Additional Methods

Cell Expression Profiles

The tissue-dependent gene expression dataset from the Genome Novartis Foundation
contains 32 healthy major tissues, and 47 tumour samples and cell lines. The custom-
designed whole-genome gene expression microarrays used on each sample targets 44775
human mRNA transcripts. Previous analysis of this dataset identified many chromo-
somal regions of correlated transcription that are under the control of both tissue and
parental allele-specific expression. The expression levels of TF genes across tissue sam-
ples are observed to be lower than non-TF genes. This is coherent with the mechanistic
explanation that the effect of a single TF molecule is amplified by transcribing many
copies of mRNA from a target gene. Across all samples, the proportion of TFs rel-
ative to all expressed genes is remarkably stable at ~ 6%. In the bootstrap test for
highly predictive CRMs, we resampled from this set of TFs to generate the bootstrap
replicates. High variance in gene expression profiles are observed between replicates for
samples with more heterogeneous composition. Therefore, we treat each replicate as an
independent sample in our analysis. When analyzing expression variation in a single
sample, we found that a Gaussian distributional assumption for gene expression is more
suitable compared to other distributions.

Smoothing and Model Fitting

Since gene expression response by the target gene varies over different TF expression
values in a smooth fashion, a curved function is needed to fit our gene expression data.
For additive models, the partial response of the target gene to the expression of each
TF is described by a smooth function. The smooth functions specified by GAM are
scatterplot smoothers such as loess (a locally weighted regression smoother), running
mean, or a smooth spline. The specific scatterplot smoother used in this application of
the GAM is the penalized spline. The penalized spline s can be written in terms of basis
functions thus:
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where £ is the number of basis functions used for s, the [3; is the regression coefficients
to be estimated, the b; are the basis functions, and x is the log expression value of a
TF in the CRM. If we let x7:j = 1..k be a set of points (knots) in the range of z,
the smoothing function s(z) amounts to using sections of cubic polynomial joined at the
knots. The knots in effect control the degree of smoothing for the curve. This is achieved
by representing the basis functions as b;(z) = |z — 2}|*. The number of basis functions
should be large enough to be able to approximate the true relationship between TF's
and target gene. However, since the gene expression data is inherently quite noisy, it is
likely that the model will overfit data if the number of basis functions is too large. This
problem is alleviated by using a relatively large number of basis functions but avoiding
overfit by imposing a penalty during model fitting.

To describe the fitting procedure, consider fitting a gene expression prediction model
with two TF predictors to Gaussian target gene expression data with an identity link.



The fitting objective for our gene expression prediction models will be to minimize:
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where i is each condition and A is a smoothing parameter that controls the trade-off
between good fit and model smoothness. The penalty is applied to the wiggliness of
each smoothing function, as measured by [[s”(z)]?dz. The fitting procedure for GAM
follows the same method of iteratively reweighted least squares (IRLS) for generalized
linear models, but we estimate the mean squared error (MSE) of the fitted model as a
function A\ using cross-validation. In each cross-validation step, we leave out an expres-
sion value, fit the model to the remaining expression values, and calculate the squared
difference between the left out datum and the fitted model. The calculation is repeated
for each expression value of the target gene or sample, and hence we obtain the average
squared difference between missing data and the model fitted to the remaining data. A
computational shortcut for the n-fold cross-validation is to use the Generalized Cross
Validation (GCV) score. The GCV is achieved by writing the cross-validated MSE as a
weighted sum of the model residuals and by replacing all the individual weights in the
summation by the average weight. Subsequently, the trace of the influence matrix in the
score is the estimated degrees of freedom for the model.

Additional Tables and Figures
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Figure 1: Distance between co-localized TFs. Size and number of CRMs obtained for
different distance requirements between adjacent TFs. We defined adjacent TF binding
sites to be co-localized if they are within 500bp of each other.



Table 1: List of TF's assayed by ChIP-Seq and downloaded from ENCODE

Cell TF Description

K562, GM12878 EGR1 Early growth response protein 1 (Nerve growth factor-induced protein A)(Zinc finger protein 225)
K562, GM12879 FOs* Proto-oncogene protein c-fos (Cellular oncogene fos)(G0/G1 switch regulatory protein 7)
K562, GM12880 GABP GA-binding protein alpha chain (GABP subunit alpha)(Nuclear respiratory factor 2 subunit alpha)
K562, GM12881 JUND? Transcription factor jun-D (activator protein 1)

K562, GM12882 MAX® Protein max (Myc-associated factor X)

K562, GM12883 NRSF RE1-silencing transcription factor (Neural-restrictive silencer factor)(X2 box repressor)
K562, GM12884 PU1 Transcription factor PU.1 (31 kDa-transforming protein)

K562, GM12885 SRF Serum response factor (c-fos serum response element-binding transcription factor)

K562, GM12886 TAF1 Transcription initiation factor TFIID subunit 1 (Cell cycle gene 1 protein)

K562, GM12887 TR4“ Nuclear receptor subfamily 2 group C member 2 (Testicular receptor 4)

K562, GM12888 YY1 Transcriptional repressor protein YY1 (Yin and yang 1)(INO80 complex subunit S)

K562 NFYA® Nuclear transcription factor Y subunit alpha (CAAT-box DNA-binding protein subunit A)
K563 NFYB* Nuclear transcription factor Y subunit beta (CAAT-box DNA-binding protein subunit B)
K564 JUN® Transcription factor AP-1 (Activator protein 1)(Proto-oncogene c-jun)

K565 MYC? Myc proto-oncogene protein (c-Myc)(Transcription factor p64)

K566 GATA1? Erythroid transcription factor (Eryfl)(GATA-binding factor 1)(NF-E1 DNA-binding protein)
K567 ZNF263% Zinc finger protein 263 (Zinc finger protein with KRAB and SCAN domains 12)

K568 GATA2¢ Endothelial transcription factor GATA-2 (GATA-binding protein 2)

K569 NFE2“ Transcription factor NF-E2 45 kDa subunit (Nuclear factor, erythroid-derived 2 45 kDa subunit)
K570 SIRT6“ Mono-ADP-ribosyltransferase sirtuin-6 (EC 2.4.2.31)(SIR2-like protein 6)

“marks the 14 TF's used in the analysis of K562 CRMs.

Table 2: Proportion of gene expression variation ex-
plained by CRMs for each sample in the Novartis GNF
microarray data-set. The table shows a listing of R?
statistics between observed and predicted gene expres-
sion for each tissue and cell sample found in the Novartis
GNF microarray data-set.

Sample R?
Occipital Lobe 0.386742784
Medulla Oblongata 0.350439766
BLymphoblasts 0.295023059
Brain Caudate Nucleus 0.283746596

Pons 0.254854625
PB CD8 T Cells 0.247515533

PB CD14 Monocytes 0.223050139
Cingulate Cortex 0.220783545
Leukemia Promyelocytic HL60 0.219273143
PB BDCA4 Dentritic Cells 0.201826195
Atrioventricular Node 0.199529434
PB CD56 NK Cells 0.19859689

Brain Amygdala 0.196190799

Continued on next page




Table 2 — continued from previous page

Sample

R2

Subthalamic Nucleus
Leukemia Lymphoblastic MOLT4
Hypothalamus

Brain Thalamus

Globus Pallidus

PB CD19 B Cells
Prefrontal Cortex

BM CD33 Myeloid

BM CD34

DRG

Lymphomaburkitts Daudi
Temporal Lobe

Skeletal Muscle Psoas
Leukemia Chronic Myelogenous K562
Trigeminal Ganglion
Ciliary Ganglion
Cerebellum Peduncles
Parietal Lobe

BM CD105 Endothelial
Superior Cervical Ganglion
Appendix

Skin

Whole Brain

Lung

Fetal Brain

Adrenal Cortex

HBEC

Trachea

Uterus Corpus

Smooth Muscle

BM CD71 Early Erythroid
Cerebellum

Colorectal Adenocarcinoma
Placenta

Tongue

Fetal Lung

Lymph Node

Adrenal Gland

Uterus

Cardiac Myocytes

Bone Marrow

Olfactory Bulb
Lymphoma Raji

Thymus

Ovary

0.19421931
0.181771555
0.175745236
0.171753079
0.162232745
0.16192942
0.158151741
0.157633054
0.156698154
0.155394141
0.150770109
0.10420283
0.102281928
0.101532493
0.096166697
0.093846306
0.093475756
0.087686383
0.087202579
0.050121391
0.049479716
0.042814378
0.03884314
0.036190547
0.036103812
0.034661211
0.031241613
0.030727988
0.02782047
0.026992034
0.026687884
0.024496838
0.023368963
0.021711552
0.020882087
0.019803454
0.018169224
0.01769725
0.016651643
0.01534718
0.014970883
0.014125774
0.013767309
0.0128992
0.011391745

Continued on next page




Table 2 — continued from previous page

Sample R?
Thyroid 0.011216933
Prostate 0.010477776
Pituitary 0.010286725
Liver 0.009622452
Kidney 0.009296748
Testi Seminiferous Tubule 0.007643048
PB CD4 T Cells 0.007620555
Heart 0.007053728
Fetal Liver 0.004190705
Whole Blood 0.003715035
Pancreas 0.003397941

Testi Leydig Cell

Spinal Cord

Testi Germ Cell

Human Cultured Adipocyte
Testi Intersitial

Salivary Gland

Testis

Islet Cell

Fetal Thyroid

Tonsil

0.002862611
0.002431528
0.001793374
0.001515583
0.001133993
0.000999109
0.000639887
0.000481884
0.000143145
9.66594E-05
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Figure 2: Protein interaction network between TFs from the String Database. The
network is generated based on evidence from textmining (yellow), TF databases (blue),
experiments (purple), and co-occurrence (dark blue).
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Figure 4: Stratified distribution of overlapping CRMs in the promoter (1 kb from TSS)
and distal (>5kb from TSS) regions of the K562 and GM12878 genomes. Dissimilarity
between an overlapping pair of CRMs is described by the number of different TFs (Ham-
ming distance) bound to a K562 CRM compared to a GM12878 CRM. Stratification of
CRM sizes (coloured bars) show that a high proportion of CRMs in K562 contain three
or four different TF's, while the dissimilarity shows that most of the corresponding CRMs
in GM12878 are different by one or two TFs.
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Figure 5: Expression prediction accuracy as a function of CRM dissimilarity. Predic-
tion of gene expression levels in K562 cells was performed using models generated from
GM12878 CRMs (blue) and K562 CRMs (red). The expression prediction error is higher
for genes with CRMs that have a larger proportion of TFs (Jaccard distance) differing
between the two cell types.



>
===~ GMP €—
<«

==~ PBCELL <—

0
|
Il‘l
.I Irlll Apgnn
l BCELL <«
ma
|
yxnnc
bERES
g
NN

————————

TR4
YY1

NK  €———
TCELL «—
vy

MONO <
BAsO €
DEND? <«

il IDENDI <«

EOS
CcD8
CD4
EGR
S
TAF

- MEGA <—
I GRAN €
|
M
s
s

|
’
-

T
i)

Il
Z0Q0
giat
H B

o0

mx

3n

s
LW

zZ0
onhe
g
||
HEm
[

5
l A
i
i b
i
"1
|
a
&
i |
5 i}
B
LT
4 92X 8
| |
mr ]l ="
| | |
.H

.I-
-.-F
|

| N |
|

i

|

%

#

EA == 856
AGPATS
=) I ocox»
HERPUD1 | |
EH NGDN [}
= T

RADS1APY
IERS ..
[z} Fos
BE B E ATF7IP2
AMI | |
MTMA1
Clortse

| . T Log(MSEcy, 55 /| MSE q,)
2

3 2 4 ] 1

Figure 6: (A) Comparison of expression prediction accuracy across hematopoietic cell
types using K562 and GM 12878 CRMs. We predicted expression for 50 genes that have
the highest variability in expression across cell types, but using different CRMs to inform
the models. The expression of genes that are more accurately predicted by K562 CRMs
for certain cell types are coloured more blue, while those more accurately predicted by
GM12878 CRMs are coloured more red. Only the differentiated cell types are column
labeled; left of each label are the columns for their progenitors. (B) TF occupancy of
CRMs at the genes. TFs present in both K562 and GM12878 CRMs are marked in black,
TF's present in only the K562 CRM are marked in yellow, and TFs present in only the
GM12878 CRM are marked in green.
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Figure 7: Expression profiles of three TFs in a CRM plotted against the expression
profile of their target gene, SMNDCI1. Each point is the log absolute expression value in
a cell sample from the Novartis SymAtlas data set. Non-parametric smoothing functions
in our model are used to describe these non-linear TF-target interactions.
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Figure 8: Assessment of the GAM model on gene expression prediction for different CRM
positions relative to the TSS. The mean R? decreases as we consider CRMs further away
from the TSS, but prediction accuracy does not decrease if the CRM described in the
model is the closest to the TSS.
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Figure 9: Component smooth functions that make up GAM models for the top 10
predicted genes (significantly higher R? compared to null models) are plotted below.
Observed expression values for each TF is plotted against mean centered target gene
expression and confidence bands are in red.
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