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Does Weather Explain the Cost and Quality 
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Distribution Companies 
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Cambridge Working Paper in Economics      0858 

 
William Yu, Tooraj Jamasb, Michael Pollitt 
 
In recent years a growing number of empirical studies have applied benchmarking 
techniques to measure the relative efficiency and productivity of firms. In the 
absence of competitive markets for electricity networks, some energy regulatory 
agencies have adopted these techniques as part of incentive-based regulation 
schemes to regukate the distribution utilities.  
 
An important issue has been the extent to which such results are influenced by 
contextual factors that are beyond the control of the management and are not 
included in the benchmarking models. Among these are the weather factors and 
geographical conditions are frequently referred to as being among such factors. In 
this paper we aim to address the effect of these factors on the performance of 
distribution utilities. 
 
However, inclusion of all potentially influential factors in benchmarking models is 
often not feasible. We use the Factor Analysis technique to reduce the number of 
the weather factors - i.e. gale, hail, temperatures, rainfall and thunder to a few 
composite factors. We then use the composite factors in two-stage Data 
Envelopment Analysis to examine the effect of these on the performance of 
distribution networks in the UK.  
 
The findings of our analysis indicate that, contrary to what that might 
commonly be expected, the weather factors often do not have a 
significant economic and statistical effect on the overall performance 
of the utilities. The weather parameters in some of the more 
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comprehensive models, however, are significant in terms of economic efficiency. 
After excluding network length as an output in the model, the weather effect on 
performance becomes less significant. Hence, the network length in the model 
seems to be counteracting the effect of weather factors.  
 
The results generally echo the findings of our previous studies examining the 
importance of extending the basic efficiency benchamrking model to include other 
inputs such as total expenditures, customer minutes lost per customer, and network 
energy losses in regulatory benchmarking. 
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Abstract 

In recent years, a number of empirical studies and energy regulators have applied benchmarking 

techniques to measure the efficiency and performance of network utilities. An important issue has been the 

extent to which such results are influenced by contextual factors. Among these, weather factors are 

frequently discussed as being important. We use Factor Analysis and two-stage Data Envelopment 

Analysis techniques to examine the effect of a set of important weather factors (gale, hail, temperatures, 

rainfall and thunder) on the performance of electricity distribution networks in the UK. The results 

indicate that such factors often do not have a significant economic and statistical effect on the overall 

performance of the utilities. The weather parameters in some models are significant in terms of economic 

efficiency. After excluding network length from the outputs, the weather effect becomes less significant 

in the model. Hence, the network length is counteracting the weather effect. The results echo our 

previous findings of the importance of extending the basic model to include other inputs such as Totex, 

CML and network energy losses in regulatory benchmarking. 
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1. Introduction 

It is commonly believed that the cost and quality of service performance of electricity distribution network 

operators (DNOs) can be affected by various non-discretionary and environmental factors. In particular, 

climatic conditions are often regarded as important determinants of the performance of network utilities. 

The rising adoption of incentive regulation and benchmarking of distribution utilities requires ample 

attention to the role and treatment of such non-controllable factors. 

 

Several studies have shown that weather conditions influence the quality of service in electricity 

distribution networks. For example, Coelho (2003) and Domijan (2003) find a significant correlation 

between weather parameters such as rain, wind, and temperatures and power interruptions. The latter 

study shows that the impact of higher temperatures on transformer failure interruptions is more significant 

than that of lower temperatures. Billington and Allan (1984) show that in adverse weather conditions, the 

failure rate of a component can be considerably higher than in normal conditions. Wang et al. (2002) show 

that the restoration time during winter storms is considerably longer than during normal weather. 

 

At the same time, it can be argued that, over time, utilities adapt their operating and investment practices to 

the adverse effects of their environment and the effect of these need not be significant. It is therefore 

difficult to formulate hypotheses with respect to the effect of weather conditions on the performance of 

networks. Also, there is insufficient empirical evidence on the extent to which climatic conditions affect 

the quality performance of network utilities and how these should be accounted for in the context of 

incentive regulation and the benchmarking of utilities. 

 

The effect of weather on the cost and quality performance of U.K. utilities has not previously been studied. 

This paper presents an empirical approach to examine the relationship between weather conditions and the 

efficiency of network utilities in terms of operating and capital costs as well as their quality of service. The 

results of the study will help improve the modeling of efficiency analysis and regulatory benchmarking of 

utilities. We use factor analysis (FA) to compress a set of related weather variables into two composite 

variables. We also apply the data envelopment analysis technique (DEA) to calculate the efficiency of a 

progressively comprehensive set of models. We then use second stage DEA analysis to examine the effect 

of composite as well as individual weather parameters on the efficiency of the utilities. 
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Section 2 provides an overview of quality regulation and benchmarking of electricity distribution in the 

U.K. Section 3 reviews the relationship between climatic conditions and quality of service. Section 4 

presents the Factor Analysis (FA) and multi-stage DEA as well as the procedures used in data collection. 

Section 5 describes the data and models used in the study. Section 6 summarizes the results. Section 7 

presents the conclusions. 

 

 

2. Benchmarking Quality of Service in the U.K. Distribution Networks 

Electricity distribution utilities in the U.K. are subject to efficiency improvement requirements in 

proportion to their potential for reduction in operating costs. Ofgem has applied the corrected ordinary 

least squares (COLS) technique for benchmarking of the DNOs’ operating expenditures since the second 

five-year price control review effective from 1995/96. Their regression model comprised normalised 

operating costs of the DNOs as the dependent variable and a composite output variable as the independent 

variable comprising customer numbers, network length, and units of energy delivered. The (COLS) 

method was also used for the fourth price control review effective from 2005/06 without any general glide 

path beyond the start of the next control period (Ofgem, 2004). A detailed description of the background to 

the reform, incentive regulation and benchmarking, and the performance of the DNOs is given in Jamasb 

and Pollitt (2007). 

 

As cost is the only dimension measured in the current system of regulatory benchmarking, there is concern 

over whether cost saving may be achieved at the expense of service quality. In order to regulate the quality 

performance, the U.K. regulator, Ofgem relies on a separate mechanism under the Information and 

Incentive Project (IIP). Two important quality indices are used: the number of customers interrupted per 

100 customers (CI) and customer minutes lost per connected customer (CML). Between 2001 and 2003, 

average CI fell from 83.1 to 75.3 and average customer minutes lost (CML) from 79.7 to 71.1 minutes 

(Ofgem, 2004b). An analysis of data between 1991/92 and 2003/04, showed a correlation coefficient of 

0.86 between CI and CML.1 However, in individual cases, improvement in CI does not necessarily result 

in lower CML. Ofgem assigns a higher incentive percentage for DNOs to achieve CML than CI targets, 

indicating the relative importance of reducing the length as opposed to the number of interruptions. Thus, 

in this study we focus on the number of customer minutes lost. 

 
                                                        
1 The data for 1990/91 is excluded due to the occurrence of some exceptionally high CML figures. 
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Although Ofgem has adopted the COLS technique in regulatory benchmarking, DEA has been used for 

crosschecking purposes (Ofgem, 2004c). Giannakis, et al. (2005) introduce a benchmarking model using 

DEA, which considers the inclusion of quality of service. Benchmark rankings of relative performance 

change significantly when quality attributes are introduced. Yu, et al. (2007) expand the model by 

including distribution losses. Using the input prices, partly obtained from a willingness-to-pay (WTP) 

survey, they find relatively low allocative efficiency indicating a mismatch in allocating resources among 

expenditures, service quality, and network energy losses. The results suggest that the utilities may not be 

correctly incentivised to achieve socially optimal trade-offs between these. 

 

Ofgem recognizes that variations in quality of service performance among DNOs can be due to inherited 

differences, inherent differences, incurred differences and exceptional events (Ofgem, 2006). The 

inherited factors refer to network design and configuration. The inherent differences include topographic 

factors such as network length and customer density, while incurred factors refer to managerial decisions 

in relation to operating and maintaining the network. 

 

In calculating Customer interruptions (CI) and Customer minutes lost (CML), Ofgem, and the Quality of 

Supply Working Group, have considered the inherited and inherent differences and excluded exceptional 

events. With this method, physically similar parts of networks are investigated and performance is 

compared at a disaggregated level. The DNO’s CML and CI are adjusted for events that are beyond their 

control, caused by a third-party, act of God or exceptional incidents such as transmission or other 

connected network faults; third party damage such as vandalism or terrorism; damage from birds and 

animals that could not reasonably have been prevented; and other events including restricted access due 

to foot and mouth disease control restrictions. For transmission or other connected network faults, 10% 

of the duration of interruptions is included in assessing performance against quality targets. Although 

such interruptions are beyond DNOs’ control, they can take action to mitigate their duration. If an 

interruption is caused by the failure of protection equipment or fire resulting from failure of a DNO’s 

own equipment, no adjustment is made (Ofgem, 2004b). DNOs can appeal for adjustments to their 

quality performance indicators (CML and CI) for exceptional events and, if confirmed, the full impact is 

disregarded. For one-off exceptional events, only CI and/or CML exceeding the relevant thresholds are 

excluded.2 The size of the adjustment is determined by whether the DNO has taken reasonable steps to 

prevent the incident and restore power in an efficient and effective manner. 

 

                                                        
2 CI and CML thresholds are shown in Table 4.9 in Ofgem (2004, p.24). 
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Although Ofgem considers and exempts severe or exceptional events, normal weather conditions are not 

used for the purpose of quality assessment. In other countries such as Norway weather conditions are used 

to calculate the expected level of energy not supplied (ENS) for each distribution firm and hence the 

expected level of interruption costs. ENS is the amount of energy that would have been supplied to the 

customers if the interruption had not occurred. Interruption costs are calculated for each firm annually 

based on the estimation of ENS and average specific interruption costs for each customer category 

(Langset, 2002). 

 

3. Environmental Factors 

3.1 Climatic conditions and power interruptions 

Some studies have previously examined the effect of environmental and climate factors on the 

performance of electric utilities. A study of quality of service in Norway based on interruption statistics 

and voltage quality measurement attributes the main causes for energy not supplied (ENS) as follows: 

40% being related to environmental factors, 20% to technical failure, and 5% as human-related. Unknown 

or non-specific factors account for a further 32% and 1% respectively. The results also show that the 

number and duration of interruptions are significantly higher in overhead networks compared to cable 

networks (Kjølle et al., 2003). Domijan et al. (2005) use the Poisson regression model to test the 

significance between normal weather conditions and frequency of power outages in 16 regions of Florida 

Power and Light distribution system between 1998 and 2001. Normal weather conditions, which refer to 

the daily variables such as rainfall (inches), wind (daily two-minute maximum speed in miles/hour) and 

average dew point (average temperature), are considered. The study reveals that the effect of dew is less 

significant than rainfall and that wind is the most significant factor affecting the total number of daily 

outages. 

 

Other studies focus more specifically on weather impact on overhead distribution lines. Zhou et al. (2006) 

use Poisson regression and Bayesian network methods to model the failure rates of these lines. Weather 

data such as daily speed of wind gusts, icing (ice pellets and freezing rain), and days of lightning spanning 

from 1998 to 2003 in and around Manhattan and Kansas are used. The results reveal the presence of 

different probabilistic relationships between each weather condition and the level of network failure. 

 

Korhonen et al.(2003) use two weather conditions and one quality dimension in DEA models. The 
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sample consists of 106 DNOs in Finland and the most comprehensive data is from the year 1998. Forest 

cover (km2) in the distribution area is used as a proxy for increased construction costs and risk of 

interruption. Average snow depth in the winter (cm) is used as a proxy for conditions related to winter 

conditions. A three-year average of customers’ total interruption time (hour) is used as a quality indicator 

and is treated as a non-discretionary input. Linear regression is applied to examine the joint effects of the 

variables. The effect of weather variables is tested by adding or removing them from the DEA models 

according to the changes in the average efficiency scores. Based on these tests, variables for snow and 

forest cover are excluded. It is still possible, however, that the weight of these variables on the individual 

efficiency of some firms could be very high. 

 

3.1.1 Normal weather conditions 

Although there is no clear classification of weather conditions, parameters such as temperature, rain, 

wind and humidity are generally categorized as normal; and hurricanes, storms and tornadoes as extreme. 

Lightning is sometimes considered in the latter category. Weather conditions such as gale and hail are also 

considered in some studies (Domijan et al., 2003; Zhou et al., 2006). However, temperature-related 

conditions such as concrete temperature, airfrost and groundfrost, which also affect the performance of 

distribution systems, have not been used. In this study, we consider the most common weather conditions 

faced by DNOs and classify these into two categories: Main temperature variables (min. temp, airfrost, 

groundfrost, concrete temp); and other weather conditions (total rainfall, hail, thunder, max. temp and 

gale). The term severe weather conditions used by Ofgem normally refers to different degrees of storm 

severity and is not considered in this paper. 

 

3.1.2 Temperatures 

Most of the existing literature examines the relationship between seasonal climate factors and electricity 

demand. The main focus is on modeling the forecast daily electricity loads. Simple meteorological and 

derived variables such as temperature, wind speed, heating and cooling degree-days are often used (Prado 

et al., 2002; Sailor et al., 1997). Maximum and minimum temperatures are the preferred measures of 

thermal climatic indices for analyzing the electricity demand peaks or troughs (Valor et al., 2001). 

Temperature in general is considered to be inversely correlated with electricity consumption as demand 

tends to surge with decreasing temperatures (winter) due to the use of electric heating appliances and 

increasing temperatures (summer) as a result of using cooling appliances (Hor et al., 2005). 

 

The Intergovernmental Panel on Climate Change (IPCC) reports that global average surface temperature 

is projected to rise by 1.4-5.8°C by 2100, relative to 1990 (IPCC, 2000). Based on a baseline projection, an 
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estimated climate change-induced temperature of 1 to 1.4°C in 2010 will lead to an increase of 3 to 6% in 

peak demand and 1 to 2% in consumption. In addition, an increase of 3.5 to 6.5% in combined annual 

costs and cumulative capital costs is projected (Franco et al., 2008). Traditionally, summer months with 

lower network demand provide a buffer period for DNOs to schedule outages for maintenance purposes 

(KEMA, 2007). 

 

Other than maximum temperature, concrete temperature, airfrost and groundfrost provide a standard 

measurement of ‘minimum’ weather elements by taking the surrounding environment into account. 

Concrete temperature is less subject to local weather influences than ground frost. Concrete temperature is 

related to urban island effect (UIE) as the climate of an urban observation station differs greatly from those 

of the surrounding countryside (MET, 2008). Given the nature of concrete, which absorbs heat during the 

day, and that city surfaces are unable to radiate heat away as fast as those in rural areas, temperatures fall 

more slowly in urban than rural areas at night. These temperatures provide a good account of the climatic 

differences between DNOs in urban and rural areas. 

 

3.1.3 Hail, gale and lightning 

Hail, gale and lightning are considered to be the most influential weather phenomena on the reliability of 

power systems (Brown, 2002). Hail refers to solid precipitation in the form of balls or pieces of ice 

(hailstones) with diameters ranging from 5 to 50 mm or more (MET, 2008). Hail can cause damage only 

when individual stones reach around 15 mm in diameter. Chunks of ice stones falling from 

cumulonimbus clouds in conjunction with wind gusts can bring down distribution lines. 

 

In general, the density of lightning strikes to lines on a stormy day correlates to the frequency of outages 

(Zhou et al., 2006). In the U.S., for example, 30% of power outages are lightning-related and have cost 

utilities over US$100 billion annually in damaged and destroyed equipment (EPRI, 2006). Although 

pylons are constructed to mitigate this risk as much as possible, electrical components are vulnerable to 

the larger peak current amplitudes of lightning flashovers. 

 

A gale (Force No. 8) is defined as a wind speed of greater than 34 knots over any 10-minute period; it is 

capable of breaking twigs off trees and generally impeding progress (MET, 2008). The scale as provided 

by the Meteorological Office, ranges from Force 0 (Calm), 1 (Light air) to 11 (Violent Storm) and 12 

(Hurricane force). There is a potential combined movement of vegetation and conductors caused by 

routine winds, which causes voltage sag. In some cases, the wind-gust speeds exceed the design strength 

of the distribution structures. For example, in the case of the supply interruption following Boxing Day 
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in 1998 in the U.K., the mean wind speeds were nearly 60mph, with gust of over 90mph and even over 

100mph recorded in some areas. 

 

3.1.4 Rainfall 

Compared to other weather parameters, rainfall is more location specific. Combined with high winds, 

heavy rainfall can damage overhead distribution systems. Primary systems such as feeders, laterals and 

oil circuit breakers are highly sensitive to the impact of wind and rain. The failure of non-primary 

systems including transformers caused by weather conditions is the primary cause of power outage 

(Coelho et al., 2003). Taking the above-mentioned interruption in 1998 as an example, stations recorded 

rainfall of between 400mm and 800mm in the West, and 200mm to 300mm in the East in one day. These 

levels of rainfall combined with the minimal evaporation typical during the winter, were thought to be 

sufficient to cause the soil to soften, which in turn increased the likelihood of trees being uprooted by the 

strong winds (Offer, 1999). 

 

Some studies have shown how individual weather conditions such as air temperature and lightning affect 

the performance of power plants. Furthermore, other variables such as wind speed might be correcting 

terms for the influence of temperature (Engle et al., 1992; Li et al., 1995). Hackney (2002) highlights the 

increasing importance of combined weather variables for utilities’ decisions with respect to their 

operating environment, which contain more information than single-variable reporting. The present 

paper is the first study of its kind, at least in the context of the U.K., where the aggregate effect of 

weather parameters is used to evaluate the performance of DNOs. 

 

3.2 Managerial Decisions and Power Interruptions 

Environmental factors such as weather conditions are obviously beyond the management control of 

utilities. However, there is also a possibility that utilities located in areas with poorer climate conditions 

perform better in efficiency measurement than those with more favorable weather. Managerial decisions 

including vegetation management, undergrounding, asset investment and maintenance can contribute to 

mitigation of weather impacts. All of these factors can affect capital spending and operating cost or 

quality of service. 

 

3.2.1 Vegetation management 

Power outages can be classified into weather-related failures and tree-caused failures. Both types of 

 7



failures are random and therefore difficult to prevent completely (Zhou et al., 2006). Distribution wires 

are lower voltage and close to the ground and are threatened by weather primarily through falling or 

breaking trees. Furthermore, sprouting tree branches can come into contact with energized conductors, 

causing failures. 

 

In order to improve network resilience, previous studies suggest vegetation management is the first 

priority to improve operational practices (Ofgem, 2004b). Tree-cutting costs can be a good expedient to 

reduce operating expenditure in order to meet the requirements of efficiency improvement laid down by 

Ofgem. According to Prospect, a trade union organization comprising engineers and other professionals, 

there is some evidence that cost allowances in the U.K. for exceptional events had not been spent by 

firms in the previous price control reviews (Prospect, 2004). The fourth Distribution Price Control 

Review (2005/06-2009/10) includes specific allowances totaling £70 million per year for vegetation 

management (tree-cutting), exceptional events and quality improvements (increased allowance for fault 

costs) (Ofgem, 2004b). Since Ofgem forecasts an increase in tree-trimming requirement above 2002/03 

levels, additional operating cost allowances are set to cover the direct cost of vegetation management 

(Ofgem, 2004b). 

 

In order to ensure that tree-trimming programs are in place to improve performance during severe storms, 

the Electricity Safety, Quality and Continuity Regulations 2002 were amended in October 2006 (DTI, 

2006). Under this amendment, U.K. distribution firms are responsible for certain vegetation management 

standards, which come into force on 31 January 2009. Firms are required to maintain sufficient clearance 

between their overhead lines and trees and other vegetation so as to prevent electrical or physical contact 

between them causing interference or interruption. 

 

3.2.2 Overhead lines and underground cables 

Overhead lines are more vulnerable to damage in adverse weather than underground cables. 

Maintenance, including regular line inspection and subsequent remedial actions, becomes important. The 

operating and maintenance costs of overhead lines are higher compared to that of undergrounding. On the 

contrary, undergrounding has higher capital costs. The trade-off between quality of supply and network 

costs also varies from rural to urban areas. Areas such as Manchester, with a higher degree of urbanization, 

are likely to have better quality of service due to more meshed and underground networks compared to 

those with more rural areas such as the islands and highlands of Scotland. The costs of operating and 

maintaining networks in forested and mountainous areas are likely to be higher due to the difficulty in 

gaining access to these areas (CEPA, 2003). Table 1 shows the percentage and length (km) of overhead 
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lines and underground cablesfor each UK DNO. There is a significant difference in the percentage of 

underground cables between DNOs. 

 

Table 1: Percentage of overhead lines and underground cables for UK DNOs 

 CN East UU CE 
NEDL 

CE 
YEDL 

WPD S 
Wales 

WPD S 
West 

EDFE 
SPN 

EDFE 
EPN 

SP 
Dist 

SP 
Manweb 

SSE 
Hydro 

SSE 
Southern 

 Circuit length km (2003/2004) 

Overhead 
lines 23,303 13,710 15,118 13,852 18,242 28,555 12,890 34,744 21,246 21,457 31,186 27,743 

% of total 34% 23% 38% 27% 54% 59% 26% 38% 35% 45% 70% 37% 

Underground 
cables*  45,719 41,656 22,490 37,510 15,502 16,915 37,047 57,424 38,581 26,681 12,888 42,124 

% of total 66% 71% 56% 73% 46% 35% 74% 62% 64% 55% 29% 56% 

Total 69,035 58,701 40,118 51,362 33,744 48,378 49,948 92,168 59,886 48,147 44,437 75,491 

* Excluding submarine cables and CONSAC underground cables at LV (Source: Ofgem (2004), Quality of service report, 
Excel Data 2004/05) 

 

3.2.3 Asset investment and maintenance 

A continuing challenge for DNOs is how to improve the resistance of infrastructure to adverse weather 

whilst keeping costs low. Hardening distribution lines, which includes upgraded poles, smaller 

conductors, shorter spans, push braces and less pole-mounted equipment means increasing capital 

expenditure. From investments in system components such as covered overhead conductor systems to 

advanced equipment, including lightning detection networks capable of providing accurate 

cloud-to-ground lightning stroke data there is a need for management support. Other than upgrading 

systems, distribution firms require sufficient revenue in order to replace ageing infrastructure, maintain 

the network adequately, and invest in improved quality of service (House of Commons, 2004). 

 

With good risk management, distribution firms should recognize the heightened risk of equipment failure 

during periods of adverse weather (House of Commons, 2003). DNOs can minimize the risk of equipment 

failure through appropriate network planning, equipment design, maintenance and operation. From a 

prevention perspective, strengthening infrastructure to cope with exceptional weather conditions such as 

gale and hail becomes fundamentally important. From a remedy perspective, faster restoration also 

comes with a high price tag. Using mobile generation and hot glove/live line techniques can restore 

supply and fix faults more quickly. This involves additional cost such as investment in LV and HV 

fault-finding equipment in order to locate the faults more accurately. 
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House of Commons (2004) points out that in several major incidents, power outages are caused either 

directly or in a contributory way by maintenance problems. The continuous pressure to reduce 

expenditure on staff costs is criticized as the main reason for the shortage of permanent skilled staff. 

Technically competent workers with local knowledge, who contribute to rapid restoration during 

interruptions, are critical to efficient maintenance work (Prospect, 2004). 

 

 

4. Methodology 

4.1 Data Envelopment Analysis 

In recent years, DEA has been popular with regulators as an analytical tool in incentive regulation of 

network utilities (Jamasb et al., 2001). The technique was first presented in Farrell (1957) as a measure 

of firm efficiency using multiple inputs and outputs. DEA is a non-stochastic technique that uses linear 

programming and optimization to obtain the efficiency and best-practice frontier from a sample of firms. 

The efficient frontier envelops the less efficient firms whose distance from the frontier is interpreted as a 

measure of inefficiency. A relative efficiency score between zero and one is calculated for each firm 

from the ratio of the sum of weighted outputs to the sum of corresponding weighted inputs. 

 

DEA models can be specified as constant returns to scale (CRS) or variable returns to scale (VRS). CRS 

models, used in this study, assume that efficiency is not affected by the size of firms. As the UK DNOs 

are all large, there is no compelling reason to focus on the effect of scale in this study. DEA models can 

also be specified as input or output oriented. Since the distribution utilities are required to provide 

services to all customers in their territories, the level of outputs and services is beyond their control. 

Thus, we use an input-oriented DEA model, assuming a fixed level of output and strong disposability in 

both inputs and outputs. The disposability assumption implies that an increase in inputs does not result in 

a reduction in outputs; or that less output can be produced with the same amount of inputs. 

 

The computation of the technical efficiency score for the ith firm in a sample of N firms in a CRS model is 

shown in Equation 1. θ is a scalar and λ is a I x 1 vector of constants. X and Y denote N x I input and M x I 

output matrices respectively assuming N observed inputs and M observed outputs. In VRS models, a 

convexity constraint Σλ=1 is added which ensures that the firm is compared against other firms of a 

similar size. 
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It should be noted that the allocative efficiency computed by our DEA models differs from conventional 

allocative efficiency analysis where the quantity and price of all financial input factors are specified 

individually. In our models, allocative inefficiency indicates that a firm is either not subject to the 

correct price of quality and/or that the DNO uses the wrong bundle of inputs. 
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4.2 Two-stage DEA 

Two-stage DEA allows for the effect of non-discretionary variables such as weather parameters to be 

examined. In the first stage, we calculate the relative technical and economic efficiencies in selected 

models using traditional inputs and outputs. Technical efficiency measures a firm’s ability to minimize 

inputs to produce a given level of outputs. Using the input quality (customer minutes lost) and respective 

factor price (WTP to avoid one minute of interruption), we measure the allocative efficiency of the 

utilities – i.e. the component of economic efficiency attributable to choosing the right mix between cost 

and quality inputs. In this study, we are concerned with the technical efficiency (TE) and economic 

efficiency (EE) of different models. 

 

In the second stage, we examine the effect of weather composite variables obtained from Factor Analysis 

as well as individual weather parameters on the efficiency of the utilities using Tobit regression analysis. 

Tobit regression is a censored regression model, which estimates the relationship between an explanatory 

variable and a truncated or censored dependent variable. DEA scores range from 0 to 1 but X1 and X2 can 

take values from negative to positive infinity. The latent variable Y* is unobserved for Y and is generated 

by the classical linear regression model as characterized in Equation 3, where X1 and X2 are weather 

composite variables (Weather index I and II) and β1 and  β2 are regression coefficients. The error term μ is 

assumed to be normally distributed i.e. μ~N (0, σ2). 
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       [3] 

 

The estimated regression coefficients can be used to adjust the efficiency scores for the effect of 

non-discretionary factors (e.g. average weather conditions). The advantage of this method is that we do 

not need prior assumptions regarding the direction of the influence of the categorical variables. A 

weakness of two-stage method is that it only considers radial inefficiency and ignores the slacks. Also, if 

the variables used in the first stage are highly correlated with the second-stage variables, the results are 

likely to be biased. However, two-stage DEA is a practical method often used for examining the effect of 

environmental variable (see Yang et al., 2008 and Nillesen et al., 2008). 
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4.3 Factor analysis 

Compressing a large number of related weather variables into composite variables offers a practical 

solution for modeling efficiency with DEA. Factor analysis (FA) is a multivariate statistical method 

widely used in the social sciences to extract composite factors from a set of observed variables. There 

are several extraction techniques such as confirmatory factor analysis (CFA) and exploratory factor 

analysis (EFA). In this study we use the EFA method as we have no prior knowledge that the intended 

factors are measured by the observed variables. The number of factors extracted is determined by 

examining Eigenvalues from the analysis. In CFA, the researchers must specify the number of factors to 

be measured a priori. 

 

Another variable reduction technique is principal component analysis (PCA). There is no consensus 

among statistical theorists as to what conditions should determine the use of FA or PCA. Some statistical 

scholars prefer factor analysis to components analysis (Bentler et al., 1990; Gorsuch, 1990; Widaman, 

1990). Some argue that the difference between the two is negligible or that PCA is preferred (Arrindell 

et al., 1985; Steiger, 1990; Velicer et al., 1990). For example, Velicer et al. (1990) discover a high 

degree of similarity between the results from both methods. Therefore, neither method is likely to 

produce any empirical or substantive differences. 

 

PCA assumes that all variance is common variance and is shared by other variables included in the 

model. The total variance in the common factor model is partitioned into common variance and unique 

variance. Factor analysis considers unique variance, which is specific to a particular variable and 

includes an error component representing random measurement error. We consider weather parameters 

as the only indicators of the latent constructs to be measured. As the error (unique) variance might 

represent a significant portion of the total variance, FA has the advantage of considering error due to 

unreliability in measurement. On the contrary, PCA assumes absence of outliers in the data. Moreover, 

FA is more appropriate when links between the observed variables and their underlying factors are 

unknown or uncertain. We therefore choose the FA technique to arrive at a comprehensive effect of 

weather variables on network performance. We expect the interpretable constructs obtained from FA can 

maximally explain the covariances among a set of weather variables. 

 

We use exploratory factor analysis to extract the factors after testing the correlation of the weather 

parameters. We retain factors that have Eigenvalues larger than unity (Table 2). Eigenvalues indicate the 

proportion of variance explained by each factor. As a result, we retain two factors (Factor 1 and 2) that 
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cumulatively explain 92 % (61% and 31%) of the total variance of the data. After estimating the factor 

loadings (the correlation between observed variables and factors) through extraction, we use varimax 

(orthogonal) rotation to impose a restriction on the correlations between two factors. The aim of rotation 

is to simplify and clarify the data structure by maximizing high loadings and minimizing low loadings. 

This in turn facilitates the interpretation of results. We then compute the Bartlett scoring which gives the 

individual factor scores. Factor scores are estimates of underlying latent constructs and are obtained 

from the multiplication of factor loading (correlation coefficient) and raw data (annual weather data). 

The corresponding coefficient of each weather parameter for each factor is shown in Table 3. 

 

Table 2: Results of exploratory factor analysis 

Factor Eigenvalue Difference Proportion Cumulative 

1 3.74223 1.83086 0.6127 0.6127 

2 1.91137 1.3884 0.3129 0.9256 

3 0.52297 0.1179 0.0856 1.0112 

 

 

Table 3: Results of Bartlett factor scoring 

Weather Parameters 
Scoring Coefficient  

Weather Index  I 

Scoring Coefficient  

Weather Index  II 

MaxTemp     (Cº) -0.06084 -0.36931 

MinTemp      (Cº) -0.23231 0.04946 

Total Rainfall  (mm per day) -0.02221 0.31908 

Hail            (day) -0.06023 0.29321 

Thunder       (day) -0.09362 -0.32463 

Airfrost        (day) 0.25111 0.02056 

Groundfrost   (day) 0.25615 0.05486 

ConcreteTemp (day) 0.25399 0.04261 

Gale           (day) -0.08021 0.30176 

 

Based on weather parameter data from 1995/96 to 2002/03, we construct two weather indices (Weather 

index I and II) using the score coefficients of each weather parameter in each year. Minimum 

temperature, airfrost, groundfrost and concrete temperature carry higher loadings in Weather index I 

(Factor 1) whereas in Weather index II (Factor 2), maximum temperature, thunder, hail and gale have the 

higher weightings (Table 3). Thus a pattern emerges where the main temperature variables (Index I) and 
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other weather characteristics (Index II) are represented by two distinct indices (Factors 1 and 2). These 

indices will be used as the non-discretionary variables in the second stage of the DEA.3

 

 

5. Data and Model Specifications 

5.1 Choice of variables 

Customer numbers (CN) and units of energy delivered (EDF) are the most commonly used outputs in 

benchmarking of distribution network utilities. We use these outputs given that the pricing of distribution 

services varies according to both of these. There is a lesser consensus on using network length (NL) as an 

output though it has been used as an output by Ofgem. 

 

We use customer minutes lost (CML) as a quality attribute of output; a reduction in which is regarded as 

desirable. In order to include CML in a DEA model, we multiply the values by the number of customers, to 

make the variable scalable. In this study, energy losses (EL) are treated as an input that is to be minimized. 

We include monetary values of Opex and Totex in our model as inputs. Totex is the sum of Opex and 

non-operational capital expenditure. 

 

All yearly weather data is used in order to make maximum use of the information available for each DNO. 

Other than temperatures, which are expressed in degrees Celsius, and rainfall in mm, the remaining 

parameters are as per day values. 

 

5.2 Data 

We compare the performance of 12 DNOs in the U.K. for the 1995/06 to 2002/03 period. The monetary 

and physical data for the inputs and outputs are based on publications and information from Ofgem. To 

capture the weather pattern year to year and ensure continuity, we need to maintain the consistency of the 

source of cost data. Thus, we have dropped 2003-04 data from the analysis, which had been subject to 

adjustment in order to control for weather related atypical costs. The data on service quality is mainly 

based on information from Ofgem’s annual Electricity Distribution Quality of Service Report. We use 
                                                        
3 The Factor Analysis was conducted using STATA. 
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input prices in order to measure economic efficiency (EE). The unit price of CML is the value of 

willingness-to-pay (WTP) for avoidance of a one minute power interruption (domestic plus business).4 

The WTP data is derived from the Ofgem-Accent’s customer survey of WTP for quality of service in 2004 

(Ofgem, 2004a). The details of the method used for calculation of WTP for domestic and business 

consumers are described in Yu et al. (2007). Energy loss (EL) is measured in GWh and valued at average 

industrial electricity price. The price of Opex and Totex is by convention set to 1. 

 

The weather data were obtained from the UK Meteorological office for most observation stations. 

Complete data records of weather in the service areas of two utilities EDF-LPN and CN-West were not 

available. The MORECS5 map divides the UK territory into 190 40-km2 areas, enabling the location of 

MET observation stations to be traced to service area (Appendix I). The accuracy of the location coverage 

is further verified by the post codes of each DNO area and observation stations. Two weather stations in 

the service area of the DNOs were selected to represent each firm. The average of the two stations was 

taken. In some cases, where weather data for two observation stations were not available, we use data from 

one station. The data for maximum and minimum temperatures during the year are chosen. The total 

yearly rainfall in mm and total number of days of the remaining weather parameters are used. Table 4 

shows the definition of the weather parameters. 

 

Table 4: Definition of weather parameters 

Weather Conditions (I) Descriptions 
Min. Temp. Minimum air temperature (degrees C). 

Air Frost Number of days when minimum air temperature was below zero degrees C. 

Ground Frost Number of days when minimum grass temperature was below zero degrees C. 

Concrete Temp Number of days when minimum concrete temperature was below zero degrees C. 

Weather Conditions (II)  

Total Rainfall Total rainfall (mm). 

Hail Number of days when hail fell (00-24 GMT) ie. solid precipitation (of which outer  
parts are clear ice) with a diameter 5mm or more. 

Thunder Number of days when thunder was heard (00-24 GMT). 

Max. Temp. Maximum air temperature (degrees C). 

Gale Number of days when mean wind speed over any 10 minute period reached 34 knots 
or more (Force 8) (00-24 GMT). 

 

                                                        
4 We use CML * no. of customers as quality of service input. Hence we use WTP / no. of customers as input price. 
5 MORECS: Met Office Rainfall and Evaporation Calculation System. It is the generic name for MET services involving 
the routine calculation of soil moisture and evaporation for Great Britain. 
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Table 5 shows the yearly average for each weather parameter. The DNOs in Scotland have the lowest 

temperatures on average over the 8-year period than those in other areas. The service area of SP 

Distribution has the highest level of total rainfall: almost double that of CE-YEDL, which has the lowest 

figure. More than half of the DNOs have experienced less than 10 days of thunder on average over the 

period. 

 

Table 5: Yearly average of weather parameters (1995 – 2002) 

 DNOs 
Max.  

Temp. 

Min.  

Temp. 

Ttl  

Rainfall 
Hail Thunder

Air 

Frost 

Ground 

Frost 

Concrete 

Temp 
Gale 

Yearly Avg Degree C Degree C mm Days Days Days Days Days Days 

EDF - EPN 23.04  0.31  672.52  1.64  19.36  47.75  88.66  61.72  3.14  

CN East 22.03  1.16  685.51  0.99  16.55  36.06  87.27  68.84  1.67  

SP Manweb 20.52  1.48  771.36  0.74  7.55  38.12  86.94  46.52  14.02  

CE - NEDL 19.99  -0.43  812.25  1.77  8.45  53.70  105.57  72.99  2.92  

UU 21.00  0.78  1191.57  3.88  15.13  35.38  75.25  50.25  0.75  

EDF - SPN 22.67  1.72  759.22  2.19  17.77  27.49  72.47  45.44  2.79  

SSE-Southern 22.89  0.63  868.80  0.57  10.88  49.23  98.84  65.55  2.01  

WPD S Wales 19.86  2.47  1006.57  8.06  7.58  19.69  55.06  38.45  25.34  

WPD S West 19.95  3.53  1052.31  0.65  8.65  11.41  55.41  31.68  9.29  

CE - YEDL 20.71  1.45  641.57  0.46  5.45  20.90  63.37  35.78  8.10  

SSE - Hydro 17.53  -0.11  997.24  3.68  4.05  53.02  117.80  81.15  16.72  

SP Distribution 18.94  -0.28  1236.04  2.40  5.44  63.74  125.32  94.68  3.88  

 

5.3 Model specifications 

We use a set of progressively more comprehensive DEA models. We specify two types of DEA models – 

i.e. cost-only and cost-quality-loss models. Cost-quality-loss models are generally preferable to the 

cost-only model that is currently used by the regulator (Yu et al., 2007). In addition, technical and 

economic efficiency are calculated for single factor models as well as for more comprehensive models. 

 

Table 6 summarizes the cost inputs, input prices, outputs, and quality of service attributes used in the 

models. The technical efficiency and economic efficiency scores of these models are then tested against 

the two weather composite indices and individual weather parameters using Tobit regression in the 

second stage DEA. 
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Table 6: Model specifications – Input/output 

Model 1 2 3 4 5 6 

Inputs       

OPEX √ √  √   

TOTEX   √  √ √ 

CML  √ √ √ √ √ 

EL  √ √ √ √ √ 

Input price       

1              (TOTEX)    √ √ √ 

WTP          (CML)    √ √ √ 

ENGY PRICE (LOSS)    √ √ √ 

Output       

CN √ √ √ √ √ √ 

ED (EDF) √ √ √ √ √ √ 

NL √ √ √ √ √  

 

Tobit regression (second stage) TE TE TE EE EE EE 

Weather Index I √ √ √ √ √ √ 

Weather Index II √ √ √ √ √ √ 

 

OPEX: Operating expenditure   TOTEX: Total expenditure  EE: Economic efficiency 

CML: Duration of interruptions        EL: Energy physical loss   WTP: Willingness-to-pay 

ENGY PRICE: Energy Price    CN: Total number of customers  NL: Total network length 

ED: Energy delivered          TE: Technical efficiency 

 

 

 

Model 1: Model Opex 

Model Opex is the base model and resembles Ofgem’s COLS model. Ofgem treats Opex as input while 

number of customers; energy delivered; and network length are treated as components of the composite 

size variable (output). Technical efficiency (TE) is measured in Models 1-3 and economic efficiency is 

measured in Models 4-6. 

 

Model 2: Model Opex-CML-Loss 

Model 2 (Opex-CML-Loss) extends Ofgem’s base model to incorporate important quality dimensions 

such as customer minutes lost and energy losses. The model outputs remain the same. 
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Model 3: Model Totex-CML-Loss 

The total Cost-CML-Loss model, incorporating service quality by including customer minutes lost and 

energy losses, is preferable to a Opex cost-only model. Model Totex-CML-Loss is the most 

comprehensive approach and was used in Yu et al. (2007). 

 

Model 4: Model Opex-CML-Loss 

Model 4 is similar to Model 2 but economic efficiency is measured. 

 

Model 5: Model Totex-CML-Loss  

Model 5 is similar to Model 3 but economic efficiency is measured. Customer minutes lost and energy 

loss are considered as the inputs that focus on quality of service. The outputs are number of customers, 

energy delivered and network length. 

 

Model 6: Model Totex-CML-Loss (without Network length) 

Network length represents the geographical dispersion of distribution firms. Since it might correlate to 

weather, we drop the network length as an output in this model. 

 

 

6. Results 

6.1 Correlation - Individual weather parameters and composite factors 

Correlation coefficients can reveal the relationship between weather factors. Table 7 shows the correlation 

coefficients for the parameters for the 1995/96 – 2002/03 period. The composite variable weather index I 

exhibits a low and negative correlation with weather index II. This confirms the usefulness of using two 

separate composite weather indices in DEA models, representing two rather distinct types of weather 

conditions. 

 

For individual weather parameters, airfrost shows a high correlation with groundfrost and concrete 

temperature. A similar high correlation is seen between hail and gale. The high correlations between 

individual weather parameters reinforce the need to use factor analysis to produce composite variables 

for weather effect. 
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Table 7: Correlation - Individual and composite weather parameters 

1995-2002 Weather I Weather II Max 
Temp 

Min 
Temp 

Ttl 
Rainfall Hail Thunder Air 

Frost 
Ground 

Frost 
Concrete 

Temp Gale 

Weather I 1           

Weather II -0.32 1          

MaxTemp -0.02 -0.53 1         

MinTemp -0.89 0.24 -0.07 1        

TtlRainfall -0.35 1.00 -0.49 0.27 1       

Hail -0.28 0.41 -0.22 0.16 0.40 1      

Thunder -0.17 -0.17 0.61 0.13 -0.12 -0.04 1     

AirFrost 0.94 -0.10 -0.11 -0.86 -0.12 -0.14 -0.18 1    

GroundFrost 0.93 0.00 -0.20 -0.82 -0.03 -0.19 -0.25 0.91 1   

Concrete 
Temp 

0.93 -0.01 -0.17 -0.83 -0.04 -0.12 -0.17 0.92 0.94 1  

Gale -0.36 0.22 -0.42 0.35 0.18 0.51 -0.37 -0.29 -0.30 -0.30 1 

 
 

6.2 Correlation - weather composite and other DEA variables 

We also obtain the correlation coefficients drawing on the raw data for each parameter from 1995/96 – 

2002/03. Weather index I shows a positive correlation with the cost and quality parameters while weather 

index II exhibits the opposite. This is consistent with the above discussed features of the dominant 

components in each weather index. 

 

As mentioned in the methodology section, one disadvantage of the two-stage DEA approach is that if the 

variables used in the first stage (Totex, Opex, CML, Losses, Network length) are highly correlated with 

the second-stage variables (weather composite indices in this case), the results are likely to be biased. As 

seen in Table 8, both second-stage variables (weather composite indices) show a low correlation with cost, 

quality and other parameters. Weather composite indices show a low correlation with network length, 

explaining only 8% of the features (Corr. Coefficient 0.2935). The directions and correlations of this 

relationship run counter to our expectations, as they do not reflect the conventional wisdom that the longer 

the network, the more it is likely to be affected by climate. 
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Table 8: Correlation - Weather composite indices and DEA variables 

1995-2002 Weather I Weather II Opex Totex CML Losses 
Network 

Length 

Weather I 1       

Weather II -0.3192 1      

Opex 0.177 -0.3105 1     

Totex 0.1499 -0.2222 0.868 1    

CML 0.1273 -0.0774 0.1584 0.2531 1   

Losses 0.2452 -0.1625 0.268 0.4915 0.3939 1  

Network Length 0.2935 -0.1917 0.3434 0.5941 0.5477 0.8038 1 

 

6.3 Correlation between weather composite and network lines 

As shown in Table 9, weather index I has a low correlation with the percentage of overhead lines and 

undergrounding. Weather index II, representing larger weather variability, shows a higher correlation with 

undergrounding. Following from this and consistent with the nature of each weather index, weather index 

I shows a positive correlation with the percentage of undergrounding while index II exhibits the opposite. 

There is a need to further study the relationship between undergrounding of lines, quality of service and 

expenditures. 

 

Table 9: Correlation - Weather composite and % of overhead lines and undergrounding 

1995-2002 Weather I Weather II Overhead line 
(%) 

Undergrounding 
(%) 

Weather I 1    

Weather II -0.3192 1   

Overhead line % -0.0334 0.2294 1  

Undergrounding % 0.0427 -0.2879 -0.9783 1 

 

6.4 Models 1-6 – Technical and economic efficiency 

The average technical and economic efficiency scores for Models 1-6 are summarized in Table 10. The 

results indicate that DNOs are, on average, technically inefficient by about 30% at the highest (Model 1) 

and 3% at the lowest (Model 3). This implies that an output level can be maintained while reducing 

operating expenditure by about 3% and 30% over the period. In DEA, adding or deleting variables or 
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changing the sample size can change the shape of the production frontier and thus the efficiency scores. 

The mean efficiency in Models 2 and 3 seems to increase with the number of input variables. 

 

For technical efficiency, United Utilities ranks low (No. 8) in the simple model M1 (Opex-only) but ranks 

high (No. 1) in the comprehensive model M2 (Opex-CML-Loss) after taking quality and energy losses 

into account (Table 10). This implies a possible trade-off between expenditure, energy losses and service 

quality. 

 

Table 10: Average technical and economic efficiency scores (Models 1-6) 

Model 
 

1995/96-2002/03 

M1 
Opex Only 

TE

M2 
 Opex-CML-Loss

TE

M3 
Totex-CML-Loss

TE

M4 
Opex-CML-Loss 

EE

M5 
Totex-CML-Loss 

EE

M6 
Totex-CML-Loss 

Drop NL
EE

EDF – EPN 0.84 0.99 1.00 0.88 0.92 0.90 
CN East 0.51 0.93 0.99 0.72 0.79 0.75 
SP Manweb 0.63 0.93 0.96 0.88 0.90 0.86 
CE – NEDL 0.53 0.92 0.94 0.73 0.81 0.77 
UU 0.66 1.00 1.00 0.88 0.87 0.87 
EDF – SPN 0.73 0.92 0.95 0.79 0.89 0.89 
SSE – Southern 0.92 0.95 0.99 0.91 0.92 0.91 
WPD S Wales 0.50 0.87 0.85 0.55 0.58 0.53 
WPD S West 0.78 0.98 0.98 0.92 0.93 0.75 
CE YEDL 0.69 1.00 1.00 0.98 0.99 0.99 
SSE – Hydro 0.87 1.00 1.00 0.91 0.92 0.47 
SP Distribution 0.72 0.88 0.95 0.78 0.81 0.70 

Sector Average 0.70 0.95 0.97 0.83 0.86 0.78 

 

6.5 Second-stage analysis - Efficiency scores and composite weather variables 

In the second-stage analysis, we use Tobit regression to test the effect of composite weather variables 

(Weather index I and II) in different models. The efficiency scores of each model are regressed against 

the two composite variables simultaneously. We find no significant weather effect in the single factor 

model Model Opex (M1), the comprehensive models Model Opex-CML-Loss (M2) and Model 

Totex-CML-Loss (M3) (i.e. technical efficiency models), or in the economic efficiency model 

Opex-CML-Loss (M4) (Table 11). 
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However, we find a significant weather effect in the economic efficiency model Totex-CML-Loss (M5) 

(Weather Index II only). Also, when we exclude network length from the outputs in Model 6 we find a 

significant weather effect (Weather index I and II). This implies that network length partially reflects the 

weather effect.6 To further verify the effect of network length, we dropped the network length variable 

from models 1 to 4. The result is consistent with that of the single factor technical efficiency model - 

Model Opex (M1), i.e. insignificant for Weather Index I and II. In more comprehensive models, however, 

more weather parameters are significant. 

 

Technical efficiency Models 2 and 3 show significant weather effect (Weather Index I and II). In the 

economic efficiency Model 4 the weather effect is also significant (Weather Index II only). Thus, in the 

absence of network length, the weather effects become more evident. This may be because network 

length per unit of input is higher in DNOs with worse weather and hence the network length output may 

be a proxy for the weather effect. In testing the relationship between individual weather parameters (e.g. 

rainfall, gale) and different models using Tobit regression, we find evidence of multi-co linearity of 

weather parameters in most models. 

 

Table 11: Average efficiency scores and results of Tobit regression by model 

Model No. Input Output 
DEA 

Measure 

Stage 1  

DEA Score 

Sector Avg 

Stage 2 

Tobit Regression 

Weather composite 

variables 

Model 1 Opex CN, ED, NL TE 0.70 not significant Weather Index I & II

Model 2 Opex-CML-Loss CN, ED, NL TE 0.95 not significant Weather Index I & II

Model 3 Totex-CML-Loss CN, ED, NL TE 0.97 not significant Weather Index I & II

Model 4 Opex-CML-Loss CN, ED, NL EE 0.83 not significant Weather Index I & II

Model 5 Totex-CML-Loss CN, ED, NL EE 0.86 Significant  Weather Index II 

Model 6 Totex-CML-Loss CN, ED EE 0.78 Significant  Weather Index I & II

 

 

                                                        
6 This may also be due to lower number of variables in the model. 
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6.6 Second-stage DEA – Adjustment of efficiency scores 

Second-stage DEA allows adjustment of efficiency scores relative to a common environment (average 

weather conditions). Regression coefficients β1 or β2 are used to adjust the efficiency score of each 

DNO. Table 13 shows the adjustment of DEA scores for Model 5, using the corresponding β2 (Weather 

Index II). After making adjustments to the efficiency scores, the rankings of 4 DNOs remain the same. 

The rankings of 4 DNOs improve, and those of 4 DNOs worsen. The degree of change in ranking is, 

however, small, normally moving up or down one or two positions. 

 

Table 13: Magnitude of weather impact on efficiency scores 

M5: Model Totex-CML-Loss, Economic Efficiency 

1995-2002 DEA Score Weather_I Weather_II diff. WII Adjusted 
Magnitude 

Adjusted 
% 

Adjusted 
DEA Score 

EDF – EPN 0.92 31.80 209.71 -74.52 0.04 4.6% 0.96 

CN East 0.79 30.32 214.54 -69.69 0.04 5.0% 0.83 

SP Manweb 0.90 23.06 248.15 -36.08 0.02 2.3% 0.92 

CE – NEDL 0.81 38.78 260.43 -23.80 0.01 1.7% 0.82 

UU 0.87 11.29 375.94 91.71 -0.05 -6.0% 0.82 

EDF – SPN 0.89 16.35 236.16 -48.08 0.03 3.1% 0.91 

SSE – Southern 0.92 32.28 275.26 -8.97 0.01 0.6% 0.92 

WPD S Wales 0.58 1.45 326.58 42.35 -0.02 -4.1% 0.56 

WPD S West 0.93 -1.90 333.39 49.15 -0.03 -3.0% 0.91 

CE YEDL 0.99 13.54 203.37 -80.86 0.05 4.7% 1.00 * 

SSE – Hydro 0.92 38.97 327.54 43.31 -0.02 -2.7% 0.89 

SP Distribution 0.81 42.65 399.72 115.48 -0.07 -8.1% 0.75 

Sector Average 0.86 23.22 284.23     -0.17% 0.86 

W I, WII: Weather index I and II       Adjustment Formula: (weather II – avg. weather II) *β2  β2  = -0.0005691 

* Normally efficiency scores should not be larger than 1. This firm performs particularly well and exhibits super efficiency. 
 

Similar adjustments are also made to Model 6 for which the results are significant (Weather I & II). 

Table 14 summarizes and compares the magnitude of adjustment for two models. The adjustment ranges 

from -25.1% to 11.6%. Clearly, controlling for weather effects has a significant impact on economic 

efficiency in some models. 

 

 

 24



Table 14: Magnitude of weather impact on efficiency scores - Models 5 and 6 

Model Model 5 Model 6 

Average DEA Score 0.86  0.78 

DEA Measure EE EE 

Statistically Significant Weather II Weather I & II 

Max Adjustment (%) 5.0% 11.6% 

Min Adjustment (%) -8.1% -25.1% 

Avg Adjustment (%) -0.17% -1.15% 

 

 

7. Conclusions 

In this paper, we have investigated the effect of weather conditions on the costs and service quality 

performance of utilities. We find a significant correlation between weather composite variables and the 

economic efficiency scores of comprehensive models. With regard to technical efficiency, the effect on 

all models is insignificant. For economic efficiency measurement, Models Totex-CML-Loss (M5) and 

Totex-CML-Loss (dropping network length) (M6) are significant. Thus, the main temperature variables 

(Weather index I) and other weather conditions (Weather index II) in our case have an impact on the 

performance of DNOs but the magnitude of their effects is small on average. 

 

Hence we find some evidence of statistical significance between weather and cost and quality 

performance. The size of adjustment of efficiency scores in some models based on average weather 

conditions is noticeable. The rankings of over 60% of DNOs changed after the adjustment. The impact 

on some DNOs is larger than for others. However, the overall economic significance of these changes is 

relatively small. On the other hand it may be argued that the weather in Great Britain does not vary 

enough to make a difference and there are no extremely large or extremely small distribution firms in 

our sample, which creates insignificant effect for environmental variability. 

 

With the exception of Model Opex (M1), the weather parameter is significant in all models (M2 – M6) 

after dropping network length. This suggests that including network length as an output in the case of the 

U.K. internalizes the effect of weather on efficiency scores. This in turn justifies the use of network 
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length as an output in Ofgem’s current benchmarking model. In a previous study Yu et al. (2007) show 

that by taking customers’ willing-to-pay for quality into account, a Totex-CML-loss model is preferable to 

the Opex-only model used by Ofgem. The findings of the present study suggest that more comprehensive 

technical efficiency models and economic efficiency models with Opex may not need to include weather 

variables explicitly. On the other hand, more comprehensive models based on Totex may need to 

incorporate weather effects. 

 

From a management perspective, while severe weather conditions such as storms can test a utility’s 

crisis management and contingency planning abilities, normal weather conditions reflect the capability 

for daily operation. Although weather conditions are found to be immaterial for efficiency measurement, 

this should not deter utilities from improving their operating and investment practices to mitigate the 

adverse effects of their operating environment. These practices include vegetation management, 

undergrounding and assets investment and maintenance. Although weather variability is beyond the 

control of utilities, these tools are at the disposal of utilities to mitigate weather-related risk. Furthermore, 

although DNOs continue to improve their service quality year by year, it becomes difficult to achieve 

noticeable differences beyond a certain quality standard. 

 

Although the impact of weather on efficiency performance is small on average, DNOs need to recognize 

the challenges of coping with increasing weather variability and severity due to climate change. From a 

risk management perspective, climate change-induced temperature increases may further increase the 

probability of system overload. The electricity network in the U.K. was built largely in the 50’s and 60’s; 

and overhead lines were not built to withstand exceptional weather conditions such as storm winds and 

lightning. Some of these lines are now nearing the end of their useful economic life. Working to reduce 

the vulnerability of the electrical distribution system to weather-related disturbances should be an area of 

focus for DNOs. 

 

Apart from providing an empirical basis for climatic impact studies, this research also provides insight 

into how cost and quality performance in electricity distribution is affected by weather. Based on the 

results, we can conclude that DNOs in the U.K. are not in a disadvantaged position due to weather 

conditions. Thus, utilities should continue to achieve an appropriate allocation of their effort between 

cost reduction, reduced losses and improved quality of service. 
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Service Areas of DNOs  
Source: Ofgem Quality of Service Report 2003/04 
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MORECS (Met Office Rainfall and Evaporation Calculation System) Map 
Source: UK MET Office 
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