

extrahaustorial membrane (Fig. 2c). Fusions of the P. infestans effector AVR3a with RFP 292 

accumulate only at haustoria (23). These interfaces are presumably  a specific site of 293 

secretion of AVR3a, or RFP is very stable in the extrahaustorial matrix space surrounding 294 

haustoria. Notably, a similar distribution has been observed when AVR3a was fused to GFP 295 

and secreted from P. capsici (64). Given this indirect evidence, haustoria have been 296 

hypothesised to be a site of translocation for cytoplasmic effectors. However, not all 297 

oomycetes form haustoria and studies have shown internalisation of effectors into plant cells 298 

even in the absence of the pathogen from which they originated (65), suggesting that 299 

specific microbial structures for delivery of effectors may not always be required.  300 

 301 

The majority of cytoplasmic oomycete effectors characterised to date contain an RXLR 302 

(Arginine-any amino acid-Leucine-Arginine) motif following an N-terminal signal peptide, 303 

which is thought to allow translocation into plant cells (23, 66). The RXLR motif can be 304 

followed by an EER motif and, furthermore, similar motifs such as QXLR (67) and RXLQ (61) 305 

can replace the RXLR motif, or it can be absent such as in the case of ATR5 (68). A second 306 

class of effectors known as CRNs, named for their ‘crinkling and necrosis’-inducing activity 307 

(69), are also common in oomycetes and may perform a similar translocation function via 308 

conserved LXLFLAK motifs (64). It has been suggested that RXLRs may be an adaptation to 309 

facilitate biotrophy, because their expression is induced during pre-infection and biotrophic 310 

phases of infection (23),  whereas certain other species may employ CRNs predominantly as 311 

a result of their adaptation to necrotrophy, e.g. Pythium spp (2). However, many biotrophic 312 

oomycete species exist which secrete both RXLRs and CRNs, implying that a connection 313 

between effector class and lifestyle is not easily defined. 314 

 315 

There are two main experimental approaches that have been used in an attempt to 316 

conclusively demonstrate the function of host-targeting domains, such as RXLRs, in 317 

effectors. The first, cell re-entry assays, involves expression of a full-length effector protein 318 
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from a pathogen, including its secretion signal peptide, in a plant cell. Once expressed this 319 

effector passages through the plant secretory system and is secreted into the extracellular 320 

space (apoplast); its subsequent re-entry into the plant cell can then be traced 321 

microscopically via fusion to a fluorescent protein (70). Through the generation of mutations 322 

in specific domains suspected to function in delivery of effectors into plant cells and 323 

employing cell re-entry assays, it has been possible to identify putative domains required for 324 

entry (65, 71, 72). However, this assay cannot unequivocally demonstrate that when the 325 

effector is expressed it is assuredly secreted into the apoplast prior to re-entry. To address 326 

this weakness of cell re-entry experiments, a second assay was devised in which purified 327 

effector proteins, labelled by a fluorescent tag, are applied to plant tissues and their entry 328 

tracked via microscopy (65, 72, 73). The purified effector protein uptake assay into roots is 329 

currently under debate. Protein internalisation by root cells is non-specific (74)  and 330 

fluorescent proteins are taken up by the plant at a comparable rate to their effector-fused 331 

derivatives (75). Thus, this assay cannot be used to properly assess specific effector entry. 332 

Conversely, Tyler et al (2013) observed differential uptake of fluorescent proteins when 333 

effector motifs implied in uptake were fused to them (76). A detailed list of supporting and 334 

conflicting experimental data on this topic has recently been published (77).  335 

 336 

Whisson et. al. (23) demonstrated that the N-terminus of the P. infestans AVR3a effector, i.e. 337 

the RXLR domain, is required for translocation into potato cells, implying that this domain 338 

functions as a leader sequence that mediates host cell targeting. The RXLR domains of 339 

oomycete effectors have been reported to bind extracellular phosphatidylinositol-3-340 

phosphate (PI3P) to mediate effector endocytosis (72) with Bhattacharjee et al (78) 341 

producing data in support of strong RXLR-PI3P binding, albeit in the Plasmodium 342 

endoplasmic reticulum, when investigating the P. infestans host translocation motif of the 343 

candidate effector NUK10. However, their experiments, alongside others by Yaeno et. al. in 344 

plants (79) also led them to conclude that this binding takes place inside the pathogen and is 345 

required for stabilisation and secretion of the effector. There have also been multiple 346 

publications claiming that, contrary to the idea that an N-terminal RXLR is required for PI3P 347 

binding, it may in fact be the C-terminal domain of the effector that is responsible. Wawra et. 348 

al. (80) reported C-terminal mediated PI3P binding of AVR3a from P. infestans, whilst Sun 349 

et. al. (81) found similar binding properties within the Avh5 effector of P. sojae, although the 350 

latter concluded that both regions were involved in effector entry into cells. Notably, Wawra 351 

et al (54) showed that phospholipid binding of the RXLR effector AVR3a can occur even with 352 

denatured proteins but mutants in the C-terminus of AVR3a (79), known to impair 353 

phospholipid binding, have not been assessed in this study. Our idea of a conserved host-354 
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targeting domain within effectors continues to be challenged by  these conflicting findings as 355 

to their functional relevance. 356 

 357 

Plant innate immunity 358 

 359 

Oomycete-plant interactions are characterised by molecular-coevolution with each side 360 

battling for control over the other. Plant cell membrane-resident pattern recognition receptors 361 

(PRRs) expose their PAMP recognition domains to the apoplast to detect conserved 362 

oomycete PAMPs and subsequently trigger PAMP-triggered immunity (PTI). Intracellular 363 

disease resistance proteins mediate recognition of effectors entering the host cell and elicit 364 

effector triggered immunity (ETI). Both plant immune responses aim at interfering with 365 

pathogen ingress and spread. Researchers score for pH alkalinisation, callose deposition 366 

and defence gene activation as markers for PTI. ETI responses are often concomitant with a 367 

visible controlled cell death, the hypersensitive response (HR). However, some conserved 368 

PAMPs can also trigger cell death responses such as in the case of P. infestans INF1 when 369 

infiltrated as protein or when expressed inside N. benthamiana (28). 370 

In order to fully colonise the host a pathogen must overcome plant immunity. As reported 371 

earlier, many effector proteins have been shown to suppress PTI responses (23, 61, 65, 82), 372 

namely three tested variants of the P. infestans effector AVR3a suppress flg22-triggered 373 

responses when overexpressed in planta (50). One way to avoid effector overexpression 374 

and achieve more targeted application is to deliver effectors via a bacterial pathogen, such 375 

as Pseudomonas syringae (61). This large scale investigation of candidate oomycete 376 

effectors and their effects on PTI utilised the type III secretion system of P. syringae to 377 

deliver candidate effectors. Since delivering effectors using P. syringae is still not a flawless 378 

experimental setup - the effector protein might block secretion of other P. syringae type III 379 

effectors thereby reducing P. syringae virulence and affecting subsequent symptoms - the 380 

authors followed up by generating stable transgenic plants expressing single effectors and 381 

showing that they enhance susceptibility to H. arabidopsidis. 382 

While PTI is thought to be triggered by conserved PAMPs across a range of pathogen 383 

species, ETI provides race-specific resistance, because different races of a pathogen 384 

secrete different arrays of effectors and therefore may lack, or possess variants of, the 385 

effectors necessary to trigger ETI. Again, oomycetes have developed effectors to suppress 386 

this alternative recognition principle. Examples include P. infestans SNE1 and the P. sojae 387 

effectors CRN70 and Avr1k which have all been shown to suppress R3a/AVR3a-triggered 388 

HR in N. benthamiana leaves (83, 84), although these transient co-expression assays are 389 
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not always fully conclusive because the effector in question may, to some extent, suppress 390 

overall gene expression, including expression of the HR reporter constructs. 391 

 392 

R gene-mediated resistance 393 

According to the gene-for-gene model (85), a plant will be resistant to a pathogen when it 394 

possesses a dominant R gene that is complementary to the pathogen’s avirulence (Avr) 395 

gene; this is referred to as an incompatible interaction. In a compatible interaction, there is 396 

no corresponding R gene for an Avr gene (or vice versa), resulting in disease. In the years 397 

shortly after the introduction of the ‘gene-for-gene’ hypothesis, Black, Mastenbroek and 398 

others generated eleven potato R gene differentials (86) via introgression and named them 399 

MaR1 to MaR11. The R1, R3a and R10 genes have been extensively and successfully used 400 

in European breeding programmes and R1 and R3a cloned to investigate their functions 401 

(87). The cytoplasmic RXLR effector AVR3a of Phytophthora infestans confers avirulence on 402 

potato plants carrying the R3a gene (25). Many other cloned R genes providing resistance to 403 

important oomycetes are listed in Table 5 (along with their cognate Avr genes, if known, in 404 

brackets). 405 

The existence of PTI and ETI responses due to perception means that in order to retain the 406 

ability to infect a host species, pathogens constantly vary their repertoire of effector 407 

molecules to avoid Avr activity. As a result, R gene-based resistance, relying on presence of 408 

singular effectors which are not essential to the pathogen’s success, can be easily overcome 409 

by rapid sequence diversification or loss. This has caused problems in an agricultural 410 

context where R genes were employed to provide resistance to crop pathogens because the 411 

resistance has only been durable if the required Avr gene is essential to the pathogen’s 412 

success. However, there have been various attempts to improve the chances of durability, 413 

namely, stacking multiple R genes within one variety (88), and/or using variety mixtures (89) 414 

or multilines (90), as well as engineered R genes with extended recognition spectra (91, 92). 415 

The use of variety mixtures involves sowing several varieties containing different R genes 416 

and different parental backgrounds together in the same field. Multilines contain lines of the 417 

same variety but with different combinations of R genes, thereby creating a mosaic and 418 

preventing take-over of the field by a single pathogen isolate. 419 

Identifying effectors which are required to maintain full pathogen virulence can aid the 420 

search for cognate disease resistance genes in wild varieties of host crop plant species  421 

(93). Several oomycete effectors have been shown to contribute to pathogen virulence. 422 

Variation in copy number of P. sojae Avr1 and Avr3a (94) as well as knock-down of 423 
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transcript levels of Avr3a (49), PsAvh172, PsAvh238 (95), PsAvr3b (96), PsCRN63 and 424 

PsCRN115 (97) negatively impact on virulence. 425 

 426 

S gene-mediated resistance 427 

All plant genes that facilitate infection and support compatibility can be considered 428 

susceptibility (S) genes. Mutation or loss of an S gene thus reduces the ability of the 429 

pathogen to cause disease. This can result in pathogen-specific resistance if the gene is 430 

involved in production of a component required for host penetration, or broad-spectrum 431 

resistance if the gene suppresses constitutive defences. The concept of susceptibility genes 432 

was first explored in 2002 (98) after the identification of PMR6 (powdery mildew resistance 433 

6) in Arabidopsis (99). S genes that have been identified as susceptibility factors for 434 

colonisation by important oomycetes are included in Table 5. S genes can be classified into 435 

three groups based on the point at which they act during infection; early pathogen 436 

establishment, modulation of host defences and pathogen sustenance. 437 

Early pathogen establishment: The Medicago truncatula mutant ram2 has altered cutin 438 

composition, a key component of the plant cuticle, due to a mutation in a gene encoding a 439 

cutin biosynthesis enzyme, glycerol-3-phosphate acyl transferase. ram2 mutants display 440 

reduced susceptibility to Phytophthora palmivora with significant disruption of appressoria 441 

formation (100). This example, together with others in plant-fungus interactions, implies that 442 

the leaf cuticle provides essential developmental cues for pathogenicity (101-103). Proteins 443 

involved in controlling cytoskeleton dynamics and vesicle trafficking, such as GTPase-444 

activating proteins (GAP), also appear to be key susceptibility factors. For example, an ARF-445 

GAP protein, AGD5, of A. thaliana has recently been found to be a susceptibility factor for H. 446 

arabidopsidis infection (104). It may be that rearrangements of the cytoskeleton, mediated 447 

by AGD5, ensure susceptibility to the adapted pathogen H. arabidopsidis. 448 

Modulation of host defences: Although callose deposition is primarily an induced defence 449 

response that occurs at sites where the pathogen attempts to penetrate, providing a physical 450 

barrier to entry, it has also been implicated in suppression of PTI. Overexpression of PMR4 451 

leads to increased callose deposition and is associated with complete resistance in A. 452 

thaliana to the non-adapted fungal pathogen Blumeria graminis (105). Surprisingly, a 453 

mutation causing loss-of-function of PMR4 also provides resistance to B. graminis, as well 454 

as the oomycete H. arabidopsidis, but via a different mechanism. The mechanism by which 455 

PMR4 acts as a susceptibility gene seems to lie in suppression of salicylic acid signalling 456 

which causes a moderate increase in defence gene expression (105). 457 
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A. thaliana plants are less susceptible to H. arabidopsidis in the absence of the gene IOS1 458 

(impaired oomycete susceptibility) encoding a malectin-like, leucine-rich repeat receptor-like 459 

kinase (106). In support of this finding it appears that transcription of IOS1 promotes 460 

susceptibility and is localised to the area surrounding penetration by H. arabidopsidis, 461 

suggesting that it may either be a residual PAMP-triggered response, or a component of a 462 

defence mechanism that has been interfered with by the oomycete to benefit infection. In 463 

ios1 mutants PTI-responsive genes were delayed in their induction upon infection with H. 464 

arabidopsidis but their expression levels were increased, implying that IOS1 negatively 465 

regulates the activation of PTI responses, possibly through involvement in FLS2/BAK1 466 

protein complex formation (107). 467 

The mitogen-activated protein kinase 4 (MPK4) gene acts downstream of immune receptors 468 

to regulate the transduction of extracellular stimuli into adaptive, intracellular responses and 469 

has been found to act as a negative regulator of these defence responses (108). Silencing of 470 

MPK4 in Glycine max (soybean) leads to enhanced resistance to the downy mildew 471 

Peronospora manshurica (109). Suggestions have been made that GmMPK4 silencing 472 

causes increased lignin biosynthesis, which may indirectly provide a physical barrier at the 473 

epidermal cells such that the oomycete cannot penetrate into the mesophyll. Further 474 

evidence for the role of MPK4 as a susceptibility gene lies in a complex of BAK1/BRI1 (BRI1 475 

associated receptor kinase 1, brassinosteroid insensitive 1), which is required for the 476 

activation of MPK4 (110). BRI1 was found to associate with BAK1 in vivo and both 477 

components appear to work cooperatively to negatively regulate cell death and defence 478 

responses to H. parasitica. The majority of susceptibility genes were identified through study 479 

of interactions between plants and H. arabidopsidis, and H. parasitica. Many of these S 480 

genes function in defence suppression (mutant plants exhibiting constitutive defence 481 

responses) that leads to dwarf phenotypes or developmental defects. However, there are 482 

some S genes for which mutant plants exhibit no significant dwarf phenotype and show no 483 

developmental defects. These include a number of genes encoding negative regulators of 484 

defence responses such as PTI, salicylic acid signalling and/or SAR (systemic acquired 485 

resistance), for example, ‘plant U-box E3 ubiquitin ligases’ (PUB22/23/24) and ‘suppressor 486 

of nim1-1’ (SON1) which are involved in ubiquitination and protein degradation (111, 112). 487 

Other negative regulators of defence include ‘enhanced disease resistance 2’ (EDR2), 488 

‘suppressor of npr1-1 inducible 1’ (SNI1) and ‘constitutive defence without defect in growth 489 

and development 1’ (Cdd1) (113-116). 490 

Pathogen sustenance: A. thaliana mutants have also been identified which display loss of 491 

susceptibility to H. arabidopsidis due to perturbations in enzymes that function in amino acid 492 

metabolism. For example, dmr1 carries a mutation in a gene encoding homoserine kinase, 493 
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an enzyme catalyst of the synthesis pathway for Met, Thr and Ile (117). When the activity of 494 

homoserine kinase is fully knocked out, the effect is lethal, but knockdown provides 495 

resistance to H. arabidopsidis. Other mutants, rsp1 and rsp2, have disrupted aspartate 496 

kinase function which is again important for Met, Thr and Ile synthesis, but also for Lys. In an 497 

attempt to elucidate the mechanism of reduced susceptibility in these mutants, Thr and 498 

homoserine were applied exogenously, which resulted in reduced H. arabidopsidis 499 

conidiphore formation (118). This supports the hypothesis that metabolites downstream of, 500 

or induced by, Thr and homoserine are toxic to the oomycete. The availability of each of 501 

these amino acids has also been implicated in the induction of resistance (117, 118).  502 

 503 

Future directions for developing oomycete-resistant plants 504 

Strategies to tackle economic losses caused by oomycete pathogens are numerous and 505 

diverse in their approaches, but three main areas could be seen as having the greatest 506 

potential for success in the near future – tactical deployment of natural or engineered R 507 

genes, S gene knockouts/mutations and transgenic hairpin RNA silencing of essential 508 

pathogen transcripts. 509 

Applying the R gene hypothesis to breeding for resistance leads to only short-lived success, 510 

being overcome quickly by the pathogen as it varies its effector repertoire. Identifying and 511 

accurately screening for new R genes using molecular markers is laborious, expensive, and 512 

sometimes problematic due to epistatic interactions between resistance genes. An 513 

alternative to marker-assisted screens for identification of novel R proteins are effector-514 

based, high throughput, in planta expression assays (119). If combined with plant disease 515 

epidemiology studies and comparative genomics these expression assays could aid 516 

prioritisation of effectors present in emerging virulent strains as well as those abundant in 517 

numerous other isolates (120). 518 

 519 

Only in the last few years  have researchers begun to adopt structural biology to fully 520 

investigate functional relationships between interacting pathogen and plant proteins (121). 521 

Knowledge of how immune receptors function on a molecular level has already begun to fuel 522 

development of engineered receptors that detect a broader range of oomycete effectors (91, 523 

92). The function of an R gene and its specificity for a given effector can also be validated 524 

via transient co-expression with effectors in plants that do not carry the candidate resistance 525 

gene. Once identified these R genes must be carefully applied in the field so as to extend 526 

the durability of the resistance they provide though techniques such as R gene stacking, 527 

variety mixtures or multilines. However, these techniques have their limitations when it 528 
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comes to implementation in a large scale agricultural context. Once stably engineered R 529 

proteins with extended recognition spectra (91, 92) have been shown to perform well in the 530 

field they may provide alternative solutions. 531 

 532 

A second approach aims at removing key plant genes required for the infection. These S 533 

gene mutation-based resistance mechanisms should provide much greater durability than R 534 

genes because they involve a component that is essential for pathogen survival. Many of the 535 

S genes identified to date in plant-oomycete interactions have been found through study of 536 

model species A. thaliana-infecting downy mildews. There are, however, S genes that show 537 

promise as a means to provide resistance to more economically significant oomycetes, for 538 

example, ram2-mediated resistance to Phytophthora palmivora and Aphanomyces euteiches 539 

spp. (100, 122). 540 

The large majority of S genes are unfortunately involved in essential plant processes, which 541 

constitutes a significant downside to their use in a disease resistance context. Knockouts of 542 

some S genes, namely DMR1, are expected to result in lethal phenotypes (117). Mutation of 543 

RAM2 in M. truncatula results in altered water permeability of the seed coat which might 544 

affect its shelf life (100). For such S genes to be useful agriculturally therefore, different 545 

alleles must be identified that encode proteins with reduced, but not fully abolished, activity. 546 

To achieve this, “artificial evolution”, i.e. targeted mutagenesis, or assessment of natural 547 

variation using haplotype-specific markers (123) could be applied. 548 

Alongside discovering novel susceptibility gene alleles, it is important to combine this 549 

research with a greater understanding of oomycete pathogenicity mechanisms. A number of 550 

oomycete genomes have been sequenced to date (Table 1, including H. arabidopsidis, P. 551 

ultimum, P. infestans, P. ramorum P. sojae and P. capsici (2, 124-126). The four 552 

Phytophthora species here are all hemibiotrophs and therefore can be cultured in vitro, 553 

making them more amenable to transformation and gene disruption. As a result these 554 

species will, in the future, serve as tools to discover more about how oomycetes interact with 555 

their hosts and, ultimately, which genes encode effectors, resistance proteins or 556 

susceptibility proteins. 557 

A third strategy, termed host-induced gene silencing, is based on transgenic plants, which 558 

produce hairpin RNA constructs targeting pathogen transcripts essential for virulence. This 559 

principle has been demonstrated to work in fungi and accumulating evidence suggests its 560 

transferability to Phytophthora and Bremia (127-129) 561 

 562 
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Potential for comparative pathogen-mutualist studies 563 

Our growing knowledge of oomycete interactions with plants opens up exciting possibilities 564 

to investigate the commonalities and differences between pathogenic and mutualistic 565 

lifestyles. For example, the important model legume species Medicago truncatula is able to 566 

be colonised by both arbuscular mycorrhizal fungi, such as Rhizophagus irregularis, as well 567 

as the oomycete pathogens Aphanomyces euteiches and P. palmivora (130). The 568 

advantage of a common host species for these distinct groups of filamentous 569 

microorganisms is the ability to genetically dissect common and contrasting elements 570 

required for their colonisation processes. Oomycete pathogens and mutualists share 571 

similarities with respect to intracellular structures in plants, i.e. they both feature host cell 572 

plasma membrane invaginations (haustoria and arbuscules, respectively, Figure 2), driven 573 

by the invading microbes, which penetrate the cell wall and then become surrounded by a 574 

specialised membrane (termed extra haustorial membrane and periarbuscular membrane, 575 

respectively, (131)). Whether arbuscules are translocation sites of the recently identified SP7 576 

(132), or other effectors of arbuscular mycorrhiza fungi, remains to be clarified. In a recent 577 

publication by Rey et. al. (133), genetic elements of the common symbiosis signalling 578 

pathway required for arbuscule formation in M. truncatula, were found to have no functional 579 

overlap with the formation of P. palmivora haustoria, indicating that different mechanisms are 580 

operating during their formation. Common elements found in both mutualistic and pathogenic 581 

interface membrane formation are v-SNAREs of the VAMP72 family involved in exocytotic 582 

vesicle trafficking (134). Furthermore, marker localisation studies at oomycete haustoria 583 

suggest that rerouting of vacuolar-targeted late endosomal compartments, labelled by the 584 

small Rab7 type GTPase RabG3c, seems to contribute to extrahaustorial membrane 585 

formation (135). Notably, the corresponding Medicago Rab7a2 can be found in the 586 

cytoplasm of arbuscule containing root cells (136). It thus would be important to study 587 

distribution of this and other markers in a more comparative way using the same plant tissue 588 

for haustoria and arbuscules. 589 

 590 

Summary 591 

Considering the continued negative impact of oomycetes on agriculture, understanding their 592 

biology is imperative to reveal new strategies for their control. It is exciting to see that 593 

oomycete research is in full bloom and that the numbers of genetic, genomic and cell biology 594 

resources are continuously growing. Comparative studies with unrelated microbes that share 595 

colonisation strategies should enable us to extend our range of applicable resistance 596 

principles whilst maintaining the agronomic benefits of mutualist fungi. 597 
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Table 1. Plant pathogenic oomycete genome sequence resources 606 

Species 
Genome size 
[Mb] 

References 

Order Peronosporales 

Albugo laibachii 37.0 (137) 

Albugo candida 45.3 (184) 

Bremia lactucae 
Transcriptome 
only 

(138) 
http://web.science.uu.nl/pmi/data/bremia/ 
 

Hyaloperonospora 
arabidopsidis 

81.6 (125) 

Phytophthora 
cactorum 

Transcriptome 
only 

(185) 

Phytophtora capsici 64.0 (139) 

Phytophthora 
cinnamomi 

78.0 http://genome.jgi.doe.gov/Phyci1/Phyci1.home.html 

Phytophthora 
infestans 

240.0 (124) 

Phytophthora 
ipomoeae 

Alignment to 
P. infestans 

(186) 

Phytophthora 
fragariae var. 
fragariae 

73.6 (187) 

Phytophthora 
mirabilis 

Alignment to 
P. infestans 

(186) 

Phytophthora 
palmivora 

- 
Sequencing project in progress, (USDA, 2012) 
http://www.ars.usda.gov/research/projects/projects.htm
?accn_no=422621 

Phytophthora 
parasitica 

82.4 
Phytophthora parasitica Assembly Dev Initiative, Broad 
Institute (broadinstitute.org) 

Phytophthora 
phaseoli 

- (186) 

Phytophthora 
ramorum 

65.0 (126) 

Phytophthora sojae 95.0 (126) 

Plasmopara 
halstedii 

- 

Sequencing project in progress, (INRA, 2012) 
http://www6.bordeaux-aquitaine.inra.fr/sante-
agroecologie-
vignoble/Personnel/Scientifiques/Francois-
Delmotte/Downy-mildew-genomics 

Plasmopara viticola - 

Sequencing project in progress, (INRA, 2012) 
http://www6.bordeaux-aquitaine.inra.fr/sante-
agroecologie-
vignoble/Personnel/Scientifiques/Francois-
Delmotte/Downy-mildew-genomics 

Pseudoperonospor
a cubensis 

Transcriptome 
only 

(140) 

Order Pythiales 

Pythium ultimum 42.8 
(2) 
 

http://genome.jgi.doe.gov/Phyci1/Phyci1.home.html
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Pythium 
aphanidermatum 
 

35.9 

(2, 141) 
 

Pythium 
arrhenomanes 

44.7 

Pythium irregulare 42.9 

Pythium iwayamai 43.3 

Pythium ultimum 
var. sporangiiferum 

37.7 

Pythium vexans 33.9 

Order Saprolegniales 

Aphanomyces 
euteiches 

- 
Sequencing project in progress (Genoscope, 2009); 
http://www.polebio.lrsv.ups-tlse.fr/aphano/ 

 607 

Table 2. Lifestyle, host range and infection structures of important plant-infecting 608 

oomycete species. Lifestyle abbreviations: B – obligate biotroph; HB – hemibiotroph; N – 609 

necrotroph. 610 

Species Lifestyle Hosts (organ) Infection structures 

Albugo candida B 
Arabidopsis thaliana and other 
Brassicacea (leaves) 

Enter through stomata then 
form appressoria, haustoria 

Aphanomyces 
euteiches 

B 
Legumes: Medicago truncatula, 
Pisum sativum, Medicago 
sativa (roots) 

Hyphae only 

Hyaloperonospora 
arabidopsidis 

B Arabidopsis thaliana (leaves) Appressoria, haustoria 

Hyaloperonospora 
parasitica  
 

B 
Capsella bursa-pastoris and 
Brassicaceae including 
Arabidopsis thaliana (leaves) 

Appressoria, penetration 
hyphae, haustoria 

Peronospora 
manshurica 

B Glycine max (leaves) Appressoria, haustoria 

Plasmopara 
viticola 

B Vitis spp (leaves) Appressoria, haustoria 

Phytophthora 
cinnamomi 
 

HB 
Very broad range: inc. most 
annual and herbaceous 
perennial species (roots) 

Appressoria, haustoria 

Phytophthora 
capsici 

HB 

Capsicum annuum, members 
of Cucurbitaceae, Fabaceae, 
and Solanaceae (stems and 
fruit) 

Appressoria, haustoria  

Phytophthora 
infestans 

HB 
Potato, tomato, wild tobaccos 
(shoots) 

Appressoria, haustoria  

Phytophthora 
palmivora 

HB 

Very broad range : inc. palm 
and fruit tree species, 
Medicago truncatula, Nicotiana 
benthamiana (roots, trunks, 

Appressoria, haustoria 
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buds, leaves) 

Phytophthora 
parasitica 

HB 

Very broad range: inc. 
Solanum lycopersicum, 
Solanum tuberosum, Capsicum 
annuum (roots and leaves) 

Appressoria, haustoria 

Phytophthora 
ramorum 

HB 

Very broad range: inc. Quercus 
agrifolia, Notholithocarpus 
densiflorus (phloem and inner 
bark) 

Appressoria-like structures. 
(Haustoria not yet observed) 

Phytophthora 
sojae 
 

HB 
Glycine max, Glycine soja, 
Lupinus spp (roots) 

Appressoria, haustoria 

Pythium ultimum N 

Very broad range: inc. Zea 
mays, Glycine max, Solanum 
tuberosum and Triticum spp 
(roots) 

Appressoria only 

 611 

Table 3. Examples of known oomycete elicitors 612 

Name Type Plant receptor  References 

INF1 
Protein, 
sterol-binding 

BAK1/SERK3-dependent 
ELR 

(28, 34, 35, 40)  

OPEL Protein 
Unknown monomeric 
100 kDa integral plasma 
membrane protein 

(30, 41, 142)  

CBEL Protein 
Unknown, but cellulose-
dependent 

(44)  

Pep-13 Peptide Unknown (29, 30)  

Arachidonic acid 
Unsaturated 
fatty acids 

Unknown (143) 

Beta-glucans Carbohydrate 
Glucan-dependent 
CEBiP 
CERK1 

(46, 48, 144, 145) 

 613 

Table 4. Examples of oomycete effectors that suppress host immunity  614 

Effector 
(Oomycete 
species) 

Known host 
target(s) 

Virulence effects References 

AVR3a 
(P. infestans) 

Stabilisation of 
potato CMPG1 When overexpressed in N. 

benthamiana, suppresses 
perception of INF1, attenuates 
flg22 and INF1-triggered ROS 
accumulation. 

(49) 

Interaction with 
Nicotiana 
benthamiana 
Dynamin-Related 
Protein 2 (DRP2) 

(50) 

PexRD2 
(P. infestans) 

Interaction with the 
kinase domain of 

potato MAPKKK  

Suppressor of cell death triggered 

by MAPKKK signalling pathway. 
When overexpressed, increases 
susceptibility of N. benthamiana 
to P. infestans 

(51) 



23 
 

AVRblb2 
(P. infestans) 

Associates with 
papain-like cysteine 
protease  C14 from 
N. benthamiana and 
tomato 

Prevents secretion of the plant 
defence protease C14 in N. 
benthamiana and tomato. When 
overexpressed, enhanced 
susceptibility of N. benthamiana 
plants to P. infestans 

(52) 

Pi03192 
(P. infestans) 

Interaction with the 
potato transcription 
factors 
NAC Targeted 
by Phytophthora (NT
P) 1 and NTP2 

Prevention of relocalisation of 
NTP1 and 2 from the ER to the 
nucleus, that appears to be key 
for immunity. Silencing of NTP1 
or NTP2 in N. benthamiana 
increases susceptibility to P. 
infestans 

(55) 

HaRxL44 
(H. arabidopsidis) 

Degradation of 
Arabidopsis 
Mediator subunit 
19a (MED19a), a 
mediator in the 
interaction between 
transcriptional 
regulators and RNA 
polymerase II 

Attenuates salicylic acid–triggered 
immunity in Arabidopsis, shifting 
the balance of defence 
transcription to JA/ET-signalling 

(53) 

PsCRN63 
(P. sojae) 

Direct interaction 
with catalases from 
N. benthamiana 
(NbCAT1) and 

Glycine max 
(GmCAT1)  

When overexpressed, cell death 
and accumulation of H2O2 in N. 
benthamiana leaves 

(54) 

PsCRN115 
(P. sojae) 

When coexpressed with 
PsCRN63, suppression of cell 
death and H2O2 accumulation in 
N. benthamiana leaves; 
suggested to suppress cell death 
by inhibiting PsCRN63-induced 
effects 

PSR1 
(P. sojae) 

Interaction with 
Arabidopsis PINP1 
helicase domain 
containing protein. 
Inhibition of the 
biogenesis of small 
RNAs 

When overexpressed, enhanced 
susceptibility of N. benthamiana 
to Potato Virus X and P. infestans 

(56) 

When overexpressed, enhanced 
susceptibility of Arabidopsis to P. 
capsici 

(57) 

PSR2 
(P. sojae) 

Target unknown. 
Inhibition of the 
biogenesis of small 
RNAs 

Suppression of RNA silencing in 
N. benthamiana. When silenced, 
reduction in virulence of P. sojae 
on soybean 

(56) 

PsIsc1 
(P. sojae) 

Hydrolyses 
isochorismate (the 
direct precursor of 
salicylic acid) 

Disruption of salicylate 
metabolism pathway. 
Suppression of salicylate-
mediated innate immunity in N. 
benthamiana. 

(62) 

 615 

Table 5. Cloned resistance (R) and susceptibility (S) genes affecting oomycete plant 616 

interactions 617 
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Species Cloned R genes (cognate Avr genes) 
Cloned S genes 
 

Albugo candida Arabidopsis WRR4 (146)  

Hyaloperonospora 
arabidopsidis 

Arabidopsis RPP1 (147) (ATR1) (148, 
149), RPP2 (150) , RPP4 (150), RPP5 
(151), RPP7 (150), RPP8 (152), RPP13 
(153) (ATR13) (149), 

Arabidopsis AGD5 (104), IOS1 
(106), PUB22/23/24 (154, 
155), SON1 (112), EDR2 (113, 
114), SNI1 (115, 156), Cdd1 
(116), DMR1 (117, 157), 
RSP1/2 (118), PMR4 (158) 
DMR6 (188, 189) 

Peronospora 
manshurica 

Soybean Rpm (159) MPK4 (108, 109) 

Phytophthora 
cinnamomi 
 

Arabidopsis TIR1 (160)  

Phytophthora 
infestans 

Potato R1 (87, 161), R2 (162, 163) 
(AVR2) (163, 164), R3a (165) (Avr3a) 
(166), R3b (167) (Avr3b) (96), R4 and 
(AVR4) (168) (169), R6 and R7 (170), 
R10 and R11 (171), RB/Rpi-Blb1 (172, 
173) (Avr-Blb1/IPI-O1) (119), Rpi-Blb2 
(174), Ph-3 (175), Rpi-vnt1 (176), Rpi-
blb3 (162), Rpi-abpt (162) 

StREM1.3 and N. 
benthamiana REM1.3 
orthologs (177) 

Phytophthora 
palmivora 

 
Medicago RAM2 (100), LATD 
(133) 

Phytophthora 
sojae 
 

Soybean Rps1d and (Avr1d) (178), 
Rps1b and (AVR1b) (179) 

 

Plasmopara 
viticola 

Grape Rpv1 Rpv2 (180), Rpv3 (181) 
(avrRpv3) (182), Rpv10 (183) 

 

 618 

619 
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Figure 1. Infection strategies and lifestyles of selected oomycetes. 620 

 621 

  622 
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Figure 2 – Filamentous plant microbe interfaces and membrane barriers for effector 623 

translocation. 624 

 625 

  626 
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Figure Legends 627 

Figure 1. Infection strategies and lifestyles of selected oomycetes. 628 

(a) Typical asexual Phytophthora dispersal structures (b) leaf colonisation (c) root 629 

colonisation. Two alternative methods of germination (direct germination from deciduous 630 

sporangia or indirect germination from zoospores) are depicted. Other alternative 631 

germination strategies are not displayed. Following germination, depending on the species, 632 

oomycetes perform Biotrophy, e.g. Hyaloperonospora arabidopsidis or Albugo laibachii, the 633 

latter often entering through stomata and then forming appressoria, Necrotrophy, e.g. 634 

Pythium ultimum, or Hemibiotrophy, e.g. Phytophthora sojae or Phytophthora palmivora. 635 

Notably, oomycete entry occurs through epidermal cells or between cells. Cells which have 636 

been colonised by a biotrophic pathogen are highlighted in yellow, whilst those that are 637 

undergoing cell death as a result of necrotrophy are shaded grey. In the case of a 638 

hemibiotrophic oomycete colonising a root, the interaction is initially biotrophic whilst the 639 

oomycete spreads through the cortex, but once established, and hyphae have entered the 640 

endodermis and vasculature, necrotrophy can be observed. 641 

Figure 2 – Filamentous plant microbe interfaces and membrane barriers for effector 642 

translocation. 643 

Haustoria (a) and arbuscules (b) both represent invaginations of the plant cell protoplast 644 

caused by microbial ingrowth. Both are surrounded by specialised membranes termed 645 

extrahaustorial membrane (EHM) or periarbuscular membrane (PAM), labelled in red. 646 

Cytoplasmic effectors have to pass several membrane barriers (c). Originating in the 647 

pathogen cytosol (1.), effectors are thought to be secreted across the pathogen cell wall (2.) 648 

either into the space adjacent to the plant cell wall or into the extrahaustorial 649 

matrix/periarbuscular matrix (EHM/PAM). The EHM/PAM is an environment that may be 650 

modified by other pathogen-secreted molecules to stabilise the effector protein, or 651 

alternatively, contain host plant proteases which target effectors for hydrolysis. Some plant 652 

membrane molecules may act as receptors for effectors, assisting their transport to the host 653 

cell whilst effectors themselves may interact to aid translocation into the host cytosol. 654 

Movement across the host plasma membrane may or may not involve first crossing the plant 655 

cell wall (3a. and 3b. respectively) depending on where an effector is secreted from the 656 

microbe. This movement may occur either by endocytosis or via a translocon (pathogen-657 

specific translocation mechanism). Focal host defence responses may inhibit the entry of 658 

effectors, whilst pathogen factors may prepare host cells for their uptake. 659 

  660 
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