
Conditional Volatility and Correlations of
Weekly Returns and the VaR Analysis of 2008

Stock Market Crash�

Bahram Pesaran
Wadhwani Asset Management, LLP

M. Hashem Pesaran
Cambridge University and USC

April 2010

Abstract

Modelling of conditional volatilities and correlations across asset re-
turns is an integral part of portfolio decision making and risk management.
Over the past three decades there has been a trend towards increased asset
return correlations across markets, a trend which has been accentuated
during the recent �nancial crisis. We shall examine the nature of asset
return correlations using weekly returns on futures markets and investi-
gate the extent to which multivariate volatility models proposed in the
literature can be used to formally characterize and quantify market risk.
In particular, we ask how adequate these models are for modelling market
risk at times of �nancial crisis. In doing so we consider a multivariate
t version of the Gaussian dynamic conditional correlation (DCC) model
proposed by Engle (2002), and show that the t-DCC model passes the
usual diagnostic tests based on probability integral transforms, but fails
the value at risk (VaR) based diagnostics when applied to the post 2007
period that includes the recent �nancial crisis.

JEL Classi�cations: C51, C52, G11
Key Words: Volatilities and Correlations, Weekly Returns, Multivariate t,

Financial Interdependence, VaR diagnostics, 2008 Stock Market Crash.

�This is a substantially revised and updated version of a paper previously distributed
under the title "Modelling Volatilities and Conditional Correlations in Futures Markets with
a Multivariate t Distribution", 2007, IZA Discussion Papers, No. 2906. We are grateful to
Enrique Sentana and Elisa Tosetti for useful discussions and comments.

1



1 Introduction

Modelling of conditional volatilities and correlations across asset returns is an
integral part of portfolio decision making and risk management. In risk man-
agement the value at risk (VaR) of a given portfolio can be computed using
univariate volatility models, but a multivariate model is needed for portfolio
decisions. Even in risk management the use of a multivariate model would be
desirable when a number of alternative portfolios of the same universe of m
assets are under consideration. By using the same multivariate volatility model
marginal contributions of di¤erent assets towards the overall portfolio risk can
be computed in a consistent manner. Multivariate volatility models are also
needed for determination of hedge ratios and leverage factors.
The literature on multivariate volatility modelling is large and expanding.

Bauwens, Laurent, and Rombouts (2006) provide a recent review. A general
class of such models is the multivariate generalized autoregressive conditional
heteroscedastic (MGARCH) speci�cation. (Engle and Kroner (1995)). How-
ever, the number of unknown parameters of the unrestricted MGARCH model
rises exponentially with m and its estimation will not be possible even for a
modest number of assets. The diagonal-VEC version of the MGARCH model is
more parsimonious, but still contains too many parameters in most applications.
To deal with the curse of dimensionality the dynamic conditional correlations
(DCC) model is proposed by Engle (2002) which generalizes an earlier speci-
�cation by Bollerslev (1990) by allowing for time variations in the correlation
matrix. This is achieved parsimoniously by separating the speci�cation of the
conditional volatilities from that of the conditional correlations. The latter are
then modelled in terms of a small number of unknown parameters, which avoids
the curse of the dimensionality. With Gaussian standardized innovations Engle
(2002) shows that the log-likelihood function of the DCC model can be max-
imized using a two step procedure. In the �rst step, m univariate GARCH
models are estimated separately. In the second step using standardized residu-
als, computed from the estimated volatilities from the �rst stage, the parameters
of the conditional correlations are then estimated. The two step procedure can
then be iterated if desired for full maximum likelihood estimation.
DCC is an attractive estimation procedure which is reasonably �exible in

modeling individual volatilities and can be applied to portfolios with a large
number of assets. However, in most applications in �nance the Gaussian as-
sumption that underlies the two step procedure is likely to be violated. To
capture the fat-tailed nature of the distribution of asset returns, it is more
appropriate if the DCC model is combined with a multivariate t distribution,
particularly for risk analysis where the tail properties of return distributions are
of primary concern. But Engle�s two-step procedure will no longer be applicable
to such a t-DCC speci�cation and a simultaneous approach to the estimation
of the parameters of the model, including the degree-of-freedom parameter of
the multivariate t distribution would be needed. This paper develops such an
estimation procedure and proposes the use of devolatized returns computed as
returns standardized by realized volatilities rather than by GARCH type volatil-
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ity estimates. Devolatized returns are likely to be approximately Gaussian al-
though the same cannot be said about the standardized returns. (Andersen,
Bollerslev, Diebold, and Ebens (2001), and Andersen, Bollerslev, Diebold and
Labys (2001)).
The t-DCC estimation procedure is applied to a portfolio composed of 6

currencies, four 10 year government bonds, and seven equity index futures over
the period May 27, 1994 to October 30, 2009; split into an estimation sam-
ple (1994 to 2007) and an evaluation sample (2008 to 2009). To avoid the
non-synchronization of daily returns across markets in di¤erent time zones we
estimate the volatility models using weekly rather than daily returns.
Main features of the empirical results are as follows:

� The estimation results strongly reject the normal-DCC model in favour of
a t-DCC speci�cation.

� The t-DCC speci�cation passes the non-parametric Kolmogorov-Smirnov
tests, but fails the VaR test due to the extreme events in September and
October of 2008.

� Important changes to asset return volatilities have taken place which are
shared across assets and markets.

� The 2008 �nancial crisis resulted in the reversal of the trend volatilities
form its low levels during 2003-2007 to unprecedented heights in 2008.

� Asset return correlations have been rising historically. Recent crisis has
accentuated this trend rather than leading to it.

� The rise in asset return correlations seems to be more re�ective of un-
derlying trends - globalization and integration of �nancial markets, and
cannot be attributed to the recent �nancial crisis. More research on this
topic is clearly needed.

The plan of the paper is follows. Section 2 introduces the t-DCC model and
discusses the devolatized returns and the rational behind their construction.
Section 3 considers recursive relations for real time analysis. The maximum
likelihood estimation of the t -DCC model is set out in Section 4, followed by
a review of diagnostic tests in Section 5. The empirical application to weekly
returns is discussed in Sections 6 and 7. The evolution of asset return volatilities
and correlations is discussed in Section 8, followed by some concluding remarks
in Section 9.

2 Modelling Conditional Correlation Matrix of
Asset Returns

Let rt be an m � 1 vector of asset returns at close day t assumed to have a
conditional multivariate t distribution with means, �t�1, and the non-singular
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variance-covariance matrix �t�1, and vt�1 > 2 degrees of freedom. Here we are
not concerned with how mean returns are predicted and take �t�1 as given.

1

For speci�cation of �t�1 we follow Bollerslev (1990) and Engle (2002) consider
the decomposition

�t�1 = Dt�1Rt�1Dt�1; (1)

where

Dt�1 =

0BBB@
�1;t�1

�2;t�1 0

0
. . .

�m;t�1

1CCCA ;

Rt�1 =

0BBBBBB@

1 �12;t�1 �13;t�1 � � � �1m;t�1
�21;t�1 1 �23;t�1 � � � �2m;t�1
...

. . .
...

... �m�1;m;t�1
�m1;t�1 � � � � � � �m;m�1;t�1 1

1CCCCCCA ;

Rt�1 = (�ij;t�1) = (�ji;t�1) is the symmetric m �m correlation matrix , and
Dt�1 is the m � m diagonal matrix with �i;t�1; i = 1; 2; : : : ;m denoting the
conditional volatility of the i-th asset return. More speci�cally

�2i;t�1 = V (rit j 
t�1) ;

and �ij;t�1 are conditional pair-wise return correlations de�ned by

�ij;t�1 =
Cov (rit; rjt j 
t�1)

�i;t�1�j;t�1
;

where 
t�1 is the information set available at close of day t � 1. Clearly,
�ij;t�1 = 1; for i = j.
Bollerslev (1990) considers (1) with a constant correlation matrixRt�1 = R.

Engle (2002) allows for Rt�1 to be time-varying and proposes a class of multi-
variate GARCH models labeled as dynamic conditional correlation (DCC) mod-
els. An alternative approach would be to use the conditionally heteroskedastic
factor model discussed, for example, in Sentana (2000) where the vector of
unobserved common factors are assumed to be conditionally heteroskedastic.
Parsimony is achieved by assuming that the number of the common factors is
much less than the number of assets under considerations.
The decomposition of �t�1 in (1) allows separate speci�cation of the condi-

tional volatilities and conditional cross-asset returns correlations. For example,
one can utilize the GARCH (1,1) model for �2i;t�1, namely

V (rit j 
t�1) = �2i;t�1 = ��2i (1� �1i � �2i) + �1i�2i;t�2 + �2ir2i;t�1; (2)

1Although, the estimation of �t�1 and �t�1 are inter-related, in practice mean returns
are predicted by least squares techniques (such as recursive estimation or recursive modelling)
which do not take account of the conditional volatility. This might involve some loss in e¢ -
ciency of estimating �t�1, but considerably simpli�es the estimation of the return distribution
needed in portfolio decisions and risk management.

4



where ��2i is the unconditional variance of the i-th asset return. Under the
restriction �1i+ �2i = 1, the unconditional variance does not exist and we have
the integrated GARCH (IGARCH) model used extensively in the professional
�nancial community, which is mathematically equivalent to the �exponential
smoother�applied to the r2it�s

2

�2i;t�1 (�i) = (1� �i)
1X
s=1

�s�1i r2i;t�s 0 < �i < 1; (3)

or written recursively

�2i;t�1 (�i) = �i�
2
i;t�2 + (1� �i) r2i;t�1: (4)

For cross-asset correlations Engle proposes the use of the following exponen-
tial smoother applied to the �standardized returns�

�̂ij;t�1 (�) =

P1
s=1 �

s�1zi;t�szj;t�sqP1
s=1 �

s�1z2i;t�s

qP1
s=1 �

s�1z2j;t�s

; (5)

where the standardized returns are de�ned by

zit =
rit

�i;t�1 (�i)
: (6)

For estimation of the unknown parameters, �1; �2; ::::; �m; and �, Engle
(2002) proposes a two-step procedure whereby in the �rst step individual GARCH(1,1)
models are �tted to the m asset returns separately, and then the coe¢ cient of
the conditional correlations, �, is estimated by the Maximum Likelihood method
assuming that asset returns are conditionally Gaussian. This procedure has two
main drawbacks. First, the Gaussianity assumption does not hold for daily re-
turns and its use can under-estimate the portfolio risk. Second, the two-stage
approach is likely to be ine¢ cient even under Gaussianity.

2.1 Pair-wise correlations based on realized volatilities

In this paper we consider an alternative formulation of �ij;t�1 that makes use
of realized volatilities, or their approximations based on daily or weekly ob-
servations when realized volatility measures are not available. In a series of
papers Andersen, Bollerslev and Diebold show that daily returns on foreign ex-
change and stock returns standardized by realized volatility are approximately
Gaussian. See, for example, Andersen, Bollerslev, Diebold, and Ebens (2001),
and Andersen, Bollerslev, Diebold and Labys (2001). The transformation of
returns to Gaussianity is important since as recently shown by Embrechts et
al. (2003), the use of correlation as a measure of dependence can be misdealing

2See, for example, Litterman and Winkelmann (1998).
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in the case of (conditionally) non-Gaussian returns. In contrast, estimation of
correlations based on devolatized returns that are nearly Gaussian is likely to
be more generally meaningful. Denote the realized volatility of ith return in day
(week) t by �realizedit and standardize the returns by the realized volatilities to
obtain

~rit =
rit

�realizedit

: (7)

To avoid confusions we refer to ~rit as the �devolatized returns�, and refer to
zit de�ned by (6) as the standardized returns. The conditional pair-wise return
correlations based on ~rit are now given by

~�ij;t�1 (�) =

P1
s=1 �

s�1~ri;t�s~rj;t�sqP1
s=1 �

s�1~r2i;t�s

qP1
s=1 �

s�1~r2j;t�s

; (8)

where �1 < ~�ij;t�1 (�) < 1 for all values of j�j < 1.
As compared to zit, the use of ~rit is more data intensive and requires in-

tradaily observations. Although, intradaily observations are becoming increas-
ingly available across a large number of assets, it would still be desirable to work
with a version of ~rit that does not require intradaily observations, but is nev-
ertheless capable of rendering the devolatized returns approximately Gaussian.
One of the main reasons for the non-Gaussian behavior daily returns is pres-
ence of jumps in the return process as documented for a number of markets in
the literature (see, for example, Barndor¤-Nielsen and Shephard (2002) ). The
standardized return, zit, used by Engle does not deal with such jumps, since
the jump process that a¤ects the numerator of zit in day t does not enter the
denominator of zit which is based on past returns and exclude the current re-
turn, rt. The problem is accentuated due to the facts that jumps are typically
independently distributed over time. The use of realized volatility ensures that
the numerator and the denominator of the devolatized returns, ~rit, are both
a¤ected by the same jumps in day t.
In the absence of intradaily observations the following simple estimate of �it

based on daily or weekly returns, inclusive of the contemporaneous value of rit,
seem to work well in practice

~�2it(p) =

Pp�1
s=0 r

2
i;t�s

p
: (9)

The lag-order, p; needs to chosen carefully. We have found that for weekly
returns a value of p = 13 tends to render the devolatized returns, ~rit t rit=~�it(p),
nearly Gaussian, with approximately unit variances, for all asset classes foreign
exchange, equities, bonds or commodities.3 Note that ~�2it(p) is not the same of
the rolling historical estimate of �it de�ned by

�̂2it(p) =

Pp
s=1 r

2
i;t�s

p
:

3Also see Section 6. For daily observations p = 20 seems to wok well. See the earlier
version of this paper, Pesaran and Pesaran (2007), for further details.
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Speci�cally

~�2it(p)� �̂2it(p) =
r2it � r2i;t�p

p
:

It is the inclusion of the current squared returns, r2it, in the estimation of ~�
2
it

that seems to be critical in transformation of rit (which is non-Gaussian) into
~rit which seems to be approximately Gaussian.

3 Real Time Risk Analysis and Updates

In �nancial analysis estimation and evaluation are in general recursive and the
unknown parameters need to be updated over time.4 The frequency by which
parameters are updated depends on the processing costs and the expected ben-
e�t from the updates. When processing costs are negligible parameter updates
are carried out on the arrival of new data or shortly thereafter. For daily
or weekly observations (the focus of the present paper) monthly or quarterly
updates are recommended. Daily or weekly updates can be quite time consum-
ing for large portfolios, and the expected bene�t of the more frequent updates
unclear. For model evaluation, however, a weekly frequency seems desirable.
Clearly, model evaluation need not be carried out at the same frequency with
which parameters are updated.
The implementation of the real time analysis is very much facilitated using

recursive formulae in the estimation and the evaluation process. For computa-
tional of �ij;t�1, given by (5) and (8), as noted by Engle (2002) we have

~�ij;t�1 (�) =
qij;t�1p

qii;t�1qjj;t�1
(10)

where
qij;t�1 = �qij;t�2 + (1� �) ~ri;t�1~rj;t�1: (11)

The recursive expression for �̂ij;t�1 (�) is identical except that instead of de-
volatized returns the standardized returns, zit, given by (6) are used.
The above models for �ij;t�1 are non-mean reverting. A more general mean-

reverting speci�cation is given by

qij;t�1 = ��ij(1� �1 � �2) + �1qij;t�2 + �2~ri;t�1~rj;t�1; (12)

where ��ij is the unconditional correlation of rit and rjt and �1 + �2 < 1. One
would expect �1 + �2 to be close to unity. The non-mean reverting case can be
obtained as a special case by setting �1 + �2 = 1. In practice it is impossible
to be sure if �1 + �2 < 1 or not. The unconditional correlations, ��ij , can be
estimated using an expanding window. In the empirical applications we shall
consider the mean reverting as well as the non-mean reverting speci�cations,
and experiment with the two speci�cations of the conditional correlations that
are based on standardized and devolatized returns.

4A general discussion of real time econometric analysis is provided in Pesaran and Tim-
mermann (2005).
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3.1 Initialization, Estimation and Evaluation Samples

Suppose daily or weekly observations are available on m returns in the m � 1
vector rt over the period t = 1; 2; :::; T; T+1; :::; T+N . The �rst T0 observations
are used for computation of (9), the initialization of the recursions (12), and the
estimation of sample variances and correlations, namely ��2i and ��ij , used in (2)
and (12), respectively. Let s denote the starting point of the most recent sample
of observations to be used in estimation. Clearly, we must have T > s > T0 > p.
The size of the estimation window will then be given by Te = T � s + 1. The
remainingN observations can then be used for evaluation purposes. More specif-
ically, the initialization sample will be given by S0 = frt, t = 1; 2; :::; T0g, the
estimation sample by Se = frt, t = s; s+ 1; :::; Tg, and the evaluation sample,
Seval = frt, t = T + 1; T + 2; :::; T +Ng : This decomposition allows us to vary
the size of the estimation window (Te = T � s+1) by moving the index s along
the time axis in order to accommodate estimation of the unknown parame-
ters using expanding or rolling observation windows, with di¤erent estimation
update frequencies. For example, for an expanding estimation window we set
s = T0 + 1. For a rolling window of size W we need to set s = T + 1 �W .
The whole estimation process can then be rolled into the future with an update
frequency of h by carrying the estimations at T + h; T + 2h, ..., using either
expanding or rolling estimation samples from t = s. Note that model (risk)
evaluation can be carried out using observations t = T +1; T +2; :::, irrespective
of the update frequency parameter h.

3.2 Mean Reverting Conditional Correlations

In the mean reverting case we also need the estimates of the unconditional
volatilities and the correlation coe¢ cients. These can be estimated by

��2i;t =

Pt
�=1 r

2
i�

t
; (13)

��ij;t =

Pt
�=1 ri�rj�qPt

�=1 r
2
i�

qPt
�=1 r

2
j�

: (14)

The index t refers to the end of the available estimation sample which in real
time will be recursively rolling or expanding, namely t = T; T + h; T + 2h; :::

4 Maximum Likelihood Estimation of the t-DCC
Model

In its most general formulation (the non-mean reverting speci�cations given by
(2) and (12)) the DCC(1,1) model contains 2m+3 unknown parameters; 2m co-
e¢ cients �1 = (�11; �12; : : : ; �1m)0 and �2 = (�21; �22; : : : ; �2m)0 that enter the
individual asset returns volatilities, the 2 coe¢ cients �1 and �2 that enter the

8



conditional correlations, and the degrees of freedom of the multivariate t distri-
bution, v. The parameters ��2i and ��ij in (2) and (12) refer to the unconditional
volatilities and return correlations and can be estimated using the estimation
sample or the estimation plus initialization sample. See (13) and (14) . In
the non-mean reverting case these intercept coe¢ cients disappear, but for the
initialization of the recursive relations (2) and (12) it is still advisable to use
unconditional estimates of the correlation matrix and asset returns volatilities.
Denote the unknown coe¢ cients by

� = (�1;�2; �1; �2; v)
0:

Then based on a sample of observations on returns, r1; r2; :::; rt, available at
time t, the time t log-likelihood function based on the decomposition (1) is
given by

lt (�) =
tX

�=s

f� (�) ; (15)

where s < t is the start date of the estimation window (see above). Under t-DCC
speci�cation f� (�) refers to the density of the multivariate distribution with v
degrees of freedom which can be written in terms of the �t�1 = Dt�1Rt�1Dt�1
as5

f� (�) = �m
2
ln (�)� 1

2
ln j R��1 (�) j � ln j D��1(�1;�2) j

+ ln

�
�

�
m+ v

2

�
=�
�v
2

��
� m
2
ln (v � 2) (16)

�
�
m+ v

2

�
ln

"
1 +

e0�D
�1
��1 (�1;�2)R

�1
��1 (�)D

�1
��1 (�1;�2) e�

v � 2

#
;

where
e� = r� � ���1;

and

ln j D��1(�1;�2) j=
mX
i=1

ln [�i;��1 (�1i; �2i)] : (17)

It is worth noting that under Engle�s speci�cation Rt�1 depends on �1 and
�2 as well as on �1 and �2. Under the alternative speci�cation advanced here
(based on devolatized returns)Rt�1 does not depend on �1 and �2, but depends
on �1 and �2, and p, the lag order used in the devolatization process.
The ML estimate of � based on the sample observations, r1; r2; :::; rT , can

now be computed by maximization of lt (�) with respect to �; which we denote
by �̂t. More speci�cally

�̂t = Argmax
�
flt (�)g , for t = T; T + h; T + 2h; ::::; T +N; (18)

5Typically the multivariate t density is written in terms of a scale matrix. But assuming
v > 2 ensures that �t�1 exists and therefore the scale matrix of the multivariate t distribution
can be written in terms of �t�1, which is more convenient for the analysis of multivariate
volatility models. See, for example, Bauwens and Laurent (2005).
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where h is the (estimation) update frequency, and as before N refers to the
length of the evaluation sample. The standard errors of the ML estimates are
computed using the asymptotic formulae6

dCov(�̂t) = ( tX
�=s

�
�@2f� (�)
@�@�0

�
�=�̂t

)�1
:

In comparison with general speci�cations of multivariate GARCH model,
the model set out in this paper is quite parsimonious. The number of unknown
coe¢ cients of the general MGARCH model rises as a quadratic function of m,
while the parameters of the DCC model rises linearly with m. Nevertheless, in
practice the simultaneous estimation of all the parameters of the DCC model
could be problematic, namely can encounter convergence problems, or could lead
to a local maxima of the likelihood function. When the returns are conditionally
Gaussian one could simplify (at the expense of some loss of estimation e¢ ciency)
the computations by adopting Engle�s two-stage estimation procedure. But for
our preferred distributional assumption the use of such a two-stage procedure
does not seem possible and can lead to contradictions. For example, estimation
of separate t � GARCH(1; 1) models for individual asset returns can lead to
di¤erent estimates of v, while the multi-variate t distribution requires v to be
the same across all assets.7

5 Simple Diagnostic Tests of the t-DCC Model

Consider a portfolio based on the m assets with the return vector rt using the
m � 1 vector of pre-determined weights, wt�1. The return on this portfolio is
given by

�t = w
0
t�1rt: (19)

Suppose that we are interested in computing the capital Value at Risk (VaR)
of this portfolio expected at the close of business on day t� 1 with probability
1� �, which we denote by V aR(wt�1;�). For this purpose we require that

Pr
�
w0
t�1rt < �V aR(wt�1;�) j
t�1

�
� �:

Under our assumptions, conditional on 
t�1, w0
t�1rt has a Student t distribution

with mean w0
t�1�t�1, the variance w

0
t�1�t�1wt�1; and the degrees of freedom

v. Hence

zt =

r
v

v � 2

 
w0
t�1rt �w0

t�1�t�1p
w0
t�1�t�1wt�1

!
;

6An analytical expression for the information matrix for the multivariate t-GARCH model
is provided by Florentini, Sentana, and Calzolari (2003). But in the applications considered
in this paper we did not encounter any problems using numerical derivatives to compute the
information matrix.

7Marginal distributions associated with a multi-variate t-distribution with v degrees of
freedom are also t-distributed with the same degrees of freedom.

10



conditional on 
t�1 will also have a t distribution with v degrees of freedom.
It is easily veri�ed that E(ztj
t�1) = 0, and V (ztj
t�1) = v=(v � 2): Denoting
the cumulative distribution function of a Student t with v degrees of freedom
by Fv(z), V aR(wt�1;�) will be given as the solution to

Fv

0@�V aR(wt�1;�)�w0
t�1�t�1q

v�2
v

�
w0
t�1�t�1wt�1

�
1A � �:

But since Fv(z) is a continuous and monotonic function of z we have

�V aR(wt�1;�)�w0
t�1�t�1q

v�2
v

�
w0
t�1�t�1wt�1

� = F�1v (�) = �c�;

where c� is the �% critical value of a Student t distribution with v degrees of
freedom. Therefore,

V aR(wt�1;�)=~c�

q�
w0
t�1�t�1wt�1

�
�w0

t�1�t�1; (20)

where ~c� = c�
q

v�2
v .

Following Christo¤ersen (1998) and Engle and Manganelli (2004), a simple
test of the validity of t-DCC model can be computed recursively using the VaR
indicators

dt = I
�
w0
t�1rt + V aR(wt�1;�)

�
(21)

where I(A) is an indicator function which is equal to unity if A > 0 and zero
otherwise. These indicator statistics can be computed in-sample or preferably
can be based on recursive out-of-sample one-step ahead forecast of �t�1 and
�t�1, for a given (pre-determined set of portfolio weights, wt�1). In such an
out�of-sample exercise the parameters of the mean returns and the volatility
variables (� and �, respectively) could be either kept �xed at the start of the
evaluation sample or changed with an update frequency of h periods ( for ex-
ample with h = 5 for weekly updates, or h = 20 for monthly updates). For the
evaluation sample, Seval = frt, t = T + 1; T + 2; :::; T +Ng ; the mean hit rate
is given by

�̂N =
1

N

T+NX
t=T+1

dt: (22)

Under the t-DCC speci�cation, �̂N will have mean 1 � � and variance �(1 �
�)=N . The standardized statistic,

z� =

p
N [�̂N � (1� �)]p

�(1� �)
; (23)

will have a standard normal distribution for a su¢ ciently large evaluation sample
size, N . This result holds irrespective of whether the unknown parameters are
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estimated recursively or �xed at the start of the evaluation sample. In the
case of the latter the validity of the test procedure requires that N=T ! 0 as
(N;T )!1. For a proof see Pesaran, Schleicher and Za¤aroni (2009).
The z� statistic provides evidence on the performance of �t�1 and �t�1 in

an average (unconditional) sense. (Lopez (1999)). An alternative conditional
evaluation procedure, proposed by Berkowitz (2001), can be based on probabil-
ity integral transforms8

Ût = Fv

0@ w0
t�1rt �w0

t�1�̂t�1q
v�2
v w

0
t�1�̂t�1wt�1

1A ; t = T + 1; T + 2; :::; T +N: (24)

Under the null hypothesis of correct speci�cation of the t-DCC model, the prob-
ability transform estimates, Ût; are serially uncorrelated and uniformly distrib-
uted over the range (0; 1). Both of these properties can be readily tested. The
serial correlation property of Ût can be tested by Lagrange multiplier tests using
OLS regressions of Ût on an intercept and the lagged values Ût�1; Ût�2; ::::; Ût�s.
The maximum lag length, s, can be selected by the application of the AIC crite-
ria, for example. The uniformity of the distribution of Ût over t can be tested us-
ing the Kolmogorov-Smirnov statistic de�ned by, KSN = supx

��FÛ (x)� U(x)�� ;
where FÛ (x) is the empirical cumulative distribution function (CDF) of the Ût,
for t = T +1; T +2; :::; T +N , and U(x) = x is the CDF of iid U [0; 1]. Large val-
ues of the Kolmogorov-Smirnov statistic, KSN , indicate that the sample CDF
is not similar to the hypothesized uniform CDF.9

6 Volatilities and Conditional Correlations inWeekly
Returns

We estimated alternative versions of the t-DCC model for a portfolio composed
of weekly returns on

� 6 currencies: British pound (GBP), euro (EU), Japanese yen (JPY), Swiss
franc (CHF), Canadian dollar (CAD), and Australian dollar (AD).

� 4 government bonds: US T-Note 10Y (BU), Europe Euro Bund 10Y (BE),
Japan Government Bond 10Y (BJ), and, UK Long Gilts 8.75-13Y (BG).

� 7 equity index futures S&P 500 (SP), FTSE 100 (FTSE), German DAX
(DAX), French CAC40 (CAC), Swiss Market Index (SM), Australia SPI200
(AUS), Nikkei 225 (NK).

The weekly returns are computed from daily prices obtained from Datas-
tream and cover the period from 07-Jan-94 to 30-Oct-2009.

8See also Christo¤ersen (1998) for a related test that applied to the VaR indicators, dt,
de�ned by (21).

9For details of the Kolmogorov-Smirnov test and its critical values see, for example, Massey
(1951), and Neave and Worthington (1992, pp.89-93).
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6.1 Devolatized returns and their properties

Table 1 provides summary statistics for the weekly returns (rit, in percent)
and the devolatized weekly returns ~rit = rit=~�it(p), where in the absence of
intradaily observations ~�2it(p) is de�ned by (9), with p = 13 weeks. The choice
of p = 13 was guided by some experimentation with the aim of transforming rit
into an approximately Gaussian process. A choice of p well above 13 does now
allow the (possible) jumps in rit to become adequately re�ected in ~�it(p), and a
value of p well below 13 transforms rit to an indicator looking function. In the
extreme case where p = 1 we have ~rit = 1, if rit > 0; and ~rit = �1, if rit < 0,
and ~rit = 0, if rit = 0. We did not experiment with other values of p for the
sample under consideration and set p = 13 for all the 17 assets.
For the non-devolatized returns the results are as to be expected from pre-

vious studies. The returns seem to be symmetrically distributed with kurtosis
in some cases well in excess of 3 (the value for the Gaussian distribution). The
excess kurtosis is particularly large for equities, mostly around 5 or more. For
currencies the kurtosis coe¢ cient is particularly large for yen, British pound,
and Singapore dollar. In comparison the weekly returns on government bonds
are less fat-tailed with kurtosis coe¢ cients only marginally above 3. In con-
trast, none of the 17 devolatized returns show any evidence of excess kurtosis.
For example, for equities the excess kurtosis of weekly returns on SP, FTSE and
Nikkie fall from 8.01, 10.40, 9.65 to -0.124, -0.-0.132 and -0.147 , respectively af-
ter the returns are devolatized. For currencies. the excess kurtosis of the weekly
returns on AD, BP,and JY fall from 7.89,5.35, and 9.46 to -0.112, -0.020, and
0.139, respectively. Out of the four ten year government bonds only the weekly
returns on Japanese government bond show some degree of excess kurtotosis
which is eliminated once the returns are devolatized. It is also interesting to
note that the standard deviations of the devolatized returns are now all very
close to unity, that allows a more direct comparison of the devolatized returns
across assets.
The extent to which the devolatization has been e¤ective in transforming

the returns into Gaussian variates can be seen in Figures 1-17. The top panel of
each �gure gives the histograms, a kernel density �tted to the returns together
with the normal density and the normal QQ-plots. These plots graphically
compare the distribution of returns to the normal distribution (represented by
a straight line in the case of the QQ-plots). The �gures on the bottom panel
display the same graphs for the devolatized returns. These �gures clearly show
that devolatization has been quite e¤ective in achieving Gaussianity to a high
degree of approximation. This can be seen particularly if one compares QQ-
plots of returns and their devolatized counterparts. For the devolatized returns
the QQ-plots generally lie on the straight-line with a few exceptions. But for
the raw returns there are important departures from normality, particularly in
tails of the return distributions.
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7 ML estimates of the DCC models

It is well established that daily or weekly returns are approximately mean zero
serially uncorrelated processes and for the purpose of risk analysis it is rea-
sonable to assume that �t�1 = 0. Using the ML procedure described above,
initially we estimate a number of DCC models on the 17 weekly returns over
the period 27-May-94 to 28-Dec-2007 (710 observations). We then use the post
estimation sample observations from January 4, 2008 to October 30, 2009 for
the evaluation of the estimated volatility models using the VaR and distribution
free diagnostics.10 We also provide separate t-DCC models for currencies, bonds
and equities for purposes of comparisons.
We begin with the unrestricted version of the DCC(1,1) model with asset-

speci�c volatility parameters �1 = (�11; �12; : : : ; �1m)0 , �2 = (�21; �22; : : : ; �2m)0,
and common conditional correlation parameters, �1 and �2, and the degrees-
of-freedom parameter, v, under conditionally t distributed returns. (note that
m = 17). We did not encounter any convergence problems, and obtained the
same ML estimates when starting from di¤erent initial parameter values. But
to achieve convergence in some applications we had to experiment with di¤erent
initial values. In particular we found the initial values �1i = 0:95, �2i = 0:05,
�1 = 0:96; �2 = 0:03 and v = 12 to work relatively well. Also the sum of
unrestricted estimates of �1 and �2 for the Canadian dollar exceeded 1, and to
ensure a non-explosive outcome we estimated its volatility equation subject to
the restriction �1;CD + �2;CD = 1.
To evaluate the statistical signi�cance of the multivariate t distribution for

the analysis of return volatilities, in Table 2 we �rst provide the maximized
log-likelihood values under multivariate normal and t distributions for curren-
cies, bonds and equities separately, as well as for all the 17 assets jointly. We
report these results both for standardized and devolatized returns. It is �rstly
clear from these results that the normal-DCC speci�cations are strongly re-
jected relative to the t-DCC models for all asset categories. The maximized
log-likelihood values for the t-DCC models are signi�cantly larger than the ones
for the normal-DCC models. The estimated degrees of freedom of the multi-
variate t-distribution for di¤erent asset classes are quite close and range from 8
(for equities) to 11 (for bonds), all well below the values of 30 and above that
one would expect for a multivariate normal distribution. For the full set of 17
assets the estimate of v is closer to 12. There seems to be a tendency for the
estimate of v to rise as more assets are included in the t-DCC model.
The above conclusions are robust to the way returns are scaled for com-

putation of cross asset return correlations. The maximized log-likelihoods for
the standardized and devolatized returns are very close, although due to the
non-nested nature of the two return transformations no de�nite conclusions can
be reached as to their relative merits. The speci�cations where the returns are
standardized by the conditional volatilities tend to �t better (give higher log-
likelihood values). But this is to be expected since the maximization of the
10The ML estimation and the computation of the diagnostic statistics are carried out using

Micro�t 5. See Pesaran and Pesaran (2009).
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log-likelihood function in this case is carried out with respect to the parameters
of the scaling factor, unlike the case where scaling is carried out with respect
to the realized volatilities which do not depend on the unknown parameters of
the likelihood function. In what follows we base our correlation analysis on the
devolatized returns on the grounds of their approximate Gaussianity, as argued
above.

7.1 Asset speci�c estimates

Table 3 presents the ML estimates of the t-DCC model including all the 17
assets computed over the period 27-May-94 to 28-Dec-07 (710 weekly returns).
The asset-speci�c estimates of the volatility decay parameters are all highly
signi�cant, with the estimates of �1i, i = 1; 2; :::; 17 falling in the range of 0:818
(for Japanese government bond) to 0:986 (for Canadian dollar).11 The average
estimate of �1 across assets is 0:924 which is somewhat smaller than the values in
the range of 0:95 to 0:97 recommended by Riskmetrics for computation of daily
volatilities using their exponential smoothing procedure. This is not surprising,
since one would expect the exponential smoothing parameter for computing the
volatility of weekly returns to be smaller than the one used for computing the
volatility of daily returns.
There are, however, notable di¤erences across asset groups with �i1 esti-

mated to be larger for currencies as compared to the estimates for equities and
bonds. The average estimate of �1 across currencies is 0.95 as compared to 0.93
for equities and 0.88 for bonds. The correlation parameters, �1 and �2 are very
precisely estimated and �̂1 + �̂2 = 0:9846(0:0028), and suggest very slow but
statistically signi�cant mean reverting conditional correlations.
The sum of the estimates of �1i and �2i are very close to unity, but the

hypothesis that �1i + �2i = 1 (the integrated GARCH hypothesis) against the
one-sided alternative �1i+�2i < 1 is rejected for 10 out of the 17 assets at the 5%
signi�cance level; the exceptions being British pound, Swiss franc, Nikkei, S&P
500, and Australian SPI200. For Canadian dollar to ensure a non-explosive
outcome, as noted earlier estimation is carried out subject to the restriction
�1;CD + �2;CD = 1. If the test is carried out at the 1% signi�cance level, the
integrated GARCH hypothesis is rejected only in the case of the JGB (Japanese
Government Bond).
The integrated GARCH (IGARCH) hypothesis is implicit in the approach

advocated by Riskmetrics, but as shown by Za¤aroni (2008) can lead to inconsis-
tent estimates. However, in the present applications the unrestricted parameter
estimates and those obtained under IGARCH are very close and one can view
the restrictions �1i+�2i = 1 as a �rst order approximation that avoids explosive
outcomes. We also note that the diagnostic test results, to be reported below,
are not qualitatively a¤ected by the imposition of the restrictions, �1i+�2i = 1.
Finally, it is worth noting that there is statistically signi�cant evidence of

11Recall that for Canadian dollar the volatility model is estimated subject to the restriction
�1;CD + �2;CD = 1.
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parameter heterogeneity across assets, which could lead to misleading inference
if these di¤erences are ignored.

7.2 Post estimation evaluation of the t-DCC model

The evaluation sample, 04-Jan-08 to 30-Oct-09, covers the recent periods of �-
nancial crisis and include 96 weeks of post estimation sample of portfolio returns.
The parameter values are estimated using the sample 27-May-04 to 28-Dec-07
and then �xed throughout the evaluation sample. To evaluate the t-DCC model
we �rst consider the tests based on probability integral transforms (PIT), Ût,
de�ned by (24). We have already seen that under the null hypothesis that the
t-DCC model is correctly speci�ed, Ût; are serially uncorrelated and uniformly
distributed over the range (0; 1). To compute Ût we consider an equal-weighted
portfolio, with all elements of w in (19) set to 1/17, and use the risk tolerance
probability of � = 1%, which is the value typically assumed in practice. We
considered two versions of the t-DCC model: a version with no restrictions on
�1i and �2i (except for i = CD), and an integrated version where �1i+�2i = 1,
for all i.
Using the Lagrance multiplier statistic to test the null hypothesis that Ût�s

are serially uncorrelated we obtained the values of �212 = 4:74 and �212 = 5:31
for the unrestricted and the restricted t-DCC speci�cations. These statistics
are computed assuming a maximum lag order of 12, and are asymptotically
distributed as chi-squared variates with 12 degrees of freedom. It is clear that
both speci�cations of the t-DCC model pass this test.
Next we applied the Kolmogorov-Smirnov statistic to Ût�s to test the null

hypothesis that the PIT values are draws from a uniform distribution. The KS
statistics for the unrestricted and the restricted versions amounted to 0.0646 and
0.0454, respectively. Both these statistics are well below the KS critical value of
0.1388 (at the 5% level).12 Therefore, the null hypothesis that the sample CDF
of Ût�s is similar to the hypothesized uniform CDF cannot be rejected. Figure
18 provides a graphical display of the KS test for the unrestricted version of
the model, and con�rms the close match between the empirical CDF of the Ût�s
and the CDF of the uniform distribution (45 degree line)
It is interesting that neither of the tests based on Ût�s are capable of detect-

ing the e¤ects of the �nancial turmoils that took place in 2008. A test based on
the violations of the VaR constraint is likely to be more discriminating, since
it focusses on the tail properties of the return distributions. For a tolerance
probability of � = 0:01; we would expect only one violation of the VaR con-
straint in 100 observations (our evaluation sample contains 96 observations).
The unrestricted speci�cation results in three violations of the VaR constraint,
and the restricted speci�cation in four violations. Both speci�cations violate the
VaR constrain in the weeks starting on 5-Sep-08, 3-Oct-08 and 10-Oct-08. The
restricted version also violates the VaR in the week starting in 18-Jan-08. The
test statistics associated with these violations are �2:09 and �3:12 which are
12See Table 1 in Massey (1951).
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normally distributed. Thus both speci�cations are rejected by the VaR violation
test.13 Not surprisingly, the rejection of the test is due to the unprecedented
market volatility during the weeks in September and October of 2008. This
period covers the Federal take over of Fannie Mae and Freddi Mac, the collapse
of Lehman Brothers, and the downgrading of the AIG�s credit rating. In fact
during the two weeks starting on 3-Oct-08, the S&P 500 dropped by 29.92%,
which is larger than the 20% market decline experienced during the October
Crash of 1987.

7.3 Recursive estimates and the VaR diagnostics

We now consider if the excess VaR violations documented above could have
been avoided if the parameter estimates of the t-DCC model were updated at
regular intervals. To simplify the computations we focussed on the IGARCH
version of the model and re-estimated all its parameters (including the degree-
of-freedom parameter v) every 13 weeks ( or four times in a year). Using the
recursive estimates of the PIT, Ut; and the VaR indicator dt we obtained similar
results for the post 2007 period. The KS statistic for the recursive estimates
is 0.0518 as compared to the 5% critical value of 0.1381 and does not reject
the null hypothesis that the the recursive PIT values are draws from a uniform
distribution. We also could not �nd any evidence of serial correlation in the PIT
values. But as before, the violations of the VaR constraint were statistically
signi�cant with z� = �3:09. The violations occur exactly on the same dates as
when the parameters were �xed at the end of 2007. Updating of the estimates
of the t-DCC model seem to have little impact on the diagnostic test outcomes.

8 Changing Volatilities and Correlations

The time series plots of volatilities are displayed in Figures 19-21 for returns on
currencies, bonds and equities, respectively. Conditional correlations of Euro
with other currencies, US 10 year bond futures with other bond futures, and
S&P futures with other equity future indices are shown in Figures 22 to 24,
respectively. To reduce the impact of the initialization on the plots of volatilities
and conditional correlations initial estimates for 1994 are not shown. These
�gures clearly show the declining trends in volatilities over the 2003-2006 period
just before the �nancial crisis which led to unprecedented rise in volatilities,
particularly in the currency and equity markets. It is, however, interesting to
note that return correlations have been rising historically and seem to be only
marginally accentuated by the recent crisis. These trend could re�ect the advent
of Euro and a closer integration of the world economy, particularly in the euro

13We also carried out the VaR diagnostic test for the higher risk tolerance value of � = 5%,
but did not �nd a statistically signi�cant evidence against the t-DCC speci�cations. For both
versions of the model the VaR constraint was violated 8 times, 3 more than one would have
expected, giving �̂ = 0:9167 and z� = �1:50 which is not signi�cant at the 5% level. It is,
however, interesting that all the eight violations occurred in 2008 with �ve of them occurring
over the crisis months of 5-Sep-08 to 21-Nov-08.
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area. Return correlations across asset types have also been rising, although to
a lesser extent. An overall measure of the extent of the correlations across all
the 17 assets under consideration is given by the maximum eigenvalue of the
17 by 17 matrix of asset return correlations. Figure 25 displays the conditional
estimates of this eigenvalue over time and clearly show the sharp rise in asset
return correlations particularly over the past two years.

9 Concluding Remarks

This paper applies the t-DCC model to the analysis of asset returns as a way of
dealing with the fat-tailed nature of the underling distributions. It is shown that
the t-DCC model captures some of the main features of weekly asset returns.
It �ts the data reasonably well and seems to be computationally stable even for
a moderate number of returns (17 in our application). Also when tested out of
sample, it passes the serial correlation and Kolmogorov-Smirnov tests applied
to probability integral transforms even over the highly turbulent weeks of 2008-
2009 period. However, the model fails the VaR diagnotic test and the weekly
returns on an equal weighted portfolio violates the VaR constraint 3 times over
the six weeks from 5-Sep-08 to end 10-Oct-08. Two of these violations occur
in two successive weeks. Conditional on the t-DCC model being valid, such
an event could be expected to occur every 192 years! Of course, it could be
argued that it is the inadequacy of the t-DCC model that has given rise to
such an outcome, and a better model could have done better and such events
are not as rare as suggested by the application of the t-DCC to the post 2007
observations. This is an important open question and its resolution is beyond
the scope of the present paper. But it seems doubtful if modi�cations of the
t-DCC suggested in the literature, such as allowing for asymmetry or leverage
e¤ects, could resolve the DCC�s poor performance during crisis periods. The
use of more fat-tailed distributions, such as mixtures of multivariate normal
distributions as considered in Pesaran, Schleicher, and Za¤aroni (2009) is likely
to be more e¤ective. But the problem of matching volatility models to the
data in normal as well as in crisis times would be a real challenge. A fat-
tailed distribution suited to the crisis period might yield outcomes that are too
conservative in normal times, whilst a model with satisfactory performance in
normal times generally performs poorly during a crisis period. Developing a
model that switches between the two states seems a sensible strategy, but it
requires a reliable early warning system that is capable of accurately identifying
periods of crisis ex ante, a goal which might not be attainable.
Our analysis also shows falling conditional volatilities and rising correlations

during the 2003-2007, before the emergence of the �nancial crisis in 2008. These
trends seem to have been important contributory factors to the emergence of the
crisis. Low levels of volatilities might have tempted many investors and traders
to take more risks, at times when asset return correlations had been rising. The
crisis led to a reversal of the trend in volatilities and accentuated the rising
correlations, particularly across the equity returns. Although volatilities have
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fallen substantially from their heights in 2008, they are still high by historical
standards. Return correlations continue to be high and in some cases are rising
even. Further research is clearly needed for a better understanding of asset
return correlations and their evolution over time.
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Table 1: Summary Statistics for Raw Weekly Returns and Devolatized Weekly
Returns - 01-Apr-94 to 30-Oct-09

Returns Devolatilized Returns
Asset Mean S.D. Skewness Ex. Kurtosis Mean S.D. Skewness Ex. Kurtosis

Currencies
Australian dollar 0.044 1.690 -1.163 7.886 0.059 1.005 -0.214 -0.112

British pound 0.019 1.297 -0.831 5.348 0.037 1.013 -0.148 -0.197

Canadian dollar 0.035 1.136 -0.739 7.443 0.031 1.023 -0.040 -0.266

Swiss franc 0.053 1.517 0.210 1.071 0.044 0.994 0.146 -0.299

Euro 0.039 1.381 -0.043 1.424 0.044 1.012 -0.008 -0.281

Yen 0.031 1.669 1.326 9.462 -0.009 1.016 0.328 0.139

Bonds
Euro Bunds 0.070 0.755 -0.378 0.910 0.123 1.000 -0.210 -0.205

UK Gilt 0.051 0.893 -0.013 1.744 0.068 1.008 -0.015 -0.290

Japan JGB 0.072 0.578 -0.436 2.323 0.152 1.007 -0.364 0.022

US TNote 0.077 0.894 -0.359 0.954 0.084 1.004 -0.243 -0.188

Equities
S&P 500 0.094 2.575 -0.749 8.018 0.054 1.011 -0.314 -0.124

Nikkei -0.017 3.175 -0.979 9.645 -0.005 0.996 -0.235 -0.147

FTSE 0.060 2.535 -0.858 10.399 0.042 1.002 -0.264 -0.132

CAC 0.107 3.116 -0.656 5.473 0.043 1.003 -0.216 -0.478

DAX 0.113 3.398 -0.559 5.673 0.055 1.008 -0.312 -0.220

SM 0.137 2.819 -0.734 10.174 0.077 1.005 -0.349 0.077

AUS 0.083 2.118 -0.670 4.698 0.066 1.001 -0.224 -0.253

20



Table 2: Maximized log-likelihood Values of DCC Models Estimatd with Weekly
Returns over 27-May-94 to 28-Dec-07

Standardized Returns Devolatized returns
Assets Normal t-distribution D.F. Normal t-distribution. D.F.

Currencies (6) -5783.7 -5689.8 9.62 (1.098) -5790.6 -5694.1 9.24 (0.94)

Bonds (4) -2268.5 -2243.5 11.28 (2.00) -2270.7 -2246.9 11.35 (5.53)

Equities (7) -9500.1 -9380.7 7.96 (0.74) -9504.4 -9383.2 7.79 (0.72)

All 17 -17509.2 -17244.8 11.84 (0.90) -17510.4 -17250.4 12.11 (0.92)

Note: D.F. is the estimated degrees of the freedom of the multivariate t-distribution.

Standard errors of the estimates are given in round brackets.
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Figure 1: Australian dollar weekly returns (simple and devolatized) 01-Apr-1994 to
30-Oct-2009
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Table 3: ML Estimates of t-DCC Model Estimatd with Weekly Returns over
the Period 27-May-94 to 28-Dec-07

ML Estimates
Asset �̂1 �̂2 1� �̂1 � �̂2
Currencies
Australian dollar 0.9437 (0.0201) 0.0361 (0.0097) 0.0201 (0.0140)[1.44]

British pound 0.9862 (0.0110) 0.0124 (0.0056) 0.0014 (0.0081)[0.18]

Canadian dollar 0.9651 (0.0102) 0.0349 (0.0102) 0 (N/A)[N/A]

Swiss franc 0.9365 (0.0517) 0.0303 (0.0157) 0.0332 (0.0378)[0.88]

Euro 0.9222 (0.0264) 0.0487 (0.0133) 0.0291 (0.0154)[1.89]

Yen 0.9215 (0.0235) 0.0586 (0.0151) 0.01992 (0.0107)[1.86]

Bonds
Euro Bunds 0.9031 (0.0237) 0.0703 (0.0149) 0.0266 (0.0118)[2.26]

UK Gilt 0.9062 (0.0304) 0.0774 (0.0224) 0.0164 (0.0091)[1.80]

Japan JGB 0.8179 (0.0369) 0.1444 (0.0268) 0.0377 (0.0141)[2.74]

US TNote 0.9072 (0.0249) 0.0714 (0.0165) 0.0216 (0.0115)[1.87]

Equities
CAC 0.9252 (0.0118) 0.0674 (0.0099) 0.0074 (0.0033)[2.23]

DAX 0.9267 (0.0117) 0.0653 (0.0095) 0.0080 (0.0039)[2.03]

Nikkei 0.9552 (0.0305) 0.0402 (0.0210) 0.0046 (0.0109)[0.42]

S&P 500 0.9326 (0.0194) 0.0582 (0.0150) 0.0091 (0.0060)[1.53]

FTSE 0.9298 (0.0144) 0.0589 (0.0109) 0.0112 (0.0052)[2.16]

SM 0.9066 (0.0225) 0.0774 (0.0165) 0.0160(0.0076)[2.11]

AUS 0.9393 (0.0295) 0.0370 (0.0128) 0.0237(0.0194)[1.22]

v̂ = 12.11 (0.9233) , �̂1= 0.9673 (0.0037), �̂2 = 0.0172 (0.0012)[5.49]

Note: Standard errors of the estimates are given in round brackets,

t-statistics are given is square brackets. �1i and �2i are the asset-speci�c
volatility parameters. �1 and �2 are the common conditional
correlation parameters.
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Figure 2: British pound weekly returns (simple and devolatized) 01-Apr-1994 to
30-Oct-2009
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Figure 3: Canadian dollar weekly returns (simple and devolatized) 01-Apr-1994 to
30-Oct-2009

­3 ­2 ­1 0 1 2 3

­6
­4

­2
0

2
4

6

CH: QQ­Plot

­6 ­4 ­2 0 2 4 6

0
50

10
0

15
0

20
0

CH: Histogram

­5 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

CH: Kernel Density

­3 ­2 ­1 0 1 2 3

­3
­2

­1
0

1
2

3

CH: (devol) QQ­Plot

­3 ­2 ­1 0 1 2 3

0
50

10
0

15
0

CH: (devol) Histogram

­4 ­2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

CH: (devol) Kernel Density

Figure 4: Swiss franc weekly returns (simple and devolatized) 01-Apr-1994 to
30-Oct-2009
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Figure 5: Euro weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009
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Figure 6: Yen weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009
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Figure 7: Euro Bunds weekly returns (simple and devolatized) 01-Apr-1994 to
30-Oct-2009
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Figure 8: UK Gilt weekly returns (simple and devolatized) 01-Apr-1994 to
30-Oct-2009
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Figure 9: Japanese Government bond weekly returns (simple and devolatized)
01-Apr-1994 to 30-Oct-2009
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Figure 10: US TNote weekly returns (simple and devolatized) 01-Apr-1994 to
30-Oct-2009
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Figure 11: S&P 500 weekly returns (simple and devolatized) 01-Apr-1994 to
30-Oct-2009
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Figure 12: Nikkei weekly returns (simple and devolatized) 01-Apr-1994 to
30-Oct-2009
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Figure 13: FTSE weekly returns (simple and devolatized) 01-Apr-1994 to
30-Oct-2009
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Figure 14: CAC weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009
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Figure 15: DAX weekly returns (simple and devolatized) 01-Apr-1994 to
30-Oct-2009
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Figure 16: Swiss weekly equity returns (simple and devolatized) 01-Apr-1994 to
30-Oct-2009
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Figure 17: Australian weekly equity returns (simple and devolatized) 01-Apr-1994
to 30-Oct-2009
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Figure 18: Kolmogorov-Smirnov goodness-of-�t test for the full t-DCC model
over the evaluation sample 4-Jan-08 to 30-Oct-09
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Figure 19: Currency Returns Volatilities
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Figure 20: Bond Returns Volatilities
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Figure 21: Equity Return Volatilities
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Figure 22: Conditional Correlation of Euro
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Figure 23: Conditional Correlations of US 10 Year Bond
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Figure 24: Conditional Correlations of S&P 500
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