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Antenatal synthetic glucocorticoids promote fetal maturation in pregnant women at risk of pre-
term delivery and their mechanism of action may involve other endocrine systems. This study
investigated the effect of maternal dexamethasone treatment, at clinically relevant doses, on
components of the renin-angiotensin system (RAS) in the pregnant ewe and fetus. From 125 days
of gestation (term 145�2 days), ten ewes carrying single fetuses of mixed sex (3 female, 7 male)
were injected twice intramuscularly, at 22:00–23:00h, with dexamethasone (2x12mg, n�5) or
saline (n�5) at 24-hour intervals. At 10 hours after the second injection, maternal dexamethasone
treatment increased angiotensin-converting enzyme (ACE) mRNA levels in the fetal lungs, kidneys
and heart, and ACE concentration in the circulation and lungs, but not kidneys, of the fetuses. Fetal
cardiac mRNA abundance of angiotensin II (AII) type 2 receptor decreased following maternal
dexamethasone treatment. Between the two groups of fetuses, there were no significant differ-
ences in plasma angiotensinogen or renin concentrations; in transcript levels of renal renin, or AII
type 1 or 2 receptors in the lungs and kidneys; or in pulmonary, renal or cardiac protein content
of the AII receptors. In the pregnant ewes, dexamethasone administration increased pulmonary
ACE and plasma angiotensinogen, and decreased plasma renin, concentrations. Some of the effects
of dexamethasone treatment on the maternal and fetal RAS were associated with altered insulin
and thyroid hormone activity. Changes in the local and circulating RAS induced by dexamethasone
exposure in utero may contribute to the maturational and tissue-specific actions of antenatal
glucocorticoid treatment.

In clinical practice, synthetic glucocorticoids, such as
dexamethasone, are administered routinely to pregnant

women at risk of preterm delivery in order to promote fetal
maturation and neonatal survival (1, 2). These drugs
mimic the normal rise in endogenous glucocorticoids seen
in the fetus near term by promoting structural and func-
tional changes in fetal tissues in preparation for life after
birth (3). Over the last forty years, antenatal glucocorti-
coid therapy has improved survival of the premature in-
fant and has reduced markedly the incidence of many dis-

orders associated with preterm delivery, such as
respiratory distress syndrome (RDS) (2, 4). The clear ben-
eficial effects of maternal glucocorticoid treatment have
been offset, however, by evidence showing adverse con-
sequences for growth and long-term blood pressure (BP)
control, especially in infants exposed to multiple doses in
utero (5, 6, 7). It is therefore important to understand the
mechanisms of glucocorticoid action in the control of fetal
growth and maturation.
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Some of the effects of the glucocorticoids on the devel-
opment of fetal tissues are mediated, in part, by other
endocrine systems (8, 9). For example, in fetal sheep, en-
dogenous and synthetic glucocorticoids stimulate the pro-
duction of the active thyroid hormone, triiodothyronine
(T3), and in turn, T3 promotes hepatic glycogen deposition
and gluconeogenic enzyme activity in preparation for
blood glucose control at birth (10, 11, 12, 13). The renin-
angiotensin system (RAS) is functional in the fetus from
relatively early in gestation (14, 15) and is known to have
an important role in the growth and development of spe-
cific tissues, as well as in the regulation of renal and car-
diovascular function in utero (16, 17, 18). A number of
maturational changes are observed in the fetal RAS near
term, some of which are regulated by the prepartum surge
in endogenous glucocorticoids (19, 20, 21, 22). In addi-
tion, direct administration of dexamethasone to the sheep
fetus increases both pulmonary and circulating concen-
trations of angiotensin-converting enzyme (ACE) in asso-
ciation with a rise in fetal arterial BP (23). However, the
effect of maternal dexamethasone treatment, in a regime
similar to that used in clinical practice, on the components
of the RAS in the pregnant mother and fetus during late
gestation is unknown in any species.

Therefore, the aim of this study was to investigate the
acute effect of maternal dexamethasone treatment, in clin-
ically relevant doses, on various components of the RAS in
the pregnant ewe and fetus. The study hypothesized that
synthetic glucocorticoid administration to the pregnant
ewe would stimulate components of both the maternal
and fetal RAS with potential consequences for fetal
development.

Materials and Methods

Animals
Ten Welsh Mountain ewes carrying singleton fetuses of

known gestational age were used in this study. There were 3
female and 7 male fetuses. The ewes were maintained on 200 g
kg-1 concentrates daily (sheep nuts #6; 18% protein and 10 MJ/
kg; H & C Beart Ltd, King’s Lynn, UK) with free access to hay,
water and a salt-lick block. All experimental procedures were
carried out in accordance with the UK Animals (Scientific Pro-
cedures) Act 1986 and approved by the research ethics commit-
tee at the University of Cambridge.

Materials and Methods

From 125 days of gestation, all of the ewes were injected
twice intramuscularly (IM) with either dexamethasone
(2 � 12 mg in 2 ml 0.9% NaCl, n � 5) or saline (2 ml 0.9%

NaCl, n � 5) at 24-hour intervals. The experimental re-
gime of dexamethasone treatment was similar to that rec-
ommended in human clinical practice by the Royal Col-
lege of Obstetricians and Gynaecologists (24). At 10 hours
after the second injection, the fetuses were delivered by
Caesarean section under general anesthesia (20 mg kg-1

sodium pentobarbitone i.v.). This time point was chosen
so that data were obtained when the fetal dexamethasone
concentration was comparable to previous studies that
examined the cardiovascular effects of (a) maternal dexa-
methasone treatment and (b) direct fetal dexamethasone
infusion in chronically catheterized fetuses (25, 26). The
plasma dexamethasone concentration in the sheep fetus at
this time point was approximately one-fifth of that mea-
sured in umbilical arterial blood samples taken from hu-
man infants at Caesarean section after maternal dexa-
methasone treatment (27). Before anesthesia at between
09:00 and 10:00h, 10 ml blood samples were obtained
from the ewes by jugular venepuncture. At delivery, 10 ml
blood samples were taken by venepuncture of the umbil-
ical artery, and a number of tissues were collected from the
ewes and fetuses after the administration of a lethal dose
(LD) of barbiturate (200 mg kg-1 sodium pentobarbitone
i.v.). Samples of lung, kidney and heart from the fetus, and
lung and kidney, but not heart, from the ewe, were im-
mediately frozen in liquid nitrogen and stored at –80°C
until analysis.

Biochemical analyses

Plasma hormone concentrations
All blood samples were immediately placed into EDTA-con-

taining tubes and centrifuged for 5 minutes at 1000g and 4°C.
The plasma aliquots were stored at –20°C until analysis. Plasma
angiotensinogen and renin concentrations were measured by ra-
dioimmunoassay (RIA) as described previously (28, 29). The
lower limits of detection were 0.01 �g ml-1 for angiotensinogen
and 0.5 pg ml-1 h-1 for renin. Plasma concentrations of cortisol,
thyroxine (T4), T3 and insulin were measured by RIA or ELISA
as detailed and published in these animals previously (12, 30).

RAS protein concentrations
Tissue and plasma ACE concentrations (as a proxy measure

of activity) were determined by a spectrophotometric enzyme
assay as described previously (20, 22). Tissue ACE concentration
was expressed as nanomoles of hippurate generated per min per
mg protein, while plasma ACE concentration was measured in U
l-1 where 1 U equals 1 �mole of hippurate generated in 1 minute.
Protein levels of the angiotensin (AII) type 1 and 2 receptor sub-
types (AT1R and AT2R) were determined in maternal lung and
renal cortex, and fetal lung, heart and renal cortex, by Western
blotting as detailed previously (31). The primary antibodies used
were both rabbit polyclonal antibodies to epitopes on the human
AT1R (0.2 �g/ml 306, sc-579, Santa Cruz Biotechnology, Santa
Cruz, USA) and the human AT2R (0.04 �g/ml H-143, sc-9040,
Santa Cruz Biotechnology; Supplemental Table 1). Membranes
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were analyzed with Ponceau S to normalize for protein loading
as validated previously (32). Proteins were quantified using Im-
age J software (National Institutes of Health, Bethesda, USA;
http://rsb.info.nih.gov/ij/) and ratios of protein content were arc-
sine transformed prior to statistical analysis.

RAS mRNA abundance
Tissue mRNA abundance of renin, ACE, AT1R and AT2R

were measured by Taqman quantitative RT-PCR. Frozen sam-
ples of tissue (15 mg) were placed in Lysing Matrix-D tubes (MP
Biomedicals, Loughborough, UK) with 170 �l lysis/binding so-
lution from a MagMax96 Total RNA Isolation kit (Life Tech-
nologies, Paisley, UK) and 0.75 �l �-mercaptoethanol, and ho-
mogenized using a FastPrep-24 (MP Biomedicals, Santa Ana,
USA). After homogenisation, 106 �l 100% isopropanol was
added to each sample. Samples were placed into a MagMAX96
system (Applied Biosystems, Paisley, UK) where RNA was iso-
lated and DNase treated (TURBO DNase) using the Mag-
MAX96 Total RNA Isolation Kit (Life Technologies). Sample
RNA yields and purities were assessed by a Nanodrop (Thermo
Fisher, Loughborough, UK). Ratios of absorption (260/280nm)
of all preparations were between 1.8 and 2.0.

Reverse transcription of mRNA was carried out using a PCR
Express machine (Thermo Fisher) and materials from Promega
(Southampton, UK) and Invitrogen (Paisley, UK). For each sam-
ple, 5 �l of DNAse-treated RNA was mixed with 1�l random
primers, 1�l deoxyribonucleotide triphosphate mix and 5 �l
RNAse-free water, and incubated at 65°C for 2 minutes. A mas-
ter reverse transcription mix was made, consisting of 4 �l first
strand buffer, 2 �l dithiothreitol, 1 �l RNAseOUT and 1 �l
Superscript II enzyme. The samples were incubated at room tem-
perature for 5 minutes, at 42°C for 50 minutes and at 70°C for
15 minutes.

TaqMan qRT-PCR was performed to measure mRNA abun-
dance of target genes in tissue samples. Samples were analyzed
using a TaqMan 7900HT and data were acquired and processed
with Sequence Detector v.2.3 software (Applied Biosystems).
TaqMan Master Mix (5 �l), 0.5 �l target gene probe and primer
set, and 3.5 �l water, were added to each well of a 96-well HT
plate (Applied Biosystems). In addition, 1 �l tissue cDNA at 1:20
dilution was added to each well apart from the nontemplate
controls, where 1 �l of water was added. The sequences of the
TaqMan qRT-PCR probes for renin, ACE, AT1R and AT2R are
listed in Table 1. Each tissue sample was measured in triplicate
and normalized to the geometric mean of two housekeeping
genes, GAPDH and cyclophilin A (Table 1). The mRNA levels of

these housekeeping genes were not affected by maternal dexa-
methasone treatment. For each assay, a negative control without
cDNA was included to ensure that amplicon contamination had
not occurred in the reaction. Cycle thresholds (Ct) determined by
qRT-PCR were analyzed by the ddCt method as all standard
curves were linear and parallel.

Statistical analyses
A sample size of five animals was calculated in order to find

a two-fold difference in fetal pulmonary ACE concentration,
assuming a standard deviation of 0.26, and to achieve 99%
power at the 5% significance level. This sample size calculation
was based on mean and standard deviation values measured in
previous studies from this laboratory examining the effects of
fetal dexamethasone treatment on pulmonary ACE concentra-
tion (23; Sigmastat 3.5, Systat Software Inc, Chicago, USA). All
data are presented as mean � SEM. The distributions of data for
plasma and tissue measurements were assessed for normality by
the Kolmogorov-Smirnov test, and compared between the treat-
ment groups by Student’s unpaired t test (parametric) or Mann-
Whitney test (nonparametric), as appropriate. Relationships be-
tween the variables measured were determined by Pearson
correlation and partial correlation analyses. The Null Hypoth-
esis was rejected where P � .05.

Results

Fetus
Within 10 hours of the second maternal injection of

dexamethasone, the fetal plasma concentration of ACE
increased significantly (Figure 1A, P � .05). Plasma cor-
tisol decreased, and T3 and insulin concentrations in-
creased in the fetuses exposed to dexamethasone com-
pared to those from the saline-treated ewes (Table 2, P �

.05). There were no significant differences in plasma con-
centrations of angiotensinogen, renin or T4 between the
two groups of fetuses (Table 2, Figure 1A).

Pulmonary ACE mRNA and ACE concentration were
significantly greater in the fetuses exposed to dexameth-
asone compared to the control fetuses (Figure 2A, P �

.05). The mRNA levels of ACE in the fetal kidney and

Table 1. Primer and reporter sequences used for TaqMan qRT-PCR in the sheep

Gene Forward Primer Sequence Reverse Primer Sequence Reporter Sequence
Reporter

dye
Renin GGATCTGGGAAGGTCAAAGGTTTC CGCCAAAGGTCTGTGTGACT CCGCCCACAGTCACC FAM

ACE CCTTCCCGCTACAACTATGACT GGACAACCGGAGGACAGATC ATACTTGGTTCGAAGATACCFAM
AT1R

(bovine)
Taqman Gene Expression Assays (Assay ID Bt03213473 m1; part number 4 331 182; reporter sequence

AGGTCTGCATCCAGGTGCATTTGGC)
FAM

AT2R CTGTCATTTACCCCTTTCTGTCTCA CAGACAAGCCATACACCAAACAAG TTGCCAGGGATTTCT FAM
GAPDH GCTACACTGAGGACCAGGTT AGCATCGAAGGTAGAAGAGTGAGT CTCCTGCGACTTCAAC FAM
Cyclophilin

A
GGTTCCTGCTTTCACAGAATAATTCC GTACCATTATGGCGTGTGAAGTCA CACCCTGGCACATAAA FAM
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heart were also elevated by maternal dexamethasone
treatment (Figures 3A and 4A, P � .05), although renal
ACE concentration was unchanged and cardiac ACE con-
centration was below the limit of assay detection in both
groups of fetuses (0.10 nmol min-1 mg protein-1; Figure
3A).

Neither relative mRNA abundance nor protein content
for AT1R and AT2R in the lungs and kidneys were signif-
icantly different between fetuses of mothers treated with
dexamethasone or saline (Table 3). Renal renin mRNA
abundance was also unchanged by maternal dexametha-
sone treatment (Table 3). In the fetal heart, no significant
changes in AT1R mRNA level, or protein content of AT1R
or AT2R, were seen following maternal dexamethasone
treatment, although cardiac AT2R mRNA abundance was
reduced in the fetuses exposed to dexamethasone (Table 3,
Figure 4B, P � .05).

When observations from all of the fetuses were consid-
ered, a significant positive correlation was observed be-

tween pulmonary ACE concentration and circulating
ACE levels (r��0.77, P � .001, n � 10). Significant neg-
ative correlations were observed between plasma cortisol
concentration and both pulmonary ACE mRNA abun-
dance and plasma ACE concentration (Table 4). Plasma
renin concentration was negatively correlated with
plasma ACE concentration in the fetuses (Table 4). In ad-
dition, plasma T3 correlated with circulating and pulmo-
nary ACE concentrations, and with ACE mRNA abun-
dance in the fetal lungs, kidneys and heart (Table 4).
Significant positive relationships were also seen between
plasma insulin concentration and various components of
the fetal RAS (Table 4). Partial correlation analyses
showed that pulmonary ACE concentration and renal
ACE mRNA were positively associated with plasma T3

concentration (r��0.67, P � .05, n � 10 and r��0.72,
P � .05, n � 10, respectively), independent of plasma
insulin; all other partial correlations failed to identify a
single significant independent factor when multiple hor-

mones correlated with RAS
components.

Ewe
In the ewes treated with dexa-

methasone, plasma concentrations
of cortisol, renin, T3, and T4 were
suppressed, and plasma insulin in-
creased, within 10 hours of the sec-
ond injection (Table 2, Figure 2B,
P � .05). Plasma angiotensinogen
concentration was increased by
dexamethasone administration, but
this just failed to reach statistical sig-
nificance (Figure 1B, P � .059). Ma-
ternal dexamethasone treatment had
no significant effect on plasma ACE
concentration (Figure 1B).

Pulmonary ACE concentration
was increased in the dexamethasone-
treated ewes compared to those

Figure 1. Plasma concentrations of angiotensinogen, renin and ACE in the fetuses (A) and ewes
(B) sampled at 10 hours after the second daily injection of either saline (�, n � 5) or
dexamethasone (f, n � 5). Data are presented as mean values (� SEM). Significant difference
from saline-treated group, * P � .05, † P � .06.

Table 2. Plasma concentrations of cortisol, thyroid hormones (thyroxine T4 and triiodothyronine T3) and insulin in
the ewes and fetuses at 10 h after saline or dexamethasone treatment. Data are presented as mean values (� SEM). *,
significantly different from saline-treated group, P � 0.05

Ewe Fetus

Saline Dexamethasone Saline Dexamethasone

Cortisol (ng
ml-1)

57.8 � 12.2 3.2 � 0.1* 16.1 � 2.8 10.0 � 1.4*

T3 (ng ml-1) 1.13 � 0.08 0.69 � 0.06* 0.28 � 0.06 0.70 � 0.08*
T4 (ng ml-1) 52.1 � 10.6 21.8 � 5.3* 132.5 � 11.7 115.0 � 21.3
Insulin (ng ml-1) 0.19 � 0.08 0.27 � 0.05 0.25 � 0.05 1.35 � 0.31*
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treated with saline (Figure 2B, P �
.05); however, there was no signifi-
cant effect of dexamethasone admin-
istration on ACE mRNA abundance
in the maternal lungs (Figure 2B).
Renal ACE mRNA and ACE concen-
trations were also unchanged by ma-
ternal dexamethasone treatment
(Figure 3B). Maternal dexametha-
sone treatment had no significant ef-
fect on the gene transcript or protein
levels of the AII receptors in the lungs
and kidneys, or renin mRNA abun-
dance in the kidneys of the pregnant
ewes (Table 3).

Using data from all ewes, signifi-
cant inverse correlations were ob-
served between pulmonary ACE
concentration and plasma concen-
trations of both cortisol (r�-0.89,
P � .001, n � 10) and T4 (r�-0.80,
P � .005, n � 10). Partial correlation
analyses showed that pulmonary
ACE concentration was inversely as-
sociated with plasma T4 concentra-
tion (r�-0.74, P � .05, n � 10), in-
dependent of plasma cortisol
concentration. Plasma renin concen-
tration was correlated with renal
renin mRNA abundance (r��0.70,
P � .05, n � 10) in the pregnant
ewes. Significant positive relation-
ships were also seen between plasma
T3 concentration and both renal
renin mRNA abundance (r��0.67,
P � .05, n � 10) and plasma renin
concentration (r��0.75, P � .01,
n � 10);

Discussion

Effects of maternal
dexamethasone treatment on
the RAS in utero

The present study demonstrates
for the first time that maternal dexa-
methasone treatment, at a dose
equivalent (DE) to that used in clin-
ical practice, alters various compo-
nents of the RAS in both the preg-
nant ewe and fetus. Administration

Figure 2. Pulmonary ACE mRNA and concentration in the fetus (A) and ewe (B) at 10 hours
after saline (�, n � 5) or dexamethasone (f, n � 5) treatment. Data are presented as mean
values (� SEM); transcript data are presented as fold changes relative to the saline-treated group.
Significant difference from saline-treated group, * P � .05.

Figure 3. Renal ACE mRNA and concentration in the fetus (A) and ewe (B) at 10 hours after
saline (�, n � 5) or dexamethasone (f, n � 5) treatment. Data are presented as mean values (�
SEM); transcript data are presented as fold changes relative to the saline-treated group.
Significant difference from saline-treated group, * P � .05.
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of the synthetic glucocorticoid upregulated ACE mRNA
abundance in a variety of fetal tissues; it also increased
pulmonary ACE concentration in both the pregnant ewe

and fetus, and ACE concentration in the fetal circulation.
In the pregnant ewe, plasma angiotensinogen tended to
increase in response to dexamethasone administration,

and plasma renin was suppressed
which suggested negative feedback
control by activation of the AT1R in
the kidney.

In the present study, the incre-
ments in circulating and pulmonary
ACE concentrations observed in the
fetuses after maternal dexametha-
sone treatment were similar to those
seen previously in sheep fetuses in-
fused directly with the synthetic glu-
cocorticoid (23). In addition, both
fetal and maternal routes of dexa-
methasone administration had no
significant effect on renal ACE con-
centration in the sheep fetus (23).

Table 3. Relative protein and mRNA levels of renin, AT1R and AT2R in fetal and maternal lung and kidney at 10 h
after saline or dexamethasone treatment. Data are presented as mean fold changes (� SEM) relative to the saline-
treated group. NA, not available. Significant difference from saline-treated group, * P � 0.05

Ewe Fetus

Saline Dexamethasone Saline Dexamethasone

Lung mRNA
AT1R 1.00 � 0.29 1.69 � 0.50 1.00 � 0.25 1.57 � 0.25
AT2R 1.00 � 0.79 2.21 � 1.15 1.00 � 0.22 1.56 � 0.43
Lung protein
AT1R 1.00 � 0.33 1.09 � 0.26 1.00 � 0.05 1.19 � 0.09
AT2R 1.00 � 0.08 1.03 � 0.15 1.00 � 0.15 1.15 � 0.17
Kidney mRNA
Renin 1.00 � 0.24 0.53 � 0.19 1.00 � 0.33 1.37 � 0.50
AT1R 1.00 � 0.51 0.76 � 0.29 1.00 � 0.43 1.11 � 0.49
AT2R 1.00 � 0.59 0.21 � 0.06 1.00 � 0.40 0.57 � 0.23
Kidney protein
AT1R 1.00 � 0.08 0.99 � 0.07 1.00 � 0.11 0.95 � 0.10
AT2R 1.00 � 0.08 1.16 � 0.08 1.00 � 0.10 1.21 � 0.13
Heart mRNA
AT1R NA NA 1.00 � 0.28 1.20 � 0.19
AT2R NA NA 1.00 � 0.16 1.23 � 0.09
Heart protein
AT1R NA NA 1.00 � 0.10 1.15 � 0.07
AT2R NA NA 1.00 � 0.21 0.34 � 0.11*

Figure 4. Cardiac ACE (A) and AT2R (B) mRNA levels in the fetus at 10 hours after saline (�,
n � 5) or dexamethasone (f, n � 5) treatment. Data are presented as mean fold changes (�
SEM) relative to the saline-treated group. Significant difference from saline-treated group, * P �
.05.

Table 4. Correlation coefficients from relationships between plasma hormone concentrations in the fetuses, and
ACE mRNA and concentrations in the fetal circulation and tissues. NS, not significant. Pearson correlation, n � 10;
*P � 0.05, **P � 0.005

Plasma
ACE

Lung ACE
mRNA

Lung ACE
concentration

Kidney ACE
mRNA

Kidney ACE
concentration

Heart ACE
mRNA

Cortisol �0.71* �0.67* NS NS NS NS
T3 �0.63* �0.81** �0.82** �0.84** NS �0.88**
Insulin �0.75* �0.80* �0.66* �0.65* �0.69* NS
Renin �0.72* NS NS NS NS NS
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The present findings indicate that maternal dexametha-
sone treatment elevated pulmonary and circulating ACE
concentration in utero, at least in part, by increasing ACE
mRNA abundance in the lungs and other fetal tissues. At
10 hours after the second injection of dexamethasone to
the pregnant ewe, ACE mRNA levels in the fetal kidney
and heart had increased without any change in enzyme
concentration. The duration of exposure to the synthetic
glucocorticoid, and/or the timing of tissue collection,
however, may have been too short to observe significant
effects on protein translation in these fetal organs.

The changes in plasma and pulmonary ACE concen-
tration, and cardiac ACE mRNA, induced in utero by ma-
ternal dexamethasone treatment were similar to the nor-
mal maturational changes seen in sheep fetuses close to
term (22, 33). In the lungs, ACE is localized to the vascular
endothelium and for most of gestation, both pulmonary
blood flow and ACE concentration in the fetal lungs are
relatively low. However, pulmonary ACE concentration
in the fetus increases near term and this appears to be
driven by the prepartum glucocorticoid surge as part of the
preparation for extrauterine life (22). Neonatal plasma
AII concentrations after vaginal delivery are much higher
than after Caesarean section in human infants (34), sug-
gesting that the capacity to convert AI to AII is activated
by exposure to endogenous glucocorticoids before birth in
preparation for pulmonary vasodilatation and increased
pulmonary blood flow and delivery of AI after birth.

Developmental changes in AII receptor expression are
also seen in the fetus towards term. The relative expression
of AII receptor subtypes in a variety of fetal tissues shifts
with gestational age from widespread AT2R abundance to
tissue-specific and predominant localization of AT1R
(35). In the heart of the sheep fetus, mRNA abundance and
receptor density of the AT2R receptor are high from at
least midgestation and decrease over the perinatal period
(36, 37). The reduction in cardiac AT2R mRNA level in-
duced by dexamethasone in the present study indicates
that the normal developmental decline in AT2R expres-
sion seen in the fetal heart near term may be a glucocor-
ticoid-dependent event.

Mechanisms of glucocorticoid action on the RAS
The mechanisms of glucocorticoid action on the RAS in

the pregnant ewe and fetus may be direct and/or indirect
involving coincident changes in other endocrine systems,
such as insulin and the thyroid hormones. The effects of
antenatal glucocorticoid treatment on the RAS observed
in the present study are unlikely to be the consequence of
fetal hypoxaemia or hypotension. In the chronically-cath-
eterized pregnant ewe and fetus, the same protocol of ma-
ternal dexamethasone treatment does not influence fetal

blood gas status and causes a small, but significant, rise in
arterial BP (26, 38).

Dexamethasone may have direct effects on the genes for
angiotensinogen, ACE and the AT2R. A glucocorticoid-
response element in the angiotensinogen gene is an im-
portant regulator of angiotensinogen synthesis (39); thus,
the near-significant rise in maternal plasma angiotensino-
gen may have been directly stimulated by dexamethasone
treatment. Glucocorticoid-response elements have also
been identified close to a promoter region in the murine
and human ACE gene (40), and dexamethasone has been
shown previously to promote ACE mRNA abundance and
enzyme activity in rabbit alveolar macrophages, bovine
pulmonary artery (PA) endothelial cells and rat cardiac
fibroblasts studied in vitro (41, 42, 43). Moreover, dexa-
methasone increases ACE mRNA abundance and enzyme
activity in cultured rat aortic smooth muscle cells by sta-
bilization of mRNA as well as enhanced gene transcription
(44). In rats, multiple glucocorticoid-response elements
are localized near to the regulatory region of the AT2R
gene which have inhibitory influences on promoter activ-
ity and AT2R gene expression (45). Indeed, AT2R mRNA
and protein levels in hearts isolated from fetal rats are
suppressed by 48 hours of dexamethasone treatment in
vitro (45).

The present study was part of a larger project examin-
ing the effects of maternal dexamethasone treatment on
fetal growth and development and in which plasma con-
centrations of insulin and the thyroid hormones were mea-
sured (12, 30). Significant associations were observed be-
tween circulating concentrations of T3 in the fetus and
plasma and pulmonary ACE concentrations, and the tran-
script levels of ACE in the fetal lungs, kidneys and heart.
These findings support the suggestion that T3 may have an
important role in mediating the regulatory effects of glu-
cocorticoids on tissue and circulating ACE expression in
utero (46). Indeed, in fetal sheep, experimental thyroid
hormone deficiency prevents the normal developmental
rise in pulmonary and renal ACE concentration near term,
and exogenous T3 infusion has been shown to increase
ACE concentration in the fetal lungs, but not kidneys (46).
Previous studies, however, have shown that maternal
dexamethasone treatment has differential effects on the
thyroid hormone axis in the pregnant ewe and fetus (12).
In the sheep fetus, synthetic and endogenous glucocorti-
coids activate the production of T3, while in the mother,
the thyroid hormone axis is suppressed (11, 12). There-
fore, the rise in pulmonary ACE concentration seen in the
pregnant ewe treated with dexamethasone may be the di-
rect consequence of glucocorticoid, rather than T3, action.
Alternatively, dexamethasone and/or T3 may have differ-
ent and tissue-specific effects on ACE expression in the
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fetus and mother. In adult rats, dexamethasone treatment
causes a rise in ACE concentration in the lungs, but not
renal cortex or medulla, and T3 administration reduces
pulmonary ACE, while increasing renal and circulating
ACE, concentrations (47).

Implications of altered RAS activity induced by
maternal dexamethasone treatment

Changes in the activity of the RAS in utero following
maternal dexamethasone treatment may contribute to the
maturation of fetal tissues induced clinically by synthetic
glucocorticoids. In addition, alterations in fetal RAS ac-
tivity may have both local and endocrine effects on growth
and maturation before birth (48). Although a limitation of
this study was that circulating and tissue concentrations of
AII, and downstream signaling pathways, were not deter-
mined, the increase in pulmonary ACE concentration is
likely to result in enhanced production of AII locally in the
lungs of the ewe and fetus. Local production of AII in the
fetal lungs has been shown to promote maturation of pul-
monary structure, including vascularization and airway
branching (49, 50) and may mediate, in part, some of the
beneficial effects of antenatal synthetic glucocorticoids on
the developing lungs.

Activation of ACE mRNA, and suppression of AT2R
mRNA, abundances in the fetal heart by dexamethasone
may influence the development of cardiac structure and
function in utero, if the mRNA levels were to translate to
altered protein expression in the longer term. The devel-
opmental processes of growth and differentiation in fetal
cardiomyocytes are sensitive to glucocorticoids and thy-
roid hormones (51), and the mechanisms of hormone ac-
tion may involve changes in local AII activity (52, 53). It
is increasingly recognized that, while antenatal synthetic
glucocorticoid treatment can be life-saving for the infant
when delivery occurs preterm, there may also be adverse
sequelae reaching into adulthood (54). Indeed, dexameth-
asone-induced changes in the fetal RAS, especially within
the heart and kidney, may have consequences for the reg-
ulation of arterial BP in both fetal and postnatal life. In
fetal sheep, exposure to dexamethasone either by direct
fetal infusion or by maternal treatment causes an increase
in arterial BP and modifies the cardiovascular responses to
hypoxaemia induced experimentally in utero (23, 26, 38).

Previously, arterial BP was found to correlate with pul-
monary ACE concentration in sheep fetuses infused with
either dexamethasone or saline (23). Pulmonary ACE is
responsible both for the production of vasoconstrictive
AII and for the degradation of the vasodilator bradykinin,
and the RAS is known to have an important role in the
control of fetal BP by peripheral and central mechanisms
(55, 56, 57). Furthermore, the RAS has been implicated in
the developmental programming of hypertension in sheep
and rodent offspring exposed to glucocorticoids in utero
(58, 59, 60). In conclusion, antenatal dexamethasone
treatment stimulates components of the maternal and fetal
RAS, and suppresses fetal cardiac AT2R mRNA levels, in
the sheep. These changes may influence maturation of the
developing lungs, heart and kidney, and may have acute
and long-term consequences for the regulation of arterial
BP.
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