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Abstract

The displacive transformation of austenite to ferrite in steels containing both substitutional

and interstitial elements has been studied. The aim was to establish the conditions under

which plates of the product phase can form with a partial redistribution of the interstitia!

element during nonequilibrium nucleation and growth. An earlier model describing such

'coupled diffusionaljdisplacive transformation' (CDDT) has been applied over a wide range

of carbon concentrations, revealing a variety of discrepancies.

It was found that the theory correctly predicts the variation in the martensite-start

temperature with carbon concentration, but fails to estimate the corresponding changes

in the bainite-start temperatures of the same steels. Thus, the accuracy claimed by the

original theory appears fortuitous for bainite. The failure is attributed to the fact that the

model does not include any variation in the stored energy as a function of transformation

temperature. The nature of the required variation in stored energy with temperature was

calculated by fitting against available data and the CDDT model was modified appropri-

ately. The estimated variation in stored energy is consistent with an expectation that when

the yield strength is exceeded at a high enough temperature, plastic accommodation of

the shape change should lead to a reduction in the stored energy. The modified model pre-

dicted a sharper transition from growth involving full partitioning of carbon, to diffusionless

growth when applied to a number of alloyed steels. This abrupt transition from paraequilib-

rium to diffusionless growth is in fact consistent with experiments; Widmanstatten ferrite

at all temperatures is known to grow at a rate controlled by the diffusion of carbon in

the austenite ahead of the interface, whereas the growth rate of bainite subunits is much

larger then might be expected from carbon diffusion-controlled growth. Considerable work

is also reported on how bainite transformation might be described by the CDDT model,

but significant difficulties remain.

Another model was developed to study the kinetics of the partitioning of carbon from

supersaturated ferrite into residual austenite. The time required was estimated analytically

and using a finite difference model. It was found that in all the cases investigated, the

analytical solution underestimates the diffusion time, the discrepancy increasing at lower

temperatures, or when the concentration of substitutional solutes which stabilise austenite

is reduced. This is attributed to the fact that the analytical method fails to take account

of the coupling of the diffusion fluxes that arise in both the austenite and the ferrite. The

VI



results were first discussed in the context of displacive transformations in steels. The model

was latter extended to the non-ferrous, Ag-44.9Cd at.% alloy. This alloy undergoes a

/32 -+ 0'1 transformation which is sometimes called "bainite" by virtue of the fact that the

plates appear to be different in composition from the parent phase. The 0'1 plates could on

the other hand, form without diffusion, the cadmium partitioning into the /32 matrix after

formation. The results are compared with published data, but they indicate that there is

a need for more accurate diffusion data before definitive conclusions can be made on the

mechanism of transformation.
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Nomenclature and Abbreviations

ferrite

austenite

Gibbs free-energy per unit volume, dissipated in the process

of interfacial motion

Gibbs free-energy per unit volume, dissipated in the diffusion

of solute ahead of the transformation interface

magnitude of Gibbs free-energy change per unit volume

carbon concentration (mole fraction)

carbon concentration in , at , / a interface (mole fraction)

maximum permissible carbon concentration in , at the interface
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velocity as calculated using the interfacial mobility law

velocity as calculated using the diffusion field velocity law

Peclet number
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weighted average diffusivity of carbon in ,

Boltzmann constant

activation free-energy necessary to overcome the resistance to interfacial motion
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Chapter 1

Aspects of Phase Transformations

1.1 Introduction

Solid-state phase transformation is an important topic in physical metallurgy, since

almost all industrial metals and alloys are heat-treated after casting to improve and optimise

their properties. The heat treatment changes the microstructure of the alloy, either by a

recovery and recrystallisation process, or by some type of a phase change. Two main

types of transformations are found: polymorphic changes and precipitation reactions. In a

polymorphic change, in for example elementary iron, cobalt or titanium, there is a change

of crystal structure without a change of chemical composition. This affects all the atoms in

the alloy and presents a tremendous scope for controlling the microstructure of the alloy. In

precipitation reactions, which are crucial in alloys based on aluminium, copper and nickel,

the main method of modifying the microstructure is to alloy with elements that are soluble

in the base metal at high temperatures but precipitate out of solution at lower temperatures.

In both polymorphous and precipitation reactions, there is a migration of an interface

between two crystalline phases, and there are two essential modes of interfacial migration.

In the first of these modes, atoms make thermally activated random jumps across the

interface, a "diffusive" mechanism. In the second mode, the daughter crystal grows into

the parent, by a coordinated shear-type motion of all the atoms at the interface. Some

transformations, such as those in iron-based alloys that are described as bainite, appear to

have both a diffusive and martensitic character (Cahn and Haasen, 1983).

1.2 Modes of Phase Transformations

These can generally be divided into two catagories, 'displacive' and the 'reconstructive'

transformations. These terms have a long-established usage, especially in non-metallurgical

fields (Burger, 1951) and may seem more adaptable than their metallurgical equivalents

(shear and diffusional). This classification, however, is rather closely linked to the concept

1



ite. This transformation is important and best known in connection with certain types of

stainless steel, quenched and tempered steels and ball bearing alloys.

Important recent developments involving the martensitic transformation in steels in-

clude maraging steel (precipitation-hardened martensite), TRIP steels (transformation in-

duced plasticity), ausforming steels (plastically deformed austenite prior to quenching) and

dual phase steels (a mixture of ferrite + martensite obtained by quenching from the 1+ Q'

field).

a

c

b

d

Figure 1.1: Transformation mechanism of reconstructive transformation. The lattice un-

dergoes transformation shown from a to d. Displacive transformation stops at stage b.

In the study of displacive transformations, it is necessary to discuss the mobility of

martensitic interfaces. Martensitic growth via slow interfacial motion makes an important

contribution to overall transformation. Further, it is believed that the operational nucle-

ating event in martensitic transformations is controlled by the motion of the interface of

a supercritical nucleus (Olson and Cohen, 1976; 1982) and, consequently, its mobility is of

fundamental importance to both nucleation and growth.
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Boundaries in the solid state may conveniently be regarded as either glissile or non-

glissile. A glissile boundary can migrate readily under the action of a suitable driving stress,

even at very low temperatures, and its movement does not require thermal activation.

Examples of the motion of glissile boundaries are provided by the growth of martensite

plates or of a mechanical twin, or by the stress-induced movement of a symmetrical low

angle tilt boundary. In all cases, the shape of the specimen changes as the boundary is

displaced, so that the movement may be regarded as a form of plastic deformation. It

follows that a suitable external mechanical stress should be able to produce displacement

of any glissile interface.

The remaining types of boundary can move only with the assistance of thermal fluc-

tuations. However mobile such a boundary may be at high temperatures, it must become

virtually immobile at sufficiently low temperatures. We subdivide non-glissile boundaries

into those in which there is no change of composition across the interface and those di-

viding regions of different composition. In the first group are any transformations from a

metastable single phase to an equilibrium single phase (polymorphic changes), processes

such as recrystallisation and grain growth which are entirely one-phase, and order-disorder

reactions. In all these examples, the rate of growth is determined by atomic processes in

the immediate vicinity of the interface, and we may describe such growth as "interface-

controlled" (Christian, 1981).

Familiar examples of growth in which there is a composition difference across a moving

interface are provided by precipitation from supersaturated solid solution and eutectoidal

decompositions. The motion of the interface now requires longe-range transport of atoms

of various species towards or away from the the growing regions, so that it is necessary to

consider the diffusional processes which lead to the segregation. Two extreme cases can

be distinguished in principle. In one of these we have a boundary which can move slowly,

even under the influence of high driving forces. The rate of motion will then be largely

independent of the diffusion rate, and we may again describe the growth as interface-

controlled. The other extreme case is where the boundary is highly mobile when compared

with the rate of diffusion, so that it will move as rapidly as the required segregation can

be accomplished. The growth rate is then determined almost entirely by the diffusion

conditions, and is said to be "diffusion-controlled" (Christian, 1981).

4



1.3 Rate Controlling Processes

The rate at which an interface moves depends both on its intrinsic mobility (related to

the process of structural changes across the interface) and on the ease with which any solute

elements partitioned during transformation diffuse ahead of the moving interface. The two

processes are in series so that the interfacial velocity equals that computed from the diffusion

of solute ahead of the interface (Olson et al., 1989). Both of these processes dissipate the

net free-energy available for interfacial motion, Gid being the amount dissipated in the

interface process and Gdd the quantity dissipated in the diffusion process. The constant

temperature free-energy curve is shown in Figure 1.2a. The two dissipations Gid and G dd

are related by the equation:

tlG = Gid + Gdd• (1.1)

When tlG ~ Gdd' growth is said to be diffusion-controlled. Interface-controlled growth

occurs when tlG ~ Gid. Mixed control arises when neither process dominates.

The diffusion field (composition versus position) that must move with the interface is

of the form depicted in figure 1.2b, where x I is the composition of ,-phase at the interface.

In Figure 1.2, xm is the carbon concentration of the austenite at the interface when Gid = 0

(i.e. when tlG = Gdd) and when the composition of the ferrite is a. This is consistent

with the fact that a higher level of carbon in the austenite at the interface would cause an

increase in free-energy as the interface moves during the, -+ a transformation.

1.4 Coupled Diffusional and Displacive Transformations

During phase transformation, the product phase sometimes grows with a nonequilib-

rium composition. Nonequilibrium growth may occur without any composition change, as

in martensitic transformations, or some kind of a constrained equilibrium may exist at the

transformation interface. An example of constrained equilibrium is paraequilibrium during

the, -+ a transformation in alloy steels (Hultgren, 1951; Hillert, 1951; Rudberg, 1952;

Aaronson et al., 1966 and Bhadeshia, 1985b), in which the substitutional lattice may be

considered to be configurationally frozen. The substitutionaljiron atom ratio is then con-

stant everywhere, but su bject to this constraint, the carbon achieves equality of chemical

potential in both phases.

A more general case of nonequilibrium transformation would be where none of the ele-

ments achieve a uniform chemical potential in all the phases even though, unlike martensitic

reactions, there is some limited redistribution of alloying elements during transformation.
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Figure 1.2: (a) Constant temperature free-energy curves for the case where the interface

compositions are as illustrated in (b).

During such a process, there must naturally be a net reduction in free-energy, but in

addition, the transfer of individual elements across the interface cannot be independent of

the other elements (Baker and Cahn, 1971). The nonequilibrium may be better understood

by looking at the schematic diagrams shown in Figure 1.3.
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Figure 1.3: Possible carbon concentration profiles at the ferrite/austenite transformation

interface during growth. (a) Diffusionless growth; (b) growth with diffusion-control; (c)

growth with a partial supersaturation of carbon in the ferritic phase.

The diffusion-controlled growth profile (Figure 1.3b) represents the complete diffusional

process where xa-y and x-ya are given by the phase diagram. Figure 1.3a is the case of a

martensitic transformation which is displacive in nature where the carbon concentration is

the same in both the, and Cl' phases and is equal to the average concentration of the alloy

(x). A possible example is the, --1 0 +" transformation in a Fe-C alloy where the Cl'has

a carbon concentration (xa) lower than the average concentration (x), but higher than its

equilibrium concentration xa-y (Figure 1.3c). In these circumstances, the Cl' is said to grow

with a partial supersaturation of carbon (Olson et al., 1989).

The situation illustrated in Figure 1.3c is in principle unstable since any perturbation

of the composition in the austenite at the interface, towards x-ya, should lead to a reduction

in free energy. The profile should therefore tend to change towards that illustrated in Figure

1.3b. The instablility of the diffusion field during growth involving partial supersaturation

can be illustrated using a mechanical analogy (Figure lA.).

Figure 1.4a represents the state of stable equilibrium. If the ball is infinitesimally

perturbed, it will move to restore the equilibrium. The case of unstable equilibium is

show in Figure lAb where the ball is stable but not to even the slightest purturbation.

Nonequilibrium is like a ball located at the side of a hill (Figure lAc); a perturbation which

lowers its potential energy is favoured, so that ball should collapse continuously towards

7



lowest energy position.

(a) (b) (c)

Figure 1.4: Schematic illustration of instability of diffusion field.

Since any diffusion field is by its very nature subject to random perturbations, oppor-

tunities must arise for the field to adjust towards lower free energy states. It follows that

there will be a tendency for partial supersaturation to collapse towards equilibrium. Thus,

it is necessary to introduce some other process which prevents the ball from falling down.

In other words, growth involving partial supersaturation has to be stabilised by some pro-

cess which occurs in series with the diffusion of solute (Christian and Edmonds, 1984). One

such stabilising process is already there in the form of structural changes across the interface

(Olson et al., 1989). The schematic diagrams in Figure 1.5 show how the nonequlibrium

can be made stable.

There are two processes which determine the compositions at the interface; the dif-

fusional process (Figure 1.5a) and the mobility of the interface i.e. the structural changes

across the interface (Figure 1.5b). Since these two processes are in series, therefore the sta-

ble nonequlibrium illustrated in Figure 1.5c can be acheived. If the temperature is sufficient

to allow some degree of atomic diffusion, solute partitioning between the two phases could

increase the operative driving force and allow interfacial motion (Olson and Cohen, 1986).

1.5 Kinetics of Bainite

A major reason for the examination of growth involving partial supersaturation is to

see whether that represents the bainite transformation in steels. Hence, a brief overview of

8



the relevant points is presented below - a detailed survey can be found in Bhadeshia (1988).

Ca) (b) Cc)

Figure 1.5: Schematic illustration of stability of nonequilibrium due to two processes oper-

ating in series (c).

A key problem in the study of bainite is to determine the carbon concentration of bainitic

ferrite during its growth. If a pla.telet of bainitic ferrite grows with the composition of the

parent austenite, and subsequently rejects its excess carbon into residual austenite, then the

next platelet would have to form from I which is enriched in carbon. A reaction like this

would stop prematurely when the carbon concentration of the residual austenite becomes

high enough to prevent composition invariant transformation i.e., when x"I reaches the To

curve on the phase diagram (Bha.deshia, 1988).

In steels where the bainite transformation can be studied without interference from

other reactions, it is found that the maximum volume fraction of bainite obtained during

isothermal transformation from austenite increases from zero as the transformation tem-

perature decreases below the bainitic start temperature, Bs (Hehemann, 1970; Christian

and Edmonds, 1984). The fact that bainite is not obtained at all for T > Bs' together

with the observation that for T < Bs' the transformation ceases well before the carbon

concentration of the residual austenite reaches the equilibrium or paraequilibrium Cl' + 1/'
phase boundary is the essence of the incomplete reaction phenomenon (Bhadeshia, 1988).

Kinetic data obtained from various resources confirm that bainite grows with a super-

saturation of carbon, since the lengthening rates of sheaves and subunits far exceed those

calculated on the basis of paraequilibrium, carbon diffusion-controlled growth (Bhadeshia,

9



1984; 1985a).

Since bainitic ferrite grows with a noneqilibrium concentration of carbon, the carbon

should tend at some stage to partition into the residual austenite where it has a lower chem-

ical potentia!. The time needed to decarburise the ferrite is intuitively expected at least to

be comparable to that required for a subunit to complete its growth. If the decarburisation

time is small relative to the time required to relieve the carbon supersaturation by the

precipitation of carbides within the ferrite, the upper bainite is obtained; otherwise, lower

bainite forms (Bhadeshia, 1988).

1.5.1 Carbides and Bainite

The variation of the carbon concentration in bainitic ferrite during transformation

is very important in determining the kinetics of carbide precipitation. The formation of

bainite does not involve the co-operative growth of bainitic ferrite and carbides. The ferritic

component of bainite forms first; the excess carbon in this thermodynamically unstable,

supersaturated bainitic ferrite is then removed by either of two competing processes. These

processes are the partitioning of carbon into the residual austenite or its precipitation (in

form of carbides) within the bainitic ferrite. At relatively high temperatures, the rejection of

carbon into the residual austenite is rapid, so that any carbide precipitation occurs from the

carbon enriched residual austenite and the final microstructure obtained is upper bainite.

At lower temperatures, carbide precipitation within the bainitic ferrite is predominant,

resulting in lower bainite. The distribution of carbon in the residual austenite is not, in

general, homogeneous after isothermal transformation to bainite. The austenite is enriched

to a greater extent in the immediate vicinity of bainite platelets or in regions trapped

between platelets (Matas and Hehemann, 1961; Schrader and Wever, 1952). The sequence of

transformation can be summarised as follows (Bhadeshia, 1988; Bhadeshia, 1989, Bhadeshia

and Christian, 1990).

1. Upper bainite

1-+ 1+ O!ub ss -+ O!ub us + len -+ O!ub us + O! + B
" ,

where I, Band len are austenite, cementite and enriched austenite respectively. O!,

O!ub ss and O!ub us are the ferrite, supersaturated upper banite and unsaturated upper, ,

bainite repectively.

2. Lower bainite: the dislocation density of lower bainite has an effect on the free energy of

carbon in the bainitic ferrite and hence can influence the carbide precipitation sequence,

10



determining in particular whether c-carbide forms before the growth of cementite.

(i) high dislocation density

, -+ , + alb,ss -+ ()f + alb,us + 'en -+ alb,us + a + ()f / f + ()f

where a1b ss and alb us are the supersaturated lower banite and unsaturated lower, ,
bainite repectively. ()f and ()f / f are cementite in ferrite and cementite between ferrite

plates respectively.

(ii) low dislocation density

, -+ , + alb,ss -+ cf + alb,us + 'en -+ alb,us + C f + a +()f / f -+ alb,us + ()f +()f / f + a

where C f is the cementite in ferrite.

1.6 Summary

A brief literature review of some of the relevant aspects of phase transformations has

been presented. In steels and some other alloys, the bainite transformation appears to have

both diffusional and displacive characteristics. The martensitic transformations which is

displacive in nature, represents an extreme instance of nonequilibrium transformation in

which there is no diffusion at all. Within the category of displacive transformations, Wid-

manstatten ferrite similarly represents the other extreme, whereby iron and substitutional

solute atoms do not diffuse during transformation, but subject to that constraint, the car-

bon achieves equality of chemical potential in all phases. Widmanstatten ferrite therefore

never has an excess carbon concentration. In between these two bounds of nonequilibrium

transformation, there may exist situations in which growth occurs with a partial supersatu-

ration of carbon. Some of the carbon would then be trapped whereas the remainder would

be partitioned into the residual austenite.
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Chapter 2

Coupled Diffusional/Displacive Transformations:
Effect of Carbon Concentration

2.1 Introduction

Martensitic transformations in steels are well established to be diffusionless (Christian,

1965b). The growth of Widmanstatten ferrite, on the other hand, occurs by a mechanism

in which the structural change is accomplished by displacive transformation, but intersti-

tial carbon partitions between the parent and product phases. Thus, martensite represents

an extreme instance of nonequilibrium transformation in which there is no diffusion at all.

Within the category of displacive transformations, Widmanstatten ferrite similarly repre-

sents the other extreme, whereby iron and substitutional solute atoms do not diffuse during

transformation, but subject to that constraint, the carbon achieves equality of chemical

potential in all phases (Bhadeshia, 1985a). The Widmanstatten ferrite therefore never has

an excess carbon concentration.

It is feasible that between these two bounds of nonequilibrium transformation, there

exist situations in which growth occurs with a partial supersaturation of carbon (Hillert,

1960; Bhadeshia, 1981a; Olson et al., 1989; Agren, 1989). Some of the carbon would

then be trapped whereas the remainder would be partitioned into the residual austenite

(Figure 1.3). A situation like this is at first sight unstable because any perturbation in

the carbon concentration of the ferrite which takes it nearer to equilibrium would lead to

a reduction in free energy (Bhadeshia, 1981a). The process should then tend to collapse

towards equilibrium growth as illustrated in Figure 1.4. However, the diffusion of carbon is

not the only process occurring during ferrite growth; other processes acting in series could in

principle stabilise nonequilibrium growth involving partial supersaturation (Christian and

Edmonds, 1984).

The processes which act in series in order to accomplish transformation include the

diffusion of carbon ahead of the interface, the transfer of atoms across the interface, and

the trapping of solute atoms in the product phase (Olson et al., 1989; 1990). Each of
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these is associated with a dissipation of a fraction of the available free energy change. The

dissipation can, with an appropriate model, be related to an interface response function,

such as the diffusion field velocity, interfacial mobility or a solute trapping velocity. Since

there is only one interface moving, the dissipations must be chosen in such a way that all the

interface response functions give the same velocity. It is this condition which permits the

evaluation of velocity, supersaturation and interfacial composition from the simultaneous

solution of the three interface response functions.

The first two response functions i.e. diffusion-field velocity and interface mobility are

in analogy with the electrical circuit where two resistors are connected in series as shown in

Figure 2.1a. The potential difference (driving force) at each resistor gives different charac-

teristic curve (voltage versus current). Since the resistors are in series the current passing

through the system must be same. Thus the point of intersection of both curves (Figure

2.1b) will give the value of current passing through the circuit. Similarly in the present

model two curves of driving force versus velocity can be drawn by using the process of mo-

bility of the interface and diffusion field velocity. The point of intersection gives the velocity

of the interface as shown in Figure 2.1c. Therefore, it is necessary to solve the following

two equations simultaneously to determine the actual velocity:

(2.1)

(2.2)

where ~ and 'l/J are response functions relating velocity to the Gibbs free energy per unit

volume dissipated in the processs of interfacial motion and the diffusion of solute ahead of

interface respectively.

Since the two processes are in series, putting correct values of Gid and Gdd in equations

(2.1) and (2.2) give V = Vi = Vd' where Vi and Vd are the interface mobility and diffusion

field velocity respectively. A third process (solute trapping) also exists in the transformation

which provides the calculation of solute trapping velocity. The purpose of the present study

was to investigate the effect of defining bainite in a way consistent with diffusionless growth

using the coupled diffusionaljdisplacive transformation (CDDT) model. It was also intended

to extend the results to a range of carbon concentrations rather than just the Fe-OAC wt.%

alloy examined previously.
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Figure 2.1: Interface response functions. (a) an analogy with electrical circuit (b) voltage

versus current curve (c) coupled diffusionaljdisplacive transformation (Olson et al., 1989):

diffusion-field velocity (for edge-wise growth of plate-shaped particle) and dislocation-

interface velocity versus interfacial dissipation, identifying stable steady-state velocity for

the coupled process.
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2.2 The Response Functions

It is necessary to solve for three unknowns: the carbon supersaturation in the ferrite,

the interface velocity, and the composition of the austenite at the interface. This can be

done by considering three interface response functions for the processes which occur in

series, and solving them simultaneously for a given transformation temperature and alloy.

The three functions are the diffusion-field velocity, the interface mobility (describing the

transfer of atoms across the interface) and the solute trapping function.

2.2.1 Diffusion-field Velocity

The lengthening rate, Vd' for steady state growth at a temperature, T, as a function

of the diffusion of carbon in the austenite ahead of interface, can be approximated by the

Ivantsov solution for a parabolic cylinder (Ivantsov, 1947):

(2.3)

where x is the mean carbon concentration of the alloy, x I is the carbon concentration of

the austenite at the interface, Xex is the carbon concentration in the growing ferrite and p

is the Peclet number given by:

(2.4)

The Peclet number is a dimensionless velocity and p is the effective plate tip radius. Since

the diffusion coefficient D of carbon in austenite depends on the carbon concentration x, a

weighted average diffusion coefficient (D) is used (Trivedi and Pound, 1967):

(2.5)

2.2.2 Interface Mobility

The interfacial velocity Vi, as dependent on the mobility of atoms across the transfor-

mation front, is calculated by using the dislocation models of interfacial structure (Grujicic

et al., 1985a; 1985b; 1985c) based on the theory of thermal activated dislocation motion,

which can be written as

Vi = Vo exp( -Q*/ kT) (2.6)

where Q* is the free energy of activation, Vo is pre-exponential factor (m s-l), k is the

Boltzmann constant and T is the absolute temperature. The activation energy is given by

the following integral

(2.7)
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where Gid is the driving force dissipated in the transfer of atoms across the interface, Cid

is maximum glide resistance, and v* is the activation volume swept by the interface during

the thermally activated event. For a wide range of obstacle interactions, the function Q*

can be written (Kocks et al., 1975):

(2.8)

where Qo is the total activation free-energy necessary to overcome the resistance to dis-

location motion without the aid of an interfacial driving force. Qo is given by (Olson,

unpublished research)

Qo = 0.31j.Ln (2.9)

where j.L is shear modulus of matrix and n is the volume per atom. The value of the shear

modulus of matrix j.L (in N m-2) is given by;

0.5E
j.L=--

(1+ v)
(2.10)

where v is Poisson ratio. The Young's Modulus (E) for different temperature ranges (Aaron-

son et al., 1975) is given by

E = -18.8T + 52400

E = -37.6T + 62300

For our desired range of temperatures from 298 K to 813 K, the Young modulus in units of

N m-2 can be written as

E = -78772000(T' - 273) + 2.1956 X 1011 298 ::; T' (K) ::; 813 (2.11)

The value of v for different temperature ranges (Aaronson et al., 1975) is given by

v = 3.6 x 1O-5T + 0.284

v = 9.9 X 1O-5T + 0.246

For the temperature range of interest from 533 K to 868 K, v can be written as

v = 3.6 X 10-5 (T' - 273) + 0.284

16
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Therefore by putting the values of E and v in equation (2.10), we get the following equation

for the shear modulus (Jl) in the units of N m-2•

-78772000(T' - 273) + 2.1956 X 1011
Jl = 3.6 X 10-5 (T' - 273) + 1.284

The molar volume of martensite n (in m3mol-1) is given by ( Kaufman et al., 1963)

n = 6.679 X 10-6(1 + 7.89 X 1O-5T')

(2.13)

(2.14)

where T' is in units of K. Putting the values of Jl and n from equations (2.13) and (2.14)

in equation (2.9), the value of Qo (in J mol-1) may be obtained. For calculating the value

in J atom-1, we use the following equation

JlnQo = 0.31No
(2.15)

where No is the Avogadro's number having the value of 6.023 X 1023•

The quantities y and z define the shape of the force-distance function for solid-solution

interactions. The following values of these constants are assumed (Nabarro, 1982)

y = 0.5

z=l

Based on the behaviour of Fe-Ni-C alloys (Nabarro, 1982), the following value of Gid (in

N m-2 or J m-3) can be taken

• -3Gid = 1.22 X 10 Jl (2.16)

For calculating the value of Gid we need to find the value of shear modulus of austenite (Jl)

in J mol-1 and that can be calculated by the following equation

= -78772000(T' - 273) + 2.1956 X 1011n/N
Jl 3.6 X 10-5 (T' - 273) + 1.284 0

Putting all these values in equation (2.7), activation energy can be written as

(2.17)

(2.18)

Putting this value in equation (2.6), the following equation for the interfacial mobility is

obtained

(2.19)
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where Vo=30 m S-I (Grujicic, 1985b).

2.2.3 The Solute Trapping Law

If the interface advance rapidly into the austenite then the carbon may not be able to

diffuse away as required thermodynamically; it would then be trapped behind the advancing

interface, in the ferrite, where its chemical potential is higher. This is solute trapping. The

partitioning coefficient, kp, is given by Aziz (1982) as:

(2.20)

where XCi and X I are the solute concentrations in ferrite and in austenite at the interface

respectively. When the two concentration terms represent the respective equilibrium con-

centration of the phases concerned, then we have

(2.21)

where ke is the equilibrium partitioning coefficient. The velocity function for solute trapping

is (Aziz, 1982):

(2.22)

where A is taken to be 0.25 nm. D{ x I} is the carbon diffusivity in austenite of composition

x I' D{ x I} / A is the diffusion velocity of carbon. Trapping becomes significant as the actual

interface velocity approaches this value.

2.3 Numerical Calculations

The model calculates the val ues of G dd and G id for different levels of su persaturation

(i.e. for different values of XCi) using the concept of driving force (Olson et al., 1989). Then

it becomes possible to produce the curves of Gid (J mol-I) versus Xl (mole fraction) for

different XCi which are shown in Figure 2.2. The calculations for the velocity of the interface

for different free energies have been carried out for both nucleation and growth for a variety

of temperatures for low alloy carbon steels. The plots of velocity (V) versus free energy

(Gid + Gel + Gsurj) at different temperatures for Fe-0.2C wt.% alloy are shown in Figure

2.3.

The model, then calculates the point of intersection of each curve (in Figure 2.3) with

the nucleation (dashed curve in Figure 2.3) and growth curves (chain-link curve in Figure
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2.3). The equations for the diffusion curves (Figure 2.3) were obtained by curve fitting and

are given by

v = Bl + B2G'

where

lD110

,-

c.u

re-O.2C wt., ~ • X.=O.OOO3
• X.-O.OO23

C.l0 T-486·C • X.-O.OO43
• X.=O.OO83

c: • X.=O.OOB3

.~....,
0 OJII
<l$
I-.
"-

Cl)

0
8 OJII

"-
><-

OM

-1
G1d /J mole

Figure 2.2: Illustration of the dependence of interfacial composition x I on the interfacial

dissipation Gid for a Fe-0.2C wt.% transformed at 486 QC .

Bl and B2 are the coefficients of the polynomial. The ordinate of the point of intersection

of curve (Figure 2.3) with the growth curve (chain-link curve in Figure 2.3) can be found

by the following transcendental equation

(2.24)[
Q { (G'-700)O.5}JBl + B2G' = Voexp k; 1- G

id

Hence the growth velocity (11) can be calculated by using equations 2.23 and 2.24. Similarly

the ordinate of the point of intersection of the curve (Figure 2.3) with the nucleation curve

(dashed curve in Figure 2.3) is calculated by the following transcendental equation

[
Q { (G' - 2 10-

3 )O.5}JBl +B2G' = Voexp k; 1- G~d J.l (2.25)
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where /L is in the units of J mol-I. Hence the nucleation velocity can also be calculated

using equation 2.23 and 2.25. The plot of velocity (V) versus concentration of carbon in

ferrite at the interface (xeJ for both nucleation and growth for different temperature for

Fe-0.2C wt.% is shown in Figure 2.4. Superimposed on these curves, are the data obtained

using the solute trapping model.

The partitioning coefficient kp can be determined using equation 2.20, given values

of xQ' and related values of x [. Using the data of Gid, corresponding x [ value could

be calculated from the relationship between x [ and Gid, illustrated in Figure 2.2. The

equilibrium partitioning coefficient ke were calculated using the following equation:

(2.26)

where xQ'Y is the equilibrium carbon concentration in ferrite, and x'YQ is the equilibrium

carbon concentration in austenite. The latter was calculated using the Bhadeshia model

(Bhadeshia, 1981a; 1981b; 1981c).

Finally, the points of intersection of the curves (Figure 2.4) for both nucleation and

growth were used to draw the supersaturation curves (normalised supersaturation, xQ/x,
versus temperature, T) for different low carbon alloy steels. Hence time-temperature-

transformation (TTT) diagrams can be drawn accordingly.

2.4 Results and Discussion

The results of calculations performed for a series of carbon concentrations, using the

original Olson et at. model (1990), are being considered. As a typical example, every

intersection obtained from the first two response functions (diffusion field velocity and

interface mobility) for Fe-0.2C wt.% alloy at a variety of temperatures for different levels

of supersaturation is shown in Figure 2.3. These points of intersection correspond to a

solution for velocity where interfacial velocity (V;) equals diffusion field (Vd). The other

two curves (chain-link and dashed), in Figure 2.3, correspond to growth at a stored energy

(G
Q

) of 700 (J mol-I) and nucleation event at a stored energy of 2 x 1O-3/L (J mol-I)

respectively. The stored energy, G Q = Gel + G sur!' where Gel and G sur! are the elastic

strain energy and surface energy respectively. The value of stored energy of nucleation event

(2 x 1O-3/L J mol-I), corresponds to the plate tip radius (p) of 1.5 nm. These values of

stored energy has been taken from the previous work (Olson et al., 1989; 1990).
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This difference of stored energy leads to different nucleation and growth kinetics. In

the work of Olson et al. (1989), the simultaneous solution of the interface mobility and the

diffusion-field velocity functions for a specified temperature led to the curves of velocity

versus supersaturation for Fe-O.4C wt.% alloy. Superimposed on these curves, are the data

obtained using the solute trapping model. In Figure 2.4, the intersection of two curves

(solute trapping and the curve representing the simultaneous solution of diffusion field

velocity and interface mobility curves) gives the velocity of the interface corresponding to

nucleation and growth. The variation in the ferrite carbon supersaturation as a function

of transformation temperature is illustrated in Figure 2.5a-d, for both the nucleation and

growth processes. These data were used to calculate the martensite-start temperature

as the temperature where both nucleation and growth become diffusionless. In order to

assess these results, they were compared against estimates made with alternative more

empirical (and less informative) models (Bhadeshia, 1981aj 1981bj 1981c) which are known

to represent experimental data to within ±10 °C for a wide variety of steels. Figure 2.6

shows that the CDDT model is in excellent agreement with "experimental" data for the Ms

temperatures. This is in spite of the fact that the parameters used in the interface response

functions etc. are independently measured or derivedj the results thus indicate that the

methodology of the CDDT model is intrinsically correct.

The CDDT model was also used to calculate the bainite-start temperatures, using two

methods. The first is that of Olson et al. where Bs is given by the highest temperature of

the calculated "C" curve of the TTT diagram for displacive transformation. As pointed out

earlier, this makes no assumptions about the carbon concentration of the bainitic ferrite

during growth, whereas there are considerable data to indicate that the growth of bainite

is indeed diffusionless. The second method, therefore, assumes that Bs is the highest tem-

perature where growth becomes diffusionless, although the nucleus may grow with little or

no supersaturation of carbon. Both of these assumptions led to an unsatisfactory results

(Figure 2.7). The comparison of results is given in Table 2.1.

The original model gave the wrong trend for the Bs temperature as a function of

the carbon concentration. The alternative assumption of diffusionless growth at a constant

stored energy of 700 J mol-1 gave the correct trend but underestimated the Bs temperature.

This last result is not surprising given that the stored energy value is appropriate for

martensite in steels (Christian, 1979), but not for bainite. The latter is known to be

associated with a smaller stored energy of the order of 400J mol-1 (Bhadeshia, 1981aj
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Table 2.1: Comparison of Ms and Bs values.

Alloy Description Ms (0C) Bs (0C)

Fe-0.1C wt.% Olson et al. (1990) 523 620
Present Estimates 523 570
Bhadeshia model 523 636

Fe-0.2C wt.% Olson et al. (1990) 486 610
Present Estimates 486 539
Bhadeshia model 484 609

Fe-0.3C wt.% Olson et al. (1990) 440 600
Present Estimates 440 508
Bhadeshia model 411 577

Fe-OAC wt. % Olson et al. (1990) 410 590
Present Estimates 410 470
Bhadeshia model 396 546

Olson et al., 1989; Agren, 1989; Olson et al., 1990; Christian and Edmonds, 1984).

The incubation time has been calculated using the relation t = 10-5 IV, where V is

the velocity in ms-1 (Olson, 1989; Olson and Cohen, 1986). A comparison of the predicted

time-temperature-transformation (TTT) diagrams with that obtained from the Bhadeshia

model (Bhadeshia, 1981a; 1981b; 1981c) for Fe-0.1C, Fe-0.2C, Fe-0.3C wt.% and Fe-OAC

wt.% is shown in Figure 2.8.

2.5 Conclusion

A mathematical model for the coupled diffusional and displacive has been applied to a

series of iron-carbon alloys to examine the displacive growth of partially carbon supersat-

urated ferrite plates. On the basis of the calculations, the following conclusions for a low

alloy steels can be reached:

(a) It is in principle possible to envisage displacive growth involving a partial supersatu-

ration of interstitial carbon.

(b) The level of supersaturation increases steadily as the transformation temperature is

decreased. It is therefore possible to imagine the growth of ferrite plates with an

equilibrium carbon concentration at high temperatures, and diffusionless martensitic

transformation at low temperatures.
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(c) Because during nucleation the surface to volume ratio of the nucleus is rather large,

extra free energy is required to account for the corresponding surface energy. Thus, the

level of carbon supersaturation that can be sustained in the nucleus tends in general

to be less than during growth at the same temperature.

The trend of variation in Bs temperature as a function of carbon concentration can be

satisfactorily estimated if it is assumed that the bainite-start temperature can be identified

with the highest temperature at which diffusionless growth becomes possible. However,

absolute agreement is found to be unsatisfactory. This problem will be addressed in Chapter

3.
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corresponds to the velocity for growth and the dashed curve to the velocity for nucleation
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remain constant at 700J mol-I for all temperatures below about 740 K. This is necessary in

order to ensure the correct prediction of the martensite-start temperature for concentrated

alloys.

Table 3.1: Values of the stored energies at Bs for different alloys.

Alloy "experimental" Bs Stored energy at Bs
(OC) (J mol-I)

Fe-0.1C wt.% 636 335

Fe-0.2C wt.% 609 335

Fe-0.3C wt.% 577 308

Fe-OAC wt.% 546 325

Fe-0.5C wt.% 512 297

Fe-OA3C-2Si-1.6Mn wt.% 468 652

3.3 Results and Discussion

The calculations using the CDDT model which allows the variation in the stored en-

ergy of the growing phase is presented here. The nature of the required variation in stored

energy has been calculated by fitting against available data (Figure 3.1). The form of the

curve illustrated in Figure 3.1 in fact seems physically reasonable. At low temperatures, the

stored energy is about 700 J mol-I because the shape change is elastically accommodated,

so that the plate can thicken and achieve an aspect ratio large enough to be consistent

with thermoelastic equilibrium even when its lengthening is stifled. At high temperatures,

it is conceivable that the plastic yielding of the matrix prevents such thickening and hence

reduces the stored energy both by the relaxation of elastic strains and by preventing the

aspect ratio from being as large as that of martensite, to approximately 325J mol-I. This,

of course, is consistent with reported values of the stored energy of bainite (Bhadeshia,

1981a; Christian and Edmonds, 1984). It is also interesting that the elastic and plastic
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accommodation regimes are separated by a fairly sharp transition region in the tempera-

ture range 450-500 CC, as might be expected from a yield phenomenon. The variation of

supersaturation with temperature and carbon concentration, as calculated using the CDDT

model modified to allow for the variation of stored energy is ill ustrated in Figure 3.2.
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Figure 3.1: Calculated variation In the stored energy for growth, as a function of the

transformation temperature.

The most striking feature is that there is now a much sharper transition from growth

involving full partitioning of carbon, to diffusionless growth - the temperature range for

the transition is typically 10-50 cC, compared with 50-100°C for the earlier calcula-

tions presented in Figure 2.5. An abrupt transition from paraequilibrium to diffusionless

growth is in fact consistent with experiments; Widmanstatten ferrite at all temperatures

grows at a rate controlled by the diffusion of carbon in the austenite ahead of the interface

(Bhadeshia, 1985a), and the growth rate of bainite subunits is much larger than diffusion-

controlled growth (Bhadeshia, 1984; Ali and Bhadeshia, 1989). These values obtained from
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the following two methods are given in Table 3.2.

(a) Original CDDT model with a fixed stored energy of 700 J mol-1 but with the assump-

tion that the bainite-start temperature (Bs) is the highest temperature at which the

plates grow with full supersaturation of carbon (i.e. xoJx = 1) even though carbon

may partition during the nucleation.

(b) The CDDT model which allows variation in stored energy during growth.

Table 3.2: Comparison of the predicted Ms and Bs values with the experimental data

(Bhadeshia, 1981a; 1981b: 1981c).

Alloy

Fe-0.1C wt.%

Fe-0.2C wt.%

Fe-0.3C wt.%

Fe-OAC wt.%

Description Ms (0C) Bs (0C)

Present Estimates 523 640

experimental 523 636

Present Estimates 486 620

experimental 484 609

Present Estimates 440 583

experimental 411 577

Present Estimates 410 549

experimental 396 546

The agreement between the "experimental" and calculated transformation tempera-

tures is illustrated in Figure 3.3 and in Figure 304. The predicted and experimental time-

temperature-transformation (TTT) diagrams for various low carbon alloys are shown in

Figure 3.5.

3.4 Conclusion

A coupled diffusionaljdisplacive transformations (CDDT) model has been applied to

the calculation of transformation temperatures of a series of iron-carbon alloys. Using

the assumption that martensitic nucleation and growth are both diffusionless, it has been

found possible to accurately calculate the marten site-start temperatures. This is in spite

of the fact that all the parameters used in implementing the interface response functions
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were independently derived. This suggests that the approach used in the CDDT model is

intrinsically correct.

The variation in Bs temperature as a function of carbon concentration can be satisfac-

torily estimated if it is assumed that the bainite-start temperature can be identified with the

highest temperature at which diffusionless growth becomes possible. Good absolute agree-

ment can be obtained if it is further assumed that the stored energy of the growing ferrite

varies with temperature. The necessary variation appears to be physically reasonable.
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Figure 3.2: The variation in the degree of carbon supersaturation in the growing ferrite, as

a function of the transformation temperature and carbon concentration. The calculations

are according to the CDDT model with stored energy variation (a) Fe-O.lC (b) Fe-O.2C
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Chapter 4

Addition of Substitutional Alloying Elements

4.1 Introduction

Solid-state phase transformations in steels can involve both substitutional and intersti-

tial atoms. It is conceivable that the former do not diffuse during transformation, whereas

the much more mobile interstitial atoms are able to partition between the parent and prod-

uct phases. Thus, the lattice change could be accomplished by displacive transformation

as far as the substitutional solute and iron atoms are concerned. There would then be

an invariant-plane strain shape change (with a large shear component) associated with the

growth of a thin-plate shaped product. The extent to which the carbon atoms partition dur-

ing the growth of ferrite plates by this mechanism can in principle be between equilibrium

and full supersaturation (i.e. zero partitioning).

As discussed in earlier chapters, an attempt has recently been made to model such

growth involving some partitioning of carbon (Olson et al., 1989; 1990), the rest being

trapped as the ofy interface advances. Whilst it is appreciated that models like these

are currently less than satisfactory in predicting experimental behaviour (Bhadeshia and

Christian, 1990), they are the only ones capable of giving some idea of the growth rates

involved during displacive transformations which occur above the martensite-start temper-

ature. The coupled diffusionaljdisplacive transformation (CDDT) model has already been

extended further to deal with a variety of plain carbon steels (Chapters 2 and 3). The

purpose of the present work is to apply the modified CDDT model to a number of alloyed

steels and to compare the results with the experimental data of Steven and Haynes (1956)

in order to check whether the model can be applied to alloyed steels. It was intended at the

outset of this work to compare some of the overall results of such modelling with alternative,

tried and tested but less informative methods of calculating transformation characteristics.

Throughout this chapter, an approximation is made that the solid solution strengthening

caused by the introduction of relatively small concentrations of substitutional solute can be
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neglected. The interface mobility function is therefore indentified with that used for plain

carbon steels.

4.2 Results and Discussion

4.2.1 Martensite-start Temperature

There are several methods for the prediction of martensite-start temperatures in steels,

especially when the alloy concentration is small. The most commonly used method (Steven

and Haynes, 1956) is completely empirical and works rather well, with Ms being given, for

example, by

Ms(°C) = 561 - 474C - 33Mn - 17Ni - 17Cr - 21Mo (4.1)

where the concentrations are all stated in weight percent. Using this relation, the Ms

temperature can be calculated within ± 20-25 °C with a 90% certainty within the following

limits of chemical composition.

C 0.1-0.5 wt.%

Mo Trace-1.0 wt.%

Cr Trace-3.5 wt.%

Ni Trace-5 wt.%

Mn 0.2-1.7 wt.%

A more general method which has its origins in the work by Kaufman and Cohen (1956,

1958) assumes that martensite forms at a temperature where the driving force for diffu-

sionless transformation !:lG'YOIreaches a critical value !:lG].;. (Figure 4.1) Thus, alloying

elements lead to a change in Ms simply as a consequence of their effect on the thermody-

namic stabilities of the I and 0' crystals.

Bhadeshia (1981b) used this method with experimental Ms data, to calculate!:lG].;.

for a series of Fe-C alloys and found that external driving force is a function of the carbon

concentration (Figure 4.2). This function was then used empirically to predict the Ms

temperatures for substitutionally alloyed steels (Bhadeshia, 1981c), assuming that Ms is

given by the temperature where tlG'YOI{Fe - C - X, MJ = tlG].;. {Fe - Cl. The method

works extremely well, but there is no justification for the particular way in which G].; {Fe-.
C} varies with the concentration of carbon.

The CDDT method can in principle avoid all of the empirical assumptions discussed

above. The experimental data of Steven and Haynes (1956) provide a rich source of care-

fully measured Ms temperatures as a function of the alloy chemistry (Tables 4.1 and 4.2).

Assuming only that martensite forms when nucleation and growth become diffusionless,
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the CDDT model with the temperature dependent stored energy was applied to the Steven

and Haynes data. The results are illustrated in Figure 4.3; the level of agreement between

the experimental data and those calculated is impressive and gives confidence in the CDDT

model. During barrierless nucleation, the dependence of stored energy on Ms temperature is

shown in Figure 4.4. The variation in the driving force at Ms with Ms temperature is shown

in Figure 4.5. The predicted variation of !:i.G"IO{Fe - C, Ms} with carbon concentration is

compared against the Bhadeshia (1981b) results is shown in Figure 4.6.

4.2.2 The Bainite-start Temperature

Again, for bainite, there are empirical equations for the variation in the Bs temperature

with alloy chemistry (Steven and Haynes, 1956);

Bs (0C) = 830 - 270C - 90Mn - 37Ni - 70Cr - 83Mo (4.2)

where the concentrations are all stated in weight percent. This relation calculates the Bs

temperature within ± 20-25 °C with a 90% certainty within the following limits of chemical

composition.

C 0.1-0.5 wt.%

Mo Trace-1.0 wt.%

Cr Trace-3.5 wt. %

Ni Trace-5 wt. %

Mn 0.2-1.7 wt.%

However, the precision with which such equations represent Bs is known to be poor when

compared with corresponding equations for Ms temperature. Part of the reason for this is

that the Bs temperature is much more difficult to measure. In some low-alloy steels, there

is an overlap of several reactions in the vicinity of the bainite transformation temperature

range, and this can confuse measurements. Secondly, as pointed out in a detailed analysis

by Bhadeshia (1981a), some authors confuse the onset of Widmanstatten ferrite growth

with that of bainite.

A more fundamental method for estimating Bs is given by Bhadeshia; it sets two

conditions for the formation of bainite:

(1) That the driving force for diffusionless growth must exceed the stored energy of bainite

(~ 400 J mol-I)

I !:i.G"IO I > 400 J mol-1

(2) That the driving force for nucleation !:i.Gm (during which carbon partitions between

the parent phases) must exceed a value G N{T}
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GN is a universal function for displacive nucleation and is independent of alloy chemistry -

it has been defined by Bhadeshia (1981a). The method is illustrated in Figure 4.7. When

these two conditions are simultaneouly satisfied, bainite transformation becomes feasible.

The method works quite well in predicting the Bs temperature. Although the function

GN is based on and consistent with the physical properties of displacive nucleation theory,

there is a certain amount of fitting involved in deriving certain constants for practical

applications.

The CDDT model was again applied to Steven and Haynes Bs data, the conditions for

bainite being that;

(1) Growth must be diffusionless.

(2) Carbon may partition during nucleation.

(3) The stored energy must be temperature dependent, of the form given in Chapter 3.

The results are presented in Figure 4.8 which reveals serious discrepencies, the calculations

on average underestimating the Bs temperatures by some 100 QC . The scatter is in fact

far greater than would be expected from Chapter 3 where the Bs temperature was fully

accurately estimated for Fe-C alloys. The reasons for these discrepencies are not clear but

it is useful that there is a general trend as function of alloy content. The variation in stored

energy with the experimental Bs temperatures of Steven and Haynes data is shown in Figure

4.9.

4.3 Conclusion

The CDDT model is able to accurately predict the martensite-start temperature of

alloyed steels, the level of accuracy matching any previous empirical analysis. On the other

hand, significant difficulties remain as far as the bainite-start temperatures are concerned,

the reason for which is not clear. The calculations consistently underestimate the experi-

mental data. The trend in Bs temperatures nevertheless appears to be roughly predicted.
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Table 4.1: Chemical composition of steels analysed. The "En" number used to be the
common identification terminology incorporated in British Standards.

Reference No. B. S. En No. Chemical Composition wt. %

C Si Mn S P Ni Mo Cr V

1 12 0.34 0.20 1.06 0.040 0.037 0.75 0.02 0.08
2 12 0.33 0.21 0.62 0.025 0.022 0.89 0.05 0.10
3 13 0.19 0.14 1.37 0.012 0.026 0.56 0.31 0.20
4 14 0.29 0.26 1.67 0.030 0.033 0.21 0.04 0.12
5 15 0.33 0.23 1.54 0.024 0.021 0.18 0.05 0.15
6 16 0.33 0.18 1.48 0.028 0.028 0.26 0.27 0.16
7 17 0.38 0.25 1.49 0.028 0.036 0.41
8 18 0.39 0.16 0.89 0.025 0.027 0.25 Nil 0.88
9 18 0.48 0.25 0.86 0.021 0.023 0.18 0.04 0.98

10 19 0.41 0.31 0.64 0.017 0.030 0.18 0.38 1.24
11 19 0.41 0.23 0.67 0.016 0.015 0.20 0.23 1.01
12 21 0.33 0.23 0.74 0.027 0.031 3.47 0.07
13 22 0.40 0.26 0.62 0.005 0.007 3.45 0.10 0.28
14 23 0.33 0.23 0.57 0.007 0.005 3.26 0.09 0.85
15 23 0.32 0.28 0.61 0.031 0.018 3.22 0.22 0.63 0.03
16 24 0.36 0.22 0.52 0.005 0.007 1.52 0.27 1.17
17 24 0.38 0.20 0.67 0.010 0.017 1.58 0.26 0.95
18 25 0.32 0.27 0.56 0.012 0.018 2.37 0.51 0.74
19 25 0.31 0.20 0.62 0.012 0.018 2.63 0.58 0.64
20 26 0.38 0.15 0.56 0.005 0.011 2.42 0.46 0.74
21 26 0.42 0.31 0.67 0.022 0.029 2.53 0.48 0.72
22 28 0.32 0.19 0.51 0.009 0.013 3.02 0.48 1.37 0.18
23 28 0.25 0.15 0.52 0.024 0.010 3.33 0.65 1.14 0.16
24 30A 0.35 0.14 0.44 0.008 0.016 4.23 0.13 1.43
25 30B 0.33 0.17 0.51 0.009 0.013 4.16 0.31 0.44
26 30B 0.32 0.29 0.47 0.020 0.022 4.13 0.30 1.21 0.01
27 40B 0.26 0.21 0.55 0.022 0.010 0.25 0.54 3.34
28 45A 0.55 1.74 0.87 0.037 0.038
29 47 0.51 0.27 0.72 0.020 0.021 0.15 0.05 0.094 0.20
30 100 0.40 0.24 1.38 0.031 0.033 0.74 0.16 0.53
31 100 0.40 0.21 1.34 0.027 0.028 1.03 0.22 0.53
32 110 0.44 0.23 0.58 0.004 0.029 1.40 0.11 1.26
33 110 0.39 0.23 0.62 0.018 0.021 1.44 0.18 1.11
34 111 0.35 0.13 0.65 0.032 0.035 1.27 Nil 0.55
35 111 0.37 0.28 0.89 0.035 0.025 1.24 0.05 0.63
36 160 0.41 0.13 0.48 0.043 0.016 1.75 0.22 0.17
37 32A 0.14 0.19 0.50 0.043 0.031 0.19 0.06 0.16
38 33 0.10 0.25 0.46 0.006 0.007 3.00 0.12 0.13
39 34 0.25 0.16 0.40 0.021 0.019 1.78 0.27 0.23
40 35 0.24 0.17 0.42 0.005 0.010 1.84 0.20 0.18
41 36 0.14 0.19 0.46 0.009 0.006 3.55 0.12 1.11
42 36 0.15 0.25 0.41 0.008 0.020 3.02 0.15 0.90
43 37 0.09 0.33 0.33 0.031 0.018 4.87 0.08 0.13
44 38 0.11 0.21 0.30 0.004 0.014 5.04 0.30 0.13
45 39B 0.15 0.20 0.38 0.018 0.027 4.33 0.17 1.16
46 39B 0.14 0.28 0.45 0.017 0.016 4.11 0.24 1.11
47 39B 0.15 0.23 0.33 0.015 0.015 4.25 0.25 1.11
48 320 0.14 0.22 0.50 0.015 0.010 2.13 0.18 2.00
49 325 0.20 0.11 0.53 0.005 0.026 1.75 0.25 0.50
50 352 0.20 0.15 0.71 0.018 0.032 1.13 0.05 0.80
51 353 0.18 0.26 0.93 0.008 0.016 1.34 0.11 1.11
52 354 0.19 0.21 0.90 0.015 0.017 1.97 0.18 1.08
53 0.40 0.23 0.52 0.004 0.008 1.83 1.00 1.25 0.15
54 0.31 0.13 0.54 0.025 0.011 1.67 0.24 1.24
55 0.41 0.35 0.58 0.020 0.013 1.43 0.31 1.27
56 0.49 0.17 0.52 0.022 0.013 1.50 0.29 1.28
57 0.38 0.33 0.55 0.021 0.010 0.16 0.31 1.25
58 0.38 0.12 0.56 0.024 0.017 3.00 0.29 1.21
59 0.38 0.12 0.57 0.023 0.010 4.95 0.29 1.22
60 0.41 0.15 0.52 0.027 0.016 1.46 0.29 2.10
61 0.37 0.12 0.52 0.026 0.012 1.51 0.29 2.90
62 0.40 0.30 0.55 0.025 0.011 1.47 0.52 1.22
63 0.36 0.16 0.56 0.029 0.009 1.46 0.31 1.22 0.13
64 0.39 0.26 0.20 0.022 0.009 1.66 0.26 1.22
65 0.40 0.27 0.84 0.025 0.012 1.75 0.27 1.23
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Table 4.2: Comparison of predicted values of Ms and Bs with the experimental data (Steven
and Haynes, 1956) for a variety of alloys.

Reference No. B. S. En No. Experimental Using CDDT model
Ms (0 C) Bs (0 C) Ms (0 C) Bs (0 C)

1 12 345 365 420
2 12 370 385 520
3 13 420 600 410 535
4 14 380 560 361 427
5 15 340 350
6 16 340 580 350 418
7 17 320 550 335 398
8 18 320 560 345 396
9 18 300 560 310 356
10 19 320 540 335 397
11 19 330 570 335 402
12 21 310 570 330 386
13 22 280 540 303 401
14 23 300 500 323 380
15 23 320 520 325 387
16 24 325 530 339 400
17 24 320 530 335 381
18 25 335 510 340 402
19 25 330 500 335 349
20 26 305 520 315 373
21 26 290 480 295 349
22 28 315 440 305 366
23 28 330 470 325 392
24 30A 290 420 285 342
25 30B 295 420 285 343
26 30B 295 420 300 355
27 40B 360 450 347 411
28 45A 290 310 367
29 47 290 560 298 351
30 100 300 530 310 371
31 100 300 520 295 365
32 110 300 520 310 361
33 110 320 520 325 382
34 111 347 360 415
35 111 315 600 340 395
36 160 320 342 397
37 32A
38 33
39 34
40 35 640 542
41 36 415 550 385 362
42 36 415 580 402 534
43 37
44 38 390 550 395 452
45 39B 365 500 365 430
46 39B 390 500 375 435
47 39B 380 500 372 434
48 320 415 520 400 456
49 325 390 620 410 545
50 352 415 600 410 545
51 353 400 560 395 530
52 354 410 530 380 443
53 275 450 295 354
54 365 530 350 411
55 300 490 315 371
56 260 480 343
57 320 550 355 412
58 280 450 295 351
59 260 370 312
60 430 353
61 280 400 290 349
62 320 450 330 374
63 300 500 325 387
64 310 540 340 394
65 270 450 300 356
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Figure 4.1: Schematic free energy curve illustrating the martensite formation at a critical

value of free energy and the effect of alloying element.
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Figure 4.2: Variation of free energy change (accompanying martensitic transformation at

Ms temperature) as a function of carbon content (Bhadeshia, 1981b).
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Figure 4.3: The agreement between the Ms as calculated using the CDDT model (with
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Figure 4.5: Plot of driving force at Ms versus Ms temperature of each alloy.
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and the curve by Bhadeshia (1981b).
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Chapter 5

Partitioning of Carbon from Supersaturated
Ferrite Plates

5.1 Introduction

The equilibrium solubility of carbon in ferrite is extremely limited, and is typically far

less than the average carbon concentration of commercial steels. Excess carbon can, during

transformation, be forced into solid solution in the ferrite if the transformation interface

moves so rapidly as to trap the carbon into the ferrite before it can diffuse away from the

advancing interface. This causes the chemical potential of the carbon to increase on transfer

across the interface, and this nonequilibrium phenomenon is known as "solute trapping"

(Baker and Cahn, 1969; 1971). When martensite forms in steels, the mobility of the carbon

atoms during transformation is sufficiently small to enable all the carbon to be trapped

into the martensite, making the reaction diffusionless. The situation is not so clear for

bainite, which occurs at relatively higher temperatures where atomic mobilities are also

larger. Even if the growth of bainitic ferrite involves the complete or partial trapping of

carbon, the carbon could redistribute rapidly into the residual austenite immediately after

transformation, making it difficult to assess the situation that existed during growth.

There is therefore, a particular experimental difficulty with the bainite transformation,

that in the case of upper bainite at least, it is impossible to say anything about the initial

carbon content of the ferrite because the time taken for any carbon to diffuse into austenite

can be very small. Even though direct observations have demonstrated quantitatively that

the post transformation carbon content of bainitic ferrite tends to be significantly higher

than equilibrium (Bhadeshia and Waugh, 1981, 1982; Stark et al., 1988; 1990; Josefsson

and Andren, 1988), the data may underestimate the concentration in the ferrite during the

early stages of growth.

Early research tended to suggest that the time, td' taken to decarburise a fully su-

persaturated plate of ferrite is of the order of a few milliseconds (Kinsman and Aaronson,

1967). A more recent analysis (Bhadeshia, 1988) shows that it can in fact be much longer,
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the time for decarburisation being given by:

wO'(x - xO'')')1r°.5
td = -=D.54D (x')'O' - x)

(5.1)

where D is a weighted average diffusivity of carbon in austenite (discussed later), x is the

average mole fraction of carbon in the alloys, xO'')' and x')'O' are the paraequilibrium carbon

concentrations in the ferrite and austenite respectively, and WO' is the width of the ferrite

plate. It has pointed out that even this analysis may not be completely satisfactory given

that it does not allow for the coupling of fluxes in the ferrite and austenite, since the model

is based on the assumption that diffusion is so rapid in the ferrite that it is unnecessary

to consider its role in determining the decarburisation time (Bhadeshia, 1988). It therefore

contains nothing about diffusion in the ferritic phase.

The purpose of the present work was to re-examine the partitioning of carbon from

supersaturated ferrite into adjacent austenite using a numerical method. This should in

principle enable the treatment of diffusion in both the ferrite and austenite phases, and

at the same time permit "soft-impingement" effects to be treated relatively easily. The

overlap of the diffusion or temperature fields of adjacent particles, or from active regions of

the same particle, is called soft-impingement (Christian, 1975).

5.2 Method

5.2.1 The Diffusion Coefficients

While it is well established that the octahedral interstices represent the most favoured

sites for carbon atoms dissolved in body-centered cubic iron, it has been demonstrated

(Mclellan et al., 1965) that discrepancies in the diffusion data gathered over a wide range

of temperatures can be resolved if it is assumed that a small but significant fraction of

carbon atoms reside in the tetrahedral interstices. The actual diffusion coefficient is then

a function of three different coefficients, each representing one of the three diffusion paths

T - T, T - 0 - Tor 0 - T - 0 involving the octahedral (0) and tertrahedral interstices (T):

D~ = </JDo-T-o + (1 - </J)f DT-T + (1 - </J)(1 - f)DT-O
-
T (5.2)

where </J is the fraction of carbon atoms which occupy the octahedral interstices, and is

given by:

(1 !:i.E !:i.S )-1
</J = 1 - "2exp RT exp - If + 1
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with !:!.E = 3.017 x 105 J mol-1 and !:!'S/ R = -4.4. R is the universal gas constant. Of all

the atoms which occupy the tetrahedral interstices, f represents the fraction which diffuse

by jumping directly between adjacent tetrahedral sites, rather than by the T - 0 - T route.

Mclellan et al. found that f = 0.86 and that the diffusion coefficients are given by:

DT-T = 3.0 X 10-4 exp{ -Q2/ RT} m2 S-l

Q1 = 19.3 X 103 x 4.184 Jmol-1

Q2 = 14.7 X 103 x 4.184 Jmol-1

(5.3)

(5.4)

The diffusion coefficient of carbon in austenite is very sensitive to the carbon concentration

(Wells et al., 1950; Smith, 1953) and this has to be taken into account in treating the

large concentration gradients that develop in the austenite. Trivedi and Pound (1967) first

considered this problem in detail and found that a weighted average diffusivity D can be

substituted into the kinetic equations without any loss of accuracy:

D= (X D'Y{x,T}dx/(x-x[)
JXI (5.5)

where x [ is the carbon concentration in the austenite at the, / a interface. Although this

equation is strictly valid only for steady-state growth, it can to a very good approximation

be used in circumstances such as the present, where the diffusion profile actually varies

with time. The function D'Y {x, T} adopted in this work is based on the theory of Siller and

McLellan (1970) and Bhadeshia (1981d).

5.2.2 Finite Difference Analysis

The method used here is a standard finite difference technique, which has been discussed

fully by Crank (1975). The austenite-ferrite aggregate is treated as a composite diffusion

couple in which flat slabs of austenite, each of thickness w'Y are welded on either side of a slab

offerrite of thickness Wo Figure 5.1. As a first stage in the analysis, the slab dimensions were

chosen to avoid the possibility of soft-impingement in the austenite, while at the same time

keeping the computing time required to a minimum and maintaining a realistic thickness

for the ferrite plate, with w'Y = 0.2 J.Lm and Wo = 0.4J.L m. For austenite, soft-impingement

occurs when the carbon concentration in the austenite at the furthest point away from the

a/, interface rises beyond the initial concentration X, and can be avoided in spite of the
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Figure 5.1: Schematic illustration of the ferrite/austenite diffusion couple.

rather small value of w,. because the diffusivity of carbon in austenite is much smaller than

in ferrite. Thus, the ferrite becomes decarburised long before the carbon concentration

profile has penetrated all regions of the austenite. The diffusion process considered is one-

dimensional (normal to the aIy interface), and is symmetrical about the centerline so that

only half the couple needs to be considered in the finite difference analysis. The austenite

and ferrite regions were for the purposes of numerical analysis, divided into a number of

slices n,. and no respectively, with

w~,= w)n,. (5.6)

(5.7)

The choice of the number of slices into which each phase may be divided is not entirely

arbitrary since the diffusion processes in the two phases are coupled. The larger the number

of slices, the greater the accuracy of the method, although the calculations are then more

expensive in terms of computing time. The choice of n,. is initially made arbitrarily, so that

w~ can be calculated. This in turn leads to the time t, representing the interval between

successIve recalculations of the concentration profile of the whole diffusion couple:

(u·~)2
t = r -=- (5.8),. D

where r,. is a. grid parameter in the finite difference method, which can be set to a smaller

value for higher accuracy. Having thus fixed the interval t, the thickness of the ferrite slice
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follows as:

w~ = (tD~ /r (,)(0.5). (5.9)

r a is another dimensionless grid parameter, this time for ferrite, which in the present work

is taken to be the same as r "(. The implications of choosing different values of the grid

parameter are discussed later. Note that since the diffusivity in ferrite is much larger than

in austenite, the number of slices in the austenite has to be much larger than in ferrite in

order to ensure that w~ ~ wa.

The finite difference analysis is carried out using nondimensional variables, the concen-

trations, x, and distances, w, being normalised with respect to average concentration in the

alloy and the thickness of austenite respectively (Crank, 1975). The normalised variables

are defined as follows:

w' = w/w"(

x' = x/x

(5.10)

(5.11)

(5.12)

where D is the diffusion coefficient. Since the ferrite occupies the space 0 ~ w' ~ (wa/2w"(),

the region is covered by a grid of rectangles of sides 8w' and M'. The coordinates of a

grid point (w', t') can be written (i8w',j8t'), where i and j are integers.

concentration at that point (for phase 1') is written X~~j'

The explicit finite difference formula is then given by (Crank, 1975):

'a 'a + ('a 2 'a +'a )xl '+1 = x·· r X· 1 . - X·· X '+1 .•J '.J a, - .J '.J '.J

The normalised

(5.13)

where the r a = M' /(8w')2 is grid parameter for the finite difference parameter. The nor-

malised concentration x~a in the 0' at the 0'/1' interface has been taken as xa"( Ix. The

relationship (5.13) has been used to calculate the value of X at all points along successive

time rows of the grid, for the initial conditions that x~ao = xa"( Ix, and x~ao = 1 for all i > O., ,
A similar analysis was carried out for the austenite, and the diffusion processes in the

ferrite and austenite were related by using the mass conservation condition which ensures

that the amount of carbon leaving the ferrite at any instant is identical to that entering the

austenite (i.e. the fluxes to and from the interface must be equal):

D('''( '''() Da('a 'a)Xo . - x·· = Xl . - Xo .,J ',J C.J .J
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where x~~o= 1 for all i > O. Thus the value of X~~j = 1 can be obtained by using the above

equation.

The concentrations in the slices with i = imax are not significantly affected during

the early stages of diffusion, but soft-impingement must eventually occur in both phases,

the ferrite first since D~ ~ DJ. When soft-impingement does occur, the concentrations

in these limiting slices can be calculated by reflecting the concentration profile across an

imaginary boundary located at imax; the finite difference formula is then given by:

x',"! . = x'''! . + 2r (x~"! , - x~"! .)
Ima%tJ+l 'ma,r,J "'Y'mc:u:--1,J tma.z:,J

5.3 Results and Discussion

(5.15)

The calculations were carried out for Fe-OAC and Fe-OAC-2Mn wt. % alloys over the

temperature range 280-480 QC at 40 QC intervals. The plain carbon steel was chosen for its

simplicity and the Fe-C-Mn alloy to illustrate the effect of making a solute addition which

increases the stability of austenite. The calculated transformation-start temperatures are

listed in Table 5.1; the method used for the calculations is due to Bhadeshia and Edmonds

(1980) and Bhadeshia (1981a-c). The paraequilibrium (a+,)/r Ae3' phase boundaries are

presented in Figure 5.2, calculated using the method described in (Aaronson et al., 1966;

Bhadeshia and Edmonds, 1980). The Ae3" boundary refers to the corresponding parae-

quilibrium austenite composition when the ferrite is associated with 400 J mol-1 of stored

energy, consistent with the strain energy due to the shape deformation accompanying the

growth of bainite (Bhadeshia, 1981a). Most of the calculations were carried out without

incorporating the stored energy term, since plastic deformation or elastic interactions be-

tween adjacent sheaves could lead to a lowering of the magnitude of the stored energy. The

equilibrium or paraequilibrium carbon concentration of bainitic ferrite is always very small,

and was taken in all cases to be given by the thermodynamically extrapolated a/(a + ,)
Ae1 phase boundary for plain carbon steels (Bhadeshia, 1982).

Table 5.1: Chemical compositions (wt.%) of the alloys used in this investigation.

Alloy
Fe-OAC wt.%
Fe-OAC-2Mn wt.%

Ms (QC)
396
298
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Figure 5.3 shows the calculations for a Fe-OAC wt.% alloy, using both the analytical

solution and the finite difference method; the time for decarburisation is that required for the

ferrite to uniformly achieve its equilibrium concentration. The finite difference calculations

were repeated using many different values of the grid parameter (with r° = r "y), the aim

being to find the point where a red uction in r makes little difference to the results. Figure 5.3

shows that the calculations with different r values begin to converge as r falls below about

0.16. Thus, all subsequent calculations were conducted with the grid parameter set to 0.04

in order to ensure high numerical accuracy while at the same time keeping the computing

time involved within reasonable bounds.

It is also apparent from Figure 5.3 that the analytical solution persistently underes-

timates the diffusion time, the discrepancy with the numerical analysis increasing as the

temperature decreases. This is because the analytical equation does not allow for the cou-

pling offluxes in the austenite and ferrite. It is based on the assumption that the diffusivity

in the ferrite is so large, that any concentration gradients within the ferrite remain ex-

tremely small. This assumption must fail as the carbon concentration in the austenite at

the interface rises (i.e. as the transformation temperature is reduced) because of the need to

satisfy the mass conservation condition at the interface (equation 5.14). The diffusivity of

carbon in ferrite is much larger than in austenite, so that the composition XO in the ferrite

at the interface will almost always deviate from equilibrium (x°"Y) in order to maintain com-

patibility with the mass conservation condition, and will only reach the equilibrium value

towards the end of the partitioning process. As x"Y° increases, the concentration gradients in

the ferrite must also increase, and the partitioning process becomes to an increasing extent

limited by diffusion within the ferrite. As a consequence, the diffusion process time as pre-

dicted by the finite difference method becomes larger than that estimated by the analytical

equation when the transformation temperature is reduced. Typical concentration gradients

that develop during the partitioning process are illustrated in Figure 504, and confirm that

diffusion in the ferrite becomes more of a limiting factor as the equilibrium concentration

in the austenite at the interface rises. Hence, concentration gradients within the ferrite

at 450 QC are seen to virtually vanish after just 0.04s, whereas substantial gradients are

apparent for the 330 QC heat treatment after the much longer time interval of LIs.

This is also illustrated by the fact that the difference in the carbon concentration

In the middle of the ferrite plate, compared with that at the aIy interface, increases as

the temperature decreases (Figure 5.5). At any specified temperature, the gradients in
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the ferrite are largest at the beginning of the decarburisation process and diminish as the

partitioning process slows down with the build up of carbon in the austenite ahead of the

oIr boundary (Figure 504).

A reduction in the paraequilibrium carbon concentration x"YCt at a constant temperature

must lead to an increase in the time required to achieve a specified level of partitioning,

since the driving force for diffusion is reduced. Thus, an addition of 2 wt.% Mn to the plain

carbon steel shifts the Ae3' phase boundary to lower carbon concentrations (Figure 5.2)

and the diffusion times increase significantly (Figure 5.6) when the comparison is made

at the same temperature. Since a lowering of x"YCt also causes a concomitant decrease

in any concentration gradients in the ferrite, the discrepancy between the analytical and

finite difference calculations decreases as the concentration of austenite stabilising element

increases (c.f. Figures 5.6a, 5.6b). The effect of alloy chemistry on the decarburisation

time is of vital importance in rationalising the upper bainite, lower bainite and martensite

reactions in steels. Without such an alloy effect, it would not be possible to explain, for

example, why the temperature at which lower bainite grows in a given steel might be higher

than that at which upper bainite forms in another steel (Takahashi and Bhadeshia, 1990).

Figure 5.6c ill ustrates the effect of the 400 J mol-1 of stored energy, on the diffusion

times calculated for the Fe-OAC wt.% alloy. The stored energy term manifests in the

calculations via x"YCt
, which is given by the Ae3" curve instead of the Ae3' curve utilised

in all the other calculations. The effect is significant but does not alter any trends and is

neglected for the reasons stated earlier.

The analytical approach indicates that the mean carbon concentration in the ferrite

should decrease parabolically with time, i.e. (xCt - xCt"Y) ex: to.5 in the absence of soft-

impingement effects. Figure 5.7 illustrates this variation, as calculated using the finite

difference method; it is evident that the parabolic relation is still valid, since in all cases

the deviations from linearity are found to be negligible. This might be a consequence of the

speed with which the concentration gradients in the ferrite collapse after an initial transient.

5.3.1 Soft-impingement in the Austenite

In all of the cases discussed above, the concentration in the austenite far from the

ai, interface never rose significantly above x. This is because the diffusion coefficient for

carbon in austenite is far smaller than that in ferrite. For the purposes of the decarburisation

process, the austenite therefore remained essentially semi-infinite in extent in the direction

of the diffusion flux, even though the total thickness of the austenite on either side of the
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ferrite plate was taken to be identical to the full thickness of the ferrite plate (0.4 pm).

There are in practice many circumstances where plates offerrite grow in close proximity,

with only small regions of austenite trapped between the ferrite plates. This is particularly

the case for bainitic transformation where platelets of supersaturated ferrite grow in par-

allel formations called "sheaves", adjacent platelets being separated by rather thin films

of austenite. The intervening austenite films tend to become thinner as the undercooling

below the equilibrium transformation temperature increases, probably because the plate

nucleation rate then rises. A similar situation arises during martensitic transformation in

steels, when large numbers of supersaturated plates form at rates much faster than the

time needed for the diffusion of carbon into the austenite. The films of austenite between

the plates of martensite are then extremely thin « 20 nm, Sarikaya et al., 1982). In such

circumstances, the composition of the austenite in all regions is likely to rise beyond x
during the decarburisation process, even in the furthest regions from the ferrite/austenite

interface. Thus, soft-impingement in the austenite is likely to occur before the ferrite has

completely decarburised.

The soft-impingement phenomenon was investigated by progressively reducing the

thickness of the austenite slabs adjacent to the ferrite plate (Figure 5.8). For a ferrite

plate of fixed thickness 0.4 pm, the thickness of the two austenite slabs in contact with the

plate was progressively reduced from 0.2 pm towards zero, and the time taken for diffusion

within the ferrite to cease was computed. For the particular circumstances considered, the

austenite behaves as if it is of semi-infinite extent down to a thickness of about 0.05 j1m.

Hence, for larger austenite thicknesses, the time plotted on Figure 5.8 is that taken for

xa = xa"l. As the thickness is red uced below 0.05 pm, the time for diffusion to stop in the

ferrite goes through a maximum, because the austenite is no longer able to accommodate

all the excess carbon within the ferrite (it saturates at the concentration x"la). This can

be concluded from the fact that the carbon concentration in the ferrite when diffusion in

the ferrite stops, rises towards x as w"I decreases. The maximum in the time occurs be-

cause initially, soft-impingement in the austenite leads to a reduction in the diffusion flux

from the ferrite. As the austenite thickness is decreased further, it becomes impossible

to accommodate all the carbon that is rejected from the ferrite; the austenite achieves its

paraequilibrium carbon concentration before the ferrite has been decarburised, and diffu-

sion ceases even though xa > xa"l. The time required to saturate the austenite decreases

with w"I' giving the maximum observed in Figure 5.8.
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The results prove that if the plates of supersaturated ferrite form sufficiently rapidly,

and leave very limited regions of austenite untransformed, then it becomes impossible to

partition all of the excess carbon into the residual austenite. The carbon must remain

in solution or precipitate as carbides within the ferrite. This is exactly what happens

during martensitic transformations in low-alloy steels, where only minute quantities of

retained austenite are to be found in the microstructure obtained by quenching to ambient

temperature.

5.4 Conclusions

The factors controlling the time required to partition excess carbon from a super-

saturated ferrite plate have been examined using a finite difference method. The results

have been compared with an earlier analytical approximation, which is found to give a

poor representation of the diffusion problem when the concentration in the austenite at

the interface becomes large (i.e. when the concentration gradients in the ferrite become

significant). The analytical model in general underestimates the decarburisation time, the

discrepancy increasing with lower temperatures or with alloys containing smaller quantities

of austenite stabilising elements. The basic trends are, however, found to be similar for the

two models, both models predicting much larger times than has been generally accepted in

the past. Soft-impingement in the austenite is found to reduce the rate at which carbon in

partitioned from supersaturated ferrite. There are also circumstances where the amount of

austenite available is inadequate to fully absorb the excess carbon in the ferrite, in which

case diffusion stops even though the ferrite is supersaturated with carbon.
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Figure 5.2: Calculated paraequilibrium (-y + a)!f phase boundaries for the steels studied.

The curves are labelled Ae3' to identify them as being for paraequilibrium, although for the

plain carbon steel, the Ae3' curve is identical to the conventional Ae3 curve of the phase

diagram. The Ae3" curve is the paraequilibrium phase boundary calculated assuming a

stored energy for ferrite of 400 J mol-I. (a) Fe-O.4C wt.%. (b) Fe-0.4C-2Mn wt.%.
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Figure 5.3: Calculated times required to decarburise a supersaturated plate of ferrite of

thickness (OA/L m) as a function of temperature in a Fe-OAC wt.% steel. The calculations

include those carried out using the analytical solution, and using different grid parameters

for the finite difference method.
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austenite per ferrite plate, one on each side of the ferrite plate. The discontinuous curve

represents the carbon concentration in the ferrite at the point where diffusion stops.
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Chapter 6

An Analysis of Compositional Data on al Plates
in an Ag-44.9Cd at. % Alloy

6.1 Introduction

The structure of the parent phase, in an Ag-44.9Cd at.% alloy at elevated temperatures

is disordered body-centered cubic (bcc). With decreasing temperature, the alloy undergoes

a disorder-order transition to f32 with the CsCI structure (Masson and Barrett, 1958). It

has been reported that in an Ag-Cd alloy, a platelike phase, "bainite", will precipitate

during ageing after quenching from a high temperature. The incubation time on a time-

temperature-transformation (TTT) diagram has been measured to be 200 seconds at 160 QC

and was found to decrease with an increase in temperature (Kostic et al. 1976). During the

f32 --+ al transformation two forms of precipitates are commonly observed and the conditions

of their formation depend on the alloy composition and the transformation temperature

(Flewitt and Towner, 1967; Hornbogen and Warlimont, 1967; Srinivasan and Hepworth,

1971; Cornelis and Wayman, 1974; Kostic and Hawbolt, 1979). At the higher end of

the transformation temperature range, a rod-shaped Widmanstatten ferrite form of the

equilibrium a phase is formed while at the lower temperatures, a metastable plate-like

product, often referred to as substitutional bainite al is found (Garwood, 1954-1955; 1965).

The alloy under consideration undergoes a solid state phase transformation in which

the metastable product phase exhibits the geometry and crystallography of a displacive

transformation although formation of the equilibrium a phase requires a composition change

involving long range diffusion (Wu et al. 1988). The controversy arises in the formation of

fcc al plates from the metastable f32 phase (ordered bcc, B2 structure) in Ag-Cd and

Cu-Zn as to whether shear or diffusional growth is the operating mechanism and whether

or not the plates fulfil all the criteria presently accepted for martensite. If not then the

growth mechanism is presumably diffusional (Lorimer et al. 1975). In the case of interstitial

solid solutions, the argument has been made that the interstitial solute can diffuse while

the substitutional atoms undergo a shear mechanism (Christian, 1965a; Olson et al. 1989;
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(6.2)

1990). No such mechanism should, however, be possible when both phases are substitutional

(Lorimer, 1975).

It has also been reported that plates of the 0'1 phase exhibiting chevron-shaped sur-

face traces were found to form isothermally above room temperature in the /32 phase of

several Cu- and Ag-based alloys (Garwood, 1954-55; Garwood and Hull, 1958; Flewitt and

Towner, 1967; Hornbogen and War1imont, 1967; Srinavasan and Hepworth, 1971; Agers and

Massalski, 1972; Massalski et al. 1972). These plates have been considered to be bainite by

analogy with bainite in ferrous alloys. Flewitt and Towner (1967) and Cornelis and Wayman

(1973) observed the bainite plates in a Cu-Zn alloy. According to them the bainite plates

were formed initially without a change in composition, and the partitioning of Cu and Zn

atoms occurred only after the plates had formed. According to the analysis of Kostic, Haw-

bolt and Brown (1976) the bainite plates which formed in the /32 phase of a Ag-44.9Cd at.%

alloy at temperatures 160 to 300 cC, grew rapidly to a given length and maintained the

length for extended transformation times although they continued to thicken. They claimed

that the thickening displayed parabolic kinetics in agreement with the Frank (1950) and

Zener (1949) model for volume diffusion-controlled precipitate growth. The lengthening of

the plates was then analysed using Trivedi (1970a; 1970b) model. It was established that

the plates lengthened at a rate approximately 180 times longer than permitted by volume

diffusion and no explanation was given for this rapid lengthening of plates. It has been

argued that despite the implications of the geometry and crystallographic evidence, the 0'1

phase forms with the composition of the equilibrium 0' phase (Lorimer et al. 1975).

The present work was started to investigate the hypothesis that 0'1 plates are formed

with an excess of Cd and if enough time is given after their formation, cadmium can diffuse

into the neighbouring /32 matrix. In the analysis of Wu et al., (1988) the ageing time utilised

was very small and that probably may not have been sufficient to see any diffusion take

place. Since the movement of the interface is much faster than permitted by diffusion, the

cadmium is probably trapped during transformation. According to the Aziz model (1982,

1983) for solute trapping the partitioning coefficient can be written as:

k = XO'I = 1+ TJI<e (6.1)
p X~2 1+ TJ

where TJ = DCd/)..V, XO'I and X~2 are the Cd compositions in aI-plate and in the /32 matrix

at the interface. The equilibrium partitioning coefficient is:
XO'I{J2

ke = -1>- = 0.864
X,...,20' 1

72



where XOlI/32 and X/3201
1 are the equilibrium Cd composition in the a1-plate and {32matrix

respectively. Using the values of diffusivity of Cd in Ag-Cd (DCd), interatomic spacing

(,X) and interface velocity (V) as 6.377 X 10-16 m2s-1 (discussed later), 0.25 nm (Aziz,

1982; 1983) and 2.27 x 10-7 ms-1 (Kostic et al. 1976) respectively, the following values of

partitioning coefficient have been calculated.

kp = 0.953 ~ 1 (6.3)

This means that there is almost no partitioning of cadmium during the growth of acplates.

Thus it is reasonable to think that in the {32 -T a1 transformations, plates of a1 are formed

with an excess of cadmium. The cadmium then diffuses to the neighbouring {32 matrix

during ageing.

An analytical model presented by Bhadeshia (1988) can be applied to the non-ferrous

alloys of interest. According to this model the time taken to diffuse all of the excess cadmi urn

from a1 plate in Ag-Cd alloy can be witten as:

W (x - xOII/32)1l"0.5t - __ 01_1 _

d - 4(Dg2d)O.5(x/32011 -x)
(6.4)

where Dg'd is diffusivity of cadmium in {32 matrix (discussed in next section), x is the

average at.% of cadmium in the alloys, XOII/32 and X/3201
1 are the equilibrium cadmium

concentrations in the acplate and {32 matrix respectively, and WOII is the width of the ac
plate. The values of equilibrium concentrations for different temperatures were taken from

the references (Hansen, 1958; Binary Alloy Phase Diagrams, 1990). The data are given in

Table 6.1.

Table 6.1: Equilibrium concentration of Cd in a1-plate (xOII/32) and in (32 matrix (x/32011) in
Ag-Cd alloy (Hanson, 1958; Binary Alloy Phase Diagrams, 1990).

Temperature XOII/32 X/32011

(OC) (at.%) (at.%)

160 40.5 49.7
180 40.7 49.5
200 41.0 49.2
220 41.5 48.6
240 42.0 48.6
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Ag-Cd phase diagram (Hansen, 1958; Binary Alloy Phase Diagrams, 1990) is shown

in Figure 6.1. As in the case of ferrous alloys, it has pointed out that even this analysis

may not be completely satisfactory given that it does not allow for the coupling of fluxes

in the plate and matrix (Bhadeshia, 1988). It therefore contains nothing about diffusion in

the ai-plate.

The purpose of the present work was to re-examine the partitioning of cadmium from

supersaturated ai-plate into the adjacent (32 matrix using a numerical method. This should

in principle enable the treatment of diffusion in both the plate and matrix, and at the same

time permit "soft-impingement" effects to be treated relatively easily. The overlap of the

diffusion or temperature fields of adjacent particles, or from active regions of the same

particle, is called soft-impingement (Christian, 1975).

6.2 The Diffusion Coefficients

The diffusivity of Cd in Ag-Cd has been calculated from the data available from three

different sources given below. In all of these cases the diffusivity of Cd in ai plate (D~d)
and in (32 matrix (Dg2

d) are assumed to be identical i.e.

DCl'1 - D{32 - D
Cd - Cd - Cd· (6.5)

This assumption was made for the reason that diffusion data for ai and (32 phases in Ag-Cd

alloy are not available separately for the individual phases.

6.2.1 Radiotracer diffusion

Lexcellent et al., (1989) performed measurements of creep rates and the radiotracer

diffusion coefficients in equiatomic (32 Ag-Cd over the temperature range of 440 to 610°C.

The empirical relation for the temperature dependence of diffusivity (in m2s-i) is given by:

Dg2
d = 0.77 X 10-4 exp( -Q/ RT) T > 773K (6.6)

Where activation energy, Q = 9.2004 X 104 J mol-i. The diffusion data did not obey an

Arrhenius equation over the whole experimental temperature range explored in Ag-Cd but

it bends to lower values of diffusivity at lower temperatures. The value of Ag-Cd at 240

°C has been calculated by extrapolation of the bent part of the curve to 240°C as shown

in Figure 6.2. A least square fit of the data to the bent part yielded the following relations

for the temperature dependence of the diffusion coefficient of Cd;
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or

Dg2
d = 0.7698 exp( -1.5068 X 105 IRT) T < 775K

6.2.2 Potentiostatic Dissolution

(6.7)

Pchelnikov et al., (1985) deduced the diffusivity of Cd in /32 Ag-Cd at room temper-

ature from potentiostatic dissolution experiments by assuming that the rate of dissolution

was governed by solid state diffusion (Diffusion and Deffect Data, 1986). They reported the

value of diffusivity of Cd in Ag-30Cd at.% as 1.4 X 10-17 m2s-1.

6.2.3 Self-diffusion

The diffusion coefficient of cadmium in Ag-44.9Cd at.% at 240 QC (513 K) has been

calculated by extrapolating data based on self-diffusion experiments (Gardner et al. 1968;

Diffusion Data, 1969). Using the serial sectioning technique, Gardner et al. studied the

self-diffusion of Cd115 in various Ag-Cd alloys. The data are given in Table 6.2.

Table 6.2: Self-diffusion of Cd115 in various Ag-Cd alloys (Gardner et al. 1968; Diffusion

Data, 1969).

Temperature
(QC)

563.7

634.9

681.9

Cd composition
(at.%)

37.20
33.02
30.50
38.12
33.75
29.90
37.82
32.99
30.05

Diffusivity
(m2s-1 )

4.33 X 10-14

4.12 X 10-14

2.41 X 10-14

2.81 X 10-13

2.18 X 10-13

1.10 X 10-13

5.83 X 10-13

4.64 X 10-13

2.87 X 10-13

The extrapolated curves of Cd composition versus diffusivity at different temperatures

are shown in Figure 6.3a. The natural log of the estimated values of diffusivity for 44.9Cd

at.% (In DCd) were then plotted versus corresponding temperatures as shown in Figure 6.3b.

The final value of diffusivity was then estimated by fitting the curve shown in Figure 6.3b.

The empirical relation obtained by curve fitting is given by:

In DCd = -9.0877 - 1.8088 x 104 IT
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or

DCd = 8.171 X 10-10 exp( -1.503 X 105 IRT)

where T and DCd are in the units of Kelvin and m2s-l respectively.

6.3 Finite Difference Analysis

(6.8)

The method used here is a standard finite difference technique, which has been discussed

fully by Crank (1975). The same technique has also been used in Chapter 5 (Mujahid and

Bhadeshia, 1992). The matrix-plate aggregate is treated as a composite diffusion couple

in which flat slabs of matrix, each of thickness W{32 are welded on either side of a slab of

plate of thickness WOl' Figure 6.4. The slab dimensions were chosen to avoid the possibility

of soft-impingement in the matrix and to compare the results with earlier published work

(Wu et al. 1988). A number of plate thicknesses in the range 60-300 nm were chosen, while

the matrix thickness was taken as 400 nm. However the averaging of Cd composition in

the matrix was done at 20 nm interval in order to make comparison with the results by Wu

et al., (1988). In the matrix, soft-impingement occurs when the cadmium concentration

in the matrix at the furthest point away from the all (32 interface rises beyond the initial

concentration X. It was found that, the plate looses all of the excess cadmium long before

the cadmium concentration profile has penetrated all regions of the matrix. The diffusion

process considered is one-dimensional (normal to the ad (32 interface), and is symmetrical

about the centerline so that only half the couple needs to be considered in the finite difference

analysis (Chapter 5). The matrix and plate regions were divided into a number of slices

n{32 and nOl respectively, with

(6.9)

(6.10)

A compromise has to be made between accuracy and computer time in the choice of the

number of slices. The larger the number of slices, the greater the accuracy of the method,

although the calculations are then more expensive in terms of computing time. The choice

of n{32 is initially made arbitrarily, so that W~2 can be calculated. This in turn leads to

the time t, representing the interval between successive recalculations of the concentration

profile of the whole diffusion couple:

(6.11)
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where r{32 is a grid parameter in the finite difference method, which can be set to a smaller

value for higher accuracy. Having thus fixed the interval t, the thickness of the aI-plate

follows as:

(6.12)

r al is another dimensionless grid parameter, this time for a plate, which in the present work

is taken to be the same as r {32'

The finite difference analysis is carried out using nondimensional variables, the concen-

trations x and distances w being normalised with respect to average concentration in the

alloy and the thickness of matrix respectively (Crank, 1975). The normalised variables are

defined as follows:

w' = wlw{32

, I-x = x x

(6.13)

(6.14)

(6.15)

where D is the diffusion coefficient. Since the aI-plate occupies the space 0 ~ w' ~

(Wa)2W{32), the region is covered by a grid of rectangles of sides 8w' and 8t'. The coor-

dinates of a grid point (w', t') can be written (i8w', j8t'), where i and j are integers. The

normalised concentration at that point (for aI-plate) is written x~~r
The explicit finite difference formula is then given by (Crank, 1975):

la I _ la I + ('a I 2 'a I + 'a I )X I .+ I - x·· r x· I . - x·· X .+ I .,) 1,) al 1- ,) 1,) 1 ,) (6.16)

where the r a1 = 8t'/(8w')2 is grid parameter for the finite difference parameter. The

normalised concentration x~al in the al at the ad f32 interface has been taken as Xal{32 Ix.
The relationship (6.16) has been used to calculate the value of x at all points along successive

time rows of the grid, for the initial conditions that x~~d= Xal{32 Ix, and X~~OI = 1 for all

i> O.

A similar analysis was carried out for the matrix, and the diffusion processes in the

plate and matrix were related by using the mass conservation condition which ensures that

the amount of cadmium leaving the plate at any instant is identical to that entering the

matrix (i.e. the f1uxes to and from the interface must be equal):

D{32 ('{32 '(32) _ Dal ('al 'al)
Cd Xo . - x·· - Cd Xl . - Xo .,) 1,) ,) ,)
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where X'fJ
0
2 = 1 for all i > o. Thus the value of xtJ~= 1 can be obtained by using the above

'. I

equation.

The concentrations in the slices with i = imax are not significantly affected during

the early stages of diffusion, but soft-impingement must eventually occur in both phases,

the ferrite first since D~~ ~ Dg2
d• When soft-impingement does occur, the concentrations

in these limiting slices can be calculated by reflecting the concentration profile across an

imaginary boundary located at imax; the finite difference formula is then given by:

(6.18)

6.4 Results and Discussion

The calculations were carried out at Ag-44.9Cd at.% alloys for 240 QC for different

plate sizes (in the range 60-300 nm) with different aging time. The equilibrium values of

concentration were taken from Wu et al., (1988). The calculations for the concentration

profile were repeated with different values of grid parameter (taking r 01 = rfJ2) in order

to find the value of the grid parameter where a reduction in r makes a little difference to

the results. Figure 6.5 shows that the results begin to converge when the value of r gets

smaller. Thus, a value of grid parameter r of 0.05 was found to be a good compromise

between numerical accuracy and computer time.

The finite difference model takes into account the coupling of fluxes in the /32 matrix

and 0'1 plate through equation 6.17. Typical concentration gradients that develop during

the partitioning process for freshly formed bainite plate of 160 nm projected length and

aged for 30 s, are illustrated in Figure 6.6. This figure compares the calculated profile with

the earlier experimental results obtained by Wu et al., (1988). This comparison shows that,

in the case of the matrix, there is a very good agreement between theoretical and earlier

experimental results but there is a difference in the case of the plates. Both theoretical and

experimental results show that the cadmium concentration in /32 matrix increases gradually

as the interface is approached. For the O'l-plate, the calculated concentration decreases

gradually from the middle of the plate when it approaches the interface whereas there is no

significant increase in composition in the experimental data. A uniform plate composition

is only predicted at long times. The diffusion profiles in the matrix (both observed and

calculated) are, however, significant and show a composition difference after as little as 30

seconds of ageing time when transformed at 240 QC .
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Figure 6.7 compares the concentration of cadmium as a function of specimen ageing

time, due to the partitioning of cadmium from the 0'1 bainite plate, between calculated and

experimentally measured values for plates of different sizes. The comparison of calculated

results with the observed values (Wu et al. 1988) is encourging. It strengthens the idea

that there is some degree of supersaturation inspite of the fact that there is little difference

in the equilibrium compositions of both phases. In Figure 6.8 the time taken to diffuse

all of the excess cadmium versus different transformation temperatures is illustrated. The

comparison of the values calculated from using finite difference method with that calculated

by analytical method (Bhadeshia, 1988) shows that the analytical method underestimates

the diffusion time because it does not take into account the coupling offluxes at the interface.

6.4.1 Soft-impingement in the {J2 Matrix

In all of the cases discussed above, the concentration III the matrix phase far from

the 0'1/ {J2 interface never rose significantly above X. This is because there is a very small

difference in the equilibrium cadmium composition in both phases. For the purposes of

the partitioning of cadmium, the matrix therefore remained essentially semi-infinite in

extent in the direction of the diffusion flux. The thickness of the matrix has been taken

to be sufficiently large (400 nm) to avoid soft-impingement but averaging of cadmium

concentration has been done at 20 nm from the interface in order to compare the results

with the earlier experimental results.

There are, in practice, many circumstances where plates of bainite grow in close prox-

imity, with only small regions of matrix trapped between the plates. This is particularly the

case for transformations where platelets of supersaturated plate grow in parallel formations,

adjacent platelets being separated by rather thin films of matrix. The intervening matrix

phase films tend to become thinner as the undercooling below the equilibrium transforma-

tion temperature increases, probably because the aI-plate nucleation rate then rises. In

such circumstances, the composition of the matrix in all regions is likely to rise beyond x
during the partitioning process, even in the furthest regions from the plate/matrix interface.

Thus, soft-impingement in the matrix phase is likely to occur before the plate has lost all

of its excess cadmium.

The soft-impingement phenomenon was investigated by progressively reducing the

thickness of the matrix slabs adjacent to the plate (Figure 6.9). For a plate of thickness

300 nm, the thickness of the two matrix slabs in contact with the plate were progressively

reduced from 400 nm towards zero, and the time taken for diffusion within the plate to
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cease was computed. For the particular case considered, as the thickness is reduced below

400 nm, the time for diffusion to stop in the matrix goes through a maximum, because the

matrix is no longer able to accommodate all the excess cadmium within the plate (it satu-

rates at the concentration xf32CXI). This can be concluded from the fact that the cadmium

concentration in the plate when diffusion in the plate stops, rises towards x as Wf32 decreases.

The maximum in the time occurs because initially, soft-impingement in the matrix leads

to a reduction in the diffusion flux from the plate. As the matrix thickness is decreased,

it becomes impossible to accommodate all the cadmium that is rejected from the plate;

the matrix achieves its paraequilibrium carbon concentration before the plate has lost all

the excess cadmium, and diffusion ceases even though XCXI > XCXlf32. The time required to

saturate the matrix decreases with w.", giving the maximum observed in Figure 6.9.

The results prove that if the plates of supersaturated plate form sufficiently rapidly, and

leave very limited regions of matrix untransformed, then it becomes impossible to partition

all of the excess cadmium into the residual matrix phase. The cadmium must remain in

solution or precipitate as in the case of steels carbides remain within the ferrite.

The work therefore suggests an interesting experiment introducing the examination of

the chemical composition of plates which are in close proximity, in which case any super-

saturation should be more readily detectable. This would give conclusive results as far as

the mechanism of transformation is concerned.

It is clear from Figures 6.5 - 6.7 that there is a large variation in the calculated results

as a function of choice of diffusion coefficient. The variation is large enough to render the

interpretation of transformation mechanism impossible. Reliable low temperature diffusion

data for the parent and product phases are essential in order to facilitate the present work.

6.5 Conclusions

The kinetics of the partitioning of excess cadmium from a supersaturated bainite plate

of Ag-44.9Cd at.% alloy have been examined using a finite difference method. The results

have been compared with an earlier experimental results. The experimental results in gen-

eral underestimate the composition of cadmium in plate (Figure 6.6), otherwise for all the

other results there is a good agreement between calculated and measured values (Figures

6.6; 6.7). The basic trends of both experimental and calculated results are, however, found

to be similar. Soft-impingement in the matrix is found to reduce the rate at which cad-

mium is partitioned from supersaturated plate. With the reduction of the matrix thickness,
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the amount of matrix available is inadequate to fully absorb the excess cadmium in the

plate, in which case diffusion stops even though the plate is supersaturated with cadmium.

Unfortunately, the analysis shows that accurate diffusion data are essential before any firm

conclusions can be drawn about the mechanism of transformation.
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matrix per aI-plate, one on each side of the aI-plate. The discontinuous curve represents

the cadmium concentration in the aI-plate at the point where diffusion stops.
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Chapter 7

Suggestions for Future Work

A mathematical model for coupled diffusional and displacive transformations has been ap-

plied to a series of alloys to examine the growth of partially carbon supersaturated ferrite

plates. This is the only method capable of predicting the transformation temperatures

without making any assumptions about the magnitude of the driving force necessary to

induce martensitic transformation. All the parameters used in implementing the interface

response functions were obtained from independent data. This model is informative in the

sense that it directly reveals the growth velocities and compositions of the phases at the

transformation interface. All of the previous methods have been based on the empirical

regression analysis and the assumption of a constant value of driving force at Ms. On

the basis of the calculations for low alloy steels, the following specific conclusions can be

reached:

(a) It is in principle possible to envisage displacive growth involving a partial supersatu-

ration of interstitial carbon.

(b) The level of supersaturation increases steadily as the transformation temperature is

decreased. It is therefore possible to imagine the growth of ferrite plates with an

equilibrium carbon concentration at high temperatures, and diffusionless martensitic

transformation at low temperatures.

(c) Because during nucleation the surface to volume ratio of the nucleus is rather large,

extra free energy is required to account for the corresponding surface energy. Thus, the

level of carbon supersaturation that can be sustained in the nucleus tends in general

to be less than during growth at the same temperature.

The variation in the Bs temperature as a function of carbon concentration can be satisfac-

torily estimated if it is assumed that:

(1) the bainite-start temperature can be identified with the highest temperature at which

diffusionless growth becomes possi ble, and

(2) the stored energy of the growing ferrite varies with temperature.

However, the absolute values of calculated Bs temperatures show relatively poor agreement
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with published experimental data. For a number of alloyed steels, good agreement is found

between calculated and experimental Ms data. For these alloys, the Bs temperatures reveal

clear discrepancies, the reasons for which are not understood. The calculations consistently

underestimate the eperimental data. The trend in Bs temperatures nevertheless appears

to be roughly predicted. On the basis of all these results it can be concluded the model

appears to be physically reasonable.

On the basis of the work done to date, it would be fruitful to examine the following

phenomena:

(i) The current models fail to take full account of the effect of substitutional solutes on

influancing interfacial motion via a solid solution strengthening effect, it is unlikely to

be reasonable at larger solute concentrations. The interface consists of dislocations and

hence its mobility must depend to some extent on solid solution effects.

(ii) It would be worthwhile measuring the predicted variation in stored energy as a function

of transformation temperature, possibly with the help of differential scanning calorime-

tery.

(iii) The model can in principle be coupled to deal with the transition between local equi-

librium growth and paraequilibrium growth in substitutionally alloyed steels. The

interface response functions would of course be different and account would have to be

taken of the time dependence of interfacial velocities.

(iv) The work needs to be extended to nonferrous systems where substitutional atoms may

or may not diffuse during transformation, to establish the character of so-called "non-

ferrous bainites". However, any theoretical study must be complimented by a parallel

study of basic parameters such as diffusion coefficients in such alloys. There is a derth

of such data.
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Appendix I

Computer Program for CDDT Model

PROGRAM FOR THE ANALYSIS OF GROWTH INVOLVING PARTIAL SUPERSATURATION
FOR ALLOY STEELS, ON THE BASIS OF LFG THERMODYNAMICS.

o
V

o
Cr

10

o
Mo

IncrementTemperature in deg C
0.4 0 0 0
C Si Mn Ni

TYPICAL INPUT DATASET
400

C FTVSCLR PROGRAM =.PP DATA =.DD OUTPUT =.OUT PLOT =.GRAPH NAG CAMPLOT
C
C
C
C
C
C
C
C
C
C

COMMON XI(50,50,16),GID(50,50,16),FE(50,50,16),
&VR(50,50,16),CTEMP,MUM,XAL(50,50,16),XALP(12,16),FN1(12,16),
&FN2(12,16),PT1(12,16),PT2(12,16),PTF1(12,16),PTF2(12,16),
&ANS1(50,50,16),ANSll(100),VKR1(12,16),VKR2(12,16),
&XIll(12,16),XI22(12,16),XBAR

COMMON /ONE/ G(lO)
COMMON /TWO/ TDSE
COMMON /THREE/ CC(8),T10,T20
COMMON /FOUR/ W
DIMENSION XMAX2(100),GDD(50,50,16),

&XALPHA1(50,50,16),XMAX1(50,50,16),C(10),
&ERROR1(50,50,16),PECLET1(50,50,16),MOLVOL1(50,50,16),
&RADIUS1(50,50,16),CAPCON1(50,50,16),EPSI1(50,50,16),
&OMEGA1(50,50,16),VMAX1(50,50,16),XMAXR1(50,50,16)

INTEGER Tl,DUMMY,DUMMY3,ST,
&C96,Z,II,II2,II3,II22,I2,I3,I4,I5,CCK3FN

DOUBLE PRECISION XM,Wl,T,T7,Hl,Sl,R,F,Q3,
&XAS,XGS,FEA2,FEG2,CA2,CG2,G2,DG2,DFEG2,DCG2,T4,STRAIN,
&Jl,FEA1,FEG1,CA1,CG1,Gl,DG1,DFEA1,DCA1,FEA3,CA3,G3,G4,
&ACTIV,THETA,X,DACTIV,PSI,SIGMA,Dl,Ml,A5,D,YMAX,YMIN
&,M2,DASH,HH,KK,DUMMY1,DUMMY2,XALPHA,ANS,XMAX,DIFF(1000)
&,RADIUS,VMAX,XMAXR,ERROR,CARB(lOOO),SIG,OMEG,XINTER

WRITE(6,90l)
901 FORMAT(/' XAS = Xalp = TOTAL AMOUNT OF CARBON IN FERRITE'/

&' XAG = Xi COMPATIBLE CARBON CONTENT IN THE AUSTENITE'/
&' AT THE TRANSFORMATION INTERFACE' /
&' G3 = Gdd JOULES/MOL. FREE ENERGY CHANGE ACCOMPANYING THE'/
&' MOVEMENT OF THE INTERFACE WHEN THE INT.'/
&' COMPOSITIONS ARE GIVEN BY Xalp,Xi'/
&' CTEMP = TEMPERATURE IN DEGREES CENTIGRADE')

WRITE(6,902)
902 FORMAT('****************************************************')
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READ (5,*) CTEMP,TINC
READ (5,*) CC(1),CC(2),CC(3),CC(4),CC(5),CC(6),CC(7)
CALL OMEGA(W,XBAR)

1006 FORMAT(' CARBON-CARBON INTERACTION ENERGY IN GAMMA, J/MOL=' ,F7.0,
&5X,'CARBON CONTENT=',F10.5,5X,'T10=',F10.6,5X,'T20=',F10.6)

XINTER=(XBAR-0.0001DO)/20.0DO
C

DO 114 L=l,l
CTEMP = CTEMP + TINC

C
C TDSE = TEMPERATURE DEPENDENT STORED ENERGY
C STRAIN STORED ENERGY OF FERRITE, J/mol
C

I=O
TDSE= 10404303.9978638154DO+(-106411.999671455444DO*CTEMP)+

*(452.296738118523649DO*(CTEMP**2»+
&(-1.02257891654823418DO*(CTEMP**3»
&+(0.129694991884510345D-02*(CTEMP**4»+
& (-0.874920033684982458D-06*(CTEMP**5»+
& (0.245252701547428680D-09*(CTEMP**6»

IF(CTEMP.LT.465.8) TDSE=700.0
IF(CTEMP.GT.500.0) TDSE=325.0
IJ=TDSE
IK=IJ+950
DO 6000 ST=IJ,IK,25
STRAIN=ST
I=I+1
IF(ST.EQ.IK)N=I
R=8.31432
W1=48570.0
T4=CTEMP
T=T4+273
IF (T .LE. 1000) GOTO 20
H1=105525
Sl=45.34521
GOTO 19

20 H1=1l1918
Sl=51.44

19 T7=T-100*T20
IF (T7 .LT. 300) GOTO 1
IF (T7 .LT. 700) GOTO 2
IF (T7 .LT. 940) GOTO 3
F=-8.88909+0.26557*(T7-1140)-1.04923D-3*((T7-1140)**2)
F=F+2.70013D-6*((T7-1140)**3)-3.58434D-9*((T7-1140)**4)
GOTO 4

1 F=1.38*T7-1499
GOTO 4

2 F=1.65786*T7-1581
GOTO 4

3 F=1.30089*T7-1331
4 Q3=141*T10

F=F+Q3
F=F*4.187+STRAIN
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XM=0.25*XBAR
FEG1=FEG(XBAR,T,W,R)
CG1=CG(XBAR,T,W,R)

31 FEA1=FEA(XM)
CA1=CA(XM,T,W1,H1,Sl,R)
G1=(1-XM)*(F+R*T*(FEA1-FEG1»+XM*R*T*(CA1-CG1)
IF (DABS (G1) .GE. 2.0) GOTO 32
GOTO 33

32 DFEA1=DFEA(XM)
DCA1=DCA(XM,T,W1,R)
DG1=-F-(R*T*(-FEG1+FEA1»+(1-XM)*(R*T*DFEA1)+XM*R*T*(

1DCA1)+R*T*(CA1-CG1)
XM=XM-G1/DG1
IF (XM .LE. 0.0) GOTO 6000
GOTO 31

33 XMAX2(I)=XM
J=O

40 DO 41 DUMMY=1,20
J=J+1
XAS=DUMMY*XINTER
XGS=2*XAS
FEA2=FEA (XAS)
CA2=CA(XAS,T,W1,H1,Sl,R)

38 FEG2=FEG(XGS,T,W,R)
CG2=CG(XGS,T,W,R)
G2=(1-XAS)*(F+R*T*(FEA2-FEG2»+XAS*R*T*(CA2-CG2)
IF (DABS (G2) .GE. 2.0) GOTO 36
GOTO 37

36 DFEG2=DFEG(XGS,T,W,R)
DCG2=DCG(XGS,T,W,R)
DG2=(1-XAS) *R*T* (-DFEG2)+XAS*R*T* (-DCG2)
XGS=XGS-G2/DG2
IF (XGS .LE. 0.0.OR.XGS.GE.0.5) GOTO 41
GOTO 38

37 FEA3=FEA(XAS)
CA3=CA(XAS,T,W1,H1,Sl,R)
G3=(1-XAS)*(F+R*T*(FEA3-FEG1»+XAS*R*T*(CA3-CG1)
XAL(I,J,L)=XAS
XI(I,J,L)=XGS
GDD(I,J,L)=G3

41 CONTINUE
6000 CONTINUE

M=20
DO 5 J=l,M
WRITE (6,42) XBAR

42 FORMAT (I' Xbar = ALLOY CARBON CONTENT=',F8.4,' mole fraction')
WRITE(6,34)XMAX2(J),T

34 FORMAT (I' Xrn = MAX. PERMITTED CARBON CONTENT IN FERRITE=' ,F8.4,
&2X,'mo1e fraction'l
&1' DEGREES KELVIN=',FS.O)

WRITE(6,8)XAL(1,J,L)
WRITE(6,6)

8 FORMAT (I' Xalph = ',F10.4,2X,'mole fraction'/)

100



IVANTSOV ANALYSIS OF PLATE GROWTH CALCULATION FROM MASTER CURVE **

Capillarity constant (normally capital gamma)
Equilibrium conc at plate tip of radius R, in gamma
Plancks const. Joules/sec
Boltzmanns const. Joules/degree kelvin
Diffudsibvity of carbon in austenite
Coordination of interstial site
Composition dependence of diffusion coefficient
No. C atoms/ No. Fe atoms
Activity of carbon in austenite
Gas constant
Mole Fraction of carbon
Absolute temperature
Site exclusion probability
Carbon Carbon Interaction Energy in austenite

DO 5 I=l,N
GID(I,J,L)=GDD(I,J,L)-GDD(l,J,L)
IF(XI(I,J,L) .NE.O) WRITE(6,*)XI(I,J,L),GDD(I,J,L),GID(I,J,L)
FORMAT (/' xi Gdd Gid'/

&' (mole fraction) (J/mol/m**3) (J/mol/m**3)' /)
FORMAT (F10.4,9X,F10.4,lX,F12.4,F10.4)

CAP CON
XMAXR
HH
KK
D
Z

PSI
THETA
Activ
R

X

T
SIGMA
W

5
6

17
C

C **
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

HH=6.6262D-34
KK=1.38062D-23
T=CTEMP+273.0D+00
CALL OMEGA(W,XBAR)
Z=12
A5=1.0D+00
R=8.31432D+00
RADIUS=O.O
VMAX=O.O
M1=0.00
DO 12 J=1,20
DO 1008 II22=1,N
WRITE(6,1009)

1009 FORMAT('**************************'/sH
I=II22
XALPHA1(l,J,L)=XAL(1,J,L)
XALPHA=XALPHA1(l,J,L)
XMAXl(I,J,L)=XI(I,J,L)
IF(XMAX1(I,J,L) .EQ.O)GOTO 12
XMAX=XMAX1(I,J,L)
FE(I,J,L) = (TDSE) + GID(I,J,L)
II2=0
WRITE (6,1005) T,CTEMP,XBAR,XMAX,XALPHA,FE (I,J,L)
CALL RRAD(RADIUS,XMAX,XALPHA,XBAR,T,R,XMAXR,W,SIG,MOLVOL,

&CAPCON,EPSI)
XMAXR1(I,J,L)=XMAXR
MOLVOL1(I,J,L)=MOLVOL
RADIUS 1 (I,J,L)=RADIUS
CAPCON1(I,J,L)=CAPCON
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1005

1000

1001

999
1002

1004

77

119
990
1008
12

7

EPSI1(I,J,L)=EPSI
FORMAT(' DEGREES KELVIN =' ,F8.1,

&' DEGREES CENTIGRADE =',F8.1/
&' MOL FRAC CARBON IN ALLOY = ',F8.4,/
&' MOL FRAC CARBON IN AUSTENITE =',F8.4/
&' MOL FRAC OF C IN FERRITE=',D12.4/
&' (Gel+Gsu+Gid) = ',D15.6)

DASH=(KK*T/HH)*DEXP(-(21230.0D+00/T»*DEXP(-31.84D+00)
DO 999 II=1,1000
CARB (1)=XBAR
IF (II .GT. l)GOTO 1000
GOTO 1001
CARB(II)=CARB(II-1)+0.0001D+00
IF (CARB(II) .GT. XMAX) GOTO 1002
X=CARB(II)
II2=II2+1
THETA=X/(A5-X)
ACTIV=CG(X,T,W,R)
ACTIV=DEXP(ACTIV)
DACTIV=DCG(X,T,W,R)
DACTIV=DACTIV*ACTIV
DACTIV=DACTIV*A5/((A5+THETA)**2)
SIGMA=A5-DEXP((-(W»/(R*T»
PSI=ACTIV*(A5+Z*((A5+THETA)/(A5-(A5+Z/2)*THETA+(Z/2)*(A5+Z/2)*

&(A5-SIGMA)*THETA*THETA»)+(A5+THETA)*DACTIV
DIFF(II)=DASH*PSI
CONTINUE
IF(II2.LT.4) GOTO 1008
II3=-1
CALL D01GAF(CARB,DIFF,II2,ANS,ERROR,II3)
ANS=ANS/(XMAX-XBAR)
ANS1(I,J,L)=1.0D-04*ANS
ERROR1(I,J,L)=ERROR
WRITE(6,1004)ANS1(I,J,L),ERROR1(I,J,L)
FORMAT(12H INTEGRAL = ,D12.4,' M**2/SEC '/

&' ERROR = " D12.4)
IF(XMAX .LT. XBAR)GOTO 990
CALL VEL5(XMAX,XBAR,XALPHA,ANS,VMAX,PECLET,OMEG,RAD)
PECLET1(I,J,L)=PECLET
VMAX1(I,J,L)=VMAX
OMEGA 1 (I,J,L)=OMEG
VR(I,J,L) = 2*PECLET1(I,J,L)*ANS1(I,J,L)
FORMAT(' PECLET NUMBER = ',D12.4)
WRITE (6,119) VR(I,J,L)
FORMAT (' Velocity * Radius = ,,D15.6)
CONTINUE
CONTINUE
CONTINUE

WRITE(6,7) T,CTEMP,XBAR,RAD
WRITE(6,13) SIG

FORMAT(' FOllowing data is at the the following values of:'//
&'T = ,,F8.1,' Degree Kelvin'//' ',F8.1,' Degree Centidrade'//
&' Carbon in alloy = ',F8.4,' Mole fraction'//' Rad = ',D15.5//)
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Function giving the activity of carbon in gamma
*********************************************************************

Function giving the activity of iron in gamma
*********************************************************************

13 FORMAT(' Interfacial Energy ,,F8.4,' Joules I m**2'1/)
DO 110 J =1,20
WRITE(6,10) XALPHA1(1,J,L)
WRITE(6,9)

DO 110 I =l,N
IF(VR(I,J,L) .LE.O.O) GOTO 110
WRITE(6,55) FE(I,J,L),XMAX1(I,J,L),MOLVOL1(I,J,L),RADIUS1(I,J,L),

&XMAXR1(I,J,L),CAPCON1(I,J,L),EPSl1(I,J,L),ANS1(I,J,L),
&ERROR1 (I,J,L),OMEGA1(I,J,L),VMAX1 (I,J,L),PECLET1(I,J,L),VR (I,J,L)

110 CONTINUE
10 FORMAT (//' Carbon in ferrite = ',D15.5,' Mole fraction'/I)
9 FORMAT(' (Gel+Gsu+Gid) xi MOLVOL G.T.C.R XMAXR CAP CON

& EPSI Int. Err. Omega Vmax p
&V*rho' 1/' (J/mole) (mole fr.) (m**3/mole) (m) (mole fr.)',
&5x,' (m**2/sec) (m/sec)' ,12x,
&' (m**2/sec)'///)

55 FORMAT(D11.3,F6.3,D11.3,6D11.3,F6.3,3D11.3/)
IF(L.EQ.1) CALL GRST3D (1.0,400.0)
IF(L.GT.1) GOTO 115
CALL PLOT1 (N,L)
CALL PLOT2 (N,L)

115 CALL INSEC (N,FNMAX1,FNMAX2,L)
CALL TRAP (N,L)
CALL PLOT3 (L)

114 CONTINUE
CALL GRST9D
STOP
END

C *********************************************************************
C
C

DOUBLE PRECISION FUNCTION CG(X,T,W,R)
DOUBLE PRECISION J,DG,DUMMY,T,R,W,X,A,U,V,SS,TT
J=l-DEXP(-W/(R*T»
SS=2*(1+2*J)*X+(1+8*J)*X*X
IF(SS.GT.1.0D+30) GOTO 11
DG=DSQRT(1-2* (1+2*J)*X+(1+8*J) *X*X)
U= (1-2*X)/X
IF(U.LE.O) GOTO 11
DUMMY=5*DLOG«1-2*X)/X)+6*W/(R*T)+«38575)-(

113.48) *T) I (R*T)
V= «DG-1+3*X)/(DG+1-3*X»**6
TT=DUMMY+DLOG«(DG-1+3*X)/(DG+1-3*X»**6)
IF(TT.GT.1.0D+30) GOTO 11
IF(SS.GT.1.0D+30) GOTO 11
CG=DUMMY+DLOG«(DG-1+3*X)/(DG+1-3*X»**6)

11 RETURN
END

C *********************************************************************
C
C

DOUBLE PRECISION FUNCTION FEG(X,T,W,R)
DOUBLE PRECISION J,DG,X,T,W,R
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subroutine giving the carbon carbon interaction energy in
austenite (J/mol), as a function of alloy composition

**********************************************************************

J=l-DEXP(-W/(R*T))
DG=DSQRT(1-2*(1+2*J)*X+(1+8*J)*X*X)
FEG=5*DLOG((1-X)/(1-2*X))+DLOG(((1-2*J+(4*J-1)*X-DG

1) / (2*J* (2*X-1))) **6)
RETURN
END

C **********************************************************************
C
C
C

SUBROUTINE OMEGA(W,XBAR)
COMMON /THREE/ CC(8),T10,T20
DOUBLE PRECISION C(8),W,P(8),B1,B2,Y(8),B3,XBAR
INTEGER B5,I,U,B4
DO 1 I=1,7

1 C(I)=CC(I)
B3=0.OD+00
C(8)=C(1)+C(2)+C(3)+C(4)+C(5)+C(6)+C(7)
C(8)=100.0D+00-C(8)
C(8)=C(8)/55.84D+00
C(1)=C(1)/12.0115D+00
C(2)=C(2)/28.09D+00
C(3)=C(3)/54.94D+00
C(4)=C(4)/58.71D+00
C(5)=C(5)/95.94D+00
C(6)=C(6)/52.0D+00
C(7)=C(7)/50.94D+00
B1=C(1)+C(2)+C(3)+C(4)+C(5)+C(6)+C(7)+C(8)
DO 107 U=2,7
Y(U)=C(U)/C(8)

107 CONTINUE
DO 106 U=1,8
C(U)=C(U)/B1

106 CONTINUE
XBAR=C(l)
XBAR=DINT(10000.0D+00*XBAR)
XBAR=XBAR/10000
B2=0.OD+00
TIO=Y(2)*(-3)+Y(3)*2+Y(4)*12+Y(5)*(-9)+Y(6)*(-1)+Y(7)*(-12)
T20=-3*Y(2)-37.5*Y(3)-6*Y(4)-26*Y(5)-19*Y(6)-44*Y(7)
P(2)=2013.0341+763.8167*C(2)+45802.87*C(2)**2-280061.63*C(2)**3

&+3.864D+06*C(2)**4-2.4233D+07*C(2)**5+6.9547D+07*C(2)**6
P(3)=2012.067-1764.095*C(3)+6287.52*C(3)**2-21647.96*C(3)**3-

&2.0119D+06*C(3)**4+3.1716D+07*C(3)**5-1.3885D+08*C(3)**6
P(4)=2006.8017+2330.2424*C(4)-54915.32*C(4)**2+1.6216D+06*C(4)**3

&-2.4968D+07*C(4)**4+1.8838D+08*C(4)**5-5.5531D+08*C(4)**6
P(5)=2006.834-2997.314*C(5)-37906.61*C(5)**2+1.0328D+06*C(5)**3

&-1.3306D+07*C(5)**4+8.411D+07*C(5)**5-2.0826D+08*C(5)**6
P(6)=2012.367-9224.2655*C(6)+33657.8*C(6)**2-566827.83*C(6)**3

&+8.5676D+06*C(6)**4-6.7482D+07*C(6)**5 +2.0837D+08*C(6)**6
P(7)=2011.9996-6247.9118*C(7)+5411.7566*C(7)**2

&+250118.1085*C(7)**3-4.1676D+06*C(7)**4
DO 108 U=2,7
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Function giving the differential of activity of carbon in gamma
*********************************************************************

Function giving the differential of activity of iron in gamma
****************************************************************

Function giving the activity of carbon in alpha
*********************************************************************

Function giving the activity of iron in alpha
*********************************************************************

B3=B3+P(U)*Y(U)
B2=B2+Y(U)

lOB CONTINUE
IF (B2 .EQ. O.OD+OO) GOTO 455
W=(B3/B2)*4.lB7
GOTO 456

455 W=B054.0
WRITE (6,261) (C(J) ,J=1,7)

261 FORMAT (//6H C=,FB.4,6H SI=,FB.4,6H MN=,FB.4,
&6H NI=,FB.4,6H MO=,FB.4,6H CR=,FB.4,6H V=,FB.4)

456 RETURN
END

C *********************************************************************
C
C

DOUBLE PRECISION FUNCTION DCG(X,T,W,R)
DOUBLE PRECISION J,DG,DDG,X,T,W,R
J=l-DEXP(-W/(R*T»
DG=DSQRT(1-2*(1+2*J)*X+(1+B*J)*X*X)
DDG=(O.5/DG)*(-2-4*J+2*X+16*J*X)
DCG=-«10/(1-2*X»+(5/X»+6*«DDG+3)/(DG-l+3*X

1)-(DDG-3)/(DG+1-3*X»
RETURN
END

C *********************************************************************
C
C

DOUBLE PRECISION FUNCTION DFEG(X,T,W,R)
DOUBLE PRECISION J,DG,DDG,X,T,W,R
J=l-DEXP(-W/(R*T»
DG=DSQRT(1-2*(1+2*J)*X+(1+B*J)*X*X)
DDG=(0.5/DG)*(-2-4*J+2*X+16*J*X)
DFEG=lO/(1-2*X)-5/(1-X)+6*«4*J-l-DDG)/(1-2*J+(4*

lJ-l)*X-DG)-2/(2*J*(2*X-l»)
RETURN
END

C *********************************************************************
C
C

DOUBLE PRECISION FUNCTION CA(Xl,T,Wl,Hl,Sl,R)
DOUBLE PRECISION Jl,DA,XI,T,WI,Hl,Sl,R
Jl=l-DEXP(-WI/(R*T»
DA=DSQRT(9-6*Xl*(2*Jl+3)+(9+l6*Jl)*Xl*XI)
CA=3*DLOG«3-4*Xl)/XI)+(4*Wl)/(R*T)+

IDLOG«(DA-3+5*Xl)/(DA+3-5*Xl»**4)+(HI-SI*T)/(R*T)
RETURN
END

C *********************************************************************
C
C

DOUBLE PRECISION FUNCTION FEA(Xl)
DOUBLE PRECISION Xl
FEA=DLOG (I-Xl)
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Function giving the differential of activity of carbon in alpha
*********************************************************************

Function giving the differential of activity of iron in alpha
**********************************************************************

RETURN
E~

C *********************************************************************
C
C

DOUBLE PRECISION FUNCTION DCA(Xl,T,Wl,R)
DOUBLE PRECISION Jl,DA,DUMMY,DUMMY3,Xl,T,Wl,R
Jl=l-DEXP(-Wl/(R*T»
DA=DSQRT(9-6*Xl*(2*Jl+3)+(9+16*Jl)*Xl*Xl)
DUMMY3=(3*Xl/(3-4*Xl»*((4*Xl-3)/(Xl**2)-4/Xl)
DUMMY=(O.5/DA) * (-12*Jl-18+18*Xl+32*JI*Xl)
DUMMY=4*(((DUMMY+5)/(DA-3+5*Xl»-((DUMMY-5)/(DA+3-5*Xl»)
DCA=DUMMY3+DUMMY
RETURN
E~

C **********************************************************************
C
C

DOUBLE PRECISION FUNCTION DFEA(Xl)
DOUBLE PRECISION Xl
DFEA=1/(X1-1)
RETURN
E~

C **********************************************************************
C

SUBROUTINE RRAD(RADIUS,XMAX,XALPHA,XBAR,T,R,XMAXR,W,SIG,MOLVOL,
&CAPCON,EPSI)

DOUBLE PRECISION RADIUS,XMAX,XBAR,T,R,SIG,MOLVOL,XMAXR
&,XALPHA,RAD, OMEGA, CAPCON, EPSI

C SIG Interfacial energy, Joules per metre squared
C MOLVOL Molar volume of ferrite
C RADIUS Critical radius for zero growth
C RAD Ratio of the actual radius to the critical radius

SIG=O.2
MOLVOL=7.0894317D-06*(1.OD+OO+3.549D-05*(T-298.0D+OO»
EPSI=XMAX*DCG(XMAX,T,W,R)
CAPCON=(SIG*MOLVOL/(R*T»*((l.OD+OO-XMAX)/(XALPHA-XMAX»

&/EPSI
RADIUS=CAPCON*XMAX/(XBAR-XMAX)
OMEGA=(XMAX-XBAR)/(XMAX-XALPHA)
RAD=1.5D-09
XMAXR=XMAX*(l.OD+OO+(CAPCON/RAD»
WRITE (6,1)SIG,MOLVOL, RADIUS,XMAXR,CAPCON, EPSI

1 FORMAT(' INTERFACIAL ENERGY=',F8.4,' JOULES/METERS SQUARED',/
&' MOLAR VOLUME OF FERRITE (METERS CUBED PER MOL)=' ,D15.6/
&' GIBBS THOMPSON CRITICAL RADIUS (METERS)=' ,D15.6/
&' EQUILIBRIUM CONC AT PLATE TIP, MOL FRAC, XMAXR=' ,D15.6/
&' CAPILLARITY CONSTANT CAPCON,=' ,D15.6,/
&' NON-IDEALITY PARAMETER EPSI=',D1S.6)

RETURN
E~

C **********************************************************************
C
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Subroutine plotting Gid versus xi
*********************************************************************

SUBROUTINE DUMM(DUMMY,PECLET,OMEGA,RAD)
DOUBLE PRECISION DUMMY,PECLET,OMEGA,RADIUS,RAD,S2,PI
PI=3.141S9D+00
DUMMY=(DSQRT(PI*PECLET))*(DEXP(PECLET))*(DERFC(DSQRT(PECLET)))
RETURN
END

C **********************************************************************
C

SUBROUTINE VELS(XMAX,XBAR,XALPHA,ANS,VMAX,PECLET,OMEGA,RAD)
DOUBLE PRECISION OMEGA,PECLET,LOGPEC,A1,A2,A3,A4,AS,A6,A7

&,RAD,ANS
ANS2=ANS*(XMAX-XBAR)
OMEGA=(XMAX-XBAR)/(XMAX-XALPHA)
RAD=1.SD-09
A1=-0.10312623D+02
A2=0.10088194D+03
A3=-0.4337770SD+03
A4=0.88436018D+03
AS=-0.83962224D+03
A6=0.30048670D+03
A7=0.9969D+00
LOGPEC=A1+A2*OMEGA/A7+A3*OMEGA*OMEGA/(A7*A7)+

&A4*OMEGA*OMEGA*OMEGA/(A7*A7*A7)+AS*OMEGA*OMEGA*OMEGA
&*OMEGA/(A7*A7*A7*A7)+A6*OMEGA*OMEGA*OMEGA*OMEGA*OMEGA
&/(A7*A7*A7*A7*A7)

IF(LOGPEC.GT.SO.O) GOTO 30
PECLET=10.00**LOGPEC
ANS=ANS*1.0D-04
VMAX=ANS*PECLET*2.0D+00/RAD
WRITE (6,2)OMEGA,VMAX,PECLET,RAD

2 FORMAT(' OMEGA=',F10.4,/' VMAX,M/S=',D12.4,/
&' PECLET=',D12.4,/' RAD,METERS=' ,D12.4)

30 RETURN
END

C *********************************************************************
C
C

SUBROUTINE PLOT1 (N,K)
COMMON XI(SO,SO,16),GID(SO,50,16),FE(50,SO,16),

&VR(50,SO,16),CTEMP,MUM
COMMON /TWO/ TDSE
DIMENSION XI1(100),GID1(100),GID2(100),XI2(100),XI3(100),

&GID3(100),XI4(100),GID4(100),XI5(100),GID5(100)
DOUBLE PRECISION CMAX,CMIN

C ***** Initialise and spesify aspect ratio *****
C CALL GRST3D (1.0,400.0)
C ***** Make both plots on the same page ******

CALL GRLM2D (0.15,0.45,0.12,0.42)
C ***** Set user limits *****

CALL GRLM3S (O.ODO, 1200.0DO, 0.02DO, 0.12DO)
C ***** Scale lines inside *****

CALL GRFT6S (-1.0,0.0)
C ***** Select line style for graph *****
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CALL GRTY5S (1,3)
C ***** Draw graph *****

Il=O
DO 14 I=l,N
IF (XI (I,1,K) .LE. O.02DO) GOTO 25
GID1(I)=GID(I,1,K)
Il=Il+1

14 XIl (I) = XI (I,1,K)
25 IF(I1.LT.2)GOTO 34

CALL GRGR6S (GID1, Xl1, I1)
C ***** Draw point for curve identification *****

CALL GRGR6S (760.0, 0.11,1)
C ***** Reduce text size *****
C CALL GRTX3S (1, 2.2, 0.0, 0.0, 2.2)
C ***** Defining character for annotation *****

CALL GRTX4S (1, , !')
C ***** Write string *****

CALL GRAN5S (800.0,0.11,'X!F3! !SB!a!NL! !F1!=0.0003' ,25,0.0)
34 12=0

DO 18 I=l,N
IF(XI(I,5,K) .LE.0.02D+0)GOTO 19
XI2(I)=XI(I,5,K)
12=I2+1

18 GID2(I)=GID(I,5,K)
C ***** Select line style for graph *****
19 CALL GRTY5S (1,5)

IF(I2.LT.2)GOTO 33
C ***** Draw curve *****

CALL GRGR6S (GID2, XI2, 12)
C ***** Draw point for curve identification *****

CALL GRGR6S (760.0,0.105,1)
C ***** Write string *****

CALL GRANS S (800 .00, 0 .105, ,X !F3! !SB !a !NL! !F1 != 0 .0043' ,25, 0 .0)
33 13=0

DO 15 I=l,N
IF(XI(I,9,K) .LE.0.02D+0)GOTO 20
XI3(I)=XI(I,9,K)
I3=I3+1

15 GID3(I)=GID(I,9,K)
C ***** Select line style for graph *****
20 CALL GRTY5S(1,7,K)

IF(I3.LT.2)GOTO 32
C ***** Draw curve *****

CALL GRGR6S (GID3, XI3, 13)
C ***** Draw point for curve identification *****

CALL GRGR6S (760.0,0.10,1)
C ***** Write string *****

CALL GRAN5S (800.0,0.10,'X!F3! !SB!a!NL! !F1!=0.0083' ,25,0.0)
32 14=0

DO 16 I=l,N
IF(XI(I,13,K) .LE.0.02D+0)GOTO 21
XI4(I)=XI(I,13,K)
14=I4+1
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Subroutine plotting free energy versus Velocity
*********************************************************************

16 GID4(I)=GID(I,13,K)
C ***** Select line style for graph *****
21 CALL GRTY5S(1,9)

IF(I4.LT.2)GOTO 31
C ***** Draw curve *****

CALL GRGR6S (GID4,XI4,I4)
C ***** Draw point for curve identification *****

CALL GRGR6S (760.0,0.095,1)
C ***** Write string *****

CALL GRAN5S (800.0,0.095,'X!F3! !SB!a!NL! !F1!=0.0123',25,0.0)
31 I5=0

DO 17 I=l,N
IF(XI(I,17,K) .LE.0.02D+0)GOTO 22
XI5(I)=XI(I,17,K)
I5=I5+1

17 GID5(I)=GID(I,17,K)
C ***** Select line style for graph *****
22 CALL GRTY5S(1,11)
C ***** Draw curve *****

IF(I5.LT.2)GOTO 30
CALL GRGR6S (GID5,XI5,I5)

C ***** Draw point for curve identification *****
CALL GRGR6S (760.0,0.09,1)

C ***** Write string *****
CALL GRAN5S (800.0,0.09,'X!F3! !SB!a!NL! !F1!=0.0163',25,0.0)

C ***** Select normal text size *****
C ***** Write heading and title *****
30 CALL GRAN6S (' ',1,

&'G!SB!id!NL!',11,'x!SB!i!NL!',10)
C ***** Close package *****

RETURN
END

C *********************************************************************
C
C

SUBROUTINE PLOT2 (N,K)
COMMON XI(50,50,16),GID(50,50,16),FE(50,50,16),

&VR(50,50,16),CTEMP,MUM
COMMON /TWO/ TDSE
DIMENSION X1(100),X2(100),Y1(100),Y2(5),X11(100),Y11(100),

&X22(100),Y22(5),FE1(100),FE2(100),FE3(100),FE4(100),FE5(100),
&FE6(100),FE7(100),FE8(100),FE9(100),FE10(100),FE11(100),
&VR1(100),VR2(100),VR3(100),VR4(100),VR5(100),VR6(100),
&VR7(100),VR8(100),VR9(100),VR10(100),VR11(100),
&VI(100),X(100)

DOUBLE PRECISION X1,Y2,Y1,X2,FE1,FE2,FE3,FE4,FE5,FE6,FE7,
&FE8,FE9,FE10,FE11,VR1,VR2,VR3,VR4,VR5,VR6,VR7,VR8,VR9,VR10,VR11,
&YMAX,YMIN,YQ,YW,X11,Y11,X22,Y22,DD,DD1,DD2,DD3,YY11,YY22,
&KK,VO,T,EE,V,MU,OMEGA,A,TK,GIH,QO,RAD,GI,VI,Q,XX

YMIN=1.0D+60
YMAX=1.0D-60
T = CTEMP
DO 1 J=1,17,2
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DO 1 I=l,N
IF(VR(I,J,K) .LT.1.0D-16)GOTO 1
IF(VR(I,J,K) .GT.1.0D-0) GOTO 1
IF(VR(I,J,K) .LT.YMIN) YMIN=VR(I,J,K)
IF(VR(I,J,K) .GT.YMAX) YMAX=VR(I,J,K)

1 CONTINUE
DO 2 I=l,N
IF(VR(I,18,K) .LT.1.0D-16)GOTO 2
IF(VR(I,18,K) .GT.1.0D-0) GOTO 2
IF(VR(I,18,K) .LT.YMIN) YMIN=VR(I,18,K)
IF(VR(I,18,K) .GT.YMAX) YMAX=VR(I,18,K)

2 CONTINUE
YMAX=YMAX/1.5D-9
YMAX=YMAX*10.0DO
YMIN=YMIN/1.5D-9
YY11=DLOG10(YMIN)
YY22=DLOG10(YMAX)
DD=(YY22-YY11)/10.0
DD1=YY22-DD
DD2=DD1-DD
DD3=YY11+DD
VO=30.0DO
RAD=1.5D-09
KK=1.38062D-23
TK=T+273.0
OMEGA=6.679D-6*(1+7.89D-5*TK)/6.0225D+23
IF(T.GE.25.AND.T.LE.540) EE=(-18.8DO*T+52400)*4.18E+6
IF(T.GE.540.AND.T.LE.705) EE=(-37.6DO*T+62300)*4.18E+6
IF(T.GE.260.AND.T.LE.595) V=(3.6D-5)*T+0.284
IF(T.GE.595.AND.T.LE.705) V=(9.9D-5)*T+0.246
MU=0.5DO*EE/(1+V)
MUM= MU*OMEGA*6.0225D+23
GIH=1.22D-3*MUM
QO=0.31*MU*OMEGA
DO 11 1=1,100
X(I)=X(I-1)+10
Q=QO*(l-(X(I)/GIH )**0.5)
VI(I)=VO*EXP(-Q/(KK*TK»
Y1(I)=VI(I)
X1(I)=(TDSE)+X(I)

11 X2(I)=2.0D-3*MUM+X(I)
CALL GRTX2D(2,9)
CALL GRTX2D(1,9)

C ***** Initialise and spesify aspect ratio and width *****
CALL GRLM2D (0.15,0.45,0.52,0.97)
XX=TDSE

C ***** Set user limits *****
CALL GRLM3D (XX,1800.0,YY11,YY22)
CALL GRFR6D(1)

C ***** Select line style for graph *****
CALL GRTY5D (0,3)

C ***** Define annotation *****
CALL GRTX4D (1,' !')
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C ***** Write string at any point *****
CALL GRAN5D (1000.0,DDl,'Fe-0.4C wt.%' ,12,0.0)

C ***** Write string at defined point *****
IF(K.EQ.l) CALL GRAN5D(1000.0,DD2,'T=410!SP!o!NL!C' ,15,0.0)

C ***** Draw graph *****
Jl=O
DO 28 I=l,N
IF(VR(I,l,K) .LT.l.0D-16)GOTO 28
IF(VR(I,l,K) .GT.l.0D-0) GOTO 28
IF(VR(I,l,K) .LE.O)GOTO 28
Jl=Jl+l
VRl(Jl)=VR(I,1,K)/1.5D-9
FEl(Jl)=FE(I,l,K)

28 CONTINUE
IF(Jl.LE.l) GOTO 49
CALL GRGR7D (FEl,VRl,Jl)

49 J2=0
DO 19 I=l,N
IF(VR(I,3,K) .LT.l.0D-16)GOTO 19
IF(VR(I,3,K) .GT.l.0D-0) GOTO 19
IF(VR(I,3,K) .LE.O)GOTO 19
J2=J2+1
VR2(J2)=VR(I,3,K)/1.5D-9
FE2(J2)=FE(I,3,K)

19 CONTINUE
IF(J2.LE.l)GOTO 48
CALL GRGR7D (FE2,VR2,J2)

48 J3=0
DO 20 I=l,N
IF(VR(I,5,K) .LT.l.0D-16)GOTO 20
IF(VR(I,5,K) .GT.l.0D-0) GO TO 20
IF(VR(I,5,K) .LE.O)GOTO 20
J3=J3+1
VR3(J3)=VR(I,5,K)/1.5D-9
FE3(J3)=FE(I,5,K)

20 CONTINUE
IF(J3.LE.l)GOTO 47
CALL GRGR7D (FE3,VR3,J3)

47 J4=0
DO 21 I=l,N
IF(VR(I,7,K) .LT.l.0D-16)GOTO 21
IF(VR(I,7,K) .GT.l.0D-0) GOTO 21
IF(VR(I,7,K) .LE.O)GOTO 21
J4=J4+1
VR4(J4)=VR(I,7,K)/1.5D-9
FE4(J4)=FE(I,7,K)

21 CONTINUE
IF(J4.LE.l)GOTO 46
CALL GRGR7D (FE4,VR4,J4)

46 J5=0
DO 22 I=l,N
IF(VR(I,9,K) .LT.l.0D-16)GOTO 22
IF(VR(I,9,K) .GT.l.0D-0) GOTO 22
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IF(VR(I,9,K) .LE.O)GOTO 22
J5=J5+1
VR5(J5)=VR(I,9,K)/1.5D-9
FE5(J5)=FE(I,9,K)

22 CONTINUE
IF(J5.LE.1)GOTO 45
CALL GRGR7D (FE5,VR5, J5)

45 J6=0
DO 23 I=l,N
IF(VR(I,ll,K) .LT.1.0D-16)GOTO 23
IF (VR (I,ll, K) .GT .1.OD-O) GOTO 23
IF(VR(I,ll,K) .LE.O)GOTO 23
J6=J6+1
VR6(J6)=VR(I,11,K)/1.5D-9
FE6(J6)=FE(I,11,K)

23 CONTINUE
IF(J6.LE.1)GOTO 44
CALL GRGR7D (FE6,VR6, J6)

44 J7=0
DO 24 I=l,N
IF(VR(I,13,K) .LT.1.0D-16)GOTO 24
IF (VR (I,13, K) .GT.1. OD-O) GOTO 24
IF(VR(I,13,K) .LE.O)GOTO 24
J7=J7+1
VR7(J7)=VR(I,13,K)/1.5D-9
FE7(J7)=FE(I,13,K)

24 CONTINUE
IF(J7.LE.1)GOTO 43
CALL GRGR7D (FE 7 ,VR 7 ,J7 )

43 J8=0
DO 25 I=l,N
IF(VR(I,15,K) .LT.1.0D-16)GOTO 25
IF(VR(I,15,K) .GT.1.0D-0) GOTO 25
IF(VR(I,15,K) .LE.O)GOTO 25
J8=J8+1
VR8(J8)=VR(I,15,K)/1.5D-9
FE8(J8)=FE(I,15,K)

25 CONTINUE
IF(J8.LE.1)GO TO 42
CALL GRGR7D (FE8,VR8, J8)

42 J9=0
DO 26 I=l,N
IF(VR(I,17,K) .LT.1.0D-16)GOTO 26
IF(VR(I,17,K) .GT.1.0D-0) GOTO 26
IF(VR(I,17,K) .LE.O)GOTO 26
J9=J9+1
VR9(J9)=VR(I,17,K)/1.5D-9
FE9(J9)=FE(I,17,K)

26 CONTINUE
IF(J9.LE.1)GOTO 40
CALL GRGR7D (FE9,VR9, J9)

40 J10=0
DO 27 I=l, N
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IF(VR(I,18,K) .LT.1.0D-16)GOTO 27
IF(VR(I,18,K) .GT.1.0D-0) GOTO 27
IF(VR(I,18,K) .LE.O)GOTO 27
J10=J10+1
VR10(J10)=VR(I,18,K)/1.5D-9
FE10(J10)=FE(I,18,K)

27 CONTINUE
IF(J10.LE.1)GOTO 41
CALL GRGR7D (FE10,VR10,J10)

C ***** Select line for graph *****
41 CALL GRLS3D (7)

II=O
DO 4 I=1,100
IF(Y1(I) .GT.YMAX.OR.Y1(I) .LT.YMIN) GOTO 4
IF(X1(I) .GT.1800.0.0R.X2(I) .GT.1800.0) GOTO 4
II=II+1
Xll (II)=X1 (I)
X22 (II)=X2 (I)
Yll (II)=Yl (I)

4 CONTINUE
C

C
32
C

CALL GRGR7D (X11, Y11, II)
***** Select line for graph
CALL GRLS3D (5)
***** Draw line *****

*****

CALL GRGR7D (X22, Y11, II)
C ***** Write heading and axis title *****
34 CALL GRAN6D (' ',1,

&' (G!SB!el!NL!+G!SB!su!NL!+G!SB!id!NL!) /J mole!SP!-l!NL!' ,55,
&'Velocity /ms!SP!-1!NL!',22)

RETURN
END

C *********************************************************************
C Subroutine for the curve fitting and for the calculation of point of
C intersection
C *********************************************************************

SUBROUTINE INSEC (N,FNMAX1,FNMAX2,K)
COMMON XI(50,50,16),GID(50,50,16),FE(50,50,16),

&VR(50,50,16),CTEMP,MUM,XAL(50,50,16),XALP(12,16),FN1(12,16),
&FN2(12,16),PT1(12,16),PT2(12,16),PTF1(12,16),PTF2(12,16),
&ANS1(50,50,16),ANS11(100),VKR1(12,16),VKR2(12,16),
&XIl1(12,16),XI22(12,16)

COMMON /ONE/ G(10)
COMMON /TWO/ TDSE
DIMENSION FE1(100),FE2(100),FE3(100),FE4(100),FE5(100),FE6(100),

&FE7(100),FE8(100),FE9(100),FE10(100),FE11(100),FE12(100),XX1(5),
&XX2(5),YY1(5),YY2(5),VR1(100),VR2(100),VR3(100),VR4(100),VR5(100),
&VR6(100),VR7(100),VR8(100),VR9(100),VR10(100),VR11(100),
&VR12(100),Y(12,16),D(10),PT(12,16)

DOUBLE PRECISION X1,Y2,Y1,X2,FE1,FE2,FE3,FE4,FE5,FE6,FE7,
&FE8,FE9,FE10,FE11,FE12,VR1,VR2,VR3,VR4,VR5,VR6,VR7,VR8,VR9,VR10,
&VR11,VR12,Y,P1,P2,REZ,IMZ,MU1,MU2,Zl,Z2,XX1,XX2,YY1,YY2,D

INTEGER M1,I,J
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DOUBLE PRECISION A,B,U,EPS, ETA, X
INTEGER IFAIL
DOUBLE PRECISION FN
DOUBLE PRECISION FFN
EXTERNAL FN
EXTERNAL FFN
EXTERNAL C05ADF
A = TDSE
U =2.0D-3*MUM
B = 4600.0DO
EPS = 1.0D-5
ETA = O.ODO
IFAIL = 1
M1=2

C ******** Point of intersection of 1st curve ********
J1=0
DO 28 I=l,N
IF(VR(I,l,K) .GT.1.0D-0)GOTO 28
IF(VR(I,l,K) .EQ.O)GOTO 28
J1=J1+1
VR1(J1)=VR(I,1,K)
FE1(J1)=FE(I,1,K)

28 CONTINUE
IF(M1.GE.J1) GOTO 49
CALL E02ACF(FE1,VR1,J1,D,M1,REF)
DO 1 I=1,10

1 G (I) =D (I)
IF(FN(A)*FN(B) .GT.O)GO TO 49
CALL C05ADF(A,B,EPS,ETA,FN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT1(1,K)=X
FN1(1,K)=D(1)+D(2)*PT1(1,K)+D(3)*(PT1(1,K)**2)+D(4)*(PT1(1,K)**3)+

&D(5)*(PT1(1,K)**4)+D(6)*(PT1(1,K)**5)+D(7)*(PT1(1,K)**6)+
&D (8)* (PT1 (1,K) **7) +D (9)* (PT1 (1,K) **8)+D (10)* (PT1 (1,K) ** 9)

IF(FFN(U)*FFN(B) .GT.O)GO TO 49
CALL C05ADF(U,B,EPS,ETA,FFN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT2(1,K)=X
FN2(1,K)=D(1)+D(2)*PT2(1,K)+D(3)*(PT2(1,K)**2)+D(4)*(PT2(1,K)**3)+

&D(5)*(PT2(1,K)**4)+D(6)*(PT2(1,K)**5)+D(7)*(PT2(1,K)**6)+
&D(8)*(PT2(1,K)**7)+D(9)*(PT2(1,K)**8)+D(10)*(PT2(1,K)**9)

C ******** Point of intersection of 2nd curve ********
49 J2=0
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DO 19 I=l,N
IF(VR(I,3,K) .GT.1.0D-0)GOTO 19
IF(VR(I,3,K) .EQ.O)GOTO 19
J2=J2+1
VR2(J2)=VR(I,3,K)
FE2(J2)=FE(I,3,K)

C WRITE(6,*) J2,FE2(J2),VR2(J2)
19 CONTINUE

IF(M1.GE.J2)GOTO 48
C IF(M1.GE.J2) M1=J2-2

CALL E02ACF(FE2,VR2,J2,D,M1,REF)
DO 2 I=1,10

2 G(I)=D(I)
C

IF(FN(A)*FN(B) .GT.O)GO TO 48
CALL C05ADF(A,B,EPS,ETA,FN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT1(2,K)=X
FN1(2,K)=D(1)+D(2)*PT1(2,K)+D(3)*(PT1(2,K)**2)+D(4)*(PT1(2,K)**3)+

&D(5)*(PT1(2,K)**4)+D(6)*(PT1(2,K)**5)+D(7)*(PT1(2,K)**6)+
&D(8)*(PT1(2,K)**7)+D(9)*(PT1(2,K)**8)+D(10)*(PT1(2,K)**9)

C

J3=0
DO 20 I=l,N

IF(VR(I,5,K) .LT.1.0D-16)GOTO 20
IF(VR(I,5,K) .GT.1.0D-0)GOTO 20
IF(VR(I,5,K) .EQ.O)GOTO 20
J3=J3+1
VR3(J3)=VR(I,5,K)
FE3(J3)=FE(I,5,K)

WRITE(6,*) J3,FE3(J3),VR3(J3)
CONTINUE
IF(M1.GE.J3)GOTO 47
CALL E02ACF(FE3,VR3,J3,D,M1,REF)
DO 3 I=1,10

C

IF(FFN(U)*FFN(B) .GT.O)GO TO 48
CALL C05ADF(U,B,EPS,ETA,FFN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT2(2,K)=X
FN2(2,K)=D(1)+D(2)*PT2(2,K)+D(3)*(PT2(2,K)**2)+D(4)*(PT2(2,K)**3)+

&D(5)*(PT2(2,K)**4)+D(6)*(PT2(2,K)**5)+D(7)*(PT2(2,K)**6)+
&D(8)*(PT2(2,K)**7)+D(9)*(PT2(2,K)**8)+D(10)*(PT2(2,K)**9)

C ******** Point of intersection of 3rd curve ********
48

C
20
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3 G(I)=D(I)
C

IF(FN(A)*FN(B) .GT.O)GO TO 47
CALL C05ADF(A,B,EPS,ETA,FN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT1(3,K)=X
FN1(3,K)=D(1)+D(2)*PT1(3,K)+D(3)*(PT1(3,K)**2)+D(4)*(PT1(3,K)**3)+

&D(5)*(PT1(3,K)**4)+D(6)*(PT1(3,K)**5)+D(7)*(PT1(3,K)**6)+
&D(8)*(PT1(3,K)**7)+D(9)*(PT1(3,K)**8)+D(10)*(PT1(3,K)**9)

C

J4=0
DO 21 I=l,N
IF(VR(I,7,K) .GT.1.0D-O)GOTO 21
IF(VR(I,7,K) .EQ.O)GOTO 21
J4=J4+1
VR4(J4)=VR(I,7,K)
FE4(J4)=FE(I,7,K)
CONTINUE
IF(M1.GE.J4)GOTO 46
CALL E02ACF(FE4,VR4,J4,D,M1,REF)
DO 4 1=1,10
G(I)=D(I)4

C

IF(FFN(U)*FFN(B) .GT.O)GO TO 47
CALL C05ADF(U,B,EPS,ETA,FFN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT2(3,K)=X
FN2(3,K)=D(1)+D(2)*PT2(3,K)+D(3)*(PT2(3,K)**2)+D(4)*(PT2(3,K)**3)+

&D(5)*(PT2(3,K)**4)+D(6)*(PT2(3,K)**5)+D(7)*(PT2(3,K)**6)+
&D(8)*(PT2(3,K)**7)+D(9)*(PT2(3,K)**8)+D(10)*(PT2(3,K)**9)

C ******** Point of intersection of 4th curve ********
47

21

IF(FN(A)*FN(B) .GT.O)GO TO 46
CALL C05ADF(A,B,EPS,ETA,FN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT1(4,K)=X
FN1(4,K)=D(1)+D(2)*PT1(4,K)+D(3)*(PT1(4,K)**2)+D(4)*(PT1(4,K)**3)+

&D(5)*(PT1(4,K)**4)+D(6)*(PT1(4,K)**5)+D(7)*(PT1(4,K)**6)+
&D (8)* (PT1 (4,K) **7) +D (9)* (PT1 (4,K) ** 8)+D (10)* (PT1 (4,K) ** 9)
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C

J5=O
DO 22 I=l,N
IF(VR(I,9,K) .GT.l.OD-O)GOTO 22
IF(VR(I,9,K) .EQ.O)GOTO 22
J5=J5+1
VR5(J5)=VR(I,9,K)
FE5(J5)=FE(I,9,K)

WRITE(6,*) J5,FE5(J5),VR5(J5)
CONTINUE
IF(Ml.GE.J5)GOTO 45
CALL E02ACF(FE5,VR5,J5,D,Ml,REF)
DO 5 I=l,lO
G (I) =D (I)5

C

C
22

IF(FFN(U)*FFN(B) .GT.O)GO TO 46
CALL C05ADF(U,B,EPS,ETA,FFN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=9999S) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT2(4,K)=X
FN2(4,K)=D(1)+D(2)*PT2(4,K)+D(3)*(PT2(4,K)**2)+D(4)*(PT2(4,K)**3)+

&D(5)*(PT2(4,K)**4)+D(6)*(PT2(4,K)**5)+D(7)*(PT2(4,K)**6)+
&D(S)*(PT2(4,K)**7)+D(9)*(PT2(4,K)**S)+D(lO)*(PT2(4,K)**9)

C ******** Point of intersection of 5th curve ********
46

IF(FN(A)*FN(B) .GT.O)GO TO 45
CALL C05ADF(A,B,EPS,ETA,FN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=9999S) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT1(5,K)=X
FN1(5,K)=D(1)+D(2)*PT1(5,K)+D(3)*(PT1(5,K)**2)+D(4)*(PTl(5,K)**3)+

&D(5)*(PT1(5,K)**4)+D(6)*(PT1(5,K)**5)+D(7)*(PT1(5,K)**6)+
&D(S)*(PT1(5,K)**7)+D(9)*(PT1(5,K)**S)+D(lO)*(PT1(5,K)**9)

C
IF(FFN(U)*FFN(B) .GT.O)GO TO 45

CALL C05ADF(U,B,EPS,ETA,FFN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=9999S) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT2(5,K)=X
FN2(5,K)=D(1)+D(2)*PT2(5,K)+D(3)*(PT2(5,K)**2)+D(4)*(PT2(5,K)**3)+

&D(5)*(PT2(5,K)**4)+D(6)*(PT2(5,K)**5)+D(7)*(PT2(5,K)**6)+
&D(S)*(PT2(5,K)**7)+D(9)*(PT2(5,K)**S)+D(lO)*(PT2(5,K)**9)
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C ******** Point of intersection of 6th curve ********
45 J6=0

DO 23 I=l,N
IF(VR(I,ll,K) .GT.1.0D-0)GOTO 23
IF(VR(I,ll,K) .EQ.O)GOTO 23
J6=J6+1
VR6(J6)=VR(I,11,K)
FE6(J6)=FE(I,11,K)

23 CONTINUE
IF(M1.GE.J6)GOTO 44
CALL E02ACF(FE6,VR6,J6,D,M1,REF)
DO 6 1=1,10

6 G(I)=D(I)
C

IF(FN(A)*FN(B) .GT.O)GO TO 44
CALL C05ADF(A,B,EPS,ETA,FN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=9999B) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PTl (6, K) =X
FN1(6,K)=D(1)+D(2)*PT1(6,K)+D(3)*(PT1(6,K)**2)+D(4)*(PT1(6,K)**3)+

&D(5)*(PT1(6,K)**4)+D(6)*(PT1(6,K)**5)+D(7)*(PT1(6,K)**6)+
&D(B)*(PT1(6,K)**7)+D(9)*(PT1(6,K)**B)+D(10)*(PT1(6,K)**9)

C

J7=0
DO 24 I=l,N
IF(VR(I,13,K) .GT.1.OD-0)GOTO 24
IF(VR(I,13,K) .EQ.O)GOTO 24
J7=J7+1
VR7(J7)=VR(I,13,K)
FE7(J7)=FE(I,13,K)
CONTINUE
IF(M1.GE.J7)GOTO 43
CALL E02ACF(FE7,VR7,J7,D,M1,REF)
DO 7 1=1,10
G(1) =D (I)

IF(FFN(U)*FFN(B) .GT.O)GO TO 44
CALL C05ADF(U,B,EPS,ETA,FFN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=9999B) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT2(6,K)=X
FN2(6,K)=D(1)+D(2)*PT2(6,K)+D(3)*(PT2(6,K)**2)+D(4)*(PT2(6,K)**3)+

&D(5)*(PT2(6,K)**4)+D(6)*(PT2(6,K)**5)+D(7)*(PT2(6,K)**6)+
&D(B)*(PT2(6,K)**7)+D(9)*(PT2(6,K)**B)+D(10)*(PT2(6,K)**9)

C ******** Point of intersection of 7th curve ********
44

7
C

24
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IF(FN(A)*FN(B) .GT.O)GO TO 43
CALL C05ADF(A,B,EPS,ETA,FN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=9999B) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT1(7,K)=X
FN1(7,K)=D(1)+D(2)*PT1(7,K)+D(3)*(PT1(7,K)**2)+D(4)*(PTl(7,K)**3)+

&D(5)*(PT1(7,K)**4)+D(6)*(PT1(7,K)**5)+D(7)*(PT1(7,K)**6)+
&D(B)*(PT1(7,K)**7)+D(9)*(PT1(7,K)**B)+D(lO)*(PT1(7,K)**9)

C

JB=O
DO 25 I=l,N
IF(VR(I,15,K) .GT.l.OD-O)GOTO 25
IF(VR(I,15,K) .EQ.O)GOTO 25
JB=JB+l
VRB(JB)=VR(I,15,K)
FEB(JB)=FE(I,15,K)
CONTINUE
IF(Ml.GE.JB)GO TO 42
CALL E02ACF(FEB,VRB,JB,D,Ml,REF)
DO B I=l,lO

G (I) =D (I)B
C

IF(FFN(U)*FFN(B) .GT.O) GOTO 43
CALL C05ADF(U,B,EPS,ETA,FFN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=9999B) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT2(7,K)=X

FN2(7,K)=D(1)+D(2)*PT2(7,K)+D(3)*(PT2(7,K)**2)+D(4)*(PT2(7,K)**3)+
&D(5)*(PT2(7,K)**4)+D(6)*(PT2(7,K)**5)+D(7)*(PT2(7,K)**6)+
&D(B)*(PT2(7,K)**7)+D(9)*(PT2(7,K)**B)+D(lO)*(PT2(7,K)**9)

C ******** Point of intersection of Bth curve ********
43

25

IF(FN(A)*FN(B) .GT.O)GO TO 42
CALL C05ADF(A,B,EPS,ETA,FN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=9999B) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT1(B,K)=X
FN1(B,K)=D(1)+D(2)*PT1(B,K)+D(3)*(PT1(B,K)**2)+D(4)*(PTl(B,K)**3)+

&D(5)*(PT1(B,K)**4)+D(6)*(PT1(B,K)**5)+D(7)*(PT1(B,K)**6)+
&D(B)*(PT1(B,K)**7)+D(9)*(PT1(B,K)**B)+D(lO)*(PT1(B,K)**9)

C
IF(FFN(U)*FFN(B) .GT.O) GOTO 42
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J9=0
DO 26 I=l,N
IF(VR(I,17,K) .GT.l.OD-O)GOTO 26
IF(VR(I,17,K) .EQ.O)GOTO 26
J9=J9+1
VR9(J9)=VR(I,17,K)
FE9(J9)=FE(I,17,K)
CONTINUE
IF(Ml.GE.J9) GOTO 40
CALL E02ACF(FE9,VR9,J9,D,Ml,REF)
DO 9 I=l,lO
G(I)=D(I)
WRITE(6,*)D(I)

CALL C05ADF(U,B,EPS,ETA,FFN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=9999S) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT2(S,K)=X
FN2(S,K)=D(1)+D(2)*PT2(S,K)+D(3)*(PT2(S,K)**2)+D(4)*(PT2(S,K)**3)+

&D(5)*(PT2(S,K)**4)+D(6)*(PT2(S,K)**5)+D(7)*(PT2(S,K)**6)+
&D(S)*(PT2(S,K)**7)+D(9)*(PT2(S,K)**S)+D(10)*(PT2(S,K)**9)

C ******** Point of intersection of 9th curve ********
42

9
C

26

IF(FN(A)*FN(B) .GT.O)GO TO 40
CALL C05ADF(A,B,EPS,ETA,FN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=9999S) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT1(9,K)=X
FN1(9,K)=D(1)+D(2)*PT1(9,K)+D(3)*(PT1(9,K)**2)+D(4)*(PTl(9,K)**3)+

&D(5)*(PT1(9,K)**4)+D(6)*(PT1(9,K)**5)+D(7)*(PT1(9,K)**6)+
&D(S)*(PT1(9,K)**7)+D(9)*(PT1(9,K)**S)+D(10)*(PT1(9,K)**9)

C
IF(FFN(U)*FFN(B) .GT.O) GOTO 40

CALL C05ADF(U,B,EPS,ETA,FFN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=9999S) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT2(9,K)=X
FN2(9,K)=D(1)+D(2)*PT2(9,K)+D(3)*(PT2(9,K)**2)+D(4)*(PT2(9,K)**3)+

&D(5)*(PT2(9,K)**4)+D(6)*(PT2(9,K)**5)+D(7)*(PT2(9,K)**6)+
&D (S)* (PT2 (9,K) **7)+D (9)* (PT2 (9,K) **S)+D (10)* (PT2 (9,K) ** 9)

C ******** Point of intersection of 10th curve ********
40 J10=0
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DO 27 I=l,N
IF(VR(I,18,K) .GT.1.0D-0)GOTO 27
IF(VR(I,18,K) .EQ.O.D+O)GOTO 27
J10=J10+1
VR10(J10)=VR(I,18,K)
FE10(J10)=FE(I,18,K)

27 CONTINUE
IF(M1.GE.J10) GOTO 38
CALL E02ACF(FE10,VR10,J10,D,M1,REF)
DO 10 1=1,10

lOG (I)=D (I)
C

IF(FN(A)*FN(B) .GT.O)GO TO 38
CALL C05ADF(A,B,EPS,ETA,FN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT1(10,K)=X
FN1(10,K)=D(1)+D(2)*PT1(10,K)+D(3)*(PT1(10,K)**2)+

&D(4)*(PT1(10,K)**3)+
&D (5)* (PT1 (10,K) **4) +D (6)* (PT1 (10,K) **5)+D (7)* (PT1 (10,K) **6)+
&D (8)* (PT1 (10,K) **7)+D (9)* (PT1 (10,K) **8)+D (10)* (PT1 (10,K) **9)

c

Jll=O
DO 37 I=l,N
IF(VR(I,19,K) .GT.1.0D-O)GOTO 37
IF(VR(I,19,K) .EQ.O)GOTO 37
Jll=J11+1
VR11(J11)=VR(I,19,K)
FE11(J11)=FE(I,19,K)
WRITE(6,*) J11,FE11(J11),VR11(J11)
CONTINUE

M1=10
IF(M1.GE.J11)GOTO 41

IF(M1.GE.J11) M1=Jll-2
CALL E02ACF(FE11,VR11,J11,D,M1,REF)

IF( FFN(U)*FFN(B) .GT.O) GOTO 38
CALL C05ADF(U,B,EPS,ETA,FFN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT2(10,K)=X

FN2(10,K)=D(1)+D(2)*PT2(10,K)+D(3)*(PT2(10,K)**2)+
&D(4)*(PT2(10,K)**3)+
&D(5)*(PT2(10,K)**4)+D(6)*(PT2(10,K)**5)+D(7)*(PT2(10,K)**6)+
&D(8)*(PT2(10,K)**7)+D(9)*(PT2(10,K)**8)+D(10)*(PT2(10,K)**9)

C ******** Point of intersection of 11th curve ********
38

C

37
C
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DO 36 I=l,lO
36 G(I)=D(I)
C

IF(FN(A)*FN(B) .GT.O)GO TO 41
CALL C05ADF (A,B,EPS,ETA,FN,X, IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT1 (11,K)=X
FN1(11,K)=D(1)+D(2)*PT1(11,K)+D(3)*(PT1(11,K)**2)+

&D(4)*(PT1(11,K)**3)+
&D(5)*(PT1(11,K)**4)+D(6)*(PT1(11,K)**5)+D(7)*(PT1(11,K)**6)+
&D(8)*(PT1(11,K)**7)+D(9)*(PT1(11,K)**8)+D(lO)*(PT1(11,K)**9)

C

J12=O
DO 137 I=l,N
IF(VR(I,20,K) .GT.1.OD-O)GOTO 137
IF(VR(I,20,K) .EQ.O)GOTO 137
J12=J12+1
VR12(J12)=VR(I,20,K)
FE12(J12)=FE(I,20,K)

CONTINUE
IF(M1.GE.J12)GOTO 141
CALL E02ACF(FE12,VR12,J12,D,M1,REF)
DO 336 I=1,10

G(I)=D(I)

IF(FFN(U)*FFN(B) .GT.O)GO TO 41
CALL C05ADF(U,B,EPS,ETA,FFN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT2 (11,K)=X
FN2(11,K)=D(1)+D(2)*PT2(11,K)+D(3)*(PT2(11,K)**2)+

&D(4)*(PT2(11,K)**3)+
&D(5)*(PT2(11,K)**4)+D(6)*(PT2(11,K)**5)+D(7)*(PT2(11,K)**6)+
&D(8)*(PT2(11,K)**7)+D(9)*(PT2(11,K)**8)+D(lO)*(PT2(11,K)**9)

C ******** Point of intersection of 12th curve ********
41

336
C

137

IF(FN(A)*FN(B) .GT.O)GO TO 141
CALL C05ADF(A,B,EPS,ETA,FN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT1(12,K)=X
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FN1(12,K)=D(1)+D(2)*PT1(12,K)+D(3)*(PT1(12,K)**2)+
&D(4)*(PT1(12,K)**3)+
&D(5)*(PT1(12,K)**4)+D(6)*(PT1(12,K)**5)+D(7)*(PT1(12,K)**6)+
&D(8)*(PT1(12,K)**7)+D(9)*(PT1(12,K)**8)+D(10)*(PT1(12,K)**9)

C

75
76
99998
99997
99996
100
97

OF FIRST CURVE = ',D15.6)
OF THE CURVES WITH THE GROWTH
CURVE ARE FOLLOWING'I

(Gid+Gel +Gsurf)

',F8.4, 3(SX,D1S.6»
POINT OF INTERSECTION OF CURVES WITH THE LINE OF NUCLEA

(Xalpha) (Gid) (Gid+Gel+Gsurf)

141

77

73
74

96
95

IF(FFN(U)*FFN(B) .GT.O)GO TO 141
CALL C05ADF(U,B,EPS,ETA,FFN,X,IFAIL)
IF (IFAIL.EQ.O) THEN

WRITE (6,FMT=99997) X
ELSE

WRITE (6,FMT=99998) IFAIL
IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (6,FMT=99996) X

END IF
PT2(12,K)=X
FN2(12,K)=D(1)+D(2)*PT2(12,K)+D(3)*(PT2(12,K)**2)+

&D(4)*(PT2(12,K)**3)+
&D(5)*(PT2(12,K)**4)+D(6)*(PT2(12,K)**5)+D(7)*(PT2(12,K)**6)+
&D(8)*(PT2(12,K)**7)+D(9)*(PT2(12,K)**8)+D(10)*(PT2(12,K)**9)

XALP(l,K)=XAL(l,l,K)
I=l
DO 77 J=3,17,2
I=I+l
XALP(I,K)=XAL(l,J,K)
XALP(10,K)=XAL(1,18,K)
XALP(11,K)=XAL(1,19,K)
XALP(12,K)=XAL(1,20,K)
WRITE (6,97)
DO 73 I=1,12
IF(FN1(I,K) .EQ.O.O) GOTO 74
PTF1(I,K)=PT1(I,K)-(TDSE)
WRITE(6,*) XALP(I,K),PTF1(I,K),PT1(I,K),FN1(I,K)
WRI TE (6,95)
DO 75 J=1,12
IF (FN2 (J,K) .EQ.O)GOTO 76
PTF2(J,K)=PT2(J,K)-(TDSE)
WRITE(6,*) XALP(J,K),PTF2(J,K),PT2(J,K),FN2(J,K)
RETURN
FORMAT (' IFAIL =' ,I3)
FORMAT (' ZERO =',F12.5)
FORMAT (' FINAL POINT = ,,F12.5)
FORMAT(5X,'POINT OF INTERSECTION
FORMAT (I' POINT OF INTERSECTION

& LINE'I' STARTING FROM THE FIRST
&' (Xalpha) (Gid)
&Vrho)' ,I)

FORMAT ('
FORMAT (/'
&TION'I'
& (Vrho)', I)

END
C *********************************************************************
C Subroutine plotting Xalpha versus velocity
C *********************************************************************
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SUBROUTINE PLOT3 (K)
COMMON XI(50,50,16),GID(50,50,16),FE(50,50,16),

&VR(50,50,16),CTEMP,MUM,XAL(50,50,16),XALP(12,16),FN1(12,16),
&FN2 (12,16) ,PT1 (12,16) ,PT2 (12,16) ,PTF1 (12,16) ,PTF2 (12,16) ,
&ANS1(50,50,16),ANS11(100),VKR1(12,16),VKR2(12,16),
&XI11(12,16),XI22(12,16)

COMMON /TWO/ TDSE
DIMENSION FN11(12),FN22(12),VKR11(12),VKR22(12),

&XALP1(12),XALP2(12),XX1(2),YY1(2),YY2(2),YY3(2),YY4(2)
DOUBLE PRECISION Y1,Y2,YLA,FNMAX,FNMIN,DD,DD1,DD2,DD3,DD4,

&XX1,YY1,YY2,YY3,YY4,A
N=12
T=CTEMP
CALL GRMS3S(1.5)
FNMAX=1.0D-30
FNMIN=1.0D+30
DO 123 I=l,N
IF(FN1(I,K) .LE.O.O) GOTO 124
IF(FN1(I,K) .LT.FNMIN) FNMIN=FN1(I,K)
IF(FN1(I,K) .GT.FNMAX) FNMAX=FN1(I,K)

124 IF(FN2(I,K) .LE.O.O) GOTO 123
IF(FN2(I,K) .LT.FNMIN) FNMIN=FN2(I,K)
IF(FN2(I,K) .GT.FNMAX) FNMAX=FN2(I,K)

123 CONTINUE
A=FNMAX*1.0D+1
DO 150 I=l,N
IF (VKR1 (I,K) .LE.O.O) GOTO 151
IF (VKR1 (I,K) .GT.A) GOTO 150
IF (VKR1 (I,K) .LT.FNMIN) FNMIN=VKR1(I,K)
IF (VKR1 (I,K) .GT.FNMAX) FNMAX=VKR1(I,K)

151 IF (VKR2 (I,K) .LE.O.O) GOTO 150
IF (VKR2 (I,K) .LT.FNMIN) FNMIN=VKR2(I,K)
IF (VKR2 (I,K) .GT.FNMAX) FNMAX=VKR2(I,K)

150 CONTINUE
IF (A.GT.FNMAX) FNMAX=A
FNMAX=FNMAX/1.5D-09
FNMIN=FNMIN/1.5D-09
Y1=DLOG10(FNMIN)
Y2=DLOG10(FNMAX)
DD=(Y2-Yl)/25.0
DD1=Y2-2*DD
DD2=DD1-DD
DD3=DD2-DD
DD4=DD3-DD
DD5=DD4-DD
DD6=DD5-DD
DD7=DD6-DD
XX1(1)=0.0015DO
XX1(2)=0.003DO
YY1(1)=10**DD4
YYl (2)=YYl (1)
YY2(1)=10**DD5
YY2(2)=YY2(1)
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YY3(1)=10**DD6
YY3(2)=YY3(1)
YY4(1)=10**DD7
YY4(2)=YY4(1)
CALL GRTX3D (1, 3.7, 0.0, 0.0, 3.7)
CALL GRTX3D (2, 4.2, 0.0, 0.0, 4.2)
CALL GRTX2D(2,9)
CALL GRTX2D(1,9)
CALL GRLM2S(O.15,0.45,0.52,0.97)
CALL GRLM3S (O.00,0.015,Y1,Y2)

C ***** Define annotation *****
CALL GRTX4S (1,' !')
CALL GRLS3S (1)

C ***** Select line style for graph *****
CALL GRTY5S (0,1)
XALP(1,K)=0.0003DO
J1=0
DO 1 I=1,12
IF(PT1(I,K) .LE.O)GOTO 3
IF(FN1(I,K) .LE.O)GOTO 3
J1=J1+1
FN11(J1)=FN1(I,K)/1.5D-09

1 CONTINUE
3 IF(J1.LT.2) GOTO 101

CALL GRGR7S (XALP,FN11,J1)
C ***** Draw point for the curve identification *****

CALL GRGR7D (XX1,YY1,2)
CALL GRAN5S (0.0035,DD4,'growth',6,0.0)

C ***** Select line style for graph *****
101 CALL GRTY5S (0,2)

J2=0
DO 2 I=1,12
IF(PT2(I,K) .LE.O)GOTO 4
IF(FN2(I,K) .LE.O)GOTO 4
J2=J2+1
FN22(J2)=FN2(I,K)/1.5D-09

2 CONTINUE
4 IF(J2.LT.2)GOTO 5

CALL GRLS3S (2)
C ***** Select line style for graph *****

CALL GRGR7S (XALP,FN22,J2)
C ***** Draw point for the curve identification *****

CALL GRGR7D (XX1,YY2,2)
CALL GRAN5S (O.0035,DD5,'nucleation',10,0.0)

5 Il=O
DO 9 I=l,N

C IF(I.LE.4) GOTO 9
IF(XI11(I,K) .LE.O) GOTO 9
IF (VKR1 (I,K) .LE.O)GOTO 9
IF (VKR1 (I,K) .GT.A) GOTO 9
Il=Il+1
VKR11 (I1)=VKR1(I,K)/1.5D-09
XALP1(I1)=XALP(I,K)
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9 CONTINUE
IF(I1.LT.2)GOTO 102
CALL GRLS3S (4)

C ***** Select line style for graph *****
CALL GRTY5S (0,3)
CALL GRGR7S (XALP1,VKR11,I1)

C ***** Draw point for the curve identification *****
CALL GRGR7D (XX1,YY3,2)
CALL GRAN5S (0.0035,DD6,'solute trap (growth)',20,0.0)

102 I2=0
DO 7 I=1,12
IF(XI22(I,K) .LE.O) GOTO 7
IF (VKR2 (I,K) .LE.O)GOTO 7
I2=I2+1
VKR22(I2)=VKR2(I,K)/1.5D-09
IF (VKR22 (I2) .GT.1.0D-03)VKR22(I2)=1.0D-04
XALP2(I2)= XALP(I,K)

7 CONTINUE
IF(I2.LT.2) GOTO 555
CALL GRLS3S (3)

C ***** Select line style for graph *****
CALL GRTY5S (0,4)
CALL GRGR7S (XALP2,VKR22,I2)

C ***** Draw point for the curve identification *****
CALL GRGR7D (XX1,YY4,2)
CALL GRAN5S (0.0035,DD7,'solute trap (nucleation)',24,0.0)

555 CALL GRLS3S (1)
C ***** Write string at any point *****

CALL GRAN5D (0.0035,DD1,'Fe-0.4C wt.%',12,0.0)
IF(K.EQ.1) CALL GRAN5S(0.0035,DD2,'T=410!SP!o!NL!C',15,0.0)

C ***** Write heading and axis title *****
CALL GRAN6S (' ',1,

&'x!F3! !SB!a!NL! !RE! /mole fraction',33,
&'Velocity /ms!SP!-1!NL!',22)

RETURN
11 FORMAT(F6.4,2X,D15.5)

E~
C ********************************************************************
C

DOUBLE PRECISION FUNCTION FN(X)
COMMON XI(50,50,16),GID(50,50,16),FE(50,50,16),

&VR(50,50,16),CTEMP,MUM,XAL(50,50,16),XALP(12,16),FN1(12,16),
&FN2(12,16),PT1(12,16),PT2(12,16),PTF1(12,16),PTF2(12,16),
&ANS1(50,50,16),ANS11(100),VKR1(12,16),VKR2(12,16),
&XI11(12,16),XI22(12,16)

COMMON /ONE/ G(10)
COMMON /TWO/ TDSE
DOUBLE PRECISION X,W1,W2,W3,W4,W5,W6,K,VO,CTEMP,EE,V,MU,OMEGA,

&A,T,GIH,QO,RAD,GI,VI,Q
VO=30.0DO
RAD=1.5D-09
K=1.38062D-23
T=CTEMP+273.0
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OMEGA=6.679D-6*(1+7.89D-5*T)/6.0225D+23
IF (CTEMP.GE.25.AND.CTEMP.LE. 540) EE=(-18.8DO*CTEMP+52400)*4.18E+6
IF(CTEMP.GE.540.AND.CTEMP.LE.705) EE=(-37.6DO*CTEMP+62300)*4.18E+6
IF (CTEMP.GE.260.AND.CTEMP.LE.595) V=(3.6D-5)*CTEMP+0.284
IF(CTEMP.GE.595.AND.CTEMP.LE.705) V=(9.9D-5)*CTEMP+0.246
MU=0.5DO*EE/(1+V)
MUM= MU*OMEGA*6.0225D+23
GIH=1.22D-3*MUM
QO=0.31*MU*OMEGA

W1 VO*RAD
W2 ( 1.0-DSQRT (X-(TDSE» I GIH)
W3 (K*T)
W4 G(l) + G(2)*X + G(3)*(X*X)+G(4)*(X**3)+G(5)*(X**4)+

&G(6)*(X**5)+G(7)*(X**6)+G(8)*(X**7)+G(9)*(X**8)+G(10)*(X**9)
W5 -0.31 * OMEGA * MU * W2
W6 = W5 I W3

FN= W1 * DEXP ( W6 ) - W4
RETURN
E~

C ********************************************************************
C

DOUBLE PRECISION FUNCTION FFN(X)
COMMON XI(50,50,16),GID(50,50,16),FE(50,50,16),

&VR(50,50,16),CTEMP,MUM,XAL(50,50,16),XALP(12,16),FN1(12,16),
&FN2(12,16),PT1(12,16),PT2(12,16),PTF1(12,16),PTF2(12,16),
&ANS1(50,50,16),ANS11(100),VKR1(12,16),VKR2(12,16),
&XI11(12,16),XI22(12,16)

COMMON IONEI G(10)
COMMON ITWol TDSE
DOUBLE PRECISION X,W1,W2,W3,W4,W5,W6,K,VO,EE,V,MU,OMEGA,

&A,T,GIH,QO,RAD,GI,VI,Q,WO,U,WW
VO=30.0DO
RAD=1.5D-09
K=1.38062D-23
T=CTEMP+273.0
OMEGA=6.679D-6*(1+7.89D-5*T)/6.0225D+23
IF(CTEMP.GE.25.AND.CTEMP.LE.540) EE=(-18.8DO*CTEMP+52400)*4.18E+6
IF(CTEMP.GE.540.AND.CTEMP.LE.705) EE=(-37.6DO*CTEMP+62300)*4.18E+6
IF(CTEMP.GE.260.AND.CTEMP.LE.595) V=(3.6D-5)*CTEMP+O.284
IF(CTEMP.GE.595.AND.CTEMP.LE.705) V=(9.9D-5)*CTEMP+O.246
MU=O.5DO*EE/(1+V)
MUM= MU*OMEGA*6.0225D+23
GIH=1.22D-3*MUM
QO=O.31*MU*OMEGA
W7 =2.0D-3*MUM

W1 = VO*RAD
IF(X.LT.W7) GOTO 1
W2 ( 1.0-DSQRT (X-W7) I GIH)
W3 = (K*T)
W4 = G(l) + G(2)*X + G(3)*(X*X)+G(4)*(X**3)+G(5)*(X**4)+

&G(6)*(X**5)+G(7)*(X**6)+G(8)*(X**7)+G(9)*(X**8)+G(10)*(X**9)
W5 -0.31 * OMEGA * MU * W2
W6 = W5 I W3
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FFN= W1 * DEXP ( W6 ) - W4
1 RETURN

E~
C *********************************************************************
C

SUBROUTINE TRAP (N,K)
COMMON XI(50,50,16),GID(50,50,16),FE(50,50,16),

&VR(50,50,16),CTEMP,MUM,XAL(50,50,16),XALP(12,16),FN1(12,16),
&FN2(12,16),PT1(12,16),PT2(12,16),PTF1(12,16),PTF2(12,16),
&ANS1(50,50,16),ANS11(100),VKR1(12,16),VKR2(12,16),
&XI11(12,16),XI22(12,16),XBAR

COMMON /ONE/ G(10)
COMMON /TWO/ TDSE
DIMENSION FE1(100),FE2(100),FE3(100),FE4(100),FE5(100),

&FE6(100),FE7(100),FE8(100),FE9(100),FE10(100),FE11(100),
&XX1(5),XX2(5),YY1(5),YY2(5),
&VR1(100),VR2(100),VR3(100),VR4(100),VR5(100),VR6(100),
&VR7(100),VR8(100),VR9(100),VR10(100),VR11(100),Y(12),
&VK1(12),VK2(12),DCT1(12),DCT2(12),
&PT(12),C(3),KP1(12),KP2(12),E(12),F(12),
&GID1(100),XI1(100),GID2(100),XI2(100),GID3(100),XI3(100),
&GID4(100),XI4(100),GID5(100),XI5(100),GID6(100),XI6(100),
&GID7(100),XI7(100),GID8(100),XI8(100),GID9(100),XI9(100),
&GID10(100),XI10(100),GID11(100),XI101(100),GID12(100),XI12(100),
&VD1(12),VD2(12),XI111(12),XALP11(12),XI222(12),XALP2(12),
&XXII1(15),XXII2(15)

DOUBLE PRECISION X1,Y2,Y1,X2,FE1,FE2,FE3,FE4,FE5,FE6,FE7,
&FE8,FE9,FE10,VR1,VR2,VR3,VR4,VR5,VR6,VR7,VR8,VR9,VR10,VR11,
&Y,P1,P2,MU1,MU2,Zl,Z2,XX1,XX2,YY1,YY2,DC,DCT1,DCT2,
&GID1,XI1,GID2,XI2,GID3,XI3,GID4,XI4,GID5,XI5,GID6,XI6,
&GID7,XI7,GID8,XI8,GID9,XI9,GID10,XI10,XI101,GID11,GID12,XI12,
&C,X,RAD,XI111,XALP11,XI222,XALP2,XXII1,XXII2

DOUBLE PRECISION XALPH,KE,KP1,KP2,A,B,LAM,VD,VD1,VD2,E,F,
&XXII11(15),XALP111(15),XXII22(15), XALP222(15),VDR1(12,16),XEQ

INTEGER M1,I,J,N1,N2
INTEGER M
INTEGER IFAIL
EXTERNAL E02ACF
EXTERNAL XALPH
T=CTEMP+273.0
PI=3.1415927
CALL ECON(T,XEQ)
XALPP=XALPH(T)
KE=XALPP/XEQ
I1=0
DO 14 I=l,N
IF(XI(I,l,K) .LE. O.ODO)GOTO 15
GID1(I)=GID(I,1,K)
I1=I1+1

14 XI1(I) = XI(I,l,K)
15 M1=3

IF(FN1(1,K) .LE.O)GOTO 10
IF(M1.GE.I1) GO TO 220
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CALL E02ACF (GID1,Xl1,I1,C,M1,REF)
Xl11(1,K)=C(1)+C(2)*PTF1(1,K)+C(3)*(PTF1(1,K)**2)
A=XIl1(1,K)
XALP(1,K)=0.0003DO
B=XALP(l,K)
CALL INTEG (RAD,B,A,DC)
DCT1(1)=DC

10 IF(FN2(1,K) .LE.O)GOTO 220
XI22(1,K)=C(1)+C(2)*PTF2(1,K)+C(3)*(PTF2(1,K)**2)
A=XI22 (l,K)
CALL INTEG(RAD,B,A,DC)
DCT2(1)=DC

220 12=0
DO 16 I=l,N
IF(XI(I,3,K) .LE. O.ODO)GOTO 17
GID2(1)=GID(I,3,K)
12=12+1

16 XI2(I) = XI(I,3,K)
17 IF(FN1(2,K) .LE.O)GOTO 330

IF(M1.GE.I2) GOTO 40
CALL E02ACF (GID2,XI2,I2,C,M1,REF)
Xl11(2,K)=C(1)+C(2)*PTF1(2,K)+C(3)*(PTF1(2,K)**2)
A=XIl1(2,K)
B=XALP(2,K)
CALL INTEG(RAD,B,A,DC)
DCT1(2)=DC

330 IF(FN2(2,K) .LE.O)GOTO 40
XI22(2,K)=C(1)+C(2)*PTF2(2,K)+C(3)*(PTF2(2,K)**2)
A=XI22 (2,K)
CALL INTEG(RAD,B,A,DC)
DCT2(2)=DC

40 13=0
DO 18 I=l,N
IF (XI (1,5, K) .LE. O.ODO) GOTO 19
GID3(1)=GID(I,5,K)
13=13+1

18 XI3(I) = XI(I,5,K)
19 IF(FN1(3,K) .LE.O)GOTO 50

IF(M1.GE.I3) GOTO 60
CALL E02ACF (GID3,XI3,I3,C,M1,REF)
Xl11(3,K)=C(1)+C(2)*PTF1(3,K)+C(3)*(PTF1(3,K)**2)
A=XIl1(3,K)
B=XALP(3,K)
CALL INTEG(RAD,B,A,DC)
DCT1(3)=DC

50 IF(FN2(3,K) .LE.O)GOTO 60
XI22(3,K)=C(1)+C(2)*PTF2(3,K)+C(3)*(PTF2(3,K)**2)
A=XI22 (3,K)
CALL 1NTEG(RAD,B,A,DC)
DCT2(3)=DC

60 14=0
DO 20 I=l,N
IF(XI(I,7,K) .LE. O.ODO)GOTO 21
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GID4(I)=GID(I,7,K)
I4=I4+1

20 XI4(I) = XI(I,7,K)
21 IF(FN1(4,K) .LE.O)GOTO 70

IF(M1.GE.I4) GOTO 80
CALL E02ACF (GID4,XI4,I4,C,M1,REF)
XI11(4,K)=C(1)+C(2)*PTF1(4,K)+C(3)*(PTF1(4,K)**2)
A=XI11 (4,K)
B=XALP(4,K)
CALL INTEG(RAD,B,A,DC)
DCT1(4)=DC

70 IF(FN2(4,K) .LE.O)GOTO 80
XI22(4,K)=C(1)+C(2)*PTF2(4,K)+C(3)*(PTF2(4,K)**2)
A=XI22 (4,K)
CALL INTEG(RAD,B,A,DC)
DCT2(4)=DC

80 I5=0
DO 22 I=l,N
IF(XI(I,9,K) .LE. O.ODO)GOTO 23
GID5(I)=GID(I,9,K)
I5=I5+1

22 XIS (I) = XI(I,9,K)
23 IF(FN1(5,K) .LE.O)GOTO 90

IF(M1.GE.I5) GOTO 100
CALL E02ACF (GID5,XI5,I5,C,M1,REF)
Xl11(5,K)=C(1)+C(2)*PTF1(5,K)+C(3)*(PTF1(5,K)**2)
A=XI11(5,K)
B=XALP(5,K)
CALL INTEG(RAD,B,A,DC)
DCT1(5)=DC

90 IF(FN2(5,K) .LE.O)GOTO 100
XI22(5,K)=C(1)+C(2)*PTF2(5,K)+C(3)*(PTF2(5,K)**2)
A=XI22 (5,K)
CALL INTEG(RAD,B,A,DC)
DCT2(5)=DC

100 16=0
DO 24 I=l,N
IF(XI(I,l1,K) .LE. O.ODO)GOTO 25
GID6(I)=GID(I,11,K)
16=16+1

24 XI6 (I) = XI (1,11, K)
25 IF(FN1(6,K) .LE.O)GOTO 110

X = PTFl (6,K)
IF(M1.GE.I6) GOTO 120
CALL E02ACF (GID6,XI6,I6,C,M1,REF)
Xl11(6,K)=C(1)+C(2)*PTF1(6,K)+C(3)*(PTF1(6,K)**2)
A=XI11 (6,K)
B=XALP(6,K)
CALL INTEG(RAD,B,A,DC)
DCT1(6)=DC

110 IF(FN2(6,K) .LE.O)GOTO 120
XI22(6,K)=C(1)+C(2)*PTF2(6,K)+C(3)*(PTF2(6,K)**2)
A=XI22 (6,K)
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CALL INTEG{RAD,B,A,DC)
DCT2(6)=DC

120 I7=0
DO 26 I=l,N
IF{XI{I,13,K) .LE. O.ODO)GOTO 27
GID7{I)=GID{I,13,K)
I7=I7+1

26 XI7{I) = XI{I,13,K)
27 IF{FN1{7,K) .LE.O)GOTO 130

IF{M1.GE.I7) GOTO 140
CALL E02ACF (GID7,XI7,I7,C,M1,REF)
Xl11{7,K)=C{1)+C{2)*PTF1(7,K)+C(3)*{PTF1(7,K)**2)
A=XIl1 (7,K)
B=XALP{7,K)
CALL INTEG(RAD,B,A,DC)
DCT1(7)=DC

130 IF{FN2{7,K) .LE.O)GOTO 140
XI22{7,K)=C(1)+C{2)*PTF2(7,K)+C(3)*(PTF2{7,K)**2)
A=XI22 (7,K)
CALL INTEG{RAD,B,A,DC)
DCT2(7)=DC

140 18=0
DO 28 I=l,N
IF(XI{I,15,K) .LE. O.ODO)GOTO 29
GID8(I)=GID{I,15,K)
18=I8+1

28 XI8{I) = XI{I,15,K)
29 IF(FN1{8,K) .LE.O)GOTO 150

IF{M1.GE.I8) GOTO 160
CALL E02ACF (GID8,XI8,I8,C,M1,REF)
Xl11(8,K)=C(1)+C(2)*PTF1(8,K)+C(3)*(PTF1(8,K)**2)
A=XIl1 (8,K)
B=XALP (8,K)
CALL INTEG{RAD,B,A,DC)
DCT1(8)=DC

150 IF{FN2(8,K) .LE.O)GOTO 160
XI22{8,K)=C{1)+C(2)*PTF2(8,K)+C(3)*{PTF2{8,K)**2)
A=XI22 (8,K)
CALL INTEG{RAD,B,A,DC)
DCT2(8)=DC

160 19=0
DO 30 I=l,N
IF {XI (I,17, K) .LE. O. ODO) GOTO 31
GID9{I)=GID{I,17,K)
19=I9+1

30 XI9(I) = XI(I,17,K)
31 IF(FN1{9,K) .LE.O)GOTO 170

IF(M1.GE.I9) GOTO 180
CALL E02ACF (GID9,XI9,I9,C,M1,REF)
Xl11{9,K)=C{1)+C{2)*PTF1{9,K)+C(3)*(PTF1{9,K)**2)
A=XIl1 (9,K)
B=XALP(9,K)
CALL INTEG{RAD,B,A,DC)
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DCT1(9)=DC
170 IF(FN2(9,K) .LE.O)GOTO lBO

XI22(9,K)=C(1)+C(2)*PTF2(9,K)+C(3)*(PTF2(9,K)**2)
A=XI22 (9,K)
CALL INTEG(RAD,B,A,DC)
DCT2(9)=DC

lBO IlO=O
DO 32 I=l,N
IF(XI(I,lB,K) .LE. O.ODO)GOTO 33
GID10(I)=GID(I,lB,K)
IlO=IlO+l

32 XI10(I) = XI(I,lB,K)
33 IF(FN1(10,K) .LE.O)GOTO 190

IF(Ml.GE.I10) GOTO 200
CALL E02ACF (GID10,XI10,I10,C,Ml,REF)
XIll(10,K)=C(1)+C(2)*PTF1(10,K)+C(3)*(PTF1(10,K)**2)
A=XIll (lO,K)
B=XALP (lO,K)
CALL INTEG(RAD,B,A,DC)
DCT1(10)=DC

190 IF(FN2(10,K) .LE.O) GOTO 200
XI22(10,K)=C(1)+C(2)*PTF2(10,K)+C(3)*(PTF2(10,K)**2)
A=XI22 (lO,K)
CALL INTEG(RAD,B,A,DC)
DCT2(10)=DC

C *********** Data of Xal and xi for curve fitting ************
200 DO 300 I=l,lO

XALPll(I)=XALP(I,K)
XXII1(I)=XIll(I,K)
XXII2(I)=XI22(I,K)

300 CONTINUE
XALP11 (11)=XBAR
XXIIl (11)=XBAR
XXII2 (11)=XBAR
XALP(11,K)=XBAR-0.0001B
XALP(12,K)=XBAR-0.00003
IFAIL = 1

C .. Parameters
M=lO
Ill11=O
DO 1111 I=l, 11
IF(XXII1(I) .LE.O) GOTO 1111
Il111=Il 111+1
XXIIll (Illll)=XXIIl (I)

1111 XALPlll (Illll)=XALPll (I)
IF(Illll.LT.4) GOTO 1113
M=Ill11-l
CALL E02ACF(XALPlll,XXIIll,Illll,F,M,REF)
DO 2 I=11,12
XIll(I,K)=F(1)+F(2)*XALP(I,K)+F(3)*(XALP(I,K)**2)+

&F(4)*(XALP(I,K)**3)
&+F(5)*(XALP(I,K)**4)+F(6)*(XALP(I,K)**5)+F(7)*(XALP(I,K)**6)+
&F(B)*(XALP(I,K)**7)+F(9)*(XALP(I,K)**B)+F(10)*(XALP(I,K)**9)
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2 CONTINUE
KKK=l
IF(KKK.EQ.1) GOTO 1113
M=10
Il112=0
DO 1112 I=l, 11
IF (XXII2 (I).LE.O) GOTO 1112
Il112=Il112+1
XXII22 (I1112)=XXII2 (I)

1112 XALP222 (I1112)=XALP11 (I)
IF(Il112.LT.4) GOTO 1113
M=Il112-1
CALL E02ACF(XALP222,XXII22,I1112,E,M,REF)
DO 7 I=11,12
XI22(I,K)=E(1)+E(2)*XALP(I,K)+E(3)*(XALP(I,K)**2)+

&E(4)*(XALP(I,K)**3)
&+E(5)*(XALP(I,K)**4)+E(6)*(XALP(I,K)**5)+E(7)*(XALP(I,K)**6)+
&E(8)*(XALP(I,K)**7)+E(9)*{XALP(I,K)**8)+E{10)*(XALP(I,K)**9)

7 CONTINUE
1113 M=9

A=XI11 (11,K)
B=XALP (l1,K)
CALL INTEG(RAD,B,A,DC)
DCT1(11)=DC
A=XI22 (11,K)
CALL INTEG(RAD,B,A,DC)
DCT2(11)=DC
A=XIl1 (12,K)
B=XALP(12,K)
CALL INTEG(RAD,B,A,DC)
DCT1(12)=DC
A=XI22 (12,K)
CALL INTEG(RAD,B,A,DC)
DCT2(12)=DC

4200 RAD=1.5D-09
LAM=O.25D-09
DO 313 I=1,12
IF(XI11(I,K) .LE.O) GOTO 312
KP1(I)=XALP{I,K)/XI11{I,K)

312 VD1(I)=DCT1(I)/LAM
VDR1(I,K)=RAD*VD1(I)

313 CONTINUE
DO 51 I=1,12
VK1(I)=(DCT1(I)*(KP1(I)-KE))/(LAM *(1-KP1(I)))

51 VKR1 (I,K)=RAD*VK1 (I)
WRITE(6,37)

37 FORMAT{/' For Growth'//' D T XAG',9X,
&'XGA Xalp xi Vk Vd' ,10X,
&'Kp Ke Vk*rho' /' (m**2/sec) (Centigrade)' ,lX,
&' (mole fr.) (mole fr.) (mole fr.) (mole fr.) (m/sec)', 8X,
&' (m/sec) (m**2/sec)' //)

DO 34 I=1,12
WRITE (6,35) DCT1 (I),CTEMP,XALPP,XEQ,XALP{I,K),XI11 (I,K),
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&VK1(I),VD1(I),KP1(I),KE,VKR1(I,K)
34 CONTINUE

DO 59 I=1,12
59 KP2(I)=0

DO 53 I=1,12
IF(XI22(I,K) .LE.O) GOTO 311
KP2(I)=XALP(I,K)/XI22(I,K)

311 VD2(I)=DCT2(I)/LAM
53 CONTINUE

WRITE(6,38)
38 FORMAT(/' For Nucleation'//' D T XAG',9X,

&'XGA Xalp Xi Vk Vd',10X,
&'Kp Ke Vk*rho' /' (m**2/sec) (Centigrade)' ,lX,
&' (mole fr.) (mole fr.) (mole fr.) (mole fr.) (m/sec) ,,8X,
&' (m/sec) (m**2/sec)' //)

II2=0
DO 36 I=1,12
IF(FN2(I,K) .LE.O) GOTO 36
IF(XI22(I,K) .LE.O) GOTO 36
II2=II2+1
VK2(II2)=(DCT2(II2)*(KP2(II2)-KE»/(LAM *(1-KP2(II2»)
VKR2(II2,K)=RAD*VK2(II2)
WRITE(6,35) DCT2(II2),CTEMP,XALPP,XEQ,XALP(II2,K),XI22(II2,K),

&VK2(II2),VD2(II2),KP2(II2),KE,VKR2(II2,K)
36 CONTINUE
35 FORMAT(D12.4,F12.4,9D12.4/)

RETURN
END

C *********************************************************************
C

SUBROUTINE INTEG (RAD,XA,X,DIF)
COMMON XI(50,50,16),GID(50,50,16),FE(50,50,16),

&VR(50,50,16),CTEMP,MUM,XAL(50,50,16),XALP(12,16),FN1(12,16),
&FN2(12,16),PT1(12,16),PT2(12,16),PTF1(12,16),PTF2(12,16),
&ANS1(50,50,16),ANS11(100),VKR1(12,16),VKR2(12,16),
&XI11(12,16),XI22(12,16),XBAR

COMMON /TWO/ TDSE
INTEGER T1,DUMMY,DUMMY3,CZ,II,II2,II3,II22,I2,I3,I4,I5,Z
DOUBLE PRECISION XM,W,W1,T,T7,H1,Sl,R,F,Q3,

&XAS,XGS,FEA2,FEG2,CA2,CG2,G2,DG2,DFEG2,DCG2,T4,STRAIN,
&J1,FEA1,FEG1,CA1,CG1,G1,DG1,DFEA1,DCA1,FEA3,CA3,G3,G4,
&ACTIV,THETA,X,DACTIV,PSI,SIGMA,D1,M1,A5,D,YMAX,YMIN,OMEG
&,M2,DASH,HH,KK,DUMMY1,DUMMY2,XALPHA,XMAX,DIF
&,XMAXR,ERROR,XA,PECLET

HH=6.6262D-34
KK=1.38062D-23
T=CTEMP+273.0D+00
Z=12
W=8302D+00
A5=1.0D+00
R=8.31432D+00
DASH=(KK*T/HH)*DEXP(-(21230.0D+00/T»*DEXP(-31.84D+00)
IF(X.LE.O) GOTO 990
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Function giving the equilibrium mol. frac. carbon in alpha
based on my paper on first order quasichernical theory

**********************************************************************

Subroutine giving the equilib. carbon conc. of gamma (XEQ)
*********************************************************************

Function giving Ln activity of iron in gamma
*********************************************************************

THETA=X/(A5-X)
ACTIV=CG(X,T,W,R)
IF (ACTIV.EQ.O)GOTO 990
ACTIV=DEXP(ACTIV)
DACTIV=DCG(X,T,W,R)
DACTIV=DACTIV*ACTIV
DACTIV=DACTIV*A5/((A5+THETA)**2)
SIGMA=A5-DEXP((-(W))/(R*T))
PSI=ACTIV*(A5+Z*((A5+THETA)/(A5-(A5+Z/2)*THETA+(Z/2)*(A5+Z/2)*

&(A5-SIGMA)*THETA*THETA)))+(A5+THETA)*DACTIV
DIF=DASH*PSI
DIF=DIF*1.OD-04

990 RETURN
E~

C **********************************************************************
C
C
C

DOUBLE PRECISION FUNCTION XALPH(T)
DOUBLE PRECISION T,CTEMP
CTEMP=(T-273.0D+00)/900.0D+OO
XALPH=0.152BD-02-0.BB16D-02*CTEMP+0.2450D-Ol*CTEMP*CTEMP

&-0. 24l7D-Ol*CTEMP*CTEMP*CTEMP+
&0. 6966D-02*CTEMP*CTEMP*CTEMP*CTEMP

RETURN
E~

C *********************************************************************
C
C

SUBROUTINE ECON(TT,XEQ)
IMPLICIT REAL*B (A-H,K-Z), INTEGER (I,J)
COMMON /THREE/ CC(B),T10,T20
COMMON /FOUR/ W
DOUBLE PRECISION DXQ(40),DT4(40),DDFTO(40),C(B),P(7),Y(7)

&,TEC(10),ALP(10),TC(10),XQ(10),D(B),SHEARH(40),DIFFH(4O),A
R=B.3l432
XEQ=0.2
T=TT*l.OD+OO

19 F=ENERGY(T,T10,T20)
AJ=l-DEXP(-W/(R*T))

51 TEQ=R*T*AFEG(XEQ,T,AJ)-F
IF (DABS (TEQ) .LT. 1.0) GOTO 50
ETEQ=DAFEG(XEQ,T,AJ)*R*T
XEQ=XEQ-TEQ/ETEQ
GOTO 51

50 RETURN
E~

C *********************************************************************
C
C

DOUBLE PRECISION FUNCTION AFEG(XEQ,T,AJ)
DOUBLE PRECISION XEQ,T,AJ,DEQ,TEQ
DEQ=DSQRT(1-2* (1+2*AJ) *XEQ+(l+B*AJ) *XEQ*XEQ)
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Function giving differential of Ln activity of iron in gamma
*********************************************************************

TEQ=5*DLOG«1-XEQ)/(1-2*XEQ))
TEQ=TEQ+DLOG«(1-2*AJ+(4*AJ-l)*XEQ-DEQ)/(2*AJ*(2*XEQ-l)))**6)
AFEG=TEQ
RETURN
E~

C *********************************************************************
C
C

DOUBLE PRECISION FUNCTION DAFEG(XEQ,T,AJ)
DOUBLE PRECISION ETEQ,ETEQ2,DEQ,XEQ,T,AJ
DEQ=DSQRT(1-2*(1+2*AJ)*XEQ+(1+8*AJ)*XEQ*XEQ)
ETEQ=5*«1/(XEQ-l))+2/(1-2*XEQ))
ETEQ2=6*«4*AJ-l-(0.5/DEQ)*(-2-4*AJ+2*XEQ+16*XEQ*AJ))

&/(1-2*AJ+(4*AJ-l)*XEQ-DEQ))+6*(4*AJ/(2*AJ*(2*XEQ-l)))
DAFEG=ETEQ+ETEQ2
RETURN
E~

C**********************************************************************
C

DOUBLE PRECISION FUNCTION ENERGY(T,TIO,T20)
DOUBLE PRECISION T,TIO,T20,F,T7
T7=T-IOO*T20
IF (T7 .LT. 300) GOTO 1
IF (T7 .LT. 700) GOTO 2
IF (T7 .LT. 940) GOTO 3
F=-8.88909+0.26557*(T7-1140)-1.04923D-3*«T7-1140)**2)
F=F+2.70013D-6*«T7-1140)**3)-3.58434D-9*«T7-1140)**4)
GOTO 4

1 F=1.38*T7-1499
GOTO 4

2 F=1.65786*T7-1581
GOTO 4

3 F=1.30089*T7-1331
4 ENERGY=(141*TIO + F)*4.187

RETURN
E~
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Appendix 11

Computer Program for the Calculations of
Partitioning of Carbon from Supersaturated Ferrite Plates

Program using finite difference method for the solution of the problem
of X enrichment of austenite during the ageing of bainitic steels

W Carbon-carbon interaction energy in austenite
EQFER Equilibrium wt.% of X in ferrite at ageing temperature
EQAUS Equilibrium wt.% of X in austenite at ageing temperature
EBAR Average X wt.% in alloy
FERS normalised concentration of X at ferrite surface
AUSS normalised concentration of X at austenite surface
TIMH time in hours
KTEMP Absolute temperature
TAUS Thickness of austenite in meters
TFER (Half) thickness of ferrite in meters
DFER Diffusivity of X in ferrite
DAUS Diffusivity of X in austenite
Concentrations normalized relative to average alloy concentration
Dimension normalize relative to carbide particle thickness
IAUS, IFER, Jl are the number of finite slices

for dimension and time respectively
TIM = Time, in seconds
A3 controls the amount of information that is printed out
IAUS2, IFER2 control the amount of information printed out
SETlME controls the time in hours that the experiment runs.
JTEST modifies the mass balance condition when the AUSS reaches

the equilibrium concentration. Hence mass conserved

39.0D+00 2.5D+00 1.OD-0? 2.0D-06 1000 5
Typical data
838.15 0.5D-03
1.0 1.0
8340
End of data

C FTVSCLR PROGRAM = .PRO DATA = .DATA OUTPUT = .OUT PLOT = .GRAPH NAG
C CAMPLOT
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

IMPLICIT REAL*8(A-H,K-Z), INTEGER(I,J)
INTEGER L,NN,MM

DOUBLE PRECISION XI(2500),CAUS1(2500),XJ(2500),
&CFER1(2500),
&CFER(2500,2), CAUS(2500,2),TIMS1(2500),FER4(2500),
&TIMS2(2500),FER5(2500),DISG(2500),XG(2500),DISA(2500),XA(2500),
&DISA1(2500),DISG1(2500),X(2500),DISA2(2500),DISG2(2500),
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&LENA1(2s00),LENA2(2s00),CON(2s00),LENG1(2s00),LENG2(2500),
&TIMES(2s00),TEMP(2s00),LG1(s),LG2(s),XXA1(s), XXA2(s),
&XXG1(2s00),XXG2(2s00),XA2(2s00),XA22(2s00),DISA11(2s00),
&XG1(2s00),CONG(2s00),CONA(2s00),CAAUS(2s00),
&CAFER(2s00),FER6(2s00),AUS6(2s00),XII

J4=0
Js=O
JTEST=O
IAUS2=20
IFER2=1
READ(s,*)KTEMP,EQFER,EQAUS,EBAR,TAUS,TFER,J1,IAUS
READ(s,*)A3,SETIME
READ(s,*)W
RFER=0.04D+00
RAUS=RFER
WRITE (6,9998)RAUS,RFER

9998 FORMAT(' RAUS, RFER, (dimensionless) =', 2D12.4)
CALL GRST3D(1.s,200.0)
CALL GRFT6D(-1.0,0.0)
N=l
DO 10 JJ=l,N
CTEMP=KTEMP-273.1sD+00
WRITE(6,13) CTEMP

13 FORMAT (//' *************, ,F10.2,'***************')
DFER=DIFF(KTEMP)
DAUS=DIFFF(W,EBAR,EQAUS,CTEMP)
STAUS=TAUS/IAUS
TIME=RAUS*STAUS*STAUS/DAUS
STFER=DSQRT(TIME*DFER/RFER)
IFER=DINT(TFER/STFER)

AUSS=EQAUS/EBAR
DR=DAUS*STFER/(DFER*STAUS)

CFER(l,l)=O.sOD+OO*AUSS*DR + EQFER/EBAR
CAUS(l,l)=(EQFER/EBAR -CFER(l,l»/DR + AUSS

WRITE (6,28)DFER,DAUS,TFER,TAUS,EQFER,EQAUS,KTEMP,IAUS, IFER
&,STAUS,STFER,DR,W

DO 6 I=2,IAUS
CAUS(I,1)=1.0D+00

6 CONTINUE
DO 26 I=2,IFER
CFER(I,1)=1.0D+00

26 CONTINUE
WRITE(6,12)CAUS(1,1),CFER(1,1)

C
C Finite difference analysis
C

TIM=O.OD+OO
WRITE(6,34)
II4=0
DO 1 J=2,J1

TIM=TIM+TIME
TIMH=TIM/3600.0D+00
IF(TIMH .GT. SETIME)GOTO 101
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AUS3=0.OD+00
FER3=0.OD+00

C **************** Austenite ******************

******************

22

30

DO 20 II=l,IAUS
IF(II .EQ. l)GOTO 21

C Ensure reflection at last slice
IF(II .EQ. IAUS)GOTO 22
CAUS(II,2)=CAUS(II,1)+RAUS*(CAUS(II-1,1)

&-2.0D+00*CAUS(II,1)+CAUS(II+1,1))
GOTO 23
IF(JTEST .EQ. 0) GO TO 30
AUSS=((CFER(l,l)-FERS)/DR) + CAUS(l,l)
CAUS(1,2)=CAUS(1,1) + RAUS*(AUSS - 2.0D+00*CAUS(1,1)

& + CAUS(2,1))
GOTO 23
CAUS (IAUS,2)=CAUS (IAUS,l)+RAUS* (CAUS(IAUS-1,1)

&-2.0D+OO*CAUS(IAUS,1)+CAUS(IAUS-1,1))
CALL SOFT(CAUS(IAUS,2),1,J4,TIMH)
AUS=CAUS(II,2)*EBAR
XTAUS=STAUS*II
AUS3=AUS+AUS3
CAUS(II,1)=CAUS(II,2)

CONTINUE

21

23

20
C **************** Ferrite

DO 2 I=l,IFER
IF(I .EQ. l)GOTO 3

C Reflect at position of symmetry
IF(I .EQ. IFER) GOTO 4
CFER(I,2)=CFER(I,1)+RFER*(CFER(I-1,1)

&-2.0D+OO*CFER(I,1)+CFER(I+1,1))
IF(CFER(I,2) .LT.0.1D-50) CFER(I,2)=0.ODO
GOTO 5

C CALCULATE SURFACE CONCENTRATION IN FERRITE APPROPRIATE FOR MASS BALA
3 FERS=DR*(CAUS(l,l)-AUSS)+CFER(l,l)

IF(FERS .LT. (EQFER/EBAR))GOTO 90
GOTO 91

90 FERS=EQFER/EBAR
JTEST=l

91 CFER(1,2)=CFER(1,1) + RFER*(FERS-2.0D+00*CFER(1,1)
& + CFER (2,1) )

IF(CFER(I,2) .LT.0.1D-50) CFER(I,2)=O.ODO
GOTO 5

4 CFER(IFER,2)=CFER(IFER,1)+RFER*(CFER(IFER-1,1)
&-2.0D+OO*CFER(IFER,1)+CFER(IFER-1,1))

IF (CFER(IFER,2) .LT.O.1D-50) CFER(I,2)=O.ODO
CALL SOFT(CFER(IFER,2),2,J5,TIMH)

5 FER=CFER(I,2)*EBAR
XTFER=I*STFER
FER3=FER+FER3
CFER(I,1)=CFER(I,2)

2 CONTINUE
AUS3=AUS3/IAUS
FER3=FER3/IFER

139



DUMMY=J/A3
DUMMY=DINT(DUMMY)-DUMMY
IF(DUMMY .NE. O.O)GOTO 1
AVER=(FER3*0.5D+00*TFER + AUS3*TAUS)/(0.5D+00*TFER+TAUS)
II4=II4+1
TIMS=TIMH*3600.0D+00
TIMS1 (II4)=TIMS
FER4 (II4)=FER3
AUS6(II4)=AUSS*EBAR
FER6(II4)=FERS*EBAR
WRITE(6,27)TIMH,TIMS1(II4),AUS3,FER4(II4),AVER,FER6(II4),

&AUSS*EBAR
JJ1=0
JJ2=0
DO 201 II=1,IAUS,IAUS2
IF (CAUS (II,2) .LT. 1.0001) GOTO 203
JJ1=JJ1+1
XI (JJ1)=II
CAUS1(JJ1)=CAUS(II,2)*EBAR

201 CONTINUE
203 DO 202 I=1,IFER,IFER2

IF(CFER(I,2) .GT. 0.9999) GOTO 204
JJ2=JJ2+1
XJ(JJ2)=I
CFER1(JJ2)=CFER(I,2)*EBAR

202 CONTINUE
204 WRITE(6,7) XJ(JJ2),CFER1(JJ2)

IF (FER4 (II4) .LE. FER6(II4) )GOTO 101
IF(II4.EQ.1) GOTO 210
K=II4/201
XX=II4/201.0
IF(K.NE.XX)GOTO 1

210 NN=JJ1+1
NN=JJ1+1
MM=JJ2+1
NFER=IFER
DISG(l)=O
XG(l)=AUSS*EBAR
DO 15 I=2,NN
DISG(I)=XI(I-1)
XG(I)=CAUS1(I-1)

15 CONTINUE
DO 16 I=1,JJ2
DISA(I)=XJ(I)
XA (I)=CFER1 (I)
IF(XA(I) .LT.0.1D-50)XA(I)=0.ODO

16 CONTINUE
DO 17 I=1,JJ2
DISA1(I)=DISA(I)*STFER
XA22(I)=XA(I)

17 CONTINUE
DO 170 I=2,MM
DISA11 (I)=TFER-DISA1(I-1)
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For boundary lines .
LG1(1)=-TFER/(TAUS+TFER)
XXG1(1)=0
LG1(2)=LG1(1)
XXG1(2)=EQAUS

LG2(1)=TFER/(TAUS+TFER)
XXG2(1)=0
LG2(2)=LG2(1)
XXG2(2)=EQAUS

170

18

19

119

XA2(I)=XA22(I-1)
CONTINUE
DISA11 (l)=TFER
XA2(1)=FERS*EBAR
IF(XA2(1) .LT.0.1D-10) XA2(1)=0.ODO
L=MM+NN
DO 18 I=l,NN
DISG1(I)=(DISG(I)*STAUS)+TFER
XG1(I)=XG(I)
CONTINUE
DO 19 I=l,NN
DISG2 (I)=-DISG1 (I)
CONTINUE
DO 119 I=l,MM
DISA2(I)=-DISA11 (I)
CONTINUE
DO 116 I=l,NN
LENG1 (I)=DISG1 (I)/(TAUS+TFER)
LENG2 (I)=DISG2 (I)/(TAUS+TFER)

116 CONG(I)=XG1(I)
C .••••.......••......•....

CALL GRFT5D (4,2,1,2)
C CALL GRFT5S(ILEFT,IRIGHT,ILO,IHI)
C 0 nothing 3 annotations
C 1 line 4 marks and annotations C
C 2 marks

CALL GRTX3D (1, 4.0, 0.0, 0.0, 4.0)
CALL GRTX3D (2, 4.0, 0.0, 0.0, 4.0)
CALL GRLM3D (0.ODO,1.0DO,0.ODO,0.20DO)
CALL GRLM2S (0.3, 0.8, 0.45, 0.75)
CALL GRTX2S(2,9)

C ***** Define annotation *****
CALL GRTX4S (1,' !')

CALL GRGR6D (LG2,XXG2,2)
CALL GRGR6D (LENG1,CONG,NN)

IF(II4.EQ.1) CALL GRAN5S ( 0.6,0.1,' !F3!g!F1!',9,0.0)
IF(II4.EQ.1) CALL GRAN5S ( 0.05,0.18,'T = 450 !SP!o!NL!C',18,0.0)
IF(II4.EQ.1) CALL GRAN 55 ( 0.4,0.18,'Fe-0.4C wt. %' ,13

&,0.0)
CALL GRTX2D(1,9)
IF(II4.EQ.1) CALL GRAN6D (' ,

&,1,' ',l,'Carbon conc. /mole frac.',24)
C. ........................ For boundary lines .
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DO 117 I=l,MM
LENA1(I)=DISA11(I)/(TAUS+TFER)
LENA2(I)=DISA2(I)/(TAUS+TFER)

117 CONA (I)=XA2 (I)
XXA1(l)=0.0
XXA1(2)=0.022DO

XXA2(l)=0.0
XXA2(2)=0.022DO

CALL GRFT5D (4,2,4,0)
CALL GRTX3D (1, 4.0, 0.0, 0.0, 4.0)
CALL GRTX3D (2, 4.0, 0.0, 0.0, 4.0)
CALL GRFR6D(l)
CALL GRLM3D(O.ODO,1.0DO,0.ODO,0.022DO)
CALL GRLM2S (0.3,0.8,0.2,0.45)
CALL GRTX2S(2,9)

C ***** Define annotation *****
CALL GRTX4S (1,' !')
IF(FER6(II4) .EQ.O) GOTO 221

CALL GRGR6D (LG2,XXA2,2)
CALL GRGR6D (LENA1,CONA,MM)

221 IF(II4.EQ.1) CALL GRAN5S ( 0.15,0.020,' !F3!a',5,0.0)
CALL GRTX2D(l,9)
IF(II4.EQ.1) CALL GRAN6D (' ,

&,l,'Normalised distance' ,19,'Carbon conc. /mole frac.',24)
1 CONTINUE
101 DO 14 1=1,114

TIMS2(I)=TIMS1(I)
FER5(I)=FER4(I)
WRITE(6,*)TIMS2(I),FER5(I)

14 CONTINUE
TMAX=1.0D-9
DO 114 1=1,114
IF(TIMS2(I) .GT.TMAX)TMAX=TIMS2(I)

114 CONTINUE
TH=TMAX/2.0
TH1=TMAX/5.0
TH2=TMAX/10.0
TMAX=TMAX+TH1
KTEMP=KTEMP+20

10 CONTINUE
CALL GRST9S

29 FORMAT(' TIME, s =' ,D12.4,' TIME, hrs. =' ,F12.3)
28 FORMAT(' Diffusion coefficient in ferrite, m**2/s

&D12.4/' Diffusion coefficient in austenite, m**2/s, = ',D12.4/
& ' Half thickness of ferrite, m =' ,D12.4/
& ' Thickness of austenite, m =' ,D12.4/
& ' Eq. conc. of X at interface, in ferrite, wt.% = ,,D12.4/
& ' Eq. conc. of X at interface, in austenite, wt.% = ,,D12.4/
& ' Absolute Temperature = " F8.2, , IAUS, IFER = ',219/
& ' Austenite slice thickness, meters ',D12.4/
& ' Ferrite slice thickness, meters ',D12.4/
& ' DR, dimensionless ',D12.4/
& ' Carbon-Carbon interaction energy, J/mole = ,,D12.4//)
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34 FORMAT(' HOURS SECS AUS FERRITE AVERAGE X FERS'
&,' AUSS')

27 FORMAT(2D12.4,F9.4, F9.6,F9.4,F9.6,2F9.6)
24 FORMAT(' No Norm. Conc. wt.%X in Ferrite')
25 FORMAT(' No Norm. Conc. wt.%X in Austenite')
7 FORMAT(F8.2,D12.4,2F10.S)
71 FORMAT(IS,D12.4,2F10.S)
11 FORMAT ('--------------------------------------------------------')
12 FORMAT(' Time 0, slice 1, austenite and ferrite norm conc '

&2F12.4/)
STOP
E~

C **********************************************************************
C

DOUBLE PRECISION FUNCTION DIFF(KTEMP)
DOUBLE PRECISION R,KTEMP,PHI,DOTO,DTT,F
R=8.3143
PHI=1.0D+00-1.0/(0.5D+00*DEXP(7.2D+03*4.184/(R*KTEMP»

&*DEXP(4.4D+00) + 1.0D+00)
DOTO=3.3D-07*DEXP(-19.3D+03*4.184D+00/(R*KTEMP»
DTT=3.0D-04*DEXP(-14.7D+03*4.184D+00/(R*KTEMP»
F=0.86D+00
DIFF=PHI*DOTO+(1.0D+00-PHI)*F*DTT+(1.0D+00-PHI)

&*(1.0D+00-F)*DOTO
C Diffusion of carbon in ferrite, m*m/s
C Mclellan et al., Trans. Met. Soc. AIME, Vol. 233 (1965) 1938
C R = Universal Gas Constant, J/mol/K
C KTEMP = Absolute Temperature

RETURN
E~

C
C **********************************************************************
C

SUBROUTINE SOFT(A,I,J,TIMH)
DOUBLE PRECISION A,TIMH
IF(J .GT. 1) GOTO 3
IF(I .EQ. l)GOTO 1
IF(A .LT. 0.99) GOTO 2
GOTO 3

2 WRITE(6,10)TIMH
J=3

10 FORMAT(' SOFT IMPINGEMENT IN FERRITE', D12.4,' hours')
GOTO 3

1 IF(A .GT. 1.01D+00)GOTO 4
GOTO 3

4 WRITE(6,11)TIMH
J=3

11 FORMAT(' SOFT IMPINGEMENT IN AUSENTITE' ,D12.4,' hours')
3 RETURN

E~
C
C********************************************************************
C

143



SUBROUTINE DIFFF(W,XBAR,XGAG,CTEMP)
C
C Program to calculate the effective diffusivity of carbon in
C austenite, taking account of the fact that this diffusivity
C is concentration dependent. Uses Siller and McLellan theory
C to express the concentration dependence, and Lacher et al
C theory to allow for the effect of substitutional alloyingNTS
C on the activity and W of carbon in austenite.
C HH Planks const. Joules/sec
C KK Boltzmann's const. Joules/degree kelvin
C D Diffusivity of carbon in austenite m*m/s
C Z Coordination of interstial site
C PSI Composition dependence of diffusion coefficient
C THETA No. of C atoms/ No. Fe atoms
C ACTIV Activity of carbon in austenite
C R Gas constant
C X Mole fraction of carbon
C T Absolute temperature
C SIGMA Site exclusion probablity
C W Carbon carbon interaction energy in austenite
C

IMPLICIT REAL*8(A-H,K-Y), INTEGER(I,J,Z)
DOUBLE PRECISION DIFF(SOO), CARB(SOO)
HH=6.6262D-34
KK=1.38062D-23
Z=12
AS=1.0D+00
R=8.31432D+OO
T=CTEMP+273.00D+OO
112=0
WRITE (6,7)T,CTEMP,XBAR,XGAG
DASH=(KK*T/HH)*DEXP(-(21230.0D+00/T))*DEXP(-31.84D+00)
DO 9 11=1,1000
CARB(l)=XBAR
IF (11 .GT. l)GOTO 1
GOTO 8

1 IF«XGAG-XBAR) .LT. O.OOS)GOTO 2
GOTO 3

2 XINCR=O.OOOlD+OO
GOTO 4

3 XINCR=O.OOlD+OO
4 CARB(II)=CARB(II-1)+XINCR

IF (CARB(II) .GT. XGAG) GOTO 5
8 X=CARB(II)
C

IF(X .GT. 1.0/7.0)THEN
DIFF(II) = DIFF(II-1)
GO TO 9
ENDIF

C Siller and Mclellan model breaks down for Carbon > 1/7
112=112+1
THETA=X/(AS-X)
ACTIV=CG(X,T,W,R)
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ACTIV=DEXP(ACTIV)
DACTIV=DCG(X,T,W,R)
DACTIV=DACTIV*ACTIV
DACTIV=DACTIV*AS/«AS+THETA)**2)
SIGMA=AS-DEXP«-(W))/(R*T))
PSI=ACTIV*(AS+Z*«AS+THETA)/(AS-(AS+Z/2)*THETA+(Z/2)*(AS+Z/2)*

&(AS-SIGMA)*THETA*THETA)))+(AS+THETA)*DACTIV
DIFF(II)=DASH*PSI*1.0D-04

9 CONTINUE
5 113=0

CALL TRAPE(CARB,DIFF,ANS,II2,ERROR,II3)
ANS=ANS/(XGAG-XBAR)
WRITE (6,6)ANS, ERROR

7 FORMAT(' ABSOLUTE TEMPERATURE, DEGREES KELVIN =',F8.1/
&' TEMPERATURE IN DEGREES CENTIGRADE =' ,F8.1/
&' MOL FRAC CARBON XBAR = ',F8.4/
&' MOL FRAC CARBON XGAG =',F8.4)

6 FORMAT(' INTEGRAL, XGAG-XBAR = ',D12.4, , m*m/s
&8HERROR = , D12.4)

RETURN
E~

C *************************************************************
C

SUBROUTINE TRAPE(X,Y,ANS,~IM,ERROR,II2)
C

DOUBLE PRECISION X(1000),Y(1000),AZ(1000)
DOUBLE PRECISION SUM1,SUM2,ANS
SUM2=O.D+OO
IF(~IM-1)4,3,1

C
C INTEGRATION LOOP

1 DO 2 I=2,~IM
SUM1=SUM2
SUM2=SUM2+.SD+OO*(X(I)-X(I-1))*(Y(I)+Y(I-1))

2 AZ(I-1)=SUM1
3 AZ(~IM)=SUM2

ANS=SUM2
4 RETURN

END
C*********************************************************************
C

DOUBLE PRECISION FUNCTION CG(X,T,W,R)
DOUBLE PRECISION J,DG,DUMMY,T,R,W,X
J=l-DEXP(-W/(R*T))
DG=DSQRT(1-2*(1+2*J)*X+(1+8*J)*X*X)
DUMMY=S*DLOG«1-2*X)/X)+6*W/(R*T)+«38S7S.0)-(

&13.48)*T)/(R*T)
CG=DUMMY+DLOG«(DG-1+3*X)/(DG+1-3*X))**6)
RETURN
E~

C***********************************************************************
C

DOUBLE PRECISION FUNCTION DCG(X,T,W,R)
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DOUBLE PRECISION J,DG,DDG,X,T,W,R
J=l-DEXP(-W/(R*T))
DG=DSQRT(1-2*(1+2*J)*X+(1+B*J)*X*X)
DDG=(O.S/DG)*(-2-4*J+2*X+16*J*X)
DCG=-«lO/(1-2*X))+(S/X))+6*«DDG+3)/(DG-l+3*X

&)-(DDG-3)/(DG+1-3*X))
RETURN
E~
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