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Abstract

Decay-frame Kinematics (DK) has previously been introduced as a tech-
nique to reconstruct neutralino masses from their three-body decays to lep-
tons. This work is an extension to the case of two-body decays through on-
shell sleptons, with Monte Carlo simulation of LHC collisions demonstrating
reconstruction of neutralino masses for the SPS1a benchmark point.
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1 Introduction

The Large Hadron Collider (LHC) at CERN, Geneva, is expected to provide direct
evidence for any New Physics beyond the Standard Model (SM) at the TeV energy
scale. The properties of these particles may shed light on the origin of electroweak
symmetry breaking and the nature of dark matter, and give clues to a more funda-
mental theory of Nature. To explain the deficiencies of the SM, a large variety of
theories has been put forward, and it is only by carefully measuring the properties of
any new particles that one will be able to discriminate between them. Chief amongst
these properties are the masses of the new particles.

Many of these new theories (e.g., supersymmetry and extra dimensions) contain
a stable weakly interacting massive particle that will only be ‘visible’ in an LHC
detector as missing energy. Such particles are natural dark matter candidates by
virtue of their interactions, but pose problems for mass measurements at hadron
colliders since one cannot in general reconstruct the kinematics of an event in which
these particles are produced. To worsen the problem, the parton–parton interactions
in the collider have by their very nature an unknown center of mass energy.

In the literature a number of techniques has been developed to get around this
problem. These fall into two general classes: those that perform a fit to or set a
limit on masses using information from the entire event sample, and those which rely
exclusively on events near the endpoint of a kinematic distribution. Belonging to
the first class are “Mass-Shell Techniques” (MSTs), represented by the work done
in [1,2], [3–5] and [6], which depend on maximizing the solvability of assumed mass-
shell constraints in a given sample of events. This has been shown to be very effective
if enough such constraints are available.1 Also belonging to this class are techniques
which work with extrema of a “transverse mass” variable, e.g., mT2 [8–14], and
techniques which look at the shape of complete invariant mass distributions [15–19].
Much research has recently become focused in these areas.

The second class of mass reconstruction techniques most notably includes the
traditional kinematic endpoint method [20–28], where the endpoints of various in-
variant mass distributions can be matched to analytical functions of the unknown
masses, that in turn can be inverted to solve for the same masses in suitably long
decay chains. Such methods have been studied for over a decade already, and would
seem to have been largely explored for the simplest, and most probable, decay chains
in popular theories such as the Minimal Supersymmetric Standard Model (MSSM).
However, there is more to be done with events near an endpoint as demonstrated
recently in [29]: here a Decay-frame Kinematics (DK) technique utilizes the fact
that events at a kinematic endpoint can have exactly-known kinematics in terms of
production angles and energies of all particles in the assumed decay chain. Events
near an endpoint will thus have approximately known decay-frame kinematics, which
allows one to constrain and solve for unknown masses. In [29] this was demonstrated
for the case of neutralino three-body decays through off-shell sleptons to lepton pairs

1However, problems arise if, e.g., there are three-body decays or too many invisible decay prod-
ucts; see [7] for further discussion.



plus missing energy carried away by the lightest supersymmetric particle (LSP), the
lightest neutralino, e.g. χ̃0

2 → ℓ+ℓ−χ̃0
1. The on-shell case was deferred to a future

work — this work.
In the following we will demonstrate the use of DK in the case of on-shell neu-

tralino decays, i.e. χ̃0
i → ℓ̃±ℓ∓ → ℓ+ℓ−χ̃0

1, though it should be stressed that the
technique demonstrated can be applied to any similar cascade decay process aris-
ing in any New Physics model. Section 2 begins with a review of the off-shell case,
demonstrating its application at a NMSSM parameter point. Section 3 then discusses
the main new development of this paper, the generalisation of the DK technique to
the on-shell case, where it is found that several subtleties emerge beyond what was
found for the comparatively simple off-shell case; we further present a Monte Carlo
(MC) study of the mSUGRA SPS1a benchmark point [30], where the DK technique
proves quite capable of reconstructing the relevant neutralino masses from χ̃0

2χ̃
0
2 de-

cays. Section 4 gives our conclusions.

2 Off-Shell Decays

We begin with a brief review of the DK technique applied to the case of neutralino
three-body decays. For a more complete treatment, see [29]. We consider production
of neutralino pairs in the MSSM which undergo three-body decays to electrons,
muons, and χ̃0

1 (the LSP):

pp → X → X
′ + χ̃0

i (→ e+e−χ̃0
1) χ̃0

j(→ µ+µ−χ̃0
1), (1)

where X represents either a Z∗ or any MSSM production channel via a Higgs (H0 or
A0) or cascade from gluino/squark pair-production, while X

′ are SM states potentially
produced in association, relevant in this context only for the measurement of missing
momentum. The physical observables of interest from one event thus consist of
four leptonic four-momenta pe±,µ±, from which we may construct the usual di-lepton
invariant masses, Mee and Mµµ, and missing momentum in two transverse directions,
assumed equal to the sum of the two LSPs’ transverse momenta, pT

χ,χ′. If we happen
to have an event where both the invariant masses Mee and Mµµ are maximal, as shown
in Fig. 1a, it will be subject to the system of constraints (hereafter we abbreviate
mi ≡ meχ0

i

)

Mmax
ee = mi − m1, (2)

Mmax
µµ = mj − m1, (3)

~p ′
e+ + ~p ′

e− = 0, (4)

~p ′
µ+ + ~p ′

µ− = 0, (5)

(~pχ + ~pχ′)T = 6~p T (observed), (6)

where leptonic momenta are written in the rest frame of the respective parent neu-
tralino, and ~p ′

e± = Λ1~pe± and ~p ′
µ± = Λ2~pµ± define the appropriate Lorentz trans-

formations Λ1,2 from the lab frame. This system gives ten equations for the nine



Figure 1: (a) Neutralino three-body decays with maximal Mee and Mµµ: though the decaying
χ̃0

i,j may be moving with any velocity β1,2 in the lab frame, in each respective decay frame the

leptons have equal and opposite momenta while the χ̃0
1 (LSP) is at rest. (b) If the χ̃0

i,j has
a two-body decay via on-shell sleptons, the LSPs are no longer stationary in the neutralino
decay frame, but have momenta Ki,j collinear with the leptons’ momenta.

unknowns, the velocities ~β1,2 and the masses m1,i,j, allowing us to actually over-

constrain the masses m1,i,j . The ~β1,2 which satisfy (4) and (5), making the total
momentum of each lepton pair zero, are uniquely given by

~β1 =
~pe+ + ~pe−

Ee+ + Ee−
and ~β2 =

~pµ+ + ~pµ−

Eµ+ + Eµ−

. (7)

Now, because of the condition that Mee and Mµµ are maximal, the corresponding
Λ1,2, which take the e+e−χ̃0

1 and µ+µ−χ̃0
1 systems to their respective χ̃0

i,j rest frames,

also bring each χ̃0
1 to rest. Thus their four-momenta in these frames must be (m1,~0),

which, when inverse-Lorentz-transformed by Λ−1
1,2, giving (m1γ1,2 , m1(~βγ)1,2), have

to agree with the observed missing momentum 6 ~p T ; this matching condition along
each transverse direction (say x̂ and ŷ) then gives two independent determinations
of m1:

m′
1 =

6px

(βxγ)1 + (βxγ)2

and m′′
1 =

6py

(βyγ)1 + (βyγ)2

. (8)

Since we are assuming that both Mee and Mµµ are precisely maximal — the
perfect event of Fig. 1a — we should get m′

1 = m′′
1 = m1 from such an event. In

practice of course, we can only expect to find an event within some neighborhood ǫ
of the endpoints, Mee,µµ = Mmax

ee,µµ ± ǫ, in which case one finds that m′
1 and m′′

1 are

offset by O(
√

2ǫm1) from m1 [29]. One might then expect that applying (7) and (8)
to a sample of events near the endpoint should give a distribution of m′

1 and m′′
1

peaked near m1 with a spread determined by sample purity.
Here, to lend further support to the generality of the above technique, let us

demonstrate its application to the rather challenging example of an NMSSM (Next-
to-Minimal Supersymmetric Standard Model) scenario described in [19]. This has a
supersymmetric particle spectrum containing five neutralinos, the lightest of which is
99% singlino, and a generic feature of the parameter space that gives the correct dark
matter density is a significant degeneracy between the singlino and second lightest
neutralino mass. This gives rise to copious production of soft lepton pairs with small



invariant masses, Mℓℓ <∼ 10 GeV, from the three-body decay χ̃0
2 → ℓ+ℓ−χ̃0

1. For more
details on this scenario see [19].

We study the benchmark “Point A” of that paper, a point which has Mmax
ℓℓ =

9.7 GeV and m1 = 105.4 GeV, using the same MC setup and fast detector simulation
as in [19]. For details of the simulation see also Section 3 of the present paper. To
isolate signal events of the type (1), we place the following cuts on our events:

• Require missing transverse energy 6ET > 100 GeV.

• Require at least two hard jets with pT > 150, 100 GeV.

• Require four isolated leptons with flavor structure e+e−µ+µ− and pT > 7 (4)
for e (µ). All such leptons must pass the lepton efficiency cuts employed in [19]
modeled on full simulation results given in [31].

From the surviving events we construct a wedgebox plot of the di-electron versus the
di-muon invariant mass, for a number of events equivalent to 30 fb−1 of statistics
at the LHC. The result is seen in Fig. 2a, showing a clear box-like structure at
Mee,µµ ∼ 10 GeV, the endpoint of the di-lepton invariant mass distribution for the
χ̃0

2 decay.
Choosing a sampling region in a rather generous neighborhood of the endpoint,

Mℓℓ = 10 ± 4 GeV gives O(100) events. We now apply Eqs. (7) and (8) to each of
these, demanding that m′

1 and m′′
1 agree to within 20%. Although only about 20

events survive this criterion, the resulting m1 distribution can be seen in Fig. 2b to
peak quite prominently slightly below the nominal value of m1 = 105.4 GeV. The
systematic error of the method is seen to be comparable to the estimate made earlier.

With higher statistics, this allows us to determine the absolute LSP mass to rather
good precision. The results for 300 fb−1 of data are shown in Fig. 2c. Here we narrow
down our sampling region to ǫ = 1 GeV from the wedgebox edge. With a Gaussian
distribution we obtain a best fit value of m1 = 98.2 ± 3.9 GeV with χ2/ndf = 0.41.
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Figure 2: (a) Wedgebox plot for 30 fb−1 of integrated LHC luminosity for “Point A”
of [19]. (b) The χ̃0

1 mass distribution for events sampled from the boxed region in (a). We
see a peak in rough agreement with the nominal value of m1 = 105.4 GeV. (c) Same as (b)
but for 300 fb−1 and ǫ = 1 GeV.



3 On-Shell Decays

3.1 Kinematics

Let us now continue to the main focus of this paper, i.e. the added complications
that arise when the neutralinos decay through on-shell intermediate sleptons:

X → X
′ + χ̃0

i χ̃
0
j(→ e±ẽ∓µ±µ̃∓ → e+e−µ+µ−χ̃0

1χ̃
0
1). (9)

When Mee and Mµµ are maximal, as illustrated in Fig. 1b, two-body kinematics gives
the following system of constraints:

Mmax
ee = mi

√

1 − (ms/mi)2
√

1 − (m1/ms)2, (10)

Mmax
µµ = mj

√

1 − (ms/mj)2
√

1 − (m1/ms)2, (11)

~p ′
e+ ‖ −~p ′

e−, (12)

~p ′
µ+ ‖ −~p ′

µ− , (13)

|~p ′
e+ + ~p ′

e−| =

∣

∣

∣

∣

m4
s − m2

i m
2
1

2mim2
s

∣

∣

∣

∣

≡ Ki, (14)

|~p ′
µ+ + ~p ′

µ−| =

∣

∣

∣

∣

m4
s − m2

jm
2
1

2mjm2
s

∣

∣

∣

∣

≡ Kj , (15)

(~pχ + ~pχ′)T = 6~p T (observed), (16)

where we have assumed a common slepton mass ms = mẽ = mµ̃. See the Appendix

for details of the derivation. The antiparallel conditions (12) and (13) force ~β1,2 to be
in the planes of the respective leptons, so there are really only four boost parameters
to find; adding the unknown masses m1,i,j,s to this gives eight unknowns which can
thus be solved for by the eight constraints (10)–(16). In principle, if one were handed
an event of the type in Fig. 1b, one could numerically apply (10)–(16), scanning over
the eight-dimensional space of unknowns for a solution. Needless to say, this is not
the most practical approach, nor particularly enlightening as to the nature of any
solution which might be found.

Instead, we will proceed temporarily as if we already knew the individual ~p T
χ,χ′ as

opposed to just their sum (16). Consider, then, just one of the neutralino decays, say

χ̃0
i → e±ẽ∓ → e+e−χ̃0

1. In the χ̃0
i rest frame, the leptons’ three-momenta (≡ ~P ′

1,2) are

back-to-back and collinear with the LSP’s three-momentum (≡ ~6P ′
); thus, in the lab

frame where χ̃0
i has a velocity ~β1, the boosted momenta ~P1, ~P2, and ~6P lie in the same

plane (see Fig. 3a). Looking at this the other way round, ~β1 is the Lorentz boost
which makes the observed lepton momenta antiparallel and fixes the magnitude of
their sum to be Ki — which we a priori don’t know at this point — i.e. constraints
(12) and (14). Necessarily, ~β1 must be in the observed leptons’ plane. If we choose a
basis in this plane (p̂‖, p̂⊥) parallel/perpendicular2 to the total leptonic momentum

2A potential ambiguity in defining p̂⊥ is resolved by defining it such that ~P1 · p̂⊥ is positive:

p̂⊥ ≡
~P1 − (~P1 · p̂‖)p̂‖
|~P1 − (~P1 · p̂‖)p̂‖|

.



Figure 3: (a) When lepton pairs from the decay chain χ̃0
i → ℓ±ℓ̃∓ → ℓ+ℓ−χ̃0

1 have maximal
invariant mass, their momenta P1,2 in the lab frame are coplanar with the LSP momentum
6P . (b) The LSP’s longitudinal momentum 6PL can be found by the condition that 6P is in
the plane of the leptons.

~P ≡ ~P1 + ~P2, then the boost ~β1 = (β‖, β⊥) must satisfy three sets of constraints:

1. The transformed leptonic momenta must be antiparallel:

~P ′
1 · ~P ′

2 = −|~P ′
1||~P ′

2|, (17)

where the transformed four-vectors are given in terms of the boost by





E ′
1,2

P
′‖
1,2

P ′⊥
1,2



 =







γ −β‖γ −β⊥γ

−β‖γ 1 + (γ − 1)
β2
‖

β2 (γ − 1)
β‖β⊥

β2

−β⊥γ (γ − 1)
β‖β⊥

β2 1 + (γ − 1)
β2
⊥

β2











E1,2

P
‖
1,2

P⊥
1,2



 , (18)

with β2 ≡ β2
‖ + β2

⊥ and γ ≡ (1 − β2)−1/2.

2. The transformed total leptonic momentum must equal ~Ki = (K
‖
i , K⊥

i ):





E ′

K
‖
i

K⊥
i



 =







γ −β‖γ −β⊥γ

−β‖γ 1 + (γ − 1)
β2
‖

β2 (γ − 1)
β‖β⊥

β2

−β⊥γ (γ − 1)
β‖β⊥

β2 1 + (γ − 1)
β2
⊥

β2











E
P
0



 , (19)

where the components (K
‖
i , K

⊥
i ) are also unknown at this point.

3. The inverse-Lorentz-boosted LSP four-momentum must satisfy





/E
/P‖

/P⊥



 =







γ β‖γ β⊥γ

β‖γ 1 + (γ − 1)
β2
‖

β2 (γ − 1)
β‖β⊥

β2

β⊥γ (γ − 1)
β‖β⊥

β2 1 + (γ − 1)
β2
⊥

β2











√

K2
i + m2

1

−K
‖
i

−K⊥
i



 . (20)



After some algebra, see the Appendix, these constraints are found to uniquely deter-
mine the unknown boost (β‖, β⊥) in terms of the known lab frame leptonic momenta
and unknown LSP momenta:

β‖ =
P

E(1 + αx)
and β⊥ = αβ‖, (21)

where

α ≡ /P⊥

/P‖ + P
and x ≡ P (P⊥

1 − P⊥
2 )(P

‖
2 − P

‖
1 )

2E(E1P
‖
2 + E2P

‖
1 )

.

Thus, knowing the leptonic momenta and missing momentum from the LSP deter-
mines x and α, hence ~β1 and all the kinematic information in the event. At first
glance this may seem useless since we can only have knowledge of the transverse

component of ~/P in the lab coordinate system, ~/PT , and there are two LSPs that
contribute to the measured total missing momentum.

However, given the transverse component of the LSP momentum we can in fact

reconstruct the longitudinal component ~/PL by the following trick: since ~/P must lie

in the plane of the leptons while ~/PT is by definition in the transverse x̂-ŷ plane, ~/PL

must be of the precise size along ẑ to bring ~/PT + ~/PL into the leptons’ plane (see

Fig. 3b), i.e. ( ~/PT + ~/PL) · (~P1 × ~P2) = 0, giving

~/P L = − /PTx(P1yP2z − P1zP2y) + /PTy(P1zP2x − P1xP2z)

P1xP2y − P1yP2x

ẑ. (22)

With both ~/PT and ~/PL known we may immediately project ~/P into the basis ( /P‖, /P⊥),3

compute α and insert into (21) to solve for the boosts. We can then use Eq. (19) to

solve for K
‖
i and K⊥

i :

K
‖
i = P

(

γ + α2

1 + α2
− γ

1 + αx

)

, K⊥
i = αP

(

γ − 1

1 + α2
− γ

1 + αx

)

, (23)

which are also related by K⊥
i = α(K

‖
i − P ). We see that in the limit α → 0 both

K
‖,⊥
i → 0, and that also Eq. (21) correctly reduces to the off-shell result β = P/E.
Finally, the LSP mass can then be found from the energy component of Eq. (20):

m1 =

√

√

√

√

(

/P‖

β‖γ
+

(

1 +
(γ − 1)β2

‖

β2

)

K
‖
i

β‖γ
+

(γ − 1)β⊥K⊥
i

β2γ

)2

− K
‖
i

2
− K⊥

i
2
, (24)

which again reduces to the off-shell result of Eq. (8) when K
‖,⊥
i → 0. The heavier

neutralino mass follows from the energy component of (19) and energy conservation
in its decay, i.e.

mi =
√

K2
i + m2

1 + γE − β‖γP, (25)

3If the leptons happen to be parallel ~/PL remains undetermined. We ignore events with this
pathological arrangement.



while the slepton mass is related to m1 and mi by (10).
Finally, let us return to deal with the realistic situation where we know only the

sum of the LSP momenta (~pχ+~pχ′)T . From the discussion above, every assignment of

6 ~PT = ~p T
χ will yield a set of masses {m′

1, m′
i, m′

s} which satisfy (10), (12), and (14).
Then the other LSP has its ~p T

χ′ fixed as ~p T
χ′ = 6~p T − ~p T

χ , giving another set of masses
{m′′

1, m′′
i , m′′

s} which satisfy (11), (13), and (15). Under the simplifying assumption
that the event contains the process in (9) with i = j, we should clearly insist that
at least {m′

1, m′
i} ≃ {m′′

1, m′′
i } within some error (we reserve the possibility that

m′
s 6= m′′

s). This, in principle, provides two constraints on our choice of the two
components of ~p T

χ , i.e. the system (10)–(16) is solved.4

Thus, in the end, we still have to resort to a numerical search for a solution
to (10)–(16), but this is only over the two-dimensional space of one of the LSPs’
transverse momenta, (px

χ, py
χ). Nevertheless, it is not at all obvious that there won’t

be multiple solutions with different {m1, mi} within a given level of tolerance — and
when one adds to this the same caveat as in the three-body case of picking events
within some ǫ of the endpoint, as well as the effects of detector smearing and issues
with backgrounds, it will have to fall to a MC simulation to test the practicality of
the method.

3.2 Monte Carlo Test

We perform a Monte Carlo study by generating SUSY signal events for the SPS1a
benchmark point [30] using PYTHIA 6.413 [32], and SM background events with
HERWIG 6.510 [33,34], interfaced to ALPGEN 2.13 [35] for the production of high jet
multiplicities matched to parton showers and JIMMY 4.31 [36] for multiple interac-
tions. The benchmark point is chosen mainly for the sake of comparison with results
obtained with other mass reconstruction techniques, which we will comment more on
in Section 4. The generated events are then put through a fast simulation of a generic
LHC detector, AcerDET-1.0 [37], widely used to simulate analyses of high-pT physics
at the LHC. This incorporates such detector effects as the deposition of energy in
calorimeter cells, and the smearing of electron, photon, muon and hadronic cluster
energies with parameterized resolutions. The AcerDET-1.0 isolation requirement for
leptons is less than 10 GeV energy in a R = 0.2 cone around the lepton and a min-
imum distance of ∆R = 0.4 from calorimetric clusters. The MC setup is essentially
the same as in [19] and we refer the reader to that paper for more details. However,
we point out that we use pT dependent lepton efficiencies based on full simulation
studies published in [31].

All SUSY processes and relevant SM backgrounds are generated with a number
of events corresponding to an integrated LHC luminosity of 300 fb−1. The dominant
type of neutralino pairs produced at SPS1a are χ̃0

2χ̃
0
2; we will therefore concentrate on

decays of the form χ̃0
2(→ e+e−χ̃0

1) χ̃0
2(→ µ+µ−χ̃0

1), and results in the previous section
can be simplified somewhat by setting i = j = 2, and in particular K ≡ Ki = Kj .

4Notice that something quite interesting has happened here in that we have gotten around the
usual four-fold ambiguity in designating ‘near’ and ’far’ leptons in the decay chains.



For this analysis we use the same set of cuts as for the NMSSM case in the
previous Section, giving a signal size of roughly 470 events. Note the requirement of
four isolated leptons with flavor structure e+e−µ+µ− reduces most SM backgrounds
to a negligible level [38]. Support for this in the context of a full simulation of the
ATLAS detector is found in Higgs searches for the channel h → ZZ∗ → 4ℓ, e.g.
discussed in [39, 40]. The remaining backgrounds of any importance are found to
be tt̄, Zbb̄ and irreducible Z(∗)Z. We have simulated a large sample of tt̄ events
with up to two additional hard jets, and find no surviving events with the additional
missing energy and jet cuts. The Zbb̄ and Z(∗)Z backgrounds are also expected to
be very small after these cuts. However, because the Z mass is sufficiently far from
the dilepton edge, any remaining events from these backgrounds do not significantly
influence the region of interest in the di-electron versus di-muon invarant mass plane,
shown in the wedgebox plot of Fig. 4a.5

The position of the edge of the box-like structure at Mℓℓ ≈ 75 GeV is visually
apparent in Fig. 4a, and, as shown in several studies, can be brought into precise (sub-
GeV) agreement with the nominal value Mmax

ℓℓ = 77.07 GeV, by the standard study
of the flavor-subtracted di-lepton mass distribution shown in Fig. 4b. One advantage
of the DK technique is that we do not strictly need such precise determination of the
edge — GeV-level will do to determine our sampling region — but we will assume
that the edge has been measured to 76.7 ± 0.1 GeV as quoted in [24].

Events in a broad neighborhood of the corner of the box, Mee,µµ = 65±ǫ GeV (see
further comments below on sampling regions), are passed to the on-shell DK analysis
described in the previous Section. In detail, the procedure used is the following:

1. An event is selected if the two invariant masses Mee and Mµµ both lie within
the ǫ-defined region of the wedgebox plot.

2. A point in ( /PTx, /PTy)-space is chosen by a uniform scan of −500 GeV < /PTx,y <
500 GeV, in 0.2 GeV steps; the point is assumed to equal the transverse momen-
tum of the LSP accompanying the e+ and e− whose four-momenta are (E, ~P )1,2,
respectively.

3. The longitudinal component of the LSP’s momentum is found from (22).

4. Components of the LSP momentum in the basis parallel/perpendicular to the

total leptonic momentum ~P = ~P1 + ~P2 are determined and used to compute
α ≡ /P⊥/( /P‖ + P ).

5. The boost parameters β‖ and β⊥ are now computed from (21), K‖ and K⊥ from
(23).

6. The masses {m′
1, m′

2} are computed from (24) and (25).

5However, for some SUSY parameter points one might have a dilepton edge very close to the Z
mass. Though the Z background events would thus be unavoidably mixed in with signal events,
they would in general not have solutions in the numerical procedure described in the following. This
property of DK gives it a certain resilience in the face of backgrounds.
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Figure 4: (a) Wedgebox plot for 300 fb−1 of integrated LHC luminosity at the SPS1a
benchmark point. Events are sampled from the boxed region shown for DK analysis. (b)
The flavor-subtracted dilepton invariant mass distribution provides a clean determination
of the edge Mmax

ℓℓ = 77.1 GeV. The plot is shown for an integrated luminosity of 30 fb−1.

7. Using the missing momentum constraint ~p T
χ′ = 6~p T −~p T

χ , steps 3-6 are repeated
for the LSP accompanying the µ+µ− pair, obtaining either another set of masses
{m′′

1, m′′
2} or no valid solution for the second mass set.

8. If no valid second set of masses was obtained, the point is assigned zero weight.
Otherwise, the two sets of mass solutions are plotted with the following weight:

P ( /PTx, /PTy) =
1√

2πσ2
exp

(

−(m′
1 − m′′

1)
2

2σ2
− (m′

2 − m′′
2)

2

2σ2

)

, (26)

where σ is our expectation for the spread between the mass values on either side
of the event. This should be of the order of the missing energy resolution, which
is a function of the total transverse energy ET deposited in the calorimeters.
We therefore assign sigma on an event-by-event basis, using the expected per-
formance of the ATLAS detector in SUSY events (see figure 10.84 of reference
[31]):

σ = 0.57
√

∑

ET . (27)

9. The scan is continued until all points have been assigned a weight.

10. The procedure is repeated for all events that have invariant masses sufficiently
close to the endpoint.

Our final mass distribution for a single event is obtained by histogramming all
mass solutions found in the scan over missing momentum components, weighted by
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Figure 5: Mass distribution for 300 fb−1 of data at SPS1a, obtained using the procedure
described in the text. The contribution of individual events with degenerate solutions is
still clearly visible, although it is a region close to the nominal mass values of (m1,m2) =
(96.1, 176.8) GeV that emerges with the largest total weight.

Eq. (26). For events that lie exactly at the endpoint, and where the mismeasurement
of lepton momenta and missing energy is negligible, the peak of the two mass dis-
tributions for {m′

1, m′
2} and {m′′

1, m′′
2} should coincide, agreeing with the nominal

values of the masses. We find that this remains accurate for events that lie sufficiently
close to the endpoint, and thus with a value of ǫ that is not too large.

In fact, choosing a value of ǫ is essentially a trade-off between accumulating
statistics by allowing more events to pass the cut, thus reducing the fluctuations
that come from the smearing of lepton and missing energy momenta, and protecting
the integrity of the mass solutions that are obtained by the procedure at ǫ = 0. We
find that a compromise value for ǫ of 15 GeV gives just enough events with peak
region close to the nominal values to dominate over events that display either one
or two degenerate peaks or peaks in the wrong place. In the latter case, we observe
that the maximum weight at the peak is lower.

By summing the distributions for events within our choice of ǫ, the resulting total
mass distribution for 300 fb−1 of data is shown in Fig. 5. Although the existence
of multiple peaks is clear with the limited statistics, the point with the largest total
weight is found to be (m1, m2) = (114.75, 191.75) GeV, close to the nominal value
of (m1, m2) = (96.1, 176.8) GeV. We emphasize that this procedure is simply a
suggestion for an estimator of the masses, and although there are similarities in



shape, Eq. (26) is not a likelihood function.
To check the robustness of the estimator and find the statistical error on making

such a measurement, we have performed 10 independent ‘experiments’ with 300 fb−1

integrated luminosity. In each case, the mass solution with the largest total weight
fell near the nominal masses, with a standard deviation of 20.2 GeV on m1 and
21.2 GeV on m2. While these errors are quite large, there is undoubtedly scope for
improvement. By better understanding the properties of events with degenerate or
wrong solutions one could search for a system of kinematic cuts to remove these
subsets; one could also increase statistics to tighten the cut on ǫ or investigate other
estimators for the masses with better properties with respect to these events.

Incidentally, had we wrongly assumed off-shell kinematics at this parameter point,
and hence tried using the technique of Section 2 to analyze events in the boxed
region of Fig. 4a, we would have failed since essentially no events provide two mass
solutions with a near equal mass. This provides a way of distinguishing a sample of
on- versus off-shell decays6 distinct from the usual way of measuring the departure
of the di-lepton mass distribution from a triangular shape [19], or looking for specific
relationships between the positions of lepton-jet invariant mass maxima [41].

Finally, note that this method, although we have not explicitly demonstrated it,
is in principle also applicable to extracting the slepton mass.

4 Conclusions

This paper completes the demonstration of the application of the DK technique to
neutralino decays in SUSY models, or indeed any similar decay chain in models such
as e.g. UED [42], having explicitly shown the procedure for reconstructing both off-
and on-shell decays to lepton pairs in realistic MC simulations of two very different
supersymmetry benchmark points. We find that in the three-body decay scenario we
can reconstruct the LSP mass with an accuracy of around 4 GeV, while the decay
through an on-shell slepton allows a precision of 20 GeV.

DK has the advantage of simplicity and robustness in the face of backgrounds; for
non-signal events there tends to be no solution for the constraint equations, or at least
no preferred solution in the distribution of events passing loose constraint require-
ments. Moreover, since the method only makes use of unlike di-leptons (e+e−µ+µ−)
from the χ̃0

2 → χ̃0
1 transitions, it is insensitive to the combinatoric issues that arise

when one considers particles produced further up the decay chain. It may hence
complement mass determinations which exploit the full chains such as [5, 6]. Gen-
eralization to other decaying states (e.g. charginos as in [43]), perhaps using jets
instead of or in addition to leptons, is open to investigation.

Perhaps the major disadvantage of DK is the requirement of a high event rate:
one typically needs at least O(10) events in the neighborhood of a kinematic endpoint

6One exception occurs if it happens that K = 0, i.e. ms =
√

m1m2. Then both on-shell and
off-shell techniques are equally applicable and should reconstruct the same LSP mass. At SPS1a,
K ≈ 18 GeV, which is fairly small compared to the maximum K one can get with the same neutralino
masses, Kmax = m2

2
(1 − m2

1
/m2

2
) ≈ 62 GeV, but safely away from zero.



to make the reconstruction stable, and, in the case of four-lepton final states, that
translates to several hundreds of events needed on a wedgebox plot. In addition, the
case of on-shell decays gives rise to extra solutions in the mass space that can be
eliminated with more statistics, but ultimately contribute to an increased error in
the reconstructed masses.

Thus, in the case of neutralino-pair production considered in this work, DK may,
depending on the parameter point Nature has chosen, perhaps only serve useful as a
check on results obtained with other techniques that do not depend on events near an
endpoint. As mentioned in the Introduction, these most prominently include MSTs
and mT2 techniques, which at the SPS1a point happen to work quite well.
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Appendix

On-Shell Kinematics

Consider the neutralino decay

χ̃0
i → ℓ+ℓ̃− → ℓ+ℓ−χ̃0

1, (28)

in the neutralino rest frame. If the di-lepton invariant mass is maximal, all the decay
products must be collinear (say along x̂). In particular, four-momentum conservation
forces





Eℓ+

pℓ+





χ̃0
i

=







m2
i
−m2

s

2mi

m2
i
−m2

s

2mi






and





Eℓ̃−

pℓ̃−





χ̃0
i

=







m2
i
+m2

s

2mi

−m2
i
−m2

s

2mi






,

where ms is the slepton mass and the lepton is assumed to be massless. Similarly, in
the slepton’s decay frame,





Eℓ−

pℓ−





ℓ̃

=







m2
s
−m2

1

2ms

−m2
s
−m2

1

2ms






and





Eχ̃0
1

pχ̃0
1





ℓ̃

=







m2
s
+m2

1

2ms

m2
s
−m2

1

2ms






,

which, when boosted back to the χ̃0
i rest frame using β = −(m2

i − m2
s)/(m2

i + m2
s),

becomes





Eℓ−

pℓ−





χ̃0
i

=




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mi
m2

s
−m2

1

2m2
s

−mi
m2

s
−m2

1

2m2
s






and





Eχ̃0
1

pχ̃0
1





χ̃0
i
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m4
s
+m2

i
m2

1

2mim2
s

m4
s
−m2

i
m2

1

2mim2
s






.

From these equations it is easy to verify (10), (11), (14), and (15).

Finding the Lorentz Boost Parameters

Here we indicate in more detail how one may arrive at Eq. (21). Starting from
Eq. (20) we have two relevant equations,

/P‖ + K
‖
i = β‖

(

γ
√

K2
i + m2

1 − (γ − 1)
β‖

β2
K

‖
i − (γ − 1)

β⊥

β2
K⊥

i

)

,

/P⊥ + K⊥
i = β⊥

(

γ
√

K2
i + m2

1 − (γ − 1)
β‖

β2
K

‖
i − (γ − 1)

β⊥

β2
K⊥

i

)

.

Taking the ratio of these one obtains after some rearranging

K
‖
i =

β‖

β⊥
/P⊥ +

β‖

β⊥
K⊥

i − /P‖. (29)



This can now be inserted into two of the equations of (19),

K
‖
i = −β‖γE + P + P (γ − 1)

β2
‖

β2
, (30)

K⊥
i = −β⊥γE + (γ − 1)

β‖β⊥

β2
P, (31)

which can then be used to solve for the ratio

α ≡ β⊥

β‖

=
/P⊥

P + /P‖

. (32)

Starting from the antiparallel condition (17) and expanding with the lepton momenta
from (18), one arrives, after some algebra, at

0 = (1 + β2
‖ + β2

⊥)E1E2 − 2β‖E1P
‖
2 − 2β⊥E1P

⊥
2 − 2β‖E2P

‖
1 − 2β⊥E2P

⊥
1 +

2β‖β⊥(P
‖
1 P⊥

2 + P
‖
2 P⊥

1 ) + (1 + β2
‖ − β2

⊥)P
‖
1 P

‖
2 + (1 − β2

‖ + β2
⊥)P⊥

1 P⊥
2 ,

using that E1,2 = |~P1,2|. Substituting β⊥ for α and β‖ from (32), we get a quadratic
equation for β‖:

0 = aβ2
‖ − 2bβ‖ + c,

where

a ≡ E1E2 + P
‖
1 P

‖
2 − P⊥

1 P⊥
2 + 2α(P

‖
1 P⊥

2 + P
‖
2 P⊥

1 ) + α2(E1E2 − P
‖
1 P

‖
2 + P⊥

1 P⊥
2 ),

b ≡ E1P
‖
2 + E2P

‖
1 + α(E1P

⊥
2 + E2P

⊥
1 ),

c ≡ E1E2 + P
‖
1 P

‖
2 + P⊥

1 P⊥
2 .

Using again that E2
1,2 = P

‖
1,2

2
+P⊥

1,2
2
, one can show that b2−4ac = 0, so this quadratic

has a double root

β‖ =
E1P

‖
2 + E2P

‖
1 + α(E1P

⊥
2 + E2P

⊥
1 )

E1E2 + P
‖
1 P

‖
2 − P⊥

1 P⊥
2 + 2α(P

‖
1 P⊥

2 + P⊥
1 P

‖
2 ) + α2(E1E2 − P

‖
1 P

‖
2 + P⊥

1 P⊥
2 )

.

Making repeated use of that, by definition, P⊥
1 = −P⊥

2 and P = P
‖
1 +P

‖
2 , one arrives

at the equation for β‖ in (21).
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