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Summary

This thesis consists of three self-contained parts, each with its own abstract, body,

references and page numbering:

Part I Potential theory, path integrals and the Laplacian of the

indicator

We write the transition density of absorbed or reflected Brownian

motion in a d-dimensional domain as a Feynman-Kac functional in-

volving the Laplacian of the indicator, thereby relating the hitherto

unrelated fields of classical potential theory and path integrals.

Part II The problem of alternatives

We consider parallel investment in alternative technologies or drugs

developed over time, where there can be only one winner. Parallel

investment accelerates the search for the winner, and increases the

winner’s expected performance, but is also costly. To determine which

candidates show sufficient performance and/or promise, we find an

integral equation for the boundary of the optimal continuation region.

Part III Optimal support for renewable deployment

We consider the role of government subsidies for renewable technolo-

gies. Rapidly diminishing subsidies are cheaper for taxpayers, but

could prematurely kill otherwise successful technologies. By contrast,

high subsidies are not only expensive but can also prop up uneconom-

ical technologies. To analyse this trade-off we present a new model

for technology learning that makes capacity expansion endogenous.

There are two reasons for this standalone structure:

1. The target readership is divergent: Part I concerns mathematical physics,

Part II operations research, and Part III policy. Readers interested in spe-

cific parts can thus read these in isolation. Those interested in the thesis

as a whole may prefer to read the three introductions first.

2. The separate parts are only partially interconnected. Each uses some theory

from the preceding part, but not all of it; e.g. Part II uses only a subset

of the theory from Part I. The quickest route to Part III is therefore not

through the entirety of the preceding parts. Furthermore, those instances

where results from previous parts are used are clearly indicated.
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SUBMITTED (in parts)

Part I — Potential theory, path integrals and the

Laplacian of the indicator

Rutger-Jan Lange

University of Cambridge,

792 King’s College, Cambridge, CB2 1ST, United Kingdom

E-mail: rjl63@cam.ac.uk

Abstract: This paper unifies the field of potential theory — i.e. boundary value problems

for the heat and Laplace equations — and that of the Schrödinger equation, by postulating

the following seemingly ill-defined potential:

V (x) := ∓σ
2

2
∇2
x1x∈D

where the volatility is the reciprocal of the mass (i.e. m = 1/σ2) and ~ = 1. The Laplacian

of the indicator can be interpreted using the theory of distributions: it is the d-dimensional

analogue of the Dirac δ′-function, which can formally be defined as ∂2/∂x21x>0.

Regarding potential theory, our unified approach automatically produces the classical sin-

gle and double boundary layer series. Regarding the Schrödinger equation, it automatically

produces what is known as the Born series (or Born perturbation expansion). Apart from

reproducing two known series solutions, our approach shows the equality of both solutions

for a particular singular potential V , when this potential has the (scaled) Laplacian of

the indicator as its limit. The sign of the potential depends whether the value (Dirich-

let boundary condition) or derivative (Neumann boundary condition) is specified at the

boundary.

Lastly, we demonstrate that the mode of convergence of the obtained series solutions is as

follows:

mode of convergence absorbed propagator reflected propagator

convex domain alternating monotone

concave domain monotone alternating

As an independent contribution, we provide a new interpretation of the Feynman rules in

a probabilistic setting, linking for the first time the Feynman-Kac formula to the Pascal

matrix.

Keywords: classical potential theory, boundary value problem, path integral, Brownian

motion, Dirichlet problem, absorbed Brownian motion, Neumann problem, reflected Brow-

nian motion, single boundary layer, double boundary layer, first passage, last passage,

Feynman, Feynman-Kac, point interaction, Dirac delta, Dirac delta prime, Laplacian of

the indicator, path decomposition expansion, multiple reflection expansion

mailto:rjl63@cam.ac.uk


Contents

1 Introduction 3

1.1 Classical potential theory 4

1.2 The modified Dirichlet problem 5

1.3 Green’s identity 7

1.4 Brownian motion 8

1.5 Single and double boundary-layers 15

1.6 The Feynman-Kac formula 21

1.7 A new potential 25

1.8 A semi-permeable boundary in one dimension 31

1.9 The acceleration of the occupation time 33

2 Notation 36

2.1 The domain D 36

2.2 Stochastic processes 36

2.3 Intermediate coordinates 36

2.4 Differentiation 37

2.5 First- and last-passage times 37

2.6 Expectations and probabilities 37

2.7 Green functions 38

3 Absorbed and reflected Brownian motion 39

3.1 Absorbed Brownian Motion 39

3.2 First- and last-passage decompositions 41

3.3 Reflected Brownian motion 49

3.4 First- and last-reflection decompositions 51

3.5 Discontinuity relations 53

3.6 Tangent plane decompositions 56

3.7 Single and double boundary-layers 59

3.8 The one dimensional analogy 67

3.9 Absorbed and reflected transition densities and Feynman-Kac potentials 70

3.10 Green functions and spectral theory 79

3.11 An application to the Dirichlet and Neumann boundary value problems 84

4 Examples 87

4.1 An ellipse in 2d 87

4.2 A cusp in 2d 90

4.3 An ellipsoid in 3d 91

5 Feynman-Kac potentials 95

5.1 The Schrödinger equation in a probabilistic setting 95

5.2 First- and last-interaction decompositions 98

5.3 The Feynman-Kac formula 102



– Part I –

5.4 The Feynman rules for a diffusion 107

5.5 Boundary value problems as Feynman-Kac potentials 114

6 Conclusion 118

1 Introduction

This paper considers the modified Dirichlet and Neumann boundary value problems for

the heat and Laplace equations in d dimensions, and for a general class of domains D

that allows Green’s theorem — allowing a finite number of edges, corners and cusps, and

where the value and normal derivative, respectively, are prescribed on the boundary. Our

approach will be probabilistic in nature, interpreting the heat kernel as the absorbed or

reflected transition density of a Brownian motion.

We will, first, contrast our approach with that of classical potential theory and its

ansatz of single and double boundary layers. Second, we will consider a new approach to

the Feynman-Kac functional. Finally, we will propose the synthesis of classical potential

theory and path integral theory by postulating the following seemingly ill-defined potential:

V (x) := ∓σ
2

2
∇2
x1x∈D.

This connects, as a by-product, potential theory to the study of Brownian local time.

The potential can be viewed as the ‘acceleration’ of the time spent in D, by the Brownian

particle, when the boundary points of D move outwards in the normal direction.

This introduction will motivate and sketch the arguments in the order mentioned

above, thus proceeding roughly chronologically through the literature.

Considering that this paper deals with two grand fields of mathematical study, it has

a relatively modest list of references. The reason for this is twofold. First, the problems

in potential theory are amongst the most studied mathematical problems in the world.

Although an almost endless list of references is possible, this would add little value to

most readers. We have thus confined ourselves to referencing 1) some well-known standard

reference works, 2) some references of historical interest, and, finally, 3) some specific

references with which to contrast our results. Second, the approach is this paper is rather

intuitive and care has been taken to make the paper self-contained.

As a final disclaimer it is worth noting that we examine the historical developments

only superficially, without claiming to be precise or exhaustive. A much more detailed

history of potential theory can be found in e.g. [1] (there was a lot of history as early as

1929!), or in [2], a reprint of the 1984 edition, which involves more recent discoveries as

well.

– 3 –



– Part I –

1.1 Classical potential theory

Classical potential theory has a long history. Kellogg’s (1929) widely quoted textbook [1]

introduces potential theory by quoting Newton’s Principia from another 242 years earlier

— and we shall follow suit:

Every particle of matter in the universe attracts every other particle, with a

force whose direction is that of the line joining the two, and whose magnitude

is directly as the product of their masses, and inversely as the square of their

distance from each other.

19th century physicists, having learned of Newton’s law of universal gravitation (1687) and

of Coulomb’s inverse-square law for electrostatic forces (1783), realised that the funda-

mental forces of nature could be written as the gradient of a scalar function. This scalar

function was coined the ‘potential’. The gravitational potential, for example, is defined as

the scalar function that vanishes at infinity and such that the negative gradient equals the

gravitational force — in both direction and magnitude. A simple calculation shows that

we have

−∇y
−1

|y − x|
= − y − x
|y − x|3

,

where x and y are vectors, where∇ is the gradient operator, and |·| indicates the norm. The

gravitational potential at y as caused by a mass at x is identified as ∼ −1
|y−x| . It increases

with the distance between the particles, inspiring the concept of ‘potential’ energy. While

infinite at x = y, at points away from masses it satisfies the Laplace equation

∇2
y

−1

|y − x|
= 4πδ(|y − x|), (1.1.1)

where this equation is to be read in a distributional sense. The Laplace equation also

characterises the steady vibrations, the steady flow of heat and fluids, and is one of the

most important equations in mathematical physics.

In moving from 19th century physics to 19th century mathematics, the emphasis shifts

from the potential function, which satisfies the Laplace equation, to the Laplace equation

itself and all functions that satisfy it. The concept of harmonic functions was introduced,

for example, and a function f is defined as harmonic if it is twice continuously differentiable

and satisfies the Laplace equation ∇2f = 0 in some domain D. In one dimension the

Laplace equation allows only straight lines. As a result, maxima and minima must occur

at the boundary of the domain. Also, the value at any point x in the interior is equal

to the average value taken over a set of equidistant points around x. It turns out that

these properties persist in higher dimensions: harmonic functions have no local maxima or

minima (and if they do, then they are constant) and harmonic functions satisfy the mean

value property in the sense of equidistant points, i.e. spheres.
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The development of harmonic functions gave rise to a multitude of questions. The

Dirichlet problem, as posed by [3], asks for the existence and uniqueness of a function

that is harmonic in D and takes certain prescribed boundary values on ∂D. It was long

believed that there is always a solution, but Zaremba [4] gave the first counterexample. He

considered a punctured open ball in d ≥ 2, with prescribed boundary values 0 at the origin

and 1 at the outer boundary. Because the boundary at the origin consists of an isolated

point, there is no way to match a harmonic function to both boundary values.

Lebesgue [5] realised that not only do isolated boundary points cause problems, but

so do other boundary points of zero measure, such as the tip of a thorn in d ≥ 3. Lebesgue

imagined pushing needle into a deformable sphere — thereby creating an inward pointing

thorn (the terms spine, cone and cusp are also in use). Lebesgue shows that if the thorn

is very sharp and if the prescribed boundary values are 1 on most of the sphere and 0 on

most of the thorn, then the value at the tip of the thorn is not 0, as the Dirichlet problem

demands, but positive.

Poincaré [6] had already used barriers, which are roughly equivalent to tangent planes,

to show that the problem is solvable if every boundary point has one, and finally Wiener

[7] gave necessary and sufficient conditions for the existence of the Dirichlet solution, pre-

cluding such examples as had been given by Zaremba and Lebesgue. As Kellogg [1] notes,

‘no proof can ever be valid unless it places some restrictions on the region’ (p. 278).

Because of the intimate relationship between potential theory and the theory of the

Laplace equation, the Dirichlet problem is also referred to as the first boundary value

problem of potential theory. The second boundary value problem of potential theory asks

for a function that is harmonic in a region and that has a prescribed normal derivative at

every boundary point, and is also known as the Neumann problem. The third boundary

value problem prescribes a linear combination of the value and the normal derivative at the

boundary. For all three boundary value problems similar issues of existence and uniqueness

must be addressed, with similar requirements on the smoothness of the domain. The

interior Neumann solution is unique up to an additive constant, for example. This paper

adresses the Dirichlet and Neumann problems for the Laplace and heat equations.

To overcome the difficulties of existence as presented by Zaremba and Lebesgue, we

will consider not the classical but the modified versions of these boundary value problems,

as discussed in the next subsection.

1.2 The modified Dirichlet problem

To physicists, such as Green [8], it had always been ‘clear’ that the Dirichlet problem is

solvable — because nature solves it. Suppose that a positive electrical charge is placed

inside a perfect conductor, such that electrons are completely free to flow on its surface,

and that the conductor is ‘grounded’ (i.e. it has an infinite supply of electrons). Then
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the positive charge inside will induce a negative charge distribution on the conductor, such

that the total configuration is charge neutral. The electrons on the conductor are attracted

by the positive charge inside, but repelled by each other, leading very quickly to a static

charge distribution. The induced charge on the conductor can be considered a continuous

charge distribution, because electrons are phenomenally small; smaller than 10−15 m.

The electrical force is proportional to the gradient of the electrical potential, and

thus an electrostatic equilibrium demands that the potential is constant everywhere on the

conductor. If the potential is constant on the conductor, then the potential does not change

in any tangential direction and therefore the gradient must point in the direction normal

to the surface. The electrical force thus also points in the normal direction, but no electron

can move in that direction and thus an equilibrium has been obtained. (If there were a

force in any tangential direction at all, then some electrons would move.) The combined

potential that results from the original charge and the induced charge solves the Laplace

equation everywhere inside the conductor — except at the location of the positive charge,

where it is infinite. And because it is zero (or at least constant) on the boundary, it solves

the homogeneous Dirichlet problem.

From this observation, Green [8] inferred that the Dirichlet problem is always solvable.

This is not technically correct since Green did not consider such geometries as proposed by

Zaremba and Lebesgue. However, even for such irregular shapes as punctured disks and

cones, it is clear that some charge distribution on the conductor must exist.

As far as Zaremba’s punctured disk is concerned, we could hypothesise that no in-

finitesimally small bit of conductor would every carry a finite bit of charge, as the repulsive

force between the electrons would become infinite. As far as the conductor is concerned,

therefore, the punctured point is not really there — it would never put any finite amount

of charge there. Only 1 electron could ever amass at an isolated boundary point and that

is a negligible quantity.

As far as Lebesgue’s thorn is concerned, it is clear that a conductor with such a shape

could exist, and that it would carry some induced charge distribution. We can hypothesise

that an equilibrium distribution is obtained when the potential on the conductor is zero

everywhere, except, possibly, at the tip of the thorn. At the tip of the thorn multiple

‘normal’ directions exist and therefore a force pointing in any of the normal directions

would be allowed, given that no electron could move in that direction. We would have to

admit that the induced charge distribution can be discontinuous, if the conductor has a

very irregular shape, but we would insist that some charge distribution exists.

Concluding, we see that as long as the potential deviates from its prescribed value at a

set of points with measure zero, then an equilibrium distribution is obtained. The Dirichlet

problem can thus be solved also for irregular shapes, albeit in a slightly weaker sense: the
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prescribed boundary values are met almost everywhere, at all regular boundary points.

Not all the standard reference works discuss the modified Dirichlet problem. [9], [10],

[11] and [12] are otherwise excellent references for this paper, but they discuss the classical

and not the modified Dirichlet problem. The modified Dirichlet problem, sometimes called

the generalised Dirichlet problem, is discussed by [13], [14], [15] and [2].

In this paper, by a ‘solution’ to any boundary value problem we mean a solution in

the ‘modified’ sense, i.e. a solution that matches the prescribed boundary conditions at all

boundary points, except possibly at a set of points with zero measure on the surface. We

thus allow domains with corners, edges and sharp cones, but we only impose the boundary

conditions at regular boundary points.

1.3 Green’s identity

Green’s 1828 paper [8] is important not only for historical reasons, but also because it

introduces three indenties that bear his name. Here we introduce Green’s second identity:∫
D
dα u(α)

{←−
∇2
α −
−→
∇2
α

}
v(α) =

∮
∂D

dβ u(β)
{←−
∇β · nβ − nβ ·

−→
∇β

}
v(β). (1.3.1)

This identify we shall find particularly useful. The notation is intended to make sense intu-

itively, but is also discussed in section 2: differential operators differentiate in the direction

of the arrow. Green’s identities are indispensable tools and we shall use this particular

identity — known as Green’s identity, Green’s second identity and Green’s theorem —

repeatedly. Doob’s (2001) seminal work on classical potential theory [2] opens with the

claim that

a bounded open set for which Green’s [second] identity is true will be called

smooth [and] a precise description of smooth sets is omitted

and, without further ado, Doob proceeds to use Green’s second identity in the remaining

843 pages of his work. There can be no doubt about the validity of results that Doob

obtains using Green’s identity, since its application on smooth sets is allowed by definition.

We will continue in a similar manner: using Green’s identity throughout, ensuring that

all results are true for sets that allow Green’s identity, while not elaborating extensively

on which sets allow Green’s identity. Although the approach in [2] has the advantage of

allowing use of Green’s identity while evading its burden of proof, we do wish to shed some

light on its validity. [1] discusses the divergence theorem, which is valid under the same

conditions as Green’s identity, at length, and he concludes (p. 118):

The divergence theorem holds for any regular region R, with functions X, Y ,

Z which are continuous and piecewise continuously differentiable in R. [...]

It is true that conical points, cannot, in general, occur on the boundary of a
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regular region. But by means of the second extension principle it is clear that

a finite number of conical points may be admitted. More generally, if a region

becomes regular by cutting out a finite number of portions by means of spheres

of arbitrarily small radius, the areas of the portions of S cut out vanishing with

the radius, then the theorem holds for that region.

Furthermore it is obvious, as [16] note, that when ‘formulating a theorem of Green, one

must certainly deal with two different kinds of assumptions, the geometrical ones and the

analytical ones’. The geometrical ones have to do with the domain of integration, and

the analytical ones with the functions that are integrated over. For one dimension, the

divergence theorem is equivalent to the fundamental theorem of calculus, and we have that

F (b)− F (a) =

∫ b

a
f(x) dx,

where this holds if f is continuously differentiable or as long as f is locally integrable, such

that F ′ = f almost everywhere, as in [17] (p. 63, theorem 4.11). For Green’s theorem,

similarly, the analytical assumptions on the integrand can be relaxed to allow for functions

that are merely locally integrable rather than continuously differentiable.

As far as the geometrical assumptions are concerned, we will assume the validity of

Green’s identity, but for the record we note that — roughly speaking — the identity holds

for piecewise smooth domains, with an emphasis on piecewise: allowing edges, corners and

thorns. Furthermore, we will consider both interior and exterior problems, i.e. the domain

need not be bounded, as in Doob’s definition of smooth.

We have emphasised in the previous subsection that we are looking for solutions to

the modified Dirichlet and Neumann problems, allowing irregular boundary points but

imposing the boundary conditions only at regular boundary points. It is thus obvious that

a tool that requires a smooth boundary can never be used to solve a modified boundary

value problem. The only tool that we will use, however, is Green’s identity. Therefore,

there is no conflict: we will try to solve modified boundary value problems, using Green’s

theorem along the way.

1.4 Brownian motion

In the same year in which the [8] paper appeared, the botanist Robert Brown noted the

irregular movement of pollen suspended in water, which we now know is caused by random

collisions with water molecules. Bachelier [18] realised that this Brownian motion could

also be used to model the fluctuation of Parisian stock prices. Einstein [19] was the first

to write down the transition density in 1 dimension: a normal distribution with a variance

that increases linearly in time. In d dimensions, the transition density of Brownian motion
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is as follows:

B(y, t|x, s) =
1

[2πσ2(t− s)]d/2
e−

|y−x|2

2σ2(t−s) . (1.4.1)

The propagator B(y, t|x, s) is equal to the (marginal) probability that a Brownian particle

moves to space-time coordinate (y, t) given that it started at (x, s). Formally, Brownian

motion is defined as the continuous process, with independent increments, and such that

the increment during dt is normally distributed with mean zero and variance σ2dt. Using

this, it can be proved that

dB2
t → σ2dt almost surely.

The first problem is to show that such a process actually exists, which was achieved

by [20]. Many books on Brownian motion simply start with a statement on its transition

density as above; see e.g. page 1 in [14]. One of the next big steps is the formulation

of Itô’s lemma of [21] in 1951, which utilises the above almost-sure equality in a Taylor

expansion of f(Bt) around t = 0 to show that

df(Bt) = f ′(Bt)dBt +
σ2

2
f ′′(Bt)dt,

f(Bt)− f(B0) =

∫ t

0
f ′(Bτ )dBτ +

σ2

2

∫ t

0
f ′′(Bτ )dτ,

(1.4.2)

under the condition that f is twice differentiable. Itô’s lemma is also discussed in intro-

ductory finance courses, such as [22] and [23]. In d dimensions we have that EdB = 0 for

each component of the vector Bt, and it follows for a function f(t, Bt) depending on both

space and time that

Ef(t+ dt, x+Bdt) = f(t, x) +

(
∂

∂t
+
σ2

2
∇2
x

)
f(t, x)dt,

such that every function, if it stays constant on average, must satisfy

Ef(t+ dt, x+Bdt) = f(t, x)→
(
∂

∂t
+
σ2

2
∇2
x

)
f(t, x) = 0.

Of course it must hold that B(y, t|x, s) itself is unbiased as the Brownian motion progresses

from (x, s) to (x+ dB, s+ ds), and therefore we must have(
∂

∂s
+
σ2

2
∇2
x

)
B(y, t|x, s) = 0.

This is known as the Kolmogorov backward equation, and there is a similar forward equa-

tion. See [24], for example, for an explanation of how the forward and backward equations

follow from the Kolmogorov semigroup property. We obtain both the forward and backward

PDEs:

forward PDE

(
∂

∂t
− σ2

2
∇2
y

)
B(y, t|x, s) = 0,

backward PDE

(
∂

∂s
+
σ2

2
∇2
x

)
B(y, t|x, s) = 0.

(1.4.3)
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where ‘PDE’ stands for partial differential equation. Whereas classical potential theory is

based on the Laplace operator, the heat operator comes in two versions. [2] uses a notation

where ∆̇ := σ2

2 ∇
2
y − ∂t and

∗
∆ := σ2

2 ∇
2
x + ∂s and he writes (pp. 262 and 263):

The potential theory based on the Laplace operator will be called classical

potential theory below. The potential theory based on the heat operator ∆̇

and its adjoint
∗
∆, called parabolic potential theory, will be developed [here].

[. . . ] Parabolic potential theory is based on the pair ∆̇,
∗
∆ and is similar in

many respects to classical potential theory, but the fact that both ∆̇ and
∗
∆

are involved means that two theories dual to each other must be considered

simultaneously.

For parabolic potential theory, therefore, almost all equations of importance come in pairs,

and, throughout this paper, we will thus present all our results in this dual manner. While

it may sometimes seem superfluous to do (almost) the same calculation twice, we do in

fact derive new results from this strict dual approach. Consequently we have chosen to be

consistent throughout.

To complete the description of B, its explicit representation (1.4.1) shows that we have

the following pair of short time conditions (STCs):

forward STC lim
s↗t

B(y, t|x, s) = δ(|y − x|),

backward STC lim
t↘s

B(y, t|x, s) = δ(|y − x|).
(1.4.4)

These equations say that, in a short period of time, a Brownian particle stays where it is.

Because the propagator depends only on the time difference (t − s), it is trivial that the

STCs hold in a pair. It may therefore seem that by quoting both STCs explicitly we are

being unnecessarily elaborate, but we ask for patience and promise that our persistence

will pay off in the end.

Probability theory and potential theory are linked in two ways. The first is through

the Green function. Note that we write ‘Green’s identity’ but ‘Green function’. The term

‘Green’s function’ is used by [1], [10] and [25], but we write ‘Green function’ following [9],

[15] and [2], who argues (p. 797) that ‘writers who describeG as the Green’s function should

be condemned to differentiate the Lebesgue’s measure using the Radon-Nikodym’s theorem’

(although we cannot help but notice that Doob uses ‘Green’s identity’ throughout). In any

case, we will use the term ‘Green’s identity’ and ‘Green function’ in the sequel.

There are at least two possible probabilistic interpretations of the Green function.

Suppose that a ‘source’ at x emitting Brownian particles (at a rate of 1 per unit of time)

has been present from a time (infinitely) long ago, and we ask ourselves what the current

density of particles is in space, where particles emitted in all past times contribute to the
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density at y. We have the free Green function GB as follows:

GB(y, x) := Ex
∫ t

−∞
δ(Bt−s − y) ds =

∫ t

−∞
B(y, t|x, s) ds.

Alternatively, suppose that a source at x emits only one Brownian particle, and we ask

what the expected amount of time is that the particle spends in the neighbourhood of any

location in space, given that we observe the Brownian particle for an (infinitely) long time.

We have the free Green function GB as follows:

GB(y, x) := Ex
∫ ∞
s

δ(Bτ − y) dτ =

∫ ∞
s

B(y, τ |x, s) dτ.

Since the Brownian density does not depend on either time coordinate individually, but

only on the time difference, it will be clear that these two definitions (and interpretations)

are identical.

However, it is also obvious, sadly, that neither of these is guaranteed to be finite, and

it turns out that in two dimensions, we obtain indeed that GB equals ∞. In this case

Brownian motion is described as recurrent, since the particle returns to each area in space

an infinite number of times, and spends an infinite amount of time there. We could make

the motion in two dimensions transient by introducing an absorbing boundary. If the

hitting time of the boundary is almost surely finite, and if the boundary is absorbing, then

the motion can no longer be recurrent.

When the dimension is three or higher, then Brownian motion in all of space is tran-

sient, implying a finite density of paths everywhere. Although the ‘number’ of paths

emitted by the source is ∞, we have that the ‘size’ of three dimensional space is also ∞,

and it turns out that there is a non-trivial ratio, or density, that is finite everywhere. With

this intuition, all of 2-dimensional space is simply not ‘big’ enough to obtain a finite ratio

of particles per unit of space. In a closed and finite domain D with absorbing boundary,

Brownian motion is transient in any dimension, since absorption happens almost surely at

a finite time. For more on transient versus recurrent Brownian motion, see e.g. [12].

For a finite domain with a reflecting boundary, it is obvious that Brownian motion

must be recurrent, since no particle can escape. But when the dimension is three or larger,

and the domain is infinite, even reflected Brownian motion is transient, because the particle

can escape to infinity.

For d ≥ 3 the free Green function is finite and the integration can be performed to

give:

GB(y, x) =
1

σ2
Γ(d/2− 1)

2πd/2
|y − x|2−d, (1.4.5)

where Γ denotes the gamma function. To our surprise, we see that in d = 3 we have that

the expected time spent around y when started at x equals the Newtonian gravitational

potential −1
|y−x| as in (1.1.1), up to a multiplicative constant. As [26] notes
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The relation [...] furnishes a vital link between two big things. At one end

we see the Newton-Coulomb potential; at the other the normal density [...].

Can the linkage be a mere accident, or does it portend something of innate

significance?

Indeed, the free Green function GB satisfies the same differential equation that the New-

tonian potential satisfies (up to a constant), namely

σ2

2
∇2
yGB(y, x) =

σ2

2
∇2
y

∫ ∞
s

B(y, t|x, s) dt

=

∫ ∞
s

∂

∂t
B(y, t|x, s) dt

=

(
lim
t↗∞
− lim
t↘s

)
B(y, t|x, s)

= −δ(|y − x|).

(1.4.6)

A similar calculation can be performed for the Laplacian with respect to x. Therefore we

have
σ2

2
∇2
yGB(y, x) =

σ2

2
∇2
xGB(y, x) = −δ(|y − x|). (1.4.7)

This should be compared with the equation satisfied by the Newtonian potential (1.1.1).

The second link between potential theory and Brownian motion was provided by [27],

who was the first to realise that Brownian motion in d = 2 could be used to solve the

Dirichlet problem. He noted that the first-passage distribution over the boundary of the

domain, given an infinitely long observation interval, is harmonic in the starting point.

In their recent book, Mörters and Peres [12] formulate in more modern language how the

Dirichlet solution can be obtained as a weighted average over all first-passage times and

locations (p. 70):

[...] we can simulate the solution of the Dirichlet problem by running many

independent Brownian motions, starting in x ∈ U until they hit the boundary of

U and letting u(x) be the average of the values of [the given Dirichlet boundary

data] on the hitting points.

Although this procedure in [12] concerns the classical and not the modified Dirichlet prob-

lem, it turns out that Brownian motion is, in fact, perfectly suited to address the latter

problem. If the domain is irregular (with corners, edges and/or cusps), then a first-passage

distribution still exists, even though it may be discontinuous — echoing our earlier argu-

ment that a static induced charge distribution on a conductor always exists, even if it is

irregularly shaped.

In fact, the first passage will almost surely happen at a regular boundary point. There-

fore the boundary data at points of zero measure are irrelevant for the macroscopic solution.
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The problems of existence posed by [4] and [5] thus automatically disappear. Isolated points

are polar for Brownian motion in d ≥ 2; a single point will almost surely never be visited.

As a result, a Brownian motion in a punctured disk will not ‘feel’ the isolated boundary

point at the origin, since it will never hit it. The tip of an inward-pointing thorn is also

irregular for a Brownian motion, because a Brownian motion started there need not leave

the domain immediately. In fact, by Blumenthal’s zero-one law, it will almost surely not

leave the domain immediately. Thus, if the prescribed boundary values are zero on most of

the thorn and one on most of the sphere, then the average first-passage value of a Brownian

motion started at the tip of the thorn is indeed positive, as [5] had shown. In [26], Chung

phrases it as follows

although there may be irregular points on ∂D, no path will ever hit them. Thus

they are not really there so far as the paths are concerned.

We conclude that, by defining the solution of the Dirichlet problem as in [12], the prescribed

boundary values are met at all regular boundary points, just as the modified Dirichlet

problem demands. We can intuitively see why this is the case: as the Brownian starting

point x approaches a regular (i.e. non-singular) boundary point, the entire weight of the

joint first-passage distribution (i.e. time and location) peaks at ‘immediately’ and ‘here’.

As the starting point x moves closer and closer to the boundary, therefore, the expectation

over all first-passage times and locations will pick up just one contribution: that of the

nearest boundary point.

While the ‘free’ Brownian process is denoted by Bt and its density by B(y, t|x, s), the

absorbed process is denoted by At and it transition density by A(y, t|x, s). The absorbed

density is unbiased as the particle progresses from x to x+dB at s+ds and thus it satisfies

the same forward and backward PDEs that the free density satisfies. Since no Brownian

particle can move from or to a regular boundary point without being absorbed, it satisfies

the following ‘forward’ and ‘backward’ PDEs:

A(β, t|x, s) = A(y, t|β, s) = 0

for all regular boundary coordinates β. We can define the absorbed Green function as the

expected time spent around y without being absorbed, i.e.

GA(y, x) := Ex
∫ ∞
s

δ(At − y) dt =

∫ ∞
s

A(y, t|x, s) dt. (1.4.8)

From the boundary conditions on A, it is clear that GA equals zero for either x or y at a

regular boundary location. Thus the equations satisfied by GA are as follows:

σ2

2
∇2
yGA(y, x) =

σ2

2
∇2
xGA(y, x) = −δ(|y − x|)

GA(β, x) = GA(y, β) = 0
(1.4.9)
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for all x and y in the interior and for all regular boundary points β. The electrostatic

potential in a conductor satisfies almost the same differential equation (up to a factor) and

exactly the same boundary condition; therefore, we conclude that the study of Green’s

electrostatic problem is equivalent to the study of absorbed Brownian motion.

In addition to the free and absorbed processes, the reflected process is denoted by Rt

and it transition density by R(y, t|x, s). The reflected density is unbiased as the particle

progresses from x to x+ dB at s+ ds and thus it satisfies the same forward and backward

PDEs that the free density satisfies. Since a Brownian particle is reflected in the normal

direction, at each regular boundary point, it satisfies the following ‘forward’ and ‘backward’

PDEs:
−→
∂βR(β, t|x, s) = R(y, t|β, s)

←−
∂β = 0

for all regular boundary coordinates β. We can define the absorbed Green function as the

expected time spent around y, i.e.

GR(y, x) := Ex
∫ ∞
s

δ(Rt − y) dt =

∫ ∞
s

R(y, t|x, s) dt. (1.4.10)

From the boundary conditions on R, it is clear that GR satisfies a set of equations as

follows:
σ2

2
∇2
yGR(y, x) =

σ2

2
∇2
xGR(y, x) = −δ(|y − x|)

−→
∂βGR(β, x) = GR(y, β)

←−
∂β = 0

(1.4.11)

for all x and y in the interior and for all regular boundary points β. The reflected Green

function (as defined here) only exists for d ≥ 3 and unbounded domains. If d ≤ 3 or the

domain is bounded, then the reflected particle returns to each location in space an infinite

number of times, and the expected time spent in any small location is infinite. There are

ways to define an ‘interior’ reflected Green function, see e.g. [25], but we shall not need

this here.

Brosamler’s (1976) [28] discovery that reflected (rather than absorbed) Brownian mo-

tion could reproduce the solution to the Neumann problem further strengthened the case

for the use of stochastic processes to study the solutions of partial differential equations.

For more on reflected Brownian motion and potential theory see e.g. [29], [30] and [31].

The link between probability theory and classical potential theory has inspired many

articles and books with both terms in their titles, notably Brownian Motion and Classical

Potential Theory by [14], Green, Brown and Probability by [26] and Classical Potential

Theory and Its Probabilistic Counterpart by [2].

The solution to the third boundary value problem, where a linear combination of

the value and derivative at the boundary is specified, can be obtained by considering

‘elastic’ Brownian motion. Elastic Brownian motion is reflected or absorbed with a certain
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probability every time it hits the boundary. The third boundary value problem is not

discussed in this paper.

1.5 Single and double boundary-layers

Green’s third identity is not one that we will use frequently, but it shall serve as an impor-

tant exposition for the classical method of obtaining solutions for boundary value problems

of the Laplace equation. Take a truly harmonic function u in D, satisfying ∇2u = 0, and

take v to be the free Green function v = GB satisfying σ2

2 ∇
2GB = −δ, and substitute these

in Green’s second identity (1.3.1)

σ2

2

∫
D
dα u(α)

{←−
∇2
α −
−→
∇2
α

}
GB(α, x) =

σ2

2

∮
∂D

dβ u(β)
{←−
∇β · nβ − nβ ·

−→
∇β

}
GB(β, x),

to obtain Green’s third identity

u(x) =
σ2

2

∮
∂D

dβ u(β)
{←−
∇β · nβ − nβ ·

−→
∇β

}
GB(β, x). (1.5.1)

Green’s third identity may seem like a trivial variation on Green’s second identity, but it has

one profound consequence: it shows that every harmonic function is completely determined

by its boundary behaviour. To obtain the harmonic value at x, one need only ‘weigh’ the

boundary derivatives by GB, and ‘weigh’ the boundary values by a factor proportional

to the normal derivative of GB. Closer boundary values and derivatives thus carry more

weight in the determination of the value at x than do faraway ones, and so do boundary

points β for which the outward normal vector points roughly in the same direction as the

line joining x and β.

Unfortunately it is rarely the case that both the boundary values and the boundary

derivatives are given. For the Dirichlet problem, for example, the boundary values are

given but not the boundary derivatives, and the opposite holds for the Neumann problem.

Instead of using the free Green function, however, we could use the absorbed Green function

v(α) = GA(α, x) that satisfies the same differential equation to obtain:

u(x) =
σ2

2

∮
∂D

dβ u(β)
{←−
∇β · nβ − nβ ·

−→
∇β

}
GA(β, x).

But because GA is zero when evaluated on the boundary, we get

u(x) =

∮
∂D

dβ u(β)

{
−σ

2

2
nβ ·
−→
∇β

}
GA(β, x) (1.5.2)

and thus only the boundary values (and not the derivatives) need to be given. If we want

to construct the Dirichlet solution, therefore, we need to find GA. The absorbed Green

function GA is determined by the differential equations and boundary conditions (1.4.9)

for all x and y in the interior and all regular boundary points β. Finding GA is therefore
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equivalent to solving the Dirichlet problem. In order to find GA we need only look at (1.4.9),

in which the function u does not even appear. In his classic book on electrodynamics, [25]

writes

the Green’s functions satisfy simple boundary conditions, which do not depend

on the detailed form of the Dirichlet (or Neumann) boundary values. Even so,

it is often rather involved (if not impossible) to determine [G·] because of its

dependence on the shape of the surface.

It is indeed rather involved to determine G·, and that is one of the main aims of this paper.

The absorbed Green function GA, as defined by (1.4.8) and satisfying (1.4.9), has two

physical interpretations. Either it can be interpreted as the expected time spent around a

certain location by a Brownian motion that is absorbed at the boundary. Or, up to a factor,

GA(α, x) represents the potential at α caused by a unit charge at x in a perfect conductor.

The absorbed Green function GA satisfies the homogeneous boundary condition, where

the interpretation can again be twofold. In the Brownian interpretation this is because

no time can be spent by a Brownian particle at the boundary when the boundary is

absorbing. In electrostatic interpretation it is because the tangential derivatives must

vanish on the conductor for there to be an equilibrium. The first-passage distribution and

the induced charge density are both proportional to the normal gradient at the boundary,

i.e. nβ · ∇βGA(β, x). This did not escape Green [8], who noted that the Dirichlet problem

could be solved in some domain if one could work out the induced charge density on a

perfect conductor of the same shape.

Equivalently, the Dirichlet problem can be solved if we can work out the first-passage

density over the domain, and therefore the Dirichlet problem reduces to finding the tran-

sition density for an absorbed Brownian motion in a certain domain. ‘All’ that is needed,

then, is to find the absorbed Green function. In the ‘standard’ approach, e.g. in Balian &

Bloch [32], the following ansatz is made

GA(y, x) = GB(y, x)−
∫
∂D

dβ µDBL(y, β)
{
−σ2 nβ ·

−→
∇β

}
GB(β, x). (1.5.3)

The German word ansatz is common in the physics literature, and can be taken to mean an

educated guess which is later verified. Here µ is known as a ‘double boundary layer’, and

hence we attach the subscript ‘DBL’. Although the methods of single and double boundary

layers appeared in Kellogg as early as 1929, it seems that Balian & Bloch [32] were the

first in the physics literature to use them systematically to obtain series solutions for Green

functions. For the Neumann problem the relevant quantity is the reflected Green function

GR, and [32] propose that it should look like:

GR(y, x) = GB(y, x)−
∫
∂D

dβ µSBL(y, β)GB(β, x), (1.5.4)
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where the unknown function µ is now known as a ‘single boundary layer’, and hence the

subscript ‘SBL’. The status of single and double boundary layers has remained that of an

ansatz, even in more modern handbooks on integral equations, such as [13], [33] or [34].

It is not clear, however, why the double boundary layer method should be reserved for

the Dirichlet problem and why it would not be possible to find the absorbed propagator

using a single boundary layer. We know from the electrostatic problem that the positive

charge induces a negative charge density on the surface, and we should be able to write

the potential as the sum of the direct and induced charges; i.e. as a single boundary layer.

Although this intuition would lead to a different ansatz than the one that is standard, we

would still be stuck with an ansatz. Therefore we propose a different method altogether.

By definition of the free and absorbed Green functions, we can write:

GA(y, x) = GB(y, x)− σ2

2

∫
D
dαGB(y, α)

{←−
∇2
α −
−→
∇2
α

}
GA(α, x),

GA(y, x) = GB(y, x) +
σ2

2

∫
D
dαGA(y, α)

{←−
∇2
α −
−→
∇2
α

}
GB(α, x).

(1.5.5)

This pair should be viewed as consisting of identities by virtue of (1.4.7) and (1.4.9).

Applying Green’s second identity (1.3.1) we get

GA(y, x) = GB(y, x)− σ2

2

∮
∂D

dβ GB(y, β)
{←−
∇β · nβ − nβ ·

−→
∇β

}
GA(β, x),

GA(y, x) = GB(y, x) +
σ2

2

∮
∂D

dβ GA(y, β)
{←−
∇β · nβ − nβ ·

−→
∇β

}
GB(β, x).

(1.5.6)

Because GA disappears on the boundary, we need the arrows on the differential operators

to point towards GA:

GA(y, x) = GB(y, x)−
∮
∂D

dβ GB(y, β)

{
−σ

2

2
nβ ·
−→
∇β

}
GA(β, x),

GA(y, x) = GB(y, x)−
∮
∂D

dβ GA(y, β)

{
−σ

2

2

←−
∇β · nβ

}
GB(β, x).

(1.5.7)

Let us define the following scaled inward differential operators:

−→
∂β := −σ2nβ ·

−→
∇β,

←−
∂β := −σ2

←−
∇β · nβ.

(1.5.8)

Now we can write

GA(y, x) = GB(y, x)−
∮
∂D

dβ GB(y, β)

{
1

2

−→
∂β

}
GA(β, x),

GA(y, x) = GB(y, x)−
∮
∂D

dβ GA(y, β)

{
1

2

←−
∂β

}
GB(β, x).

(1.5.9)

The signs and factorisations in the pair of equations above are carefully chosen. The

absorbed Green function equals the free Green function minus all paths that have a first
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passage at β, which happens with probability 1
2

−→
∂βGA(β, x), and which then propagate

freely from β to y by GB. Alternatively, the absorbed Green function equals the free

Green function minus all paths that propagate to the boundary β, where they have their

last passage before moving to y, with probability GA(y, β)12
←−
∂βGB(β, x). The equivalence

of first and last passage decompositions is fully explored in section 3.

With this pair of equations we have related the absorbed Green function GA to its

boundary derivatives, and no ansatz whatsoever has been used. Instead, we have used

only 1) the Laplace equation that is satisfied almost everywhere by both GB and GA,

2) Green’s theorem and 3) the boundary conditions on GA. Because we have only used

Green’s theorem this pair of equations should serve for irregular domains as well, something

that is explicitly forbidden in [32] — as can be seen from the title of their that alone.

Both the results above can be used to obtain a series solution, by substituting the

equation into itself. This procedure amounts to using the left-hand side of the equation as

the definition for GA appearing on the right-hand side, and the resulting infinite series is

known as Neumann’s series:

GA(y, x) = GB(y, x) +

∞∑
i=1

(−1)i
[∮

dβi . . .

∮
dβ1

]
GB(y, βi)

[
i∏

k=2

−→
∂βkGB(βk, βk−1)

]
−→
∂β1

GB(β1, x)

GA(y, x) = GB(y, x) +

∞∑
i=1

(−1)i
[∮

dβi . . .

∮
dβ1

]
GB(y, βi)

←−
∂βi

[
i−1∏
k=1

GB(βk+1, βk)
←−
∂βk

]
GB(β1, x)

(1.5.10)

where the only difference between the two series is the direction of the arrows. The first

series has
−→
∂ GB as its rightmost element, in each term, and therefore it looks like a double

boundary layer formulation:

GA(y, x) = GB(y, x)−
∫
∂D

dβ µDBL(y, β)

{
1

2

−→
∂β

}
GB(β, x)

where the series definitions of µDBL can be read off. The second series has GB as its

rightmost element, in each term, and thus we see that it looks a single boundary layer

formulation:

GA(y, x) = GB(y, x)−
∫
∂D

dβ µSBL(y, β)GB(β, x)

and the definition for µSBL can be read off. Thus we conclude that the absorbed Green

function can be found either as a single or double boundary layer series — and in fact it

turns out that both series are identical, term by term.

For the reflected Green function we again find two series, except that all terms have
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positive signs in front of them:

GR(y, x) = GB(y, x) +

∞∑
i=1

[∮
dβi . . .

∮
dβ1

]
GB(y, βi)

[
i∏

k=2

−→
∂βkGB(βk, βk−1)

]
−→
∂β1GB(β1, x)

GR(y, x) = GB(y, x) +

∞∑
i=1

[∮
dβi . . .

∮
dβ1

]
GB(y, βi)

←−
∂βi

[
i−1∏
k=1

GB(βk+1, βk)
←−
∂βk

]
GB(β1, x)

(1.5.11)

We note that in the derivation of these series, we have used all the conditions that

are supposed to specify the Green function. If we are optimistic, we could hope that the

obtained infinite series 1) satisfies all the requirements that are used in its derivation, and

2) converges, because all the requirements, which ensure existence and uniqueness, have

been used in its derivation.

Contrast this with the ansatz approach: the ‘multiple reflection expansion’ by [32] has

been used in the physics literature by [35], [36], [37] and [38]. We will show in section 3

that the ‘symmetrisation’ procedure by [36] is incorrect, which is a mistake inherited by

[38]. Furthermore, because the results are based on an ansatz, they must be verified after

the fact, and it is thought that they are valid only for smooth domains.

In probability theory, a similar method is known as the parametrix method, which is

also based on an ansatz, and is explored in [30] for example — which again requires a

smooth boundary, as can be seen from the first sentence of the paper.

Instead we find that 1) single and double boundary layers need not be based on an

ansatz, that 2) either problem may be solved with either method and that their distinction

thus is arbitrary, and 3) that they may be useful for irregular as well as regular domains,

by virtue of Green’s theorem. In section 3 we show the following modes of convergence for

the obtained series solutions:

mode of convergence Dirichlet problem Neumann problem

convex domain alternating monotone

concave domain monotone alternating

Our approach puts the single and double boundary layers on a more solid footing, but

we also show, in subsection 3.9, how to derive some new integral equations:

GA(y, x) =
σ2

2

∫
D
dαGA(y, α)

{←−
∇α ·

−→
∇α

}
GB(α, x).

GA(y, x) =
σ2

2

∫
D
dαGB(y, α)

{←−
∇α ·

−→
∇α

}
GA(α, x).

(1.5.12)

This shows that the absorbed Green function is an eigenfunction of an integro-differential

operator working on either the right or the left. Given that the problem was originally well-

posed and given that in the derivation of the integro-differential equation we have again

used all the conditions that are supposed to specify the solution, we could be optimistic
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and expect that applying the integro-differential operator repeatedly on a trial function

should give the correct answer, as a fixed point.

We note that the differentiation and integration are now over the interior of the domain

rather than the boundary. While for practical purposes this might be a disadvantage

because it leads to d dimensional integrals rather than d−1 dimensional integrals, it might

be an advantage theoretically. This is because it shows that changing a single boundary

location (making it irregular, for example) should have little effect if the change on the

volume as a whole is negligible. We expect the integration over the volume to be somewhat

more robust, in some sense, with respect to irregular boundary points.

The extension from smooth domains to piecewise smooth domains, for all these integral

equations, may seem only of minor relevance. But since Kac’s 1996 paper entitled ‘Can

one hear the shape of a drum?’ [39], the topic of isospectral domains for the Dirichlet and

Neumann problem has received much interest. The question can be rephrased as follows:

if all the eigenvalues of the Dirichlet or Neumann solution are given, can one uniquely

reconstruct the domain? It turns out that the answer is ‘yes’ if the domain is smooth

and ‘no’ if sharp corners are allowed. This work provides a tool for calculating the Green

function for domains of either type. For more on isospectral drums see [40], [41], [42].

In a closed domain with an absorbing boundary, a Brownian path is eventually ab-

sorbed with probability 1. Suppose, however, that while the Brownian particle is still alive

there is a probability of λ dt, in each period of time dt, that its ‘probabilistic mass’ doubles.

Then it proceeds as before and its probabilistic weight may double again. In some sense we

could imagine that the second particle joins up with the first to create a double-decker bus.

Upon two interactions, there will be 4 particles on top of each other. If an n-decker bus hits

the boundary, all particles are destroyed. If λ is relatively small then some particles will

be created, but eventually all particles will be absorbed by the boundary. But if λ exceeds

a certain critical value then the ‘probabilistic weight’ of the particle that is still alive after

a long time will start to dominate. While the probability that a particle is still alive after

time t decreases exponentially, if its ‘weight’ increases exponentially at a faster rate, then

the contribution of this path will start to dominate. It turns out that this critical λ is the

first eigenvalue of the Dirichlet problem. The integro-differential equations above can be

re-derived in the setting with particle creation at rate λ, to give

GA(y, x) =

∫
D
dαGA(y, α)

{
σ2

2

←−
∇α ·

−→
∇α + λ

}
GB(α, x),

GA(y, x) =

∫
D
dαGB(y, α)

{
σ2

2

←−
∇α ·

−→
∇α + λ

}
GA(α, x).

(1.5.13)

Originally we expected a repeated application of the integro-differential operator to give

rise to a convergent answer, but this is no longer true for λ > λcritical = λ1, where λ1 is the

first eigenvalue of the Dirichlet problem. Thus we have related the study of the eigenvalues
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of a certain domain to the compactness of a certain operator. This is a new result and

while this is an exciting field of study, this avenue is tangent to the main work of this paper

and we will not pursue it further.

1.6 The Feynman-Kac formula

Seemingly unrelated to the discussion so far is the literature on Feynman path integrals and

the Feynman-Kac formula. In [43], Feynman developed the path integral to describe the

movement of a quantum particle, but an old probabilistic tool appears to make the path

integral rather more intuitive. In probability theory, the Chapman-Kolmogorov equations

describe that to propagate from starting point to ending point, a particle needs to be some-

where at any intermediate time. For any stochastic process with stationary increments,

therefore, every path can be cut up into two pieces at some arbitrary intermediate time,

as long as the intermediate location is integrated over its entire range.

As a physicist, Feynman visualised putting a screen between starting and ending point,

such that every path connecting them would have to cross it, at some point and some time.

The total (quantum mechanical) ‘amplitude’ is obtained by summing over all locations on

the screen. Feynman realised that he could use as many screens as he wanted, and in the

limit where the number of screens goes to infinity, the integration is no longer over one set

of intermediate locations, but rather over all sets of intermediate locations, or paths.

This came to be known as Feynman’s path integral, and from a probabilistic point

of view it can be seen as a repeated application of the Chapman-Kolmogorov principle.

Feynman’s path integral is the solution to the complex Schrödinger equation, which differs

from the heat equation only by a factor of the imaginary i in front of the time derivative.

By transforming the Schrödinger equation to imaginary time, i.e. by letting t → −i t,
we recover the heat equation which governs the transition density of Brownian motion.

Similarly, we can transform back to a quantum mechanical setting by letting t→ i t. The

connection with probability theory is therefore clear, and Kac exploited this connection in

[44] to show that the solution of the heat equation with initial conditions could be written

as an expectation over all possible paths, which was dubbed the Feynman-Kac formula.

Historically the idea of a quantum mechanical potential was inspired by potentials in

classical mechanics, but its interpretation is different. The Schrödinger equation involves a

‘potential’ that ‘scatters’ the particle. The interpretation of the potential in a probabilistic

setting, however, is even further removed from the Newtonian interpretation. In a prob-

abilistic interpretation, the potential creates or destroys Brownian particles depending on

its sign, and at a rate proportional to its absolute value. For the heat equation the po-

tential can be seen as a dissipation (heating or cooling) rate, again depending on its sign

and absolute value; see for example [10], [15] or [12]. The word potential as used in this

subsection thus has very little to do with the Newtonian interpretation of a potential.
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When the potential is bounded, only a finite number of interactions with the potential

can happen in any finite period of time. If the potential is positive, then each interaction

kills the Brownian path. In principle there can be any number of interactions, but only

paths without interactions survive. The forward and backward PDEs for this situation are

as follows: (
σ2

2
∇2
y −

∂

∂t
− λV (y)

)
ψV (y, t|x, s) = 0(

σ2

2
∇2
x +

∂

∂s
− λV (x)

)
ψV (y, t|x, s) = 0

(1.6.1)

where the symbol ψ is customary in quantum mechanics, but can be interpreted as the

transition density in our setting, and where we indicate the dependence on the potential V

by the subscript. The ‘strength’ of the potential can be tweaked through the value of the

‘coupling constant’ λ, and the Schrödinger equation can be re-obtained by transforming

t→ i t.

The probability of an interaction with the potential (i.e. annihilation) at any given

location α equals λV (α) ε, where ε equals the amount of time spent at location α. Suppose

that a path is determined by N − 1 intermediate locations between (x, s) and (y, t), such

that the time spent at each of the N intermediate locations and at the final location y equals

ε = (t − s)/N . The probability of survival is equal to the probability that no interaction

with the potential occurs, and therefore the probability of survival for a given path equals

N∏
i=1

(1− λV (Bτi) ε) ≈
N∏
i=1

e−λV (Bτi ) ε = e−λ
∑N
i=1 V (Bτi )ε → e−λ

∫ t
s V (Bτ )dτ

where the last relationship holds in the limit for large N and where the path is no

longer defined by its intermediate locations but rather by the entire, continuous, nowhere-

differentiable Brownian path. If the above is the probability that a given path should

survive (with N known intermediate locations), then the probability that any path should

survive is obtained by taking an expectation over all possible intermediate locations, i.e.

over all paths. If we want the path to end up at y then we need to take an expectation

over all paths while enforcing the last position to be y. We can achieve this by plugging in

a δ-function at y. We have now heuristically re-derived the Feynman-Kac formula, which

postulates that the transition density from (x, s) to (y, t) in the presence of a (positive)

annihilating potential V equals

ψV (y, t|x, s) = Ex
(
δ(Bt − y) e−λ

∫ t
s V (Bτ )dτ

)
, (1.6.2)

implying that in a short period of time the particle 1) stays alive and 2) stays where it is

(i.e. limt↘s ψV = δ). It can be seen that the expectation is a functional: it depends on the

entire Brownian path between x and y. The ‘state’ of being at y consists of an expectation
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of all the possible ways in which the particle can move to y. Consequently, Feynman’s path

integral gave rise to the idea that the entire state of the universe could be expressed as a

sum over all its possible ‘histories’.

But there are several problems. The first is that path integrals can only be calculated

exactly very occasionally, and then only for potentials for which the solution is already

known through other methods. But a Taylor expansion of the Feynman-Kac exponential

can be written down for almost any potential. This Taylor expansion is known as a Born

expansion in the physics literature and is discussed by e.g. [45] (p. 128) or [46] (p. 161).

Expanding the Feynman-Kac exponential as a Taylor series, we obtain

Ex

(
δ(Bt − y)

{
1− λ

∫ t

s
V (Bτ )dτ +

1

2
λ2
(∫ t

s
V (Bτ )dτ

)2

− 1

6
λ3
(∫ t

s
V (Bτ )dτ

)3

+ . . .

})

In section 5, using the law of iterated expectations (also known as the tower property), we

obtain that this equals

B(y, t|x, s)− λ
∫
Rd
dα

∫ t

s
dτB(y, t|α, τ)V (α)B(α, τ |x, s)

+λ2
∫ ∫
τ2≥τ1

dτ2 dτ1

∫
Rd
dα2B(y, t|α2, τ2)V (α2)

∫
Rd
dα1B(α2, τ2|α1, τ1)V (α1)B(α1, τ1|x, s)− . . . ,

where B is the free Brownian propagator from above, where the integrations over the

intermediate time coordinates appear in a time-ordered way, while the integrations over

the intermediate spatial coordinates appear nested within the expression. The motion of

the Brownian particle can be tracked by reading from right to left, with an interaction with

V in between each set of propagators. While it is customary to pull all the integrations over

the intermediate spatial locations towards the front of the expression, this is only allowed

for nice potentials. Because we will introduce a potential for which this is not allowed, we

will leave the integrations in their nested order; see also [12] (p. 214). We write the full

series as

ψV (y, t|x, s) = B(y, t|x, s) +
∞∑
i=1

(−λ)i

∫ dθi . . .

∫
dθ1

s≤θ1≤...≤θi≤t


×
∫
Rd

dαiB(y, t|αi, θi)V (αi)

 i−1∏
k=1

∫
Rd

dαk B(αk+1, θk+1|αk, θk)V (αk)

B(α1, θ1|x, s)

,

(1.6.3)

where the spatial integrations automatically appear nested. We also note that for a positive

potential all the integrands are positive and therefore the series should converge, if at all,

in an alternating manner. The conventional ‘Feynman rules’ for quantum mechanics state

that the zero-order term B counts paths without interactions, the first-order term in the
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Taylor expansion counts all paths with exactly one interaction, and the second-order term

counts all paths with exactly two interactions, and so on. In Feynman’s interpretation, ψ

is the sum of all these terms. [45] write (p. 123):

With this interpretation we can describe [the propagator KV ] in the following

way. KV is, of course, a sum over alternative ways in which the particle may

move from point a to point b. The alternatives are: 1. The particle may not be

scattered at all, K0(b, a) 2. The particle may be scattered once, K(1)(b, a) 3.

The particle may be scattered twice, K(2)(b, a). Etc. [. . . ] The total amplitude

for motion from a to b with any number of scatterings is K0 + K(1) + K(2) +

...+K(n) + . . ..

and a similar interpretation can be found in [46] (p. 163). Of course Feynman was dealing

with a complex wave-function, and the obtained series does not converge in an absolute

sense, because the integrands are oscillating rather than vanishing at ∞. To investigate

convergence, analytic continuation is often used: transforming the time variable t→ −i t.
We have already pointed out that this transformation turns the problem into one of Brow-

nian motion, where the positive potential V kills paths at a rate corresponding to its

magnitude. The convergence of the Taylor series can be shown, and has been shown. But

to date it has not been interpreted as we interpret it here.

For a positive potential, the Taylor expansion convergences in an alternating fashion

— rather than in the monotone fashion that is implied by Feynman’s interpretation. To

explain why this is the case, we suggest a combinatorial Pascal interpretation as follows:

free term

λ1 term

λ2 term

λ3 term

λ4 term
...


=



1 1 1 1 1 · · ·
0 1 2 3 4 · · ·
0 0 1 3 6 · · ·
0 0 0 1 4 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .


.



paths with 0 interactions

paths with 1 interaction

paths with 2 interactions

paths with 3 interactions

paths with 4 interactions
...


, (1.6.4)

where each λi-term is positive and defined by

λi-term = λi

∫ dθi . . .

∫
dθ1

s≤θ1≤...≤θi≤t


×
∫
Rd

dαiB(y, t|αi, θi)V (αi)

 i−1∏
k=1

∫
Rd

dαk B(αk+1, θk+1|αk, θk)V (αk)

B(α1, θ1|x, s).

(1.6.5)

Here the upper triangular Pascal matrix has appeared, and the power of λ indicates which

term in the Taylor series is meant. From the first row, we can see that the free term B
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counts all paths from (x, s) to (y, t) — regardless of the number of interactions. The first

correction term, linear in λ, picks up a contribution for every interaction: it thus counts

paths with i interactions i times. The second correction term, which goes with λ2, counts

all possible time-ordered pairs of interactions: it counts paths with i interactions ‘i choose

2’ times and so on. The matrices should be extended and are infinite in size. Inverting the

Pascal matrix immediately gives

paths with 0 interactions

paths with 1 interaction

paths with 2 interactions

paths with 3 interactions

paths with 4 interactions
...


=



1 −1 1 −1 1 · · ·
0 1 −2 3 −4 · · ·
0 0 1 −3 6 · · ·
0 0 0 1 −4 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .


.



free term

λ1 term

λ2 term

λ3 term

λ4 term
...


(1.6.6)

recovering not only the expression in (1.6.3), for all paths with 0 interactions, but obtaining

the probability that exactly i > 0 interactions occur. The full interpretation is discussed

in section 5, where we show that the probability of exactly i interactions equals

ψi interactions(y, t|x, s)
∣∣∣
λ=1

= Ex

(
δ(Bt − y)

1

i!

[∫ t

s
V (Bτ )dτ

]i
e−

∫ t
s V (Bτ )dτ

)
, (1.6.7)

and where the substitution i = 0 immediately returns the Feynman-Kac formula, providing

a new interpretation of the ‘Feynman rules’ for a diffusion in the presence of an annihilating

potential.

Furthermore, the above may be compared with the results for inhomogeneous Poisson

processes. A stochastic Poisson process counts the number of events that occur within a

given time interval. Events are independent and occur at each time τ with probability

λ(τ). It is well-known that the random number N , which counts the number of events in

the period [s, t], is distributed as

P (N = i) =
1

i!

(∫ t

s
λ(τ)dτ

)i
e−

∫ t
s λ(τ)dτ .

The resemblance with the above is clear.

1.7 A new potential

Apart from our inability to calculate path integrals exactly, a further problem is that the

treatment of even the simplest boundary value problems is notoriously complicated within

the path integral framework. In [47], Janke & Kleinert write

Considering the present widespread use of path integrals [...], it is surprising

how many standard text book problems of quantum mechanics have not been
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solved within this framework. [...] In this note we would like to exhibit the path

integration for the particle in a box (infinite square well). While in Schrödinger

theory this system has a trivial solution, a careful classification of paths is

needed before Feynman’s formula can be evaluated.

They then show how to evaluate Feynman’s formula for the 1-dimensional particle in a box.

They use a procedure that is equivalent to the ‘method of images’, which is well-known in

both electrostatics and probability theory. See [25] for image problems in electrostatics,

for example, or [12] (p. 217) for a Brownian ‘iterated reflection’ argument. No progress,

however, has been made in evaluating Feynman’s formula for higher dimensional boundary

value problems.

The fundamental reason for the complexity of using path integrals for boundary value

problems is that path integrals assume the possibility of movement throughout the whole

of space. And thus Feynman’s screens extended to infinity. Boundary value problems,

on the other hand, confine the particle to a particular region of space, but the Gaussian

integrals are much easier, at least analytically, if they stretch the whole real line.

It is tempting to postulate an infinite potential outside of the box, the interpretation

of which can be twofold. It can be seen as an infinite cooling rate ensuring the temperature

outside the box is zero, or as an infinite annihilation rate such that every Brownian path

spending even a small time outside the box is annihilated. Let, for example, the potential

be unity outside of the domain, i.e. V (α) = 1α/∈D, and let λ→∞, so that the annihilation

rate outside of the box goes to infinity. As can be seen from the Taylor series in the previous

subsection, all correction terms become infinite as λ→∞. Even though the series (1.6.3)

formally still converges, this obviously diminishes its practicality.

To overcome this problem, it has been suggested to use Dirac δ-function potentials,

which are infinite at the edge of the box but zero beyond. In this case the correction terms

are all finite and therefore the series converges in a meaningful manner, but now we are

faced with a bigger problem: the potential is not strong enough to confine the particle —

it can ‘tunnel’ through the barrier, unless we let λ → ∞, in which case the alternating

correction terms all become infinite again.

Merging the subjects of path integrals and boundary value problems has thus been

difficult. Either the potential does not correspond to the desired physical situation (as it

does not contain the particle), or it does, but its perturbation expansion contains terms

that are all infinite. It seems impossible to reconcile the two.

But in fact, the Taylor expansion (1.6.3) of the Feynman-Kac functional looks a lot

like the single and double boundary layer series. To pursue this analogy further, we define

the Green function GV as the expected time spent from x around y, in the presence of an
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Figure 1. The function 1
1+e−x/ε

and its first two derivatives. While for any ε > 0 the function is

continuously differentiable to all orders, for ε→ 0 we get 1x>0, δ(x) and δ′(x).

annihilating potential V :

GV (y, x) :=

∫ ∞
s

ψV (y, t|x, s)dt. (1.7.1)

Integrating the series expression (1.6.3), we get

GV (y, x) = GB(y, x)+

∞∑
i=1

(−λ)i
∫
Rd

dαiGB(y, αi)V (αi)

 i−1∏
k=1

∫
Rd

dαkGB(αk+1, αk)V (αk)

GB(α1, x),

(1.7.2)

which should be compared with the absorbed and reflected series (1.5.10) and (1.5.11). It

can be seen that the only difference is that the integration there is over the surface of the

domain, whereas here the integration is over the whole of space. It is tempting to try to

take the potential as some sort of ‘differential operator’ on the boundary in such a way that

each integration over Rd turns into an integration over ∂D. Would it be possible to choose

the potential such that the Feynman-Kac expansion and the boundary layer expansions

coincide? The answer is yes.

In section 5 of this paper we show that a Brownian motion that is absorbed or reflected

at the boundary of D is consistent with a path integral formulation or Feynman-Kac

functional, when the particle (or Brownian motion) is allowed in all of Rd but is acted

upon by a potential V , where the potential is taken to be

V (α) := ∓σ
2

2
∇2
α1α∈D (1.7.3)

The sign of the potential depends on the boundary condition (absorbing or reflecting), and

1 is the indicator function. The indicator function equals 1 if the condition in its subscript

is satisfied, and 0 otherwise. The proposed potential can be seen as a generalisation of the

one dimensional Dirac δ′-function, which can be defined as the double derivative of the one

dimensional step function. Even though derivatives of the step function do not formally
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Figure 2. The mollifier M(r, φ) := −1
1+e−(R(φ)−r)/ε , nφ · ∇M and ∇2M . The function R(φ) is

the radius of the ellipse as defined in the text. While for any ε > 0 the function is continuously

differentiable to all orders, for ε→ 0 we get −1x∈D, −n · ∇x1x∈D and −∇2
x1x∈D.

exist at zero, following the usual rules of partial integration produces the correct answer.

In one dimension, for example, we have∫ +∞

−∞

∂21a<x<b
∂x2

f(x)dx =

∫ +∞

−∞
1a<x<b

∂2f(x)

∂x2
dx = f ′(b)− f ′(a) (1.7.4)

where the integration by parts yields no boundary terms because 1a<x<b and ∂x1a<x<b both

vanish at infinity. In one dimension we thus obtain a ‘sum’ of ‘outward normal derivatives’

at both boundary locations a and b — and we could hypothesise that this sum becomes

an integral in higher dimensions. To show that this is indeed the case, we note first that

by the divergence theorem we have:∫
Rd
dx1x∈D∇2

xf(x) =

∫
D
dx∇2

xf(x) =

∮
∂D

dβ nβ · ∇βf(β). (1.7.5)

And secondly, by Green’s identity, we get that∫
Rd
dx1x∈D

{←−
∇2
x −
−→
∇2
x

}
f(x) =

∫
∂Rd

dx1x∈D

{←−
∂x −

−→
∂x

}
f(x) = 0 (1.7.6)

where this follows from the fact that 1x∈D as well as ∇x1x∈D are zero when evaluated at

the ‘boundary’ of Rd, which is indicated heuristically as ∂Rd. One may object that the

divergence theorem is invalid when the integrand blows up in some parts of the domain,

but we may take 1x∈D to be a ‘bump function’. A bump function equals 1 on D, falls

off to 0 outside of D, and does so arbitrarily rapidly while still being smooth. With this

‘smooth’ interpretation of the indicator function, the use of the divergence theorem can be

justified. Combining (1.7.5) and (1.7.6), we conclude that:∫
Rd
dx∇2

x1x∈Df(x) =

∮
∂D

dβ nβ · ∇βf(β) (1.7.7)

and thus we see that — while in one dimension the potential ∂21a<x<b
∂x2

produces a sum

of outward normal derivatives at a and b — in higher dimensions the potential ∇2
x1x∈D

produces an integral over the outward normal derivatives over the boundary.
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Although the definition is acceptable through differentiations of the step function, it is

not very helpful for visualisation. For visualisation it is easier to think of a Dirac δ-function

as the limit of the middle graph in Figure 1.

A smooth approximation to the step function is equally possible in higher dimensions.

In Figure 2 we can see smooth approximations of −1x∈D, −n · ∇x1x∈D and −∇2
x1x∈D,

where D is taken to be a two dimensional ellipse. The ellipse is defined by providing the

radius of the boundary as a function of the polar angle. In this case we have R(φ) =

ab/
√
a2Sin(φ)2 + b2Cos(φ)2 with a and b half the major and minor diameters. We see

that a smooth approximation of −∇2
x1x∈D has two peaks when crossing the boundary, just

as a smooth approximation of Dirac δ′ has two peaks. In the one dimensional case the

potential looks like a ‘heartbeat’, but the two dimensional landscape resembles something

like a castle with a moat in front of the castle walls. In the proper limit, the castle wall

and moat become infinitely high and deep — and narrow.

In terms of why the potential as discussed does the job, we can say the following. The

second derivative of the step function is more divergent than the first and therefore the

potential is strong enough to contain the particle. But we have also noted that positive po-

tentials destroy paths while negative potentials create paths. Through the one dimensional

analogy, we see that the Laplacian of the Heaviside step-function, ∓∇2
x1x∈D, is equally

positive and negative. As a result, the proposed potential conserves particle number. If

a particle reaches the boundary of the domain, it is both copied (by the negative peak)

and destroyed (by the positive peak). But these actions happen at slightly different places.

If the copying happens just inside the domain, and the destroying just outside, then the

boundary is reflecting from the inside: every time it hits the boundary it is destroyed just

outside the domain and put back just on the inside. But if the destroying happens just

inside the domain while the copying happens just outside, then the particle can get out but

it can never get back in. Seen from the inside, therefore, the boundary acts as an absorbing

barrier. This intuition explains why the potential for the Dirichlet and Neumann problems

differ only by a sign: ∓σ2

2 ∇
2
x1x∈D is reflecting from one side, and absorbing from the other.

In one dimension this can easily be verified (see subsection 1.8).

We conclude that the ∓σ2

2 ∇
2
x1x∈D potential manages to both replicate the desired

physical situation (namely reflect or absorb), while also allowing for an easily interpretable

and computable perturbation series. This function has never been defined before, to the

author’s best knowledge. We can make sense of this seemingly ill-defined function either

by 1) a limiting procedure, or by 2) using partial integrations (or Green’s theorem) as if
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everything is well-behaved. We conclude that the following problems are equivalent:(
∂t − σ2

2 ∇
2
y

)
A(y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x

)
A(y, t|x, s) = 0

A(β, t|x, s) = 0

A(y, t|β, s) = 0

lims↗tA(y, t|x, s) = δ(|y − x|)
limt↘sA(y, t|x, s) = δ(|y − x|)


=



(
∂t − σ2

2 ∇
2
y + V (y)

)
ψV (y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x − V (x)

)
ψV (y, t|x, s) = 0

−σ2

2 ∇
2
α1α∈D = V (α)

lims↗t ψV (y, t|x, s) = δ(|y − x|)
limt↘s ψV (y, t|x, s) = δ(|y − x|)

(1.7.8)

The left-hand problem is defined for x and y in the interior of D and all regular boundary

points β. The right-hand problem is defined for all x and y in Rd. But the claim is that

A(y, t|x, s) = ψV (y, t|x, s) ∀x, y ∈ D, (1.7.9)

and in particular

A(y, t|x, s) = Ex
(
δ(Bt − y) e

σ2

2

∫ t
s ∇

2
u1u∈D(Bτ )dτ

)
. (1.7.10)

Similarly, we conclude for the reflected transition density R that(
∂t − σ2

2 ∇
2
y

)
R(y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x

)
R(y, t|x, s) = 0

nβ ·
−→
∇βR(β, t|x, s) = 0

R(y, t|β, s)
←−
∇β · nβ = 0

lims↗tR(y, t|x, s) = δ(|y − x|)
limt↘sR(y, t|x, s) = δ(|y − x|)


=



(
∂t − σ2

2 ∇
2
y + V (y)

)
ψV (y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x − V (x)

)
ψV (y, t|x, s) = 0

σ2

2 ∇
2
α1α∈D = V (α)

lims↗t ψV (y, t|x, s) = δ(|y − x|)
limt↘s ψV (y, t|x, s) = δ(|y − x|)

(1.7.11)

where again the problem on the left-hand problem is defined for x and y in the interior of

D and all regular boundary points β, while the right-hand problem is defined for all x and

y in Rd. The claim is that

R(y, t|x, s) = ψV (y, t|x, s) ∀x, y ∈ D, (1.7.12)

and in particular

R(y, t|x, s) = Ex
(
δ(Bt − y) e−

σ2

2

∫ t
s ∇

2
u1u∈D(Bτ )dτ

)
. (1.7.13)

While we admit that the path integral cannot be calculated exactly, and that the

potential ∓σ2

2 ∇
2
x1x∈D looks ill defined, at least we can say we have obtained a compact

short-hand for the expansion of the Green function — just as a generating function, for

example, can produce all the Legendre polynomials. In their book on random walks and

path integrals, [48] write
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a clear indication of one of the advantages of the generating function is that

it represents a prescription for the construction of the special function that it

generates. [. . . ] In this sense, the generating function encapsulates all infor-

mation with regard to the function that it generates. Furthermore, it contains

this information in an extremely compact form.

We conclude that our expression does exactly the above — for the transition density of

absorbed or reflected Brownian motion. In the words of theoretical physicist and chemist

Gibbs, in [49] (p. 10):

One of the principal objects of theoretical research in my department of knowl-

edge is to find the point of view from which the subject appears in its greatest

simplicity.

In this view, the main contribution of this paper is that it provides a solution for the heat

kernel with boundary conditions — and by extension for the (modified) Dirichlet problem,

as pioneered by [3] — that is 1) new and 2) very compact. If one were to communicate the

solution in the least possible number of bits, then this would be a good candidate.

Another attractive feature of our solution is that it unifies the treatment of the Dirichlet

and Neumann problems, and that it combines the fields of potential theory and that of

path integrals for the first time.

1.8 A semi-permeable boundary in one dimension

We would like to examine the potential V in more detail, and in one spatial dimension.

Consider a Brownian motion in one dimension that is started at x > 0. The level zero is

assumed to be transparent from above but reflecting from below. Above the boundary, i.e.

for y > 0, the density ψ is equal to the absorbed density of a halfspace, i.e. B(y, t|x, s)−
B(y, t|x∗, s), since particles that enter the region y < 0 can never return. Here x∗ indicates

the mirror coordinate, i.e. x∗ = −x. Below the boundary, the density ψ is equal to all

those paths that cross the boundary and are then reflected from below. It turns out that

this density is equal to 2B(y, t|x, s). The resulting density ψ, on the whole real line, is

therefore given by:

ψ(y, t|x, s) =

{
B(y, t|x, s)−B(y, t|x∗, s) if y > 0,

2B(y, t|x, s) if y < 0.
(1.8.1)

It is consistent with our interpretation of a semi-permeable barrier that we have∫ ∞
−∞

ψ(y, t|x, s) dy = 1 ∀t ≥ s. (1.8.2)

Furthermore, it is clear that the density is discontinuous across the boundary by 2B(y, t|x, s).
The derivatives on both sides of the boundary, however, are equal. This can be physically
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understood by considering the derivative as the expected ‘net flow’ of particles. The net

flow just above the transparent boundary is downward; as there can be no upward flow

coming from an absorbing boundary. The downward flow consists of all those particles

that will instantaneously cross the boundary. The flow just below the boundary consists

of 1) all particles crossing the boundary from above, and 2) the flow of all particles that

are reflecting off the boundary from below. Reflected particles, however, do not contribute

to the net flow just below the boundary. As a result, the net flow on either side of the

boundary consists of only those particles that are crossing the boundary in the downward

direction, for the first time. We have fixed x > 0, and thus we can only move y around,

and we see that ψ satisfies(σ2
2

∂2

∂y2
− ∂

∂t
+
σ2

2
δ′(y)

)
ψ(y, t|x, s) = 0

lim
y→±∞

ψ(y, t|x, s) = 0

lim
t↘s

ψ(y, t|x, s) = δ(y − x)

(1.8.3)

with the emergence of a Dirac δ′-potential as promised. Comparing with (5.1.1), we see

that the potential can be identified as

V (x) = −σ
2

2
δ′(x).

It is crucial, for this result, that the derivatives just above and below the boundary are

equal. A discontinuity in the derivative would have produced a Dirac δ-function in the

PDE. In addition, it is crucial that the pre-factor of the Laplacian matches the pre-factor

of the Dirac δ′-function, i.e. both are σ2/2. Now it is also obvious that if we switch the sign

of the potential, that the orientation of the boundary then changes: it becomes reflecting

from above and absorbing from below. The resulting density ψ on the real line now equals

ψ(y, t|x, s) =

{
B(y, t|x, s) +B(y, t|x∗, s) if y > 0,

0 if y < 0,
(1.8.4)

because there is no way that the particle can reach y < 0, if the boundary is reflecting

from above and we have taken x > 0. Again ψ is discontinuous across the boundary by

2B(y, t|x, s). Furthermore, the derivative of ψ is zero on both sides of the boundary. It is

not hard to check that ψ satisfies(σ2
2

∂2

∂y2
− ∂

∂t
− σ2

2
δ′(y)

)
ψ(y, t|x, s) = 0

lim
y→±∞

ψ(y, t|x, s) = 0

lim
t↘s

ψ(y, t|x, s) = δ(y − x)

(1.8.5)
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and thus the potential equals

V (x) =
σ2

2
δ′(x).

Thus we find, indeed, that the orientation of the boundary changes when the potential

changes sign.

With the benefit of intuition and hindsight, it was relatively simple to propose a solu-

tion ψ and to verify that it satisfies a PDE with a Dirac δ′-potential. To obtain a similar

result in d dimensions, we may generalise the Dirac δ′-function from ∂2x1x>0 to ∇2
x1x∈D. In

either case, a distributional definition can be used to make sense of a seemingly ill-defined

quantity and, while this may sound complicated, it means nothing more than performing

two integrations by parts under the integral sign.

1.9 The acceleration of the occupation time

Finally, we note that the proposed potential connects the study of boundary value problems

to the study of Brownian occupation times. The occupation time is a random variable that

measures the amount of time spent by a Brownian motion in a certain region. For the

domain D we have the occupation time as follows:

occupation time =

∫ t

s
1Bτ∈D dτ. (1.9.1)

Occupation times are discussed at length in Geman and Horowitz’s (1980) review paper

[50]. The occupation time is a well-behaved random variable that cannot exceed the length

of the ‘observation interval’ from s to t, as defined by the limits of the integral.

In [51], Lévy introduced the concept of local time, which can be seen as the derivative

of the occupation time with respect to the spatial variable. If we consider another domain,

including D, but everywhere ε larger than D in the outward normal direction, then for

every path we must have that the occupation time of the larger domain exceeds that of

the smaller domain. If we calculate the difference, divide by ε and let ε go to zero, then we

obtain a non-trivial limit which is defined as the local time at the boundary.

In one dimension, and perhaps surprisingly, the local time at zero during [s, t] may

exceed the duration of the observation interval, which is (t − s). This is because Lévy’s

local time is the spatial derivative with respect to the occupation time. The local time is

really defined as how much more time is spent above level a as opposed to above level a−ε,
divided by ε. Thus it has the units of time over length and it can exceed the length of the

observation interval.

It is well known that the occupation time is absolutely continuous in both space and

time. It seems intuitive that the random occupation time of domain D in the interval

[s, t + dt] cannot exceed the occupation time in [s, t] by more than dt. As far as the

spatial variable is concerned, continuity may be somewhat expected since the occupation
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time of the domain larger by ε can exceed that of the smaller domain only by a little.

Differentiability, however, is less obvious. In one dimension the occupation time above

level a is defined as

occupation time =

∫ t

s
1Bτ>a dτ, (1.9.2)

and its derivative with respect to a provides the local time at a as

Lévy’s local time =

∫ t

s
δ(Bτ − a) dτ, (1.9.3)

where again a ‘smooth’ interpretation of the indicator is needed to be able to differentiate

it, along with a proper limiting procedure. The occupation time cannot exceed (t − s),
but Lévy’s local time can exceed (t − s). The potential introduced in this paper corre-

sponds to the second derivative of the occupation time with respect to the domain, or the

‘acceleration’ of the occupation time, as the domain grows bigger:

acceleration of the occupation time =

∫ t

s
δ′(Bτ − a) dτ. (1.9.4)

What we would have liked to find in the literature is that the local time at ∂D is almost

surely differentiable, so that ∫ t

s

σ2

2
∇2
u1u∈D(Bτ ) dτ

exists, i.e. is almost surely finite. If it is almost surely finite, then so is

Ex exp
[
± σ2

2

∫ t

s
∇2
u1u∈D(Bτ ) dτ

]
and if the latter exists then it can be found by its series expansion — and thus we have

provided the proof that its Taylor series convergences. The proof of convergence has there-

fore been reduced to the question whether or not the acceleration of the occupation time

exists.

Unfortunately, we have not been able to find in the literature a version of the occupation

time that is twice differentiable in the spatial variable, so this issue must be left for now.

Although we would have liked to provide our own proof of the convergence of the single

and double boundary layers, this seems impossible for the time being. Instead, we will

proceed as follows:

• Section 2 discusses the notation to be used.

• Section 3 introduces absorbed and reflected Brownian motion, and derives the first-

and last-passage (reflection) decompositions that result in single and double boundary

layer series. It shows that the single and double boundary layer series are equal, term

by term, and that they are valid not only for smooth domains but for piecewise smooth

domains as well. The last subsections discuss spectral theory and the Dirichlet and

Neumann problems, and can be skipped without loss of continuity.

– 34 –



– Part I –

• Section 4 gives examples. It demonstrates both the absorbed and reflected series

solutions and its proposed alternating/monotone convergence for convex/concave do-

mains: for a two dimensional ellipse, cusp and three dimensional ellipsoid.

• Section 5 introduces the ‘potential’ in a probabilistic context: as destroying and

creating paths. We find that the perturbation series converges in an alternating

or monotone fashion, depending on whether the potential is positive or negative,

respectively. We contrast this with the usual Feynman rules and present a new com-

binatorial interpretation based on the Pascal matrix. We show that if the potential

is chosen to be ∓σ2

2 ∇
2
x1x∈D, the Feynman-Kac formula then produces the first- and

last-passage series of section 3. We thus conclude, for the first time, that bound-

ary value problems can be transformed into potential problems, and we show that

the Dirichlet and Neumann boundary conditions are even more closely related than

previously thought (the potential differs only by a sign).

• Section 6 concludes.
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2 Notation

2.1 The domain D

The number of spatial coordinates is indicated by dimension d. The starting space-time

coordinate, for any process, is always (x, s). The final space-time coordinate, for any

process, is always (y, t). Unless otherwise specified, we assume t ≥ s. An open, static

domain is indicated by D. D is assumed to be piecewise smooth, or, more generally, any

domain D is allowed for which the divergence theorem or Green’s theorem holds; i.e.

domains with a finite number of edges, corners and cusps. The domain may be bounded or

unbounded. By definition, the starting point (x,s) of the process is in the interior. Unless

otherwise specified, we have both spatial coordinates in the interior, i.e. x, y ∈ D. The

boundary of the open domain is indicated by ∂D. The closure of D is indicated by D̄.

When y /∈ D̄, then y is in the exterior. When y ∈ ∂D, then y is on the boundary.

2.2 Stochastic processes

The process Bt is a d -dimensional (free) Brownian motion: it passes through any bound-

aries unaffected. We have Bt = {B1,t, ..., Bd,t}, and similarly for all the other processes.

The process At is a d -dimensional absorbed Brownian motion (ABM): it is absorbed at the

boundary ∂D. The process Rt is a d -dimensional reflected Brownian motion (RBM): it is

reflected in the direction normal to the boundary at ∂D. The free Brownian transition-

density to move from (x,s) to space-time point (y,t) is indicated by B(y, t|x, s). The

absorbed transition-density is indicated by A(y,t |x,s). The reflected transition-density is

indicated by R(y,t |x,s). In any transition-density, the left-most coordinate is referred to

as the forward coordinate, and the right-most coordinate is referred to as the backward

coordinate.

2.3 Intermediate coordinates

For intermediate space-time coordinates we will always use Greek coordinates, in particular

(α, τ) or (β, τ) or (γ, τ). For the intermediate time τ it holds that s ≤ τ ≤ t. The

intermediate spatial coordinate α represents an interior coordinate, i.e. α ∈ D, and the

spatial coordinates β and γ represent boundary coordinates, i.e. β,γ ∈ ∂D. Often α, β and

γ will be integrated over. Integrations over the interior and over the boundary are denoted

as
∫
D

dα and
∮
∂D

dβ or
∮
∂D

dγ. While we usually assume that the domain D is finite, we will

write integrations over the surface of D as
∮
∂D

even when D is infinite. (The boundary can

be imagined as extending to infinity.)

When there are multiple intermediate times, then we use θi and we will have a time-

ordering such that θ1 ≤ · · · ≤ θn. In all integrands we will write earlier times towards the
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right, so that the motion of the particle can be tracked by reading equations from right to

left.

2.4 Differentiation

The gradient with respect to some internal coordinate α is denoted by ∇α. The Laplacian

with respect to the same coordinate is denoted by ∇2
α. Both differential operators can

work towards their right or left, as indicated by the arrow, i.e.
−→
∇α differentiates what

is towards its right. The outward normal at some boundary coordinate β is denoted by

nβ. The boundary divergence is defined by 1) taking the gradient with respect to some

interior coordinate α, 2) taking the dot product with the boundary normal of the nearest

boundary location β, and 3) moving the interior boundary coordinate to that location β,

and 4) multiplying by −σ2. This sequence of actions is denoted by −σ2 lim
α→β

nβ · ∇αf(α).

We will use the shorthand ∂βf(β) for this. Thus

−→
∂βf(β, γ) := −σ2 lim

α→β
nβ ·
−→
∇αf(α, γ),

f(γ, β)
←−
∂β := −σ2 lim

α→β
nβ ·
−→
∇αf(γ, α),

←→
∂β :=

←−
∂β +

−→
∂β.

(2.4.1)

Taking limits does not in general commute with integration. As a result, the operator ∂β

does not in general commute with integration over the boundary.

2.5 First- and last-passage times

With the convention that inf{∅} =∞, we have for the first-passage time

τFP(t|x, s) = inf
τ
{s ≤ τ ≤ t : Bτ /∈ D|Bs = x} . (2.5.1)

With the convention that sup{∅} = −∞, we have for the last-passage time

τLP(t|x, s) =

 sup
τ
{s ≤ τ ≤ t : Bτ /∈ D|Bs = x} if Bt ∈ D̄,

sup
τ

{
s ≤ τ ≤ t : Bτ ∈ D̄|Bs = x

}
if Bt /∈ D.

(2.5.2)

2.6 Expectations and probabilities

The indicator function of the event A is denoted by 1A, and equals 1 if the event A happens,

and zero when it does not. Expectations are denoted by E and probabilities by P, so we

have that E(1A)=P(A). Expectations or probabilities that are conditional on another event

are denoted by a subscript or absolute bar, i.e. Px(A) = P(A|Bs = x). For example we

have that

B(y, t|x, s) = P(Bt ∈ dy|Bs = x) = Exδ(Bt − y),
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and
A(y, t|x, s) = P(Bt = y; τFP > t|Bs = x),

A(y, t|x, s) = P(Bt = y; τLP < s|Bs = x),
(2.6.1)

where the semicolon is used to indicate a joint probability.

2.7 Green functions

The Green functions corresponding to different stochastic processes are defined as follows.

For a free Brownian motion we have GB(y, x) :=
∫∞
0 B(y, τ |x, 0) dτ . For absorbed Brow-

nian motion, we have GA(y, x) :=
∫∞
0 A(y, τ |x, 0) dτ . For reflected Brownian motion, we

have GR(y, x) :=
∫∞
0 R(y, τ |x, 0) dτ .
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3 Absorbed and reflected Brownian motion

In this section we will discuss absorbed and reflected Brownian motion and their transition

densities. In subsections 3.1 and 3.2 we will discuss absorbed Brownian motion and its

first- and last-passage decompositions. In subsections 3.3 and 3.4 we will discuss reflected

Brownian motion and its first- and last-reflection decompositions. Subsection 3.5 will

introduce two lemmas that may not appear very insightful at first, but in fact they are

crucial in subsection 3.6. Subsection 3.6 discuss the tangent plane (TP) decompositions for

both processes. Subsection 3.7 derives series solutions for both processes and discusses the

equivalence of the first- and last-passage (reflection) series, thereby also proving that the

single and double boundary layers are equivalent. Subsection 3.8 shows the intuition for

the series solution in 1 dimension. Subsection 3.9 derives new integral equations for A and

R in anticipation of results in section 5. Subsection 3.10 derives a new integral equation for

the absorbed and reflected Green functions, and discusses possible extensions to spectral

theory. Subsection 3.11 discusses the application to the modified Dirichlet and Neumann

problems. Subsections 3.8, 3.10 and 3.11 may be skipped without loss of continuity.

3.1 Absorbed Brownian Motion

The transition density of absorbed Brownian motion (ABM) is indicated by A(y, t|x, s),
with forward and backward space-time coordinates (y, t) and (x, s). The absorbed transi-

tion density A(y, t|x, s) satisfies the following set of equations:

forward PDE

(
∂

∂t
− σ2

2
∇2
y

)
A(y, t|x, s) = 0,

backward PDE

(
∂

∂s
+
σ2

2
∇2
x

)
A(y, t|x, s) = 0,

forward BC A(β, t|x, s) = 0,

backward BC A(y, t|β, s) = 0,

forward STC lim
s↗t

A(y, t|x, s) = δ(|y − x|),

backward STC lim
t↘s

A(y, t|x, s) = δ(|y − x|).

(3.1.1)

This holds for all x, y ∈ D and all regular (i.e. non-singular) boundary points β. PDE

stands for ‘partial differential equation’, BC stands for ‘boundary condition’ and STC

stands for ‘short-time condition’. It can be proved that the absorbed transition density

1) exists, 2) is unique and 3) is determined by the above conditions. See for example [52]

or [30]. The definition of a ‘regular’ boundary point is such that a Brownian path started

there leaves the domain immediately with probability one, as in [10], p. 245. Existence
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of the absorbed transition density is also discussed in [12], p. 79. The PDEs are satisfied

because the transition density is unbiased, i.e.

A(y, t|x, s) = EA(y − dB, t− dt|x, s)

A(y, t|x, s) = EA(y, t|x+ dB, s+ ds)

and using Itô’s lemma (1.4.2) gives both PDEs. The BCs are satisfied because no Brownian

particle can move to or from a regular boundary point without being absorbed, and the

STCs are satisfied for x and y in the interior because in the short-time limit the absorbed

transition density must behave like the free transition density. Furthermore we know that

the Brownian particle must be somewhere at every intermediate time, and therefore we

also have the Chapman-Kolmogorov equation

Chapman-Kolmogorov A(y, t|x, s) =

∫
D

dαA(y, t|α, τ)A(α, τ |x, s) (3.1.2)

for any s ≤ τ ≤ t, and where the STCs ensure that the Chapman-Kolmogorov equation

also holds in the limit where τ goes to s or t. See for example [14], p. 36. The Green

function associated with ABM is defined by

GA(y, x) :=

∫ ∞
s

A(y, t|x, s) dt (3.1.3)

and satisfies
σ2

2
∇2
yGA(y, x) =

σ2

2
∇2
xGA(y, x) = −δ(|y − x|)

GA(β, x) = GA(y, β) = 0
(3.1.4)

for all x and y in the interior and for all regular boundary coordinates β. Existence of

the Green function was discussed in subsection 1.4. Because paths are absorbed at the

boundary ∂D, the density of all paths that are ‘alive’ is decreasing. The probability that

the first passage occurs at time τ is equal to the ‘proportion’ of paths that disappear at

time τ . Therefore

P (τFP ∈ dτ |Bs = x) = − ∂

∂τ

∫
D

dαA(α, τ |x, s)

= −
∫
D

dα
σ2

2
∇2
αA(α, t|x, s)

= −
∮
∂D

dβ
σ2

2
nβ · ∇βA(β, t|x, s)

=
1

2

∮
∂D

dβ
−→
∂βA(β, t|x, s)

where n is the outward normal and where
−→
∂β is the scaled inward normal derivative as

defined in (2.4.1). It is a positive operator when working on the absorbed density A,
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because A is zero on the boundary but positive in the interior. Because probability can

only disappear at the boundary, we have that the joint probability for the first-passage

time and first-passage location is

P (τFP ∈ dτ ; BτFP ∈ dβ|Bs = x) =
1

2

−→
∂βA(β, τ |x, s) (3.1.5)

at any regular boundary coordinate β. The simplest boundary value problems occur when

the domain considered is a halfspace. By the ‘André reflection principle’ as in [9] (p. 42),

[10] (p. 79) or [15] (p. 26), we obtain that the absorbed density for a halfspace equals

AHS(y, t|x, s) = B(y, t|x, s)−B(y, t|x∗, s), (3.1.6)

where x∗ equals the ‘mirror-coordinate’ that is obtained by taking a mirror image of x in

the absorbing hyperplane. It is easily checked that AHS satisfies the PDEs, the BCs and

the STCs, and thus by uniqueness it must be correct. As far as the STCs are concerned,

two δ-functions are obtained: at both x and x∗, but the δ-function at x∗ is outside of the

space of interest and therefore irrelevant. For the joint distribution of the first-passage

time and location, we have

P(τFP
over HS ∈ dτ ; BτFP

over HS
∈ dβ|Bs = x) = 1

2

−→
∂βA

HS(β, τ |x, s)
=
−→
∂βB(β, τ |x, s)

(3.1.7)

using that for every boundary coordinate β of a halfspace we have:

nβ · (β − x) = −nβ · (β − x∗),
|β − x| = |β − x∗|.

The fact that the first-passage density over a halfspace equals
−→
∂βB — i.e. without a factor

1
2 — will be important later.

3.2 First- and last-passage decompositions

The original research of this section starts here. For ABM, consider once more the

Kolmogorov-Chapman equation, saying that the particle must be somewhere at any in-

termediate time τ . We have

A(y, t|x, s) =

∫
D

dαA(y, t|α, τ)A(α, τ |x, s).

This equation tells us that for a particle to survive up to time t, it must first survive

up to time τ , and then it must also survive from time τ up to time t — and thus both

propagators on the right-hand side are absorbed propagators A. Now consider instead the

follow quantity ∫
D

dαA(y, t|α, τ)B(α, τ |x, s).
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It is obvious that this does not equal the absorbed density from (x, s) to (y, t), since the

absorbing constraint is not imposed during the time interval from s to τ . Instead, the

propagation from (x, s) up to time τ is a free propagation, with the only condition that

the location α is actually in the interior of D. Although that condition is not enforced

explicitly, it is implied by the domain of integration over the coordinate α. Quickly one

realises that not only are paths counted that stay in the domain D for their entire duration,

but also ones that violate the absorbing boundary condition, if they violate it before time

τ . In particular, if passages over the boundary occurred, then the last passage over the

boundary must have occurred before time τ . Therefore we propose that

P (Bt ∈ dy; τLP ≤ τ |Bs = x) =

∫
D

dαA(y, t|α, τ)B(α, τ |x, s),

where the semicolon indicates a joint probability, and where

τLP(t|x, s) =

 sup
τ
{s ≤ τ ≤ t : Bτ /∈ D|Bs = x} if Bt ∈ D̄,

sup
τ

{
s ≤ τ ≤ t : Bτ ∈ D̄|Bs = x

}
if Bt /∈ D,

(3.2.1)

with conventional (but crucial!) addition that sup∅ = −∞. Thus the event τLP ≤ τ

counts paths with a last-passage before time τ as well as paths with no passages at all.

The propagator B on the right-hand side allows passages before time τ while not requiring

them. It follows that

P(Bt ∈ dy; τLP ∈ dτ |Bs = x) =
∂

∂τ

∫
D

dα A(y, t|α, τ)B(α, τ |x, s).

The absorbed density requires that no passages occur; first nor last passages. Therefore

we subtract from the free density all paths that have had a last passage, i.e.

LP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∂

∂τ

∫
D

dαA(y, t|α, τ)B(α, τ |x, s).

This we call the last-passage decomposition, or LP decomposition, for the absorbed density.

Upon reflection, the reader may argue that the equation above is an identity that holds by

virtue of the fundamental theorem of calculus and the STCs satisfied by B and A. We can

show very explicitly that the identity holds, by using the fundamental theorem of calculus

to obtain

A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∂

∂τ

∫
D

dα A(y, t|α, τ)B(α, τ |x, s)

= B(y, t|x, s)−
(

lim
τ↗t
− lim
τ↘s

)∫
D

dα A(y, t|α, τ)B(α, τ |x, s)

= B(y, t|x, s)−
∫
D

dα δ(y − α)B(α, t|x, s) +

∫
D

dα A(y, t|α, s)δ(α− x)

= B(y, t|x, s)−B(y, t|x, s) +A(y, t|x, s).

(3.2.2)
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The last line follows as long as both δ-functions pick up a contribution. The requirement

that both δ-functions pick up a contribution is equivalent to requiring that x and y are

in the interior (i.e. not on the boundary). We may conclude that what we call the LP

decomposition is actually more of an identity, rather than a result. When we say that

something is an ‘identity’ we will mean that it is (almost) trivially true, and follows from

at most 1 property of the transition densities; in this case from the STCs. In that sense

the LP decomposition is an identity.

If we take for granted that ABM exists, even when the boundary is only piecewise

smooth, and that its density is continuous up to the boundary — at least at smooth

boundary points — then we only need to establish that certain relationships hold in the

interior of the domain. Any relationship valid in the interior will also hold in the limit,

near the boundary. But we should be a little bit careful, however, because taking the

limit where one of the coordinates goes to the boundary is not the same as plugging in a

boundary coordinate in the equation, for either x or y.

To demonstrate this we can try plugging in a boundary coordinate β into the x-position

of the LP decomposition. If we had that x equals β, then we would like the left-hand side

to be zero. For the right-hand side we get

0 = B(y, t|β, s)−
∫
D

dα δ(y − α)B(α, t|β, s) +

∫
D

dαA(y, t|α, s)δ(α− β).

Now we may use that a smooth part of boundary, in close-up, looks like a hyperplane, and

therefore a δ-function located on a smooth part of the boundary picks up only half of the

contribution that it otherwise would. This leads to

0 =
1

2
A(y, t|β, s)

which enforces — or is consistent — with the assumption that A is zero on the boundary.

For y on the boundary, however, things do not work out so nicely, and we get

0 = B(β, t|x, s)−
∫
D

dα δ(β − α)B(α, t|x, s) +

∫
D

dαA(β, t|α, s)δ(α− x).

Again, the δ-function only picks up half its contribution when it is located on the boundary

of the integration-domain. Thus we get

0 =
1

2
B(β, t|x, s) +A(β, t|x, s).

This is not consistent with — or does not enforce that — the transition-density A is

zero when the forward coordinate is on the boundary. We conclude that the last-passage

decomposition holds when both of the coordinates are in the interior of D, or when x lies

on the boundary, but not when y lies on the boundary.
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So we have examined the validity of the LP-decomposition for locations in the interior,

and on smooth parts of the boundary, where δ-functions pick up half a contribution. But

since we allow for piecewise smooth boundaries, we have not been complete — i.e. what

about edges and corners? We could repeat the analysis above and we could use that a δ-

function picks up 1/8th of its contribution when it is located on a corner of a 3-dimensional

box, for example. But the LP decomposition holds for all points in the interior, so that we

should be allowed to take limits and reach any boundary point we want.

But still the reader may object, since for edges and corners there is no unambiguous

way in which an interior point should move to the boundary; if a boundary normal is not

defined, in what direction should the limit be taken? The point is well made, but the

answer is, in short, that we never need to take limits at edges and corners.

We discussed in the introduction that the classical Dirichlet problem is not well-posed

for domains with irregular boundaries. For the modified Dirichlet problem, we can define

the solution as the weighted average over all first-passage locations, because the first passage

will almost surely happen at a regular boundary point. The solution will therefore match

the boundary data at all regular boundary points. Thus we conclude that it is satisfactory

the LP decomposition holds for all x, y ∈ D; since we only ever need to take limits at

smooth parts of the boundary.

We may repeat the exact same analysis with A and B swapped in position, to find

that

P(Bt ∈ dy; τFP ≥ τ |Bs = x) =

∫
D

dα B(y, t|α, τ)A(α, τ |x, s) (3.2.3)

where

τFP(t|x, s) = inf
τ

(s ≤ τ ≤ t : Bτ /∈ D|Bs = x)

with the conventional (but crucial!) addition that inf{∅} =∞ such that the event τFP ≥ τ
counts paths with and without passages. We recognise that the motion in the time interval

after time τ is free, such that decreasing the intermediate τ allows for more paths. Therefore

we have

P(Bt ∈ dy; dτFP ∈ τ |Bs = x) =

(
− ∂

∂τ

)∫
D

dα B(y, t|α, τ)A(α, τ |x, s). (3.2.4)

To obtain the absorbed transition density, we may subtract from the free density all those

paths that have passed the boundary:

FP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

(
− ∂

∂τ

)∫
D

dα B(y, t|α, τ)A(α, τ |x, s).

Again it is obvious that the FP decomposition holds for all points x and y in the interior,

and again this may be viewed as an identity, since it holds by the virtue of the fundamental
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theorem of calculus and the STCs. Combining both first- and last-passage analyses, we

may summarise the FP and LP decompositions as follows:

FP A(y, t|x, s) = B(y, t|x, s) −
∫ t

s
dτ

(
− ∂

∂τ

) ∫
D

dα B(y, t|α, τ)A(α, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s) −
∫ t

s
dτ

(
∂

∂τ

) ∫
D

dα A(y, t|α, τ)B(α, τ |x, s).
(3.2.5)

In the ‘derivation’ of these identities, we have used the STCs but not the PDEs or BCs.

Accepting that the absorbed density is fully and uniquely determined by the set of STCs,

PDEs and BCs, we will be looking to obtain an integral equation that encompasses all

of them. Differentiation under the integral sign is allowed and we can use the PDEs of

(3.1.1), to obtain

FP A(y, t|x, s) = B(y, t|x, s)− σ2

2

∫ t

s
dτ

∫
D

dα B(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
A(α, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s) +
σ2

2

∫ t

s
dτ

∫
D

dα A(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
B(α, τ |x, s).

(3.2.6)

Next, we use Green’s second identity (1.3.1) — which is valid for domains with a finite

number of edges, corners and cusps — to obtain

FP A(y, t|x, s) = B(y, t|x, s) +
1

2

∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)
{←−
∂β −

−→
∂β

}
A(β, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)− 1

2

∫ t

s
dτ

∮
∂D

dβ A(y, t|β, τ)
{←−
∂β −

−→
∂β

}
B(β, τ |x, s).

(3.2.7)

Here ∂β is again the scaled inward normal derivative (2.4.1). The BCs of (3.1.1) require

that A is zero on the boundary, and thus we must have that ∂β points towards A, so we

obtain

FP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)

{
1

2

−→
∂β

}
A(β, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∮
∂D

dβ A(y, t|β, τ)

{
1

2

←−
∂β

}
B(β, τ |x, s).

(3.2.8)

In both cases, a positive term is subtracted from the free density to obtain the absorbed

density. Also we recognise that we have now used all 6 PDEs, STCs and BCs of (3.1.1)

in the derivation of these 2 integral equations, i.e. all the conditions that are supposed

to specify A uniquely have now been used — along with Green’s second identity on the

domain. One immediate consequence of (3.2.8) is that A is symmetric in the spatial

coordinates x and y. This deserves some attention, since Chung, for example, writes in

[26] (p. 90)
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By the way, there is NO probabilistic intuition for the symmetry of [the ab-

sorbed transition density].

Our set of equations, however, can easily interpreted when we realise that

FP P
(
Bt ∈ dy; τFP ∈ dτ ; BτFP ∈ dβ

∣∣Bs = x
)

= B(y, t|β, τ)

{
1

2

−→
∂β

}
A(β, τ |x, s)

LP P
(
Bt ∈ dy; τLP ∈ dτ ; BτLP ∈ dβ

∣∣Bs = x
)

= A(y, t|β, τ)

{
1

2

←−
∂β

}
B(β, τ |x, s)

(3.2.9)

and we see that the last-passage distribution of all paths from (x, s) to (y, t) is equal to the

first- passage distribution of all paths on the way back. Thus the spatial symmetry follows

ultimately from a time reversal.

If it still troubles the reader that the FP and LP integral equations (3.2.8) are claimed

to hold for piecewise smooth domains even though they explicitly refer to the outward

normal, then it should be noted that the same is true for the (undisputed) divergence

theorem itself.

In their expository paper, Port & Stone [53] (p. 146) derive the FP decomposition

more or less heuristically, and almost directly from the Markov property — using that the

motion after the first passage is independent of the motion before the first passage. Using

this intuition they almost immediately write down that

A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)P
(
τFP ∈ dτ ; BτFP ∈ dβ

∣∣Bs = x
)
.

But it seems that they do not realise — or at least do not write — that

P
(
τFP ∈ dτ ; BτFP ∈ dβ

∣∣Bs = x
)

=

{
1

2

−→
∂β

}
A(β, τ |x, s). (3.2.10)

Instead, Port & Stone [53] write

It is certainly intuitively plausible that [the first-passage decomposition] should

hold, and a rigorous proof is not difficult to supply. Since the proof would

involve a more thorough discussion of the measure theoretic structure of the

Brownian motion process than we care to go into in this paper, we will omit

the proof.

Comparatively, therefore, the approach in this paper has several advantages: 1) it suggests

both a first- and a last-passage decomposition, 2) it explicitly requires Green’s identity on

the domain, allowing a finite number of corners, edges and thorns, 3) the result follows

quite naturally, i.e. without referring to a ‘measure theoretic structure’, and the obtained

expressions do not need to be verified after the fact.
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Concluding, we have derived the FP and LP integral equations from the set of PDEs,

STCs and BCs. But the reverse should also be possible. It is easily seen that as t goes

down to s, that the integrals in (3.2.8) disappear, and thus A must behave like B in the

short-time limit. Also we see that A must satisfy the same differential equations that B

satisfies. If we are happy to believe that the FP or LP distributions peak at ‘here’ and

‘now’ when the backward (forward) location moves to the boundary, then the BCs can also

be read off from the integral equations. Therefore we state the following proposition:

Proposition 1. FP and LP decompositions of ABM. For all domains D allowing

Green’s theorem (1.3.1), for all x, y ∈ D, and for all regular boundary coordinates β, the

following formulations of ABM are equivalent:(
∂t − σ2

2 ∇
2
y

)
A(y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x

)
A(y, t|x, s) = 0

A(β, t|x, s) = 0

A(y, t|β, s) = 0

lims↗tA(y, t|x, s) = δ(|y − x|)
limt↘sA(y, t|x, s) = δ(|y − x|)


=



FP A(y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)

{
1

2

−→
∂β

}
A(β, τ |x, s)

LP A(y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∮
∂D

dβ A(y, t|β, τ)

{
1

2

←−
∂β

}
B(β, τ |x, s)

(3.2.11)

where ∂β is the scaled inward normal derivative as defined in (2.4.1).

We believe that this proposition is is new. We note that the time integrals on the

right-hand side of the FP and LP decompositions in Proposition 1 are like convolutions:

both propagators only depend on the time difference. As a general rule, for a convolution

involving two test functions f1 and f2, we have that∫ ∞
s

dt

∫ t

s
dτ f2(t− τ)f1(τ − s) =

∫ ∞
s

dτ

∫ ∞
τ

dt f2(t− τ)f1(τ − s)

=

∫ ∞
s

dτ

(∫ ∞
0

dθf2(θ)

)
f1(τ − s)

=

(∫ ∞
0

f2(θ)dθ

)(∫ ∞
0

f1(θ)dθ

)
Applying this to the right-hand side of Proposition 1, we obtain:

FP GA(y, x) = GB(y, x)−
∮
∂D

dβ GB(y, β)

{
1

2

−→
∂β

}
GA(β, x)

LP GA(y, x) = GB(y, x)−
∮
∂D

dβ GA(y, β)

{
1

2

←−
∂β

}
GB(β, x)

(3.2.12)

where we recall that this set of equations was also obtained in a more direct manner in the

introduction, in equations (1.5.5) through (1.5.9). It follows that the following problem
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formulations are equivalent:

σ2

2
∇2
yGA(y, x) = −δ(|y − x|)

σ2

2
∇2
xGA(y, x) = −δ(|y − x|)

GA(β, x) = 0

GA(y, β) = 0


=



FP GA(y, x) = GB(y, x)

−
∮
∂D

dβ GB(y, β)

{
1

2

−→
∂β

}
GA(β, x)

LP GA(y, x) = GB(y, x)

−
∮
∂D

dβ GA(y, β)

{
1

2

←−
∂β

}
GB(β, x)

(3.2.13)

Since this follows directly from Proposition 1, we shall not make it a proposition itself.

Although this particular reformulation appears seems to be new, we are obviously not the

first to turn a differential equation with boundary conditions into an integral equation, see

for example [54] (p. 214) for a similar (but different) example.

By definition, GB is symmetric in its two arguments. From the pair of the FP and LP

decompositions, we see that GA is also symmetric in its arguments; something that may

have been expected (maybe), but that was not necessarily assumed before. In [26], Chung

writes

Incredibly, this symmetry of Green’s functions persists for a general domain in

any dimension. Did physicists such as the redoubtable Faraday discover this

phenomenon experimentally, or did they possess the electrical perception to see

that it must be so? From our Brownian point of view, [...] there does not seem

to be any rhyme or reason for the paths to behave so reciprocally.

Again, we find that the symmetry of the Green function follows ultimately from a reversal

of time, where first becomes last and last becomes first. In [25] (p. 40 and 52) and [26]

(p. 56), the symmetry of the Green function is proved using Green’s second identity, but

a probabilistic interpretation is absent. This is surprising, because Chung was well aware

of the probabilistic importance of the last-passage time. In [55], for example, he writes

For some reason the notion of a last exit time, which is manifestly involved

in the arguments, would not be dealt with openly and directly. This may be

partially due to the fact that such a time is not an “optional” (or “stopping”)

time, does not belong to the standard equipment, and so must be evaded at all

cost. [. . . ] A probabilistic solution to Dirichlet’s problem was obtained by Doob

(1954) by considering a first exit time; here a similar solution to the so-called

Robin’s problem will be obtained by considering a last exit time.

Chung then proceeds to discuss the ‘Robin problem’ or ‘equilibrium problem’, which asks

for the probability that a transient Brownian motion ever hits a certain set D (assuming

it starts off outside of this set). The transience is crucial, since that means that the
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Brownian path can escape to infinity without ever hitting D. The equilibrium problem is

also discussed in more modern literature, such as [12] (p. 227) who write that ‘the proof of

the last exit formula is taken from Chung’s beautiful paper’. Chung is the first author to

use the last passage systematically, but still it is the case that the first passage is reserved

for the Dirichlet problem, while the last passage is reserved for the Robin problem. It is

unclear to us why either concept should be reserved for either problem. We have established

that the absorbed propagator can be found by subtracting from the free density all paths

with either a first or last passage. Equally, for the Robin problem we have

FP P
(
Bt ever hits D

∣∣Bs = x
)

=

∫
Rd

dy

∮
∂D

dβ GB(y, β)

{
1

2

−→
∂β

}
GA(β, x)

LP P
(
Bt ever hits D

∣∣Bs = x
)

=

∫
Rd

dy

∮
∂D

dβ GA(y, β)

{
1

2

←−
∂β

}
GB(β, x)

(3.2.14)

because for a set D to be visited at all, it must be visited for the first time, at some point,

and for the last time, at some point — provided that the entire space is transient, e.g.

for d ≥ 3. Thus we see that there is no need to reserve either the first- or last-passage

decomposition for the Robin problem — either will do.

3.3 Reflected Brownian motion

The transition density of reflected Brownian motion (RBM) is indicated by R(y, t|x, s),
with forward and backward space-time coordinates (y, t) and (x, s). The reflected transition

density R(y, t|x, s) satisfies the following set of equations:

forward PDE

(
∂

∂t
− σ2

2
∇2
y

)
R(y, t|x, s) = 0,

backward PDE

(
∂

∂s
+
σ2

2
∇2
x

)
R(y, t|x, s) = 0,

forward BC nβ ·
−→
∇βR(β, t|x, s) = 0,

backward BC R(y, t|β, s)
←−
∇β · nβ = 0,

forward STC lim
s↗t

R(y, t|x, s) = δ(|y − x|),

backward STC lim
t↘s

R(y, t|x, s) = δ(|y − x|).

(3.3.1)

This holds for all x, y ∈ D and all regular (i.e. non-singular) boundary points β. PDE

stands for ‘partial differential equation’, BC stands for ‘boundary condition’ and STC

stands for ‘short-time condition’. It can be proved that the absorbed transition density 1)

exists, 2) is unique and 3) is determined by the above conditions. See for example [30].
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The PDEs are satisfied because the transition density is unbiased, i.e.

R(y, t|x, s) = ER(y − dB, t− dt|x, s)

R(y, t|x, s) = ER(y, t|x+ dB, s+ ds)

and using Itô’s lemma (1.4.2) gives both PDEs. The BCs are satisfied because a Brownian

particle is reflected in the normal direction, at any regular boundary point β, and therefore

R(y, t|β, s) and R(y, t|β + ε, s) are equal to first order in ε, if β is a regular boundary

coordinate and ε is small displacement in the normal direction. The STCs are satisfied

for x and y in the interior because in the short-time limit the reflected transition density

must behave like the free transition density. Furthermore we know that the Brownian

particle must be somewhere at every intermediate time, and therefore we also have the

Chapman-Kolmogorov equation

Chapman-Kolmogorov R(y, t|x, s) =

∫
D

dαR(y, t|α, τ)R(α, τ |x, s) (3.3.2)

for any s ≤ τ ≤ t, and where the STCs ensure that the Chapman-Kolmogorov equation

also holds in the limit where τ goes to s or t. See for example [14], p. 36. If it exists (see

subsection 1.4), then the reflected Green function is defined by

GR(y, x) :=

∫ ∞
s

R(y, t|x, s) dt (3.3.3)

and it satisfies
σ2

2
∇2
yGR(y, x) =

σ2

2
∇2
xGR(y, x) = −δ(|y − x|)

−→
∂βGR(β, x) = GR(y, β)

←−
∂β = 0

(3.3.4)

where, roughly speaking, the reflected Green function only exists if d ≥ 3 and the domain

is unbounded. The interior Neumann problem also has a solution if a certain ‘compatibility

equation’ is satisfied, see for example [34] (p. 896), [13] (p. 221).

The simplest boundary value problems occur when the domain considered is a halfs-

pace. By the ‘André reflection principle’ as in [9] (p. 42), [10] (p. 79) or [15] (p. 26), we

obtain that the reflected density for a halfspace equals:

RHS(y, t|x, s) = B(y, t|x, s) +B(y, t|x∗, s) (3.3.5)

where x∗ equals the ‘mirror-coordinate’ that is obtained by taking a mirror image of x in

the reflecting hyperplane. It is easily checked that RHS satisfies the PDEs, the BCs and

the STCs, and thus by uniqueness it must be correct. As far as the STCs are concerned,

two δ-functions are obtained: at both x and x∗, but the δ-function at x∗ is outside of the

space of interest and therefore irrelevant.
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3.4 First- and last-reflection decompositions

Now that we have discussed the first- and last-passage decompositions at such length, the

following first-reflection (FR) and last-reflection (LR) decompositions almost immediately

suggest themselves:

FR R(y, t|x, s) = A(y, t|x, s) +

∫ t

s
dτ

(
− ∂

∂τ

) ∫
D

dαR(y, t|α, τ)A(α, τ |x, s),

LR R(y, t|x, s) = A(y, t|x, s) +

∫ t

s
dτ

(
∂

∂τ

) ∫
D

dαA(y, t|α, τ)R(α, τ |x, s).
(3.4.1)

The nomenclature follows from considering a quantity like∫
D

dαR(y, t|α, τ)A(α, τ |x, s),

which counts paths from (x, s) to (y, t), where the first reflection (if at all) happens after

time τ . Alternatively, both decompositions may be seen to hold by the virtue of the

fundamental theorem of calculus and the STCs. Using the PDEs of (3.3.1) under the

integral sign, we get

FR R(y, t|x, s) = A(y, t|x, s) +
σ2

2

∫ t

s
dτ

∫
D

dα R(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
A(α, τ |x, s),

LR R(y, t|x, s) = A(y, t|x, s)− σ2

2

∫ t

s
dτ

∫
D

dα A(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
R(α, τ |x, s).

(3.4.2)

Using Green’s second identity (1.3.1) — which is valid for domains with a finite number of

edges, corners and cusps — we obtain

FR R(y, t|x, s) = A(y, t|x, s)− 1

2

∫ t

s
dτ

∮
∂D

dβ R(y, t|β, τ)
{←−
∂β −

−→
∂β

}
A(β, τ |x, s),

LR R(y, t|x, s) = A(y, t|x, s) +
1

2

∫ t

s
dτ

∮
∂D

dβ A(y, t|β, τ)
{←−
∂β −

−→
∂β

}
R(β, τ |x, s).

(3.4.3)

Here ∂β is again the scaled inward normal derivative (2.4.1). The BCs of (3.3.1) require

that
−→
∂βR and R

←−
∂β are zero, and thus we must have that ∂β points towards A, so we obtain

FR R(y, t|x, s) = A(y, t|x, s) +

∫ t

s
dτ

∮
∂D

dβ R(y, t|β, τ)

{
1

2

−→
∂β

}
A(β, τ |x, s),

LR R(y, t|x, s) = A(y, t|x, s) +

∫ t

s
dτ

∮
∂D

dβ A(y, t|β, τ)

{
1

2

←−
∂β

}
R(β, τ |x, s).

(3.4.4)

The FR decomposition tells us that the reflected path either does not hit the boundary at

all, or it behaves as an ABM until it hits it for the first time, and then proceeds onwards
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as an RBM. The LR decomposition tells us that the reflected path either does not hit the

boundary at all, or proceeds as an RBM until it visits the boundary for the last time, after

which it moves to its endpoint as an ABM. It turns out, however, that it is more useful

to write the reflected density in terms of the free density, and to do this we replace the

absorbed density A by the free density B:

FR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

(
− ∂

∂τ

) ∫
D

dαR(y, t|α, τ)B(α, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

(
∂

∂τ

) ∫
D

dαB(y, t|α, τ)R(α, τ |x, s).
(3.4.5)

In this set of equations we have kept the names FR and LR, even though that interpretation

has now become a little bit problematic. But it is obvious that both identities hold, since

they only rely on the short-time conditions in the interior. Turning the crank one more

time, we get the exact same result with A replaced by B:

FR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

∮
∂D

dβ R(y, t|β, τ)

{
1

2

−→
∂β

}
B(β, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)

{
1

2

←−
∂β

}
R(β, τ |x, s).

(3.4.6)

Again, the boundary operator ∂β must point away from R. Whereas the absorbed density

A is always smaller than the free density B, it is not the case that the reflected density

is always larger than the free density B. We see that the reflected density equals the free

density plus a weighted average over all boundary densities of R at ∂D at all times τ ,

where the weight is given by 1
2

−→
∂βB(β, τ |x, s) or B(y, t|β, τ)12

←−
∂β. This weight is not always

positive, but we have that{
1

2

−→
∂β

}
B(β, τ |x, s) ≥ 0 if D is convex

with strict inequalities if D is strictly convex. Thus for a convex space, the reflected density

is everywhere larger than the free density. Intuitively, every point in a convex domain is

like a ‘focal’ point, where more paths are directed than in the absence of the boundary. We

will discuss this further in subsection 3.6. We conclude this subsection with the following

proposition:

Proposition 2. FR and LR decompositions of RBM. For all domains D allowing

Green’s theorem (1.3.1), for all x, y ∈ D, and for all regular boundary coordinates β, the
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following formulations of RBM are equivalent:(
∂t − σ2

2 ∇
2
y

)
R(y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x

)
R(y, t|x, s) = 0

−→
∂βR(β, t|x, s) = 0

R(y, t|β, s)
←−
∂β = 0

lims↗tR(y, t|x, s) = δ(|y − x|)
limt↘sR(y, t|x, s) = δ(|y − x|)


=



FR R(y, t|x, s) = B(y, t|x, s)

+

∫ t

s
dτ

∮
∂D

dβ R(y, t|β, τ)

{
1

2

−→
∂β

}
B(β, τ |x, s)

LR R(y, t|x, s) = B(y, t|x, s)

+

∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)

{
1

2

←−
∂β

}
R(β, τ |x, s)

(3.4.7)

where ∂β is the scaled inward normal derivative as defined in (2.4.1).

This proposition is new. We can integrate the right-hand side problem of Proposition

2 over time, to obtain the following:

FR GR(y, x) = GB(y, x) +

∮
∂D

dβ GR(y, β)

{
1

2

−→
∂β

}
GB(β, x),

LR GR(y, x) = GB(y, x) +

∮
∂D

dβ GB(y, β)

{
1

2

←−
∂β

}
GR(β, x).

(3.4.8)

This result proves the symmetry of the reflected Green function in its arguments. It follows

that the following problem-formulations are equivalent:

σ2

2
∇2
yGR(y, x) = −δ(|y − x|)

σ2

2
∇2
xGR(y, x) = −δ(|y − x|)

−→
∂βGR(β, x) = 0

GR(y, β)
←−
∂β = 0


=



FR GR(y, x) = GB(y, x)

+

∮
∂D

dβ GR(y, β)

{
1

2

−→
∂β

}
GB(β, x)

LR GR(y, x) = GB(y, x)

+

∮
∂D

dβ GB(y, β)

{
1

2

←−
∂β

}
GR(β, x)

(3.4.9)

for all regular boundary coordinates β, and if GR exists. Since this follows directly from

Proposition 2, we shall not make it a proposition itself.

For the interior Green function, [25] (p. 39) suggests that the simplest boundary

condition is not ∂GR = 0, but ∂GR = 1
|∂D| where |∂D| indicates the total area of the

surface. We shall not pursue this, but the methods presented here can easily be adapted

to produce integral equations for the interior Green function GR.

3.5 Discontinuity relations

To make good use of Propositions 1 and 2, we shall need two lemmas that at first may

seem quite technical. But they are crucial to obtain the tangent plane decompositions of
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the next subsection. Recall that

−→
∂βf(β, γ) := −σ2 lim

α→β
nβ ·
−→
∇αf(α, γ)

f(γ, β)
←−
∂β := −σ2 lim

α→β
nβ ·
−→
∇αf(γ, α)

The operator
−→
∂β does therefore not necessarily commute with integration over the boundary.

Even though differentiation under the integral sign is usually allowed, pushing the limit

through the integral is often not allowed. We will need the following lemmas:

Lemma 1. For a regular boundary coordinate β and some function f , we have

{
1

2

−→
∂β

} ∫ t

s
dτ

∮
∂D

dγ B(β, t|γ, τ)f(γ, τ)

 = −1

2
f(β, t)

+

∫ t

s
dτ

∮
∂D

dγ

{
1

2

−→
∂β

}
B(β, t|γ, τ)f(γ, τ)∫ t

s
dτ

∮
∂D

dγ f(γ, τ)B(γ, τ |β, s)

 {1

2

←−
∂β

}
= −1

2
f(β, s)

+

∫ t

s
dτ

∮
∂D

dγ f(γ, τ)B(γ, τ |β, s)
{

1

2

←−
∂β

}
(3.5.1)

where it is crucial if the operators
{

1
2

−→
∂β

}
and

{
1
2

←−
∂β

}
appear outside the integration (left-

hand side) or inside the integration (right-hand side).

Proof. We prove only the first part of the lemma, and the second part proceeds analogously.

First consider that the following quantity satisfies the forward PDE for all y in the interior

of D, i.e. (
∂

∂t
− σ2

2
∇2
y

)∫ t

s
dτ

∮
∂D

dγ B(y, t|γ, τ)f(γ, τ) = 0.

By the divergence theorem, we therefore have∫
D

dα
∂

∂t

∫ t

s
dτ

∮
∂D

dγ B(α, t|γ, τ)f(γ, τ) = −
∫
∂D

dβ

{
1

2

−→
∂β

}∫ t

s
dτ

∮
∂D

dγ B(β, t|γ, τ)f(γ, τ).

But, equally, we could have obtained∫
D

dα
∂

∂t

∫ t

s
dτ

∮
∂D

dγ B(α, t|γ, τ)f(γ, τ) =

∫
D

dα lim
τ↗t

∮
∂D

dγ B(α, t|γ, τ)f(γ, τ)

+

∫
D

dα

∫ t

s
dτ

∮
∂D

dγ

(
∂

∂t

)
B(α, t|γ, τ)f(γ, τ).
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In the short-time limit, B behaves like a δ-function, and using the forward PDE of B in

the second term, we get∫
D

dα
∂

∂t

∫ t

s
dτ

∮
∂D

dγ B(α, t|γ, τ)f(γ, τ) =

∫
D

dα

∮
∂D

dγ δ(|α− γ|)f(γ, t)

+

∫
D

dα

∫ t

s
dτ

∮
∂D

dγ

{
σ2

2

−→
∇2
α

}
B(α, t|γ, τ)f(γ, τ).

The δ-function on the boundary picks up half a contribution, and using the divergence

theorem for the second term we obtain∫
D

dα
∂

∂t

∫ t

s
dτ

∮
∂D

dγ B(α, t|γ, τ)f(γ, τ) =
1

2

∮
∂D

dβ f(β, t)

−
∮
∂D

dβ

∫ t

s
dτ

∮
∂D

dγ

{
1

2

−→
∂β

}
B(β, t|γ, τ)f(γ, τ).

Comparing with the previous approach, we see that the following must be equal:

−
∫
∂D

dβ

{
1

2

−→
∂β

}∫ t

s
dτ

∮
∂D

dγ B(β, t|γ, τ)f(γ, τ) =
1

2

∮
∂D

dβ f(β, t)

−
∮
∂D

dβ

∫ t

s
dτ

∮
∂D

dγ

{
1

2

−→
∂β

}
B(β, t|γ, τ)f(γ, τ).

And because this holds for every domain D we must have for each boundary-location β

that {
1

2

−→
∂β

}∫ t

s
dτ

∮
∂D

dγ B(β, t|γ, τ)f(γ, τ) = −1

2
f(β, t)

+

∫ t

s
dτ

∮
∂D

dγ

{
1

2

−→
∂β

}
B(β, t|γ, τ)f(γ, τ).

This concludes the proof. The proof of part 2 proceeds in the same fashion.

We shall also need a second lemma, which reads

Lemma 2. For a regular boundary coordinate β and some function f , we have

lim
x→β

∫ t

s
dτ

∮
∂D

dγ f(γ, τ)

{
1

2

−→
∂γ

}
B(γ, τ |x, s) =

1

2
f(β, s) +

∫ t

s
dτ

∮
∂D

dγ f(γ, τ)

{
1

2

−→
∂γ

}
B(γ, τ |β, s)

lim
y→β

∫ t

s
dτ

∮
∂D

dγ B(y, t|γ, τ)

{
1

2

←−
∂γ

}
f(γ, τ) =

1

2
f(β, t) +

∫ t

s
dτ

∮
∂D

dγ B(β, t|γ, τ)

{
1

2

←−
∂γ

}
f(γ, τ)

(3.5.2)

Proof. The proof follows in the same fashion as the proof of Lemma 1.
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Although we have not found these lemmas anywhere else, the time-independent ver-

sions are in fact well-known. If we let f be independent of time and we let t → ∞, then

Lemma 1 and Lemma 2 imply that:

{
1

2

−→
∂β

} ∮
∂D

dγ GB(β, γ)f(γ)

 = −1

2
f(β) +

∮
∂D

dγ

{
1

2

−→
∂β

}
GB(β, γ)f(γ)∮

∂D

dγ f(γ)GB(γ, β)

 {1
2

←−
∂β

}
= −1

2
f(β) +

∮
∂D

dγ f(γ)GB(γ, β)

{
1

2

←−
∂β

}

and

lim
x→β

∮
∂D

dγ f(γ)

{
1

2

−→
∂γ

}
GB(γ, x) =

1

2
f(β) +

∮
∂D

dγ f(γ)

{
1

2

−→
∂γ

}
GB(γ, β)

lim
y→β

∮
∂D

dγ GB(y, γ)

{
1

2

←−
∂γ

}
f(γ) =

1

2
f(β) +

∮
∂D

dγ GB(β, γ)

{
1

2

←−
∂γ

}
f(γ)

and these lemmas are found in a large variety of places, such as [1] (p. 309), [33] (p. 272

and 292) or [34] (p. 893), [38] (p. 4).

3.6 Tangent plane decompositions

Recall the right-hand side of Proposition 1:

FP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∮
∂D

dγ B(y, t|γ, τ)

{
1

2

−→
∂γ

}
A(γ, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∮
∂D

dγ A(y, t|γ, τ)

{
1

2

←−
∂γ

}
B(γ, τ |x, s).

On the left-hand side we see the absorbed propagator A, while on the right-hand side the

forward and backward normal derivative of A appear, respectively. The idea is to make

sure that the forward and backward normal derivative appear on both sides, by applying
1
2

−→
∂β to the left of the FP decomposition, and 1

2

←−
∂β to the right of the LP decomposition.

Thus we get

FP

{
1

2

−→
∂β

}
A(β, t|x, s) =

{
1

2

−→
∂β

}
B(β, t|x, s)

−
{

1

2

−→
∂β

}∫ t

s
dτ

∮
∂D

dβ B(β, t|γ, τ)

{
1

2

−→
∂γ

}
A(γ, τ |x, s),

LP A(y, t|β, s)
{

1

2

←−
∂β

}
= B(y, t|β, s)

{
1

2

←−
∂β

}
−

∫ t

s
dτ

∮
∂D

dγ A(y, t|γ, τ)

{
1

2

←−
∂γ

}
B(γ, τ |β, s)

{1

2

←−
∂β

}
.

(3.6.1)
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Using Lemma 1 to push the differential operators through the integral signs, we get

FP

{
1

2

−→
∂β

}
A(β, t|x, s) =

{
1

2

−→
∂β

}
B(β, t|x, s)

−
∫ t

s
dτ

∮
∂D

dβ

{
1

2

−→
∂β

}
B(β, t|γ, τ)

{
1

2

−→
∂γ

}
A(γ, τ |x, s)

+
1

2

{
1

2

−→
∂β

}
A(β, t|x, s)

LP A(y, t|β, s)
{

1

2

←−
∂β

}
= B(y, t|β, s)

{
1

2

←−
∂β

}
−
∫ t

s
dτ

∮
∂D

dγ A(y, t|γ, τ)

{
1

2

←−
∂γ

}
B(γ, τ |β, s)

{
1

2

←−
∂β

}
+

1

2
A(y, t|β, s)

{
1

2

←−
∂β

}

(3.6.2)

Collecting terms, we get:

FP

{
1

2

−→
∂β

}
A(β, t|x, s) =

−→
∂βB(β, t|x, s)

−
∫ t

s
dτ

∮
∂D

dβ
−→
∂βB(β, t|γ, τ)

{
1

2

−→
∂γ

}
A(γ, τ |x, s)

LP A(y, t|β, s)
{

1

2

←−
∂β

}
= B(y, t|β, s)

←−
∂β

−
∫ t

s
dτ

∮
∂D

dγ A(y, t|γ, τ)

{
1

2

←−
∂γ

}
B(γ, τ |β, s)

←−
∂β

(3.6.3)

where the factors of 2 are crucial and the factorisation is carefully chosen. While the

derivation may have seemed quite technical, the interpretation is very intuitive. Recall the

absorbed density for a halfspace:

AHS(y, t|x, s) = B(y, t|x, s)−B(y, t|x∗, s)

and the corresponding first-passage distribution

P(τFP
over HS ∈ dτ ; BτFP

over HS
∈ dβ|Bs = x) = 1

2

−→
∂βA

HS(β, τ |x, s)
=
−→
∂βB(β, τ |x, s).

Now consider a convex space. On left-hand side of (3.6.3) we see the joint probability

that the first exit from domain D occurs at location β and time t. The interpretation of

the right-hand side is as follows: for a convex boundary ∂D, the joint probability that a

first-passage occurs at the space-time coordinate (β, t) can be estimated by the probability

that the particle hits the tangent plane defined by β for the first time at (β, t) — but

this is an overestimate because the halfspace defined by the tangent plane at β allows for

more paths to stay alive than the actual convex domain does. Therefore we must subtract
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from this initial estimate the probability that the particle leaves the domain at some other

space-time location (γ, τ) and then hits the tangent plane defined by β at (β, t) — and we

should sum over all γ and τ . We see that the right-hand side of (3.6.3) does exactly this.

This interpretation is new.

The first-passage density at β is related to the first-passage density at all other locations

γ. This was to be expected since the entire shape of the boundary is relevant for the first-

passage density at any one location.

The only case when the first-passage density decouples from that at other locations is

when the domain is halfspace: the first-passage density for a halfspace consists only of the

first term in (3.6.3). This is because the second term (3.6.3) equals zero, i.e.∫ t

s
dτ

∮
∂D

dγ
−→
∂βB(β, t|γ, τ)

{
1

2

−→
∂γ

}
A(γ, τ |x, s)

equals zero for a halfspace, because

−→
∂βB(β, t|γ, τ) = nβ ·

β − γ
t− τ

B(β, t|γ, τ).

For a halfspace it is clear that nβ · (β − γ) = 0, because nβ and (β − γ) are perpendicular.

For a halfspace, therefore, the first term in the tangent plane decomposition is the only

term.

We conclude that the first-passage density, at any location β, depends on the first-

passage density at all other locations γ through a certain ‘weight’, where this weight can

be positive or negative and takes the sign of nβ · (β − γ). It is not hard to check that the

following variational inequalities hold for convex and concave spaces:

Convex domain nβ · (β − γ) ≥ 0

Concave domain nβ · (β − γ) ≤ 0
(3.6.4)

for any two boundary-coordinates β and γ. As a result, the first-passage density over a

convex domain at location β is smaller than the corresponding first-passage density over

the hyperplane tangent to D at β. This was to be expected — and the opposite holds for

a concave domain.

The interpretation of the last-passage decomposition is similar. We may approximate

the probability-density that the last-passage occurs at (β, s), before going to (y, t) as the

probability-density that the tangent plane at β was crossed for the last time at (β, s).

However this is an overestimate for a convex domain D, since the fact that the tangent

plane at β was not crossed later than s does not necessarily imply that ∂D was not crossed

after time s, etcetera.
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Next, we recall the first- and last-reflection decompositions of Proposition 2:

FR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

∮
∂D

dγ R(y, t|γ, τ)

{
1

2

−→
∂γ

}
B(γ, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

∮
∂D

dγ B(y, t|γ, τ)

{
1

2

←−
∂γ

}
R(γ, τ |x, s).

Apply the operators limx→β and limy→β and use Lemma 2 to push the limits through the

integrals, collect terms and obtain:

FR R(y, t|β, s) = 2B(y, t|β, s) +

∫ t

s
dτ

∮
∂D

dγ R(y, t|γ, τ)
−→
∂γB(γ, τ |β, s),

LR R(β, t|x, s) = 2B(β, t|x, s) +

∫ t

s
dτ

∮
∂D

dγ B(β, t|γ, τ)
←−
∂γR(γ, τ |x, s).

(3.6.5)

Here the factors of 2 are crucial. Recall the absorbed density for a halfspace:

RHS(y, t|x, s) = B(y, t|x, s) +B(y, t|x∗, s),

and the corresponding boundary quantity

RHS(β, t|x, s) = 2B(β, t|x, s).

A similar interpretation as before presents itself. For a convex domain, for example, we

may estimate the probability-density R to move from (x, s) to some boundary-location β

as if there was (only) a reflecting tangent plane at β. This gives rise to the first term on the

right-hand side, which is 2B. But for a convex domain with a reflecting boundary, every

location is like a focal point: more paths are directed there. More paths are directed to

every boundary-location of a convex domain, than are approximated by putting a reflecting

tangent plane at that location. Therefore we must add to the initial estimate the probability

that the particle reflects off the boundary somewhere else, and only then reaches the tangent

plane at β for the first time at (β, t). For a concave domain it can easily be checked that

the first term, 2B, is an overestimate for which the second term corrects, and so on.

3.7 Single and double boundary-layers

For absorbed Brownian motion we have derived the first- and last-passage decompositions

of Proposition 1:

FP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)

{
1

2

−→
∂β

}
A(β, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∮
∂D

dβ A(y, t|β, τ)

{
1

2

←−
∂β

}
B(β, τ |x, s).
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We have also found the resulting (by Lemma 1) TP decompositions in (3.6.3):

FP

{
1

2

−→
∂β

}
A(β, t|x, s) =

−→
∂βB(β, t|x, s)

−
∫ t

s
dτ

∮
∂D

dβ
−→
∂βB(β, t|γ, τ)

{
1

2

−→
∂γ

}
A(γ, τ |x, s),

LP A(y, t|β, s)
{

1

2

←−
∂β

}
= B(y, t|β, s)

←−
∂β

−
∫ t

s
dτ

∮
∂D

dγ A(y, t|γ, τ)

{
1

2

←−
∂γ

}
B(γ, τ |β, s)

←−
∂β.

The TP decompositions are useful not only because of their interpretation, but also because

they feature the same quantity on both sides of the equation, i.e.
−→
∂ A appears on both

sides for the FP TP decomposition, whereas A
←−
∂ appears on both sides of the LP TP

decomposition.

The idea for solving integral equations like this is by the ‘successive approximation

method’ as in [34] (p. 566, 632 and 811) or equivalently the ‘Neumann series’ as in [56]

(p. 78). The idea is simple: use the left-hand side of the equation as the definition for the

unknown quantity appearing on the right-hand side, and do this repetitively to obtain a

series solution. In effect the equation is repeatedly substituted into itself, giving rise to an

infinite series.

Once a series solution for 1
2

−→
∂ A or A

←−
∂ 1

2 has been obtained, then we can substitute

this series back into the expression for A. Since the TP decomposition follows directly from

Proposition 1 (using Lemma 1), we should expect that the series satisfies all 6 requirements

of (3.1.1). We conclude that:

Proposition 3. Formal ABM series solution. The formal solution to problem (3.1.1)

is given by the following first- or last-passage series:

FP A(y, t|x, s) = B(y, t|x, s) +

∞∑
i=1

(−1)i

[∫
dθi · · ·

∫
dθ1

s≤θ1≤···≤θi≤t

] [∮
dβi · · ·

∮
dβ1

]

×B(y, t|βi, θi)

[
i∏

k=2

−→
∂βkB(βk, θk|βk−1, θk−1)

]
−→
∂β1B(β1, θ1|x, s)

LP A(y, t|x, s) = B(y, t|x, s) +

∞∑
i=1

(−1)i

[∫
dθi · · ·

∫
dθ1

s≤θ1≤···≤θi≤t

] [∮
dβi · · ·

∮
dβ1

]

×B(y, t|βi, θi)
←−
∂βi

[
i−1∏
k=1

B(βk+1, θk+1|βk, θk)
←−
∂βk

]
B(β1, θ1|x, s)

where the FP and LP series are identical, term-by-term, and where the modes convergence

are as follows:
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domain mode of convergence

convex domain alternating

concave domain monotone

but where convergence itself is taken for granted.

New about this proposition is 1) that there are two series rather than one, 2) the

fact the solution is based on a derivation rather than on an ansatz, i.e. it follows from

the intuitive TP decomposition, and 3) its reliance on Green’s theorem, allowing piecewise

smooth domains, whereas the ansatz approach is thought appropriate for smooth domains

only and 4) the claimed mode of convergence. The mode of convergence follows from the

fact that
−→
∂βB(β, θ|γ, τ) = nβ ·

β − γ
θ − τ

B(γ, θ|β, τ),

B(β, θ|γ, τ)
←−
∂γ = nγ ·

γ − β
θ − τ

B(β, θ|γ, τ),

and that for two boundary coordinates γ and β we have

Convex domain nβ · (β − γ) ≥ 0,

Concave domain nβ · (β − γ) ≤ 0.

The integrands in Proposition 3 are positive for a convex domain, so that the multiplicative

factor (−1)i in the sum determines the mode of convergence: alternating. For a concave

domain, all terms
−→
∂ B or B

←−
∂ appearing in the square brackets are negative. Unfortunately,

the sign of
−→
∂βB(β, θ|x, s) may change as β moves along a concave boundary. And similarly

for B(y, t|β, s)
←−
∂β. On the part of the concave boundary where

−→
∂βB(β, θ|x, s) has a fixed

sign, the series converges in a monotone fashion. On the part of the concave boundary

where
−→
∂βB(β, θ|x, s) has a fixed but different sign, the series also converges in a monotone

fashion — except in the other direction. Because we can split the series solution into

two pieces where both converge in a monotone fashion (albeit in other directions), we say

simply that the series converges in a monotone fashion.

By integrating the series solutions of Proposition 3 over time, we get two associated

series for the absorbed Green function:

FP GA(y, x) = GB(y, x)

+
∞∑
i=1

(−1)i
[∮

dβi · · ·
∮
dβ1

]
GB(y, βi)

[
i∏

k=2

−→
∂βkGB(βk, βk−1)

]
−→
∂β1GB(β1, x),

LP GA(y, x) = GB(y, x)

+

∞∑
i=1

(−1)i
[∮

dβi · · ·
∮
dβ1

]
GB(y, βi)

←−
∂βi

[
i−1∏
k=1

GB(βk+1, βk)
←−
∂βk

]
GB(β1, x).

(3.7.1)
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The series have the same modes of convergence as those in Proposition 3. We would like

to contrast this with double boundary layer ansatz in for example [32], [35], [36], [38]. We

provide the following Corollary:

Corollary 1. GA as SBL or DBL. The absorbed Green function GA can be found by a

double or single boundary layer:

FP GA(y, x) = GB(y, x)−
∫
∂D

dβ µDBL(y, β)
−→
∂βGB(β, x)

LP GA(y, x) = GB(y, x)−
∫
∂D

dβ µSBL(y, β)GB(β, x)
(3.7.2)

with the following definitions of µDBL and µSBL:

FP µDBL(y, β) = GB(y, β)

+

∞∑
i=1

(−1)i
[∮

dβi · · ·
∮
dβ1

]
GB(y, βi)

[
i∏

k=2

−→
∂βkGB(βk, βk−1)

]
−→
∂β1GB(β1, β)

LP µSBL(y, β) = GB(y, β)
←−
∂β

+
∞∑
i=1

(−1)i
[∮

dβi · · ·
∮
dβ1

]
GB(y, βi)

←−
∂βi

[
i−1∏
k=1

GB(βk+1, βk)
←−
∂βk

]
GB(β1, β)

←−
∂β

(3.7.3)

where the DBL naturally follows from the first-passage decomposition, and the SBL naturally

follows from the last-passage decomposition.

We believe that this is the first time that the absorbed Green function of the Laplace

equation is written as a single boundary layer, or last-passage decomposition. What we are

trying to emphasise, however, is that the difference between single and double boundary

layers is arbitrary. From the starting point x, the first-passage decomposition gives rise to

a double boundary layer and the last-passage decomposition gives rise to a single boundary

layer. But from y, of course, the opposite holds. Therefore what looks like a first-passage

or double boundary layer from the point of view of x, looks like a last passage or single

boundary layer from the point of view of y. Thus, rather than celebrating the fact that we

can write the absorbed Green function as a single boundary layer, we are trying to drive

home the point that the symmetry in time and space ensures that last/first passages and

single/double boundary layers are ultimately equivalent.

It appears that the status of single and double boundary layers has remained that of

an ansatz, even in more modern handbooks on integral equations, such as [13], [33] or [34],

where the ansatz of a double boundary layer is always connected to the absorbed Green

function, and the ansatz of a single boundary layer is always connected to the reflected

Green function. The double boundary layer ansatz was pioneered by Balian & Bloch in

[32], who write (p. 412):
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The problem is now to determine the double layer density µ. It is a classical

property that the integral equation [for the double boundary layer µ] is non-

singular and has, therefore a well defined unique solution. [. . . ] The integral

equation may be solved by perturbation, and this yields for the µ the expansion

[. . . ]

They obtain only one series for GA. Their series solution is referred to as the ‘multiple

reflection expansion’. [36] follow their example of a double boundary layer ansatz, and they

notice that it is not obvious from their series solution that the absorbed Green function GA

is symmetric, or that it satisfies the boundary conditions, and they suspect that it holds

only for smooth domains. To show that the series is indeed symmetric, they suggest the

following symmetrisation procedure:

GA(y, x) = GB(y, x)

+

∞∑
i=1

(−1)i
[∮

dβi · · ·
∮
dβ1

]
GB(y, βi)

[
i∏

k=2

1

2

←→
∂βkGB(βk, βk−1)

]
1

2

←→
∂β1GB(β1, x).

(3.7.4)

Operators with arrows both ways work on both sides, i.e.
←→
∂ :=

←−
∂ +

−→
∂ . But this

is incorrect because it produces infinite terms. The third term in their expansion, for

example, looks like

1

4

[∮
dβ2

∮
dβ1

]
GB(y, β2)

←→
∂β2 GB(β2, β1)

←→
∂β1 GB(β1, x).

This produces 4 terms, one of which is hyper-singular and does not converge:

1

4

[∮
dβ2

∮
dβ1

]
GB(y, β2)

(−→
∂β2GB(β2, β1)

←−
∂β1

)
GB(β1, x) =∞.

The difference seems subtle, but a quantity that does exist (and that they should have

written down) is the following:

1

4

∮
dβ2 GB(y, β2)

←→
∂β2

∮
dβ1 GB(β2, β1)

←→
∂β2GB(β1, x).

In this expression, the limit on GB(β2, β1) where β2 goes to the boundary occurs after the

integration over β1 has already happened — and this makes the result finite. In [36] it

is also claimed that the absorbed density can be found as an arbitrary sum of single and

double boundary layers, which is not the case. The ‘symmetrisation’ mistake in [36] is

inherited by [38].

The fact that the ansatz-based series solution must be verified after the fact is illus-

trated in [38], who write (p. 4)
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The validity of this [series] expression can be verified by noting that it fulfils

the differential equation for [x /∈ ∂D]. Moreover, boundary conditions can be

checked using [the discontinuity equations], whereby additional contributions

give rise to cancellations between successive orders of reflections.

Apart from the equivalence of single and double boundary layers, we further wish to

emphasise that our result relies only on the applicability of Green’s identity (1.3.1) —

allowing a piecewise smooth boundary. The original [32] paper, for example, was subtitled

‘Three dimensional problem with smooth boundary surface’. [33] proves that the two

dimensional boundary layer problems are solvable for piecewise smooth domains (p. 306),

but he concludes (p. 308) that

The three-dimensional case, where corners, edges and even conical points of all

kind may appear, cannot be treated analogously

and thus we conclude that our approach automatically includes the d ≥ 3 piecewise smooth

case — which was previously excluded.

Turning to the Neumann problem, we have found in Proposition 2 that

FR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

∮
∂D

dβ R(y, t|β, τ)

{
1

2

−→
∂β

}
B(β, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)

{
1

2

←−
∂β

}
R(β, τ |x, s).

(3.7.5)

Using Lemma 2, we found the following corresponding TP decompositions:

FR R(y, t|β, s) = 2B(y, t|β, s) +

∫ t

s
dτ

∮
∂D

dγ R(y, t|γ, τ)
−→
∂γB(γ, τ |β, s),

LR R(β, t|x, s) = 2B(β, t|x, s) +

∫ t

s
dτ

∮
∂D

dγ B(β, t|γ, τ)
←−
∂γR(γ, τ |x, s).

(3.7.6)

By the same method as for A, we find
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Propostion 4. Formal RBM series solution. The formal solution to problem (3.3.1)

is given by the following first- and last-reflection series:

FR R(y, t|x, s) = B(y, t|x, s) +
∞∑
i=1

[∫
dθi · · ·

∫
dθ1

s≤θ1≤···≤θi≤t

] [∮
dβi · · ·

∮
dβ1

]

×B(y, t|βi, θi)

[
i∏

k=2

−→
∂βkB(βk, θk|βk−1, θk−1)

]
−→
∂β1B(β1, θ1|x, s)

LR R(y, t|x, s) = B(y, t|x, s) +

∞∑
i=1

[∫
dθi · · ·

∫
dθ1

s≤θ1≤···≤θi≤t

] [∮
dβi · · ·

∮
dβ1

]

×B(y, t|βi, θi)
←−
∂βi

[
i−1∏
k=1

B(βk+1, θk+1|βk, θk)
←−
∂βk

]
B(β1, θ1|x, s)

(3.7.7)

where the FR and LR series are identical, term-by-term, and where the mode of convergence

is as follows:

domain mode of convergence

convex domain monotone

concave domain alternating

but where convergence itself is taken for granted.

New about this proposition is 1) the fact that we have derived two series rather than

one, 2) the fact the solution is based on a derivation rather than on an ansatz, i.e. it follows

from the intuitive TP decomposition, and 3) its reliance on Green’s theorem, allowing

piecewise smooth domains, whereas the ansatz approach is only thought appropriate for

smooth domains and 4) the claimed mode of convergence. The mode of convergence is

opposite to that for the absorbed density, because the factor of (−1)i is absent in the sum

over i. By integrating the series in Proposition 4 over time, we get the reflected Green

function, if it exists:

FR GR(y, x) = GB(y, x) +
∞∑
i=1

[∮
dβi · · ·

∮
dβ1

]
GB(y, βi)

[
i∏

k=2

−→
∂βkGB(βk, βk−1)

]
−→
∂β1GB(β1, x)

LR GR(y, x) = GB(y, x) +
∞∑
i=1

[∮
dβi · · ·

∮
dβ1

]
GB(y, βi)

←−
∂βi

[
i−1∏
k=1

GB(βk+1, βk)
←−
∂βk

]
GB(β1, x)

(3.7.8)

with the same modes of convergence as in Proposition 3, and we have the following Corol-

lary:
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Corollary 2. GR as SBL or DBL. The reflected Green function GR, if it exists, can be

found by a double or single boundary layer

FR GR(y, x) = GB(y, x) +

∫
∂D

dβ µDBL(y, β)
−→
∂βGB(β, x)

FR GR(y, x) = GB(y, x) +

∫
∂D

dβ µSBL(y, β)GB(β, x)
(3.7.9)

with the following definitions of µDBL and µSBL:

FR µDBL(y, β) = GB(y, β)

+
∞∑
i=1

[∮
dβi · · ·

∮
dβ1

]
GB(y, βi)

[
i∏

k=2

−→
∂βkGB(βk, βk−1)

]
−→
∂β1GB(β1, β)

LR µSBL(y, β) = GB(y, β)
←−
∂β

+

∞∑
i=1

[∮
dβi · · ·

∮
dβ1

]
GB(y, βi)

←−
∂βi

[
i−1∏
k=1

GB(βk+1, βk)
←−
∂βk

]
GB(β1, β)

←−
∂β

(3.7.10)

where the DBL naturally follows from the first-reflection decomposition, and the SBL natu-

rally follows from the last-reflection decomposition.

Combining Propositions 3 and 4, we get

mode of convergence absorbed series reflected series

convex domain alternating monotone

concave domain monotone alternating

Lastly, we need to prove that the first- and last-passage series are identical, term by term.

To see why this is the case, we note first that∫ t

s
dτ

(
∂

∂τ

)∫
D

dαB(y, t|α, τ)B(α, τ |x, s) =

(
lim
τ↗t
− lim
τ↘s

)∫
D

dαB(y, t|α, τ)B(α, τ |x, s),

= B(y, t|x, s)−B(y, t|x, s),

= 0.

It is crucial that both x and y are in the interior, so that both δ-functions pick up a

full contribution. With our usual procedure (differentiating under the integral, and using

Green’s second identity), we find:∫ t

s
dτ

(
∂

∂τ

)∫
D

dαB(y, t|α, τ)B(α, τ |x, s) =
1

2

∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)
{←−
∂β −

−→
∂β

}
B(β, τ |x, s).

Thus, in shorthand, we have that∫ ∮
B
−→
∂ B =

∫ ∮
B
←−
∂ B for x, y ∈ D.
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This proves that the first correction-terms are equal. Is it also the case that∫ ∮ ∫ ∮
B
−→
∂ B
−→
∂ B

?
=

∫ ∮ ∫ ∮
B
←−
∂ B
←−
∂ B.

To investigate this, we amend the identity above by

∫ t

s
dτ

(
∂

∂τ

)∫
dαB(y, t|α, τ)B(α, t|x, s) =


0 if x ∈ D, y ∈ D;
1
2B(y, t|x, s) if x ∈ ∂D, y ∈ D;

−1
2B(y, t|x, s) if x ∈ D, y ∈ ∂D.

This follows directly from the fundamental theorem of calculus, the short-time conditions

of B, and the fact that a Dirac δ-function on the boundary picks up half a contribution,

and therefore we have

∫ ∮
B(y, t|β, τ)

{←−
∂β −

−→
∂β

}
B(β, τ |x, s) =


0 if x ∈ D, y ∈ D;

B(y, t|x, s) if x ∈ ∂D, y ∈ D;

−B(y, t|x, s) if x ∈ D, y ∈ ∂D.

Applying this principle twice, we have∫ ∮ ∫ ∮
B
−→
∂ B
−→
∂ B =

∫ ∮ ∫ ∮
B
←−
∂ B
−→
∂ B +

∫ ∮
B
−→
∂ B

=

∫ ∮ ∫ ∮
B
←−
∂ B
←−
∂ B −

∫ ∮
B
←−
∂ B +

∫ ∮
B
−→
∂ B

=

∫ ∮ ∫ ∮
B
←−
∂ B
←−
∂ B.

Here we must be careful not to obtain terms that look like∫ ∮ ∫ ∮
B
−→
∂ B
←−
∂ B =∞.

When both x and y are in the interior, the FP and LP series are identical, term by term,

but they behave differently when one of the coordinates crosses the boundary. The FP

series is continuous in y and discontinuous in x, while for the LP series the opposite holds.

In either case, the coordinate connected with B is continuous, and the one connected with

∂B is discontinuous.

3.8 The one dimensional analogy

Our work remains valid for d = 1, which is relatively simple given that the outward normal

derivatives become simple derivatives, where the sign should be fixed to get the ‘outward’

direction. Suppose that we have a simple one dimensional Brownian motion, started at

zero, and absorbed when it reaches the positive level g, where g is a function of time,

g(0) > 0 so that absorption does not happen immediately, and g′ > 0 i.e. g is monotone.

For the first passage over g to happen at time t, it is a necessary requirement that the
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Brownian motion has not reached the constant level g(t) before time t. (This follows from

the fact that g is monotone increasing — and thus g(t) lies above g(τ) for all 0 ≤ τ < t. If

the constant level g(t) is crossed before time t, then certainly the first passage happened

earlier than time t.) The constant level g(t) must therefore be reached for the first time at

time t. While this is a necessary requirement for the first passage to happen at t, it is not

a sufficient requirement.

The analogy with convex domains should now be obvious. For a convex domain with

an absorbing boundary, the Brownian particle cannot cross any of the TPs if it is to

stay alive. For the first passage to happen at boundary location β and time t, it is a

necessary requirement that the TP at β is crossed for the first time at (β, t). And again

this requirement is necessary but not sufficient. Pursuing the one dimensional analogue,

we can write

P
(
τFP ∈ t

∣∣Bs = x

)
= P

(
the constant level g(t) is crossed for the first time at time t

∣∣Bx = x

)
−
∫ t

0

dτ P
(

the constant level g(t) is crossed for the first time at t
∣∣Bτ = g(τ)

)
×P
(
τFP ∈ τ

∣∣Bs = x

)
.

In more mathematical language, we have{
1

2

−→
∂β

}
A(β, t|x, s)

∣∣∣∣
β=g(t)

=
−→
∂βB(β, t|x, s)

∣∣∣∣
β=g(t)

−
∫ t

s
dτ
−→
∂βB(β, t|g(τ), τ)

∣∣∣∣
β=g(t)

{
1

2

−→
∂γ

}
A(γ, τ |x, s)

∣∣∣∣
γ=g(τ)

where ∂ is now simple scaled derivative in the inward (in this case downward) direction.

The TP decomposition holds for all domains allowing Green’s identity — not just convex

domains. The interpretation is particularly simple, however, for a convex domain. A

similar story holds for the one dimensional case: the interpretation is particularly simple

for a monotone increasing boundary g, but the last equation holds for any g! (Its derivation

proceeds exactly like the multidimensional version.)

We have obtained an integral equation for the first-passage density at time t as a

function of the first-passage density at all earlier times τ . In fact this integral equation

was also obtained by [57], but without this intuition. Neither was it accompanied by its

last-passage equivalent, as here.

The idea for solving integral equations like this is by ‘successive approximations’ as in

[34] (p. 811) or equivalently the ‘Neumann series’ as in [56] (p. 78). The idea is simple: use

the left-hand side of the equation as the definition for the unknown quantity appearing on

the right-hand side, and do this repetitively to obtain a series solution. For the equation
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above, we get:{
1

2

−→
∂β

}
A(β, t|x, s)

∣∣
β=g(t)

=
−→
∂βB(β, t|x, s)

∣∣
β=g(t)

+

∞∑
i=1

(−1)i
[∫

dθi · · ·
∫
dθ1

s≤θ1≤···θi≤t

]
−→
∂βB(β, t|g(θi), θi)

∣∣
β=g(t)

×
[ i∏
k=2

−→
∂βiB(βk, θk|g(θk−1), θk−1)

∣∣
βk=g(θk)

]
−→
∂β1B(β1, θ1|x, s)

∣∣
γ=g(θ1)

(3.8.1)

where
−→
∂βB(β, t|x, s) =

β − x
t− s

B(β, t|x, s).

In particular,
−→
∂βB(β, t|β, s) = 0

and thus the 2 coordinates in each term ∂B need to be on different levels. Suppose for now

that g is piecewise constant — suppose it consisted of n increasing levels where g(t) is on

level n. Therefore we have that [∫
· · ·
∫ ]

︸ ︷︷ ︸
n+ 1 integrations

∂B · · · ∂B︸ ︷︷ ︸
n+ 2 terms

= 0

because there is no way that n+ 1 intermediate coordinates could be put on n+ 1 different

levels of g when g is piecewise constant with only n levels. And thus it can be seen that

the sum in (3.8.1) terminates after n terms, i.e. we get{
1

2

−→
∂β

}
A(β, t|x, s)

∣∣
β=g(t)

=
−→
∂βB(β, t|x, s)

∣∣
β=g(t)

+

n∑
i=1

(−1)i
[∫

dθi · · ·
∫
dθ1

s≤θ1≤···θi≤t

]
−→
∂βB(β, t|g(θi), θi)

∣∣
β=g(t)

×
[ i∏
k=2

−→
∂βiB(βk, θk|g(θk−1), θk−1)

∣∣
βk=g(θk)

]
−→
∂β1

B(β1, θ1|x, s)
∣∣
γ=g(θ1)

(3.8.2)

and the solution is exact ! If the Brownian particle starts at zero, but g is monotonely

decreasing rather than increasing (i.e. g(0) > 0, and g piecewise constant with n pieces),

then a new possibility occurs: the Brownian particle can pass between the steps. The

solution is still exact if we are willing to interpret it as the net first-passage, where upward

first-passages count as positive and downward ones as negative. If the number of steps goes

to infinity, then the net first-passage and the upward first-passage will agree — because

the opportunity to pass between the steps disappears. Every continuous function can be

approximated by more and more steps, and while the series is exact for a finite number of

steps, it converges as n→∞ for any continuous function g.
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Unfortunately, there is no higher dimensional analogue of this result. In one dimension,

the exact result can only be obtained for one-sided boundaries. For a one dimensional

Brownian motion between 2 constant levels a and b, for example, the sum consists of an

infinite number of terms.

The absorbed density can be obtained by subtracting from the free density all paths

that have had first passages, i.e.

Px
(
Bt = y and no passages

∣∣Bs = x

)
= B(y, t|x, s)−

∫ t

0

dτ P
(
Bt = y|Bτ = g(τ)

)
P
(
τFP ∈ τ

∣∣Bs = x

)
and thus, schematically

A(y, t|x, s) = B(y, t|x, s) +
∞∑
i=1

(−1)i
[∫
· · ·
∫ ]

︸ ︷︷ ︸
i integrations

B(y, t|·, ·)
[
−→
∂ B · · ·

−→
∂ B︸ ︷︷ ︸

i− 1 copies

]
−→
∂ B(·, ·|x, s)

If we would have used the last-passage decomposition, we would have obtained

A(y, t|x, s) = B(y, t|x, s) +

∞∑
i=1

(−1)i
[∫
· · ·
∫ ]

︸ ︷︷ ︸
i integrations

B(y, t|·, ·)
←−
∂

[
B
←−
∂ · · ·B

←−
∂︸ ︷︷ ︸

i− 1 copies

]
B(·, ·|x, s).

In one dimension and with a moving boundary, the FP and LP series are not identical:

for a monotone boundary g one converges in a monotone fashion and one converges in an

alternating fashion.

3.9 Absorbed and reflected transition densities and Feynman-Kac potentials

In this subsection we will derive a new representation and integral equation for A and R.

First, recall that we found the following pair of identities:

FP A(y, t|x, s) = B(y, t|x, s) −
∫ t

s
dτ

(
− ∂

∂τ

) ∫
D

dα B(y, t|α, τ)A(α, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s) −
∫ t

s
dτ

(
∂

∂τ

) ∫
D

dα A(y, t|α, τ)B(α, τ |x, s).

As usual, by using the PDEs of (3.1.1), we have seen that

FP A(y, t|x, s) = B(y, t|x, s)− σ2

2

∫ t

s
dτ

∫
D

dα B(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
A(α, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s) +
σ2

2

∫ t

s
dτ

∫
D

dα A(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
B(α, τ |x, s).
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Proceeding as before, we use Green’s second identity (1.3.1) — which is valid for domains

with a finite number of edges, corners and cusps — to obtain

FP A(y, t|x, s) = B(y, t|x, s) +
1

2

∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)
{←−
∂β −

−→
∂β

}
A(β, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)− 1

2

∫ t

s
dτ

∮
∂D

dβ A(y, t|β, τ)
{←−
∂β −

−→
∂β

}
B(β, τ |x, s).

Here ∂β is again the scaled inward normal derivative (2.4.1). The BCs of (3.1.1) require

that A is zero on the boundary. Now instead of discarding the boundary terms that vanish

by the BCs, we may change their sign to obtain:

FP A(y, t|x, s) = B(y, t|x, s)− 1

2

∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)
{←−
∂β +

−→
∂β

}
A(β, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)− 1

2

∫ t

s
dτ

∮
∂D

dβ A(y, t|β, τ)
{←−
∂β +

−→
∂β

}
B(β, τ |x, s).

(3.9.1)

Using
←→
∂ :=

←−
∂ +

−→
∂ , we may write

FP A(y, t|x, s) = B(y, t|x, s)− 1

2

∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)
{←→
∂β

}
A(β, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)− 1

2

∫ t

s
dτ

∮
∂D

dβ A(y, t|β, τ)
{←→
∂β

}
B(β, τ |x, s).

(3.9.2)

By the divergence theorem this equals the following:

FP A(y, t|x, s) = B(y, t|x, s) +
σ2

2

∫ t

s
dτ

∫
D

dα ∇2
α

[
B(y, t|α, τ)A(α, τ |x, s)

]
,

LP A(y, t|x, s) = B(y, t|x, s) +
σ2

2

∫ t

s
dτ

∫
D

dα ∇2
α

[
A(y, t|α, τ)B(α, τ |x, s)

]
.

(3.9.3)

Nothing stops us from extending the integration over all of Rd as long as we also insert an

indicator function 1α∈D into the integrand, i.e.

FP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα 1α∈D

{
−σ

2

2
∇2
α

}[
B(y, t|α, τ)A(α, τ |x, s)

]
,

LP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα 1α∈D

{
−σ

2

2
∇2
α

}[
A(y, t|α, τ)B(α, τ |x, s)

]
.

(3.9.4)

Suppose we took a ‘smooth approximation’ to the indicator function 1α∈D. If it were

smooth, we would be able to perform an integration by parts. In one dimension, for

example, we have∫ +∞

−∞

∂21a<x<b
∂x2

f(x)dx =

∫ +∞

−∞
1a<x<b

∂2f(x)

∂x2
dx = f ′(b)− f ′(a) (3.9.5)
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where two integrations by parts yield no boundary terms because 1a<x<b and ∂x1a<x<b

both vanish at infinity. In higher dimensions we have by the divergence theorem∫
Rd
dx1x∈D∇2

xf(x) =

∫
D
dx∇2

xf(x) =

∮
∂D

dβ nβ · ∇βf(β) (3.9.6)

And secondly, by Green’s identity, we get that∫
Rd
dx1x∈D

{←−
∇2
x −
−→
∇2
x

}
f(x) =

∫
∂Rd

dx1x∈D

{←−
∂x −

−→
∂x

}
f(x) = 0 (3.9.7)

where this follows from the fact that 1x∈D as well as ∇x1x∈D are zero when evaluated at

the ‘boundary’ of Rd, which is indicated heuristically as ∂Rd. One may object that the

divergence theorem is invalid when the integrand blows up in some parts of the domain,

but we may take 1x∈D to be a ‘bump function’. A bump function equals 1 on D, falls off

to 0 outside of D, and does so arbitrarily rapidly while still being smooth.

We conclude that with this ‘smooth’ interpretation of the indicator function, the in-

tegrands of (3.9.4) are smooth as α approaches the boundary of ∂D. But what about the

exterior? The free Brownian density B is defined and smooth in the exterior of D, and

so is the ‘smooth’ interpretation of 1α∈D. The absorbed Brownian density A, however,

is undefined in the exterior of D. We have specified that Brownian paths get absorbed,

from the inside, as soon as they hit the boundary, but we have not specified what happens

afterwards.

Here comes the trick: suppose that we let each Brownian path proceed into the exterior

of D after its first passage, after which it is reflected from the outside. In essence what we

are saying is that the boundary is semi-permeable: it is permeable from the inside, and

reflecting from the outside. Seen from the inside, therefore, the boundary is ‘absorbing’. As

a result of this definition, the density A(y, t|x, s) now exists for all y in the interior as well

as exterior of D. It is obvious that the density A is now discontinuous across ∂D: when y

approaches ∂D from the inside A goes to zero (because the boundary is absorbing from the

inside), but when it approaches ∂D from the outside it does not. The normal derivative,

however, is continuous. To see why this is the case, consider a specific boundary location

and time (β, t). Paths that have left the domain at some earlier time cannot contribute

to the normal derivative at (β, t), taken from the outside, because the boundary at β is

reflecting. The only paths that can contribute to the normal derivative as taken from the

outside, are paths that cross the boundary from the inside for the first time at (β, t). The

normal derivative taken from the in- and outside are therefore equal, at each (β, t). We

conclude that although A is discontinuous for a semi-permeable boundary ∂D, the normal

derivative at the boundary is continuous. This will be important later.

With this ‘smooth’ interpretation of the indicator function, and with the semi-permeable

interpretation of the boundary (such that the normal derivative is continuous), the use of
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the divergence theorem can be justified. Using Green’s theorem where the boundary terms

disappear, the Laplacian now operates on the indicator function as follows:

FP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)

{
− σ2

2
∇2
α1α∈D

}
A(α, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα A(y, t|α, τ)

{
− σ2

2
∇2
α1α∈D

}
B(α, τ |x, s).

(3.9.8)

While it seems that the Laplacian of the Heaviside step function is ill-defined, we may

replace it by a mollifier Mε(α) (also known as approximations to the identity), which is a

smooth approximation to the indicator function 1α∈D, where

lim
ε↘0

Mε(α) = 1α∈D.

With the mollifier Mε we can write the previous identities as

FP A(y, t|x, s) = B(y, t|x, s)− lim
ε↘0

∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)

{
− σ2

2
∇2
αMε(α)

}
A(α, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)− lim
ε↘0

∫ t

s
dτ

∫
Rd

dα A(y, t|α, τ)

{
− σ2

2
∇2
αMε(α)

}
B(α, τ |x, s).

(3.9.9)

To make sense of expressions that differentiate step functions, in one or more dimensions,

we may either 1) imagine a limiting procedure as above, or 2) perform partial integrations

(or Green’s theorem) as if everything is well behaved.

We now also show why it is important that the normal derivative across a semi-

permeable boundary is relevant. In one dimension, we would normally have that∫ ∞
−∞

dx δ(x)f(x) = f(0)∫ ∞
−∞

dx δ′(x)f(x) = −f ′(0)

if f is continuous at 0. We suppose the δ-function to be a limit of even functions (think e.g.

of a standard normal where the variance goes to zero). In that case, if f is discontinuous,

the above equalities turn into the following:∫ ∞
−∞

dx δ(x)f(x) =
1

2
f(0+) +

1

2
f(0−)∫ ∞

−∞
dx δ′(x)f(x) =

1

2
f ′(0+) +

1

2
f ′(0−)

where f(0+) := limε↘0 f(ε) and f(0−) := limε↗0 f(ε). If f has a jump at zero, but

f ′(0+) = f ′(0−), then ∫ ∞
−∞

dx δ′(x)f(x) = f ′(0+) = f ′(0−)
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As a result, for the determination of A in the interior of D, we may focus only on the

normal derivative taken from the interior.

While all this may seem very unhelpful at the moment, we will show in section 5

that a Brownian particle that is allowed in all of Rd but acted upon by a potential V —

which creates or destroys particles according to its sign, and at a rate corresponding to its

magnitude — is given by ψV where ψV satisfies:

FI ψV (y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)V (α)ψV (α, τ |x, s),

LI ψV (y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα ψV (y, t|α, τ)V (α)B(α, τ |x, s).
(3.9.10)

Here FI and LI denote the first-interaction and last-interaction decompositions. In the

physics literature, the LI decomposition is sometimes known as the Dyson equation, see for

example [38]. Now we can associate the absorbing potential in either of the following ways:

V (α) := lim
ε↘0

(
−σ2

2 ∇
2
αMε(α)

)
V (α) := −σ2

2 ∇
2
α1α∈D

where a smooth approximation of this potential is drawn in the rightmost graph in Figure 2.

In section 5 we show that positive potentials destroy paths, while negative potentials create

paths. In that interpretation, lim
ε↘0

(
−σ2

2 Mε(α)
)

destroys paths arriving at the boundary

from the inside and creates paths at the outside. Therefore the interpretation as a semi-

permeable boundary, required to ensure a continuous derivative across the boundary, is

supported by the intuition!

For the reflected density R, we want to derive a similar result and we may start by

recalling the following identities:

FR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

(
− ∂

∂τ

) ∫
D

dαR(y, t|α, τ)B(α, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

(
∂

∂τ

) ∫
D

dαB(y, t|α, τ)R(α, τ |x, s).

As usual we may use the PDEs of (3.3.1) under the integral sign, to get

FR R(y, t|x, s) = B(y, t|x, s) +
σ2

2

∫ t

s
dτ

∫
D

dα R(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
B(α, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s)− σ2

2

∫ t

s
dτ

∫
D

dα B(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
R(α, τ |x, s).
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Using Green’s second identity (1.3.1) — which is valid for domains with a finite number of

edges, corners and cusps — we obtain

FR R(y, t|x, s) = B(y, t|x, s)− 1

2

∫ t

s
dτ

∮
∂D

dβ R(y, t|β, τ)
{←−
∂β −

−→
∂β

}
B(β, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s) +
1

2

∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)
{←−
∂β −

−→
∂β

}
R(β, τ |x, s).

Now instead of discarding the boundary terms that vanish by the BCs, we may change

their sign to obtain:

FR R(y, t|x, s) = B(y, t|x, s) +
1

2

∫ t

s
dτ

∮
∂D

dβ R(y, t|β, τ)
{←−
∂β +

−→
∂β

}
B(β, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s) +
1

2

∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)
{←−
∂β +

−→
∂β

}
R(β, τ |x, s).

(3.9.11)

Using the divergence theorem, we have

FR R(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
D

dα

{
σ2

2
∇2
α

}[
R(y, t|α, τ)B(α, τ |x, s)

]
,

LR R(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
D

dα

{
σ2

2
∇2
α

}[
B(y, t|α, τ)R(α, τ |x, s)

]
.

(3.9.12)

Extending the integration over all of space, we have

FR R(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα 1α∈D

{
σ2

2
∇2
α

}[
R(y, t|α, τ)B(α, τ |x, s)

]
,

LR R(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα 1α∈D

{
σ2

2
∇2
α

}[
B(y, t|α, τ)R(α, τ |x, s)

]
.

(3.9.13)

We now define the boundary to be reflecting from the inside, and absorbing from the

outside. Therefore no particle can escape, if it starts in the interior. The value across

the boundary is discontinuous (i.e. R on the inside, and 0 on the outside), but the normal

derivative is continuous. With a ‘smooth’ interpretation of the indicator function, as before,

we obtain by applying Green’s theorem, where the boundary terms disappear:

FR R(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα R(y, t|α, τ)

{
σ2

2
∇2
α1α∈D

}
B(α, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)

{
σ2

2
∇2
α1α∈D

}
R(α, τ |x, s).

(3.9.14)

Comparing with the first- and last-interaction decompositions (3.9.10), we see that can

define the reflecting potential as follows:

V (α) :=
σ2

2
∇2
α1α∈D
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where we realise, again, that to make sense of expressions that differentiate step functions,

in one or more dimensions, to obtain the correct answer we may either 1) imagine a limiting

procedure, or 2) perform partial integrations (or Green’s theorem) as if everything is well

behaved. This leads us to the following theorem:

Theorem 1. ABM and RBM through potentials. For all domains D allowing Green’s

theorem (1.3.1), for all x, y ∈ D, and for all regular boundary coordinates β, the following

formulations of ABM are equivalent:(
∂t − σ2

2 ∇
2
y

)
A(y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x

)
A(y, t|x, s) = 0

A(β, t|x, s) = 0

A(y, t|β, s) = 0

lims↗tA(y, t|x, s) = δ(|y − x|)
limt↘sA(y, t|x, s) = δ(|y − x|)


=



FP A(y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)

{
−σ

2

2
∇2
α1α∈D

}
A(α, τ |x, s)

LP A(y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα A(y, t|α, τ)

{
−σ

2

2
∇2
α1α∈D

}
B(α, τ |x, s)

(3.9.15)

Similarly, for all domains D allowing Green’s theorem (1.3.1), for all x, y ∈ D, and for all

regular boundary coordinates β, the following formulations of RBM are equivalent:(
∂t − σ2

2 ∇
2
y

)
R(y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x

)
R(y, t|x, s) = 0

−→
∂βR(β, t|x, s) = 0

R(y, t|β, s)
←−
∂β = 0

lims↗tR(y, t|x, s) = δ(|y − x|)
limt↘sR(y, t|x, s) = δ(|y − x|)


=



FR R(y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα R(y, t|α, τ)

{
σ2

2
∇2
α1α∈D

}
B(α, τ |x, s)

LR R(y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)

{
σ2

2
∇2
α1α∈D

}
R(α, τ |x, s)

(3.9.16)

and thus we can associate the absorbing and reflecting potentials as follows:

V (α) := ∓σ
2

2
∇2
α1α∈D. (3.9.17)

This potential V gives rise to a boundary that is semi-permeable: transparent from one

side, and reflecting from the other. Furthermore, the perturbation series of the 4 integral

equations on the right-hand side produce exactly the first- and last-passage (reflection) series

of Propositions 3 and 4, and therefore all information about ABM or RBM is contained in

the potential V .

This theorem is new, and we believe that it is for the first time that a boundary value

problem has been turned into a potential problem like this.

The ‘suggestion’ for this theorem is in the calculations preceding it: we used all the

conditions on the left-hand side of Theorem 1 to obtain the right-hand side, and because
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the left-hand side is a well-posed problem, we would expect that the same holds for the

right-hand side. In some sense, both sides contain the same information and thus should

specify the same solution.

Proof. Here we show that the perturbation series, as suggested by the right-hand side of

Theorem 1, exactly matches the first- and last-passage (and reflection) series of Propositions

3 and 4. Consider

FP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)

{
−σ

2

2
∇2
α1α∈D

}
A(α, τ |x, s).

Substitute the equation back into itself to obtain

FP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)

{
−σ

2

2
∇2
α1α∈D

}
B(α, τ |x, s)

+

∫ t

s
dτ2

∫
Rd

dα2 B(y, t|α2, τ2)

{
−σ

2

2
∇2
α2
1α2∈D

}
×
∫ τ2

s
dτ1

∫
Rd

dα1 B(α2, τ2|α1, τ1)

{
−σ

2

2
∇2
α1
1α1∈D

}
A(α1, τ1|x, s)

Therefore the first correction term is as follows:∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)

{
−σ

2

2
∇2
α1α∈D

}
B(α, τ |x, s).

A second substitution would show that the second correction term reads:∫ t

s
dτ2

∫
Rd

dα2 B(y, t|α2, τ2)

{
−σ

2

2
∇2
α2
1α2∈D

}
×
∫ τ2

s
dτ1

∫
Rd

dα1 B(α2, τ2|α1, τ1)

{
−σ

2

2
∇2
α1
1α1∈D

}
B(α1, τ1|x, s).

Consider the first correction term. Recall that

∫ t

s
dτ

(
∂

∂τ

)∫
D

dα B(y, t|α, τ)B(α, t|x, s) =


0 if x ∈ D, y ∈ D;
1
2B(y, t|x, s) if x ∈ ∂D, y ∈ D;

−1
2B(y, t|x, s) if x ∈ D, y ∈ ∂D.

This implies that

∫ t

s
dτ

∮
∂D

dβ B(y, t|β, τ)
{←−
∂β −

−→
∂β

}
B(β, τ |x, s) =


0 if x ∈ D, y ∈ D;

B(y, t|x, s) if x ∈ ∂D, y ∈ D;

−B(y, t|x, s) if x ∈ D, y ∈ ∂D.
(3.9.18)
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Using this to analyse the first correction term, we find that∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)

{
−σ

2

2
∇2
α1α∈D

}
B(α, τ |x, s)

=

∫ t

s
dτ

∫
D

dα

{
−σ

2

2
∇2
α

}[
B(y, t|α, τ)B(α, τ |x, s)

]
=

∫ t

s
dτ

∫
∂D

dβ B(y, t|β, τ)

{
1

2

←→
∂β

}
B(β, τ |x, s)

=

∫ t

s
dτ

∫
∂D

dβ B(y, t|β, τ)
{−→
∂β

}
B(β, τ |x, s)

which indeed equals the first correction term in Proposition 3. For the second correction

term, we need to consider∫ t

s
dτ2

∫
Rd

dα2 B(y, t|α2, τ2)

{
−σ

2

2
∇2
α2
1α2∈D

}
×
∫ τ2

s
dτ1

∫
Rd

dα1 B(α2, τ2|α1, τ1)

{
−σ

2

2
∇2
α1
1α1∈D

}
B(α1, τ1|x, s)

where the order of differentiation and integration is very important. Our distributional

definition of the Laplacian of the indicator is that it works from the inside. Therefore we

may assume α2 ∈ D. By the analysis of the first term, we therefore obtain∫ t

s
dτ2

∫
Rd

dα2 B(y, t|α2, τ2)

{
−σ

2

2
∇2
α2
1α2∈D

}∫ τ2

s
dτ1

∮
∂D

dβ1 B(α2, τ2|β1, τ1)
{−→
∂β1

}
B(β1, τ1|x, s)

and proceeding we get that∫ t

s
dτ2

∮
∂D

dβ2 B(y, t|β2, τ2)
{

1

2

←→
∂β2

}∫ τ2

s
dτ1

∮
∂D

dβ1 B(β2, τ2|β1, τ1)
{−→
∂β1

}
B(β1, τ1|x, s)

which, when written out, becomes:∫ t

s
dτ2

∮
∂D

dβ2 B(y, t|β2, τ2)
{

1

2

←−
∂β2

}∫ τ2

s
dτ1

∮
∂D

dβ1 B(β2, τ2|β1, τ1)
{−→
∂β1

}
B(β1, τ1|x, s)

+

∫ t

s
dτ2

∮
∂D

dβ2 B(y, t|β2, τ2)
{

1

2

−→
∂β2

}∫ τ2

s
dτ1

∮
∂D

dβ1 B(β2, τ2|β1, τ1)
{−→
∂β1

}
B(β1, τ1|x, s).

By Lemma 1 we can push the differential operator through the integral in the second term,

– 78 –



– Part I –

to obtain∫ t

s
dτ2

∮
∂D

dβ2 B(y, t|β2, τ2)
{

1

2

←−
∂β2

}∫ τ2

s
dτ1

∮
∂D

dβ1 B(β2, τ2|β1, τ1)
{−→
∂β1

}
B(β1, τ1|x, s)

+

∫ t

s
dτ2

∮
∂D

dβ2 B(y, t|β2, τ2)
∫ τ2

s
dτ1

∮
∂D

dβ1

{
1

2

−→
∂β2

}
B(β2, τ2|β1, τ1)

{−→
∂β1

}
B(β1, τ1|x, s)

−
∫ t

s
dτ2

∮
∂D

dβ2 B(y, t|β2, τ2)
{

1

2

−→
∂β2

}
B(β2, τ2|x, s).

There are now no more differentiations that are pointing through integral operators, so we

may finally pull all the integrals towards the left, to obtain∫ t

s
dτ2

∫ τ2

s
dτ1

∮
∂D

dβ2

∮
∂D

dβ1 B(y, t|β2, τ2)
{

1

2

←−
∂β2

}
B(β2, τ2|β1, τ1)

{−→
∂β1

}
B(β1, τ1|x, s)

+

∫ t

s
dτ2

∫ τ2

s
dτ1

∮
∂D

dβ2

∮
∂D

dβ1 B(y, t|β2, τ2)
{

1

2

−→
∂β2

}
B(β2, τ2|β1, τ1)

{−→
∂β1

}
B(β1, τ1|x, s)

−
∫ t

s
dτ2

∮
∂D

dβ2 B(y, t|β2, τ2)
{

1

2

−→
∂β2

}
B(β2, τ2|x, s).

Changing the direction of an arrow in the first term and taking into account (3.9.18), we

obtain∫ t

s
dτ2

∫ τ2

s
dτ1

∮
∂D

dβ2

∮
∂D

dβ1 B(y, t|β2, τ2)
{

1

2

−→
∂β2

}
B(β2, τ2|β1, τ1)

{−→
∂β1

}
B(β1, τ1|x, s)

+

∫ t

s
dτ2

∮
∂D

dβ2 B(y, t|β2, τ2)
{

1

2

−→
∂β2

}
B(β2, τ2|x, s)

+

∫ t

s
dτ2

∫ τ2

s
dτ1

∮
∂D

dβ2

∮
∂D

dβ1 B(y, t|β2, τ2)
{

1

2

−→
∂β2

}
B(β2, τ2|β1, τ1)

{−→
∂β1

}
B(β1, τ1|x, s)

−
∫ t

s
dτ2

∮
∂D

dβ2 B(y, t|β2, τ2)
{

1

2

−→
∂β2

}
B(β2, τ2|x, s).

Two terms cancel, and thus we finally obtain that the second correction term equals∫ t

s
dτ2

∫ τ2

s
dτ1

∮
∂D

dβ2

∮
∂D

dβ1 B(y, t|β2, τ2)
−→
∂β2B(β2, τ2|β1, τ1)

−→
∂β1B(β1, τ1|x, s).

And thus we have shown that the first two terms in the expansion of the integral equation

on the right of Theorem 1 are equal to those in Propositions 3 and 4. We can proceed

in this spirit: 1) using Lemma 1 for pushing differentials through integrals, and 2) using

(3.9.18) for changing direction of arrows – and proceeding like this it is not hard to see

that all terms are equal and we reproduce the first-passage series. We thus conclude that

the right-hand side of Theorem 1 uniquely specifies the same solution that the left-hand

side specifies.
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3.10 Green functions and spectral theory

The new formulation in the previous subsection suggests a further extension to current

methods. As before, we may start with the identities

FP GA(y, x) = GB(y, x)− σ2

2

∫
D
dαGB(y, α)

{←−
∇2
α −
−→
∇2
α

}
GA(α, x),

LP GA(y, x) = GB(y, x) +
σ2

2

∫
D
dαGA(y, α)

{←−
∇2
α −
−→
∇2
α

}
GB(α, x).

(3.10.1)

As usual we may apply Green’s second identity (1.3.1) to get

FP GA(y, x) = GB(y, x) +
1

2

∮
∂D

dβ GB(y, β)
{←−
∂β −

−→
∂β

}
GA(β, x),

LP GA(y, x) = GB(y, x)− 1

2

∮
∂D

dβ GA(y, β)
{←−
∂β −

−→
∂β

}
GB(β, x).

(3.10.2)

Because GA disappears on the boundary, some terms in the above are zero. We may change

their signs to obtain

FP GA(y, x) = GB(y, x)− 1

2

∮
∂D

dβ GB(y, β)
{←−
∂β +

−→
∂β

}
GA(β, x),

LP GA(y, x) = GB(y, x)− 1

2

∮
∂D

dβ GA(y, β)
{←−
∂β +

−→
∂β

}
GB(β, x).

(3.10.3)

By the divergence theorem, this turns into

FP GA(y, x) = GB(y, x) +

∫
D
dα

{
σ2

2
∇2
α

}[
GB(y, α)GA(α, x)

]
,

LP GA(y, x) = GB(y, x) +

∫
D
dα

{
σ2

2
∇2
α

}[
GA(y, β)GB(β, x)

]
.

(3.10.4)

We may proceed as previously to obtain

FP GA(y, x) = GB(y, x)−
∫
Rd
dα GB(y, α)

{
−σ

2

2
∇2
α1α∈D

}
GA(α, x),

LP GA(y, x) = GB(y, x)−
∫
Rd
dα GA(y, β)

{
−σ

2

2
∇2
α1α∈D

}
GB(β, x).

(3.10.5)

Instead, we may apply the Laplacian on the integrand to obtain

FP GA(y, x) = GB(y, x)−GB(y, x)−GA(y, x)

+σ2
∫
D
dα GB(y, α)

{←−
∇α ·

−→
∇α

}
GA(α, x),

LP GA(y, x) = GB(y, x)−GB(y, x)−GA(y, x)

+σ2
∫
D
dα GA(y, α)

{←−
∇α ·

−→
∇α

}
GB(α, x).

(3.10.6)
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Thus we find

FP GA(y, x) =
σ2

2

∫
D
dα GB(y, α)

{←−
∇α ·

−→
∇α

}
GA(α, x),

LP GA(y, x) =
σ2

2

∫
D
dα GA(y, α)

{←−
∇α ·

−→
∇α

}
GB(α, x).

(3.10.7)

This integro-differential equation for GA is new. This means that the Dirichlet Green

function is an eigenfunction of the operator

GA(y, x) = K ∗GA(y, x),

GA(y, x) = GA(y, x) ∗K,

where the forward or backward operation of K is defined as

K ∗ f(y, x) =
σ2

2

∫
D
dα∇αGB(y, α) · ∇αf(α, x),

f(y, x) ∗K =
σ2

2

∫
D
dα∇αf(y, α) · ∇αGB(α, x).

This suggests a new repetitive method of finding GA, where we start with a trial function

(for example GB), and apply the operator K repeatedly, on either the left or right. To be

rigorous we would have to check that the operator is, for example, compact, but we will

not go into these details. See for example [56], [13] or [33].

Instead we take the rather pragmatic approach by 1) taking for granted that the Green

function exists and is unique, 2) that in the derivation of our integral equation we have

used all the conditions that are supposed to specify it, and that, thus 3) we expect our

series expansions or repetitive applications to converge. And if it does, then the answer

must be correct. Further, it must be the solution to the modified problem, since we have

only used Green’s theorem when considering the domain.

We note that the differentiation and integration now concern the interior of the domain

rather than the boundary. While for practical purposes this might be a disadvantage

because it leads to d dimensional integrals rather than d−1 dimensional integrals, it might

be an advantage theoretically. The reason is that it shows that changing a single boundary

location (making it irregular, for example) should have little effect if the change on the

volume as a whole is negligible. We expect the integration over the volume to be somewhat

more robust, in some sense, when it comes to irregular boundary points.

A famous result of spectral theory (see for example [39], [40], [52] or [56]) states that

the absorbed propagator A can be written as

A(y, t|x, s) =

∞∑
i=1

e−λi(t−s)φi(y)φi(x), (3.10.8)
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where λi are positive eigenvalues satisfying λ1 ≤ λ2 ≤ · · ·λi ≤ · · · and φi are the eigen-

functions, satisfying
σ2

2
∇2
yφi(y) = −λiφi(y), (3.10.9)

and where the eigenfunctions disappear on the boundary. In a closed domain with an

absorbing boundary, a Brownian path is eventually absorbed with probability one. The

probability for the path to stay alive decays exponentially, with the ‘ground-state’ φ1

surviving longest, because λ1 is the smallest eigenvalue.

Now suppose, however, that while the Brownian particle is still alive there is a proba-

bility of λ dt, in each period of time dt, that another particle is created at the location of

the first particle. In a sense, the probabilistic weight of the particle is doubled. And upon

further interactions, it may double again to weight 4. If λ is relatively small then some

‘weight’ will be created but eventually the particle will be absorbed by the boundary. But

if λ exceeds a certain critical value then the ‘weight’ of the particle that stays alive gets

multiplied and multiplied further, and starts to dominate. It turns out that this critical λ

is the first eigenvalue of the Dirichlet problem. In particular,

lim
t↗∞

eλ (t−s)A(y, t|x, s) =


0 if λ < λ1,

φ1(y)φ1(x) if λ = λ1,

∞ if λ > λ1.

(3.10.10)

At the location x = y, A is decreasing for all time. It turns out that if the derivative of

eλ (t−s)A(x, t|x, s) with respect to t is ever positive, then it will explode to infinity when

t→∞. Thus if

∂

∂t

(
eλ (t−s)A(x, t|x, s)

)
= λ

(
eλ (t−s)A(x, t|x, s)

)
+

(
eλ (t−s)

∂

∂t
A(x, t|x, s)

)
(3.10.11)

is ever zero or positive for some t, then λ > λ1. Thus we need to find the smallest λ for

which we have that

∂

∂t

(
eλ (t−s)A(x, t|x, s)

)
= 0⇒ λA(x, t|x, s) +

∂

∂t
A(x, t|x, s) = 0 (3.10.12)

It is obvious that A is positive and that ∂tA(x, t|x, s) is negative for all t. Now the smallest

λ such that λA + ∂tA = 0 for some t is equal to the first eigenvalue λ1. Since we can

calculate A as a series, we may be able to use this to find the first eigenvalue of a general

domain D — which would be a new result.

For a reflected Brownian motion, the same decomposition (3.10.8) is possible, except

the first eigenvalue is zero: i.e. after a long time R reaches an equilibrium distribution

given by the ground state that does not decay away (as no particle can escape).

The situation of particle creation in D and absorption at the boundary can be specified

by the potential

V (α) := −σ
2

2
∇2
α1α∈D − λ1α∈D
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where a negative (constant) potential creates paths at rate λ. With this potential, we get

that the Green function must satisfy that

FP GA(y, x) = GB(y, x)−
∫
Rd
dα GB(y, α)

{
−σ

2

2
∇2
α1α∈D − λ1α∈D

}
GA(α, x),

LP GA(y, x) = GB(y, x)−
∫
Rd
dα GA(y, β)

{
−σ

2

2
∇2
α1α∈D − λ1α∈D

}
GB(β, x).

(3.10.13)

Proceeding as before, we find that the integro-differential equation above can be re-derived

in the setting with particle creation at rate λ, to give

GA(y, x) =

∫
D
dαGA(y, α)

{
σ2

2

←−
∇α ·

−→
∇α + λ

}
GB(α, x),

GA(y, x) =

∫
D
dαGB(y, α)

{
σ2

2

←−
∇α ·

−→
∇α + λ

}
GA(α, x).

(3.10.14)

Originally we expected a repeated application of the integro-differential operator to give

rise to a convergent answer, but this is no longer true for λ > λcritical = λ1, where λ1 is the

first eigenvalue of the Dirichlet problem. The Green function can be seen as the expected

time spent at a certain location, before absorption, and doubled in weight by the number

of interactions that occur at rate λ in D. Therefore the integro-differential equation above

has no solutions for λ > λ1.

For the reflected Green function we may proceed similarly, and start with the identities

FR GR(y, x) = GB(y, x) +
σ2

2

∫
D
dαGR(y, α)

{←−
∇2
α −
−→
∇2
α

}
GB(α, x),

LR GR(y, x) = GB(y, x)− σ2

2

∫
D
dαGB(y, α)

{←−
∇2
α −
−→
∇2
α

}
GR(α, x).

(3.10.15)

As usual we may apply Green’s second identity (1.3.1) to get

FR GR(y, x) = GB(y, x)− 1

2

∮
∂D

dβ GR(y, β)
{←−
∂β −

−→
∂β

}
GB(β, x),

LR GR(y, x) = GB(y, x) +
1

2

∮
∂D

dβ GB(y, β)
{←−
∂β −

−→
∂β

}
GR(β, x).

(3.10.16)

Because ∂GR disappears on the boundary, some terms in the above are zero. We may

change their signs to obtain

FR GR(y, x) = GB(y, x) +
1

2

∮
∂D

dβ GR(y, β)
{←−
∂β +

−→
∂β

}
GB(β, x),

LR GR(y, x) = GB(y, x) +
1

2

∮
∂D

dβ GB(y, β)
{←−
∂β +

−→
∂β

}
GA(β, x).

(3.10.17)

By the divergence theorem, this turns into

FR GR(y, x) = GB(y, x)−
∫
D
dα

{
σ2

2
∇2
α

}[
GR(y, α)GB(α, x)

]
,

LR GR(y, x) = GB(y, x)−
∫
D
dα

{
σ2

2
∇2
α

}[
GB(y, β)GR(β, x)

]
.

(3.10.18)
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We may proceed as previously to obtain

FR GR(y, x) = GB(y, x) +GB(y, x) +GR(y, x)

−σ2
∫
D
dα GR(y, α)

{←−
∇α ·

−→
∇α

}
GB(α, x),

LR GR(y, x) = GB(y, x) +GB(y, x) +GR(y, x)

−σ2
∫
D
dα GB(y, α)

{←−
∇α ·

−→
∇α

}
GR(α, x).

(3.10.19)

Thus we find

FR GB(y, x) = −σ
2

2

∫
D
dα GR(y, α)

{←−
∇α ·

−→
∇α

}
GB(α, x),

LR GB(y, x) = −σ
2

2

∫
D
dα GB(y, α)

{←−
∇α ·

−→
∇α

}
GR(α, x),

(3.10.20)

where this integral equation is new. Note that unlike in the absorbed case, we cannot

expect to find GR by a repeated application of a certain operator, because GB rather than

GR appears on the left-hand side. Rather, GB (which we already know) is an eigenfunction

of the operator involving GR (which we do not know)!

3.11 An application to the Dirichlet and Neumann boundary value problems

The modified Dirichlet solution is defined by a weighted expectation over all first passages,

where the weight is given by w, i.e.

D(x) :=

∮
∂D

dβ w(β)

{
1

2

−→
∂β

}
GA(β, x). (3.11.1)

Because GA is zero on the boundary, we may subtract a term that is zero, i.e.

D(x) = −
∮
∂D

dβ w(β)

{
1

2

←−
∂β −

1

2

−→
∂β

}
GA(β, x). (3.11.2)

By Green’s second identity this becomes

D(x) =
σ2

2

∫
D

dα w(α)
{←−
∇2
α −
−→
∇2
α

}
GA(α, x). (3.11.3)

And because σ2

2 ∇
2G = −δ, we get

D(x) = w(x) +
σ2

2

∫
D

dα ∇2
αw(α)GA(α, x). (3.11.4)

This last representation shows very clearly that the Dirichlet solution satisfies

limx→β D(x) = w(β),

∇2
xD(x) = 0.

(3.11.5)
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For the first representation of the Dirichlet solution, w was only required to be defined on

∂D. For the last representation to make sense, we need that w is defined in all of D. In

fact it turns out that it is irrelevant how w is extended to the entirety of D, as long it

is twice differentiable and matches the correct boundary data at w(β). Alternatively, we

could write

D(x) =

∮
∂D

dβ w(β)

{
1

2

−→
∂β

}
GA(β, x) =

∮
∂D

dβ w(β)

{
1

2

←−
∂β +

1

2

−→
∂β

}
GA(β, x), (3.11.6)

which, by the divergence theorem, becomes

D(x) = −
∫
D

dα

{
σ2

2
∇2
α

}[
w(α)GA(α, x)

]
,

= w(x)−
∫
D

dα w(α)

{
σ2

2

←−
∇2
α

}
GA(α, x)− σ2

∫
D

dα w(α)
{←−
∇α ·

−→
∇α

}
GA(α, x).

(3.11.7)

Compare this with the previous representation, to find that

D(x) = w(x)− σ2

2

∫
D

dα w(α)
{←−
∇α ·

−→
∇α

}
GA(α, x). (3.11.8)

This representation is new, and taking w(x) = D(x), we obtain another new observation:

0 =
σ2

2

∫
D

dα D(α)
{←−
∇α ·

−→
∇α

}
GA(α, x) (3.11.9)

The exterior Neumann solution in d ≥ 3 is defined by taking a weighted average over all

boundary visits, i.e.

N(x) := −
∮
∂D

dβ w(β)

{
1

2

←−
∂β

}
GR(β, x). (3.11.10)

We choose the ‘exterior’ because then GR exists and can be defined as we have done. We

choose the weight to be given by −w(β)
{

1
2

←−
∂β

}
for symmetry reasons which will become

clear. Because ∂GR is zero on the boundary, we add a term that is zero, i.e.

N(x) = −
∮
∂D

dβ w(β)

{
1

2

←−
∂β −

1

2

−→
∂β

}
GR(β, x). (3.11.11)

By Green’s second identity this becomes

N(x) =
σ2

2

∫
D

dα w(α)
{←−
∇2
α −
−→
∇2
α

}
GR(α, x). (3.11.12)

And because σ2

2 ∇
2G = −δ, we get

N(x) = w(x) +
σ2

2

∫
D

dα ∇2
αw(α)GR(α, x). (3.11.13)
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The operator ∂β commutes with the integration over the interior, and thus the Neumann

solution satisfies
∂βN(β) = ∂βw(β),

∇2
xN(x) = 0.

(3.11.14)

Alternatively, we could subtract a term that is zero:

N(x) = −
∮
∂D

dβ w(β)

{
1

2

←−
∂β

}
GR(β, x) = −

∮
∂D

dβ w(β)

{
1

2

←−
∂β +

1

2

−→
∂β

}
GR(β, x). (3.11.15)

By the divergence theorem this becomes

N(x) =

∫
D

dα

{
σ2

2
∇2
α

}[
w(α)GR(α, x)

]
,

N(x) = −w(x) +

∫
D

dα w(α)

{
σ2

2

←−
∇2
α

}
GR(α, x) + σ2

∫
D

dα w(α)
{←−
∇α ·

−→
∇α

}
GR(α, x).

(3.11.16)

Compare this with the previous representation, to find

w(x) =
σ2

2

∫
D

dα w(α)
{←−
∇α ·

−→
∇α

}
GR(α, x). (3.11.17)

This comes as a surprise since the Neumann solution N has completely disappeared. The

last equation says that any twice differentiable function w(x) can be expressed by an

integration over a domain of choice, over w(α)
{←−
∇α ·

−→
∇α

}
GR(α, x). The implications of

this observation are yet unclear, and we leave this issue for the time being — but we note

that D needs to be unbounded in d ≥ 3 for GR to be defined at all. Taking w = N we find

that

N(x) =
σ2

2

∫
D

dα N(α)
{←−
∇α ·

−→
∇α

}
GR(α, x). (3.11.18)

Some of the (new) observations in this subsection may be useful, and some may not be.

The main point, however, is that we have

D(x) = w(x) +
σ2

2

∫
D

dα ∇2
αw(α)GA(α, x)

N(x) = w(x) +
σ2

2

∫
D

dα ∇2
αw(α)GR(α, x)

(3.11.19)

and thus our series solutions for GA and GR can be directly plugged into these expressions

to find the Dirichlet or Neumann solution. Furthermore, the resulting series for D(x) and

N(x) inherit the mode of convergence of GA or GR. And lastly, if we can find a compact way

to express GA and/or GR in a way that contains all the information that is contained in its

series expression, then we will automatically also have found a very compact representation

for the Dirichlet problem.
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4 Examples

This section shows the convergence of the obtained series solution in practice. We calculate

the transition-density of an ABM or RBM using the program Mathematica [58] to calculate

the successive terms in the series.

4.1 An ellipse in 2d

First, we define an ellipse in polar coordinates:

a = 2; b = 1;

rAj_E :=

a b

SqrtAa2 Sin@jD2
+ b2 Cos@jD2E

Then we define the volatility and space-time positions as follows:

Σ = 1;

s = 0; x = 8-1�3, 0<;
t = 2; y = 81�3, 3�4<;

We will need to go back and forth between Cartesian and spherical coordinates, and there-

fore we will need:

RadiusAvector_E := vector@@1DD2
+ vector@@2DD2

PhiAvector_E := N@ArcTan@vector@@1DD, vector@@2DDDD

The surface- coordinate, tangent vector, outward normal, infinitesimal surface area and

scaled outward normal can be defined by:

SurfaceCoordAj_E := 8r@jD Cos@jD, r@jD Sin@jD<

TangentAj_E :=

¶Phi SurfaceCoord@PhiD

¶Phi SurfaceCoord@PhiD.¶Phi SurfaceCoord@PhiD
��. Phi ® j

OutwardNormalAj_E := 8Tangent@jD@@2DD, -Tangent@jD@@1DD<

SmallSurfaceAreaAj_E := r@jD2
+r'@jD2

ScaledOutwardNormalAj_E := SmallSurfaceArea@jD OutwardNormal@jD

We have simulated a Brownian path from x to y in a different workbook, and including it

gives rise to the following sketch of the situation:
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m = 25;

polarplot = PolarPlot@r@jD, 8j, 0, 2 Π<,
PlotRange ® 88-2 a, 2 a<, 8-2 b, 2 b<<, PlotStyle ® Black, Axes ® FalseD;

vectorplot = GraphicsB:Black, Arrowheads@SmallD,

TableBArrow@88SurfaceCoord@jD@@1DD, SurfaceCoord@jD@@2DD<,
8SurfaceCoord@jD@@1DD + OutwardNormal@jD@@1DD, SurfaceCoord@jD@@2DD +

OutwardNormal@jD@@2DD<<D, :j, 0, 2 Pi - 2 Pi�m,
2 Pi

m
>F>, Axes ® FalseF;

pointplotx = Graphics@8Black, PointSize@0.02D, Point@xD<D;
labelx = Graphics@Text@Style@"Hx,sL", 16, ItalicD, x + 8-5�10, -1�10<DD;
pointploty = Graphics@8Black, PointSize@0.02D, Point@yD<D;
labely = Graphics@Text@Style@"Hy,tL", 16, ItalicD, y + 85�10, -1�10<DD;
Show@polarplot, vectorplot, pointplotx, pointploty, labelx, labely, BrownianPlotD

which returns the following graph:

Hx,sL
Hy,tL

Then we define the free propagator B its gradient, ∇B := −σ2nφ · ∇yB, as follows

BAy_, t_, x_, s_E :=
1

I2 Π Σ2 Ht - sLMd�2
ã

-
Hy-xL.Hy-xL

2 Σ2 Ht-sL

õBAy_, t_, x_, s_E := ScaledOutwardNormal@Phi@yDD.
y - x

t - s
B@y, t, x, sD

To be able to integrate over the surface and over a time-ordered integration range, we

define the following integration operator:

SurfaceTimeIntegrationRangeAt_, s_, n_E :=

Flatten@Table@88ji, 0, 2 Π<, 8Τi, Τi-1, t<<, 8i, 1, n<D, 1D ��. Τ0 ® s;

SurfaceTimeIntegrationAIntegrand_, 9MultipleRanges__=, WorkingPrec_E :=

Re@NIntegrate@Integrand, MultipleRanges, WorkingPrecision ® WorkingPrecDD

The n-th correction term can be defined by an integrand consisting of one B and n terms

of ∇B, with n integrations over the surface as well as n time-ordered integrations, i.e.
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CorrectionTerm8n_,WorkingPrec_<Ay_, t_, x_, s_E :=

CorrectionTerm8n,WorkingPrec<@y, t, x, sD = SurfaceTimeIntegrationB
B@y, t, SurfaceCoord@jnD, ΤnD ä

i=2

n

õB@SurfaceCoord@jiD, Τi, SurfaceCoord@ji-1D, Τi-1D
õB@SurfaceCoord@j1D, Τ1, x, sD, SurfaceTimeIntegrationRange@t, s, nD, WorkingPrecF

where we have chosen the ‘first-passage’ representation of each correction-term: with
−→
∇B

on the right and B on the left. Now the propagators An,k and Rn,k can be defined, where

n is the order of approximation and k is the working precision in Mathematica, i.e.

A8n_,WorkingPrec_<Ay_, t_, x_, s_E :=

N@B@y, t, x, sD, WorkingPrecD + â
i=1

n H-1Li CorrectionTerm8i,WorkingPrec<@y, t, x, sD
R8n_,WorkingPrec_<Ay_, t_, x_, s_E :=

N@B@y, t, x, sD, WorkingPrecD + â
i=1

n

CorrectionTerm8i,WorkingPrec<@y, t, x, sD

Having defined all we need, we can now plot the convergence of A and R as follows

d = 2;

WorkingPrec = 3; ApproxOrder = 3;

XFrameTicks = Table@i, 8i, 0, ApproxOrder<D;
Needs@"PlotLegends`"D
ListPlotA9TableA9i, A8i,WorkingPrec<@y, t, x, sD=, 8i, 0, ApproxOrder<E,

TableA9i, R8i,WorkingPrec<@y, t, x, sD=, 8i, 0, ApproxOrder<E=,
PlotRange -> All, Joined -> True,

InterpolationOrder -> 1, AxesOrigin -> 80, 0<, Ticks -> 8XFrameTicks, Automatic<,
PlotStyle ® 8 8Black, AbsoluteThickness@1.4D<, 8Black,
AbsoluteThickness@1.4D<<,

AxesLabel -> 8Style@"Order of Approximation n", 14, Plain, BlackD,
Style@"Approximation", 14, Plain, BlackD<, PlotMarkers ® 88"à", 15<, 8"æ", 15<<,

PlotLabel -> Style@"Transition densities", 20, Plain, BlackD,
PlotLegend ® 8Style@"AnHy,tÈx,sL", 12, Plain, Black, ItalicD,

Style@"RnHy,tÈx,sL", 12, Plain, Black, ItalicD<, LegendShadow ® None,

LegendSize ® 0.4, LegendPosition ® 8+.25, -.25<, ImageSize -> 500E

which returns the following graph:
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and where the modes of convergence are as promised.

4.2 A cusp in 2d

Instead of an ellipse, we could take a cusp to make the point that the method also works

for piecewise smooth domains. We define the cusp as follows:

r@j_D := H1 + Cos@jDL1�2

Σ = 1;

s = 0; x = 80, -1�4<;
t = 3 � 4; y = 81�3, 3�4<;

and the situation looks like
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Hx,sL

Hy,tL

with the following propagators
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which shows that the proposed method indeed works for domains that are non-smooth.

4.3 An ellipsoid in 3d

Moving to 3d, we may have an ellipsoid as follows:
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a = 1; b = 2; c = 1 � 2;

r@Θ_, j_D :=

a b c

SqrtACos@jD2 Sin@ΘD2 b2 c2 + Sin@jD2 Sin@ΘD2 a2 c2 + Cos@ΘD2 a2 b2E

and the following commands:

x = 81 � 5, 0, 0<;
y = 84 � 5, 0, 0<;
SphericalPlot = SphericalPlot3D@r@Θ, jD, 8Θ, 0, Π<, 8j, -2 Pi � 6, 2 Π - 4 Pi � 6<,

PlotRange ® All, PlotStyle ® 8Black, Opacity@.2D<, Mesh ® None, Background ® White,

AxesStyle ® Black, Boxed ® True, PlotPoints ® 80, BoxRatios ® 8a, b, c<,
AxesLabel ® 8Style@"x", 16D, Style@"y", 16D, Style@"z", 16D<, Ticks ® NoneD;

PointPlot = Graphics3D@88Black, PointSize@0.03D, Point@yD<,
8Black, PointSize@0.03D, Point@xD<<, Axes ® NoneD;

Show@SphericalPlot, PointPlot, ViewPoint ® 80, -10, 1<D

provide the following graph of the situation:

with the following surface-coordinates and (scaled) outward normal vectors:

SurfaceCoord@Θ_, j_D := 8r@Θ, jD Cos@jD Sin@ΘD, r@Θ, jD Sin@jD Sin@ΘD, r@Θ, jD Cos@ΘD<
Off@N::"meprec"D
OutwardNormal@Θ_, j_D :=

N@HCross@¶Theta SurfaceCoord@Theta, PhiD, ¶Phi SurfaceCoord@Theta, PhiDD �
Norm@Cross@¶Theta SurfaceCoord@Theta, PhiD,

¶Phi SurfaceCoord@Theta, PhiDDDLD ��. Theta ® Θ ��. Phi ® j

ScaledOutwardNormal@Θ_, j_D := N@Cross@¶Theta SurfaceCoord@Theta, PhiD,
¶Phi SurfaceCoord@Theta, PhiDD ��. Theta ® Θ ��. Phi ® jD

moving from Cartesian to spherical coordinates can be done by:

– 92 –



– Part I –

Radius@vector_D := vector@@1DD2
+ vector@@2DD2

+ vector@@3DD2

Theta@vector_D := NBArcTanBvector@@3DD, vector@@1DD2
+ vector@@2DD2 FF

Phi@vector_D := N@ArcTan@vector@@1DD, vector@@2DDDD

The free Brownian density is defined by:

d = 3; Σ = 1;

B@y_, t_, x_, s_D :=
1

I2 Π Σ2 Ht - sLMd�2
ã

-
Hy-xL.Hy-xL
2 Σ2 Ht-sL

õB@y_, t_, x_, s_D :=

RoundBScaledOutwardNormal@Theta@yD, Phi@yDD.
y - x

Ht - sL
B@y, t, x, sD, 0.01F

We define the integration over time and surface as follows:

SurfaceTimeIntegrationRange @t_, s_, n_D :=

Flatten@Table@88Θi, 0, Π<, 8ji, 0, 2 Π<, 8Τi, Τi-1, t<<, 8i, 1, n<D, 1D ��. Τ0 ® s;

SurfaceTimeIntegration @Integrand_, 8MultipleRanges__<D :=

Re@NIntegrate@Integrand, MultipleRanges, Method ® "AdaptiveMonteCarlo"DD

The different correction terms are defined by:

CorrectionTermn_@y_, t_, x_, s_D :=

CorrectionTermn@y, t, x, sD = SurfaceTimeIntegration BB@y, t, SurfaceCoord@Θn, jnD, ΤnD
ä
i=2

n

õB@SurfaceCoord@Θi, jiD, Τi, SurfaceCoord@Θi-1, ji-1D, Τi-1D
õB@SurfaceCoord@Θ1, j1D, Τ1, x, sD, SurfaceTimeIntegrationRange @t, s, nDF

And for the absorbed and reflected transition densities this means that:

An_@y_, t_, x_, s_D := N@B@y, t, x, sDD + â
i=1

n H-1Li CorrectionTermi@y, t, x, sD

Rn_@y_, t_, x_, s_D := N@B@y, t, x, sDD + â
i=1

n

CorrectionTermi@y, t, x, sD

To produce a graph we enter the following commands:
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Σ = 1;

s = 0; t = 1 � 4;

n = 4;

XFrameTicks = Table@i, 8i, 0, n<D;
Needs@"PlotLegends`"D
ListPlotA9TableA9j, Aj@y, t, x, sD=, 8j, 0, n<E, TableA9j, Rj@y, t, x, sD=, 8j, 0, n<E=,
PlotRange -> All, Joined -> True,

InterpolationOrder -> 1, AxesOrigin -> 80, 0<, Ticks -> 8XFrameTicks, Automatic<,
PlotStyle ® 8 8Black, AbsoluteThickness@1.4D<, 8Black,
AbsoluteThickness@1.4D<<,

AxesLabel -> 8Style@"Order of Approximation n", 14, Plain, BlackD,
Style@"Approximation", 14, Plain, BlackD<, PlotMarkers ® 88"à", 15<, 8"æ", 15<<,

PlotLabel -> Style@"Transition densities", 20, Plain, BlackD,
PlotLegend ® 8Style@"AnHy,tÈx,sL", 12, Plain, Black, ItalicD,

Style@"RnHy,tÈx,sL", 12, Plain, Black, ItalicD<, LegendShadow ® None,

LegendSize ® 0.4, LegendPosition ® 8+.25, -.25<, ImageSize -> 500E

which returns the following graph:
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5 Feynman-Kac potentials

This section has roughly the same set-up as section 3. The first subsection will discuss

the problem definition (the Schrödiger equation in a probabilistic setting) and the second

subsection will introduce the first- and last-interaction decompositions, resulting in two

integral equations. Subsection 5.3 will derive the resulting series expansions and it will

show that it matches the series expansion of the Feynman-Kac functional. Subsection 5.4

will discuss the reason for alternating/monotone convergence and will suggest a new set of

‘Feynman rules’ for a diffusion with a potential V . Subsection 5.5, finally, will make the

link with subsection 3.9 and show how to write the solution to boundary value problems

as a Feynman-Kac exponential.

5.1 The Schrödinger equation in a probabilistic setting

In quantum mechanics the motion of a physical particle is determined by the Schrödinger

equation. We will transform the Schrödinger equation into a probabilistic setting by going

to imaginary time (t→ −i t). Larger mass m of a particle (i.e. higher inertia) is analogous

to lower variance σ2 of a Brownian motion, suggesting we set m = 1
σ2 . With these changes

and with ~ = 1, our version of the Schrödinger equation — with boundary conditions and

initial conditions — reads as follows:

forward PDE

(
∂

∂t
− σ2

2
∇2
y + λV (y)

)
ψV (y, t|x, s) = 0,

backward PDE

(
∂

∂s
+
σ2

2
∇2
x − λV (x)

)
ψV (y, t|x, s) = 0,

forward BC lim
|y|→∞

ψV (y, t|x, s) = 0,

backward BC lim
|x|→∞

ψV (y, t|x, s) = 0,

forward STC lim
s↗t

ψV (y, t|x, s) = δ(|y − x|),

backward STC lim
t↘s

ψV (y, t|x, s) = δ(|y − x|).

(5.1.1)

Here and elsewhere PDE stands for ‘partial differential equation’, BC stands for ‘boundary

condition’ and STC stands for ‘short time condition’. In the above, ψ is the usual wave-

function of quantum mechanics, where (y, t) and (x, s) are referred to as the ‘forward’

and ‘backward’ space-time coordinates, respectively. We use the symbol ψ since this is

customary in quantum mechanics, but we will think of ψ as a probability density, where

the dependence on the potential is indicated through the subscript. The coupling constant

λ measures the ‘strength’ of the coupling with the potential V . It can be proved under

quite general conditions that the Schrödinger transition density 1) exists, 2) is unique and

3) is determined by the above conditions. See for example [59].
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The BCs hold when the potential V does not grow exponentially at infinity, which

we assume. The PDEs can be seen to hold through the following probabilistic interpre-

tation of (5.1.1). Suppose that we have a Brownian motion as before, except we add the

possibility that some catastrophic event happens, during time ds, annihilating the particle

and reducing to zero the probability of propagation to any location, at any later time.

This event we call an interaction with the potential. Suppose that an interaction happens

with a probability that is a product of the strength of the potential at a certain location,

and the time spent there. This means that during ds, and at location x, an interaction

happens with probability λV (x) ds. In any probabilistic interpretation we must have that

the transition density ψV is unbiased, and the ‘catastrophic event’ interpretation implies

that we must have

ψV (y, t|x, s) = (1− λV (x) ds) E ψV (y, t|x+ dB, s+ ds) + λV (x) ds× 0,

where with probability (1− λV (x) ds) the particle stays alive and where with probability

λV (x) ds the particle gets annihilated by the potential. Using the Itô lemma (1.4.2) we

obtain to first order in ds that(
σ2

2
∇2
x +

∂

∂s
− λV (x)

)
ψV (y, t|x, s) = 0,

and similarly for the forward PDE. If the Brownian particle is not annihilated but instead its

probabilistic ‘weight’ is doubled upon an interaction, then with probability (1−λV (x) ds)

the density goes to Eψ(y, t|x+dB, s+ds), but with probability λV (x) ds it becomes twice

that, i.e.

ψV (y, t|x, s) = (1− λV (x) ds)EψV (y, t|x+ dB, s+ ds) + (λV (x) ds)× 2EψV (y, t|x+ dB, s+ ds),

= (1 + λV (x) ds)EψV (y, t|x+ dB, s+ ds).

To first order in ds this leads by Itô’s lemma (1.4.2) to(
σ2

2
∇2
x +

∂

∂s
+ λV (x)

)
ψV (y, t|x, s) = 0.

We realise that this equation could have been obtained immediately by switching the sign

of V . Thus we see that a positive potential in (5.1.1) destroys a Brownian particle (upon

an interaction), while a negative potential creates another Brownian particle (upon an

interaction). Interactions with the potential do not change the endpoints of Brownian

paths; it just gives them more or less weight. If there are one or more interactions with a

positive potential, then the weight goes to zero. If there are i interactions with a negative

potential, then the weight goes to 2i. This leads to a modified transition density function.

The STCs are satisfied, finally, because the probability of an interaction is proportional

to ds and thus within a very short period of time, the Brownian particle stays 1) alive and

2) where it is.
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As an example, when the rate of annihilation or creation is constant, we get that the

‘number’ of paths arriving at (y, t) gets multiplied by

lim
n→∞

(
1± λ(t− s)

n

)n
= e±λ(t−s),

where the time interval from s to t is split up in n intervals, in each of which an interaction

occurs with probability λ(t− s)/n. Therefore we get that:

ψ(V=∓1)(y, t|x, s) = e±λ(t−s)B(y, t|x, s),

for creation and annihilation of paths. A famous example of a quantum mechanical poten-

tial is the ‘harmonic oscillator’, where V (x) = x · x — see for example [60], p. 185. In the

quantum mechanical interpretation, the harmonic oscillator tends to confine the particle

to a region to the origin. This is because the expected ‘force’ equals the negative gradient

of the potential, and thus the force points towards the origin and is linear in the distance

away from the origin. In the probabilistic interpretation, the Brownian particle also tends

to be found in a region close to the origin, but now because the probability of annihilation

grows larger without bound, away from the origin.

We know that the Brownian particle must be somewhere at every intermediate time,

and therefore we have the Chapman-Kolmogorov equation

Chapman-Kolmogorov ψV (y, t|x, s) =

∫
D

dαψV (y, t|α, τ)ψV (α, τ |x, s), (5.1.2)

for any s ≤ τ ≤ t, and where the STCs ensure that the Chapman-Kolmogorov equation

also holds in the limit where τ goes to s or t. See for example [14], p. 36. The Green

function exists for all positive (annihilating) potentials V and equals

GV (y, x) :=

∫ ∞
s

ψV (y, t|x, s) dt. (5.1.3)

For potentials that are positive, the time spent by a Brownian motion at any location

is finite, since the particle will almost surely be annihilated before time goes to infinity.

For negative potentials, which create particles, the time spent at any location may be

infinite and therefore the Green function might not exist. For positive potentials the Green

function satisfies(
σ2

2
∇2
y − λV (y)

)
GV (y, x) =

(
σ2

2
∇2
x − λV (x)

)
GV (y, x) = −δ(|y − x|),

lim
|y|→∞

GV (y, x) = lim
|x|→∞

GV (y, x) = 0.
(5.1.4)

This can be verified by using (5.1.1). Because paths are annihilated by a positive potential,

the density of all paths that are ‘alive’ is decreasing. The change in ‘total density’ is given
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by
∂

∂τ

∫
Rd

dα ψV (α, τ |x, s) =

∫
Rd

dα

(
σ2

2
∇2
α − λV (α)

)
ψV (α, τ |x, s),

= −λ
∫
Rd

dα V (α)ψV (α, τ |x, s),

using the divergence theorem and the BCs of (5.1.1). This further supports our interpre-

tation of creation and annihilation by the potential V . As we can see, the total density

increases/decreases proportional to λ and to the relative likelihood of each possible posi-

tion, weighted by the potential V — and decreases if V is positive, and increases if V is

negative.

5.2 First- and last-interaction decompositions

In the previous subsection we have reviewed the Schrödinger equation in a probabilistic

setting, without doing anything new. The original research on this topic starts here.

In this subsection we will think of V as positive, i.e. annihilating particles. While this

is useful for the intuition, the calculations will never actually require V to be positive, and

therefore the results will hold for all V . Using the STCs and the fundamental theorem of

calculus, we can write down two identities, namely

FI ψV (y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

(
∂

∂τ

)∫
Rd

dα B(y, t|α, τ)ψV (α, τ |x, s),

LI ψV (y, t|x, s) = ψF (y, t|x, s)−
∫ t

s
dτ

(
∂

∂τ

)∫
Rd

dα ψV (y, t|α, τ)B(α, τ |x, s).
(5.2.1)

The names FI and LI stand for first and last interaction. The reason that they hold is

identities, is that the fundamental theorem of calculus says that

FI ψV (y, t|x, s) = B(y, t|x, s) +

(
lim
τ↗t
− lim
τ↘s

)∫
Rd

dα B(y, t|α, τ)ψV (α, τ |x, s),

LI ψV (y, t|x, s) = B(y, t|x, s)−
(

lim
τ↗t
− lim
τ↘s

)∫
Rd

dα ψV (y, t|α, τ)B(α, τ |x, s).
(5.2.2)

The STCs then show that both decompositions hold by definition. The approach here

should remind the reader of subsections 3.2 and 3.4. To explain the nomenclature we

introduce the first- and last-interaction times. With the convention that inf{∅} =∞ and

that sup{∅} = −∞ we have for the first- and last-interaction times

FI τFI(t|x, s) = inf
τ

{
s ≤ τ ≤ t : an interaction happens at time τ

∣∣Bs = x
}
,

LI τLI(t|x, s) = sup
τ

{
s ≤ τ ≤ t : an interaction happens at time τ

∣∣Bs = x
}
.

(5.2.3)

– 98 –



– Part I –

Recall Chapman-Kolmogorov, which says

Chapman-Kolmogorov ψV (y, t|x, s) =

∫
D

dα ψV (y, t|α, τ)ψV (α, τ |x, s).

Both propagators are annihilated propagators ψV , because to survive up to time t the

Brownian particle must survive first up to time τ and then from time τ up to time t. But

now consider instead the following quantity:∫
D

dα ψV (y, t|α, τ)B(α, τ |x, s).

The free propagator counts all paths from (x, s) to (α, τ), regardless of whether interactions

occur or not. In effect, therefore, by making this change we allow interactions to happen

in the time up to time τ , while not requiring them. The last interaction (if at all) must

therefore have happened before time τ . Extending this reasoning, we propose that

FI P
(
Bt ∈ dy; τFI ≥ τ

∣∣Bs = x
)

=

∫
Rd

dα B(y, t|α, τ)ψV (α, τ |, s),

LI P
(
Bt ∈ dy; τLI ≤ τ

∣∣Bs = x
)

=

∫
Rd

dα ψV (y, t|α, τ)B(α, τ |, s).
(5.2.4)

Recall that a positive potential V kills paths, such that the propagator ψV counts paths

without interactions, and that the free propagator B counts all paths regardless of whether

interactions happen or not. The free propagator allows interactions but does not require

them, and therefore it is crucial that we specified that inf{∅} =∞ and that sup{∅} = −∞.

Continuing, we find

FI P
(
Bt ∈ dy; τFI ∈ dτ

∣∣Bs = x
)

= −
(
∂

∂τ

) ∫
Rd

dα B(y, t|α, τ)ψV (α, τ |, s),

LI P
(
Bt ∈ dy; τLI ∈ dτ

∣∣Bs = x
)

=

(
∂

∂τ

) ∫
Rd

dα ψV (y, t|α, τ)B(α, τ |, s).
(5.2.5)

We realise that the probability that no interaction happens equals ψV , i.e.

FI P
(
Bt ∈ dy; τFI =∞

∣∣Bs = x
)

= ψV (y, t|x, s),

LI P
(
Bt ∈ dy; τLI = −∞

∣∣Bs = x
)

= ψV (y, t|x, s).
(5.2.6)

By subtracting from the free density all those paths with a first or last interaction, we get

FI ψV (y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

(
∂

∂τ

) ∫
Rd

dα B(y, t|α, τ)ψV (α, τ |x, s),

LI ψV (y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

(
∂

∂τ

) ∫
Rd

dα ψV (y, t|α, τ)B(α, τ |x, s).
(5.2.7)
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We have re-derived the set of identities that we started with. While the interpretation of

first and last interactions presents itself naturally for a positive (i.e. killing) potential, it

is obvious that both identities hold for any reasonably behaved potential. Using the PDEs

of (5.1.1), we get

FI ψV (y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)

{
σ2

2

←−
∇2
α −

σ2

2

−→
∇2
α + λV (α)

}
ψV (α, τ |x, s),

LI ψV (y, t|x, s) = B(y, t|x, s)

+

∫ t

s
dτ

∫
Rd

dαψV (y, t|α, τ)

{
σ2

2

←−
∇2
α −

σ2

2

−→
∇2
α − λV (α)

}
B(α, τ |x, s).

(5.2.8)

With Green’s identity (1.3.1), we can transform the integral over the ‘interior’ of Rd to one

over the ‘boundary’ of Rd. While it may not be obvious that Green’s theorem holds for

Rd, we could approximate Rd by some very large domain D. Green’s theorem would hold

for this domain, and we would get

FI ψV (y, t|x, s) = B(y, t|x, s)

+
1

2

∫ t

s
dτ

∫
∂D

dβ B(y, t|α, τ)
{←−
∂β −

−→
∂β

}
ψV (α, τ |x, s)

−
∫ t

s
dτ

∫
D

dα B(y, t|α, τ)
{
λV (α)

}
ψV (α, τ |x, s),

LI ψV (y, t|x, s) = B(y, t|x, s)

−1

2

∫ t

s
dτ

∫
∂D

dβ ψV (y, t|α, τ)
{←−
∂β −

−→
∂β

}
B(α, τ |x, s)

−
∫ t

s
dτ

∫
D

dα ψV (y, t|α, τ)
{
λV (α)

}
B(α, τ |x, s).

(5.2.9)

When the domain D grows bigger and bigger, the BCs in (5.1.1) demand that the boundary

terms disappear, and in the limit where D → Rd we get

FI ψV (y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)
{
λV (α)

}
ψV (α, τ |x, s),

LI ψV (y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα ψV (y, t|α, τ)
{
λV (α)

}
B(α, τ |x, s).

(5.2.10)

In the physics literature these are sometimes known as Dyson’s equation, or the Lippmann-

Schwinger equations, but this derivation and interpretation are new.

The nomenclature that is adapted may be counter-intuitive to physicists. In the physi-

cist’s mind, the potential does not annihilate the particle, but instead it scatters it. There-
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fore B would represent free propagation, i.e. without interactions, while ψV allows inter-

actions. But we will stick with a probabilistic interpretation, where the free propagator

counts all paths that start from (x, s) and that end at (y, t), but where only a subset

of those stay alive when the potential is positive; i.e. only paths with no interactions

contribute to ψV .

It should be noted that in the derivation of the FI and LI integral equations we have

used all 6 conditions of (5.1.1). First we used the forward and backward STCs to write down

two identities, then we used both PDEs under the integral sign, and, finally, we discarded

the forward and backward boundary terms at spatial ∞. The two integral equations are

therefore equivalent to the 6 original conditions, and if we can solve the integral equation,

then, by uniqueness, we must also have obtained the solution to (5.1.1). Thus we obtain

the following proposition:

Proposition 5. FI and LI decomposition of ψV . For a potential V that does not grow

exponentially at infinity, and for all x, y ∈ Rd, the following formulations of Brownian

motion in the presence of a potential are equivalent:(
∂
∂t −

σ2

2 ∇
2
y + λV (y)

)
ψV (y, t|x, s) = 0(

∂
∂s + σ2

2 ∇
2
x − λV (x)

)
ψV (y, t|x, s) = 0

lim
|y|→∞

ψV (y, t|x, s) = 0

lim
|x|→∞

ψV (y, t|x, s) = 0

lims↗t ψV (y, t|x, s) = δ(|y − x|)
limt↘s ψV (y, t|x, s) = δ(|y − x|)


=



FI ψV (y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)
{
λV (α)

}
ψV (α, τ |x, s)

LI ψV (y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα ψV (y, t|α, τ)
{
λV (α)

}
B(α, τ |x, s)

(5.2.11)

The formal solution is given by

ψV (y, t|x, s) = B(y, t|x, s) +
∞∑
i=1

(−λ)i

∫ dθi · · ·
∫
dθ1

s≤θ1≤···≤θi≤t


×
∫
Rd

dαiB(y, t|αi, θi)V (αi)

 i−1∏
k=1

∫
Rd

dαk B(αk+1, θk+1|αk, θk)V (αk)

B(α1, θ1|x, s),

which can be obtained by substituting the LI decomposition into itself repeatedly. The same

can be done by substituting the FI decomposition into itself.

It should be noted that the derivation of this proposition almost completely mirrors

the derivation in subsections 3.2 and 3.4, where we derived the first- and last-passage

(reflection) decompositions, and stated them in Propositions 1 and 2. This close connection

has not been revealed before, and it is not coincidental that we present the results on
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the Schrödinger equation in such a similar manner. The fact that the same approach is

fruitful is remarkable already, because boundary value problems and potential problems

are considered as separate objects of study. To pursue the analogy further, we will derive

here the counterpart to the series solution of Propositions 3 and 4. A simple method is

to substitute the equations on the right-hand side of Proposition 5 back into themselves

repeatedly, leading to a series solution. But with an eye on a future application, we will

be a little bit more formal. We define the operator K as operating on some test-function

f, either on the left or right side, as follows

K ∗ f(y, t|x, s) :=

∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)V (α) f(α, τ |x, s),

f(y, t|x, s) ∗K :=

∫ t

s
dτ

∫
Rd

dα f(y, t|α, τ)V (α)B(α, τ |x, s).
(5.2.12)

We say that the operator K is positive (negative) if V is positive (negative). With this

notation we can write the FI and LI decompositions as follows

FI ψV (y, t|x, s) = B(y, t|x, s)− λ K ∗ ψV (y, t|x, s)

LI ψV (y, t|x, s) = B(y, t|x, s)− λ ψV (y, t|x, s) ∗K
(5.2.13)

Inviting the ‘solution’ to be written as follows:

FI ψV (y, t|x, s) =
1

1 + λK∗
B(y, t|x, s),

LI ψV (y, t|x, s) = B(y, t|x, s) 1

1 + ∗Kλ
.

(5.2.14)

Here and elsewhere, the action of an operator in the denominator is defined by its series,

i.e.

FI
1

1 + λK∗
B(y, t|x, s) =

(
1− λK ∗+λ2K ∗K ∗ −λ3K ∗K ∗K ∗+ . . .

)
B(y, t|x, s),

LI B(y, t|x, s) 1

1 + ∗Kλ
= B(y, t|x, s)

(
1− ∗Kλ+ ∗K ∗Kλ2 − ∗K ∗K ∗Kλ3 + . . .

)
.

(5.2.15)

It can easily be checked that both series are equal, term by term. For a positive potential we

get convergence in an alternating fashion, just like the expansion for 1/(1 + x) converges

in an alternating fashion, provided that 0 < x < 1. For a negative potential we get

convergence in a monotone fashion, just like the expansion for 1/(1 − |x|) converges in a

monotone fashion, provided that |x| < 1. This indicates that the propagator ψV may also

exist for negative potentials as long as the potential V is finite.

5.3 The Feynman-Kac formula

The Feynman-Kac formula that appeared in [44] suggests itself through the interpretation

of V as a rate of killing. It is useful because it allows us to write the series solution of
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Proposition 5 in a very compact manner. We will first derive it heuristically, and afterwards

we will show that its Taylor expansion agrees with the series suggested by Proposition 5.

We slice the time from s to t up such that there are N intermediate locations. Therefore

we have that the length of each time interval is ε = (t − s)/(N + 1). Using τi as the

intermediate times, such that τi = s+ i ε, then we have for i running from 0 to N + 1 that

τ0 = s and τN+1 = t and all the other τi for 1 ≤ i ≤ N refer to N intermediate times. If a

path from (x, s) to (y, t) is defined by its N intermediate locations {Bτ1 , · · · , BτN } then we

have that the probability of survival of this path is a product of N + 1 probabilities: one

for each intermediate location, and one for the end-point (it is assumed that the particle

is not annihilated at the starting point). Therefore the probability of survival becomes

N+1∏
i=1

(1− λ ε V (Bτi)) ≈
N+1∏
i=1

e−λ ε V (Bτi ) = e−λ
∑N+1
i=1 V (Bτi ) ε → e−λ

∫ t
s V (Bτ )dτ (5.3.1)

and where the last relationship holds in the limit for large N and where the path is no

longer defined by its intermediate locations but rather by the entire, continuous, nowhere-

differentiable Brownian path. If the above is the probability that a given path should

survive (with N known intermediate locations), then the probability that any path should

survive is obtained by taking an expectation over all possible intermediate locations, i.e.

over all paths. If we want the path to end up at y then we need to take an expectation

over all paths while enforcing the last position to be y. We can achieve this by plugging in

a δ-function at y. Thus we are lead to propose that

ψV (y, t|x, s) = E
(
δ(Bt − y) e−λ

∫ t
s V (Bτ ) dτ

∣∣Bs = x
)

(5.3.2)

where we note that if the potential (or coupling constant) is zero, then the free propagator

B results as follows

B(y, t|x, s) = E (δ(Bt − y)|Bs = x) =

∫
dα δ(α− y)B(α, t|x, s) = B(y, t|x, s).

Again we note that a positive potential, which kills paths, leads to a propagator ψV which

is smaller than the free propagator B, while a negative potential ensures that ψV is larger

than B. Like the Feynman path integral, the Feynman-Kac exponential can usually not

be calculated exactly. But it is easy enough to write down its perturbation series:

E
(
δ (Bt − y) e−λ

∫ t
s V (Bτ ) dτ

∣∣Bs = x
)

=

∞∑
i=0

1

i!
E

(
δ (Bt − y)

(
−λ
∫ t

s
V (Bτ ) dτ

)i ∣∣Bs = x

)
.

(5.3.3)

The resulting series is called the Born series by physicists, such as [46] (p. 163), but it does

not have a special name to probabilists, who simply ‘expand the exponential as a power

series’, such as in [12] (p. 214). The expansion should behave properly (i.e. converge)
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when the time-integral of V (.) is finite. Let us define the coefficients of the expansion as

follows:

E
(
δ(Bt − y) e−λ

∫ t
s V (Bτ ) dτ |Bs = x

)
= B(y, t|x, s) +

∞∑
i=1

ai(y, t|x, s).

Further note that we have

1

i!

(
−λ
∫ t

s
V (Bτ ) dτ

)i
=

(−λ)i

i!

∫ t

s
dθi · · ·

∫ t

s
dθ1

i∏
j=1

V
(
Bθj
)
.

We note that the integrand, being the product of i copies of V , is symmetric in the ex-

change of any of its arguments. With i terms there are i! ways of ordering them, but

all possible orderings of the integrand give the same contribution to the overall integral.

Therefore we may enforce that θi ≥ θi−1 ≥ ... ≥ θ1, rather than allowing all θi to have

independent integration ranges spanning [s, t]. This time-ordered integration range is i!

times smaller than the original region of integration, matching exactly the combinatorial

pre-factor. Therefore we have that

1

i!

(
−λ
∫ t

s
V (Bτ ) dτ

)i
= (−λ)i

[∫
dθi · · ·

∫
dθ1

]
s≤θ1≤···≤θi≤t

i∏
j=1

V
(
Bθj
)

where the integrals on the right-hand side are time-ordered, and thus we obtain

ai(y, t|x, s) = (−λ)i
[∫

dθi · · ·
∫
dθ1

]
s≤θ1≤···≤θi≤t

E

δ(Bt − y)
i∏

j=1

V (Bθj )
∣∣∣Bs = x

 .

The reason that time-ordered integrands are useful under expectation signs, is that we may

now make use of the Markov property. Recall that the law of iterated expectations says

that for any time τ smaller than t we have

Ef(Bt) = E(E(f(Bt)|Fτ )) = E(E(f(Bt)|Bτ ))

which is also known as the tower-property. We want to use the tower property on a product

involving i terms, where s ≤ θ1 ≤ · · · θi ≤ t. For the first application of the tower property,

there are two possible actions

• Condition on θ2, · · · , t, and take an expectation at time θ1.

• Condition on θ1, · · · , θi, and take an expectation at time t.
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In essence, we can work our way through the product in the forward or backward time

direction. The first choice gives that

ai(y, t|x, s) = (−λ)i

∫ dθi · · ·
∫
dθ1

s≤θ1≤···≤θi≤t


×
∫
Rd

dαiB(y, t|αi, θi)V (αi)

 i−1∏
k=1

∫
Rd

dαk B(αk+1, θk+1|αk, θk)V (αk)

B(α1, θ1|x, s)

(5.3.4)

where the inner-most integration is over α1 and at time θ1. The second choice gives

ai(y, t|x, s) = (−λ)i

∫ dθi · · ·
∫
dθ1

s≤θ1≤···≤θi≤t


×
∫
Rd

dα1B(α1, θ1|x, s)V (α1)

 i∏
k=1

∫
Rd

dαk V (αk)B(αk, θk|αk−1, θk−1)

B(y, t|αi, θi)

(5.3.5)

where the innermost integration is over αi at time θi. The integrations over αj span all of

Rd and it is tempting to pull them all to the front of the expression. It would be nice if all

the integrations were written at the front, as opposed to in a concatenated fashion within

the expression. When the potential V is a nice function, then it is useful (and customary)

to pull all the space-integrations to the left of the formula, as in [12] (p. 214) and [46]

(p. 163). But we will shortly introduce a potential V that is not nice, and that does not

commute with integration, invalidating any such procedure of ‘pulling integrations to the

left’. Therefore we will leave the expansion as it is: with the integrals over the intermediate

coordinates nested within the expression. We notice further that we have that

ai(y, t|x, s) = (−λ)K ∗ ai−1(y, t|x, s)
ai(y, t|x, s) = (−λ) ai−1(y, t|x, s) ∗K

(5.3.6)

where the operator K is defined as before in (5.2.12). And because

a1(y, t|x, s) = (−λ)K ∗B(y, t|x, s)
a1(y, t|x, s) = (−λ)B(y, t|x, s) ∗K

(5.3.7)

we find that the entire series solution can be written in two ways, i.e.

ψV (y, t|x, s) = B(y, t|x, s) +

∞∑
i=1

(−λ)i (K∗)iB(y, t|x, s)

ψV (y, t|x, s) = B(y, t|x, s) +

∞∑
i=1

(−λ)iB(y, t|x, s) (∗K)i
(5.3.8)
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and we realise that the Feynman-Kac exponential produces exactly the same series solution

that the integral equations of Proposition 5 produce. Of course both series solutions are

equal, and this can easily be seen when the potential V is nice. It may therefore seem

a little artificial to treat the two series so separately. However, as can be seen from the

integral equations derived in the last subsection, i.e.

FI ψV (y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)
{
λV (α)

}
ψV (α, τ |x, s)

LI ψV (y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∫
Rd

dα ψV (y, t|α, τ)
{
λV (α)

}
B(α, τ |x, s)

(5.3.9)

we naturally get two series — by a repeated substitution of the equation into itself, where

1) the integrations over time are automatically time-ordered, and 2) the spatial integration

will automatically appear nested within the expression. Furthermore we have seen in

section 3 that for boundary value problems, one of them leads to a ‘single boundary layer’

whereas the other leads to a ‘double boundary layer’. We argued that both arise through

the first/last passage decompositions, and so their equivalence essentially derives from the

symmetry in time. The same is true for Feynman-Kac potentials, and we realise that the

one exponential can be associated with two integral equations, and thus we conclude that

Proposition 6. Feynman-Kac and 2 integral equations. For all x, y ∈ Rd, and for a

potential V that does not grow exponentially at infinity, the following problem formulations

are equivalent:

ψV (y, t|x, s) =

E(x,s)

(
δ(Bt − y)Exp

[
− λ

∫ t

s
V (Bτ )dτ

])
 =



FI ψV (y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)
{
λV (α)

}
ψV (α, τ |x, s)

LI ψV (y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα ψV (y, t|α, τ)
{
λV (α)

}
B(α, τ |x, s)

(5.3.10)

where both a ‘forward’ and a ‘backward’ integral equation can be associated with one

Feynman-Kac exponential, with solution given by

FI ψV (y, t|x, s) = B(y, t|x, s) +

∞∑
i=1

(−λ)i (K∗)iB(y, t|x, s)

LI ψV (y, t|x, s) = B(y, t|x, s) +

∞∑
i=1

(−λ)iB(y, t|x, s) (∗K)i
(5.3.11)

where the operation of the integral operator K is defined in (5.2.12).
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Again it is obvious — from our explicit symmetric treatment of first and last inter-

actions — that ψV is symmetric in the spatial coordinates x and y. We are now almost

ready to state our third and last theorem, when we take V to be V (α) = ∓σ2

2 ∇
2
1α∈D for

absorbed and reflected Brownian motion. But first we will discuss the interpretation of the

series expansion solution, and the reason for the different modes of convergence.

5.4 The Feynman rules for a diffusion

In this section we started with the Schrödinger equation (5.1.1) (subsection 5.1), second

we derived the FI and LI integral equations using all the specified conditions (subsection

5.2), and thirdly we showed that the expansion of that set of integral equations leads to

the same series solution that the Taylor expansion of the Feynman-Kac exponential leads

to (subsection 5.3).

In the physics literature, the order of proceedings is usually very different. First, the

Feynman path integral is postulated and then it is expanded in its series. Thirdly, it is

realised that this series expansion could also have been obtained by expanding a single

integral equation. [45], for example, postulate first the Feynman path integral (p. 120),

then they expand it as a power series (p. 121), and lastly (p. 126) it is realised that the

same series expression could have been obtained by the expansion of the ‘last scattering

integral equation’. A ‘first scattering integral equation’, however, is strikingly absent.

The same procedure is followed in [46] (p. 164) where again the ‘last interaction integral

equation’ is noticed to produce the same series that the path integral produces, but the

‘first interaction integral equation’ is strikingly absent.

Furthermore, the interpretation of the series expansion is very different. In Feynman’s

interpretation, the free term B counts paths without interactions, the first order term in

the Taylor expansion counts all with exactly one interaction, the second order term counts

all paths with exactly two interactions, and so on. In the physical picture, any number of

interactions are allowed and therefore ψV is the sum of all these terms. [45] write (p. 123):

The [last interaction integral equation] equation is very important and very use-

ful, so we shall develop a special interpretation to help think about it physically.

We call the interaction between the potential and the particle a scattering : thus

we say that the potential scatters the particle and that the amplitude to be scat-

tered by a potential is [proportional to V ] per unit volume and per unit time.

With this interpretation we can describe [the propagator] KV in the following

way. [The propagator] KV is, of course, a sum over alternatives ways in which

the particle may move from point a to point b. The alternatives are: 1. The

particle may not be scattered at all, K0(b, a) 2. The particle may be scattered

once, K(1)(b, a) 3. The particle may be scattered twice, K(2)(b, a). Etc. [. . . ]
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The total amplitude for motion from a to b with any number of scatterings is

K0 +K(1) +K(2) + ...+K(n) + . . ..

and a similar interpretation can be found in [46] (p. 163). Of course Feynman was dealing

with an complex wave-function, and the obtained series does not converge in an absolute

sense, because the integrands are oscillating rather than vanishing at ∞. To investigate

convergence, one often makes use of what is called ‘analytic continuation’: transforming

the time-variable t → −i t. We have already pointed out that this transformation turns

the problem into one of Brownian motion, where the positive potential V kills paths at a

rate corresponding to its magnitude. The convergence of the Taylor series can be shown,

and has been shown. But it has not been interpreted as we interpret it here.

Feynman’s interpretation suggests that the convergence should be monotone: each

term adds more paths to the propagator. But instead we have established that the series

solution converges in an alternating fashion when the potential is positive. Furthermore,

in the probabilistic interpretation the free propagator counts all paths, regardless of the

number of interactions, while ψV counts only paths with zero interactions, because each

interaction kills the particle. Therefore we propose a combinatorial Pascal interpretation

as follows:

Theorem 2. Combinatorial Feynman rules. The Feynman rules for a Brownian

particle, in the presence of a positive (i.e. killing) potential V , are as follows:

free term

λ1 term

λ2 term

λ3 term

λ4 term
...


=



1 1 1 1 1 · · ·
0 1 2 3 4 · · ·
0 0 1 3 6 · · ·
0 0 0 1 4 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .


.



paths with 0 interactions

paths with 1 interaction

paths with 2 interactions

paths with 3 interactions

paths with 4 interactions
...


(5.4.1)

where we have the infinite upper-triangular Pascal matrix, and where each λi-term is pos-

itive and defined by

λi-term = λi

∫ dθi · · ·
∫
dθ1

s≤θ1≤···≤θi≤t


×
∫
Rd

dαiB(y, t|αi, θi)V (αi)

 i−1∏
k=1

∫
Rd

dαk B(αk+1, θk+1|αk, θk)V (αk)

B(α1, θ1|x, s)

(5.4.2)
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This interpretation implies that

P
(
Bt = y; exactly i interactions

∣∣Bs = x
)

= Ex

(
δ(Bt − y)

1

i!

[∫ t

s
V (Bτ )dτ

]i
e−

∫ t
s V (Bτ )dτ

)
(5.4.3)

which returns the classical Feynman-Kac formula (with a δ-function as the initial condition)

by substituting i = 0.

The claim of Theorem 2 is that the free term B counts all paths from (x, s) to (y, t)

— regardless of the number of interactions. The first correction term, linear in λ picks

up a contribution for every interaction: it thus counts paths with i interactions i times.

The second correction term, that goes with λ2, counts all possible time-ordered pairs of

interactions: it counts paths with i interactions ‘i choose 2’ times and so on. The matrices

should be extended and are infinite in size. Inverting the Pascal matrix gives immediately

paths with 0 interactions

paths with 1 interaction

paths with 2 interactions

paths with 3 interactions

paths with 4 interactions
...


=



1 −1 1 −1 1 · · ·
0 1 −2 3 −4 · · ·
0 0 1 −3 6 · · ·
0 0 0 1 −4 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .


.



free term

λ1 term

λ2 term

λ3 term

λ4 term
...


(5.4.4)

recovering not only the expression in (1.6.3), for all paths with 0 interactions, but obtaining

the probability that exactly i > 0 interactions occur!

Proof. The interpretation follows from the fact that

E
(

number interactions from (x, s) to (y, t)
)

=

∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)P(an interaction happens at τ
∣∣Bτ = α)B(α, τ |x, s)

= λ

∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)V (α)B(α, τ |x, s)

(5.4.5)

and similarly

E
(

number of time-ordered interaction-pairs from (x, s) to (y, t)
)

= λ2
∫ t

s
dτ2

∫ τ2

s
dτ1

∫
Rd

dα2

∫
Rd

dα1 B(y, t|α2, τ2)V (α2)B(α2, τ2|α1, τ1)V (α1)B(α1, τ1|x, s)
(5.4.6)

More formally we may say that there is a set I consisting of n interaction-times as

follows:

I = {τ I1 , · · · , τ In}
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where each interaction-time τ Ii is defined as the first interaction after the previous one, i.e.

τ Ij = inf
s≤τj≤t

(τj : τj > τj−1 and an interaction happens at τj)

and where we have that inf ∅ = ∞ and τ I0 = s, such that τ I1 is the time of the first

interaction, and there are only a finite number of finite τ Ii . For some n onwards, we have

that all τ Ij are ∞, i.e. they have simply not happened. Now consider the random variable

N , the number of interactions, defined as follows

N :=
∞∑
j=1

∫ t

s
dτ δ(τ Ij − τ)

where only the τ Ij that are finite fall inside the interval [s, t] and contribute to the sum.

We calculate a weighted probability to propagate to y, where the weight is determined by

the number of interactions: i.e. paths with one interactions are counted once, paths with

two interactions are counted twice, etcetera. We see that this equals

E
(
δ(Bt − y)N |Bs = x

)
= E

δ(Bt − y)

∞∑
j=1

∫ t

s
dτ δ(τ Ij − τ)

∣∣∣Bs = x


=

∫ t

s
dτ E

δ(Bt − y)

∞∑
j=1

δ(τ Ij − τ)
∣∣∣Bs = x


And by the tower property, we have

E
∞∑
j=1

δ(τ Ij − τ) = E

[
E
( ∞∑
j=1

δ(τ Ij − τ)
∣∣Bτ)] = λE V (Bτ ) = λ

∫
Rd

dαV (α)B(α, τ |x, s)

and thus we have

E
(
δ(Bt − y)N |Bs = x

)
= λ

∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)V (α)B(α, τ |x, s)

Confirming that the first correction term picks up a contribution every time an interaction

happens — showing that the second row of the matrix-equation in Theorem 2 is correct.

Next, consider

E
(
δ(Bt − y)N2|Bs = x

)
=

∞∑
j=1

∞∑
i=1

E
(
δ(Bt − y)

∫ t

s
dτ δ(τ Ii − τ)

∫ t

s
dθ δ(τ Ij − θ)

∣∣Bs = x
)

=
∞∑
j=1

∞∑
i=1

E
(∫ t

s
dτ

∫ t

s
dθ δ(Bt − y) δ(τ Ii − τ) δ(τ Ij − θ)|Bs = x

)
.
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We see that the integrand is symmetric in i and j, and therefore we can separate out the

sum over ‘diagonal’ and ‘off-diagonal’ terms as follows:

E
(
δ(Bt − y)N2|Bs = x

)
= 2

∞∑
j=1

∞∑
i=j+1

E
(∫ t

s
dτ

∫ t

s
dθ δ(Bt − y) δ(τ Ii − τ) δ(τ Ij − θ)|Bs = x

)
,

+

∞∑
i=1

E
(∫ t

s
dτ

∫ t

s
dθ δ(Bt − y) δ(τ Ii − τ) δ(τ Ii − θ)|Bs = x

)
.

As for the ‘off-diagonal’ terms, we see that we are left with an integration over the square

[s, t]2. However, because i is always larger than j, the peaks contributions of δ(τ Ii − τ)

appear at later times than those of δ(τ Ii − θ). Therefore we only need to integrate over the

triangle (rather than the square) defined by τ > θ. Thus we have

E
(
δ(Bt − y)N2|Bs = x

)
= 2

∞∑
j=1

∞∑
i=j+1

E
(∫ t

s
dτ

∫ τ

s
dθ δ(Bt − y) δ(τ Ii − τ) δ(τ Ij − θ)|Bs = x

)
,

+
∞∑
i=1

E
(∫ t

s
dτ

∫ t

s
dθ δ(Bt − y) δ(τ Ii − τ) δ(τ Ii − θ)|Bs = x

)
.

where only the upper limit in the integral over θ has changed. The integration is now

time-ordered, and we may use the tower-property to obtain

E
(
δ(Bt − y)N2|Bs = x

)
= 2λ2

∫ t

s
dτ

∫ τ

s
dθ B(y, t|α2, τ)V (α2)B(α2, τ |α1, θ)V (α1)B(α1, θ|x, s)

+λ

∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)V (α)B(α, τ |x, s).

For example if N = 3 interactions happens, then N2 = 9. There are 3 possible time-ordered

pairs, and the off-diagonal terms contribute twice that (i.e. 6), whereas the diagonal terms

contribute 3, adding to 9 as it should. Focusing on the off-diagonal terms only, we see that

the second row in the matrix-equation of Theorem 2 consists of half the off-diagonal terms.

It follows that the number of time-ordered pairs of interactions is given by

E
(
δ(Bt − y) 1/2N(N − 1)|Bs = x

)
=

λ2
∫ t

s
dτ

∫ τ

s
dθ B(y, t|α2, τ)V (α2)B(α2, τ |α1, θ)V (α1)B(α1, θ|x, s).

This term counts paths with 2 hits once (as there is one way to pick a time ordered pair

out of 2 interactions), paths with 3 hits 3 times (as there are 3 ways to pick a time-ordered

pair from 3 interactions), paths with 4 hits 6 times (as there are 4∗3/2 ways to pick a pair

out of 4 interactions). And similarly for higher order terms.

However, we have also shown how to calculate exactly not only the probability for zero

interactions, but for any number of interactions! Writing the factors of λ explicitly in the
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Pascal matrix, we get

paths with 0 interactions

paths with 1 interaction

paths with 2 interactions

paths with 3 interactions

paths with 4 interactions
...


=



1 −λ +λ2 −λ3 +λ4 · · ·
0 +λ −2λ2 +3λ3 −4λ4 · · ·
0 0 +λ2 −3λ3 +6λ4 · · ·
0 0 0 +λ3 −4λ4 · · ·
0 0 0 0 +λ4 · · ·
...

...
...

...
...

. . .


.



B

B V B

B V B V B

B V B V B V B

B V B V B V B V B
...


where the right-hand side is schematic: all integrations and arguments have been left im-

plicit. This equation makes very clear how we can obtain the probability of any number of

interactions, from the probability of 0 interactions. For example, to obtain the probability

of 1 interaction, we may apply the operator −∂λ to the first row of the equation, and then

set λ equal to 1. The strength of the coupling constant can always be normalised such that

it equals 1; we only want differentiate with respect to it, and then set it equal to 1. We

can obtain the coefficients of other rows similarly, and we conclude that

ψi interactions(y, t|x, s)
∣∣∣
λ=1

= (−1)i
1

i!
(∂λ)i ψ0 interactions(y, t|x, s)

∣∣∣
λ=1

All these series converge in alternating fashions. Recall that we could write

ψV (y, t|x, s) = ψ0 interactions(y, t|x, s) =
1

1 + λK∗
B(y, t|x, s)

With the transition to λ = 1, we obtain

ψi interactions(y, t|x, s)
∣∣∣
λ=1

=
(K∗)i

(1 +K∗)i+1
B(y, t|x, s)

The expansion of the right-hand side as a series gives exactly the coefficients that can also

be read off from the inverted Pascal matrix above. Rewriting the last expression, we get

(K∗)iB = (1 +K∗)i+1ψi interactions where λ = 1,

where the integral-equation for i = 0 brings us back to the setting where only paths with

zero interactions survive, and the expansion of which (by substitution into itself) gives

the same combinatorial factors as can be read off from the Pascal matrix. We have now

connected a whole set of integral equations with the Pascal matrix, of which our original

integral equation is only a special case, namely i = 0.

By differentiating the Feynman-Kac formula with respect to λ we thus get that the

probability of exactly i interactions equals ψi interactions as follows:

ψi interactions(y, t|x, s) = Ex

(
δ(Bt − y)

1

i!

[∫ t

s
V (Bτ )dτ

]i
e−

∫ t
s V (Bτ )dτ

)
for λ = 1,

(5.4.7)
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where we have set λ = 1 (after the differentiation). This formula returns the Feynman-

Kac formula (with a Dirac δ-function as the initial condition) simply by substituting i = 0.

Concluding, this formula provides a new interpretation for the ‘Feynman-rules’ of a diffusion

with an annihilating potential. It turns out that we have recovered an expression that

reminds us strongly of an inhomogeneous Poisson process. An inhomogenious Poisson

process counts the number of events that occur within a given time interval. Arrivals are

independent and occur at each time τ with probability λ(τ). It is well-known that the

random number N , which counts the number of events in the period [s, t], is distributed

like this:

P (N = i) =
1

i!

(∫ t

s
λ(τ)dτ

)i
e−

∫ t
s λ(τ)dτ ,

The resemblance with the above is clear.

The last expression can also be understood intuitively. Consider for example the prop-

agation from (x, s) to (y, t) with exactly 1 interaction, on either of N intermediate locations

or the final location y. To obtain the probability that this happens, we must multiply N+1

probabilities: N for ‘no interaction’ and 1 for an interaction. Also, we must sum over all

locations where the 1 interaction could have happened. With the probability of an inter-

action being proportional to V and the probability of no interaction being proportional to

1− V , we obtain the following heuristic expression:

N+1∑
j=1

V (Bτj ) ε

N+1∏
i 6=j

(1− ε V (Bτi)) ≈
N+1∑
j=1

V (Bτj ) ε

N+1∏
i=1

e−λ ε V (Bτi ) →
(∫ t

s
V (Bτ )dτ

)
e−λ

∫ t
s V (Bτ )dτ

and for multiple interactions a similar argument can be made, where the symmetry factor
1
i! is needed not to over count.

If we can calculate the propagator corresponding to the potential V exactly, (i.e. not

as a series), then we can also calculate the propagator with exactly i interactions exactly,

by differentiating i times with respect to the coupling constant λ, and multiplying by (−1)i
i! ,

and setting λ = 1.

When the potential is positive, we have obtained an alternating series. But when

the potential is negative, then the operator K is negative, and the series converges in

a monotone fashion. In terms of counting paths, what is going on? In the annihilated

case, the propagator had to count only paths with no interactions with the potential,

because any interaction killed the particle. For particle creation, the propagator should

similarly count paths with no interactions once, because they contribute to the density at

the target point once. But now paths with one interaction, however, should be counted

twice: corresponding to one doubling of the weight. Paths with 2 interactions should be

counted 4 times, and paths with 3 interactions 8 times. Each path contributes to the final
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density corresponding to its weight. Again we write the λ1 term∫
Rd

dαB(y, t|α, τ)λ|V (α)|B(α, τ |x, s),

where the only difference with the previous case is that we need absolute bars around V to

interpret it as the probability of an interaction (V itself is negative). Just as before we find

that the first perturbation term counts more than just paths with one interaction. Paths

with two interactions are counted twice, and paths with three interactions are counted

three times. Therefore, we have again:

free term∣∣λ1 term
∣∣∣∣λ2 term
∣∣∣∣λ3 term
∣∣∣∣λ4 term
∣∣

...


=



1 1 1 1 1 · · ·
0 1 2 3 4 · · ·
0 0 1 3 6 · · ·
0 0 0 1 4 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .


.



paths with 0 interactions

paths with 1 interaction

paths with 2 interactions

paths with 3 interactions

paths with 4 interactions
...


.

Previously we counted only paths with zero interactions. In this case what we want to do

is count paths with i interactions 2i times. Thus we want to obtain

total density =
(

1 2 4 8 16 · · ·
)
.



paths with 0 interactions

paths with 1 interaction

paths with 2 interactions

paths with 3 interactions

paths with 4 interactions
...


.

By adding the rows of the Pascal matrix above, we see that this can be obtained by

total density = free term +
∞∑
i=1

∣∣λi term
∣∣ ,

where it is obvious that the total density should converge in a monotone fashion.

5.5 Boundary value problems as Feynman-Kac potentials

In subsection 3.9 we proved Theorem 1: for all x, y ∈ D, for all regular boundary coor-

dinates β, and for all domains allowing Green’s theorem (1.3.1), the following problem
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formulations are equivalent:(
∂t − σ2

2 ∇
2
y

)
A(y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x

)
A(y, t|x, s) = 0

A(β, t|x, s) = 0

A(y, t|β, s) = 0

lims↗tA(y, t|x, s) = δ(|y − x|)
limt↘sA(y, t|x, s) = δ(|y − x|)


=



FP A(y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)

{
−σ

2

2
∇2
α1α∈D

}
A(α, τ |x, s)

LP A(y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα A(y, t|α, τ)

{
−σ

2

2
∇2
α1α∈D

}
B(α, τ |x, s)

and(
∂t − σ2

2 ∇
2
y

)
R(y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x

)
R(y, t|x, s) = 0

−→
∂βR(β, t|x, s) = 0

R(y, t|β, s)
←−
∂β = 0

lims↗tR(y, t|x, s) = δ(|y − x|)
limt↘sR(y, t|x, s) = δ(|y − x|)


=



FR R(y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα R(y, t|α, τ)

{
σ2

2
∇2
α1α∈D

}
B(α, τ |x, s)

LR R(y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)

{
σ2

2
∇2
α1α∈D

}
R(α, τ |x, s)

and in particular that the perturbation expansion of the 4 integral equations on the right-

hand side produces exactly the first- and last-passage (reflection) series of Propositions 3

and 4. We may compare this with Proposition 5, which concluded that for all x, y ∈ Rd,
and for a potential V that does not grow exponentially at infinity, the following problem

formulations are equivalent:(
∂
∂t −

σ2

2 ∇
2
y + λV (y)

)
ψV (y, t|x, s) = 0(

∂
∂s + σ2

2 ∇
2
x − λV (x)

)
ψV (y, t|x, s) = 0

lim
y→|∞|

ψV (y, t|x, s) = 0

lim
x→|∞|

ψV (y, t|x, s) = 0

lims↗t ψV (y, t|x, s) = δ(|y − x|)
limt↘s ψV (y, t|x, s) = δ(|y − x|)


=



FI ψV (y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)
{
λV (α)

}
ψV (α, τ |x, s)

LI ψV (y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα ψV (y, t|α, τ)
{
λV (α)

}
B(α, τ |x, s)

Thus we see it is tempting to define an absorbing/reflecting potential as follows:

V (α) := ∓σ
2

2
∇2
α1α∈D

This potential manages both to replicate the desired physical situation (namely reflect or

absorb), while also allowing for an easily interpretable and computable perturbation series.

We can make sense of this seemingly ill-defined function either by 1) a limiting procedure,

or by 2) using partial integrations (or Green’s theorem) as if everything is well-behaved.

The function V above has, to the author’s best knowledge, never been defined before.
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Finally, in Proposition 6, we saw that we can associate 2 integral equations with each

Feynman-Kac functional, i.e.

ψV (y, t|x, s) =

E(x,s)

(
δ(Bt − y)Exp

[
− λ

∫ t

s
V (Bτ )dτ

])
 =



FI ψV (y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα B(y, t|α, τ)
{
λV (α)

}
ψV (α, τ |x, s)

LI ψV (y, t|x, s) = B(y, t|x, s)

−
∫ t

s
dτ

∫
Rd

dα ψV (y, t|α, τ)
{
λV (α)

}
B(α, τ |x, s)

Combining all the above, we now come to the final theorem of this paper:

Theorem 3. ABM and RBM as Feynman-Kac exponentials. For all x, y ∈ D, for

all regular boundary coordinates β, and for all domains allowing Green’s theorem (1.3.1),

the following problem formulations are equivalent:(
∂t − σ2

2 ∇
2
y

)
A(y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x

)
A(y, t|x, s) = 0

A(β, t|x, s) = 0

A(y, t|β, s) = 0

lims↗tA(y, t|x, s) = δ(|y − x|)
limt↘sA(y, t|x, s) = δ(|y − x|)


=



(
∂t − σ2

2 ∇
2
y + V (y)

)
ψV (y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x − V (x)

)
ψV (y, t|x, s) = 0

−σ2

2 ∇
2
α1α∈D = V (α)

lims↗t ψV (y, t|x, s) = δ(|y − x|)
limt↘s ψV (y, t|x, s) = δ(|y − x|)

(5.5.1)

where the left-hand problem is defined for x and y in the interior of D and all regular

boundary points β. The right-hand problem is defined for all x and y in Rd. But the claim

is that

A(y, t|x, s) = ψV (y, t|x, s) ∀x, y ∈ D (5.5.2)

where

A(y, t|x, s) = Ex
(
δ(Bt − y) e

σ2

2

∫ t
s ∇

2
u1u∈D(Bτ )dτ

)
. (5.5.3)

Similarly, we conclude for the reflected transition density R that(
∂t − σ2

2 ∇
2
y

)
R(y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x

)
R(y, t|x, s) = 0

nβ ·
−→
∇βR(β, t|x, s) = 0

R(y, t|β, s)
←−
∇β · nβ = 0

lims↗tR(y, t|x, s) = δ(|y − x|)
limt↘sR(y, t|x, s) = δ(|y − x|)


=



(
∂t − σ2

2 ∇
2
y + V (y)

)
ψV (y, t|x, s) = 0(

∂s + σ2

2 ∇
2
x − V (x)

)
ψV (y, t|x, s) = 0

σ2

2 ∇
2
α1α∈D = V (α)

lims↗t ψV (y, t|x, s) = δ(|y − x|)
limt↘s ψV (y, t|x, s) = δ(|y − x|)

(5.5.4)
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where again the problem on the left-hand side is defined for x and y in the interior of D

and all regular boundary points β, while the right-hand side is defined for all x and y in

Rd. The claim is that

R(y, t|x, s) = ψV (y, t|x, s) ∀x, y ∈ D (5.5.5)

where

R(y, t|x, s) = Ex
(
δ(Bt − y) e−

σ2

2

∫ t
s ∇

2
u1u∈D(Bτ )dτ

)
. (5.5.6)

In conclusion, the absorbing (reflecting) potential is identified as

V (u) := ∓σ
2

2
∇2
u1u∈D.

The Taylor expansion of the Feynman-Kac exponential converges as follows:

convergence of expansion absorbed BM reflected BM

convex domain alternating monotone

concave domain monotone alternating

While we admit that the path integral cannot be calculated exactly, and that the

potential ∓σ2

2 ∇
2
x1x∈D looks ill defined, at least we can say we have obtained an elegant

short-hand for the expansion of the Green function. In their book on random walks and

path integrals, [48] write

a clear indication of one of the advantages of the generating function, is that

it represents a prescription for the construction of the special function that it

generates. [. . . ] In this sense, the generating function encapsulates all infor-

mation with regard to the function that it generates. Furthermore, it contains

this information in an extremely compact form.

We conclude that our expression does exactly the above — for the transition density of

absorbed or reflected Brownian motion. In the words of theoretical physicist and chemist

[49]:

One of the principal objects of theoretical research in my department of knowl-

edge is to find the point of view from which the subject appears in its greatest

simplicity.

In this view, the main contribution of this paper is that it provides a solution — to the heat

kernel with boundary conditions and by extension for the (modified) Dirichlet problem, as

pioneered by [3] — that is 1) new and 2) very compact. If one were to communicate the

solution in the least possible number of bits, then this would be a very good candidate. It

is remarkable that the potential V above has — to the author’s best knowledge — never

been defined before.
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6 Conclusion

This paper considered the modified Dirichlet and Neumann boundary value problems for

the heat and Laplace equations, where the value and normal derivative are prescribed on

the boundary. Our approach was probabilistic in nature, interpreting the heat kernel as

the absorbed or reflected transition density of a Brownian motion.

We contrasted our approach with that of classical potential theory and its ansatz of

single and double boundary layers. We find that 1) single and double boundary layers need

not be based on an ansatz, but follow from the first- and last-interaction (or reflection)

decompositions 2) either problem may be solved with either method and their distinction

is thus arbitrary, and 3) they may be useful for irregular as well as regular domains, by

virtue of Green’s theorem. We also showed that all the information in the problem may be

represented by two integral equations with the potential is taken to be ∓σ2

2 ∇
2
u1u∈D (The-

orem 1). Furthermore we showed that the series converge in an alternating or monotone

fashion depending on the geometry of the domain (convex or concave).

Second, we considered a new approach to the Feynman-Kac functional. We introduced

the first- and last-interaction decompositions as analogous to the first- and last-passage

decompositions, and we again derived two integral equations rather than one. The per-

turbation of this series was shown to be in agreement with the Taylor expansion of the

Feynman-Kac exponential, as it expected. But we proposed a new set of Feynman rules

(Theorem 2) to explain why the series converges in an alternating or monotone fashion,

which differs from what can be found in for example [45]. The proposed Feynman rules

involve the Pascal matrix, which to date has not been connected with the Feynman-Kac

exponential, and are as follows:

free term

λ1 term

λ2 term

λ3 term

λ4 term
...


=



1 1 1 1 1 · · ·
0 1 2 3 4 · · ·
0 0 1 3 6 · · ·
0 0 0 1 4 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .


.



paths with 0 interactions

paths with 1 interaction

paths with 2 interactions

paths with 3 interactions

paths with 4 interactions
...


where each λi-term is positive. It implies that the propagation with any number i of

interactions occurs with the following probability:

P
(
Bt = y; exactly i interactions

∣∣Bs = x
)

= Ex

(
δ(Bt − y)

1

i!

[∫ t

s
V (Bτ )dτ

]i
e−

∫ t
s V (Bτ )dτ

)

where λ = 1, and where substituting i = 0 immediately returns the Feynman-Kac formula

with a δ-function as the initial condition. In the presence of an annihilating potential, only
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Figure 3. In this graph, the domain is taken to be an ellipse in d = 2. On the left we have a

smoothed out (negative) indicator of this ellipse, where the smoothing depends on ε. For ε↘ 0 we

get −1x∈D, where the domain D is the ellipse. For any ε > 0, all three functions plotted above

are continuously differentiable to all orders. But in the limit where ε ↘ 0, then we get −1x∈D
(left-hand graph), −n · ∇x1x∈D (middle graph) and −∇2

x1x∈D (right-hand graph). The singular

quantity −n · ∇x1x∈D goes to positive ∞ on the boundary of the ellipse, while −∇2
x1x∈D goes to

−∞ infinitesimally on the outside, and +∞ infinitesimally on the inside. Both singular quantities

are zero anywhere else, just like the Dirac δ- and δ′-functions.

paths with i = 0 interactions survive. This situation in probability theory corresponds to

the Schrödinger equation in quantum mechanics (by a rotation to/from imaginary time).

Finally, in Theorem 3, we proposed the synthesis of classical potential theory and the

theory of path integrals by postulating the following seemingly ill-defined potential:

V (x) := ∓σ
2

2
∇2
x1x∈D

and by showing that the transition density of absorbed or reflected Brownian motion can

be written as

Ex
(
δ(Bt − y) e±

σ2

2

∫ t
s ∇

2
u1u∈D(Bτ )dτ

)
.

This connects, as a by-product, potential theory to the study of Brownian local time. The

potential can be viewed as the ‘acceleration’ of the time spent in D by the Brownian particle

when the boundary points of D move outwards in the normal direction. The function V

above has — to the author’s best knowledge — never been defined before. We can make

sense of this seemingly ill-defined function either by 1) a limiting procedure, or by 2) using

partial integrations (or Green’s theorem) as if everything is well-behaved.

The potential also shows, for the first time, that the Dirichlet and Neumann problems

are very closely related: the potential generating the absorbed/reflected density differs only

by a sign. We have noted that positive potentials destroy paths while negative potentials

create paths. Through the one dimensional analogy, we see that the Laplacian of the

Heaviside step-function, ±∇2
x1x∈D, is equally positive and negative, as in the right-most

graph in Figure 3.
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As a result the proposed potential conserves particle number. If a particle reaches the

boundary of the domain, it is both copied (by the negative peak) and destroyed (by the

positive peak). But these actions happen at slightly different places. If the copying happens

just inside the domain, and the destroying just outside, then the boundary is reflecting from

the inside: every time it hits the boundary it is destroyed just outside the domain and put

back just on the inside. But if the destroying happens just inside the domain while the

copying happens just outside, then the particle can get out but it can never get back in.

Seen from the inside, therefore, the boundary acts as an absorbing barrier. This intuition

explains why the potential for the Dirichlet and Neumann problems differ only by a sign:

∓σ2

2 ∇
2
x1x∈D is reflecting from one side, and absorbing from the other. In one dimension

this can easily be verified (see subsection 1.8).

This result is new, and we believe that this is the first time that a boundary value

problem has been turned into a potential problem. While we admit that the path integral

cannot be calculated exactly and that the potential ∓σ2

2 ∇
2
x1x∈D looks ill defined, we can at

least say we have obtained a compact short-hand for the expansion of the Green function,

where the convergence of its Taylor series is as follows:

mode of convergence absorbed BM reflected BM

convex domain alternating monotone

concave domain monotone alternating

and where the smoothness requirement on the domain is only that it allows Green’s identity

(1.3.1) — in contrast with all series solutions that are based on an ansatz — and thus all

piecewise smooth domains in d ≥ 2 are included for the first time.

In each case, two series are possible: one where all the differential operators work

towards the right, and one where all the differential operators work towards the left. While

those series are identical, term by term, in classical potential theory one of them would be

classified as a double boundary layer and the other as a single boundary layer. Here we

have shown that their equivalence follows from the equivalence of the first- and last-passage

decompositions (if no passage is allowed, neither first nor last passages may happen).

Therefore we propose that there is no fundamental difference between single and double

boundary layers either, and neither is there a need for either to be presented as an ansatz.

Furthermore, this is the first time that Feynman-Kac path integrals have been used to

study boundary value problems, whereas previously these were considered separate fields

of study. The fundamental reason for the complexity of using path integrals for boundary

value problems is that path integrals assume the possibility of movement throughout the

whole of space. Boundary value problems, however, confine the particle to a particular

region of space. It is tempting to postulate an infinite potential outside of the allowed
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region, such that every path is annihilated there, but as a result all terms in the Taylor

series become infinite.

Merging the subjects of path integrals and boundary value problems has thus been

difficult. Either the potential does not correspond to the desired physical situation (as it

does not contain the particle), or it does, but its perturbation expansion contains terms

that are all infinite. It seems impossible to reconcile the two, and this is the first time that

a potential is presented that corresponds to the physical situation while also allowing an

easily interpretable and computable perturbation expansion.

The main contribution of this paper is that it provides a solution to the heat kernel

with boundary conditions — and by extension for the (modified) Dirichlet problem, as

pioneered by Gauss in 1840 [3] — that is 1) new and 2) very compact. If one aimed to

communicate the solution in the least possible number of bits, then the solution provided

in this paper would be a good candidate.
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[51] P. Lévy, Processus stochastiques et mouvement brownien. Suivi d’une note de M. Loève, . 33
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1 Introduction

This paper considers parallel investment in several alternative technologies or drugs that

are developed over time, and where there can only be one winner. At each point in time

it must be determined which candidates show sufficient performance and/or promise to

justify further investment. We call this the problem of alternatives.

The problem of alternatives can be viewed in the wider context of multidimensional

optimal stopping (MOS) problems. Although the theory for 1-dimensional optimal stopping

problems is well developed — see for example the extensive literature on the American

option — far fewer results can be found regarding MOS.
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The explanation of the problem of alternatives lends itself well to an informal discussion

with examples. But to treat the problem of alternatives in an MOS setting, we need to

extend the theory of 1-dimensional optimal stopping to higher dimensions, which is a

relatively technical endeavour. The introduction of this paper will therefore review the

whole of the paper in an expository manner: including the results, intuition and outline of

the proof, but excluding the proof itself. In particular, this introduction will

1. explain the problem of alternatives, and why it is relevant (subsection 1.1),

2. explain how it can be formulated as an MOS problem (1.2 and 1.3),

3. present its relationship with Brownian motion and free-boundary problems (1.4 and

1.5),

4. present the main result and its intuition (1.6),

5. discuss the relationship with the literature (1.7).

Section 2 discusses d-dimensional Brownian motion in domain D(·) with boundary condi-

tions, and provides the necessary mathematical tools for the proof in Section 3. Section 4

provides a numerical example, and Section 5 concludes.

1.1 The problem of alternatives

It is generally true that uncertainty plays a large role in investment decisions, especially in

complex and changing environments, and when consequences play out over long timeframes.

Within any firm multiple projects can be developed, each with its own risk and reward

profile, and often these projects compete for resources. Furthermore, their success may be

mutually exclusive. There may initially be many candidates for any one goal, such as in new

drug development. Many compounds are initially considered, but only one is ultimately

used in a new medicine. It may therefore be sensible for a pharmaceutical company to

invest in a portfolio of alternatives.

When betting on an externally organised race that can only have one winner, such as

a horse race, the optimal (risk-neutral) strategy is straightforward: bet everything (i.e. go

all in) on what presently looks like the best candidate, i.e. the one that has the highest

expected value. But in-house investment in a portfolio of alternatives is different in at least

two respects:

1. First, unlike in a horse race, the number of projects that are running is a decision

variable on the part of the investor. The investor could run fewer candidates at a

smaller cost, but also with a smaller probability that one of them will be a blockbuster.

Or the investor could develop more projects, where by definition more effort will turn
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out to have been in vain because only one project can win, but with a larger likelihood

that the winner performs well.

2. And second, real projects, unlike financial bets, often have a natural size and cannot

easily be scaled up or down: these are what the literature calls real options. They

can either be part of the race, or not at all — and thus the decision to include them

is a digital one.

We thus conclude that a firm could face any given number of optional projects —

where each can be part of the race or not, with its own intrinsic size and cost — and

where the project with the best final performance wins. Investing in a large portfolio of

alternatives is costly but also increases the expected performance of the winner, and thus

even a risk-neutral strategy could do well to diversify.

In the simplest example, we may suppose that there are only two projects. Suppose

that these projects have random revenues given by the normally distributed random vari-

ables Ni(µi, σ
2
i ) with means µi and variance σ2i , and known development costs, given by ci.

In this table we indicate the difference between a financial portfolio, a real portfolio and a

portfolio of alternatives:

Invest in... Financial portfolio Real portfolio Portfolio of alternatives

Project 1 only N1 − c1 N1 − c1 N1 − c1
Project 2 only N2 − c2 N2 − c2 N2 − c2
Both projects a(N1 − c1) + b(N2 − c2) (N1 − c1) + (N2 − c2) max(N1, N2)− c1 − c2

a+ b = 1

Every time we write the phrase ‘portfolio of alternatives’, the mathematical formulation

involves a max-function, as in the table above. The expectation of the max-function is, in

this case, driven by four parameters: the means and variances of both N1 and N2. With a

little work we can derive that

E
[

max(N1, N2)
]

=
σ1

2 + σ2
2

√
2π
√
σ12 + σ22

e
−(µ1−µ2)2

2(σ1
2+σ2

2) +
1

2
µ1Erfc

[
µ2 − µ1√

2
√
σ12 + σ22

]
+

1

2
µ2Erfc

[
µ1 − µ2√

2
√
σ12 + σ22

]
where ‘Erfc’ is the complementary error function Erfc = 1− Erf.1 It can be shown that

the expectation of max(N1, N2) is increasing in all four parameters µ1, µ2, σ1, σ2. This

contrasts starkly with the paradigm of financial portfolio theory, in which the maximisation

of risk-neutral expectation amounts to putting all eggs in the basket with the highest

expected return — and only risk aversion provides an incentive for diversification. For a

portfolio of alternatives, the effects may be diagonally opposite: maximising expected value

may lead to investing in several projects such that the expected performance of the winner

1Erf(x) = 2/
√
π
∫ x
0
e−t

2

dt
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is higher, whereas risk aversion may lead to investing in one project only, so as to avoid

a scenario in which multiple projects fail to produce an acceptable result. Whereas the

values of financial and real portfolios are only affected by the averages of the distributions

involved — e.g. µ1 and µ2 in this case — the value of a portfolio of alternatives is affected

by all the (entire) distributions, and in particular by their right-end tail behaviour — e.g.

as determined in this case by σ1 and σ2. In other words, the expectation of a max-function

‘feels’ the variance of its constituents. The expectation of a sum is not sensitive to the

variance of its components, and that is why a portfolio of alternatives behaves differently

from a ‘normal’ portfolio.

As a result, it is possible (but not necessary) that, amongst the three portfolios of

alternatives above, the portfolio ‘invest in both’ has the highest expectation: for finite c1

and c2 and high enough σ1 and σ2, the portfolio containing both alternatives will dominate

the value of either alone — and therefore a risk-neutral investor, who maximises expec-

tation, would invest in both projects. We see that the required actions for a portfolio of

alternatives may be diagonally opposite from the actions that would be taken for a financial

portfolio:

Financial portfolio Real portfolio Portfolio of alternatives

Increase expectation narrow down possibly diversify possibly diversify

Decrease risk diversify possibly narrow down possibly narrow down

Real portfolios and portfolios of alternatives are similar in the sense that risk increases

with the number of projects that are executed, i.e. with the amount of money on the table.

But the expectation of the portfolio of alternatives is driven by distributions rather than

expected values. In this paper, we deal only with the risk-neutral case.

Apart from the non-additivity of revenues of alternative projects, a further differ-

ence with standard (financial or real) portfolio theory is that the problem of alternatives

is dynamic. Investment in any one project will change the performance of that project

stochastically — while altering, at the same time, the potential for other projects to win

or lose, which is a departure from a dynamic (additive!) portfolio theory. Furthermore,

projects can be discontinued at any time. When simultaneously developing several com-

peting projects, therefore, the question arises whether the option value of having multiple

projects at any point in time still outweighs the cost. In the early stages of development

the option value is expected to be dominant, but it is equally clear that not all projects

should be pursued to the end.

Both a non-additive revenue structure (e.g. when projects are alternatives) and an

explicit time element are necessary ingredients for the problem of alternatives. But there

is a third ingredient: when several projects compete for the best result, the decision maker

may choose to invest either sequentially or in parallel. In a sequential strategy, and when
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i projects have already been performed, the decision to be made is whether or not to

accept profit = max(N1, . . . , Ni) −
∑i

j=1 cj or to add project i + 1 to the list. Adding

another project raises the total cost by ci+1 and may raise the maximum, but only if

the (i + 1)-th project outperforms all the previous ones. The advantage of a sequential

strategy is that the decision on whether or not to invest in the next project is taken once all

the previous results are already known, which allows for a better informed decision. The

disadvantage, however, is that a sequential search strategy pushes possible revenues further

into the discounted future. There are several versions of this problem, such as the ‘Secretary

problem’ (or ‘Marriage problem’); see e.g. [1]. In a similar style, Weitzman [2] discusses

‘Pandora’s problem’: in what order to execute different alternative projects, where only the

winner determines the revenues, and when to accept the current winner and stop searching?

Weitzman’s sequential strategy is optimal when discounting is insignificant, and when there

is an infinite time-horizon. But when the horizon is finite, or when discounting of future

revenues is significant, then parallel investment can outperform sequential investment.

Therefore it is conceivable that it is optimal to develop several alternative technologies

or drugs in parallel, even when there can only be one winner. Early on, the option value is

expected to be dominant, but it is clear that not all projects should be pursued to the end.

Finding the right balance, however, is surprisingly tricky — especially analytically. The

resulting problem can be classified as a multidimensional optimal stopping (MOS) problem.

One might be tempted to ask for conditions under which parallel development is more

profitable than sequential investment, before we try to solve the problem of alternatives.

But we need to solve the problem of alternatives first, before we can write down the

conditions under which it is profitable. However, it is clear that some set of conditions

exists under which parallel development is optimal — and we know that it is driven by

increased discounting.

Concluding, we need the following four ingredients for an interesting MOS problem:

1. The different projects need to be alternatives, as exemplified by the use of ‘max’ in

the mathematical formulation. Or more generally: there needs to be some structure

ensuring that the total revenue is a non-linear function of the project revenues. When

profits are additive, such as for a standard portfolio, then one never needs to make

‘multidimensional decisions’, as each project can be optimised in isolation.

2. There needs to be a time element, and it needs to be possible to stop investing.

In the 1-dimensional case this field is known as optimal stopping and hence our

generalisation to multidimensional optimal stopping (MOS).

3. There needs to be a finite time horizon or sufficiently high discounting such that

sequential investment is not optimal.
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Figure 1. A non-additive revenue structure, an explicit time element and a finite horizon (or signif-

icant discounting) are all necessary conditions for a non-trivial multidimensional optimal stopping

(MOS) problem. A fourth assumption that we will make is that all projects start at the same time,

and cannot be restarted once abandoned.

4. Lastly, we assume that all projects start at the same time and any project can be

abandoned at any time. Once abandoned, however, projects cannot be restarted.2

If the revenues of different projects are additive, each can be considered individually

and there is no need for a multidimensional analysis. If there is no time element or possible

stopping, it becomes a one-shot problem. If the problem poses neither discounting nor

maturity, a sequential strategy will outperform a parallel strategy. These key ingredients

are indicated in Figure 1.

As an illustration of the problem of alternatives, consider the rescue of the 33 Chilean

miners who were trapped 700 metres underground in a copper-gold mine for 69 days from 5

August 2010. The three tunnels being dug by the rescuers were alternatives (i.e. only one

was needed), it was possible to review the progress of the three tunnels over time (tunnels

A and C were abandoned once B was almost complete), and it was highly desirable that at

least one tunnel should be finished quickly (significant discounting). While in this case the

decision for a parallel strategy was hardly the result of a cost-benefit analysis, the example

does illustrate clearly that there are indeed situations when a parallel strategy is optimal.

The progress of the three different tunnels after 64 (out of the 69) days is indicated in

Figure 2, when plan B had only 90 more metres to go, and which appeared on the BBC

2Projects are not required to have the same end-date.
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Figure 2. The progress of the three different tunnels after 64 (out of the 69) days, when tunnel B

had only 90 more metres to go. From the BBC website of 8 October 2010.

website on 8 October 2010.3

For the purposes of this paper, the discounting of (or deadlines for) the success of

different projects can be either 1) caused by competitive pressure, or 2) self-imposed. In

the case of drug development, for example, it may be desirable to find a successful candidate

quickly, e.g. to combat a new and contagious disease, even if that means spending money on

many alternatives in the beginning. In the case of public spending on several alternative

green technologies, the government may wish to impose a deadline for success, so that

failing technologies are not supported indefinitely. For instance, the German government

has announced that the solar feed-in tariffs will decrease by 9% per annum. This implies,

by extrapolation, that solar energy must become economical around 2020, when the feed-

in tariff matches predicted industrial market prices. Implicitly, solar energy competes not

only against the incumbent technology that sets the 2020 target, but also against other

low-carbon technologies such as wind — where the extent to which different low-carbon

technologies are alternatives is debatable.

3http://www.bbc.co.uk/news/world-latin-america-11497394
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1.2 A portfolio of two alternatives as an MOS problem

Consider once more the fictional projects 1 and 2 introduced above. The final performance,

i.e. at maturity T = 1, is still given by the normally distributed random variables N1 and

N2 — except now the performance develops gradually and stochastically. In particular,

the performance at time t < T could be determined by

P1(t) = µ1 t+ σ1B1,t

P2(t) = µ2 t+ σ2B2,t

where B1,t and B2,t are independent Brownian motions, satisfying EBi,t = 0 and EB2
i,t = t.

As a result, the final performances P1(T ) and P2(T ) are distributed as before:

P1(T ) ∼ N1(µ1T, σ
2
1T )

P2(T ) ∼ N2(µ2T, σ
2
2T )

where the ∼ sign means ‘is distributed like’ and where the end-date of each project is

taken to be T = 1. We have shown that it may be profitable to develop both projects

simultaneously, even if only one of them can win. The value of unconditionally completing

both projects (i.e. without any intermediate revision) equals:

e−r T E
[

max(P1(T ), P2(T ))

]
−
∫ T

0
dτ e−r τ (c1 + c2)

where c1 and c2 are now interpreted as the expenditure on projects 1 and 2 per infinitesimal

unit of time, i.e. (infinitesimal) continuation cost. We have shown that for high enough σ1

and σ2, this value could be higher than 1) the value of either project alone, and 2) the value

of a sequential strategy. But it is obvious that unconditionally completing both projects is

suboptimal. It may become clear, for example, at some time earlier than T that project

1 is much more likely to win than project 2. In this case, it may be optimal to abandon

project 2 and continue only with project 1. From then onwards, the remaining project 1

will be developed optimally, and in isolation. We assume that the abandoned project 2

cannot be restarted. Therefore, the value of optimal parallel investment in projects 1 and

2 is given by V1,2 as follows:

V1,2({x, y}, s) := max
s≤τ≤T

E(x,y)

[
e−r (τ−s) max

{
V1(B1,τ , τ), V2(B2,τ , τ)

}
−
∫ τ

s
dθ (c1+c2) e

−r(θ−s)

]

where V1 and V2 are the optimal values of projects 1 and 2, if they were continued optimally

and in isolation, where the maximisation is over stopping time τ , and where the condition-

ing in the subscript of E is on the values of B1,s = x and B2,s = y. The above says that

the optimal value of having two alternative projects at time s equals 1) the expectation

of the (optimal) value of the single project that is chosen at time τ , 2) minus the cost
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to get there. In this particular example, the ‘continuation gain’ is negative and equal to

−(c1 + c2) per unit of time that both projects are continued, and the ‘stopping gain’ (i.e.

when the choice is made) equals max{V1(B1,τ , τ), V2(B2,τ , τ)}. The optimal value defined

as such is an ‘optimal value to-go’, i.e. all costs already paid (and sunk) are not included.

V1,2 thus gives the optimal value from now on. The optimal values of projects 1 and 2 are

given by:

V1(x, s) := max
s≤τ≤T

Ex

[
e−r (T−s) (µ1 T + σ1B1,T )1τ=T −

∫ τ

s
dθ c1 e

−r (θ−s)

]
,

V2(x, s) := max
s≤τ≤T

Ex

[
e−r (T−s) (µ2 T + σ2B2,T )1τ=T −

∫ τ

s
dθ c2 e

−r (θ−s)

]
.

Here 1 is the indicator function, which equals 1 if the condition in its subscript is satisfied

and 0 otherwise, and the maximisation is over all stopping times τ . The optimal value of

either project in isolation equals an expectation of the performance at maturity, if and only

if the project is not abandoned before that time, minus an expectation of the continuation

cost ci which is to be paid at each unit of time when the project is not stopped. Again,

Vi is an optimal value ‘to-go’, i.e. it only takes into account future costs and revenues,

because everything received and paid so far is already sunk.

1.3 A portfolio of multiple alternatives as an MOS problem

We will now show how to extend the two-project portfolio of alternatives to the situation

with many projects. In a general MOS problem, we may face three possible ‘gains’, where

a gain can be positive, if it is received, or negative, if it is to be paid:

• A continuation gain GC , to be received/paid at every infinitesimal unit of time dt

when the process is not stopped.

• A stopping gain GS , to be received/paid when the process is stopped before maturity.

• A maturity gain GM , to be received/paid when the process reaches maturity (i.e.

without being stopped).

Occasionally, we will write ‘continuation cost’ instead of ‘continuation gain’ when GC

is negative. Each of the three possible gains may depend both on state and time, i.e.

GS = GS(y, t), GC = GC(y, t) and GM = GM (y, T ). Not every combination of the three

gains adds up to a non-trivial optimal stopping problem. If only the maturity gain is

non-zero, for example, and positive, then one would always wait until time T and collect

GM . Such cases can be solved by inspection, and thus we assume that the problem has a

non-trivial solution and proceed from there.
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For the parallel investment in projects 1 and 2, we see that the continuation gain

equals −(c1 + c2), which is to be paid at every infinitesimal instant of time when both

projects are continued. The stopping gain equals the gain from choosing one project over

the other and continuing that project optimally, i.e. max{V1(B1,τ , τ), V2(B2,τ , τ)}. Once

the decision is taken to continue only one project, the situation changes: the continuation

gain now becomes the cost to keep that project alive for a small unit of time (i.e. ci),

the stopping gain goes to zero (as the project can be abandoned without cost), and the

maturity gain goes to Pi(T ). This is summarised in the following table:

V1,2 V1 V2

Continuation gain −c1 − c2 −c1 −c2
Stopping gain max

{
V1(B1,τ , τ), V2(B2,τ , τ)

}
0 0

Maturity gain P1(T ) P2(T )

We expect that the continuation region of V1,2 — corresponding to continued investment

in both projects — shrinks to zero as time goes to T , because an optimal policy would

never allow both projects to be completed. It would be better, for example, to abandon

the project that is almost certainly going to lose a short time before completion.

If we assume that we can solve 1-dimensional optimal stopping problems, then V1 and

V2 are known functions. We may therefore focus on exclusively on the V1,2 column in the

above table, and try to determine V1,2 given the continuation, stopping and maturity gains

in that column. Finding V1,2 amounts to solving an MOS problem.

Supposing that we can solve the 2-dimensional optimal stopping problem, we may

proceed and add a third project to the mix. The optimal value of developing three projects

in parallel is as follows:

V1,2,3({x, y, z}, s) := max
s≤τ≤T

E(x,y,z)

[
e−r (τ−s) max

{
V1,2, V1,3, V2,3

}
−
∫ τ

s

dθ (c1 + c2 + c3) e−r(θ−s)

]

where the ‘continuation gain’ equals −(c1 + c2 + c3) for every unit of time that all three

projects are pursued in parallel, and the ‘stopping gain’ is equal to the value of continuing

the chosen pair optimally, and where the maximisation is over all stopping times τ . If we

can solve the 2-dimensional optimal stopping problem above, then the Vi,j are all known

functions. Therefore, we obtain a 3-dimensional optimal stopping problem with known

continuation and stopping gains. We can extend this to the situation of four alternative

projects, and so on.

We conclude, therefore, that if we can solve a d-dimensional optimal stopping problem

— with d ≥ 1 and any given set of GC , GS and GM — we can iteratively solve all these

problems. First we would solve the optimal development of all i projects in isolation:

we would need to solve i 1-dimensional optimal stopping problems. (If all projects were
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identical, then only one 1-dimensional optimal policy would apply to all projects.) Second,

we would solve the 2-dimensional problem for all possible pairs chosen from i projects,

where the stopping gain is equal to continuing the single chosen project optimally. Third,

we would solve the 3-dimensional problem, where the stopping gain is equal to continuing

the one chosen pair optimally, and so on. Therefore, if we can solve a general optimal

stopping problem in d dimensions — with given GC , GS and GM — then we can iteratively

build the solution to the entire problem. If all projects are identical, we need to solve only

d problems: the 1-d problem once, the 2-d problem once, etc.

1.4 Brownian motion

In this paper we will show how to solve multidimensional optimal stopping (MOS) prob-

lems, where d ≥ 1. We will take the underlying stochastic space to be a d-dimensional

Brownian motion of unit variance in each spatial direction. We will call this a standard

(d-dimensional) Brownian motion, or simply Brownian motion. Using a Brownian motion

as the underlying process may be slightly unusual, because many authors take a geometric

Brownian motion as the underlying stochastic process, for example. There is some arbi-

trariness in choosing the underlying process, but we will find it useful to choose a standard

Brownian motion, and we lose no generality by doing so. But the fact that we choose

a standard Brownian motion as the underlying stochastic process does imply something

about the pay-off. To model an American option, for example, one usually takes a geo-

metric Brownian motion GBMt as the stochastic process and max{K −GBMt, 0} as the

pay-off. Instead we would take as the stochastic process the standard Brownian motion Bt

and as pay-off max{K − GBM0 e
µ t+σ Bt , 0}. It is clear that both formulations are equiv-

alent. In cases where only one of two American options may be exercised, as in [3], the

stopping gain equals

GS(GBM1,t, GBM2,t) = max
[

max
{
GBM1,t, GBM2,t

}
−K, 0

]
where the GBMs are correlated geometric Brownian motions. The stopping gain GS in our

framework would be

GS(B1,t, B2,t) = max
[

max
{
GBM1,0 e

µ1 t+σ1B1,t , GBM2,0 e
µ2 t+σ2 (ρB1,t+(1−ρ2)1/2B2,t)

}
−K, 0

]
because the processes B1,t and (ρB1,t + (1 − ρ2)1/2B2,t) each have unit variance and are

correlated with correlation ρ, where B1,t and B2,t are truly independent Brownian motions;

see e.g. [4], p. 171.

Thus we allow all problems to be solved that are, ultimately, based on a standard

Brownian motion. If the underlying process is truly different, for example when it allows

jumps, as is the case for Lévy processes, then it cannot be modelled with the methods

presented in this paper. But any process that is a function of Brownian motion can indeed

be dealt with using these methods.

– 12 –



– Part II –

1.5 Free-boundary problems

Optimal stopping problems are closely related to boundary value problems. Boundary

value problems take the boundary as given, and prescribe one boundary condition: the

value at the boundary can be prescribed (Dirichlet problem), the normal derivative can be

prescribed (Neumann problem), or a linear combination of the value and derivative can be

prescribed (third boundary value problem).

Free-boundary problems in physics and optimal stopping problems in finance origi-

nate from different disciplines and have different objects of study (e.g. Stefan’s ice-melting

problem vs American options), but mathematically they are equivalent. For these free-

boundary problems, as the name suggests, the boundary of the domain is not given, but

instead two boundary conditions are specified: both the value and normal derivative are

prescribed. The task, then, is to find the unique domain that allows both boundary condi-

tions to be satisfied. In any dimension, the domain to be found corresponds to the region

of continued investment in all alternatives. As soon as the stochastic process reaches the

boundary, one project is terminated, the continuation space reduces to d − 1 dimensions,

and d− 1 projects are continued optimally.

For optimal stopping problems with a finite horizon (i.e. maturity), the continuation

domain and its boundary are in general time-dependent. Intuitively we would expect the

optimal continuation domain to shrink over time, forcing a decision before time T . We

may summarise as follows:

domain D(·) value at ∂D(·) derivative at ∂D(·)
Dirichlet problem given prescribed to be found

Neumann problem given to be found prescribed

MOS problem to be found prescribed prescribed

Here and elsewhere, the dynamic domain and its boundary are indicated by D(·) and ∂D(·),
and where these at a specific time t are indicated by D(t) and ∂D(t).

In classical potential theory, the Dirichlet problem was posed for the Laplace operator

and for a static domain D. Parabolic potential theory poses the same problem for the

heat operator. But in both cases the value is prescribed at the boundary of the static

domain. We allow for a dynamic domain, but the fact that the value at the boundary is

prescribed still justifies that we view it as a Dirichlet problem. This holds, too, for the

classical Neumann problem and the parabolic Neumann problem, both of which prescribe

the normal derivative at the boundary of a static domain. We allow for a dynamic domain

and in that sense the terms ‘Dirichlet problem’ and ‘Neumann problem’ are used loosely:

they refer only to what kind of boundary condition is satisfied.

The optimal value V in any dimension d should satisfy four conditions. First there is

a partial differential equation to be satisfied in the interior of D(·). Then there are two
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boundary conditions: both the value and normal derivative at the dynamic boundary are

prescribed. Lastly there is a ‘boundary condition’ at maturity T , which prescribes the value

of V at maturity. The task, then, is to find 1) the optimal value V and 2) the optimal

dynamic domain D(·), where these must be determined simultaneously. The equations

satisfied by an optimal V are as follows:

The value is unbiased

(
1

2
∇2
x +

∂

∂s
− r
)
V (x, s) = −GC(x, s) x ∈ D(s),

Value-matching condition V (β, s) = GS(β, s) β ∈ ∂D(s),

Smooth-pasting condition ∂βV (β, s) = ∂βGS(β, s) β ∈ ∂D(s),

Value at maturity V (x, T ) = GM (x, T ) x ∈ D(T ).

(1.1)

The dynamic domain and its boundary at any particular time s are indicated by D(s) and

∂D(s), and the Laplacian in d dimensions is defined by

∇2
x :=

d∑
i=1

∂2

∂x2i
.

Also, β is a regular boundary coordinate, and ∂β is the inward normal derivative at the

regular boundary coordinate β. Regular boundary points are defined as those allowing a

tangent plane, at each point in time, such that the normal direction unambiguously exists.

The optimal value at space-time coordinate (x, s) is indicated by V (x, s), where x is a vector

of positions, i.e. the space-time coordinate (x, s) equals ({B1,s, · · · , Bd,s}, s). The constant

discount rate is indicated by r. These four conditions are indicated for a 1-dimensional

and a 2-dimensional token problem in Figure 3. The continuation regions that are drawn

are only indicative. The differential equation is written as ∆V = −GC where

∆ :=
1

2
∇2
x +

∂

∂s
− r.

It should also be noted that in the problem formulation (1.1), the three possible gains

G· all appear, and in different places. Apart from their intuitive appeal, therefore, their

existence is also suggested by the mathematical formulation.

We have established that we can iteratively solve the problem of alternatives that we

set out to solve, if we can solve (1.1) for any dimension d. We will now discuss each of

these four conditions in (1.1).

1. The first condition says that the value is unbiased. When x is inside D(s), a passage

from the continuation region into the stopping region cannot happen immediately.

Thus, as x progresses to x+dB and s to s+ds, where both x and dB are d-dimensional

vectors, the continuation gain GC(x, s) ds is received, and the value function goes to

V (x+ dB, s+ ds). The new value is obtained after time ds and must be discounted,
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Figure 3. Optimal stopping problems in one and two spatial dimensions, with four conditions on

the optimal value V , in each case. Together they determine the optimal value V and the domain

D(·) uniquely. The situation in dimensions d ≥ 3 is analogous — and in fact the four conditions

appear unchanged. This is because the definition for the Laplacian ∇2 and the inward normal

derivative ∂ hold for any dimension d. In d = 1 we get simply that the Laplacian equals ∂2/∂x2

and the inward normal derivative ±∂/∂x, depending on the inward direction.

i.e. we get e−r dsV (x + dB, s + ds) + GC(x, s) ds. The new value will almost surely

be different from the old value V (x, s). But on expectation, it must be the same. We

can thus write a Taylor expansion to first order in ds as follows:

V (x, s) = E
[
V (x+ dB, s+ ds) e−r ds

]
+GC(x, s) ds

= E
[(
V (x, s) +∇xV (x, s) · dB + 1

2
∇2
xV (x, s)dB · dB + ∂

∂s
V (x, s) ds

)(
1− r ds

)]
+GC(x, s) ds

= V (x, s) +

[
1
2
∇2
x + ∂

∂s
− r
]
V (x, s) ds+GC(x, s) ds

= V (x, s) +

[
∆V (x, s) +GC(x, s)

]
ds

where we have used Itô’s lemma. It should not be surprising that V is unbiased.

Ultimately V is an expectation over all possible continuation gains, stopping gains

and maturity gains, and thus — upon progressing a short time ds — the expectation

should not be expected to change! In fact, this property also holds for non-optimal

boundaries. As long as the value is defined as an expectation over all future gains until
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some stopping time determined by the first exit out of the continuation region, then

it must be unbiased. For continuous time optimal stopping problems, therefore, the

equation that is often referred to as Bellman’s dynamic programming equation has

nothing to do with optimality, but only with the fact that expectations are unbiased.

2. The second condition in (1.1) says that stopping becomes imminent as x in V (x, s)

approaches a regular boundary coordinate β on ∂D(s). We can allow a finite number

of singular boundary points, because there is zero probability that a Brownian path

will hit any of them. At regular boundary points β it is obvious that the Brownian

motion immediately exits the continuation domain and thus the only value that is

obtained, from then onwards, equals the immediate stopping value GS(β, s). Again

it should be noted that this condition has nothing to do with optimality: if the value

is defined as an expectation over all future gains and possible first exits out of a

non-optimal domain, then the ‘immediate stopping’ condition will hold also at the

boundary of the non-optimal domain.

3. We skip the third condition in (1.1) for the moment, and jump to the fourth. The

fourth condition says that as s approaches the maturity date T , the only remaining

contribution is the maturity gain GM . Again this condition holds automatically by

defining V as an expectation over all future gains, even when the domain is non-

optimal: if the Brownian path never leaves the continuation domain, then it survives

until time T and picks up GM .

4. Given the above, we must conclude that the condition that actually defines opti-

mality is the smooth-pasting condition in (1.1). The smooth-pasting condition (also

known as ‘smooth-fit’ and ‘high-order contact’) may appear mysterious, but is very

widely used and quoted; see for example [5] and [6]. The intuition is as follows: if

smooth-pasting holds, then the value of V can be approximated, on both sides of the

boundary, by one and the same hyperplane that is unambiguously defined. If instead

there is a ‘kink’ in V at the boundary, then it can be approximated by two hyper-

planes and thus locally V is either convex or concave — depending on how the two

hyperplanes meet. At the boundary of the continuation domain the decision maker

is supposed to be indifferent between continuing for an infinitesimally small time and

stopping. Therefore, the value at the boundary (i.e. stopping immediately) must

be equal to the average of continuing for a short time. If this average is taken over

a strictly convex or concave future value V , then the continuation value will either

be strictly higher or lower than the immediate stopping value — contradicting the

supposed indifference. Kinks are thus not allowed and smooth-pasting must hold; for
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a 1-dimensional explanation see e.g. [5] (p. 130), or for the multi-dimensional case

see e.g. [3] (p. 249).

1.6 Assumptions and main result

Multidimensional optimal stopping is a relatively new field, in which little is known. To

proceed, we will need to make the following (heroic!) assumptions:

1. The solution to the MOS problem (1.1), given by the pair D(·) and V (x, s), exists

and is unique.

2. The solution D(·) that solves the MOS problem (1.1) allows Green’s theorem at each

point in time: at each time it only has a finite number of edges, corners and cusps.

3. The solution D(·) that solves the MOS problem (1.1) allows Reynold’s theorem: it

moves with an integrable velocity, for all regular boundary points and at all times.

The question of whether or not a solution exists depends on the smoothness of the

three gains. If GS is smooth everywhere, then smooth-pasting should hold everywhere, and

therefore the dynamic boundary can be smooth everywhere. If GS is smooth everywhere

and if the boundary itself is continuous, then smooth-pasting will hold everywhere except

where the boundary has cusps or corners.

If GS is non-smooth on some subset of Rd, for example on the diagonal, as is the case

for max{x, y}, then smooth-pasting may not hold when the boundary crosses the diagonal.

Often, in such cases, the optimal boundary in fact never crosses the diagonal and therefore

smooth-pasting still holds for all boundary points. The 1-dimensional American option, for

example, has a stopping gain GS that is not smooth (it involves a max-function). But the

boundary never crosses the level where there is a kink in GS , and therefore smooth-pasting

still holds everywhere. Even when the dynamic boundary does in fact cross the non-smooth

subset a finite number of times, then we could hypothesise that the dynamic boundary

would still be piecewise smooth — which is allowed by Green’s theorem. Assuming the

validity of Green’s theorem, therefore, does not seem to drastically limit the set of problems

we can solve.

As far as Reynold’s theorem is concerned, we allow that the underlying stopping gain

GS depends on time. If it has a finite time-derivative at each spatial location, then there

is no reason to expect any boundary element to have an infinite speed, except possibly

at maturity. To see why it could have an infinite speed at maturity, consider again the

well-known example of the 1-dimensional American option. The exercise boundary has an

infinite slope at the horizon, but the ‘speed’ of the boundary at t→ T is integrable because

the distance travelled by the boundary is finite. In the multidimensional case we allow for
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the same situation: where the location of the boundary is assumed to be integrable. Again,

we do not find this assumption too stringent.

Our approach will be to assume, simply, that the abovementioned assumptions are sat-

isfied. While our assumptions do not seem overly restrictive, it is not clear that they should

hold in all cases. Furthermore, it is possible that our assumptions are not independent:

one would be hard pressed to come up with a problem, for example, with a unique solution

but including an infinite number of singular boundary points. Existence and uniqueness

assumptions may therefore be equivalent to certain smoothness assumptions, but here we

are guessing. Thus we allow our intuition (and Green’s and Reynold’s theorems) to inspire

the assumptions we need, and we will see where this leads us. If the assumptions above

hold, we obtain the following theorem:

Theorem 1. If the solution to the MOS problem (1.1) exists and is unique, and if the

optimal domain D(·) allows both Green’s theorem and Reynold’s theorem at all times, then

the optimal value V is given by:

V (x, s) = GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)B(α, τ |x, s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)B(α, T |x, s)

(1.2)

where D(·) is the optimal domain. The optimal domain can be found by applying either

value-matching or smooth-pasting to the optimal value, at all boundary coordinates β ∈
∂D(s), ∀s ≤ T . If GS is only piecewise smooth, then ∆GS should be interpreted as involving

distributional derivatives.

Here B(y, t|x, s) indicates the free Brownian density as defined in (2.1). This theorem

is new, to the author’s best knowledge — and it seems to be one of the first more general

results in the field of MOS. The book Optimal stopping and free boundary problems by

[6], for example, only tangentially touches upon the multidimensional case. [7] confine

themselves to the 2-dimensional American option: d = 2 and only GS is non-zero and

required to be convex. [8] consider a portfolio of savings and stocks where rearranging

occurs a transaction cost, and solve a 2-dimensional free-boundary problem with an infinite

horizon. In [9] time is discretised. But there appears to be a lack of more general results

regarding MOS.

The proof of Theorem 1 consists of two parts, i.e. we need to show that:

1. Given that D(·) is optimal, then V can be written as proposed.
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2. Given this V , D(·) can be determined by demanding either value-matching or smooth-

pasting for all boundary locations and times β ∈ ∂D(·).

We also provide some intuition for Theorem 1. The optimal value V is separated in

an ‘immediate-stopping’ value GS (the first term) and an ‘option value’ (the second and

third term). The option value consists of a weighted integration over the continuation

region D(·) at all times τ for s ≤ τ ≤ T (second term), as well as an integration over the

continuation region at maturity (third term). We may define

• effective continuation gain := GC(α, τ) + ∆GS(α, τ),

• effective maturity gain := GM (α, T )−GS(α, T ).

At a location and time where the effective continuation gain is positive, one would always

continue a short time dt. With these definitions, we see that the ‘option value’ consists

of the expected sum of ‘effective continuation gains’ and ‘effective maturity gains’, as

collected by a free Brownian motion, in all of the future continuation region D(·). As a

result, the ‘effective continuation gains’ and ‘effective maturity gain’ are weighted by the

free propagator B(α, τ |x, s) and B(α, T |x, s). For x → ∂D(s) value-matching must hold.

The value V must equal the stopping gain GS , and therefore the ‘option value’ at the

optimal boundary must be zero. Thus we have:

Corollary 1. For x on the optimal boundary, the expected value of all effective continu-

ation and effective maturity gains, as collected by the free Brownian path during its time

in the optimal continuation domain D(·), equals zero. This holds true for all boundary

locations x ∈ ∂D(·), i.e.

0 = Ex

[ ∫ T

s
dτ

(
GC(Bτ , τ) + ∆GS(Bτ , τ)

)
1Bτ∈D(τ) e

−r (τ−s)

+

(
GM (BT , T )−GS(BT , T )

)
1BT∈D(T ) e

−r (T−s)

]
∀x ∈ ∂D(s), ∀s ≤ T .

(1.3)

This interpretation holds for all d ≥ 1 and, to the author’s best knowledge, is new.

It follows that the optimality of any single boundary location is dependent on all future

boundary locations, and therefore the entirety of all dynamic boundary locations must

be determined at once. In general, we cannot determine any boundary location without

knowing all others.

Although we can write the optimality equation for a general situation as in Corollary

1 — as an integration over D(·) — in any specific situation we will need to parametrise

the boundary, in one way or another. The parametrisation of a volume, such as the

domain D(·), allows one to identify the set of coordinates that lie within the volume.
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Parametrisations are not generally unique: one can often parametrise a volume in either

Cartesian or spherical coordinates, for example. A cube is more easily parametrised in

Cartesian coordinates, and a sphere is more easily parametrised in spherical coordinates.

Of course, the intrinsic properties of a geometric object (such as length, volume or surface

area) do not depend on its parametrisation.

For the integral equation in question, it is a priori unclear what the solution D(·) will

look like, and therefore it is a priori unclear what parametrisation would be convenient. If

the parametrisation chosen is sufficiently general then it can never be wrong. But if some

properties of the optimal solution are known (or expected) beforehand, then it might be

possible to choose a more specific parametrisation that allows for easier calculation.

In a relatively general case, a closed curve could be parametrised by a certain parameter

φ, i.e.

x = x(φ),

y = y(φ).

If, moreover, the shape of the curve is time-dependent, then both Cartesian coordinates

may also depend on time, i.e.

x = x(φ, t),

y = y(φ, t).

In general, therefore, to specify a curve we would need to specify two functions. The same

logic holds in the other direction: to find the 2-dimensional domain D(·) we must generally

find two functions.

If some properties of the domain to be found are known beforehand, then it may be

possible to choose a more convenient parametrisation. If it is a priori known, for example,

that the domain to be found is convex at all times, then it should be possible to express

the radius ρ of the domain as a function of the polar angle φ, and of time — in which case

we call the domain radial. It is implied that 0 ≤ φ ≤ 2π and t ≤ T . The advantage would

be that we would only need to find one function, rather than two.

Focusing on the 2-dimensional case specifically, and on the case when the domain is

known to be radial, we investigate the optimality condition of Corollary 1 in detail. We

will see that, even if only one function ρ(φ, t) is to be found, the task is still formidable.

The optimality equation that must be satisfied by all boundary locations can be classified

as a multidimensional non-linear homogeneous Volterra integral equation of the first kind,

with the following distinguishing features:

1. The unknown function ρ(φ, t) determines the domain of the integration over D(·);
therefore it is a Volterra-type equation. Although Volterra equations normally have

the variable in the limit of the integration, rather than the unknown function as in
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this case, we argue that Volterra equations are still more applicable than Fredholm

equations, which have a fixed and known domain of integration.

2. Apart from its appearance in the domain D(·), the unknown function ρ(φ, t) also

appears under the integral sign, because the location of the boundary coordinate x

depends on ρ(φ, t). Because ρ(φ, t) appears under the integral sign but not outside

the integral, it is an equation of the first kind.

3. The unknown function ρ(φ, t) appears under the integral sign as a function of the

free Brownian density B; therefore it is non-linear.

4. The expected value of all effective gains equals zero; therefore it is a homogeneous

equation.

For 1-dimensional Volterra equations, where the integration extends over a variable

linear interval, many known methods exist; see e.g. [10], [11], [12] or [13]. Unfortunately

this is not the case for multidimensional Volterra integral equations. For the existence and

uniqueness of solutions to Volterra equations, see e.g. [12] (p. 25).

In the single asset case, [7] have shown that the numerical procedure based on the

integral method can compete with the standard binomial procedure. In the multidimen-

sional case, unfortunately, no analogous result exists. Therefore, we will provide our own

(possibly very inefficient) numerical procedure in section 4 for the case when one of two

options may be exercised. For the parallel investment in two alternative projects, we are

as yet unable to provide a numerical example, but we are able to provide some intuition in

Corollary 2:

Corollary 2. For investment in two alternative projects with continuation costs c1 and c2,

the expected time spent by a free Brownian motion, from each optimal boundary location

β, in the continuation region where project 1 is in the lead — as weighted by c2 — plus the

expected time spent in the continuation region where project 2 is in the lead — as weighted

by c1 — must equal the expectation of time spent on the curve V1 = V2, where both projects

are equally valuable — as weighted by 1
2

(
∂V1
∂x

)2
+ 1

2

(
∂V2
∂y

)2
.

Intuitively, this means that the total expected ‘loss’ — defined as the total amount of

money spent on projects when they are not in the lead — is allowed to be greater if many

switches are expected in which project is leading.

So far we have said nothing about the proof of Theorem 1. It turns out that the proof

can follow one of three possible routes:

starting point based on satisfies to be imposed

proof A Dirichlet value absorbed BM value-matching smooth-pasting

proof B Neumann value reflected BM smooth-pasting value-matching

proof C a smart guess free BM neither both
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where ‘BM’ stands for Brownian motion. Here we encounter a classic catch-22: it was

unclear, to the author of this paper, how to distribute effort between the three alternatives

proofs, such that at least one proof is completed before the PhD is handed in, and the

answer to the problem of alternatives is provided. Thus the result of this research would

have been useful to formulate a strategy to complete it.4 It is obvious for any theorem that

only one proof is sufficient (i.e. different proofs are alternatives), the progress and potential

of each route can be reviewed over time, and there is a clear deadline before which at least

one proof must be completed (i.e. the end of the PhD time window). Parallel investment

allows for more exploration, but is also costly, resulting in the classic trade-off between

exploration on the one hand, and exploitation of the current best candidate on the other.

One of the main contributions of this paper, however, is not the solution to the problem

of alternatives (although that problem originally inspired this work), but the general method

for solving MOS problems. MOS problems include all problems based on Brownian motion

and with a non-additive revenue structure, of which the problem of alternatives is an

example. To show the validity and versatility of the main idea — i.e. the interplay between

boundary value problems and free-boundary value problems — we will present all three

proofs A, B and C; these are different but analogous, as the reader will quickly discover.

There is a certain symmetry connecting these different approaches, which would be lost if

they were presented in isolation. A second advantage of our approach is its mere reliance

only on:

1. Green’s theorem (see e.g. [14]), allowing a finite number of edges, corners and cusps

— as explained in many classic reference works, such as [15] (p. 118-119).

2. Reynold’s transport theorem, allowing domains that are piecewise smooth at each

point in time, and where all regular boundary elements have integrable speeds at all

times — as in e.g. [16].

Section 2 relies heavily on both theorems. It also builds on part I of the thesis, as will

become clear from the formulae.

1.7 Comparison with the literature

Finally we will discuss how the current paper deviates from the literature. Option theory

has largely focused on options within projects, rather than on options where either project

may succeed. Portfolio theory considers multiple assets and allows for correlation, but

usually assumes that profits are additive and there is (at least classically) no time element

or adjustment (e.g. [17] or [18]). Practitioners do of course rebalance portfolios, and

modern literature such as [19] allows for uncertainty in the parameters, but portfolio theory

4Although, technically, ‘effort’ is divisible, whereas the problem of alternatives relates to real projects.
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assumes an additive revenue structure which makes it not completely suited to the problem

of alternatives.

Search theory considers the trade-off between exploiting the current best candidate

and sampling further, and it also allows for learning; see e.g. [2], [20], [21], [22] or [23].

But sampling is usually discrete and sequential, making search theory not wholly suitable

to the problem of alternatives.

The theory on multi-armed bandits involves multiple projects (slot-machines) and is

very well developed; see e.g. [24] and [25]. The theory is not fully applicable to the

problem of alternatives, however, because play is usually discrete and sequential, revenues

of different machines are additive and the time-horizon is normally infinite. [26] generalise

this situation and allow for any subset of machines to be activated at any decision epoch

and for any distribution of effort (i.e. the resource is divisible). Still, the bandits evolve

independently and revenues of different bandits are additive. In all likelihood it is possible

to tackle the problem of alternatives using the theory of multi-armed bandits, as the number

of decision epochs goes to infinity, when only the bandit with the best state generates

revenues at some predetermined finite time T , and when that bandit has been selected

for play at all preceding decision epochs (i.e. it has not been abandoned). In the bandit

literature, the paper Stoppable families of alternative bandit processes [27] is probably

closest related to the issue discussed here. The original aim of multi-armed bandit theory,

however, quoting Gittins, is to ‘decide which arm to pull next at each stage so as to

maximise the total expected reward from an infinite sequence of pulls’ (see [28]). This

shows that multi-armed bandit theory may not be the most natural starting point for the

problem of alternatives.

The theory of optimal stopping includes the time element very explicitly, but by and

large it concerns single projects. In the finance literature it is mainly the American op-

tion that has attracted much interest; see e.g. [29], [30] and [31]. While our problem of

alternatives contains real projects rather than financial projects, it is equally possible to

have financial options on more underlying assets. An example is [7], where only one of

two American options may be exercised — and the problem thus requires a 2-dimensional

continuation region. The approach in our paper can indeed be used to solve the American-

max option as described by [7]. The theory of optimal stopping is in many ways a natural

starting point for the problem of alternatives, except that it needs to be formulated 1)

not just for financial options, and 2) for d ≥ 2. We do exactly this, and we note that

the extension from one to more dimensions suggests itself: the four conditions of (1.1) are

unchanged for any d.

We conclude that the question of parallel and continuous investment in alternatives

has not been considered fully and systematically, at least not analytically. We propose that
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this is due not to a perceived lack of relevance, but to the lack of an adequate MOS theory.

This paper is organised as follows. Section 2 discusses d-dimensional Brownian motion

in domain D(·) with boundary conditions, and provides the necessary mathematical tools

for the proofs in Section 3. Section 4 provides a numerical example, and Section 5 concludes.
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2 Mathematical prerequisites

2.1 Brownian motion

In d dimensions, the transition density of a standard Brownian motion is as follows:

B(y, t|x, s) =
1

[2π(t− s)]d/2
e−
|y−x|2
2(t−s) (2.1)

where B(y, t|x, s) is equal to the (marginal) probability that a Brownian particle moves to

space-time coordinate (y, t) given that it started at (x, s). Formally, a Brownian motion

is defined as the continuous process, with independent increments, and such that the in-

crement during dt is normally distributed with mean zero and variance dt. The explicit

representation (2.1) shows that the density B safisfies

forward PDE

(
∂

∂t
− 1

2
∇2
y

)
B(y, t|x, s) = 0,

backward PDE

(
∂

∂s
+

1

2
∇2
x

)
B(y, t|x, s) = 0,

forward STC lim
s↗t

B(y, t|x, s) = δ(|y − x|),

backward STC lim
t↘s

B(y, t|x, s) = δ(|y − x|).

(2.2)

Here and elsewhere, PDE stands for ‘partial differential equation’, STC stands for ‘short-

time condition’ and where δ is the Dirac δ-function.

2.2 Absorbed Brownian motion

The domain and its boundary at a specific time t are indicated by D(t) and ∂D(t). The

transition density of absorbed Brownian motion (ABM) in the dynamic domain D(·) is

indicated by A(y, t|x, s), with forward and backward space-time coordinates (y, t) and

(x, s). The absorbed transition density A(y, t|x, s) satisfies the following set of equations:

forward PDE

(
∂

∂t
− 1

2
∇2
y

)
A(y, t|x, s) = 0 x ∈ D(s) y ∈ D(t),

backward PDE

(
∂

∂s
+

1

2
∇2
x

)
A(y, t|x, s) = 0 x ∈ D(s) y ∈ D(t),

forward BC A(β, t|x, s) = 0 x ∈ D(s) β ∈ ∂D(t),

backward BC A(y, t|β, s) = 0 β ∈ ∂D(s) y ∈ D(t),

forward STC lim
s↗t

A(y, t|x, s) = δ(|y − x|) x ∈ D(t) y ∈ D(t),

backward STC lim
t↘s

A(y, t|x, s) = δ(|y − x|) x ∈ D(s) y ∈ D(s).

(2.3)

The boundary conditions hold only for all regular (i.e. non-singular) boundary points β

if the boundary is only piecewise smooth. BC stands for ‘boundary condition’. It can be
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proved that the absorbed transition density 1) exists, 2) is unique and 3) is determined

by the above conditions; see for example [32], [33] or [34]. The definition of a ‘regular’

boundary point is one allowing a tangent plane. The PDEs are satisfied because the

transition density is unbiased. The BCs are satisfied because no Brownian particle can

move to or from a regular boundary point without being absorbed, and the STCs are

satisfied for x and y in the interior because in the short-time limit the absorbed transition

density must behave like the free transition density.

Because paths are absorbed at the boundary ∂D(·), the density of all paths that are

‘alive’ is decreasing. The probability that the first passage occurs at time τ is equal to the

‘proportion’ of paths that disappear at time τ . Therefore

P (τFP ∈ dτ |Bs = x) = − ∂

∂τ

∫
D(τ)

dαA(α, τ |x, s)

= −
∫
D(τ)

dα
1

2
∇2
αA(α, t|x, s)

= −
∮

∂D(τ)

dβ
1

2
nβ · ∇βA(β, t|x, s)

=
1

2

∮
∂D(τ)

dβ
−→
∂βA(β, t|x, s)

where the third line follows by the divergence theorem, where nβ is the outward normal

at β, and where
−→
∂β is the inward normal derivative, differentiating towards its right. It

is a positive operator when working on the absorbed density A, because A is zero on

the boundary but positive in the interior. Because probability can only disappear at the

boundary, the joint probability for the first-passage time and first-passage location is

P (τFP ∈ dτ ; BτFP ∈ dβ|Bs = x) =
1

2

−→
∂βA(β, τ |x, s) ∀β ∈ ∂D(τ) (2.4)

and this holds for all regular boundary coordinates β if the boundary is only piecewise

smooth. The original research on this topic starts here. We start by writing down the

following identities:

FP A(y, t|x, s) = B(y, t|x, s) −
∫ t

s
dτ

(
− ∂

∂τ

) ∫
D(τ)

dα B(y, t|α, τ)A(α, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s) −
∫ t

s
dτ

(
∂

∂τ

) ∫
D(τ)

dα A(y, t|α, τ)B(α, τ |x, s).
(2.5)

These indenties hold by virtue of the fundamental theorem of calculus and the STCs

satisfied by the free density B and the absorbed density A. The nomenclature of first-

passage (FP) and last-passage (FP) decomposition is discussed extensively in Part I of this

– 26 –



– Part II –

thesis. Next we will use the PDEs that are satisfied by A. Because A disappears on the

boundary, differentiation under the integral sign is allowed and we can use the PDEs of

(2.3) and (2.2), to obtain

FP A(y, t|x, s) = B(y, t|x, s)− 1

2

∫ t

s
dτ

∫
D(τ)

dα B(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
A(α, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s) +
1

2

∫ t

s
dτ

∫
D(τ)

dα A(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
B(α, τ |x, s).

(2.6)

The arrows indicate the direction of the differentiation, and we feel this notation makes

expressions more readable. Then we use Green’s second identity — which is valid for

domains with a finite number of edges, corners and cusps — to obtain

FP A(y, t|x, s) = B(y, t|x, s) +
1

2

∫ t

s
dτ

∮
∂D(τ)

dβ B(y, t|β, τ)
{←−
∂β −

−→
∂β

}
A(β, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)− 1

2

∫ t

s
dτ

∮
∂D(τ)

dβ A(y, t|β, τ)
{←−
∂β −

−→
∂β

}
B(β, τ |x, s).

(2.7)

The operator ∂β is again the inward normal derivative, operating in the direction of the

arrow. The BCs of (2.3) require that A is zero on the boundary, and thus we must have

that ∂β points towards A, so we obtain:

Proposition 1. FP & LP decomposition for ABM in D(·). The absorbed Brownian

density A(y, t|x, s) in the time-dependent domain D(·), which allows both Green’s theo-

rem and Reynold’s transport theorem at each point in time, is determined by (2.3), or,

equivalently, by the following pair of integral equations:

FP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∮
∂D(τ)

dβ B(y, t|β, τ)

{
1

2

−→
∂β

}
A(β, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∮
∂D(τ)

dβ A(y, t|β, τ)

{
1

2

←−
∂β

}
B(β, τ |x, s).

(2.8)

This proposition is believed to be new. In fact, its derivation mirrors exactly the

derivation of Proposition 1 in Part I of this thesis, except that the domain D(·) here is

time-dependent, and therefore this result is more general. We see that a positive term is

subtracted from the free density to obtain the absorbed density.

Also, we recognise that we have now used all 6 PDEs, STCs and BCs of (2.3) in

the derivation of these two integral equations, i.e. all the conditions that are supposed

to specify A uniquely have now been used — along with Green’s second identity on the

domain. The first- and last-passage decompositions relate the value of A to its boundary

behaviour and can be used to obtain a series solution for the absorbed density, as in Part

I of this thesis, but we will not pursue this here.
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2.3 Reflected Brownian motion

The reflected transition density is indicated by R(y, t|x, s), with forward and backward

space-time coordinates (y, t) and (x, s). The reflected transition density R(y, t|x, s) satisfies

the following set of equations:

forward PDE

(
∂

∂t
− 1

2
∇2
y

)
R(y, t|x, s) = 0 x ∈ D(s) y ∈ D(t),

backward PDE

(
∂

∂s
+

1

2
∇2
x

)
R(y, t|x, s) = 0 x ∈ D(s) y ∈ D(t),

forward BC

(−→
∂β − 2β̇(t) · nβ(t)

)
R(β, t|x, s) = 0 x ∈ D(s) β ∈ ∂D(t),

backward BC R(y, t|β, s)
←−
∂β = 0 β ∈ ∂D(s) y ∈ D(t),

forward STC lim
s↗t

R(y, t|x, s) = δ(|y − x|) x ∈ D(t) y ∈ D(t),

backward STC lim
t↘s

R(y, t|x, s) = δ(|y − x|) x ∈ D(s) y ∈ D(s).

(2.9)

Here and elsewhere, PDE stands for ‘partial differential equation’, BC stands for ‘boundary

condition’ and STC stands for ‘short-time condition’. The outward normal is indicated

by nβ, β̇(t) indicates the velocity (i.e. a vector) of the boundary element β(t), and ∂β

indicates the inward normal derivative at β. The boundary conditions hold only for all

regular boundary points β if the boundary is only piecewise smooth. The STCs are satisfied

for x and y in the interior because in the short-time limit the reflected transition density

must behave like the free transition density. The reflected transition density 1) exists,

2) is unique and 3) is determined by the above conditions; see for example [33] and [34].

The PDEs are satisfied because the reflected transition density is unbiased. The BCs are

satisfied because a Brownian particle is reflected in the normal direction, at any regular

boundary point β, and because the moving and reflecting boundary also ‘drags’ along some

density. The backward BC here is equal to the backward BC for a static domain D, as in

Part I of this thesis. The forward BC, however, is different, but can be derived as follows.

By way of the Chapman-Kolmogorov equation, we have

R(y, t|x, s) =

∫
D(τ)

dαR(y, t|α, τ)R(α, τ |x, s). (2.10)

The left-hand side does not depend on τ . Differentiating with respect to τ gives:

0 =
∂

∂τ

∫
D(τ)

dαR(y, t|α, τ)R(α, τ |x, s). (2.11)

We use Reynold’s transport theorem, as in [16], to differentiate the limit of integration (i.e.

the changing domain), and we also integrate under the integral sign and use the PDEs to
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obtain the following:

0 =

∮
∂D(τ)

dβ R(y, t|β, τ)
{
nβ · β̇(τ)

}
R(β, τ |x, s)

−1

2

∫
D(τ)

dα R(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
R(α, τ |x, s),

=

∮
∂D(τ)

dβ R(y, t|β, τ)
{
nβ · β̇(τ)

}
R(β, τ |x, s)

+
1

2

∮
∂D(τ)

dβ R(y, t|β, τ)
{←−
∂β −

−→
∂β

}
R(β, τ |x, s).

(2.12)

The last equality follows from Green’s theorem, which holds as long as D(τ) is piecewise

smooth. As usual, the arrows on the differential operators indicate the direction of their

applicability. Using the backward BC, and given that this should hold for each domain D,

it follows that the forward BC must hold at each boundary location β.

We will now proceed as we did for A. By virtue of the fundamental theorem of calculus,

and by the STCs satisfied by both B and R, we can write down two identities:

FR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

(
− ∂

∂τ

) ∫
D(τ)

dαR(y, t|α, τ)B(α, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

(
∂

∂τ

) ∫
D(τ)

dαB(y, t|α, τ)R(α, τ |x, s).
(2.13)

The abbreviations FR and LR indicate the first- and last-reflection decompositions, and the

nomenclature is discussed in Part I of this thesis. It is clear in either case that both decom-

positions hold as identities, following directly from the fundamental theorem of calculus

and the STCs. The reflected density does not disappear at the boundary and therefore

we must differentiate the limits of the spatial integration over D(τ), as well as under the

integral sign. By using Reynold’s transport theorem (see e.g. [16]), applicable to piecewise

smooth domains which deform at finite (or integrable) speeds, and by using the PDEs of

(2.9) under the integral sign, we get

FR R(y, t|x, s) = B(y, t|x, s) −
∫ t

s
dτ

∮
∂D(τ)

dβ R(y, t|β, τ)
{
nβ · β̇(τ)

}
B(β, τ |x, s)

+
1

2

∫ t

s
dτ

∫
D(τ)

dα R(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
B(α, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

∮
∂D(τ)

dβ B(y, t|β, τ)
{
nβ · β̇(τ)

}
R(β, τ |x, s)

−1

2

∫ t

s
dτ

∫
D(τ)

dα B(y, t|α, τ)
{←−
∇2
α −
−→
∇2
α

}
R(α, τ |x, s).

(2.14)
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As before, β̇(τ) indicates the velocity (i.e. a vector) of the boundary coordinate β, nβ

denotes the outward normal, and ∂β denotes the inward normal derivative at boundary

coordinate β. Using Green’s second identity — which is valid for domains with a finite

number of edges, corners and cusps — we obtain

FR R(y, t|x, s) = B(y, t|x, s) −
∫ t

s
dτ

∮
∂D(τ)

dβ R(y, t|β, τ)
{
nβ · β̇(τ)

}
B(β, τ |x, s)

−1

2

∫ t

s
dτ

∮
∂D(τ)

dβ R(y, t|β, τ)
{←−
∂β −

−→
∂β

}
B(β, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

∮
∂D(τ)

dβ B(y, t|β, τ)
{
nβ · β̇(τ)

}
R(β, τ |x, s)

+
1

2

∫ t

s
dτ

∮
∂D(τ)

dβ B(y, t|β, τ)
{←−
∂β −

−→
∂β

}
R(β, τ |x, s).

(2.15)

The operator ∂β is again the inward normal derivative. Using the BCs of (2.9) we obtain:

Proposition 2. FR & LR decomposition for RBM in D(·). The reflected Brownian

density R(y, t|x, s) in the time-dependent domain D(·), which allows both Green’s theo-

rem and Reynold’s transport theorem at each point in time, is determined by (2.9), or,

equivalently, by the following pair of integral equations:

FR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

∮
∂D(τ)

dβ R(y, t|β, τ)

{
−nβ · β̇(τ) +

1

2

−→
∂β

}
B(β, τ |x, s),

LR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s
dτ

∮
∂D(τ)

dβ B(y, t|β, τ)

{
1

2

←−
∂β

}
R(β, τ |x, s).

(2.16)

This proposition is believed to be new. As in the previous subsection, we note that the

derivation relies on Part I of this thesis. In this case, the derivation mirrors Proposition 2

in Part I of this thesis, except that the domain D(·) here is time-dependent. This result is

thus more general. Finally, we note, again, that we could use this proposition to construct

a series solution for R, as in Part I of this thesis, but we shall not pursue that line of

enquiry here.
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3 Multidimensional optimal stopping (MOS)

In this section we consider the following multidimensional optimal stopping (MOS) problem:

The value is unbiased

(
1

2
∇2
x +

∂

∂s
− r
)
V (x, s) = −GC(x, s) x ∈ D(s),

Value-matching condition V (β, s) = GS(β, s) β ∈ ∂D(s),

Smooth-pasting condition ∂βV (β, s) = ∂βGS(β, s) β ∈ ∂D(s),

Value at maturity V (x, T ) = GM (x, T ) x ∈ D(T ).

(3.1)

The dynamic domain and its boundary at any particular time s are indicated by D(s) and

∂D(s), and the Laplacian in d dimensions is defined by

∇2
x :=

d∑
i=1

∂2

∂x2i
.

Also, β is a regular boundary coordinate, ∂β is the inward normal derivative at the regular

boundary coordinate β, and regular boundary coordinates are defined as those allowing a

tangent plane, such that the normal direction unambiguously exists. The optimal value

at space-time coordinate (x, s) is indicated by V (x, s), where x is a vector. The constant

discount rate is indicated by r. The intuition for each of the four equations was discussed

in the introduction on page 14. We make the following assumptions:

1. The solution to the MOS problem (3.1), given by the pair D(·) and V (x, s), exists

and is unique.

2. The solution D(·) that solves the MOS problem (3.1) allows Green’s theorem at each

point in time: at each time it only has a finite number of edges, corners and cusps.

3. The solution D(·) that solves the MOS problem (3.1) allows Reynold’s theorem: it

moves with an integrable velocity, for all regular boundary points and at all times.

And we will prove Theorem 1:

Theorem 1. Optimal solution to MOS problem. If the solution to the MOS problem

(3.1) exists and is unique, and if the optimal domain D(·) allows both Green’s theorem and

Reynold’s theorem at all times, then the optimal value V is given by:

V (x, s) = GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)B(α, τ |x, s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)B(α, T |x, s)

(3.2)
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The optimal domain can be found by applying either value-matching or smooth-pasting to

the optimal value, at all boundary coordinates β ∈ ∂D(s), ∀s ≤ T . If GS is only piecewise

smooth, then ∆GS should be interpreted as involving distributional derivatives.

This theorem is new, to the author’s best knowledge — and it seems to be one of the

first more general results in the field of MOS, as discussed in the introduction (page 18).

Its proof consists of two parts — we need to show that:

1. Given that D(·) is optimal, then V can be written as proposed.

2. Given this V , D(·) can be determined by demanding either value-matching or smooth-

pasting for all boundary locations and times β ∈ ∂D(·).

The theorem also invites a new interpretation, namely:

Corollary 1. For x on the optimal optimal boundary, the expected value of all effective

continuation and effective maturity gains, as collected by the free Brownian path during

its time in the optimal continuation domain D(·), equals zero. And this holds true for all

boundary locations x ∈ ∂D(·), i.e.

0 = Ex

[ ∫ T

s
dτ

(
GC(Bτ , τ) + ∆GS(Bτ , τ)

)
1Bτ∈D(τ) e

−r (τ−s)

+

(
GM (BT , T )−GS(BT , T )

)
1BT∈D(T ) e

−r (T−s)

]
∀x ∈ D(s), ∀s ≤ T

(3.3)

Here, the ‘effective’ continuation and maturity gains are defined as follows:

• effective continuation gain := GC(α, τ) + ∆GS(α, τ),

• effective maturity gain := GM (α, T )−GS(α, T ).

At a location and time where the effective continuation gain is positive, one would always

continue a short time dt. We discussed in the introduction that there are three possible

routes to the proof of this theorem, namely:

starting point based on satisfies to be imposed

proof A Dirichlet value absorbed BM value-matching smooth-pasting

proof B Neumann value reflected BM smooth-pasting value-matching

proof C a smart guess free BM neither both

The next three subsections will each present a proof. For readers uninterested in the

relationship between the Dirichlet and Neumann problems on the one hand, and free-

boundary problems on the other, we suggest that they jump straight to proof C. Although

proof C may appear rather ad-hoc (it starts off with a somewhat arbitrary identity), and

although it does not provide the insight that the first two proofs provide, it requires no

knowledge of either absorbed or reflected Brownian motion.
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3.1 Proof A: The Dirichlet route

For some arbitrary continuation domain D(·), the Dirichlet value is defined by

V D(x, s) := Ex
[
1τFP<T GS(BτFP , τFP) e−r(τFP−s)

]
+ Ex

[ ∫ T

s
dτ 1τ<τFP GC(Bτ , τ) e−r(τ−s)

]
+ Ex

[
1τFP=T GM (BT , T ) e−r(T−s)

]
.

(3.4)

The first-passage time τFP is defined as the first passage over the (not necessarily optimal)

domain D(·), or T , whichever occurs first, i.e.

τFP := min

{
first-passage time over ∂D(·), T

}
. (3.5)

The expectation in the Dirichlet value is conditional on the starting coordinate x, indicated

by the subscript. The superscript of V D refers to the Dirichlet value — not to be confused

with the domain D(·).
The intuition for the Dirichlet value is as follows: the stopping gain GS is collected at

the first-passage time τFP if and only if τFP < T . The continuation gain GC is collected until

the first-passage time τFP. Lastly, the maturity gain GM is collected at the first-passage

time τFP if and only if τFP = T .

This is called the Dirichlet value because it satisfies the value-matching condition, as

will be shown in Proposition 3 below. Its usefulness derives from the fact that we can

define the Dirichlet value for any boundary, and not just the optimal one — as long as we

suppose that the boundary has some regularity: singular boundary points are allowed as

long as there are a finite number of them, and infinite boundary speeds are allowed as long

as they are integrable.

In Section 2 we introduced the absorbed transition density A(y, t|x, s) of a Brownian

motion. In terms of the absorbed transition density, we can write the boundary represen-

tation of the Dirichlet value as follows:

V D(x, s)=

∫ T

s
dτ

∫
∂D(τ)

dβ GS(β, τ) 1
2

−→
∂βA(β, τ |x, s) e−r(τ−s)

+

∫ T

s
dτ

∫
D(τ)

dα GC(α, τ) A(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα GM (α, T ) A(α, T |x, s) e−r(T−s).

(3.6)

The name ‘boundary representation’ follows from the fact that the stopping gain GS is

integrated over the boundary ∂D(·). In the expression above, the stopping gain GS is
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multiplied with the probability of a first passage at that location, i.e. ∂A, then discounted,

and then integrated over all future boundary locations β and times τ .

Instead of this boundary representation of the Dirichlet value, we can also provide the

following interior representation:

V D(x, s) = GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
A(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
A(α, T |x, s) e−r(T−s).

(3.7)

The nomenclature stems from the fact that all integrations are now over the interior of

D(·). This interior representation of the Dirichlet value has one technical and one intuitive

advantage:

1. Technical advantage: the limit x → ∂D(s) commutes with the volume integrals

of the interior representation, but not with the boundary integral of the boundary

representation.

2. Intuitive advantage: the interior representation decomposes the Dirichlet value into

an ‘immediate-stopping gain’ GS (the first term) and an ‘option value’ (second and

third term), that invites us to define the ‘effective continuation gain’ and ‘effective

maturity gain’ — as mentioned before.

To show that the interior representation follows from the boundary representation, we

rewrite the boundary term in (3.7) as follows:∫ T

s
dτ

∫
∂D(τ)

dβ GS(β, τ)
1

2

−→
∂βA(β, τ |x, s) e−r(τ−s)

= −1

2

∫ T

s
dτ

∮
∂D(τ)

dβ GS(β, τ)
{←−
∂β −

−→
∂β

}
A(β, τ |x, s) e−r(τ−s).

This follows from the fact that the absorbed propagator A disappears on the boundary.

Then, using Green’s identity, which is valid for piecewise smooth domains, and by the PDE

satisfied by A, we get

=
1

2

∫ T

s
dτ

∫
D(τ)

dα GS(α, τ)
{←−
∇2
α −
−→
∇2
α

}
A(α, τ |x, s) e−r(τ−s),

=

∫ T

s
dτ

∫
D(τ)

dα GS(α, τ)

{
1

2

←−
∇2
α − r −

∂

∂τ

}(
A(α, τ |x, s) e−r(τ−s)

)
.
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With a partial integration (in time) and using the definition for the differential operator

∆ := 1
2∇

2
α + ∂

∂τ − r, we get

=

∫ T

s
dτ

∫
D(τ)

dα ∆GS(α, τ)A(α, τ |x, s) e−r(τ−s)

−
∫ T

s
dτ

∂

∂τ

∫
D(τ)

dα GS(α, τ)A(α, τ |x, s) e−r(τ−s).

Using the fundamental theorem of calculus, we get

=

∫ T

s
dτ

∫
D(τ)

dα ∆GS(α, τ)A(α, τ |x, s) e−r(τ−s)

−
(

lim
τ↗T
− lim
τ↘s

) ∫
D(τ)

dα GS(α, τ)A(α, τ |x, s) e−r(τ−s).

By the STC satisfied by A, we get

=

∫ T

s
dτ

∫
D

dα ∆GS(α, τ)A(α, τ |x, s) e−r(τ−s)

+GS(x, s)−
∫
D(T )

dα GS(α, T )A(α, T |x, s) e−r(T−s).

Plugging this expression back into the boundary representation (3.7) gives the interior

representation for the Dirichlet value. Using the interior representation of the Dirichlet

value, we derive the following proposition:

Proposition 3. The Dirichlet value. The Dirichlet value for the arbitrary domain D(·)
is defined by:

V D(x, s) = GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
A(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
A(α, T |x, s) e−r(T−s)

and satisfies three of the four conditions of optimality in (3.1), namely:

The value is unbiased

(
∂

∂s
+

1

2
∇2
x − r

)
V D(x, s) = −GC(x, s) x ∈ D(s),

Value-matching V D(β, s) = GS(β, s) β ∈ ∂D(s),

Value at maturity V D(x, T ) = GM (x, T ) x ∈ D(T ).
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Proof. The proof of the partial differential equation follows by using the PDE in (2.3)

and by differentiation the integration limit s, of the second term, and taking into account

the STC of (2.3). The boundary condition follows immediately from the fact that the

limit x → D(s) commutes with the integration and that A is zero for x on the boundary.

The maturity condition follows from the fact that the second term disappears in the limit

s→ T , and A in the third term involves a Dirac δ-function by the STC in (2.3).

What Proposition 3 says, in other words, is that the value V D that is defined as a sum

of all the expected gains until some stopping time over an arbitrary domain D satisfies

three out of the four conditions for optimality of V . This should not be overly surprising:

of course an expectation should be unbiased, of course it should only pick up GS as the

starting point x moves to the boundary, and of course it should only pick up GM as the

time goes to the maturity T . The only condition that is not satisfied automatically is the

‘smooth-pasting’ condition. If we impose this last condition on the as yet arbitrary domain

D(·), we obtain a condition on the optimal domain D(·) that should specify it uniquely.

Smooth-pasting requires that

Smooth-pasting ∂βV (β, s) = ∂βGS(β, s) β ∈ D(s), ∀s < T.

From the interior representation, we see that we must have

0 =

∫ T

s

dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
A(α, τ |β, s)

←−
∂β e

−r(τ−s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
A(α, T |β, s)

←−
∂β e

−r(T−s)
∀β ∈ D(s), ∀s < T.

(3.8)

The optimality conditions thus demands that the normal derivative of the ‘option value’,

as one approaches the stopping boundary, goes to zero. As a result, the derivative of the

total value (i.e. immediate stopping gain plus ‘option value’) equals the derivative of the

immediate stopping gain, as requested. We will now use this optimality condition in the

interior representation of the Dirichlet value. First, recall that we have found in Proposition

1 that

FP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∮
∂D(τ)

dβ B(y, t|β, τ)

{
1

2

−→
∂β

}
A(β, τ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)−
∫ t

s
dτ

∮
∂D(τ)

dβ A(y, t|β, τ)

{
1

2

←−
∂β

}
B(β, τ |x, s).

Next, substitute the last-passage (LP) decomposition of A into the Dirichlet value V D to
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obtain:

V D(x, s) = GS(x, s)

+

∫ T

s

dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)B(α, τ |x, s)

−
∫ T

s

dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)

∫ τ

s

dθ

∮
∂D(θ)

dγ A(α, τ |γ, θ)
{

1

2

←−
∂γ

}
B(γ, θ|x, s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)B(α, T |x, s)

−
∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)

∫ T

s

dθ

∮
∂D(θ)

dγ A(α, T |γ, θ)
{

1

2

←−
∂γ

}
B(γ, θ|x, s)

This looks unwieldy, but, in fact, it will allow a great simplification. First we note that

any time-ordered integration can be written in one of two ways, i.e.∫ ∫
s≤θ≤τ≤T

dτ dθ =

∫ T

s
dτ

∫ τ

s
dθ =

∫ T

s
dθ

∫ T

τ
dτ.

We use this to rewrite the third term

−
∫ T

s

dθ

∮
∂D(θ)

dγ

[∫ T

θ

dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−θ)A(α, τ |γ, θ)

{
1

2

←−
∂γ

}]
e−r(θ−s)B(γ, θ|x, s),

as well as the fifth term

−
∫ T

s

dθ

∮
∂D(θ)

dγ

[ ∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−θ)A(α, T |γ, θ)

{
1

2

←−
∂γ

}]
e−r(θ−s)B(γ, θ|x, s).

Now we notice that the optimality condition (3.8) demands that the sum of these two terms

equals zero! (Pay attention to the terms in square brackets.) Therefore we must have that

the optimal value V equals the Dirichlet value with the absorbed density A replaced by

the free density B:

V (x, s) = GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)B(α, τ |x, s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)B(α, T |x, s).

(3.9)

We see that for the optimal value V , the absorbed density A (which is a complicated

quantity in itself) is miraculously replaced by the free density B (which we know). It is

thus easier to calculate the value corresponding to the optimal domain, when the optimal
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domain is given, than it is to calculate the Dirichlet value corresponding to any other

domain. It may seem remarkable that for the optimal domain D(·), we have

V (x, s) = V D(x, s) only when D(·) is optimal

even though absorbed propagator A is everywhere smaller than the free propagator B.

It would appear that the expectation over all effective gains by the free and absorbed

Brownian motions must be different — because the free and absorbed Brownian motions

only coincide before the first passage, and not thereafter. But this is where we forget that

from any optimal boundary location, the expectation over all future effective gains equals

zero. Therefore, as far as the expectation is concerned, it makes no difference whether the

Brownian motion is stopped upon the first-passage or left to proceed as a free Brownian

motion. The only way, therefore, that the absorbed and free expectation over the future

domain can be equal, is when the domain is optimal — such that from every boundary

location, the expectation over all future effective gains equals zero.

We have now shown that we can write the optimal value as a function of the free

propagator B, if the optimal domain D(·) is known. But of course D(·) is not known yet;

we will discuss how to find it in subsection 3.4.

3.2 Proof B: The Neumann route

For some arbitrary continuation domain D(·), allowing Green’s theorem and Reynold’s

theorem, the Neumann value is defined by

V N (x, s) := −Ex
[ ∫ T

s
dτ GS(β, τ)

1

2

←−
∂β 1Rτ∈β e

−r(τ−s)
]

+ Ex
[ ∫ T

s
dτ GC(Rτ , τ) e−r(τ−s)

]
+ Ex

[
GM (RT , T ) e−r(T−s)

]
.

(3.10)

Here Rτ represents a reflected Brownian motion, and β is a boundary element, i.e. β ∈
∂D(·). The expectation in the Neumann value is conditional on the starting coordinates

x, indicated by the subscript. The superscript of V N refers to the Neumann value.

The intuition for the Neumann value is as follows: the value −1/2∂GS is collected

during the time that the reflected Brownian motion spends at the boundary of the domain.

(The minus sign, the factor of 1/2 and the ∂ operator in front ofGS are because of symmetry

reasons which will become clear.) The continuation gain GC is collected by the Brownian

motion during its entire time in the interior of D(·). Lastly, the maturity gain GM is

collected at the maturity time T . Notice that the maturity gain will always be obtained by

a reflected Brownian motion, since a reflected Brownian motion always reaches maturity

(it is not absorbed, for example).
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The reason for the name ‘Neumann value’ is that it satisfies the smooth-pasting con-

dition, as we will shown in Proposition 4. Its usefulness derives from the fact that we can

define the Neumann value for any boundary, and not just for the optimal one — as long as

we suppose that the boundary has some regularity: singular boundary points are allowed

as long as there are a finite number of them, and infinite boundary speeds are allowed as

long as they are integrable.

In Section 2 we introduced the reflected transition density R(y, t|x, s) of a Brown-

ian motion. In terms of the reflected transition density, we find the following boundary

representation of the Neumann value:

V N (x, s)=−
∫ T

s
dτ

∫
∂D(τ)

dβ GS(β, τ) 1
2

←−
∂β R(β, τ |x, s) e−r(τ−s)

+

∫ T

s
dτ

∫
D(τ)

dα GC(α, τ) R(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα GM (α, T ) R(α, T |x, s) e−r(T−s).

(3.11)

The name ‘boundary representation’ follows from the fact that the stopping gain is inte-

grated over the time spent at the boundary ∂D(·): i.e. the stopping gain is multiplied with

the probability R of being at the boundary, discounted, and then integrated over all future

boundary locations β at times τ . Under our usual assumptions, we can also provide the

following interior representation of the Neumann value:

V N (x, s) = GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
R(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
R(α, T |x, s) e−r(T−s).

(3.12)

The nomenclature stems from the fact that all integrations are now over the interior of

D(·). This interior representation of the Neumann value has one technical and one intuitive

advantage:

1. Technical advantage: the limit lim
x→β

nβ · ∇x, where β ∈ ∂D(·), commutes with the

volume integrals of the interior representation, but not with the boundary integral of

the boundary representation.

2. Intuitive advantage: the interior representation decomposes the Neumann value into

an ‘immediate-stopping gain’ GS (the first term) and an ‘option value’ (second and
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third term), that invite us to define the ‘effective continuation gain’ and ‘effective

maturity gain’ — as mentioned before.

To show that the interior representation follows from the boundary representation, we

consider the term in (3.12) with the boundary integral. We realise that we may add two

terms that disappear by the BC on R, i.e.

−
∫ T

s
dτ

∫
∂D(τ)

dβ GS(β, τ)
1

2

←−
∂βR(β, τ |x, s) e−r(τ−s)

= −1

2

∫ T

s
dτ

∮
∂D(τ)

dβ GS(β, τ)
{←−
∂β −

−→
∂β + 2nβ · β̇(τ)

}
R(β, τ |x, s) e−r(τ−s).

We go through the same steps that we used to write the interior respresentation of the

Dirichlet value, as in subsection 3.1: i.e. use Green’s theorem, use the PDEs to obtain a

differentiation with respect to τ on Re−r(τ−s), perform a partial integration in τ to obtain

∆ working on GS , use Reynold’s theorem to place ∂/∂τ outside the integration over D(τ),

notice that this disposes of the term with β̇, and, finally, use the STCs. Going through

these steps carefully, the result appears as follows:

= GS(x, s) +

∫ T

s

dτ

∫
D

dα ∆GS(α, τ)R(α, τ |x, s) e−r(τ−s) −
∫
D(T )

dα GS(α, T )R(α, T |x, s) e−r(T−s).

By plugging this expression back into the boundary representation (3.12), we obtain the

promised interior representation. Using this interior representation, we can easily show:

Proposition 4. The Neumann value. The Neumann value for an arbitrary domain

D(·) is defined by:

V N (x, s) = GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
R(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
R(α, T |x, s) e−r(T−s)

and satisfies three out of the four conditions of optimality in (3.1), namely:

The value is unbiased

(
∂

∂s
+

1

2
∇2
y − r

)
V N (x, s) = −GC(x, s) x ∈ D(s),

Smooth-pasting ∂βV
N (β, s) = ∂βGS(β, s) β ∈ ∂D(s),

Value at maturity V N (x, T ) = GM (x, T ) x ∈ D(T ).
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Proof. The proof follows in the same way as the proof of Proposition 3, and by noting

that the operator lim
x→β

nβ · ∇x commutes with the integration over the interior such that

smooth-pasting immediately follows.

Value-matching, however, is not satisfied. Note that value-matching is satisfied if we

have, in addition, that

0 =

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)R(α, τ |β, s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)R(α, T |β, s)

∀β ∈ D(s), ∀s < T.

(3.13)

We will use this optimality condition in the Neumann value shortly. But first we recall

that we found in Proposition 2 that

FR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s

dτ

∮
∂D(τ)

dβ R(y, t|β, τ)

{
−nβ · β̇(τ) +

1

2

−→
∂β

}
B(β, τ |x, s)

LR R(y, t|x, s) = B(y, t|x, s) +

∫ t

s

dτ

∮
∂D(τ)

dβ B(y, t|β, τ)

{
1

2

←−
∂β

}
R(β, τ |x, s)

Now substitute the first-reflection decomposition (i.e. FR) into the Neumann value V N to

obtain

V N (x, s) = GS(x, s)

+

∫ T

s

dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)B(α, τ |x, s)

+

∫ T

s

dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)

∫ τ

s

dθ

∮
∂D(θ)

dγ R(α, τ |γ, θ)
{
−nγ · γ̇(θ) +

1

2

−→
∂γ

}
B(γ, θ|x, s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)B(α, T |x, s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)

∫ τ

s

dθ

∮
∂D(θ)

dγ R(α, T |γ, θ)
{
−nγ · γ̇(θ) +

1

2

−→
∂γ

}
B(γ, θ|x, s).

(3.14)

Using the optimality condition (3.13) we can show that the third and fifth term add to

zero if the optimality condition is satisfied. Therefore, we find once more that the optimal

value must satisfy that:

V (x, s) = GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)B(α, τ |x, s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)B(α, T |x, s).

(3.15)
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For the optimal value V , the reflected density R (which is a complicated quantity in itself)

in the Neumann value is replaced by the free density B (which we know). It is thus easier

to calculate the value corresponding to the optimal domain, when the optimal domain is

given, than it is to calculate the Neumann value corresponding to any other domain. Again

it may appear as quite remarkable that for the optimal domain D(·), we have

V (x, s) = V N (x, s) only when D(·) is optimal

because, when the domain is convex and shrinking, for example, the absorbed propagator R

is everywhere larger than the free propagator B. Thus it would appear that the expectation

over all effective gains as collected by the free and reflected Brownian motions must be

different — because the free and reflected Brownian motions only coincide before the first

reflection, and not thereafter. But, on expectation, the contribution after the first reflection

equals zero! The only way, therefore, that the reflected and free expectation over the future

domain can be equal is when the domain is optimal.

We have found the optimal value in two ways: either by imposing smooth-pasting on

the Dirichlet value or by imposing value-matching on the Neumann value. We have seen

that the Dirichlet value automatically satisfies three out of the four conditions of optimality,

including value-matching. The Neumann value also automatically satisfies three out of the

four conditions of optimality, including smooth-pasting. The optimal value must satisfy all

four conditions, and therefore there must be exactly one domain for which the Dirichlet

and Neumann values coincide, and thus allowing all four conditions to be satisfied. The

optimality condition can thus be reinterpreted as follows:

V (x, s) = V D(x, s) = V N (x, s) if and only if D(·) is optimal. (3.16)

We have now shown that we can write the optimal value as a function of the free propagator

B, if the optimal domain D(·) is known. But of course D(·) is not known yet; we will discuss

how to find it in subsection 3.4.

3.3 Proof C: A smart guess

Compared to the above, proof C may appear rather ad-hoc. It will start off with a somewhat

arbitrary identity, and will then use all the conditions that are supposed to specify the

optimal value V , and — seemingly out of the blue — arrives at the correct result. Although

it does not provide the insight that the first two proofs provide, it requires no knowledge

of either absorbed or reflected Brownian motion. We start the above-mentioned ad-hoc
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identity, i.e. consider that the following holds by definition:

V (x, s) = −
∫ T

s
dτ

(
∂

∂τ

) ∫
D(τ)

dα V (α, τ)B(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα GM (α, T )B(α, T |x, s) e−r(T−s).
(3.17)

The reason that this holds by definition is that we get, by the fundamental theorem of

calculus, that

V (x, s) =

(
lim
τ↘s
− lim
τ↗T

) ∫
D(τ)

dα V (α, τ)B(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα GM (α, T )B(α, T |x, s) e−r(T−s)
(3.18)

and using the STC satisfied by B and V (α, T ) = GM (α, T ) the above is an identity.

Returing to our identity, we perform the differentiation and by virtue of Reynold’s transport

theorem and the PDEs satisfied by V and B, we obtain

V (x, s) = −
∫ T

s
dτ

∮
∂D(τ)

dβ V (β, τ)
{
β̇(τ) · nβ

}
B(β, τ |x, s) e−r(τ−s)

+
1

2

∫ T

s
dτ

∫
D(τ)

dα V (α, τ)
{←−
∇2
α −
−→
∇2
α

}
B(α, τ |x, s) e−r(τ−s)

+

∫ T

s
dτ

∫
D(τ)

dα GC(α, τ)B(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα GM (α, T )B(α, T |x, s) e−r(T−s).

(3.19)

Using Green’s identity for the second term, we get that

V (x, s) = −
∫ T

s
dτ

∮
D(τ)

dβ V (β, τ)
{
β̇(τ) · nβ

}
B(β, τ |x, s) e−r(τ−s)

−1

2

∫ T

s
dτ

∮
∂D(τ)

dβ V (β, τ)
{←−
∂β −

−→
∂β

}
B(β, τ |x, s) e−r(τ−s)

+

∫ T

s
dτ

∫
D(τ)

dα GC(α, τ)B(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα GM (α, T )B(α, T |x, s) e−r(T−s).

(3.20)
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Now using both value-matching and smooth-pasting in the first and second terms, we get

V (x, s) = −
∫ T

s
dτ

∮
∂D(τ)

dβ GS(β, τ)
{
β̇(τ) · nβ

}
B(β, τ |x, s) e−r(τ−s)

−1

2

∫ T

s
dτ

∮
∂D(τ)

dβ GS(β, τ)
{←−
∂β −

−→
∂β

}
B(β, τ |x, s) e−r(τ−s)

+

∫ T

s
dτ

∫
D(τ)

dα GC(α, τ)B(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα GM (α, T )B(α, T |x, s) e−r(T−s).

(3.21)

We use Green’s identity again, in the second term, to re-obtain an integration over the

interior:

V (x, s) = −
∫ T

s
dτ

∮
∂D(τ)

dβ GS(β, τ)
{
β̇(τ) · nβ

}
B(β, τ |x, s) e−r(τ−s)

+
1

2

∫ T

s
dτ

∫
D(τ)

dα GS(α, τ)
{←−
∇2
α −
−→
∇2
α

}
B(α, τ |x, s) e−r(τ−s)

+

∫ T

s
dτ

∫
D(τ)

dα GC(α, τ)B(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα GM (α, T )B(α, T |x, s) e−r(T−s).

(3.22)

With the PDE satisfied by B, we get that

V (x, s) = −
∫ T

s
dτ

∮
∂D(τ)

dβ GS(β, τ)
{
β̇(τ) · nβ

}
B(β, τ |x, s) e−r(τ−s)

+

∫ T

s
dτ

∫
D(τ)

dα GS(α, τ)

{
1

2

←−
∇2
α − r −

∂

∂τ

}(
B(α, τ |x, s) e−r(τ−s)

)
+

∫ T

s
dτ

∫
D(τ)

dα GC(α, τ)B(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα GM (α, T )B(α, T |x, s) e−r(T−s).

(3.23)
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With a partial integration in the second term, we get

V (x, s) = −
∫ T

s
dτ

∮
∂D(τ)

dβ GS(β, τ)
{
β̇(τ) · nβ

}
B(β, τ |x, s) e−r(τ−s)

+

∫ T

s
dτ

∫
D(τ)

dα ∆GS(α, τ)B(α, τ |x, s) e−r(τ−s)

−
∫ T

s
dτ

∫
D(τ)

dα
∂

∂τ

(
GS(α, τ)B(α, τ |x, s) e−r(τ−s)

)
+

∫ T

s
dτ

∫
D(τ)

dα GC(α, τ)B(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα GM (α, T )B(α, T |x, s) e−r(T−s).

(3.24)

Using Reynold’s theorem, we get

V (x, s) = +

∫ T

s
dτ

∫
D(τ)

dα ∆GS(α, τ)B(α, τ |x, s) e−r(τ−s)

−
∫ T

s
dτ

(
∂

∂τ

) ∫
D(τ)

dα GS(α, τ)B(α, τ |x, s) e−r(τ−s)

+

∫ T

s
dτ

∫
D(τ)

dα GC(α, τ)B(α, τ |x, s) e−r(τ−s)

+

∫
D(T )

dα GM (α, T )B(α, T |x, s) e−r(T−s),

(3.25)

where the first term has conveniently cancelled. With the STC satisfied by B, we obtain

— once more — that the optimal value must satisfy that:

V (x, s) = GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)B(α, τ |x, s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)B(α, T |x, s).

(3.26)

In this derivation we used 1) the PDE on B, 2) the STC on B, 3) the PDE satisfied by

the optimal value V , 4) the maturity condition on V , 5) both boundary conditions on

the optimal value V , and 6) Green’s second identity on the continuation domain at each

time, requiring a piecewise smooth boundary, and 7) Reynold’s transport theorem on the

domain, requiring a finite velocity (or integrability) of all regular boundary points. We

may therefore expect that the last expression should determine the optimal continuation
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domain uniquely: all conditions that are supposed to specify the optimal value have been

used, and only those relatively mild assumptions on the smoothness of the domain have

been used that are specified by Green’s identity and Reynold’s theorem.

3.4 The integral equation for the boundary

We have shown that the optimal value can be written as a function of the free density B —

if and only if the continuation domain is optimal. In other words, the fact that the optimal

value can be written as a function of B is a necessary condition, or can be seen as resulting

from optimality, but it is not a sufficient condition. This can easily be shown: for any given

domain, one could calculate the supposedly ‘optimal value’ using B, as if the domain was

optimal when in fact it is not. For any such domain, the PDE and condition at maturity of

(3.1) would hold, but neither value-matching nor smooth-pasting would be satisfied. If we

want to find the optimal domain, therefore, we must impose value-matching and smooth-

pasting on the expression for the optimal value. But which one should we impose first? It

turns out that this is irrelevant; we only need to impose one of them, and either will do.

To show why this is the case, let us extend the range of x from D(s) to all of Rd, i.e. we

define

V (x, s) := GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)B(α, τ |x, s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)B(α, T |x, s)

∀x ∈ Rd,

(3.27)

where x is now allowed in all of Rd, i.e. also outside the continuation domain D(·). As can

easily be seen, we automatically have that:

• The value of V , defined as above, is everywhere continuous for x in Rd — and in

particular the value of V is continuous across ∂D(s) for all s < T , for any domain.

• The gradient of V , defined as above, is everywhere continuous for x in Rd — and in

particular the gradient (and thus also the normal derivative!) is continuous across

∂D(s) for all s < T , for any domain.

• Far away from the continuation region D(·), we get that B decays exponentially, and

thus we automatically get V = GS for x far into the stopping region.

Furthermore,

• The value of V defined as above automatically satisfies ∆V = −GC inside of D(s),

for any domain.
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• The value of V defined as above automatically satisfies ∆V = ∆GS outside of D(s),

for any domain.

• The second derivative with respect to x is not continuous across the boundary ∂D(s),

but the second derivative is not required to be continuous, and so this shall not bother

us.

Because the value far into the stopping region is fixed, and because a given second

order differential equation is satisfied outside of D(·) as well as inside of D(·), it suffices to

impose either the value at ∂D(·) or the normal derivative at ∂D(·). We choose to impose

that the value option value is zero for all space-time coordinates (x, s) on ∂D. As a result,

the equation that should define the optimal continuation domain uniquely is as follows:

0 =

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)B(α, τ |β, s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)B(α, T |β, s).

∀β ∈ ∂D(s), ∀s ≤ T.

(3.28)

In other words: the expected value of the sum of all effective gains as collected in the

continuation region by a free Brownian motion must be zero, from each and every boundary

location and time.

The authors of [35] and [6] have obtained this equation in d = 1, with GC = 0 and

GM = GS . For higher dimensional problems this result is new, to the author’s best

knowledge. It follows that the optimality of any single boundary location is dependent on

all future boundary locations, and therefore the entirety of all dynamic boundary locations

must be determined at once. In general, we cannot determine any boundary location

without knowing all others.

Focusing on the 2-dimensional case specifically, and on the case when the domain is

known to be radial, we investigate the optimality condition in detail. We will see that, even

if only one function ρ(φ, t) is to be found, the task is still formidable. The optimality equa-

tion that must be satisfied by all boundary locations can be classified as a multidimensional

non-linear homogeneous Volterra integral equation of the first kind, with the distinguishing

features that:

1. The unknown function ρ(φ, t) determines the domain of the integration over D(·);
therefore it is a Volterra-type equation. Although Volterra equations normally have

the variable in the limit of the integration, rather than the unknown function as in

this case, we argue that Volterra equations are still more applicable than Fredholm

equations, which have a fixed and known domain of integration.
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2. Apart from its appearance in the domain D(·), the unknown function ρ(φ, t) also

appears under the integral sign, because the location of the boundary coordinate x

depends on ρ(φ, t). Because ρ(φ, t) appears under the integral sign but not outside

the integral, it is an equation of the first kind.

3. The unknown function ρ(φ, t) appears under the integral sign as a function of the

free Brownian density B; therefore, it is non-linear.

4. The expected value of all effective gains equals zero; therefore, it is a homogeneous

equation.

For 1-dimensional Volterra equations, where the integration extends over a variable linear

interval, many known methods exist; see e.g. [10], [11], [12] or [13]. Unfortunately, this is

not the case for multidimensional Volterra integral-equations. For existence and uniqueness

of solutions of Volterra equations, see e.g. [12] p. 25.

In the single asset case, [7] have shown that the numerical procedure based on the

integral method is competitive with the standard binomial procedure. In the multidimen-

sional case, unfortunately, no analogous result exists. Therefore, we will provide our own

(possibly very inefficient) numerical procedure in Section 4, to illustrate an example of a

max-option.
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4 Examples

4.1 The max-option

Consider possibly the simplest non-trivial MOS problem:

V1,2({x, y}, s) = max
s≤τ≤T

E{x,y}
[
e−r (τ−s) max

{
B1,τ , B2,τ , 0

}]
.

The conditioning in the subscript is on B1,s = x and B2,s = y and we set r = 1. The

stopping gain GS and the maturity gain GM are equal, since it does not matter if the

process is stopped before or at maturity. We do expect, however, that the continuation

region shrinks over time, such that no gain will ever be collected at maturity. We write GS

as follows:

GS({y, x}) = max
{
y, x, 0

}
= 1y>x 1y>0 y + 1x>y 1x>0 x

where 1 is the indicator function, which equals 1 if the condition in its subscript is satisfied

and zero otherwise. A visualisation of the stopping gain is shown in Figure 4. The indicator

function 1 is not differentiable, but by a limiting procedure we may find that (see e.g. [36]

p. 26, or [37] p. 54):
∂

∂x
1x>a = δ(x− a),

∂2

∂x2
1x>a = δ′(x− a),

where δ is the Dirac delta-function. This is what is meant by a ‘distributional derivative’

in Theorem 1. Furthermore, the theory of generalised functions suggests (again as in [37]

p. 54) that

(x− a) δ(x− a) = 0,

(x− a) δ′(x− a) = −δ(x− a).

Figure 4. Visualisation of stopping gain GS({x, y}) = max
{
y, x, 0

}
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Recall that ∆ = 1
2∇

2 + ∂τ − r, but where the derivative with respect to time is redundant

in this case, as GS is independent of time. Also recall that GC = 0. We obtain

∆GS({y, x}) =

(
1

2

∂2

∂x2
+

1

2

∂2

∂y2
− r
)
GS({y, x})

= δ(y − x)1x>0 +
1

2
δ(x)1x>y +

1

2
δ(y)1y>x − r max{x, y, 0}

where δ functions show up wherever GS has a kink. As a result, the optimality equation

(3.28) can be written as:

0 =

∫ T

s
dτ

∫ ∫
D(τ)

dx dy

(
δ(y − x)1x>0 +

1

2
δ(x)1x>y +

1

2
δ(y)1y>x − r max{x, y, 0}

)
× e−r(τ−s)B({x, y}, τ |β, s).

(4.1)

The coordinate β is a 2-dimensional boundary coordinate, i.e. β = {β1, β2}. Intuitively,

we see that for an optimal boundary coordinate β, the weighted expected time spent on

those lines where GS has a kink (i.e. the negative x axis, the negative y axis, and the

positive diagonal x = y) must equal the appropriately weighted time spent in the entire

continuation region.

Far away from the diagonal, i.e. when one Brownian motion is much more likely to

win than the other, we expect that the optimal policy should only depend on the level of

the leading one. In those regions, therefore, the problem is a 1-dimensional one; i.e. when

to exercise the Brownian motion that is leading. Suppose that B2,t is very negative, such

that B1,t is leading. Only the level of B1,t is relevant for the exercise policy, and thus the

boundary of the continuation domain should appear as a vertical line in the x, y-plane. In

this case, the relevant problem is

V1(x, s) = max
s≤τ≤T

Ex
[
e−r (τ−s) max

{
B1,τ , 0

}]
and this problem is discussed in for example [35], p. 13. The speed with which the

2-dimensional boundary moves, far away from the diagonal, is determined by the 1-

dimensional problem. To solve the 1-dimensional problem, we may use the same machinery

that we developed for MOS, as our approach is valid for d ≥ 1. The 1-dimensional problem

has

GS(x) = max(x, 0) = 1x>0 x.

And thus

∆GS(x) =
1

2
δ(x)− r 1x>0 x.

Therefore the optimal value, as given by Theorem 1, reads

V (x, s) = GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
1
2δ(x)− r 1x>0 x

)
e−r(τ−s)B(α, τ |x, s).
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Figure 5. Expected behaviour of the boundary, where 1) the boundary is straight when one

Brownian motion is leading the other by a long way, 2) stopping never occurs when the process is

on the diagonal, and 3) the continuation region shrinks over time. The domain is radial, where the

radius ρ is a function of the polar angle φ and time t, where ρ(φ, t) is given in (4.3), and where ρ

goes to ∞ for φ→ π/4, φ→ −π/2 and φ→ π. Whenever the lines in the plot are dense, the speed

of the boundary is low. The speed of the boundary increases as time approaches maturity and the

boundary at time t = 0.99 is seen to approach the axes and the diagonal.

To determine optimality we may apply value-matching. Value-matching implies, intuitively,

that, from an optimal boundary location, half the expected time spent where GS has a

kink is equal to the total expected time spent in the continuation region as weighted by

r GS . This must hold for every optimal boundary location. In [35] the solution is estimated

using a discrete approximation of the integral equation (i.e. a sum). We solve the integral

equation similarly, but to limit the number of data points that our numerical procedure

must remember, we estimate the boundary in the following form:

g(t) = α (1− t)1/6 + β (1− t)1/5 + γ (1− t)1/4 + δ (1− t)1/3 + ε (1− t)1/2 + ζ (1− t). (4.2)

It is known from e.g. [35] that the boundary has infinite slope at t = 1 and the parametrisa-

tion above is chosen to capture this. The parameters are estimated to be {α, β, γ, δ, ε, ζ} =

{0.20, 0.19, 0.17, 0.14, 0.08, 0.12}, where we have only indicated the first two decimal places

of actual estimates, which involve 6 decimal places. Based on this estimate of the 1-

dimensional optimal stopping curve g, we can calculate the violation of value-matching

(which is extremely small) to convince ourselves that this is indeed an accurate solution.
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Given that the solution to the 1-dimensional problem is given by g(t), we use the program

Mathematica [38] to guess the 2-dimensional boundary as follows:

Ρ@j_, t_D := g@tD
1

Sin@jD
+

1

Sin@jD - Cos@jD
If@Pi � 4 £ j £ Pi, 1, 0D +

1

Cos@jD
-

1

Sin@jD - Cos@jD
If@-Pi � 2 £ j £ Pi � 4, 1, 0D

(4.3)

The radius ρ of the 2-dimensional domain is given as a function of the angle φ and time t.

This particular guess supposes that the radius ρ is separable in time t and angle φ: it is given

by the product of a function that depends only on t, and a function that depends only on

φ. The polar angle φ runs from −π/2 (south) counter-clockwise to π (west). The diagonal

is at π/4 (north-east). The dependence on t is inspired by the 1-dimensional problem,

because we suspect that the 2-dimensional boundary is straight for φ in the directions

south or west. In those areas, the boundary should move with a speed that is dictated

by the 1-dimensional problem. The proposed dependence on the polar angle is such that

the boundary becomes a straight for either φ → −π/2 and φ → π, which is suspected by

intuition. The dependence on φ is different on either side of the diagonal (where φ = π/4):

to the right of the diagonal we guess that it looks like 1/ cos(φ) + 1/(sin(φ) + cos(φ)),

such that becomes infinite when φ points south or north-east. And similarly for φ in the

range from π/4 to π. The resulting boundary is plotted in Figure 5. Whenever the lines

are dense, the speed of the proposed boundary is relatively low. Towards maturity, the

speed of the proposed boundary increases and at maturity the speed is infinite. It is still

integrable, however, as can be seen from the definition of g in (4.2).

This initial guess is is not necessarily optimal, even though we do expect that it is

optimal for φ → −π/2 and φ → π. We will try and improve on our initial guess by the

following procedure in Mathematica:

1. We make a table of our initial guess ρ(φ, t), where φ runs from −π/2 + ε to π − ε
(where ε is small, to avoid having to deal with infinite ρ), and where t runs from 0 to

T = 1. Each point in the table represents a boundary location, where the radius is

given as a function of the angle φ and time t. We prescribe that ρ(π/4, t) = 20 g(t),

because we know that ρ should be infinite on the diagonal:

s = 0; T = 1; AnglePoints = 101; TimePoints = 5; Ε = 1 � 100;

InterpolationTable = TableBIf@j ¹ Pi � 4, Round@Ρ@j, tD, 0.001D, 20 g@tDD,

:j, -Pi � 2 + Ε, Pi - Ε,
3 � 2 Pi - 2 Ε

AnglePoints - 1
>, :t, s, T,

T - s

TimePoints - 1
>F

2. Second, we do an interpolation of order 1 in both angle and time to obtain, once

more, a function ρ that is defined for all φ and t, i.e.
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InterpolOrder = 1;

InterpolatedΡ@table_D := ListInterpolation@table,
88-Pi � 2 + Ε, Pi - Ε<, 80, T<<, InterpolationOrder ® 8InterpolOrder, InterpolOrder<D

3. Based on this ‘interpolated ρ’, we can calculate the (supposedly optimal) value V .

First we define

r = 1;

WorkingPrec = 4;

B@y_, t_, x_, s_D :=
1

2 Π Ht - sL
ã

-
Hy-xL.Hy-xL

2 Ht-sL

GS@Ρ_, j_D := Max@Ρ Sin@jD, Ρ Cos@jD, 0D
InteriorCoord@Ρ_, j_D := 8Ρ Cos@jD, Ρ Sin@jD<
SurfaceCoord@table_, j_, t_D :=

8InterpolatedΡ@tableD@j, tD Cos@jD, InterpolatedΡ@tableD@j, tD Sin@jD<

And then the value V is given by

V@table_, phi_, s_D :=

GS@InterpolatedΡ@tableD@phi, sD, phiD

+NIntegrateB
1

2
ã-r HΤ-sL B@8x, 0<, Τ, SurfaceCoord@table, phi, sD, sD,

8Τ, s, T<, 8x, -¥, 0<, WorkingPrecision ® WorkingPrecF

+NIntegrateB
1

2
ã-r HΤ-sL B@80, y<, Τ, SurfaceCoord@table, phi, sD, sD,

8Τ, s, T<, 8y, -¥, 0<, WorkingPrecision ® WorkingPrecF
+NIntegrateAã-r HΤ-sL B@8z, z<, Τ, SurfaceCoord@table, phi, sD, sD,

8Τ, s, T<, 8z, 0, ¥<, WorkingPrecision ® WorkingPrecE
+WithA8R = InterpolatedΡ@tableD<, NIntegrateA

- r GS@Ρ, jD Ρ ã-r HΤ-sL B@InteriorCoord@Ρ, jD, Τ, SurfaceCoord@table, phi, sD, sD,
8Τ, s, T<, 8j, 0, 2 Pi<, 8Ρ, 0, R@j, ΤD<, WorkingPrecision ® WorkingPrecEE

where the value V at boundary coordinate (φ, t) is equal to a sum of the immediate

stopping value (first term), an integration is over the negative x-axis (second term),

over the negative y-axis (third term), over the positive diagonal x = y (fourth term),

and over the continuation region (fifth term). The radius is involved in the space-time

boundary coordinate

({x, y}, s) = ({ρ(φ, s) cos(φ), ρ(φ, s) sin(φ)}, s)

as well the integration over the continuation region as∫ T

0
dτ

∫ π

−π/2
dφ

∫ ρ(φ,τ)

0
dρ ρ

where ρ(φ, τ) is based on an interpolation of a table, wherever it appears.
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4. The value at the boundary must satisfy value-matching, i.e. the second to fifth terms

in V are supposed to add to zero. If the value V at some grid-point is higher than the

immediate stopping gain GS , then the domain needs to grow bigger. If the value V

at some grid-point is smaller than the immediate stopping gain GS , then the domain

needs to grow smaller. This observation suggests the following procedure to update

the boundary, when value-matching is not satisfied:

Where we rely on the fact that the slope of GS is often greater than the slope of V ,

so that the new boundary location is ‘close’ to the old one. When ρ is used as the

parameter on the horizontal axis, as we do, then the slope of GS can be very small

when φ is close to −π/2 or π. To correct for this, we may add a linear curve to both

curves drawn above — and as a result the correction becomes smaller. For some φ

and t, the new ρ(φ, t) can be found as follows:

FR@j_, s_D := Module@8Ρ<, Re@
Ρ ��. FindRoot@V@InterpolationTable2, j, sD + InterpolatedΡ@InterpolationTable2D@j, sD �

GS@Ρ, jD + Ρ, 8Ρ, 1<, MaxIterations ® 5, WorkingPrecision ® 3DDD

where we have added ρ to both sides of the equation to make sure the slope of

the right-hand-side is large enough, and where we allow a maximum of 5 find-root

iterations. The new radius, for which value-matching would be satisfied if V was
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calculated based on the old one, is used as the new grid-point. We estimate a new

value of ρ(φ, τ) for all points in the table that defines ρ(φ, τ), i.e.:

InterpolationTable2 = TableBIf@j ¹ Pi � 4, FR@j, tD, 20 g@tDD,

:j, -Pi � 2 + Ε, Pi - Ε,
3 � 2 Pi - 2 Ε

AnglePoints - 1
>, :t, s, T,

T - s

TimePoints - 1
>F

5. Based on this new table, we do a new interpolation:

InterpolationTable2 = TableBIf@j ¹ Pi � 4, FR@j, tD, 20 g@tDD,

:j, -Pi � 2 + Ε, Pi - Ε,
3 � 2 Pi - 2 Ε

AnglePoints - 1
>, :t, s, T,

T - s

TimePoints - 1
>F

and continue with this procedure until the table defining ρ(φ, τ) no longer changes

up to some small positive tolerance.

This procedure is just heuristic — there is no proof that it will or should converge,

and we try it in Mathematica [38]. It might not be very accurate, but we simply show it

here as a proof of principle. After two iterations, we get

-10 -5 5 10

-10

-5

5

10

where the black equals the interpolation of our initial guess, the blue dots indicate the

first iteration and the red dots the second one. For t = .9, i.e. very near maturity, we get

with the same colour-coding:
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-10 -5 5 10

-10

-5

5

10

We see that the continuation domain shrinks over time, and in both cases we see that

subsequent iterations do not change the boundary points much, and therefore we conclude

that the boundary must be near-optimal — at least with the current working precisions

as specified. The reliance on the initial guess, however, is substantial, especially as far as

the movement of the boundary is concerned. Although for each point in time we specified

100 points on the boundary, we only specified 5 points in time. Therefore the speed of the

boundary in this solution might not be very accurate, but it does give us some idea of its

shape.

4.2 Parallel investment in two alternatives

Here we consider the problem of parallel investment in two alternatives, where the win-

ner produces revenues at maturity, which are linear in its performance at maturity. The

performance develops stochastically as follows

P1(t) = µ1 t+ σ1B1,t

P2(t) = µ2 t+ σ2B2,t

where B1,t and B2,t are independent Brownian motions, satisfying EBi,t = 0 and EB2
i,t = t,

and where the end date of each project is taken to be T = 1. The value of optimal parallel

investment in projects 1 and 2 is given by V1,2:

V1,2({x, y}, s) := max
s≤τ≤T

E(x,y)

[
e−r (τ−s) max

{
V1(B1,τ , τ), V2(B2,τ , τ)

}
−
∫ τ

s
dθ (c1+c2) e

−r(θ−s)

]
where V1 and V2 are the optimal values of projects 1 and 2, if they were continued op-

timally and in isolation, where the maximisation is over stopping time τ , and where the
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conditioning in the subscript of E is on the values of B1,s = x and B2,s = y. The optimal

values of projects 1 and 2 are given by:

V1(x, s) := max
s≤τ≤T

Ex

[
e−r (T−s) (µ1 T + σ1B1,T )1τ=T −

∫ τ

s
dθ c1 e

−r (θ−s)

]

V2(x, s) := max
s≤τ≤T

Ex

[
e−r (T−s) (µ2 T + σ2B2,T )1τ=T −

∫ τ

s
dθ c2 e

−r (θ−s)

]
where the maximisation is over all stopping times τ and where the optimal value of either

project in isolation equals an expectation of the performance at maturity, if and only if the

project is not abandoned before that time, minus an expectation of the continuation cost

ci which is to be paid at each unit of time when the project is not stopped. To summarise

the 2-dimensional problem, we have

Continuation gain −c1 − c2
Stopping gain max

{
V1(B1,τ , τ), V2(B2,τ , τ)

}
Maturity gain

We expect that the continuation region of V1,2 — corresponding to continued investment

in both projects — shrinks to zero as time goes to T , because an optimal policy would

never allow both projects to be completed. It would be better, for example, to abandon the

project that is almost certainly going to lose a small time before completion, and therefore

the maturity gain will never be obtained. In general, the optimal value reads as follows:

V (x, s) = GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)B(α, τ |x, s)

+

∫
D(T )

dα

(
GM (α, T )−GS(α, T )

)
e−r(T−s)B(α, T |x, s).

Because GM and GS at t = T are equal, we get

V (x, s) = GS(x, s)

+

∫ T

s
dτ

∫
D(τ)

dα

(
GC(α, τ) + ∆GS(α, τ)

)
e−r(τ−s)B(α, τ |x, s).

The continuation gain equals

GC({x, y}, s) = −c1 − c2

and for the stopping gain we have that

GS({x, y}, s) = max
{
V1(x, s), V2(y, s)

}
= 1V1(x,s)>V2(y,s) V1(x, s) + 1V2(x,s)>V1(y,s) V2(y, s)
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and we need to calculate ∆GS({x, y}, s), which is not very hard but a little tedious. After

a lot of bookkeeping, and using the same δ-function identities as in the previous subsection,

we get that

GC({x, y}, s) + ∆GS({x, y}, s) = −c1 1V2(x,s)>V1(y,s) − c2 1V1(x,s)>V2(y,s)

+δ
(
V1(x, s)− V2(y, s)

)(1

2

(
∂V1
∂x

)2

+
1

2

(
∂V2
∂y

)2)
.

Here we have also used that the 1-dimensional values V satisfy

∆Vi(x, s) = ci.

The optimal value reads

V (x, s) = GS(x, s)

+

∫ T

s

dτ

∫
D(τ)

dα

[
−c1 1V2(x,s)>V1(y,s) − c2 1V1(x,s)>V2(y,s)

+ δ
(
V1(x, s)− V2(y, s)

)(1

2

(
∂V1
∂x

)2

+
1

2

(
∂V2
∂y

)2)]
e−r(τ−s)B(α, τ |x, s)

and value-matching requires

0 =

∫ T

s
dτ

∫
D(τ)

dα

[
−c1 1V2(x,s)>V1(y,s) − c2 1V1(x,s)>V2(y,s)

+ δ
(
V1(x, s)− V2(y, s)

)(1

2

(
∂V1
∂x

)2

+
1

2

(
∂V2
∂y

)2)]
e−r(τ−s)B(α, τ |β, s)

for all boundary coordinates β. Interpreting this optimality equation, we find that

Corollary 2. For investment in two alternative projects with continuation costs c1 and

c2, from each optimal boundary location β, the expected time spent, by a free Brownian

motion, in the continuation region where project 1 is in the lead — as weighted by c2 —

plus the expected time spent in the continuation region where project 2 is in the lead — as

weighted by c1 — must equal the expectation of time spent on the curve V1 = V2, where

both projects are equally valuable — as weighted by 1
2

(
∂V1
∂x

)2
+ 1

2

(
∂V2
∂y

)2
.

The total ‘loss’ is given by the expected total value of all money spent on either project

while the other project is in the lead. This is something you would want to minimise in

general. The total ‘gain’ is equal to a weighted expectation of the time spent on the curve

V1 = V2, where both projects are equally valuable. If the expected time on the curve given

by V1 = V2 is high, then many switches are expected in which project is leading, and thus

the option value to wait is valuable. Theorem 1 applied to this situation shows that from

each boundary point, the expected total loss and expected total gain must equal.
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If we want to allow the situation where the performances of both projects are correlated,

then we need to solve

V1,2({x, y}, s) := max
s≤τ≤T

E(x,y)

[
e−r (τ−s) max

{
V1(W1,τ , τ), V2(W2,τ , τ)

}
−
∫ τ

s
dθ (c1+c2) e

−r(θ−s)

]

where
W1,t = B1,t

W2,t = (ρB1,t + (1− ρ2)1/2B2,t)

where B1,t and B2,t are truly independent Brownian motions, and where W1,t and W1,t

are processes of unit variance and correlation ρ, see e.g. [4], p. 171. This shows that

the treatment where the different stochastic processes are correlated is not fundamentally

different from the case where they are independent.

However, it is not clear that the optimal domain should be radial. When V1 and V2

represent identical projects, the domain is symmetric in the diagonal, i.e. x = y, and it

may well be radial. But when the two alternative projects have different variances σ2i , for

example, and if their correlation is furthermore non-zero, then it is not clear a priori if the

domain to be found will be radial. The reduction from two to one unknown functions is

therefore not guaranteed to be valid, and therefore we cannot solve this problem numerically

yet.
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5 Conclusion

In this paper we have considered the problem of alternatives, where several competing

technologies or drugs are developed over time, and where there can be only one winner.

We have viewed this problem in the wider context of multidimensional optimal stopping

(MOS) problems. We have noted that far fewer results are known than in the case of 1-

dimensional optimal stopping problems, where results are abundant — see for example the

extensive literature on the American option.

We have established the relationship between boundary value problems on the one

hand, in particular the Dirichlet and Neumann problems, and free-boundary problems on

the other. Both boundary value problems can be solved for any domain D(·), as long as it

has a finite number of singular boundary points and the boundary has an integrable speed.

In each case the solution automatically satisfies 3 out of the 4 conditions that would be

imposed on an optimal value. The Dirichlet value satisfies value-matching but not smooth-

pasting, and the Neumann value satisfies smooth-pasting but not value-matching.

The optimal stopping problem, or free-boundary problem, prescribes both the value

and derivative, and the one domain is optimal for which the Dirichlet and Neumann values

are equal. Optimality can be obtained either by imposing smooth-pasting on the Dirichlet

value, or by imposing value-matching on the Neumann value. A third proof was added,

which arrives at the correct result without referring to either absorbed or reflected Brownian

motion, with the disadvantage that it may appear rather ad-hoc.

Using the integral formulae derived in Section 2, it was shown in Section 3 that by

imposing optimality in either of the described ways, the absorbed/reflected density in the

Dirichlet/Neumann value is replaced by the free Brownian density — which is a known

quantity. The derivation assumes that the boundary has a finite number of singular points

at each time, such that Green’s theorem is allowed, as well as that boundary points have

integrable speeds, such that Reynold’s theorem is allowed. While it is not obvious, a priori,

that these conditions should be satisfied, they do not seem overly restrictive.

While the optimal value can be written as a function of the free Brownian density if

the optimal domain is known, the optimal domain is a priori unknown. We show that

the optimal domain can be found by imposing either value-matching or smooth-pasting

on the derived optimal value. The result is an integral equation, where the optimality of

any single boundary location depends on the entire future continuation domain D(·) and

thus no boundary location is independent of others. Instead, the entire boundary must be

found at once.

Specifically, we found in Corollary 1 that for x on the optimal boundary, the expected

value of all effective continuation and effective maturity gains, as collected by the free

Brownian path during its time in the optimal continuation domain D(·), equals zero. This
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holds true for all boundary locations x ∈ ∂D(·).
Theorem 1 and Corollary 1 are new, to the author’s best knowledge — and this paper

seems to provide one of the first more general results in the field of MOS. While some

specific multidimensional problems have been discussed in the literature (as mentioned on

p. 18), there appears to be a lack of more general results.

To solve the integral equation for any specific problem, the boundary needs to be

parametrised in one way or another. For a general 2-dimensional domain, a parametric

representation requires both Cartesian coordinates x and y to be specified as functions of a

certain parameter, and of time. Instead we examine a problem for which we know a priori

that the domain can be specified by providing the radius of the boundary as a function

of the polar angle φ and of time t (and we call this a radial domain). This reduces the

number of unknown functions from two to one, but finding it is still a formidable task.

The integral equation is classified, and Section 4 proposes a (possibly inefficient) method

of improving upon some initial estimate ρ(φ, t). The approach is heuristic and depends

on a good first guess. It is more a proof of principle rather than a rigorous algorithm for

solving multidimensional integral equations, and does not deal with matters of convergence

and accuracy.

Even if we cannot yet solve the problem of alternatives numerically with great accuracy,

the application of Theorem 1 does provide some new intuition. Corollary 2, for example,

states that for investment in two alternative projects with continuation costs c1 and c2,

optimality demands that from each optimal boundary point β, the expected time spent

by a free Brownian motion in the continuation region where project 1 is in the lead — as

weighted by c2 — plus the expected time spent in the continuation region where project

2 is in the lead — as weighted by c1 — is equal to the expectation of the (appropriately

weighted) time spent on the curve V1 = V2, where both projects are equally valuable.

Intuitively, this means that the total expected ‘loss’ — defined as the total amount of

money spent on projects when they are not in the lead — is allowed to be greater if many

switches are expected in which project is leading.

We conclude that the problem of alternatives — or more generally problems with 1) a

non-additive revenue structure regarding different project, 2) stochastic development of the

‘performance’ of each project and 3) significant discounting and/or finite maturity — can

be viewed in the wider context of MOS problems. The MOS literature is limited and this

paper takes a first step in developing the theory. Much remains to be explored, however, and

in particular we need a method for solving multidimensional integral equations efficiently

and accurately, which would allow our optimality equation to be used by practitioners for

real-world problems.
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Abstract: This paper considers the role of government subsidies for renewable technolo-

gies, such as feed-in tariffs, which have become a topic of controversy. Rapidly diminishing

levels of subsidy are cheaper to the taxpayer, but could equally kill an otherwise successful

technology prematurely. Sustaining high levels of subsidy, on the other hand, is not only

expensive but also keeps alive the worst-case scenario of a technology being supported

indefinitely without ever becoming economical. Our first contribution is that we find an

optimal feed-in tariff for German photo-voltaics, by formulating the trade-off as an optimal

stopping problem. We use the method of (multidimensional) optimal stopping as devel-

oped in Part II of the thesis, and apply it to the 1-dimensional case of Part III. A second,

and independent, contribution of this paper is that it provides a new model for technology

learning with endogenous market growth. Other analyses of learning curves have taken

capacity expansion to be the exogenous variable. We recognise, similarly, that investment

drives cost reductions, through the learning curve, but our model recognises also that cost

reductions, in their turn, drive profitability and (further) investment. This feedback loop

is new and adds to the literature on mean-reverting and runaway processes.
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1 Introduction

This paper considers the role of government subsidies for renewable technologies, such

as feed-in tariffs, which have become a topic of controversy. Rapidly diminishing levels

of subsidy are cheaper to the taxpayer, but could equally kill an otherwise successful

technology prematurely. Sustaining high levels of subsidy, on the other hand, is not only

expensive but also keeps alive the worst-case scenario of a technology being supported

indefinitely without ever becoming economical.

Within this introduction, subsection 1.1 introduces the questions that arise from large-

scale deployment of renewable energy, in the context of both technology policy and climate

change policy. Subsection 1.2 then discusses how technologies learn from increased deploy-

ment by progress on their ‘learning curve’. Subsection 1.3 challenges the traditional view

that capacity expansion drives cost reduction, and proposes that the reverse is also true:

cost reductions also drive capacity expansion. Finally, subsection 1.4 discusses how to for-

mulate the problem of feed-in tariffs as an optimal stopping problem, and suggests that we

use the machinery of multidimensional optimal stopping problems, as developed in Part II

of this thesis, to tackle the 1-dimensional problem. This paper makes two contributions:

1. It formulates an optimal policy for the feed-in tariff for German photo-voltaic energy.

2. And, independently, it proposes a model for technology learning that makes market

growth endogenous.
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1.1 The problem

This paper considers government subsidies for the deployment of renewables, such as feed-

in tariffs. Some governments oblige electricity utilities to buy all electricity generated by

renewable sources at a high, predetermined price — the feed-in tariff — which may be up

to 6 times the market rate, and which decreases annually such that energy generated by

newer capacity gets paid at a lower rate, even though the tariff stays fixed for 20 years for

all electricity generated by a given unit of capacity.

In general, four arguments — of variable validity — can be made in support of low-

carbon technologies (relying heavily on [1]):

1. The EU ETS does not generate a carbon price that is high enough to stimulate

renewable investment. Further, its timeframe is too short to secure sustained private

commitment. Feed-in tariffs can indeed be credible in the long term, but effectively

they a) lower the carbon price and b) do not reduce total carbon emissions.

2. A flourishing renewable industry is supposed to increase the security of supply, but

renewable energy appears to displace secure LNG imports in particular, rather than

imports from unstable regions such as Russia and Algeria.

3. Subsidies in renewable deployment help technologies move down the ‘experience

curve’ (or ‘learning curve’), such that current subsidies are in effect an investment

in reduced future cost. The validity of this argument depends on a) the potential

of future cost reductions, b) whether large-scale deployment is a better method of

achieving this than e.g. R&D, and c) whether or not the technology can be deployed

globally. The answer to these questions is technology specific.

4. Renewables may seem to be the only politically and publicly acceptable road towards

a low-carbon future — but attitudes may change.

The ‘experience curve’ argument requires some extra conditions (is there enough po-

tential, why deployment rather than R&D, and is it scalable?) to justify spending large

sums of public money. But in fact it may well be the only argument, out of the four

presented, that withstands proper scrutiny. Solar energy, for example, is currently still

expensive; but it is operationally clean, abundant, and has the potential for large cost

reductions as well as large-scale deployment. In Germany, solar power already produces

up to 10% of the energy on a sunny day. Solar energy is in principle so attractive that

it justifies taking some risks. Furthermore, announcing a receding feed-in tariff does not

commit society to investing in solar energy for the next 20 years, as the solar industry will

grow if and only if it can continue be profitable under the (receding) feed-in tariff.
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Feed-in tariffs are technology specific (i.e. different for wind and solar), can be up

to 6 times the market rate (up to 0.29�/kWh for solar roof panels), depend on the year

of installation (but are then fixed for 20 years) and are lower for more recently installed

panels (9% decrease p.a. for solar in Germany). The main driver of feed-in tariffs has been

the expectation that as the (total historical) cumulative installed capacity increases, the

cost per unit will decline.

The author of this paper is of the opinion that a sensible policy should, at least, address

these four questions:

1. When should government subsidies be discontinued? It is generally agreed that this

should happen when an energy source has captured a sizeable portion of the market.

‘Sizeable’ is considered to be 5% by some, but that number is debatable. Wind

energy has already reached this level — but it is unclear whether the wind sector

would stagnate without further subsidies. The photovoltaic industry is still in its

development phase; its penetration in the German market, for example, is around

2%. Currently German EEG law stipulates that the decrease in the tariff for solar

energy ‘shall be 9% from the year 2010 onwards’, but no end date is specified. This

implies, by extrapolation, that solar energy must become economical around 2020,

when the feed-in tariff is expected to match industrial market prices. But if current

German growth rates (around 40%) are anything to go by, the market size of solar

energy in 2020 will far exceed 5%.

2. How quickly should feed-in tariffs recede? Rapidly diminishing levels of subsidy are

cheaper to the taxpayer and presumably incentivise innovation, but could equally kill

an otherwise successful technology prematurely. Sustaining high levels of subsidy, on

the other hand, is not only expensive but also keeps alive the worst-case scenario of

a technology being supported indefinitely without ever becoming economical.

3. Should feed-in tariffs be predetermined or performance dependent? Predetermined

(but decreasing) feed-in tariffs may encourage higher private commitment, but they

tie governments’ hands when costs come down quicker than expected. The wrong

choice can be expensive. Spain’s renewable energy sector is suing its government over

promises that prompted heavy investment but that were subsequently broken. Like-

wise, the unexpected reduction of solar subsidies in France is said to have damaged

investor confidence. On 30 June 2011, the Deutsche Bundestag passed changes to the

feed-in tariff, making them dependent on the amount of aggregate newly installed ca-

pacity of the previous year, thereby making the feed-in tariff a performance-dependent

variable. This allows for flexibility on the part of the government, but provides pri-
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vate investors with less certainty about future returns and may thus disincentivise

investment.

4. Implicitly, solar energy competes not only against the incumbent technology that

sets the 2020 target, but also against other low-carbon technologies such as wind —

where the extent to which different low-carbon technologies are truly alternatives is

debatable. Feed-in tariffs, it can be argued, are ultimately not technology policies but

climate policies. It is highly desirable to have a) competition between technologies,

and b) parallel paths towards a sustainable mix of energy sources, even if wind energy

and solar energy are considered as alternatives. But it is unclear if the feed-in tariffs

for wind and solar energy should be considered in isolation, or if there should be some

interdependency.

As far as the last point is concerned, it is clear that the world should not release all the

carbon currently stored in its fossil fuels, in particular another 500 giga-tonnes of carbon

— on top of the 500 giga-tonnes that have already been emitted — at a 50% chance that

the rise in global temperatures will exceed 2 degrees Celsius; see e.g. [2].

Regarding the second question, it is clear that the speed of the receding tariff should

depend on how quickly the technology is expected to improve. The idea that costs come

down as total installed capacity increases is captured by the ‘experience curve’. Indeed, the

main driver of feed-in tariffs in Europe has been the expectation that as volumes increase,

marginal costs will decline, such that the tariff is an investment in future reduced cost.

1.2 Learning curves

As Moselle [1] has argued, the experience curve is the only viable argument for the ex-

traordinary support of renewables through the feed-in tariff. We argued on page 4 that

the speed with which the subsidies should be reduced depends on the expected speed of

learning, which is technology specific. The experience curve is therefore crucial, and we

examine the concept in some more detail here. Experience curves made their first appear-

ance in the forecasting of aircraft production rates in WWII; see e.g. [3]. In 1972, the

Boston Consulting Group applied it to entire industries to analyse competitive positions;

see e.g. [4]. In the operations research literature, experience curves have been discussed

by [5–10] and many others. Key elements in these analyses are:

1. an expected decline of production costs with cumulative (i.e. total historical) output,

2. an element of uncertainty regarding future margins due to stochastically decreasing

costs and fixed output prices, or vice versa,

3. the recognition that investment in capacity expansion, driving further cost reduction,

is an option and needs to be valued as such.
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In [8] there are stochastically varying output prices and a deterministic learning curve.

This results in an optimal ‘bang-bang’ solution: at any given time, it is optimal either to

produce nothing at all, or to produce at the maximum rate. [6] allow a competitive setting

where learning is a strategic choice. [10] explicitly allow for a stochastic learning curve.

The optionality is recognised by all. Majd and Pindyck [8], for example, write (p. 332):

A firm facing a stochastic output price can be thought of as having a set of

call options on future production at every instant of time. Each call option

has an exercise price equal to the production cost, which in our case decreases

with cumulative output. [. . . ] When a firm faces a learning curve, part of

its production is an fact an investment expenditure: the firm is investing in

reduced future costs. This is an irreversible investment, i.e., the expenditure is

sunk.

It is this optionality that makes R&D programmes hard to value. In the literature

quoted above, the decision variable is normally the amount (and timing) of capacity growth.

This results, for example, in bang-bang solutions. Through the stochastic learning curve,

we obtain new (and hopefully lower) marginal costs. In the case of a single decision maker,

such as one company or factory, this is perfectly satisfactory. But when the ‘decision maker’

is given by the community of potential German buyers of solar panels, however, then it

is not clear how this ‘decision maker’ should come to his/her decision regarding capacity

expansion. We expect that, at least to some extent, the decision by the German consumer

is driven by return on investment, and this leads us to the feedback loop considered in the

next subsection.

1.3 Endogenous market growth

The literature on experience curves, almost without exception, considers marginal cost

as endogenously determined by the exogenously determined total capacity. But what

determines the decision on capacity expansion? The Economist, for example, wrote as

recently as 26 July 20111 that

. . . German home-owners, propelled by generous government subsidies, installed

more solar panels on their rooftops in 2010 than the entire planet had managed

in the year before. [. . . ] But curiously, this building frenzy coincides with a

wave of cuts to solar subsidy schemes across Europe. [. . . ] In fact, the positive

and negative trends share a cause — the steep drop in solar photo-voltaic (PV)

panel prices. That has left many fixed-price incentive schemes looking absurdly

generous, prompting enormous spikes in investment.

1http://www.economist.com/node/21524449
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In this paper we use the word ‘predetermined’ rather than ‘fixed’ tariffs, because the

announced German tariffs are, in fact, decreasing. We realise, from the comments above,

that capacity expansion not only drives lower cost, but lower cost also drives capacity

expansion. A model that takes this endogeneity into account is thus needed, and we

present a model for solar learning with endogenous capacity growth in Section 2.

1.4 Feed-in tariff as an optimal stopping problem

Regarding the announcement of feed-in tariffs, governments may seem to be caught in a

classic catch-22. If the government announces a relatively high tariff, then it stimulates

more investment, causing the cost of solar energy to fall more quickly than expected, and

making the tariff seem extraordinarily generous and ill-informed, in hindsight. If, on the

other hand, the government announces a tariff that solar energy finds hard to beat, causing

both investment and learning to stifle, then this will, indeed, be self-fulfilling. Therefore it

may seem that there will inevitably be regret.

To this 1-dimensional problem we apply the machinery of (multidimensional) optimal

stopping as developed in Part II of this thesis; methodologically, there is no new content

here. While there are many existing ways to solve 1-dimensional optimal stopping problems

(see e.g. [11–13]), we feel that this application is new and addresses an important problem.

This paper is organised as follows. Section 2 introduces a stylised model that makes

capacity growth endogenous. Section 3 discusses data for the German photo-voltaic indus-

try and estimates how capacity expansion drives learning, and how learning drives capacity

expansion. Section 4 formulates an optimal stopping problem and derives a policy under

which there is no regret. Section 5 concludes.
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2 Technology learning with endogenous capacity growth

In this section we introduce a model for technology learning with endogenous capacity

growth; capacity expansion drives cost reductions, and cost reductions drive capacity ex-

pansion. Our notation will be as follows:

f(t) := feed-in tariff, in cents per kWh, at time t. For each consumer this is fixed for 20

years, once a solar panel is bought

C(t) := cost (to the consumer) of solar energy, in cents per kWh, at time t. For each

consumer this is fixed for 20 years, once a solar panel is bought

Q(t) := total size of the market, in MWp, at time t

ĝ0, ĝ1 := parameters that determine the speed of growth of Q (see below)

l̂r := parameter that determines the speed of learning in C (see below)

δ := end-user’s discount rate

where f , C and Q depend on the continuous time parameter t, and where stochastic

quantities have capital letters. The feed-in tariff f has a lower case because it is announced

by the government for the years to come, and thus deterministic. All ‘hatted’ parameters

(growth parameters ĝ0, ĝ1 and learning rate l̂r) are estimated from that data. ‘Unhatted’

parameters (like the consumer discount rate δ) are assumed to be known. Our simple

model thus consists of 1 known parameter, 3 estimated parameters and the dynamics (to

be postulated below) between the 3 quantities which depend on time: the deterministic

feed-in tariff f (the decision variable), and the stochastically developing C(t) and Q(t).

To explain what we mean by Q(t), we should mention that the capacity of a solar

panel is measured in kilo Watt peak (kWp). A solar panel of 1 kWp produces 1 kWh in

a sunny hour. When operated in Germany it produces only 8% of that on average, i.e.

365 ∗ 24 ∗ 0.08 ≈ 700kWh per year or 14, 000kWh over 20 years. Future energy production

should be discounted by δ. Using that
∑n

i=1 δ
i ≈ (δn − 1)/(log[δ]) if d < 1, the cost C(t)

of solar energy per kWh can be defined as:

C(t) :=
price of a solar panel of 1 kWp, at time t

sum of discounted future production in kWh

=
price of a solar panel of 1 kWp, at time t

365 ∗ 24 ∗ 0.08 ∗ (δ20 − 1)/(log[δ])

(2.1)

where we will take the consumer discount rate to be δ = 0.97. As for the dynamics between

f(t), C(t) and Q(t), we propose the following model:

1. The relative cost reduction over time, as measured by log
[
C(t)/C(0)

]
, is proportional

to the relative market growth over that same period, as measured by log
[
Q(t)/Q(0)

]
,

– 8 –



– Part III –

plus noise. In particular we propose

log

[
C(t)

C(0)

]
= −l̂r log

[
Q(t)

Q(0)

]
+ σ B(t),

where B(t) is a standard Brownian motion and σ its volatility. In this model, the

volatility σ is just a parameter, but later it will be estimated, and thus hatted. It

can be re-written to read:

C(t)

C(0)
=

(
Q(t)

Q(0)

)−l̂r
exp

[
σ B(t)

]
. (2.2)

This is the classic ‘learning curve’ or ‘experience curve’ that is very common in the

operations research literature; see e.g. [5–10] and others. In the empirical literature,

there is both plenty of evidence and criticism regarding the learning curve, see e.g.

[14–16]. We adopt the learning curve as given, because it is analytically practical and

because it is known, generally, to explain cost data quite accurately.

2. We assume that the market grows with ‘base’ growth rate ĝ0, but that this rate

increases if f(t)/C(t) is larger than 1. Specifically, we propose:

dQ(t)

Q(t)
= ĝ0 dt+ log

[
f(t)

C(t)

]
ĝ1 dt ≈ ĝ0 dt+

(
f(t)

C(t)
− 1

)
ĝ1 dt (2.3)

where the approximation holds when f(t)/C(t) is close to 1, and where ĝ1 measures

the strength of the feedback effect. Learning accelerates if ĝ1 is larger than zero and

if f(t) exceeds C(t)2. In the next section, the parameters ĝ0 and ĝ1 are estimated

to be 0.44 and 1.13. If f(t)/C(t) is much larger than 1, the market still responds to

increases in f(t)/C(t), but slower than linearly. This could be explained by assuming

that extremely high growth rates are not physically possible.

While assumption 1, the experience curve, is widely debated, documented and used, the

second assumption is new and crucial for the feedback loop that we intend. Let us inves-

tigate assumption 2 in more detail:

• Suppose that the feed-in tariff f(t) exceeds the cost to the consumer C(t), such that

capacity expansion is profitable. People invest and the installed capacity Q(t) goes

up. Through the learning curve, C(t) is expected to fall in the next period. If the

decrease in C(t) is larger than the decrease in f(t) — in percentage terms — then the

ratio f(t)/C(t) increases. Profitability for consumers goes up as the ‘rate of return’

log
[
f(t)
C(t)

]
increases. Thus, by assumption 2, the speed of market growth goes up, i.e.

Q(t) accelerates, driving further (and faster) cost reductions.

2If ĝ1 were negative it would drive reversion towards the moving curve f(t).
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• If capacity expansion reduces the cost C(t), but if f(t) falls faster than C(t) — in

percentage terms — then the ratio f(t)/C(t) decreases. Profitability for the consumer

decreases and capacity expansion slows down. Capacity Q(t) decelerates, driving

further (but slower) cost reductions. If we think the base growth rate ĝ0 is zero, then

capacity growth is only caused by profitability; by f(t) > C(t). In that case, when

C(t) can no longer beat the feed-in tariff, the capacity Q(t) decelerates further such

that Q(t) comes to a halt exactly when f(t) = C(t). (If we take the base growth rate

ĝ0 ≥ 0, then the market would keep growing regardless, and thus the model cannot

be trusted for C(t) exceeding f(t).)

In other words, log
[
f(t)
C(t)

]
may be viewed as the return on investment (RoI) to the consumer

of solar energy. The rate of investment goes up (down) as the RoI goes up (down). When

the feed-in tariff f(t) is only a little bit larger than the cost to the consumer C(t), then

log
[
f(t)
C(t)

]
ĝ1 dt ≈

(
f(t)
C(t) − 1

)
ĝ1 dt. Thus for small RoI, the speed of capacity expansion

(as measured by dQ(t)/Q(t)) increases linearly in the RoI. For larger RoI, the speed of

capacity expansion increases slower than linearly in the RoI. This could be explained by

assuming that extraordinarily large growth rates are not physically possible, even if they

are economically desirable. We choose this model because it seems that it is

• not unreasonable — i.e. one would expect that investment in capacity expansion is

at least partly driven by the return on investment

• broadly consistent with the data on e.g. German photo-voltaic market growth, as

will be shown in the next section

• analytically tractable — and this is the first model with the desired properties that

has this property, as discussed below

• consistent with a known vanilla model in the limit where ĝ1 → 0; such that Q(t) grows

exponentially at the base rate ĝ0 and C(t) follows a geometric Brownian motion with

drift −l̂r ĝ0.

Models with self-reinforcing effects are related to models with mean-reversion. While

mean-reversion drives the process back to the equilibrium, a run-away effect could be

obtained by driving the process away from what used to be the equilibrium position.

Therefore, a mean-reverting model with a negative parameter gives rise to situation with

a repulsive force away from (what used to be) the equilibrium position.

Mean-reverting models have been discussed extensively in the financial literature,

mainly to model interest rates. But many mean reverting models allow negative inter-

est rates, while others are not analytically solvable. The Vasicek interest rate model can

be expressed in closed form, but it mean-reverts to a constant level and may take negative
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values. The Cox-Ingersoll-Ross interest rate model, on the other hand, has the attractive

feature that its interest rate is always positive, but it cannot be solved analytically. We

refer to the overview paper by [17] for an overview of mean-reverting processes in finance.

We are unaware of an(other) analytical model for a process that 1) allows us to specify

an attractive force to (or repulsive force away from) a given time-dependent curve, while

2) enforcing that the process stays positive, and 3) is analytically solvable. Therefore, we

propose such a model here:

Theorem 1. Technology learning with endogenous capacity growth. We assume

that technology learning and market growth are specified by

C(t) = C(0)

(
Q(t)

Q(0)

)−l̂r
exp

[
σ B(t)

]
,

dQ(t)

Q(t)
= ĝ0 dt+ log

[
f(t)

C(t)

]
ĝ1 dt,

(2.4)

where B(t) is a standard Brownian motion of unit variance. Then the pair C(t) and Q(t)

can be provided in closed form as follows:

C(t) = exp

[
log
[
C(0)

]
eγ1 t − eγ1 t

∫ t

0
e−γ1 τ

(
γ1 log

[
f(τ)

]
+ γ0

)
dτ + σ eγ1 t

∫ t

0
e−γ1 τdB(τ)

]
,

Q(t) = Q(0) exp

[
ĝ0 t+ ĝ1

∫ t

0
log

[
f(τ)

C(τ)

]
dτ

]
.

(2.5)

The parameters γ0 and γ1 are defined as γ0 := l̂r ĝ0 and γ1 := l̂r ĝ1. Further, f(t) is a

given function of time; the feed-in tariff in this case.

When we let ĝ1 ↘ 0, the feedback loop is turned off and we return to a vanilla model

regarding market growth. In that case, we obtain

C(t) = C(0) exp

[
− γ0 t+ σ Bt

]
,

Q(t) = Q(0) exp

[
ĝ0 t

]
.

(2.6)

We see that in this limit, the capacity Q(t) grows exponentially and the cost C(t) follows

a downward sloping geometric Brownian motion. Finding the optimal tariff even for this

most vanilla market growth model, however, is a non-trivial exercise. We will discuss this

problem in Section 4. In the next section, we will apply this model to the German photo-

voltaic market and estimate the required parameters. The proof of Theorem 1 follows

here:
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Proof. Consider the following sequence of equalities:

dQ(t)

Q(t)
= ĝ0 dt+ ĝ1 log

[
f(t)

C(t)

]
dt,

d log
[
Q(t)

]
= ĝ0 dt+ ĝ1 log

[
f(t)

C(t)

]
dt,

log

[
Q(t)

Q(0)

]
= ĝ0 t+ ĝ1

∫ t

0
log

[
f(τ)

C(τ)

]
dτ,

Q(t)

Q(0)
= exp

[
ĝ0 t+ ĝ1

∫ t

0
log

[
f(τ)

C(τ)

]
dτ

]
.

Substitute this into the expression

C(t) = C(0)

(
Q(t)

Q(0)

)−l̂r
exp

[
σ B(t)

]
to obtain

C(t) = C(0) exp

[
− l̂rĝ0 t− l̂rĝ1

∫ t

0
log

[
f(τ)

C(τ)

]
dτ

]
exp

[
σ B(t)

]
C(t) = C(0) exp

[
− γ0 t− γ1

∫ t

0
log

[
f(τ)

C(τ)

]
dτ + σ B(t)

]
,

where γ1 := l̂r ĝ1 and γ0 := l̂r ĝ0. Rewriting, we get

log

[
C(t)

C(0)

]
= −γ0 t− γ1

∫ t

0
log

[
f(τ)

C(τ)

]
dτ + σ B(t).

Differentiate this expression to obtain

dC(t)

C(t)
= −γ0 dt− γ1 log

[
f(t)

C(t)

]
dt+ σ dB(t).

We propose that this recursive equation is satisfied by

C(t) = exp

[
log
[
C(0)

]
eγ1 t − eγ1 t

∫ t

0
e−γ1 τ

(
γ1 log

[
f(τ)

]
+ γ0

)
dτ + σ eγ1 t

∫ t

0
e−γ1 τdB(τ)

]
,

which can be verified by calculating dC(t):

dC(t) = C(0)

[
γ1 log

[
C(t)

]
dt−

(
γ1 log

[
f(t)

]
+ γ0

)
dt+ σdB(t)

]
.

The result follows.
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3 The German market for photo-voltaics

Although it allows for endogenous capacity growth, the proposed model in the previous

section is stylised. For an application to the German photo-voltaic market, it requires us

to estimate only 4 parameters: the learning rate l̂r, the growth parameters ĝ0, ĝ1 and the

volatility σ̂2. Germany has operated a large-scale feed-in policy since 2004, and our data

set is consequently limited:

Year FiT Hc�kWhL
2004 57.40

2005 54.53

2006 51.80

2007 49.21

2008 46.75

2009 43.01

2010 35.40

2011 28.74

Year Cost Hc�kWhL
2004 50.49

2005 53.35

2006 47.64

2007 43.15

2008 40.93

2009 31.01

2010 26.2

2011 23.82

Year Capacity HMWpL
2004 1105

2005 2056

2006 2899

2007 4170

2008 5979

2009 9785

2010 17 193

where c/kWh stands for � cents/kWh. These data are publicly available.3 The cost of

solar energy per kWh is calculated as in (2.1) and with δ = 0.97. On the basis of this

(limited) set of data, we estimate the parameters in the following model:

C(t) = C(0)

(
Q(t)

Q(0)

)−l̂r
exp

[
σ̂ B(t)

]
,

dQ(t)

Q(t)
= ĝ0 dt+ log

[
f(t)

C(t)

]
ĝ1 dt.

First, for the learning rate we find

Estimate Standard Error t Statistic P-Value

1 0.0929534 0.0925845 1.00398 0.339061

lr -0.12307 0.0184494 -6.67065 0.0000556417

à

à
à

à

à
à

à

à

à

à

à

à

2 4 6 8
Log@QHtL�QH0LD

-1.0

-0.5

0.0

Log@CHtL�CH0LD

3The data are taken from http://www.solarwirtschaft.de/.
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and the slope l̂r = −0.12 is highly significant (standard error = 0.02). The variance

is estimated as 0.0176, such that we have σ̂ = 0.133. As far as the market growth is

concerned, the feed-in tariff f(t) has only been effective since 2004. We wish to explain

the market growth based on the ratio f(t)/C(t), and therefore our estimates ĝ0, ĝ1 will be

based on only six data points, as follows:

Estimate Standard Error t Statistic P-Value

1 0.43581 0.121476 3.58761 0.0230109

g 1.12822 0.729442 1.54669 0.196842

à

à

à
à

à

à
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Of course, no significance can be expected. There may seem to be a lot of uncertainty

regarding the value ĝ0 and ĝ1, but simply declaring ĝ0 = 0.44, ĝ1 = 1.13 seems to result in

good estimates, as we will discuss below. Concluding, we have that:

parameters learning rate l̂r growth parameter ĝ0 growth parameter ĝ1 std. dev. σ̂

estimated value 0.12 0.44 1.13 0.0177

standard error 0.02 0.12 0.73

where the variance is estimated by the mean square error, and where we have added historic

data going back to 1995 to estimate the learning rate l̂r. This results in a highly significant

estimate. The estimates of ĝ0 and ĝ1 are based on six data points, because the feed-in

tariff has only been effective since 2004, and no significance can be expected. Therefore,

we proceed with care but we note that:

1. even if the estimates of ĝi are uncertain, the model still generates qualitative insight.

2. simply declaring ĝ0 = 0.44, ĝ1 = 1.13 results in relatively good estimates, at least for

historic market growth, as we will show below.

For example, we may predict dQ/Q on the basis of the tariff f(t) and cost C(t) by the

following equation
dQ(t)

Q(t)
= ĝ0 dt+ log

[
f(t)

C(t)

]
ĝ1 dt.
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Actual growth rates dQ/Q have ranged wildly; from 41% to 86% between 2005 and 2010.

We compare the predicted and actual growth rates in the following graph:

à
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Apart from 2005, this is not so bad. It seems that market growth is indeed affected by

return on investment for the consumer. Thus next year’s capacity can be predicted with

this year’s return on investment as follows:

à

à

à

à

à

à

à
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We see that even though there is uncertainty around the values of ĝi, taking ĝ0 = 0.44,

ĝ1 = 1.13 results in relatively good predictions, at least of past capacity expansions.

We are mainly interested in developing a new model for capacity expansion dQ(t)/Q(t),

and a new methodology for deciding on the feed-in tariff f(t). For convenience, therefore, all

estimated parameters will be assumed to be fixed and known, from this point onwards. But

it should be noted that the estimates may be wrong, and therefore the policy conclusions are
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not necessarily robust. More work will have to be done elsewhere, either on 1) estimating

the parameters better, or on 2) including Bayesian learning in the model, regarding the

estimated parameters. Since the exact numerical value of the parameters is not relevant

for the methodology proposed here, we will take the parameters as known and fixed at

their current estimates, and see where the model leads us. The inevitable consequence is

that policy implications will have to be taken with a grain of salt, even if one does believe

the dynamics proposed by the model.

The German government has announced that if the market keeps growing at its current

rate (i.e. adding over 7,500 MWp p.a.), then the feed-in tariff will be reduced by 24% p.a.

instead of the previously announced 9%. When the feed-in tariff f(t) is given, then we may

use the set of equations in Theorem 1 to predict the path of future cost reductions and

capacity expansions. With the parameters as estimated, and with a 25% reduction p.a. in

the feed-in tariff, the capacity Q(t) and cost C(t) are predicted to develop as follows:
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where the three dotted lines indicate the expected development of C(t), Q(t) and f(t). We

note that the capacity growth is expected to halt around 2013. This S-shaped curve is one

of the main attractive features of the model in Theorem 1. If, for example, one were to

use a constant growth rate, then it would be unclear what growth rate to choose, since the

growth rate has varied between 41% and 86% in the last 6 years alone. And even if one were

able to decide on a growth rate, then it would be clear that the suggested growth cannot

be sustained indefinitely — due to both physical and economic constraints. Our model

sidesteps this issue by internalising the growth rate, and we take the economic incentives

(but not the physical constraints) into account. However, it is expected that in the short to

medium term, the economic factors will be of greater significance as German feed-in tariffs

may drop by as much as 24%. The market will still grow, but — in percentage terms — not

as quickly as the tariff will fall. As a result, both investment and learning will be stifled.

When the cost can no longer beat the tariff, log
[
f(t)/C(t)

]
is negative and, therefore, ĝ1
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will drive a mean reverting force rather than a run-away force. Rather than away from the

tariff f(t), costs will be driven towards it, but it is clear that the model cannot be trusted

for f(t) < C(t).

Although the cost is expected to meet the tariff in 2012, given the expected 24%

reductions, it is not certain that this will, in fact, happen. The model of Theorem 1

incorporates uncertainty, and we may plot the expected progress of C(t), along with its 5th

and 95th percentiles, as follows:
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where f(t) is taken as the input, and where C(t) is an output of the model. From the

current year (2011), three dotted lines are drawn: the middle one is the expected path,

and the outer ones are the paths in the best and worst 5% of cases (i.e. the 5th and 95th

percentiles). It is clear that the variance in possible outcomes is huge. The feedback allows

the technology to obtain critical mass and beat the tariff by a long way (the best 5% of

cases), or crash into the tariff relatively soon if it is unable to gain and sustain an early

lead (worst 5% of cases). In terms of the sample paths generated by the model, we note

that

• paths either gain an early cost advantage, and sustain this lead to move further away

from the tariff (such as in the best 5% of cases), or

• paths obtain an early setback and do not develop enough critical mass, and meet the

tariff quickly (such as in the worst 5% of cases). After the paths of C(t) meet the

tariff f(t), the model can no longer be trusted.

Focusing on the middle dotted line, we see that, on expectation, the tariff falls quicker

than the cost, and investment slows down and comes to a halt as cost and tariff meet in

2012. Although this is what happens on expectation, the feedback look in the process
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makes it hard to predict what will happen. Because of the runaway effect that may occur

in either direction, extremes are more likely than one would initially think. This feature

of the model may be worth noting in itself. Also, this bandwidth of outcomes may be

more realistic than that given by e.g. geometric Brownian motion (i.e. ĝ1 ↘ 0), which is

relatively narrow. One disadvantage of the experience curve, as it is generally formulated,

is that it does not formulate a minimum cost — and, in the model, the paths in the best 5%

of cases exploit this caveat to the full extent, reducing the cost of photovoltaics to near-zero

levels (as can be seen in the graph above). But, one could argue, this is still better than e.g.

the Ornstein-Uhlenbeck model, which would allow the run-away process to take negative

values. We could adopt a framework with a minimum cost without major alterations, if

its estimate was informed by physical considerations, independent of observed cost data.

We conclude that the model of technology learning with endogenous capacity growth,

as developed in the previous section, is to some extent applicable to the German photo-

voltaic market, although 1) we cannot determine the growth parameters ĝi with any con-

fidence, and 2) making predictions is extremely hard, given the intrinsic structure of the

proposed stochastic process.
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4 Technology learning as an OS problem

In this section we will again consider the model of technology learning, and taking a

government’s point of view. The government announces the feed-in tariff for the years to

come, and both C(t) and Q(t) will develop as by the endogenous growth model. If the cost

C(t) manages to beat the tariff f(t) for all time, then growth continues. If, however, the

tariff f(t) recedes faster than the capacity grows, in percentage terms, then growth slows

down and may come to a halt. In this section we will present our own (admittedly stylised)

model of solar learning. Our model is is indicated in Figure 1:

Figure 1. A simple model for solar learning.

Regarding technology learning with endogenous growth, governments are caught in a

classic catch-22. If the government announces a relatively high tariff, then it stimulates

more investment, causing the cost of solar energy to fall more quickly than expected, and

making the tariff seem extraordinarily generous and ill-informed, in hindsight. There is

some evidence that this happened in Europe, as discussed in subsection 1.3. If, on the

other hand, the government announces a tariff that solar energy finds hard to beat, stifling

both investment and learning, then this will, indeed, be self-fulfilling. There are some

indications that this backlash may occur in the future, judging from our predictions in

Section 3. Therefore, it may seem that there will inevitably be regret.

Here we propose that the problem may be formulated as an optimal stopping (OS)

problem or optimal control (OC) problem — depending on one’s view of the world:

• If we believe that the market for solar panels will grow at the rate ĝ0, irrespective

of economic incentives, then we believe that ĝ1 is really zero, i.e. no feedback loop.
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In this world, the market grows at the exogenously determined rate ĝ0, which could

stem e.g. from concerns about climate change. Consumers will invest at the rate ĝ0,

as long as it is profitable to do so. But they will not invest more (less) if it is more

(less) profitable to do so. In this world, the government does not influence the market

growth Q(t) by announcing f(t) directly: it grows at the rate ĝ0 until C(t) can no

longer beat f(t). Thus, although the government does not influence the process Q(t)

directly, it does influence when it stops: namely when it is no longer profitable for

the market to invest. In this case, deciding on the feed-in tariff f(t) is a problem of

optimal stopping. Regarding question 3 as posed on page 4, the feed-in tariff f(t) in

this world should be predetermined (and not performance dependent).

• If we believe that the market growth depends only on return on investment, then

we should set ĝ0 = 0 and let ĝ1 > 0. In this world, the announced feed-in tariff

f(t) influences the growth of Q(t) directly: higher return on investment leads to

higher growth. No return on investment leads to zero growth. Of course tariff

f(t) also determines the moment when the market stops investing. Because the

feed-in tariff f(t) now influences the stochastic process directly, as well as when the

market stops investing, deciding on f(t) has become a problem of optimal control.

Regarding question 3 as posed on page 4, the feed-in tariff f(t) in this world should

be performance-dependent (and not predetermined).

Common to both sets of problems is that the government pays the feed-in tariff with

the idea that it invests in possible future savings. While those savings may or may not

be realised, by choosing an appropriate receding tariff, society should at least explore the

option of those savings — and preferably for several technologies in parallel. We have

established that the announced feed-in tariff influences the cost to society in two ways:

1. First, it influences the amount of investment and learning (but only if ĝ1 > 0).

2. Second, it determines when the market stops investing in the option of solar energy.

New about this paper is that it has made capacity expansion endogenous. With endogenous

capacity growth (i.e. ĝ1 > 0), however, the resulting problem regarding the determination

of f(t) is one of optimal control, and not of optimal stopping. Unfortunately, the methods

developed in Part II of this thesis relate only to optimal stopping. Therefore, we will

henceforth set ĝ1 = 0 and solve the resulting optimal stopping problem. We hope to solve

the resulting optimal control problem in a separate paper.

Regarding the optimal stopping problem, it is clear that savings are realised when the

new technology beats the market price that is set by the incumbent technology. What

about the cost? The bill of the feed-in programme in Germany is paid by the consumers of

– 20 –



– Part III –

electricity: a small amount is added to each electricity bill. Not everyone has a solar panel

on their roof, but, in sum, the cost of the programme is spread over the same population

that receives its handouts. There is a redistribution of wealth from those who have not

invested in solar panels to those who have, but the net total is zero as far as the whole

society is concerned. There have been private investments in solar panels by consumers,

but we do not take these into account. Generally these are profitable investments, given the

the redistribution of wealth that follows. The redistribution itself, however, is a zero-sum

game.

The real cost to society, therefore, derives from the fact that electricity is produced

in an expensive way. This is a learning investment, and it is sunk once it has been made.

Presumably the tariff f(t) exceeds the cost of solar energy C(t), which exceeds the cost

of the incumbent technology that sets the market price p(t); i.e. f(t) ≥ C(t) ≥ p(t).

The price of the mature incumbent technology is assumed known, and hence the small

letter p. It may increase due to foreseeable taxation, for example, and hence the time-

dependence. The difference f(t) − C(t) presents no real cost to society: this difference is

paid to those with solar panels, by all electricity users. This redistribution rewards those

who have made private investments in solar panels and does not represent a real cost to

society. But the difference C(t)− p(t) does present a real cost: this difference is a learning

investment which, once made, is immediately sunk. We can consider this expenditure as

an investment, because it may lead to reduced future costs.

Supposing that dQ(t) panels are installed in year t, then for 20 years the feed-in tariff

f(t) will be paid for electricity generated by those units. Therefore, the total cost (over 20

years) associated with the capacity expansion dQ(t) is as follows:

total amount paid by government per dt =
20∑
i=1

δi (365 ∗ 24 ∗ 0.08)
(
f(t)− p(t)

)dQ(t)

dt

profit made by consumers per dt =

20∑
i=1

δi (365 ∗ 24 ∗ 0.08)
(
f(t)− C(t)

)dQ(t)

dt

true cost to society per dt =
20∑
i=1

δi (365 ∗ 24 ∗ 0.08)
(
C(t)− p(t)

)dQ(t)

dt

where δ is the discount-rate. For brevity, we can rewrite this as

true cost to society per dt = α
(
C(t)− p(t)

)dQ(t)

dt

where α := (δn − 1)/(log[δ])(365 ∗ 24 ∗ 0.08) and n = 20. In Part II of this thesis we

introduced the ‘continuation gain’ GC for optimal stopping problems as follows: it was the

amount to be paid/received during time dt when the process was not stopped. For this

particular problem, we obtain

continuation gain = GC = α
(
p(t)− C(t)

)dQ(t)

dt
.
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If C(t) is higher than p(t), then it is costly to run the programme and the continuation

gain GC will be negative. But its running does induce future cost reductions. Given the

current tariff, one may ask whether it is in the interest of society that the exploration

of the solar option continues. If the answer is ‘yes’ and C(t) < f(t), then there is no

problem. If the answer is ‘no’ and C(t) > f(t), then this, too, is unproblematic. But if it

is socially desirable that the exploration of the option should continue, while C(t) > f(t),

then a problem arises. The market only grows when C(t) < f(t), and therefore we should

choose a policy that is consistent with that desire. The optimal stopping problem can be

formulated as follows:

V = max
s≤τ≤T

E
∫ τ

s
α

(
p(t)− C(t)

)
e−r(t−s)

dQ(t)

dt
dt (4.1)

where the maximisation is over all stopping times τ and where the stochastic process C(t)

is given by Theorem 1 with γ1 = 0. We can indicate the dependence on the initial state

B(s) = x and time s to write the problem as

V (x, s) = max
s≤τ≤T

E(x,s)

∫ τ

s

α

(
p(t)− C(s) exp

[
−
∫ t

s

γ0 dτ + σ

∫ t

s

dB(τ)

])
e−r(t−s)

dQ(t)

dt
dt

= max
s≤τ≤T

E(x,s)

∫ τ

s

α

(
p(t)− C(s) exp

[
− γ0 (t− s) + σ(Bt −Bs)

])
e−r(t−s)

dQ(t)

dt
dt

= max
s≤τ≤T

E(x,s)

∫ τ

s

α

(
p(t)− C(s) exp

[
− γ0 (t− s) + σ(Bt −Bs)

])
e−r(t−s) ĝ0Q(t) dt

= max
s≤τ≤T

E(x,s)

∫ τ

s

α

(
p(t)− C(s) exp

[
− γ0 (t− s) + σ(Bt − x)

])
e−r(t−s) ĝ0Q(s)eĝ0 (t−s) dt

= ĝ0Q(s) max
s≤τ≤T

E(x,s)

∫ τ

s

α

(
p(t)eĝ0(t−s) − C(s)e−(γ0−ĝ0)(t−s)+σ(Bt−x)

)
e−r(t−s) dt.

(4.2)

This problem cannot necessarily be solved for an infinite time-horizon. If the growth-rate

ĝ0 exceeds the interest rate r, then infinite gains can be obtained. But for finite maturity

the problem is always solvable. From Part II of this thesis, we know that the value V of an

optimal stopping problem, where only the ‘continuation gain’ GC is non-zero, must satisfy

the following set of conditions:

The value is unbiased
(1

2
∇2
x +

∂

∂s
− r
)
V (x, s) = −GC(x, s) x ∈ D(s),

Value-matching condition V (β, s) = 0 β ∈ ∂D(s),

Smooth-pasting condition ∂βV (β, s) = 0 β ∈ ∂D(s),

Value at maturity V (x, T ) = 0 x ∈ D(T ).

(4.3)

Here, the dynamic domain and its boundary at any particular time s are indicated by D(s)

and ∂D(s), and we have shown that that the optimal value V is given by:

V (x, s) =

∫ T

s
dτ

∫
D(τ)

dα GC(α, τ)e−r(τ−s)B(α, τ |x, s), (4.4)
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where D(·) is the optimal domain, and where GC(α, τ) is given by

GC(x, t) = ĝ0Q(s)α

(
p(t)eĝ0(t−s) − C(s)e−(γ0−ĝ0)(t−s)+σ(Bt−x)

)
. (4.5)

At time equal to s, the gain of running the programme is

GC(x, 0) = ĝ0Q(s)α

(
p(s)− C(s)

)
. (4.6)

If the cost of solar C(s) exceeds the incumbent price p(s), then it is costly to run the

programme. Thus GC is negative. The cost, per unit of time, equals the newly installed

quantity, which is ĝ0Q(s), times the cost to pay for that capacity for 20 years, which is

α(C(s)− p(s)).
The optimal domain can now be found by applying either value-matching or smooth-

pasting to the optimal value, at all boundary coordinates β ∈ ∂D(s), ∀s ≤ T . For x on

the optimal boundary, the expected value of all continuation gains, as collected by the free

Brownian path during its time in the optimal continuation domain D(·), equals zero. And

this holds true for all boundary locations x ∈ ∂D(·). When we apply this theory to the

problem in this section, the optimal tariff is as follows:
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where it has been assumed that T = 2020, ĝ1 = 0, i.e. no endogeneity, and δ = 0.97. With

the feed-in tariff as given, there is no regret: it is socially optimal that the market should

invest in solar energy if it can beat the tariff, and it is socially optimal that it should stop

once it can no longer beat the tariff. The ‘target’ p(t) which we are trying to beat is set

by industrial electricity prices, with a yearly increase of 2%.

From the graph we see that the optimal feed-in tariff, as measured in the total amount

of subsidy on a solar panel of 1kWp, discounted to net present value, is only slightly higher
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than the current price of a solar panel, making it still a profitable investment (but only just).

If solar energy can no longer beat the tariff, then the tariff should not be reconsidered; the

tariff was chosen such that the market will automatically make the decision that is socially

optimal.
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5 Conclusion

The first contribution of this paper is the finding of an optimal feed-in tariff for German

photo-voltaics. The trade-off concerning feed-in tariffs is that rapidly diminishing levels

of subsidy are cheaper to the taxpayer, but could equally kill an otherwise successful

technology prematurely. Sustaining high levels of subsidy, on the other hand, is not only

expensive but also keeps alive the worst-case scenario of a technology being supported

indefinitely without ever becoming economical. By formulating the trade-off as an optimal

stopping problem, we are able to find a policy under which the market automatically

makes the socially optimal decisions. We have used the methods of (multidimensional)

optimal stopping, as developed in Part II of this thesis, to solve a 1-dimensional problem.

Methodologically, nothing new was done.

A second contribution of this paper is that it provides a new model for technology

learning with endogenous market growth. While other analyses of learning curves have

taken capacity expansion to be an exogenous variable, we recognise that new investment

drives cost reductions, while cost reductions, in their turn, drive new investment. This adds

to the literature on mean-reverting models such as the Vasicek interest rate model, as an

example of an Ornstein-Uhlenbeck process, or the Cox-Ingersoll-Ross interest rate model.

We thus fill a gap in the literature by providing the closed-form solution of a stochastic

process with feedback that stays positive and can be driven either towards or away from a

given time-dependent curve.
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