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ABSTRACT 

Activity landscape modelling is mostly a descriptive technique that allows rationalizing 

continuous and discontinuous SARs, however the interpretation, especially of activity cliffs, is 

not straightforward. As the nature of activity cliffs depends on the ligand and the target, 

information regarding both should be included in the analysis. A specific way to include this 

information is using protein-ligand interaction fingerprints (IFPs). In this paper we report the 

activity landscape modelling of 507 ligand-kinase complexes (from KLIFS database) adding IFP, 

which facilitates the analysis and interpretation of activity cliffs. To this end, we introduce the 

structure-activity-interaction similarity (SAIS) maps that incorporate information of ligand-target 

contact similarity. We also introduce the concept of interaction cliffs defined as ligand-target 

complexes with high structural and interaction similarity, but a large potency difference of the 

ligands. Moreover, the specific interaction information allowed the identification of activity cliff 

hot spots, which help to rationalize activity cliffs from the target point of view. In general, the 

information provided by IFPs helps to get a better understanding when modelling an activity 

landscape. This paper shows examples of analyses that can be carried out when IFPs are added to 

the activity landscape model. 

Keywords: Activity landscape, Activity cliffs, Interaction cliffs, Protein-ligand interaction 

fingerprints, Kinase inhibitors, SAS maps.   
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INTRODUCTION 

The analysis of structure-activity relationships (SARs) is a fundamental tool to understand and 

design new bioactive molecules. In this context, activity landscape modelling arises as a 

descriptive technique that allows to rationalize continuous and discontinuous SARs, but also 

helps to systematically analyse and characterize large data sets.1 An activity landscape is defined 

as “biological response surfaces in chemical space that are obtained by adding an activity 

dimension to this space”2 or as “any representation that integrates the analysis of the structural 

similarity and potency differences between compounds sharing the same biological activity”.1 

Numerous methods have been proposed to study the activity landscape of large datasets, for 

example structure-activity similarity (SAS) maps,3, 4 structure multiple-activity similarity 

(SmAS) maps,5 dual and triple activity difference (DAD/TAD) maps,6, 7 and network-like 

similarity graphs (NSG)8 to name a few (more methods have been reviewed9 recently). 

Moreover, activity landscape modelling is suitable for the identification of activity cliffs, which 

are defined as a pair of structurally similar molecules that have large changes in potency.10, 11 

Despite the fact that activity landscape modelling has been extensively used to characterize 

different target12-14 and multitarget5, 15, 16 data sets, the interpretation of the activity landscape, 

especially for activity cliffs, is not straightforward.17 In order to rationalize the formation of 

activity cliffs our group has used molecular docking18 and the concept of activity cliff 

generators19 to explore the causes associated with the potency difference. Other attempts to 

rationalize activity cliffs include the concepts of structure-based activity cliffs and activity cliff 

hot spots proposed by Seebeck et al., which evaluate the frequency with which a protein atom is 

involved in the formation of an activity cliff taking into account the interaction energies of 

protein-ligand complexes.20  
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As the nature of an activity cliff depends on the ligand and target, whenever possible, 

information regarding both should be included in the analysis. One way to accomplish this is to 

include explicit information regarding the target (i.e. sequences and sequence similarities) as 

previously reported for a set of kinase inhibitors.16 A more specific alternative is to capture 

information of how the ligand interacts with the protein, for example, using molecular interaction 

fingerprints (IFPs) of protein-ligand complexes. IFPs conveniently simplify the interactions 

between proteins and ligands by coding them in a 1D representation.21, 22 IFPs have been 

successfully used for post-processing of ligand docking poses according to known interaction 

patterns for protein targets in structure-based virtual screening studies23, 24 and allow systematic 

mining of protein-ligand interaction space to identify conserved and selective protein interaction 

hot spots.25-27 In this work we report an approach to integrate IFPs in the activity landscape 

modelling process, in order to identify regions in the target protein that are associated with 

activity cliffs. This method is particularly useful when analysing a large number of ligand-target 

complexes, given that it does not require of large amount of computing time or resources. We 

also introduce the structure-activity-interaction (SAIS) maps, which are a natural extension of 

the SAS maps initially developed to characterize the SAR of screening data sets. The use of IFPs 

facilitates the analysis of activity cliffs and the identification of scaffold hops. Moreover, adding 

specific interaction information allowed the identification of activity cliff hot spots, which help 

to gain a deeper insight in the formation of activity cliffs. To exemplify the approach, we 

analysed KLIFS, a recently developed and publicly available database that has information of 

1,734 crystallographic structures covering 190 human kinases.27 It is important to mention that 

this paper demonstrates only some of the analyses that can be carried out when IFPs are added to 

the activity landscape model. Another example is the analysis that was published by Furtmann et 
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al.,28 which was published during the final preparations of this study.  They have analysed 3D-

cliffs using this same data set, denoting the interest of the scientific community in using crystal 

structures for activity landscape modelling.  

MATERIALS AND METHODS 

Data set 

The structural data used in this study was extracted from KLIFS.27 KLIFS is a curated database 

that contains 1,734 aligned crystal structures, covering 190 different human kinases, from which 

1,252 are co-crystalized with a ligand. In order to facilitate the analysis of the crystal structures 

present in KLIFS, the ligands and the binding pockets (containing 85 amino acids) were 

separated in this database. More detailed information regarding the curation, alignment and 

preparation of KLIFS can be found elsewhere.27 It should be noted that the pocket residue 

numbering and nomenclature reported in the KLIFS publication is used throughout this 

manuscript.  

All experimental binding data was extracted from Binding MOAD database,29, 30 which 

contains information from the primary reference of each PDB entry. Using this database, 409 out 

of the 1,252 KLIFS entries were annotated with pIC50 values (ranging from 3 to 10.52), pKi 

values were found for 70 complexes (4.46 - 9.96) and 28 structures were annotated with pKd 

values (4.43 - 8.68). It is noteworthy that the wide activity range presented in these data sets 

make them suitable for activity landscape analysis and activity cliffs detection. These three data 

sets were used for further analysis. 

Structure, activity and interaction similarity 

Same as in previous studies,7, 19 a set of eleven broadly used 2D fingerprints was calculated for 

these datasets with MayChemTools.31 These fingerprints include atom neighbourhoods,32 atom 



 6 

types, electrotopological state indices (EStateIndices),33 extended connectivity (ECFP4),34 

MACCS (322 bits),35 path length, topological atom pairs (TopAtomPairs),36 topological atom 

torsions (TopAtomTorsions),37 topological atom triplets (TopAtomTriplets), topological 

pharmacophore atom pairs (TopPh4Pairs),38 and topological pharmacophore atom triplets 

(TopPh4Triplets).39 The Tanimoto coefficient40-42 was employed to assess the structural 

similarity using each of these 2D descriptors. ComboScore, computed with the Rapid Overlay of 

Chemical Structures (ROCS) module of OpenEye Scientific Software,43 was also used to 

evaluate the 3D similarity among the different compounds. To compute the 3D similarity, the 

coordinates of the bioactive conformation of each ligand were taken from each crystal structure 

and used to calculate ComboScore as implemented in ROCS. In order to maintain the same range 

in molecular similarity measurements (0 to 1) across all fingerprints, ComboScore similarity was 

scaled dividing it by two. Although this is a purely ligand-based approach, the information of 

ligand positions in the binding pocket is encoded in the IFP of each compound (see below). 

Potency differences were used to assess the activity relationship between two compounds. 

Activity differences were calculated as follows: 

|∆!"(R)!,!| = ! !"(R)! − !"(R)!  

where pA(R)i and pA(R)j are the activities (pIC50, pKi and pKd) of the ith and jth molecules (j 

> i) against each receptor R. In this paper R can be the same or different kinase. 

Interaction similarity was assessed using IFPs extracted from KLIFS for each complex used in 

this study. IFPs in these datasets were calculated using the interaction fingerprints developed by 

Marcou and Rognan,44 encoding seven types of interactions for each amino acid i.e. seven binary 

bits per amino acid depending if the interaction is present or absent. The seven bits correspond to 

the following interactions: hydrophobic contact, face-to-face aromatic interactions, face-to-edge 
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aromatic interactions, protein H-bond donor, protein H-bond acceptor, protein cationic 

interactions, protein anionic interactions (calculation details are listed in Table S1). A total of 

595 bits were obtained for each complex corresponding to the 85 aligned residues that form the 

ATP binding pocket as defined by van Linden et al.27 The interaction similarity between two 

complexes was also calculated using the Tanimoto coefficient,40-42 although other similarity 

measures can be used as well. 

Activity landscape modelling 

In this study, SAIS maps were developed to analyse the multitarget activity landscape of these 

data sets. In a SAIS map, which is based on the structure of the SAS maps, each point represents 

a pairwise comparison between two protein-ligand complexes, localized by plotting the structure 

similarity between the two ligands in the X-axis against the absolute potency difference in the Y-

axis. Data points are color-coded by protein-ligand interaction similarity using a continuous scale 

from more similar (red) to less similar (green). Similar to SAS maps,4, 14, 45, 46 SAIS maps can 

analyse the multitarget activity landscape against one or more targets as they incorporate protein 

information through the measure of interaction similarity. This approach is similar to other 

multitarget methods in which explicit protein information is given by sequence similarity,16 

however the use of interaction similarity allows the identification of important amino acids for 

the formation of activity cliffs. 

SAIS maps can be roughly divided in four different regions, namely regions I-IV. Region I 

contains pairs of molecules that have low potency difference and low structural similarity, thus 

they are generally considered as scaffold hops.47 Data points located in region II are 

characterized by similar activity (low potency difference) and high structural similarity; therefore 

these pairs of compounds present continuous SARs. Region III contains data pairs with different 
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structures and low potency similarity (large potency difference). Finally, pairs of molecules 

located in region IV exhibit a discontinuous SAR denoted by high structural similarity, but high 

potency difference and therefore are associated with activity cliffs.  

The activity landscape characterization, as described before, was achieved by dividing each 

plot using potency difference and structure similarity thresholds along the Y- and X-axis, 

respectively.19 An additional threshold was used for the interaction similarity in order to identify 

differences in the binding modes. In this work, a threshold of 1 log unit of absolute difference 

was used to distinguish between compounds with high and low potency difference. However, 

assigning a threshold for structural similarity is not straightforward as different criteria to impose 

thresholds can be employed.4, 48 In this work, the thresholds for structural and interaction 

similarity were set as the mean similarity value plus two standard deviations and were calculated 

individually for each data set. A graphical representation of the density distribution for each data 

set is shown in Figure 1. 

Figure 1. Density distribution of structural and interaction similarity for the three data sets 

(pIC50, pKi, pKd) used in this study evaluating 83,436, 2,415 and 378 molecular pairs, 

respectively. The mean values of structure and interaction similarity for these data sets (using 

ComboScore/2 and IFPs, respectively) are shown with continuous lines.  
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RESULTS AND DISCUSSION 

Activity landscape modelling 

Figures 2A-C show the SAIS maps for each of the three data sets used in this study (pIC50, 

pKi, pKd) containing 83,436, 2,415 and 378 points, respectively, and Table 1 summarizes the 

distribution of the data points in each region. These maps encode the relationships between the 

3D binding conformation of the ligands, how they interact with the target, and the associated 

biological activity. In general, ligands in all data sets have different binding conformations 

represented by low structural similarity values. Figure 1 shows that the mean structural similarity 

in the three data sets, represented here by the ComboScore/2 value, ranges from 0.366 to 0.383. 

This low structural similarity is accompanied of large potency differences, even reaching 7.5 log 

units of difference. Because of these structural and potency differences, more than 50% of all the 

data points are located in region III of the three SAIS maps (Table 1). This distribution and the 

low structural similarity are associated with the large size and flexibility of the ATP binding site 

in kinases, which is able to accommodate very diverse compounds (e.g. type I and type II 

inhibitors) that bind to different subregions within the ATP binding site. The remaining data 

points are distributed in the following manner: region I comprises around 40% of data points, 

whereas region II and IV only contain less than 2% each. As expected, data points in region IV 

(activity cliffs) represent a small fraction of all pairs in SAIS maps, although it is known that this 

region provides the most information on SARs.46  
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Table 1. Distribution of data points across different regions of the SAIS maps generated for the 

three datasets. The percentage of points in each region is indicated in parenthesis. 

Dataset Protein-
Ligand 
structures 

Molecular 
pairs 

Ligand 
structure 
similarity 
thresholda 

 I II III IV 

pIC50 409 83,436 0.563  32,749 
(39.25%) 

1,276 
(1.53%) 

47,948 
(57.47%) 

1,463 
(1.75%) 

pKi 70 2,415 0.563  833 
(34.49%) 

35 
(1.45%) 

1,512 
(62.61%) 

35 
(1.45%) 

pKd 28 378 0.569  164 
(43.39%) 

5 
(1.32%) 

201 
(53.17%) 

8 
(2.12%) 

aLigand structure similarity is calculated using ComboScore as implemented in ROCS 

As discussed before,49 chemical space, and hence activity landscape models, is highly 

dependent from the chemical representation used to describe molecules. In contrast with the 

strategy used in previous work where the combination of different molecular representation was 

needed (consensus activity landscapes),7, 19, 48, 49 here, only the 3D similarity (i.e. the 

ComboScore, which combines shape and pharmacophore similarity) was used due to the 

availability of the bioactive 3D conformation of the ligands, although 3D techniques other than 

ROCS could have been used in addition as well. Tables S2-S4 show matrices with Pearson’s 

correlation coefficients between all the pairwise similarities for each molecular representation 

used in this study. The ComboScore showed low correlation (<0.55) with the scores obtained 

from the other eleven 2D fingerprints used to assess molecular similarity in all data sets. 

Interestingly, the scores from the Extended Connectivity (in pIC50) and AtomNeighborhoods (in 

pKi and pKd) presented the highest correlation with the ROCS ComboScore with correlation 

coefficients of 0.243, 0.408 and 0.530 for pIC50, pKi and pKd data sets, respectively. This low 
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correlation suggests that the 2D descriptors computed in this work would not be appropriate to 

capture information related to 3D conformations, such as different binding poses that could be 

related to a particular interaction profile between the ligand and the target protein.  

Figure 2. Panels A-C show Structure-Activity-Interaction Similarity (SAIS) maps for the three 

datasets used in this study (pIC50, pKi and pKd) containing 83,436, 2,415 and 378 data points, 

respectively, resulting from the pairwise comparisons. Data points are color-coded by interaction 

similarity using a continuous scale from red for very similar interactions to green for molecular 

pairs that form different interactions with the target. Regions (I-IV) are labelled in each SAIS 

map. Panels D-F highlight in red those molecular pairs with high interaction similarity, that is, 

two standard deviations above mean similarity for each data set. Detailed information can be 

found in Table 2. 
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Interaction cliffs 

Interaction similarity calculated using the IFPs as a representation of protein-ligand 

interactions, was used in order to gain a deeper understanding at the structural level of the 

activity cliffs present in these data sets. Alike to structural similarity, the three data sets also 

exhibit low interaction similarity, with mean values ranging from 0.384 to 0.425. Despite the 

analogous distribution in both measures, a very low correlation (< 0.45) was found between 

interaction similarity and structural similarity. It is worth mentioning that ComboScore showed 

the highest correlation with interaction similarity in all data sets compared to the 2D descriptors 

(Tables S2-S4). The lack of correlation between ligand and interaction similarities has been 

observed in large-scale studies reported before, but it has also been noted that interaction 

similarity can be correlated with binding site similarity.21  

Figures 2D-F show the three SAIS maps highlighting those molecular pairs with high 

interaction similarity relative to the data set, that is, two standard deviations above the 

corresponding mean similarity for each data set. As depicted in these figures, not only those 

compounds with high molecular similarity show high interaction similarity, but also those 

molecular pairs with different chemical structures can present similar ligand-target interactions. 

On average, only 33% of the molecular pairs categorized as highly similar (regions II and IV) 

showed similar interactions. Moreover, most of the compounds with high interaction similarity 

are located in regions I and III, which can be related to scaffold hops (as they can retain the same 

pharmacophore even presenting different shape/conformation). Details regarding the distribution 

of molecular pairs with high interaction similarity can be found in Table 2. Interestingly, less 

than 40% of the pairs located in region IV present high interaction similarity, suggesting that 

high similar compounds do not always interact in a similar manner with the binding site of 
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different kinases. Those pairs of ligands that present high structural and high interaction 

similarity, but also a large potency/affinity difference (i.e. activity cliffs with high interaction 

similarity) can provide information regarding the specific interactions or chemical features that 

are directly associated with the increase or decrease of potency and will be referred to as 

interaction cliffs from now on in this work. 

 

Table 2. Distribution of data points with high interaction similarity across different regions of 

the SAIS maps. The percentage of points in each region is indicated between parentheses. 

Dataset Interaction 
similarity 
thresholda 

Molecular 
pairs 

 I II III IV 

pIC50 0.674 83,436  838 (1.00%) 372 (0.45%) 959 (1.15%) 280 (0.34%) 

pKi 0.652 2,415  29 (1.20%) 14 (0.58%) 22 (0.91%) 7 (0.29%) 

pKd 0.680 378  11 (2.91%) 3 (0.79%) 4 (1.06%) 3 (0.79%) 
aInteraction similarity is calculated by Tanimoto similarity of IFPs 

It is noteworthy that 80% of the interaction cliffs in the pIC50 data set include crystal structures 

of kinases in two different branches of the kinome, namely CMGC and TK. From the 280 

interaction cliffs, 136 are formed by two complexes of the CMGC group, 51 include two 

complexes of the TK group and 36 by one complex of the CMGC and one of the TK group. It is 

important to mention that this high percentage is influenced by the number of crystal structures 

with kinases from these groups (177 and 109 for CMGC and TK, respectively). In the cases 

where the interaction cliffs are formed by two complexes involving the same kinase, the amino 

acid sequences are identical in both proteins and thus, the interaction and potency differences are 

caused mainly by small structural differences in the ligand that can form new interactions with 
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the target. On the other hand, when interaction cliffs are formed by complexes containing kinases 

from different groups (or protein with low sequence similarity), then the potency and interaction 

difference could also be caused by changes in the target sequence, and thus protein structure, that 

impact ligand binding.  

In order to compare this multitarget study with an equivalent single target approach we 

generated a SAIS map with 97 ligand-CDK2 complexes from the pIC50 dataset (Figure S1). This 

SAIS maps contains 4,656 pairwise comparisons, but only 691 of them with high interaction 

similarity. Interestingly, the Pearson correlation between the interaction and structural similarity 

was 0.383 for these CDK2 complexes. This represents a slightly increment compared to the same 

correlation including all the pIC50 data points (which leads to a value of 0.369). In general, the 

low correlation is caused by pairs of ligand-target complexes in which the structural similarity is 

lower than the interaction similarity; in other words, different ligands that maintain similar or 

key interactions with the target. Another differences between the single and the multitarget 

approach is the fraction of activity cliffs that also are interaction cliffs. For instance, for the 

CDK2 complexes we identified 267 activity cliffs from which 119 correspond to interaction 

cliffs (44.6%), whereas in the complete pIC50 dataset we found 1,463 activity cliffs and only 280 

interaction cliffs (including the 119 of CDK2). However, this difference is not caused by an 

increased number of interaction cliffs, but can be ascribed to a decreased number of activity cliffs 

with low interaction similarity. 

 

Interpretation of activity and interaction cliffs 

Figure 3 shows examples of activity and interaction cliffs in the three data sets. As mentioned 

above, the inclusion of interaction similarity facilitates the analysis of activity cliffs and helps to 
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find specific characteristic in the compounds or targets that can drive to more active or selective 

compounds. From the 280 interaction cliffs found in the data set with pIC50 values, pair 

2WMR_2X8E is a representative example of similar compounds (ComboScore/2 value of 0.79) 

that form almost the same interactions with the binding site (interaction similarity of 0.714), but 

present a potency difference of more than 3.5 log units. Figure 3A shows that in the complex 

2WMR the pyrimidinone moiety of 1 forms a hydrogen bond with the E85hinge.46 and C87hinge.48 

amino acids located in the hinge area of CHK1 and also has hydrophobic contact with the 

gatekeeper amino acid L84GK.45 (Figure 3D).50 The same hydrogen bonds are present in the 

complex 2X8E by the triazolone of 2, but in this complex the 4-pyridyl ring is located in the 

solvent channel of the kinase domain forming hydrophobic interactions with S88linker.49 and 

G89linker.51.51 This difference helps to provide a structure-based hypothesis of the very large 

potency difference.  

Another example of an interaction cliff in this data set is pair 2HYY_3HEC (Figure 3B), 

which contain the same kinase inhibitor (imatinib 3) bound to ABL1 and p38α, respectively. 

Despite the fact that both crystal structures contain the same ligand, the interaction similarity of 

this pair is 0.75 and present a potency difference of 2.6 log units. In both crystal structures 

imatinib forms hydrogen bonds between the pyrimidine and the main chain of Mhinge.48, the NH 

linker with the TGK.45, and the amide moiety of 3 with the side and main chains of EαC.24 and 

DxDFG.81, respectively. In addition to these interactions, the complex with ABL1 (2HYY)52 

presents an extra hydrogen bond between the piperazine of 3 and the backbone of I360VI.67, and 

face-to-face π stacking with the F317hinge.47. Figure 3D also shows that imatinib forms more 

hydrophobic interactions in 2HYY compared to 3HEC, which reflects the variation in solvent 
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accessible surface area reported for ligand bound to ABL1 and p38α (35.4 and 89.6 Å, 

respectively) that correlates with the potency difference.53 

Figure 3C shows an example of activity cliff in the same data set with pIC50 values. Inhibitors 

4 and 5 that form the pair 2R3J_2C69 have very high structural similarity (ComboScore/2 value 

of 0.83) and a large potency difference of 3.4 log units against CDK2, however the interaction 

similarity (0.652) is lower than the threshold used to identify interaction cliffs. In this case, 

differences in interaction patterns are mainly caused by the hydrophobic contacts between the 5-

bromophenyl group of 4 and E12g.l.5 as well as the hydrogen bond formed between the 

pyrazolopyrimidine moiety of 4 and the basic amine group of K33III.17 in 2C69, that is not formed 

with pyrazolopyrimidine 5 in 2R3J.54 Previous studies have shown that the cavity that accepts 

the 5-bromophenyl and the 5-phenyl present in these compounds is large enough to contain 

bulky substituents.55 However, experimental data suggest that the bromide at position 3 of the 

pyrazolopyrimidine of 5 is responsible of the potency difference as it fills a small hydrophobic 

cavity formed at the back of the gatekeeper amino acid (F80GK.45).55  
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Figure 3. 3D representation and activity data for representative kinase-ligand complexes that 

form activity and interaction cliffs in the data set with pIC50 values: (A) Pyrimidininone 150 and 

triazolone 251 with CHK1; (B) Imatinib 3 with ABL152 and p38α53; (C) pyrazolopyrimidines 454 

and 555 with CDK2. Panel D shows the number of interactions between the ligand and each of 

the 85 amino acids in the binding site numbered as defined in KLIFS.27 Per residue, the total 

number of interacting bits is reported and color-coded according to (the combination of) 

interaction feature(s). The position of each pair in SAIS maps is depicted in Figure 2D.  
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Figures 4A and 4B depict two representative examples of the seven interaction cliffs identified 

in the data set with pKi values. The first example (Figure 4A) shows the kinase inhibitor 

Tozasertib (VX-680) 6 bound to two different kinases, namely aurora kinase (AURKA) and a 

mutant of cAMP-dependent protein kinase (PKACα). In both crystal structures, 6 forms the same 

hydrogen bond interactions with the two targets, AURKA (PDB ID: 3E5A)56 and PKACα (PDB 

ID: 3AMB).57 Nevertheless, the π-staking interaction with F144g.l.8 and hydrophobic contacts 

with two more amino acids (G140g.l.4 and L194b.l.36) in the binding site of AURKA increase the 

potency by two log units. This result highlights the importance of Fg.l.8 for the binding of 

Tozasertib, which can be considered as a “hot spot” to take into account during the design of new 

AURKA inhibitors.  

Figure 4B depicts another example of an interaction cliff, corresponding to the pair 

2ZB1_3D7Z (7 and 8). In this case, two similar compounds (ComboScore/2 = 0.82) bind to p38α 

with a similar binding mode (interaction similarity of 0.741), but with large potency difference 

(1.6 log units). The only difference between ligands 7 and 8 is the substitution of the oxadiazol 

ring in 2ZB158 by a (N-cyclopropyl)carboxamide in 3D7Z.59 This structural change disturbs the 

hydrogen bonding pattern with p38α, that is, whereas inhibitor 7 in 2ZB1 forms hydrogen bonds 

with the backbones of D168xDFG.81 and F169xDFG.82 of the DFG motif, the compound 8 in 3D7Z 

forms hydrogen bonds with backbone of D168xDFG.81 and with the carboxylate moiety of E71αC.24 

resulting in an increased potency. In addition, the cyclopropyl group in 3D7Z increases the 

number of hydrophobic contacts with the binding site. 

Finally, only three interaction cliffs were detected in the data set with pKd values, one of those 

is the pair 1KV1_2BAJ (9 and 10) shown in Figure 4C. This example shows two highly similar 

pyrazolourea inhibitors 9 and 10 (ComboScore/2 = 0.90) that present similar interactions (0.84) 
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with p38α, but a potency difference of 2.5 log units. The most important chemical differences 

between 9 and 10 are the methyl group on the pyrazole ring of 9 in 1KV160 versus the phenyl 

group of 10 in 2BAJ61 and the 4-chlorophenyl of 9 in 1KV1 versus the 2,3-dichlorophenyl of 10 

in 2BAJ. As observed before, a bulky group at this position increments the contacts with the 

hydrophobic portion of the side chain of E71αC.24 in the helix αC. This extra phenyl group targets 

the hydrophobic back pocket V27, 62 resulting in an increased activity against p38α.60  

Figure 4. 3D representation and activity data for representative protein-ligand complexes that 

form activity and interaction cliffs in the data sets with pKi and pKd values: (A) Tozasertib 6 with 
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PKACα57 and AURKA56; (B) Biphenyls 758 and 859 with p38α; (C) pyrazoloureas 960 and 1061 

with p38α. Panel D shows the number of interactions between the ligand and each of the 85 

amino acids in the binding site numbered as defined in KLIFS.27 Per residue, the total number of 

interacting bits is reported and color-coded according to (the combination of) interaction 

feature(s). The position of each pair in SAIS maps is depicted in Figure 2E-F. Figure S2 and 

Figure S3 show the 2D depiction of these complexes (generated using PoseViewWeb 1.97.063, 64) 

and the superposed 3D structures of these compounds extracted from the aligned crystal 

structure, respectively.  

Interaction cliff generators 

Activity cliff generators are compounds highly associated with activity cliffs in the data set 

(e.g., above two standard deviations of the mean frequency of activity cliffs) and hence present a 

high probability to form activity cliffs with other structurally similar molecules tested in the 

same assay.19 By analogy to activity cliff generators, interaction cliff generators are ligand-target 

complexes highly associated with interaction cliffs. A major difference between these two is that 

interaction cliff generators are more suitable for the analysis of multitarget activity landscapes 

since they are identified based on the ligand structure, its potency, and how it interacts with the 

target (which, to some extent, adds target information). In contrast, activity cliff generators do 

not include any information regarding to the target (only compound structure and potency) and 

are more suitable for a single-target activity landscapes. It is important to emphasize that the 

selection of cliff generators is based on comparisons with other compounds in the data set. Hence 

the larger the data set, the more reliable the generator is. In this study, the most reliable cliff 

generators are the ones present in the data set with pIC50 values, which contains information of 

409 ligand-target complexes.  
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Both activity and interaction cliff generators were identified in the three data sets and are listed 

with their statistics in Tables S5 and S6. In the pIC50 data set, 20 and 21 ligand-target complexes 

were identified as activity and interaction cliff generators, respectively. One example of 

interaction cliff generator is complex 2VWV, which forms 10 interaction cliffs. As shown in 

Table 3, 2VWV contains a low potency ligand bound to EphB4. Interestingly, the ligand in this 

complex shows high structural and interaction similarity to other ligands bound to different 

kinases.  

 

Table 3. List of ten ligand-target complexes that form interaction cliffs with the interaction cliff 

generator 2VWV (included in the list as reference). 

PDB ID Kinase 

IC50 (nM) of 
co-crystal 
ligand 

pIC50 
Difference 

Interaction 
Similarity 

Ligand 
Structure 
Similaritya 

2VWV EphB4 16000 0 1 1 

3EKK INSR 2 3.90 0.739 0.623 

3EKN INSR 2 3.90 0.714 0.607 

3CJF KDR 6.3 3.40 0.750 0.790 

3FQS SYK 41 2.59 0.889 0.879 

2NP8 Aurora A 42 2.58 0.739 0.600 

1OI9 CDK2 69 2.37 0.696 0.600 

3H3C PYK2 140 2.06 0.682 0.580 

2IW6 CDK2 140 2.06 0.696 0.597 

2C5N CDK2 220 1.86 0.714 0.670 

2C6K CDK2 730 1.34 0.680 0.610 
aLigand structure similarity is calculated using ComboScore as implemented in ROCS 
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Identification of activity cliff hot spots 

Seebeck et al. define activity cliff hot spots as those specific regions or atoms in the target 

involved in key interactions with the ligand that lead to the formation of an activity cliff.20 In this 

paper, activity cliff hot spots were identified in the pIC50 data set as the most frequent 

interactions that appear in the formation of an activity cliff. To this end, only the interactions 

presented by one of the two compounds forming the cliff were taken into account, discarding the 

interactions that are presented by both compounds in the pair. From the 595 interactions (seven 

per each of the 85 amino acids) encoded in the IFPs for this data set, only 116 were present at 

least once in the formation of activity cliffs. Hydrophobic contact was the most common 

interaction (frequency of 55), followed by cases where the amino acids are acting as hydrogen 

bond acceptors or donors (frequency of 21 and 15, respectively) or forming face-to-face/edge 

interactions (frequency of 7 and 11, respectively). The least frequent interactions were protein 

anionic and cationic interactions (frequency of five and two times, respectively).  

Table 4 lists the interactions that were present in at least 20% of the 1,463 activity cliffs in the 

pIC50 data set. This table also shows the amino acid position, the type of interaction and its 

frequency either in the most active or least active compound of the molecular pair. Among the 

most frequent amino acids interacting in activity cliffs we can find those at positions 4-6 which 

correspond to the glycine-rich loop, position 17 located in β–sheet III at the gate area, positions 

46-48 which are in the hinge region, 49-52 from the linker region and 80-81 from the xDFG 

motif. Interestingly, some of these amino acids are highly conserved, for example a glycine at 

position 4 and 6 (98% and 100%, respectively, of conservation in KLIFS structures), a lysine at 

position 17 (100%) and an aspartate at position 81 (99%).27 It is important to note that some of 

these amino acids are known to be important for ligand binding, for example the orientation of 
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DxDFG.81 side chain is commonly used (in combination with FxDFG.82 and the backbone shift) to 

define if the kinase is in an active or inactive (DFG-in or DFG-out, respectively) conformation.65 

In this analysis, the most active compound in the activity cliff usually presents a hydrophobic 

interaction with the amino acid at this position. Another example of an important residue is the 

one at position 47 in the hinge region. For this residue it is known that many compounds have a 

face-to-face/edge interaction when there is a phenylalanine at this position, however the 

interaction is lost when the kinase has a leucine or tyrosine instead. The conserved KIII.17 also 

plays a very important role in ligand binding; it forms hydrogen bonds and hydrophobic 

interactions in 37% and 41% of the activity cliffs, respectively. This conserved amino acid, 

KIII.17, commonly forms a hydrogen bond with DFG-out binders, which are known to present 

improved selectivity and slower dissociative off-rate.66 It is important to mention that no direct 

effect or influence of DFG-in or DFG-out target conformations was observed in these activity 

cliffs. 

 

Table 4. List of most frequent interactions involved in the formation of at least 20% of activity 

cliffs. The total frequency is further divided in two parts to distinguish if the interaction is more 

frequent in the most active or least active compound of the molecular pair. 

Amino acid 
position in 
KLIFS27 

Type of 
interactiona 

Percentage of 
activity cliffs 

Frequency 

Total Most active 
compound 

Least active 
compound 

xDFG.81 HYD 45.73 669 515 154 

hinge.47 FF 41.63 609 348 261 

linker.50 HYD 41.63 609 256 353 

linker.51 HYD 40.53 593 385 208 
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III.17 HYD 40.46 592 340 252 

linker.52 HYD 40.33 590 314 276 

g.l.4 HYD 39.30 575 375 200 

xDFG.80 HYD 36.98 541 323 218 

III.17 DON 36.57 535 332 203 

linker.49 HYD 36.43 533 263 270 

hinge.48 ACC 36.29 531 295 236 

hinge.46 HYD 35.13 514 197 317 

hinge.46 ACC 32.13 470 273 197 

g.l.5 HYD 30.14 441 242 199 

c.l.74 HYD 27.89 408 235 173 

b.l.36 HYD 27.55 403 216 187 

g.l.6 HYD 27.41 401 216 185 

αD.55 HYD 26.04 381 140 241 

c.l.75 HYD 24.74 362 254 108 

hinge.48 DON 20.51 300 189 111 

hinge.48 HYD 20.10 294 193 101 
aHYD=hydrophobic, FF= face-face π-stacking, DON= H-bond donor, ACC= H-bond acceptor 

 

Identification of scaffold hops 

Using the same strategy outlined above, it was possible to identify pairs of compounds that 

have different chemical structures but similar protein-ligand interactions and similar potency. 

These pairs of compounds are the so-called scaffold hops as the ones presented in Figure 5. 

Despite the fact that region I in the SAIS maps contains around 40% of the data points, only a 

few of them (< 7%) have an interaction similarity above the thresholds previously defined (see 

Table 2 and the Methods section). This is not surprising taking into account the large size of 
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kinase ATP binding site and the different binding conformation that the inhibitors may have. The 

analysis of scaffold hops helps to identify conserved interactions that are important for the 

activity across many kinases to gain promiscuity and also to identify compounds that might bind 

to a different kinase with similar potency. 

In the examples shown in Figure 5, compounds represented by the same data point form 

similar hydrogen bonds with amino acids at the same positions in both targets. Interestingly, 

most of the hydrogen bonds are formed with the amino acid backbone or with very conserved 

amino acids suggesting that these similar interactions can also be formed with other kinases. 

Remarkably, compounds in the same data pair present conserved hydrophobic interactions 

suggesting that the binding sites in both targets have similar shape. When looking at the 3D 

binding conformation of the compounds extracted from the aligned crystal structure it can be 

observed that the compounds in the same data point overlap to each other, specially at the 

pharmacophoric points involved in the formation of hydrogen bonds (Figure S4).  

Interestingly, from the 878 scaffold hops with similar interaction patterns that were identified 

in the three data sets, only in 325 the two compounds of the data point target the same kinase 

(e.g. Figure 5C). These 325 scaffold hops correspond to only 24 kinases, where CDK2, p38α, 

and CHK1 account for 205, 55 and 11 of them, respectively. In the remaining 553 scaffold hops, 

the two compounds target different kinases with similar potency and presenting similar 

interaction patterns (e.g. Figure 5A and 5B). These cases involve 49 kinases, where CDK2 is 

again the most prevalent target participating in 179 of the 553 data points, followed by KDR and 

MET which take part in 76 and 66, respectively. The most common pairs of kinases are 

CDK2_JNK3 and CDK2_GSK3B, appearing 35 and 20 times, respectively, followed by 

CDK2_JAK2, KDR_MET and KDR_p38α which appear 15 times each. These five pairs of 
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kinases represent the 11% of the 878 scaffold hops with high interaction similarity present in the 

three data sets. It is important to note that the high frequency of CDK2 in these results is 

influenced by the large number of available crystal structures for this protein kinase (namely 257 

in KLIFS of which 216 kinase-ligand complexes).  
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Figure 5. 3D representation and activity data for representative protein-ligand complexes 

identified as scaffold hops, namely (A) 2QD9_3OY1 (11 with p38α67 and 12 with JNK368), (B) 

2QU6_3D83 (13 with VEGFR269 and 14 with p38α70), (C) 2BAK_3GCS (1561  and 1671 with 

p38α). Potency difference, structure (ComboScore/2) and interaction similarity values are shown 

for each molecular pair. Panel D shows the number of interactions between the ligand and each 

of the 85 amino acids in the binding site numbered as defined in KLIFS.27 Per residue, the total 

number of interacting bits is reported and color-coded according to (the combination of) 

interaction feature(s). Figure S4 shows the 2D depiction of these complexes (generated using 

PoseViewWeb 1.97.063, 64) and the superposed 3D structures of these compounds extracted from 

the aligned crystal structure. 

CONCLUSIONS 

This paper discusses the applications and advantages of including molecular interaction 

fingerprints of protein-ligand complexes in activity landscape modelling. To this end, KLIFS27 

was divided in three different data sets, depending on the activity data available (pIC50, pKi, pKd) 

in the MOAD database. The activity landscape of each data set was modelled using Structure-

Activity-Interaction Similarity (SAIS) maps, which show the relationships between ligands 3D 

binding conformation, how they interact with the target, and the resulting biological activity. In 

general, the compounds in this study presented low structural and interaction similarity (ranging 

from 0.366 to 0.383 and from 0.384 to 0.425, respectively) accompanied by large potency 

differences (up to 7.5 log units of difference). It is noteworthy that only less than 6% of the data 

points of each data set presented high interaction similarity.  

The use of IFPs did not only facilitate the structure-based interpretation of activity cliffs, but 

also allowed the identification of the “interaction cliffs” which are introduced in this work as 
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pairs of compounds that have a high (3D and/or 2D) structural and protein-ligand interaction 

similarity, but a large potency difference. On average, only 25% of the activity cliffs were also 

considered as interaction cliffs in the three datasets. Additionally, the information extracted from 

IFPs allowed the identification of activity cliff hot spots, where the hydrophobic contacts with 

the KIII.17 and DxDFG.81 and the face-face interaction with Fhinge.47 seem to be involved in the 

formation of activity cliffs. Also, it was possible to identify scaffold hops with similar protein-

ligand interactions and similar potency. Only less than 7% of compounds with similar potency 

but different molecular structure presented high interaction similarity.  

Taken the results together, this paper shows that the added information given by the interaction 

fingerprints is very valuable to understand and rationalize activity cliffs from both the ligand and 

target point of view. However, the use of IFPs in activity landscape modelling is not restricted to 

the SAIS maps, and this opens up interesting perspectives and challenges. For example, the 

information encoded by IFPs can be incorporated in other activity landscape methods, either 

quantitative (e.g. SALI72 and SARI73) or qualitative, or in the activity landscape modelling of 

other data sets with structural information as the one used by Desaphy et al.21 In conclusion, IFPs 

represent a useful technique to extract valuable information from the ligand-target complex when 

used in the context of activity landscapes.  
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