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Design of Positive-Definite Quaternion Kernels
Felipe Tobar and Danilo P. Mandic

Abstract—Quaternion reproducing kernel Hilbert spaces
(QRKHS) have been proposed recently and provide a high-
dimensional feature space (alternative to the real-valued mul-
tikernel approach) for general kernel-learning applications. The
current challenge within quaternion-kernel learning is the lack
of general quaternion-valued kernels, which are necessary to
exploit the full advantages of the QRKHS theory in real-world
problems. This letter proposes a novel way to design quaternion-
valued kernels, this is achieved by transforming three complex
kernels into quaternion ones and then combining their real
and imaginary parts. Building on this general construction, our
emphasis is on a new quaternion kernel of polynomial features,
which is assessed in the prediction of bodysensor networks
applications.

Index Terms—Quaternion kernels, complex kernels, multiple
kernels, vector kernels.

I. INTRODUCTION

Kernel learning algorithms have become a standard in both
classification and regression problems, and have found appli-
cation in econometrics, tracking, robotics, and fault diagnosis.
The two main aspects of kernel estimation are the learning
algorithm and the choice of the kernel. The learning algorithm
is usually obtained through the optimisation of a cost function
chosen to best suit the problem at hand; in kernel regression,
for example, the kernel weights can be found through kernel
least mean square [1], [2], kernel recursive least squares
[3], and kernel ridge regression [4]. While kernel learning
algorithms are already maturing, the choice of the kernel and
its effect on the performance of the estimation algorithm still
remains an open issue. The kernel design can be addressed
by a mixture of real-valued kernels, [5], [6], while a more
recent alternative is to consider complex-valued [7], [8] and
quaternion-valued [9], [10] kernels.

Recent advances in sensor technology have provided access
to 3D data, this has spurred a resurgence in research on
quaternion representations of such signals. Indeed, quaternions
have become a standard in a number of areas, including
computer graphics, quantum physics and aeronautics. When
it comes to quaternion kernel algorithms, theoretical foun-
dations for the existence of quaternion RKHS (QRKHS)
and the validity of quaternion versions of established real-
valued kernel algorithms have been provided in [9]. However,
quaternion extensions of standard kernels are limited to only
the linear and Gaussian ones. This is a consequence of the
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algebraic properties of the quaternion ring, in particular, the
non-commutativity of its product. This implies that popular
kernels which are positive definite in the real or complex fields,
cannot be straightforwardly extended to the quaternion ring
(e.g. the polynomial kernel) as their positive definiteness relies
upon the assumption of commutativity, thus limiting the range
of applications.

Quaternion-valued kernels (and not just kernels that admit
quaternion-valued inputs) are appealing, since their feature
mapping is also quaternion-valued and corresponds to four
real-valued maps – or two complex-valued ones. As a con-
sequence, the quaternion feature space (a quaternion RKHS),
which is the span of the feature mapping, is of higher dimen-
sionality than standard real/complex RKHSs and, therefore,
can be interpreted as a richer feature space [11].

Along these lines, the aim of this paper is threefold: (i)
to propose a novel way of constructing Hermitian, positive
semi-definite (PSD), quaternion kernels from three complex-
valued ones, this establishes a sufficient condition for the
Hermitian and PSD properties of the constructed quaternion-
valued kernel; (ii) to introduce a polynomial quaternion-kernel,
thus bridging a gap in the open literature; and (iii) to validate
the proposed quaternion polynomial (cubic) kernel against
existing approaches on a 3D body-sensor application.

II. QUATERNIONS: BACKGROUND AND NOTATION

The main difference between the algebraic properties of the
quaternion ring and those of the real/complex field is the lack
of the commutativity property. In this section, we state the
properties used throughout the paper and provide an example
of a kernel that is PSD in the real and complex fields but not
in the quaternion ring — for a detailed account see [9].

A. Definitions and Identities

Let {1, i, j, k} be the quaternion basis, q = qr+ iqi+ jqj +
kqk ∈ H a quaternion scalar and P ∈ Hn×m,Q ∈ Hm×n

quaternion matrices. We will use the following operations:
• Conjugate operator: q∗ = qr − iqi − jqj − kqk,
• Hermitian operator: PH = (P∗)

T , where the conjugate
operator is applied element-wise, i.e., {P∗}r,s = {P}

∗
r,s,

• Hermitian of product: (PQ)
H

= QHPH ,
• Imaginary part: =P = 1

2 (P−P∗),
• Real part: <P = 1

2 (P+P∗),
• The square quaternion matrix P ∈ Hn×n is positive

semidefinite iff xHPx ≥ 0,∀x ∈ Hn.
A quaternion-valued kernel is a two-input function K(·, ·),

K : X × X → H, where X is an arbitrary sample set. The
transpose of a kernel is defined as K(x,y)T = K(y,x) and
we say that the kernel is symmetric if and only if K(x,y) =
K(y,x) ∀x,y ∈ X . We can now introduce Mercer kernels.
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Definition 1 (quaternion-Mercer kernel [12], [13]). A quater-
nion kernel K is a quaternion-Mercer kernel iff it is:

(i) Hermitian (or equal to its conjugate transpose) i.e.,
K(x,y) = KH(x,y) = (KT (x,y))∗ = K∗(y,x), and

(ii) Positive semidefinite on X , i.e., the Gram matrix defined
element-wise by Kr,s = K(sr, ss) ∈ H is positive
semidefinite for any set S = {s1, . . . , sm} ⊂ X , m ∈ N.

Notice that we denote functions K : X × X → H by
uppercase K, whereas matrices comprising values of K are
denoted using the bold font K - subindices will also be used
for clarity when referring to more than one kernel function.
Additionally, by replacing H by R or C in Def. 1, we refer to
real-Mercer, complex-Mercer and quaternion-Mercer kernels.

B. The Standard Polynomial Kernel is not Positive Semidefi-
nite in the Quaternion Domain

As an illustrative example, consider the polynomial kernel.
Some real-world applications require highly-nonlinear estima-
tion; this can be achieved by using products (or monomials)
of the entries of the input vector x as features. In the real- and
complex-valued cases, polynomial classifiers [14] employ the
feature space of all monomials of order up to p. The resulting
feature space is an RKHS, the reproducing kernel of which is
the polynomial kernel

Kc,p =
(
c+ xHy

)p
, c ≥ 0, p ∈ N. (1)

The expansion of the polynomial kernel, required to reveal
the monomials of order up to p (i.e. the features), requires
commutativity of products of the monomials (see [15] for the
case p = 2). However, as quaternions do not commute, the
kernel in eq. (1) is suitable for only real and complex inputs.

To show that the polynomial kernel Kc,p in eq. (1) is
not necessarily PSD in the quaternion domain, consider the
quadratic homogeneous case with scalar input, that is, c = 0
and p = 2. The kernel in eq. (1) then takes the form

K0,2 = (x∗y)
2
, x, y ∈ H (2)

where, according to Definition 1, a sufficient condition to
reject the PSD-ness of K0,2 is to find a set S such that the
Gram matrix of K0,2 constructed from the samples in S ⊂ H
is not PSD. We proceed by considering the set S = {i, j, k},
for which the Gram matrix of K0,2 is given by

K =

[
K0,2(i, i) K0,2(i, j) K0,2(i, k)
K0,2(j, i) K0,2(j, j) K0,2(j, k)
K0,2(k, i) K0,2(k, j) K0,2(k, k)

]
=

[
1 −1 −1
−1 1 −1
−1 −1 1

]
The above matrix is not PSD, since its eigenvalues are λ1 =
−1, λ2 = 2, λ3 = 2, hence, according to Definition 1, the
polynomial kernel Kc,p is in general not PSD in H.

This example suggests that extending standard
real/complex-valued kernels to operate in the quaternion
domain is not straightforward. To this end, we next introduce
a procedure to design quaternion kernels based on three
arbitrary complex kernels.

K(I)

x

K(K)

Ka(x,y) + iKb(x,y) ∈ H

Ka(x,y) + jKb(x,y) ∈ H

Ka(x,y) + kKb(x,y) ∈ H
y

K(J)

Fig. 1: Quaternion-Mercer kernels K(I), K(J) and K(K). Red lines
denote arbitrary inputs and the blue ones quaternion outputs.

III. DESIGN OF QUATERNION KERNELS FROM COMPLEX
KERNELS

Our aim is to design quaternion-Mercer kernels (see Def-
inition 1); in the build-up of our main result in Theorem 1,
the following lemma establishes a link between complex- and
quaternion-Mercer kernels.

Lemma 1. If K : X × X → C is a complex-Mercer
kernel with real and imaginary parts respectively given by
the functions Ka,Kb : X ×X → R, then the following three
kernels K(I),K(J),K(K) : X ×X → H defined by

K(I) = Ka + iKb, K
(J) = Ka + jKb, K

(K) = Ka + kKb

(3)
are quaternion-Mercer kernels.

Proof. Recall that, according to Def. 1, the complex-Mercer
kernel Ka + iKb is Hermitian and PSD. We first prove the
Hermitian and PSD properties for K(I):
(i) Since Ka + iKb = (Ka + iKb)

H is (complex) Hermitian,
then the function Ka(x,y) = KT

a (x,y) is symmetric and the
function Kb(x,y) = −KT

b (x,y) is antisymmetric (or skew-
symmetric) . Therefore,

(
K(I)

)H
= KH

a − iKH
b = Ka + iKb

is Hermitian in H.
(ii) The PSD-ness of K(I) can be expressed in terms of its
Gram matrix as xHK(I)x ≥ 0, ∀x ∈ Hn, or equivalently,

<{xHK(I)x} ≥ 0 and ={xHK(I)x} = 0. (4)

Observe, however, that the right-hand-side identity above
always holds for Hermitian kernels:

2={xHKx} = xHKx− (xHKx)H = xHKx− (xHKx) = 0.

Upon denoting x = xr+ixi+jxj+kxk ∈ Hn and expanding
the l.h.s of eq. (4), we obtain

<{xHK(I)x} =
(
xT
r Kaxr + xT

i Kaxi − 2xT
r Kbxi

)
+
(
xT
j Kaxj + xT

kKaxk − 2xT
j Kbxk

)
where each one of the terms in the parentheses is greater or
equal than zero (as they are PSD quadratic forms); conse-
quently, <{xHK(I)x} ≥ 0.

The Hermitian and PSD conditions for K(J) and K(K)

follow from the permutation of the indices {i, j, k}. This
concludes the proof.

In the sequel, we adopt the notation K(I),K(J),K(K) to
denote the quaternion kernels generated from the complex
kernel K as in eq. (3), see also fig. 1 for a block diagram.
Observe that these kernels are quaternion-valued with only
one nonzero imaginary part (i-imaginary, j-imaginary and k-
imaginary, respectively). We now state our main result.
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Theorem 1. For an arbitrary triplet of complex-Mercer ker-
nels K1,K2,K3 : X ×X → C defined by

K1 = Ka1+iKb1 , K2 = Ka2+iKb2 , K3 = Ka3+iKb3 (5)

where Ka1 ,Kb1 ,Ka2 ,Kb2 ,Ka3 ,Kb3 : X × X → R, the
expression

K(x,y) = Ka1
(x,y) +Ka2

(x,y) +Ka3
(x,y) (6)

+ iKb1(x,y) + jKb2(x,y) + kKb3(x,y)

is a quaternion-Mercer kernel. Using the notation
K

(I)
1 ,K

(J)
2 ,K

(K)
3 , we can express the so-constructed

quaternion kernel K in compact form as

K(x,y) = K
(I)
1 (x,y) +K

(J)
2 (x,y) +K

(K)
3 (x,y). (7)

Proof. For the complex-Mercer kernels K1,K2,K3 in eq. (5),
Lemma 1 guarantees that the kernels K(I)

1 ,K
(J)
2 ,K

(K)
3 are

quaternion-Mercer; therefore, the proof follows from the fact
that Hermitian and PD functions are closed under addition.

Notice that existence of the three complex-Mercer kernels
K1,K2 and K3 is a sufficient, but not necessary, condition for
the existence of the quaternion-Mercer kernel K; this means
that not all quaternion kernels are necessarily constructed in
such a way. Furthermore, observe that Theorem 1 guarantees
the existence of quaternion kernels over any set X where
complex kernels can be defined.

IV. A QUATERNION POLYNOMIAL KERNEL

With Theorem 1 we are now equipped to construct a
quaternion polynomial kernel using complex polynomial ker-
nels. We proceed by (i) constructing the kernel based on
Theorem 1, (ii) accommodating the complex kernels to admit
quaternion inputs, and (iii) showing that the constructed kernel
has polynomial features and quaternion-valued coefficients.

A. Construction of the Kernel

Let us denote the complex pth-order polynomial kernel by1

Kc =
(
c+ xHy

)p
,x,y ∈ Cn, c > 0, p ∈ N. By virtue of

Theorem 1, the expression

K(x,y) = K(I)
c1 (x,y) +K(J)

c2 (x,y) +K(K)
c3 (x,y) (8)

is a quaternion-Mercer kernel. However, K is defined for
complex-valued inputs and therefore cannot be used for regres-
sion between quaternion vector spaces unless a transformation
of the input is considered.

B. Complexification of the Input

The kernel in eq. (8) can be modified to admit a quaternion-
valued (or any vector-valued) input via a complexification
[16] procedure, that is, by mapping the input set X onto
a complex-valued vector space. We consider three different
complexification maps, one for each kernel in the r.h.s. of

1We drop the subindex p since all three kernels are of the same order p.

y ∈ Hn

∈ C2nC1 C1

C2C2

C3C3

K
(I)
c1

K
(J)
c2

K
(K)
c3

x ∈ Hn

∈ C2n

K(x,y) ∈ H

Σ

Fig. 2: Quaternion-Mercer kernel constructed from complex-Mercer
kernels via complexification. Blue lines denote quaternions, red lines
complex numbers, and the dashed line the block (x,y)→ K(x,y).

eq. (8). For the input x = xr + ixi + jxj + kxk ∈ Hn the
three complexification mappings considered are (see fig. 2)

C1 : x ∈ Hn 7→ [xT
r xT

i ]
T + i[xT

j xT
k ]

T ∈ C2n (9)

C2 : x ∈ Hn 7→ [xT
r xT

j ]
T + i[xT

i xT
k ]

T ∈ C2n (10)

C3 : x ∈ Hn 7→ [xT
r xT

i ]
T + i[xT

k xT
j ]

T ∈ C2n. (11)

The complexification allows for the quaternion-Mercer ker-
nel in eq. (8) to be a function defined between quaternion-
valued spaces and is part of the model design.

C. Polynomial Features and Quaternion Coefficients

The proposed polynomial kernel in eq. (8) with the com-
plexification maps in eqs. (9)-(11) can be expressed as a
function K : Hn ×Hn 7→ H given by

K(x,y) = (12)

= K(I)
c1 (C1x, C1y) +K(J)

c2 (C2x, C2y) +K(K)
c3 (C3x, C3y).

In order to analyse the feature space corresponding to K, let
us expand the first term above to give

K(I)
c1 (C1x, C1y) =
=
(
c1 + (xr + ixj)

H(yr + iyj) + (xi + ixk)
H(yi + iyk)

)p
which can be written as a quadratic form of the real vectors
[xT

r xT
i xT

j xT
k ]

T , [yT
r yT

i yT
j yT

k ]
T ∈ R4n exponentiated to p.

Similarly for the remaining two terms, the quaternion-Mercer
kernel in eq. (12) can be expressed as

K(x,y) = (13)

=
(
c1 + [xT

r xT
i xT

j xT
k ]Mi[y

T
r yT

i yT
j yT

k ]
T
)p

+
(
c2 + [xT

r xT
i xT

j xT
k ]Mj [y

T
r yT

i yT
j yT

k ]
T
)p

+
(
c3 + [xT

r xT
i xT

j xT
k ]Mk[y

T
r yT

i yT
j yT

k ]
T
)p

where the coefficient matrices Mi,Mj ,Mk ∈ H4n×4n are
Toeplitz and respectively given in block-wise form as[

I 0 iI 0
0 I 0 iI−iI 0 I 0
0 −iI 0 I

]
,

[
I −jI 0 0
jI I 0 0
0 0 I jI
0 0 −jI I

]
,

[
I 0 0 kI
0 I kI 0
0 −kI I 0
−kI 0 0 I

]
where I,0 ∈ Hn×n are the identity and zero matrices.



IEEE SIGNAL PROCESSING LETTERS 4

The proposed kernel in eq. (13) is a sum of three poly-
nomials of the real and imaginary parts of the input x,
with quaternion-valued coefficients. Furthermore, notice that
although the matrix Mi (cf. Mj ,Mk) depends on the choice
of complexification map, it only has real and i−imaginary
(cf. j−imaginary, k−imaginary) components for any choice
of complexification. As a consequence, each of the terms in
the parentheses in eq. (13) features a real part and a single
imaginary part, in other words, the kernel does not include
products of imaginary units, which leads to the lack of PSD-
ness as is the case for the polynomial kernel in eq. (2).

The proposed kernel in eq. (13) is indeed a quaternion-
Mercer polynomial kernel, since (i) it is a polynomial of the
scalar entries of x, (ii) has quaternion-valued coefficients, and
(iii) is positive definite by construction (Theorem 1).

V. SIMULATIONS

The proposed polynomial quaternion-Mercer kernel was
validated for the cubic case (i.e. p = 3) against three existing
approaches for the prediction of inertial body motion data.

A. Data, Learning Algorithm and Kernels Considered

The data were obtained using four inertial body sen-
sors, placed on wrists and ankles of an athlete performing
Tai-Chi sequences, which recorded 3D angular acceleration.
Each angular signal was then mapped according to θi →
(cos(θi), sin(θi)) to avoid discontinuity close to θi = ±π [9].
The resulting time series was 24-dimensional; in a one-step-
ahead prediction setting with two delayed observations, the
regression problem required to learn a mapping R48 7→ R24,
or equivalently, H12 7→ H6.

The training and validation trials corresponded to
different Tai-Chi sequences, and four kernel ridge regression
(KRR, with regularisation factor ρ = 0.1) estimators were
implemented using the following cubic kernels:
Proposed quaternion kernel: The polynomial quaternion-
Mercer kernel in eq. (13), constructed using complex-valued
cubic kernels.
Naı̈ve quaternion: The quaternion cubic kernel proposed in
[9] given by KN (x,y) = (1 + xHx)(1 + xHy)(1 + yHy).
Although this kernel has cubic growth, observe that it is
essentially a linear kernel multiplied by the square norm of
the inputs x and y.
Real: The (real) cubic kernel Kr(x,y) =

(
1 + <{xHy}

)3
.

Multikernel: This kernel comprises four
real-valued polynomial sub-kernels given by[
(xHy)3, (c1 + xHy)3, (c2 + xHy)3, (c3 + xHy)3

]
, which

are a basis for cubic polynomials [5], [9].
The last three kernels were considered in [9] using the same

Tai-Chi data, where the naı̈ve kernel outperformed the other
two as the number of support vectors increased.

B. Results

Fig. 3 shows the performance of the algorithms considered,
evaluated through the normalised mean-square error (top)
and computational complexity (bottom). Recall that all four
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Fig. 3: Performance (top) and computational complexity (bottom) of
the quaternion kernel algorithms considered, evaluated for the one-
step-ahead prediction of body-motion trajectories.

kernels considered are polynomial and will behave similarly
for increasing numbers of support vectors, however, the pro-
posed quaternion kernel outperformed the other kernels for
fewer support vectors. This is a consequence of the higher
dimensionality of the quaternion-valued feature space, which
provides richer features for fewer support vectors.

The higher computational complexity of the proposed kernel
is still on par with the other kernels considered, and given
by the number of inner products required (three, similarly
to the naı̈ve quaternion kernel). Notice that the multikernel
algorithm requires four inner products and is, in general,
more expensive; however, in the above experiment these inner
products were identical and computed only once, thus reducing
the complexity of the multikernel algorithm.

VI. CONCLUSIONS

We have proposed a principled approach to construct Hermi-
tian, positive semi-definite, quaternion kernels from complex
kernels. This opens completely new possibilities for the imple-
mentation of quaternion-kernel algorithms by leveraging upon
readily available complex kernels. Building on this theoretical
result, we have also proposed a quaternion polynomial kernel,
and have demonstrated its usefulness in the prediction of 3D
body-motion trajectories. Owing to its higher dimensionality,
the proposed quaternion polynomial kernel has been shown
to outperform the existing kernels of similar computational
complexity. Finally, hypercomplex kernels for signal estima-
tion are in fast development and there is still much room for
contributions; for instance, recall from Theorem 1 that the
proposed construction is sufficient but not necessary (i.e. not
all quaternion kernels can be constructed from three complex
kernels), therefore, other ways of constructing quaternion
kernels are yet to be explored, e.g. using real kernels or
Cayley-Dickson representations.
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