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Summary 
 

This work concerns the investigation of the neuronal mechanisms at the basis of 

language acquisition and processing, and the complex interactions of language and 

attention processes in the human brain. In particular, this research was motivated by 

two sets of existing neurophysiological data which cannot be reconciled on the basis of 

current psycholinguistic accounts: on the one hand, the N400, a robust index of lexico-

semantic processing which emerges at around 400ms after stimulus onset in attention 

demanding tasks and is larger for senseless materials (meaningless pseudowords) than 

for matched meaningful stimuli (words); on the other, the more recent results on the 

Mismatch Negativity (MMN, latency 100-250ms), an early automatic brain response 

elicited under distraction which is larger to words than to pseudowords. We asked what 

the mechanisms underlying these differential neurophysiological responses may be, and 

whether attention and language processes could interact so as to produce the observed 

brain responses, having opposite magnitude and different latencies. We also asked 

questions about the functional nature and anatomical characteristics of the cortical 

representation of linguistic elements. 

These questions were addressed by combining neurocomputational techniques and 

neuroimaging (magneto-encephalography, MEG) experimental methods. Firstly, a 

neurobiologically realistic neural-network model composed of neuron-like elements 

(graded response units) was implemented, which closely replicates the neuroanatomical 

and connectivity features of the main areas of the left perisylvian cortex involved in 

spoken language processing (i.e., the areas controlling speech output – left inferior-

prefrontal cortex, including Broca’s area – and the main sensory input – auditory – 

areas, located in the left superior-temporal lobe, including Wernicke’s area). Secondly, 

the model was used to simulate early word acquisition processes by means of a Hebbian 

correlation learning rule (which reflects known synaptic plasticity mechanisms of the 

neocortex).  
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The network was “taught” to associate pairs of auditory and articulatory activation 

patterns, simulating activity due to perception and production of the same speech 

sound: as a result, neuronal word representations distributed over the different cortical 

areas of the model emerged. Thirdly, the network was stimulated, in its “auditory 

cortex”, with either one of the words it had learned, or new, unfamiliar pseudoword 

patterns, while the availability of attentional resources was modulated by changing the 

level of non-specific, global cortical inhibition. In this way, the model was able to 

replicate both the MMN and N400 brain responses by means of a single set of 

neuroscientifically grounded principles, providing the first mechanistic account, at the 

cortical-circuit level, for these data.  

Finally, in order to verify the neurophysiological validity of the model, its crucial 

predictions were tested in a novel MEG experiment investigating how attention 

processes modulate event-related brain responses to speech stimuli. Neurophysiological 

responses to the same words and pseudowords were recorded while the same subjects 

were asked to attend to the spoken input or ignore it. The experimental results 

confirmed the model’s predictions; in particular, profound variability of magnetic brain 

responses to pseudowords but relative stability of activation to words as a function of 

attention emerged. While the results of the simulations demonstrated that distributed 

cortical representations for words can spontaneously emerge in the cortex as a result of 

neuroanatomical structure and synaptic plasticity, the experimental results confirm the 

validity of the model and provide evidence in support of the existence of such memory 

circuits in the brain.  

This work is a first step towards a mechanistic account of cognition in which the basic 

atoms of cognitive processing (e.g., words, objects, faces) are represented in the brain 

as discrete and distributed action-perception networks that behave as closed, 

independent systems. 
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Chapter 1 – 

Introduction  
 

 

This Chapter provides the necessary background, reviews some of the relevant 

literature, and introduces the specific research questions that we addressed and that 

motivated this work. 

 

1.1 Background  

Our brains can effortlessly store knowledge about objects, faces, words and facts. The 

nature of the cortical representation of the basic components of knowledge, however, 

is still a major issue in cognitive neuroscience (see Patterson, Nestor & Rogers (2007) 

for a recent review). In psycholinguistics, most existing theoretical and computational 

approaches explain language processes either as the activation and long-term storage 

of localist elements (e.g., Dell (1986), Dell, Chang & Griffin (1999), Levelt, Roelofs 

& Meyer (1999), McClelland & Elman (1986), Norris (1994), Page (2000)) or on the 

basis of fully distributed activity patterns (Gaskell, Hare, & Marslen-Wilson, 1995; 

Joanisse & Seidenberg, 1999; McClelland & Rumelhart, 1985; Plaut, McClelland, 

Seidenberg, & Patterson, 1996; Rogers et al., 2004; Rogers & McClelland, 1994; 

Seidenberg & McClelland, 1989). Localist approaches typically assume, a priori, the 

existence of separate nodes for separate items (words), and of pre-established, “hard-

wired” connections between them. Nodes are usually considered active (“on”) only if 

their activation overcomes a pre-specified threshold; the feature of anatomically 

distinct nodes allows different item representations to be active at the same time while 

avoiding cross-talk. Distributed accounts, on the other hand, do not make such a-

priori assumptions: in them, the representations of the relevant items emerge as 

distributed patterns of strengthened connections in a set of nodes (hidden layer). In 

this approach, the same set of nodes is used to encode different items as different 

patterns of graded activation; this, however, makes it impossible to maintain different 

item representations separate when these are simultaneously active. In general, 
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cognitive arguments (e.g., our proven ability to maintain multiple item representations 

distinct) favour localist, discrete-activation representations, whereas neuroscience 

arguments weight in favour of distributedness (Elman et al., 1996; Page, 2000; Rolls 

& Tovee, 1995).  

These two accounts make different predictions about the functional nature (discrete 

vs. graded activation, respectively) and cortical characteristics (local vs. distributed 

networks, respectively) of the knowledge representations in the brain. One way to test 

these predictions and investigate the presence and functional characteristics of the 

cortical representations of linguistic items is to apply electro- and magneto-

encephalography (EEG/MEG) techniques, and measure how neurophysiological 

responses differ when the stimuli presented in input consist of either (i) familiar and 

meaningful elements (e.g., words, coherent text) or (ii) equivalently complex but 

unfamiliar, meaningless items (e.g., pseudowords, incongruent sentences). A 

significant body of evidence indicates different patterns of brain activation for these 

two cases.  
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Figure 1.1 Typical N400 response (elicited in presence of attention) to spoken words

(dashed curve) and pseudowords (solid). The dotted oval indicates the interval where

the differences between the curves are statistically significant. The vertical axis

indicates stimulus onset time. Note the large N400 amplitude to pseudowords

[adapted from (Friedrich, Eulitz, & Lahiri, 2006), their Fig. 3.(C)]  

 

r example, a well-known and robust neurophysiological index of lexical-semantic 

cessing is the “N400” (see Figure 1.1), a negative-going event-related potential 

RP) peaking around 400ms after stimulus onset (Kutas & Hillyard, 1980). The 

00 is larger for senseless materials (e.g., pseudowords, semantically incoherent 

t) than for matched meaningful language (common words or coherent text), and is 
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elicited under conditions where subjects are attending to the input (Barber & Kutas, 

2007; Kutas & Hillyard, 1980).  

Differences in neurophysiological brain responses to words and pseudowords have 

been recorded also at short latencies (e.g., Hauk, Davis, Ford, Pulvermüller & 

Marslen-Wilson (2006), Segalowitz & Zheng (2008), Sereno, Rayner & Posner 

(1998)), especially in the mismatch negativity (MMN) brain response (Korpilahti, 

Krause, Holopainen, & Lang, 2001; Pettigrew et al., 2004; Pulvermüller, 2001; 

Pulvermüller et al., 2001; Pulvermüller & Shtyrov, 2006; Shtyrov & Pulvermüller, 

2002). The MMN (Näätänen, Gaillard, & Mäntysalo, 1978) is an early event-related 

response (latency 100-250ms) elicited in oddball experiments by the infrequent 

acoustic events (so-called “deviant stimuli”) presented occasionally among frequently 

repeated sounds (“standard stimuli”). The MMN is elicited even when subjects are 

heavily distracted, and, unlike the N400, is larger for words than for pseudowords.  
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Figure 1.2. Typical Mismatch Negativity (MMN) response to words and pseudowords.

Note that the MMN in word context (red curves) is enhanced compared with the MMN

in pseudoword context (blue curves). The acoustic waveforms of the stimuli which

elicited the MMNs are shown at the top [after (Pulvermüller et al., 2001, their Fig. 2)]. 

 

igure 1.2 shows two examples of MMN, obtained from ERPs of native speakers of 

innish to word and pseudoword stimuli. The MMNs were elicited here by the critical 

yllables /ki/ (left) and /ko/ (right) when placed in a word context and in a pseudo-

ord context. More precisely, the two syllables were presented after the context 

yllable /va/ (resulting in “vakki” and “vakko”, two pseudo-words in Finnish) and 
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after the context syllable /la/, thereby completing meaningful Finnish words, “lakki” 

(CAP) and “lakko” (STRIKE). 

Although, in principle, they could be used to judge cognitive brain theories of 

distributed vs. localist  representations, neurophysiological results are rarely brought 

to fruit in this context. The question of why these brain indicators of lexico-semantic 

processes arise at different latencies and present reversed relative magnitude (N400 

larger for pseudowords, MMN larger for words) is left unexplained by current 

psycholinguistic theories. One possible argument may be that these two divergent 

patterns of responses are the result of the different processing conditions under which 

they are elicited. In particular, while the N400 is generally recorded during tasks that 

require subjects to pay attention to the stimuli (e.g., lexical decision tasks), the MMN 

is typically elicited in the passive oddball task, in which subjects are instructed to 

focus their attention on a silent video and ignore the speech stimuli. Thus, the reversal 

of the response pattern might be caused by the different amounts of attentional 

resources available to process the linguistic stimuli. 

A number of studies have confirmed that ERPs and MMN amplitudes are modulated 

by the attentional load that is required by the task under which they are elicited (Alho, 

Woods, Algazi, & Näätänen, 1992; Bentin, Kutas, & Hillyard, 1995; Otten, Rugg, & 

Doyle, 1993; Pulvermüller, 2007; Woldorff, Hillyard, Gallen, Hampson, & Bloom, 

1998; Woods, Alho, & Algazi, 1992). Indeed, Szymanski and colleagues (1999), in a 

study which used spoken phonemes, reported that  

“top-down controls not only affect the amplitude of the MMN, but can reverse the 

pattern of MMN amplitudes among different stimuli” (Szymanski, Yund, & Woods, 

1999). 

However, to date, no study has thoroughly investigated the effects of attention on the 

processing of words and pseudowords while strictly controlling for physical/acoustic 

stimulus properties. In addition, although existing data suggest that the opposite 

responses might be caused by the different attentional load, the previous studies have 

failed to provide an account of the mechanisms that may underlie the differential 

neurophysiological responses to words and pseudowords: How do the different neural 

processes interact so as to produce brain responses having opposite magnitude and 

different latencies?  
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One way to address this question is to implement a neurocomputational model that 

can reproduce spatial and temporal aspects of brain activity in the relevant cortical 

areas and provide a mechanistic explanation, at the cortical-circuit level, of the 

existing neurophysiological findings. The present manuscript describes such a model, 

how it was applied to explain the observed effects, and the testing of its novel 

predictions with experimental (MEG) methods. As this work aimed at explaining the 

mechanisms underlying neurophysiological data at the level of nerve-cell circuits, 

implementing a biologically realistic model was a crucial aspect of the project; we 

take the view that structural and functional network properties are critical for the 

nature of the language representations that the model – and the brain – give rise to.  

The following sections provide the theoretical background, neuroscientific principles 

and basic modelling assumptions underlying this work; we also introduce the 

cognitive constructs of interest, identify the relevant neuroanatomical structures and 

neural mechanisms, and characterize the high-level mapping between such 

mechanisms and corresponding entities in the model. Chapter 2 describes in detail the 

computational model. Chapters 3 and 4 illustrate how we used the model to replicate 

and explain, at the cortical-circuit level, brain processes of early word learning and the 

effects of lexicality1 and attentional load on the processing of speech and language. 

Chapter 5 describes the testing of the model’s crucial predictions by means of a novel 

critical MEG experiment.  

 

1.2 Language, learning, and word-related neuronal circuits 

In cognitive terms, the main objects of interest of this study are the building blocks of 

language, namely, words. We start from the hypothesis that the neural correlate of a 

word is a memory circuit (“trace”) that develops during early language acquisition 

(Pulvermüller, 1999). It is well-known that even during the earliest stage of speech-

like behaviour, babbling (Fry, 1966; Pulvermüller & Preissl, 1991), near-simultaneous 

correlated activity is present in different brain parts, especially those areas controlling 

speech output (left inferior-prefrontal cortex, IF) and those where neurons respond to 

auditory features of speech (left superior-temporal lobe, ST). The same applies to 

adults: whenever we utter a word, there is activity in IF cortex controlling the 

                                                 
1 The lexical status of a linguistic item (words are lexical items, pseudowords are not). 
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articulatory gestures along with ST activity, the neural response to the incoming 

sound. In the adult brain these areas are reciprocally connected (see Section 1.3). We 

conjecture that through associative Hebbian learning mechanisms (Hebb, 1949) such 

connections allow the acquisition of sensory-motor associations between co-occurring 

cortical patterns of activity, in such a way that, for example, listening to speech 

sounds involving specific articulators leads to the “lighting up” of the corresponding 

motor representations. A significant body of experimental evidence confirms the 

presence of speech-motor associations as networks of strongly interconnected neurons 

distributed between left superior-temporal and inferior-frontal cortex (Fadiga, 

Craighero, Buccino, & Rizzolatti, 2002; Pulvermüller, 1999; Pulvermüller et al., 

2001; Pulvermüller & Shtyrov, 2006; Watkins & Paus, 2004; Watkins, Strafella, & 

Paus, 2003; S. M. Wilson, Saygin, Sereno, & Iacoboni, 2004; Zatorre, Meyer, Gjedde, 

& Evans, 1996) and their role in language processing. We will refer to such 

distributed networks of strongly and reciprocally connected neurons as to cell 

assemblies (CAs) (Braitenberg, 1978; Hebb, 1949; Palm, 1982; Wennekers, Sommer, 

& Aertsen, 2003). A CA can be thought of as a highly specialized functional unit that 

“responds” by becoming fully active only when a specific brain activation pattern – 

brought about by the sensory (or internal) stimulation – conveys at least a critical 

amount of activation in its neuronal circuits. Sensory-motor CA could receive their 

input (e.g., lexical items, words) through the auditory or the motor modalities.  

We simulated the setting up of such sensory-motor links for lexical items at early 

stages of language acquisition in a brain-inspired neural network that models 

neuroanatomical, connectivity, and neurophysiological properties of the language 

areas in the left hemisphere in close proximity of the sylvian fissure (perisylvian 

cortex, here referred to as “language cortex” – see Sec. 1.3). To induce CA formation 

in the model, we repeatedly exposed the network to predetermined pairs of (random 

and sparse) activation configurations, each activation-pattern pair representing the 

model equivalent of an auditory-articulatory word form, and allowed the network’s 

synaptic weights to adapt through Hebbian learning. Crucially, in the attempt to 

replicate and explain the effects of lexicality and attention on the processing of 

speech, we used the resulting network to simulate the response of the language cortex 

to words and pseudowords under variable attentional load. The details of the methods 

adopted for this part of the study and corresponding results are presented in Chapter 3.  

 



 7

 

1.3 The language cortex 

This section specifies the core areas of the cortex involved in language processing that 

were reproduced in the model, and their connectivity features. Some of the structural 

features are evident from neuroanatomical investigations of the human brain; 

however, others, especially the fine grained wiring between and within cortical areas, 

have been inferred from monkey studies (Pandya & Yeterian, 1985; Rauschecker & 

Tian, 2000; Romanski et al., 1999) and tractography (Catani, Jones, & Ffytche, 2005). 

The primary cortices involved in spoken language processing (see Fig. 1.4.(a)) 

include (i) the primary auditory area (Brodmann’s Area 41), located in the caudal part 

of the planum supratemporale (the part of the upper convolution of the temporal lobe 

which lies in the sylvian fissure), and (ii) the ventral part of the primary motor cortex 

(Brodmann’s Area 4), situated near the sylvian fissure (Pulvermüller, 1992). These 

two areas are active during perception of speech sounds and execution of articulatory 

movements, respectively. A third primary cortex involved in spoken language 

processing is the somatosensory cortex, located posterior to the central sulcus; in 

particular, this includes the inferior parts of BA (Brodmann’s Areas) 1, 2 and 3, which 

are necessary for sensations within the mouth region. In both the primary auditory and 

somatosensory areas, afferent fibres carrying sensory input enter the cortex; the 

primary motor cortex, on the other hand, contains large pyramidal cells that project to 

motor neurons controlling articulatory muscles. 

According to neuroanatomical studies in the rhesus monkey (Macaca mulatta) the 

primary perisylvian motor or articulatory cortex is tightly connected to the premotor 

(secondary) regions anterior to it. These, in turn, are connected to regions around the 

inferior branch of the arcuate sulcus (Pandya & Yeterian, 1985), in the inferior 

prefrontal cortex. Experimental evidence (Fuster, 1997; Rizzolatti, Fogassi, & 

Gallese, 2001) suggests that similar connection patterns are likely to be present in the 

homologous structures in man, located in the ventral motor (BA 4) and premotor (BA 

6) cortices, and within BA 44 and BA 45 (Broca’s area).  

As discussed in detail by Pulvermüller (1992), a similar picture can be drawn for the 

somatosensory and auditory cortex (see also (Kaas & Hackett, 2000; Rauschecker & 

Tian, 2000; Scott, Blank, Rosen, & Wise, 2000)). That is, each of the primary cortices 
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relevant for spoken language is strongly and reciprocally connected to its adjacent 

secondary region, which, in turn, is connected to its neighbouring association area. In 

the macaca, the relevant auditory areas are sometimes defined as “auditory core” 

(labelled “A1” in Fig. 1.4.(b)), “belt” and “parabelt” (AL, ML and CL in Fig. 1.3.(b)), 

respectively (Petkov, Kayser, Augath, & Logothetis, 2006). These structures may be 

related – although an exact homology is not likely – to BA 41, 42 and 22 in the 

human brain. 

(b) 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 The relevant areas of the perisylvian cortex in man, and homologous structures

in monkey. (a): The different regions of the language cortex in the human brain, indicated

by differently shaded areas. Note the long-distance cortico-cortical connections between the

auditory and motor association areas, indicated here by black arrows [after (Pulvermüller,

1992)]. (b): Neuroanatomical structure and projections of superior-temporal and perisylvian

cortical areas in the monkey brain [after (Romanski et al., 1999)]. See text for details. 
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Studies in non-human (Pandya & Yeterian, 1985; Petrides & Pandya, 2002; Romanski 

et al., 1999) and human (Catani, Jones, & Ffytche, 2005; Makris et al., 1999; Parker et 

al., 2005) primates (see Rilling et al., (2008) for a cross-species comparison) suggest 

that the respective association cortices of each of these primary areas are strongly and 

reciprocally interconnected with each other via the arcuate and uncinate fascicles, and 

the extreme capsule. The presence of such long-range cortico-cortical connections 

between the auditory association (Wernicke’s) and motor association (Broca’s) areas 

is indicated schematically in Figure 1.4.(a) by (“dorsal” and “ventral”) black arrow-

pointed arcs. The fact that these long-distance connections – especially through the 

fasciculus arcuatus – are more developed in the humans than in apes or monkeys, and 

are stronger in the left than in the right hemisphere, accounts, in part, for the 

specificity of language to humans, but also for the left-laterality of language in most 

human brains (Catani, Jones, & Ffytche, 2005; Makris et al., 1999; Parker et al., 2005; 

Rilling et al., 2008). 

 

1.4 Modelling language processing 

A plethora of connectionist models of word learning and language processing exists in 

the literature (e.g., (Dell, 1986; Elman, 1991; Gaskell, Hare, & Marslen-Wilson, 

1995; Joanisse & Seidenberg, 1999; McClelland & Elman, 1986; Norris, 1994; Plaut 

& Gonnerman, 2000; Plaut, McClelland, Seidenberg, & Patterson, 1996; Plunkett & 

Marchman, 1993; Seidenberg & McClelland, 1989; Sejnowski & Rosenberg, 1987; 

Shastri & Ajjanagadde, 1993), to name a few representative examples; see 

(Christiansen & Chater, 1999; Dell, Chang, & Griffin, 1999) for useful accounts). 

These models have provided an important contribution to the understanding of how, 

at the system level, different parts of the human brain may play an active role in 

language processing; they can explain existing experimental data, and allow new 

predictions to be made and theories to be tested. Apart from a few recent notable 

exceptions (e.g., (Guenther, Ghosh, & Tourville, 2006; Husain, Tagamets, Fromm, 

Braun, & Horwitz, 2004; Westermann & Miranda, 2004)), however, most approaches 

tend to “abstract away” from the neurophysiological mechanisms and 

neuroanatomical structures that underlie spoken language processing in the brain. In 

general, they are usually prone to one or more of the following criticisms: they (i) are 

based on “hard-wired” networks, in which (ii) the weights of the links between the 
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nodes are set up ad hoc, or (iii) make assumptions which are of questionable 

biological plausibility (e.g., use backpropagation (Rumelhart, Hinton & Williams, 

1986) as learning rule, or adopt all-to-all connectivity), or (iv) do not incorporate 

knowledge about neuroanatomical structure of the perisylvian cortices and their 

connections, which constrain and form the basis for the emergence of brain circuits 

underlying linguistic functions. Because of this, they fall short of providing a 

mechanistic explanation – at the level of nerve cells – of the neurobiological 

mechanisms at the basis of language acquisition and processing. 

We addressed the above shortcomings by implementing a connectionist network 

specifically designed to mimic neuroanatomical, connectivity, and neurophysiological 

properties of the left perisylvian language cortex, as summarised below (a detailed 

description is provided in Chapter 2):   

(i) Six interconnected cortical areas are modelled, identified on the basis of 

neuroanatomical studies (see Sec. 1.3): (1) primary auditory cortex, (2) 

auditory belt and (3) parabelt areas (Wernicke’s area), (4) inferior prefrontal 

and (5) premotor cortex (Broca’s area), and (6) primary motor cortex; 

(ii) Neurons are modelled as graded-response cells with adaptation, whose 

output represents average firing rate within a local pool of pyramidal cells; 

(iii) Within- (recurrent) and between-area connectivity is implemented via sparse, 

random, “patchy” next-neighbour synaptic links between cells, as typically 

found in the mammalian cortex (Braitenberg & Schüz, 1998; Gilbert & 

Wiesel, 1983); 

(iv) Both local and global (non-specific) cortical inhibition mechanisms are 

realised:  

a. inhibitory cells reciprocally connected with neighbouring 

excitatory cells simulate the action of a pool of inter-neurons 

surrounding a cortical pyramidal cell in serving as lateral inhibition 

and local activity control; 

b. area-specific inhibitory loops implement a mechanism of self-

regulation (see Figure 1.3), preventing the overall network activity 
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from falling into non-physiological states (total saturation or 

inactivity); 

(v) Synaptic plasticity is implemented purely through associative (Hebbian) 

learning mechanisms. 

Although the specific details of the implementation are presented in Chapter 2, it is 

appropriate to briefly discuss here some of the above points and related assumptions. 

As we are mainly interested in modelling and explaining the setting up of acoustic-

articulatory associations between the auditory and motor modality (see Sec. 1.2), 

areas belonging to the somatosensory speech region (see Fig. 1.4) were not included 

in the model. The network already contains a “module” for sensory input (modelling 

the three areas in superior-temporal cortex). Adding a second module entirely 

analogous in structure and connectivity to the auditory one (see Sec. 1.3) would allow 

the simulation of additional experimental data, but does not represent a conceptually 

important extension (but see discussion in Sec. 3.1.3).  

Another point to note is the use of graded response units instead of spiking neurons. 

We do not aim at simulating individual cortical neurons but rather employ a lumped 

or mean-field type model in the simulations, where each node (cell) of the network 

represents the average activity of a local pool of neurons, or “column” (Eggert & van 

Hemmen, 2000; H. R. Wilson & Cowan, 1973). This modelling choice is justified by 

two reasons. First, the level of abstraction required to model and replicate 

neurophysiological (MEG, EEG) data does not require the modelling of ion channels 

or single action potentials: analogous approaches based on the neuronal mass model 

(Freeman, 1978; Nunez, 1974) have been used in the past as generative models of 

EEG/MEG and fMRI (functional magnetic resonance imaging) signals (David & 

Friston, 2003; Husain, Tagamets, Fromm, Braun, & Horwitz, 2004). Second, the use 

of spiking neurons would have a huge impact on the computational load, and would 

not buy anything in terms of explanatory power of the model. Thus, this level of detail 

should be introduced only if necessary for the phenomena of interest – as just said, 

modelling the cortical interactions at the level of cortical columns is sufficient for the 

present purposes. 

Approximately 20% of all synapses in the neocortex are estimated to be GABA-

ergic (Douglas & Martin, 2004; Gabbott, Somogyi, Stewart, & Hamori, 1986); thus, 
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the presence of inhibitory mechanisms in the model (see point (iv)) is well motivated

However, while local (lateral) inhibition is generally believed to be an underlyin

architectural feature of the cortex (Braitenberg & Schüz, 1998; Douglas & Martin

2004), the evidence in support of the existence of non-specific (global) cortica

inhibition is somewhat less direct. It has been argued that the cortex must hav

developed a self-regulatory mechanism designed to keep activation between certai

bounds (Braitenberg, 1978; Braitenberg & Schüz, 1998). Although there is agreemen

that the regulation of cortical activity is necessary, the exact characteristics of such 

mechanism and the brain systems that realise it are still a matter of debate (se

(Fuster, 1995; Pulvermüller, 2003, pp. 78-81; Wickens, 1993)). In our model, w

implemented cortical self-regulation through the introduction of area-specifi

inhibitory loops, which dampen activation in one area in proportion to the tota

activity within that area (see Fig. 1.3 and Sec. 2.2.3 for details). The net result is tha

the activity within each area is maintained stable and within limits; these bounds ar

determined by the strength of the inhibitory feedback. In the brain, these circuits coul

be implemented by cortico-striato-thalamic loops (R. Miller & Wickens, 1991

Wickens, 1993). 
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Θ

 

 

 

Figure 1.3 The mechanism of cortical self-regulation implemented in the model. Activity 

within an area is modulated by the non-specific inhibition (filled arrow) as a linear 

function Θ of the current total activation “A” in that area [after (Braitenberg, 1978)]. 

  

Finally, in relation to point (v), we postulate that the brain mechanisms mediating the 

development of specialized cell assemblies (driven by the repeated presentation of the 

same sensory-motor input patterns) are generic Hebbian mechanisms of associative 

learning, and take the phenomena of long-term potentiation (LTP) and depression 

(LTD) to be the neural correlates of learning. LTP and LTD consist of long-term 
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increase or decrease in synaptic strength resulting from pairing presynaptic activity 

with specific levels of postsynaptic membrane potentials (Buonomano & Merzenich, 

1998; Malenka & Nicoll, 1999). These phenomena are believed to play a key role in 

experience-dependent plasticity, memory, and learning (Malenka & Bear, 2004; 

Rioult-Pedotti, Friedman, & Donoghue, 2000). In the model, we implemented 

synaptic plasticity by allowing the strength (weight) of the connections between 

different cells to adapt only according to an LTP/LTD-based rule (see Section 2.2.2 

for details). 

 

1.5 Attention 

Attention is a central theme in cognitive neurosciences (e.g., see (Raz & Buhle, 2006) 

for a recent review). A complete report on the state of the art of this field falls outside 

the scope of this work; we briefly describe here only some of the key ideas that have 

played an important role in the development of this area and that are relevant to this 

research.  

No single, unifying definition of attention currently exists in the literature. William 

James (1890, pp. 403-404) originally wrote:  

“Everyone knows what attention is. It is the taking possession of the mind, 

in clear and vivid form, of one out of what seem several simultaneously 

possible objects or trains of thought”. 

James distinguished between “active” and “passive” modes of attention, the former 

being used when attention processes are controlled in a top-down way by the 

individual’s current goals, thoughts, behaviour, the latter when attention is controlled 

in a bottom-up way by external stimuli (e.g., a loud noise, movement). This 

distinction still appears to be important in recent research (e.g., (Corbetta & Shulman, 

2002)).  

The first modern theory of attention was the selective-filter theory proposed by 

Donald Broadbent (1958): Broadbent postulated a low level filter (nowadays called 

“early selection”) that allows only a limited number of percepts to reach the cognitive 

processes at any time, and proposed that much conscious, attention demanding 

information processing is dependent on a single, common “limited-capacity system”. 

This theory accounted for a wide range of existing experimental results and 
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phenomena, such as divided attention (difficulties in listening to two simultaneous 

speech signals), sustained attention (performance decrement over time) and focused 

attention (increased distractability due to stresses such as noise or sleep loss), 

minimizing the importance of top-down, consciously directed attention. The idea of a 

single limited-capacity system, however, turned out later on to be an over-

simplification. For example, in dual-task interference, if task x poses more demands 

than task y on the system, it should always produce more interference with concurrent 

activities (Kahneman, 1973; Navon & Gopher, 1979). Instead, it seems that the 

similarity of the tasks is a key factor: interference, or competition, is stronger for tasks 

which have obvious properties in common (Allport, 1980; Baddeley, 1986) — for 

example, two verbal tasks, or two tasks which make shared demands on similar (input 

or output) processing systems (Duncan, 2006).  

In this work, we take selective attention to be associated with the cognitive ability to 

internally focus on, or be aware of, only a small subset of the sensory information in 

input, relevant to current thought or behaviour, at the expense of the rest. The “biased 

competition” model of attention (Desimone & Duncan, 1995; Duncan, 1980, , 1996; 

Duncan & Humphreys, 1989) provides a useful perspective on the possible brain 

mechanisms underlying such cognitive processes. The model is based on distributed, 

integrated competition across the sensorimotor network (see also (Walley & Weiden, 

1973)), and is supported by a significant body of behavioural and neurophysiological 

evidence (Bundesen, 1990; Chelazzi, Duncan, Miller, & Desimone, 1998; Chelazzi, 

Miller, Duncan, & Desimone, 1993; Moran & Desimone, 1985; Sato, 1989; Sperling, 

1960).  

As elucidated by Duncan (2006), the model has three basic ideas. First, processing is 

competitive in many, perhaps most, of the brain systems responding to sensory input. 

This is shown, for example, by the relative suppression of the normal response to a 

visual stimulus when a second (possibly irrelevant) stimulus is also present in the 

receptive field (E. K. Miller, Gochin, & Gross, 1993). Thus, different stimuli compete 

for shared (attentional) resources. Second, sustained signals from task context act to 

bias competition, so that the stimulus relevant to the current task or behaviour “wins”. 

Third, and crucial for object-based attention, competition is integrated between one 

brain system and another: the tendency is for the same object to assume dominance 

throughout the network, processing in different regions representing its different 
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properties and implications for action (Duncan, 2006, pp. 5-6). In the remainder of 

this section we briefly discuss how these three ideas can be mapped to corresponding 

neurally-plausible mechanisms implemented in the present and other connectionist 

models. 

(a) The first type of competition may be mediated, at different cortical levels, by 

(local) lateral inhibition: mutually inhibitory synapses between neighbouring 

excitatory cells (a widespread characteristic of the cortex (Braitenberg & Schüz, 1998; 

Douglas & Martin, 2004)) might act as local winner-take-all (WTA) mechanisms 

(Yuille & Geiger, 2003), producing the observed competition phenomena. Following 

a number of other works (e.g., (Fukai & Tanaka, 1997; Knoblauch & Palm, 2002; 

Mao & Massaquoi, 2007; Rabinovich et al., 2000; Riesenhuber & Poggio, 1999; Rolls 

& Deco, 2002)), our network implements local competition and WTA dynamics using 

an underlying area of inhibitory cells with next-neighbour connectivity (see Sec. 

2.2.3). 

(b) The “top-down” signal responsible for biasing the competition amongst the co-

active representations may be realised via excitatory links projecting to cells (or cell 

populations) that represent specific sensory features (spatial location, color, pitch, 

etc.) or specific items (see, for example, the architecture proposed by Rolls and Deco 

(2002, p. 328), or (Deco & Rolls, 2005b; Deco, Rolls, & Horwitz, 2004)). The model 

presented here does not explicitly attempt to implement such top-down attentional 

signal. Following Occam’s razor, we decided not to make assumptions on its 

characteristics or origins; as it turns out, this feature was indeed unnecessary for the 

model to be able to simulate and explain the phenomema of interest here. 

(c) A number of computational models of visual attention have suggested how the 

second type of (integrated, or “object level”) competition might occur (e.g., 

(Bundesen, Habekost, & Kyllingsbaek, 2005; Dehaene, Sergent, & Changeux, 2003; 

Phaf, Vanderheijden, & Hudson, 1990; Schneider, 1995)). Although the details differ, 

the general approach, based on the network principle of attractor states (Hopfield, 

1982), is to set up mutual support (i.e., reciprocal excitatory links) between units that 

respond to the same object, and competition (i.e., mutual inhibitory links) between 

units that do not. In this way, the system spontaneously seeks a state in which 

different units responding to the same object are active together. However, while 

synaptic plasticity (LTP/LTD) can explain the emergence of strong reciprocal 
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excitatory links between co-activated (and weakening of links between non-

coactivated) sets of units, it is less clear which neurophysiological mechanisms might 

lead to the strengthening of inhibitory synapses between (not neighbouring) 

populations of neurons that are not active together. 

The model presented here implements the integrated, “item level” competition 

purely as a result of the cortical activity-regulation mechanism (see Fig. 1.3), which is 

independently motivated by the need for functional stability (Braitenberg, 1978; 

Fuster, 1995; Wickens, 1993). Past theoretical works (Braitenberg, 1978; Hopfield, 

1982; Palm, 1982, , 1987; Willshaw, Buneman, & Longuet-Higgins, 1969) have 

shown that non-specific inhibition not only enhances the network stability but can 

also solve the superposition problem (Knoblauch & Palm, 2002), which requires the 

simultaneous full activation of two different cell assemblies to be prevented. 

Accordingly, our network does not need to assume (or develop) reciprocal inhibitory 

links between populations of strongly interconnected cells (CAs) representing 

different items, as the mutual inhibition between cell assemblies “falls out” of the 

global inhibition mechanism. In fact, the response of the non-specific inhibition loop 

to a stimulus in input depends on the strength of the feedback link forming such loop 

(depicted as a filled arrow in Fig. 1.3, and henceforth called “FI”, feedback 

inhibition). Therefore, in the model, attention at the object level (or item-level 

competition) is realised as follows: strong FI (leading to strong mutual inhibition 

between co-active CAs) simulates – at the cognitive level – a situation in which small 

amounts of attentional resources are available for processing new sensory input (as 

low attention implies a tougher competition between co-stimulated representations to 

enter the focus of attention). Analogously, reduced FI (i.e., less competition between 

co-active CAs) models greater availability of attentional resources: in the latter 

situation, several representations can be active at the same time (allowing phenomena 

like that of “divided attention”, or attention to a large perceptual space). 

The use of non-specific inhibition to successfully model aspects of attention is not 

new (Deco, Rolls, & Horwitz, 2004; Rolls & Deco, 2002; Szabo, Almeida, Deco, & 

Stetter, 2004). However, past approaches used non-specific inhibition as a tool to 

implement the first type of competition, i.e., lateral inhibition between cells of a 

specific cortical area, whereas global inhibition is used here to model item-based 

attention, implementing the second type of competition between cell assemblies that 

 



 17

are distributed across different brain areas. 

 

1.6 Summary  
This Chapter provided the necessary background and introduced the research 

questions that motivated this work, reviewing some of the relevant literature, 

describing the neuroscientific principles and the methodological approach adopted, 

and discussing the basic underlying assumptions (Sections 1.1, 1.2 and 1.4). Section 

1.3 identified the neuroanatomical structures and the neurophysiological principles 

and observations motivating the functional features implemented in the 

neurocomputational model of the language cortex (see next Chapter), while Sec. 1.5 

introduced the basic ideas underlying the biased competition model of attention, 

mapping them to corresponding entities in the neural network. 
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Chapter 2 – 

A Neuronal Model of the Language Cortex  

 

 

This chapter provides a detailed description of the computational model of the left 

perisylvian cortex that we implemented. The approach follows similar attempts to 

build models linking neuronal circuits to functional brain systems, especially in the 

domain of visual (Corchs & Deco, 2002; Deco & Rolls, 2005a; Tagamets & Horwitz, 

1998), language (Guenther, Ghosh, & Tourville, 2006; Pulvermüller & Preissl, 1991; 

Westermann & Miranda, 2004) and auditory processing (Husain, Tagamets, Fromm, 

Braun, & Horwitz, 2004). The characteristics of the more closely related models and 

the general features that set apart both these and previous works from the present 

architecture are discussed in the next section.  

 

2.1 Related work 

Several examples of distributed connectionist models exist in the literature which, like 

the present one, demonstrate how cognitive behaviour can emerge from 

neurobiological structure and function (e.g., (Corchs & Deco, 2002; Deco & Rolls, 

2005a; Husain, Tagamets, Fromm, Braun, & Horwitz, 2004; Tagamets & Horwitz, 

1998)). These models have been used to explain (and simulate PET/fMRI data 

resulting from) visual and auditory attention phenomena at the mechanistic level of 

cortical circuits. However, none of these attempts to address language function.  

Most relevant here is the ground-breaking work by Husain and colleagues (Husain, 

Tagamets, Fromm, Braun, & Horwitz, 2004), who built a neuroanatomically-based 

connectionist model of the left perisylvian areas to simulate electrophysiological and 

fMRI activities in multiple brain regions during an auditory delayed-match-to-sample 

task for tonal patterns. Their architecture consists of four major brain regions: (1) 

primary/core auditory cortex; (2) secondary sensory cortex (belt and parabelt areas); 

(3) superior temporal gyrus/sulcus (ST); and (4) prefrontal cortex (PFC). Each region 
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is composed of 81 excitatory-inhibitory units (modified Wilson–Cowan units), each 

of which represents a cortical column; both feedforward and feedback connections 

link the different regions.  

A first shortcoming of Husain and colleagues’ model is that, in spite of the large 

body of experimental evidence showing that the mammalian brain exhibits 

experience-dependent plasticity (see Sec. 1.4), it is not endowed with any learning 

mechanism. Secondly, the model assumes the existence of different types of cells 

exhibiting pre-specified behaviours, and the connections between areas are “hard 

wired” in an ad hoc manner. For example, the PFC area (Husain, Tagamets, Fromm, 

Braun, & Horwitz, 2004, their Fig. 1) is assumed to contain four different types of 

built-in neuronal units: “cue-sensitive” units (assumed to respond when an external 

stimulus is present), two types of “delay” units (one assumed to be active during 

stimulus presentation and subsequent delay before presentation of the following 

stimulus, the other assumed to be only active during the delay between presentations 

of stimuli), and “response” units, whose activities are assumed to increase when the 

second stimulus matches the first; these sets of units are assumed to form separate 

modules, connected by arbitrary links having fixed and predetermined synaptic weight 

(ibid., their Table A2). (Note that these built-in properties, especially the active-

memory function, have been argued to be the net-effect of neuronal assemblies, not a 

feature intrinsic to single cells (Fuster, 2003; Zipser, Kehoe, Littlewort, & Fuster, 

1993)). The secondary area is assumed to contain “contour-selective” units for which 

there is no direct experimental evidence, and there are no excitatory-excitatory 

(recurrent) within-area connections in the primary, secondary and ST areas. Finally, 

the architecture includes an “attention” module (which the authors explicitly declare 

to be “not modelled in a biologically realistic fashion” (Husain, Tagamets, Fromm, 

Braun, & Horwitz, 2004, p. 1710) that projects to only one of the two delay-modules 

and directly defines the strength of the representation maintained by such delay units.  

In summary, Husain and colleagues’ model (i) does not include any learning 

mechanism, (ii) assumes the existence of different types of cells with conveniently 

pre-defined, built-in behaviours, and of modules for which there is no neurobiological 

evidence, (iii) assumes ad hoc connections between such elements, and (iv) does not 

deal with language, but with simple tonal patterns. In spite of these aspects, this 

architecture still constitutes the distributed connectionist model of the left perisylvian 
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areas that come closest, in terms of neuroanatomical and neurophysiological detail, to 

the model that we present here. 

A connectionist model of speech acquisition and production that does incorporate 

learning and addresses language function was proposed recently by Guenther, Ghosh, 

& Tourville (2006). This architecture (composed of several components, including 

premotor, motor, auditory and somatosensory cortical areas, in addition to a 

cerebellum module) is used to simulate a range of acoustic and kinematic data 

(including compensation to lip and jaw perturbations during speech) and fMRI 

activity during syllable production. The model provides a very effective and insightful 

account of language processing based on mechanisms that are assumed to simulate 

neuronal and synaptic level phenomena. To achieve high effectiveness at the 

functional level whilst maintaining a sufficiently fine-grained level of modelling, 

however, engineering considerations were prioritised in the implementation at the 

expenses of neurobiological faithfulness. For example, all projections between the 

different cortical areas are assumed to be unidirectional (e.g., premotor cortex projects 

to superior temporal cortex, but no projections exist in the opposite direction) and do 

not exhibit next-neighbour, random and sparse topology as typically found in the 

mammalian cortex (Amir, Harel, & Malach, 1993; Douglas & Martin, 2004) but all-

to-all connectivity, which is not neurobiologically realistic (Braitenberg, 2001; 

Braitenberg & Schüz, 1998, p. 63). The model also makes use of some simplifying 

localist assumptions: for example, each single cell in the “Speech  Sound Map” 

module (modelling the left ventral premotor cortex (Guenther, Ghosh, & Tourville, 

2006, their Fig. 1)) is assumed to represent one specific speech sound, defined as “a 

phoneme, syllable, word, or short phrase that is frequently encountered in the native 

language and therefore has associated with it a stored motor program for its 

production” (ibid., 2006, p. 283). In the language acquisition simulation described, 

one cell in premotor cortex was used to represent the entire phrase “good doggie”. 

Finally, the tuning of the synaptic weights during the simulation of language 

acquisition (including the preliminary babbling and subsequent “practice phase”, 

involving the learning of more complex speech sounds) is not realised, like in the 

present model, via a uniform, constantly-acting mechanism that closely replicates 

neurophysiological features of synaptic plasticity and is applied equally to all areas 

during the training, but through a set of different, ad hoc procedures of little 
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biological plausibility that are carried out at different times on different sets of 

synaptic projections.2

While the models mentioned above were used to simulate PET and fMRI data, the 

modelling of EEG/MEG signals has been also object of research for several years: 

e.g., epileptic-like (Jansen & Rit, 1995; Wendling, Bellanger, Bartolomei, & Chauvel, 

2000), gamma-(Jefferys, Traub, & Whittington, 1996) and alpha-rhythm dynamics 

(Suffczynski, Kalitzin, Pfurtscheller, & Lopes da Silva, 2001) and spectral activity in 

different frequencies (David & Friston, 2003) have been successfully simulated in the 

past. However, we are not aware, at present, of any biologically realistic model able to 

simulate and explain the MEG/EEG dynamics observed during higher-level cognitive 

and language tasks, which was one of the main goals of this work. 

As mentioned in Sec. 1.4, one of the features shared by most existing connectionist 

models of language processing which incorporate learning is the use of the back-

propagation mechanism (Rumelhart, Hinton, & Williams, 1986). This learning 

algorithm, although very effective, makes use of information that is not local to the 

synapse undergoing the efficacy change (i.e., information related to the activity of the 

two pre- and post-synaptic cells), but which is obtained from the network’s “output” 

layer by means of comparing current and desired activity there. It is not entirely clear 

whether (and, if so, how) the brain can actually implement such non-local back-

                                                 
2 For example, the synaptic weights of the projections from ventral premotor cortex to 

superior temporal cortex (“Auditory Error Map”), encoding the auditory targets for each 

speech-sound cell, are conveniently ordered in “spatio-temporal” matrices, in which each 

column represents the target at one point in time, and there is a different column for every 

1ms of the duration of the speech sound. Using an audio file containing the appropriate 

speech sound, a specified procedure sets up the synaptic weights in such a way that the values 

are (exactly) the upper and lower bounds of each of the first three formant frequencies, at 1ms 

intervals for the duration of the utterance. This “learning” procedure is run once, during the 

practice phase only (and not during the babbling). On the other hand, the weight matrix 

encoding the projections from premotor to somatosensory cortex is updated only during 

correct self-reproductions of the corresponding speech sound (i.e., strictly after the learning of 

the auditory target for the sound). Moreover, in order to account for temporal delays, this 

process involves artificially aligning the somatosensory error “data slice” with the appropriate 

time slices of the weight matrices (see (Guenther, Ghosh, & Tourville, 2006), their Appendix 

B). 
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propagation of errors. In this work we relaxed this assumption, and made things more 

difficult (but more realistic) by limiting ourselves to modelling synaptic plasticity 

mechanisms that are well established and widely accepted (namely, LTP/LTD); as it 

will be seen, it is solely by means of these mechanisms that the model correlates of 

the cortical representations of linguistic items (word cell assemblies) can emerge in 

the network.

A second important aspect setting apart several of the existing models in 

psycholinguistics (e.g., (Dell, 1986; Dell, Chang, & Griffin, 1999; McClelland & 

Elman, 1986; Norris, 1994), to name but a few) from the present one concerns the 

adoption of a localist representation, whereby one node of the network does not 

represent a pool of cortical neurons, but a phonological feature, a phoneme, or even a 

whole word. While a localist approach offers several advantages (including reduced 

computational load and easier implementation), it requires deciding a priori the 

behaviour of the (simulated) brain representations of the entities of interest (e.g., 

words, phonemes). To clarify: building a (localist or distributed) connectionist model 

requires specifying the computational properties of the nodes of the network; if one 

assumes, for example, that nodes represent words, then specifying their computational 

properties de facto means establishing, in advance, the behaviour of the (brain 

representations of) words. We deliberately chose not to follow this approach: our aim 

was to demonstrate that (and explain how) such linguistic representations (and their 

macroscopic behaviour) can spontaneously emerge from an initially homogenous, 

sparsely and randomly connected brain-like network of identical nodes by means of  

neurobiologically plausible (microscopic) mechanisms. In the visual domain, this 

approach has led, for example, to the successful modelling of the emergence of ocular 

dominance and orientation columns in a network with similar connectivity features 

(Mikkulainen, Bednar, Choe, & Sirosh, 2005). The adoption of this method offers two 

main advantages: (I) it allows one to look at the properties exhibited by the 

representations that emerge (as opposed to assuming them as built-in features, as, e.g., 

Husain and colleagues (2004) did in their work) and use them to make predictions 

about the properties of their neural correlates; (II) the model can be used to 

understand the cortical mechanisms that underlie the actual setting up of such 

representations — in this case, the neural processes underlying early word learning. 
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2.2 Network structure and function  

A complete characterization of the model requires describing both the fine-grained (or 

neuronal) and high (or systems) level. For each of these levels, the structure (the sub-

components and how they are integrated) and function (the result of the dynamic 

interactions of the component parts) will be explained. In the three following 

subsections, we start from the basic computational unit of our model (the “cell”, 

representing a local pool of neurons) and move on to the higher levels of area and 

network (a “system” of cortical areas), alternating structural and functional 

descriptions as appropriate. 

The main quality criterion for the model was biological faithfulness. This led to 

implementing an architecture which was realistic both at systems level (especially the 

anatomical and connectivity features of the model, linking it to a specific brain part – 

the perisylvian cortex) and micro-physiological level. Bearing this criterion in mind, it 

was necessary to find a good compromise between the two conflicting additional 

goals of developing a model that was sufficiently detailed so as to allow the 

emergence of the relevant complex processes observed in the human brain, and 

sufficiently simple so as to be computationally tractable. We achieved the latter by 

implementing a relatively simple (computationally speaking) “activity regulation” 

mechanism mimicking a coarse-grained attentional threshold control system (see 

Section 2.2.3), and by keeping the total number of cells in the network within a 

manageable range.  

The overall architecture of the neural network (see Figure 2.1.(b)) replicates the 

neuroanatomical features and interconnections of the (spoken) language cortex 

summarized in Section 1.4. In particular, the model reproduces the main sensory input 

areas (the primary auditory cortex A1 and its surrounding belt and parabelt areas, AB 

and PB) and the motor output areas (the perisylvian motor cortex, M1, and areas PM 

and PF). Each of these cortical areas is modelled as a 25-by-25 area of artificial 

(excitatory and inhibitory) cells (see Section 2.2.3 for details). In addition to the six 

areas of excitatory-inhibitory cells, the network is endowed with a self-regulation 

mechanism (not shown in Figure 2.1), necessary to maintain the total activity of the 

network within certain limits (see also Sec. 1.3). 
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Figure 2.1 The relevant areas of the perisylvian cortex, the overall network 

architecture, and the mapping between the two, indicated by the colour code. (a) The 

six different areas of the perisylvian language cortex modelled, labelled as M1, PM, 

PF, A1, AB, PB. Black arrows indicate long-distance cortico-cortical connections 

between the auditory and motor association areas (see Section 1.3). (b) The six-areas 

network model and an illustration of the type of distributed functional circuit that 

developed during learning of perception-action patterns. Each small filled oval 

represents an excitatory neuronal pool (E-cell); solid and dashed lines indicate, 

respectively, strong reciprocal and weak (and/or non-reciprocal) connections. Co-

activated cells are depicted as black (or grey, indicating smaller activation) ovals. Only 

forward and backward links between co-activated cells are shown. Inhibitory inter-

neurons are not depicted [after (Garagnani, Wennekers, & Pulvermüller, 2008) ].  
.1 Model of cortical neurons 

e basic computational unit of our model is the “cell”, an element representing a 

ol of cortical neurons (either pyramidal cells or inhibitory inter-neurons). Each cell 
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or “node” of the network may be considered to represent a cortical column of 

approximately 0.25mm2 size (Hubel, 1995; Mountcastle, 1997), containing ~2.5⋅104 

neurons (Braitenberg & Schüz, 1998, p. 25; Rockel, Hiorns, & Powell, 1980)3. Each 

cell has a membrane potential V(x,t) (reflecting temporal low-pass properties of local 

neuron pools, see Equation (2.1) below)) and transforms its potential into firing rate 

by means of a sigmoid output function (Eq. (2.2)) reflecting local firing activity. The 

membrane potential V(x,t) at time t of a model cell x with membrane time constant τ is 

governed by the equation: 

),(),(),( txVtxV
dt

txdV
In+−=⋅τ

 (2.1) 
 

where VIn(x,t) is the total input to cell x, representing the sum of all excitatory and 

inhibitory postsynaptic potentials – EPSPs, IPSPs – acting upon neuron pool x at time 

t (inhibitory inputs are given a negative sign); these subsynaptic EPSPs and IPSPs 

drive inward currents in neurons of pool x, producing the charging of their somata.  

The value O(x,t) produced as output by a cell x is the only signal propagated by x to 

other cells. The output value O(x,t) of a cell x at time t is a piecewise linear sigmoid 

function of the cell’s membrane potential V(x,t): 

 

(V(x,t)− φ)  if 0 < (V(x,t)− φ) ≤ 1   

0          if V(x,t)≤ φ 

1         otherwise  

 
(2.2) O(x,t) = 

 

 

In other words, the output is clipped into the range [0, 1] and has slope 1 between the 

lower and upper thresholds φ and φ+1. The value of φ is initialized to 0 but varies in 

time (see below). The output value of a cell x at time-step t represents the cumulative 

(graded) output (number of action potentials per time unit) of cluster x at time t; this 

value predicts action potential frequency in a certain time-window (centred on t), and, 

thus, changes in the post-synaptic potentials induced by the neuron pool x in all the 

                                                 
3 These figures are meant to provide only an estimate of the grain of the model; as noted in 

(Hubel, 1995), the size of a macrocolumn (or “module”) varies substantially between cortical 

layers (going from 0.1mm2 in layer 4C to 4mm2  in layer 3) and cortical areas (ibid., p.130). 
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synapses downstream from it. 

We integrate the low-pass dynamics of the network cells (Eq. 2.1) using the Euler 

scheme with step size ∆t (Press, Teukolski, Vetterling, & Flannery, 1992). The value 

for ∆t chosen in the simulations was 0.5 (in arbitrary units of time). A relatively wide 

integration step size was chosen to speed up simulations of the full model, as for the 

time-continuous (non-spiking) neuron model considered here, smaller step-sizes lead 

to largely the same network properties. An estimate of the “real” duration of one 

simulation step (∆t) can be obtained by matching the simulated neurophysiological 

responses with the corresponding experimental data. According to such approximate 

mapping (see Sec. 4.3.2 for details), one ∆t is equivalent to about 20ms. 

Cells come in two different types: excitatory cells (called “E-cells”) and inhibitory 

cells (or “I-cells”); they model populations of cortical pyramidal neurons and pools of 

inhibitory interneurons, respectively. The behaviour of an E-cell is specified entirely 

by Equations (2.1-2.2). I-cells behave identically, except that their output O(x,t) does 

not saturate at high values (i.e., it is simply V(x,t) for V(x,t)≥0, and 0 elsewhere). In 

addition, the value used for the time constant τ in Eq. (2.2) is 2.5 for E-cells and 5 for 

I-cells (in simulation time-steps, or ∆t’s). The use of these two different values is 

motivated by the higher time constants of IPSPs as compared with EPSPs (Kandel, 

Schwartz, & Jessell, 2000, p. 923). Assuming that ∆t ≈20ms, E- and I-cells have time 

constants of about 50ms and 100ms, respectively. Notice, however, that these values 

should not be interpreted as model correlates of IPSPs and EPSPs time constants, as 

each cell here represents a population of neurons. 

Cells can be connected by links (“synapses”). Each synapse is associated to a 

numeric value (weight) representing the efficacy of that connection. If cell x is linked 

to cell y with weight wx,y, it contributes a potential O(x,t) · wx,y to the total input 

VIn(y,t) of the target cell y, where O(x,t) is defined by Eq. (2.2). Without loss of 

generality, we limit the numeric values of the weights to the range [0, 1]. 

Finally, E-cells are also endowed with a simple mechanism of adaptation. When a 

real neuron receives above-threshold stimulation and starts firing, it produces a few 

spikes at high frequency; if the stimulus is maintained, the rate gradually gets lower 

and then levels off: this phenomenon is normally referred to as neural (or “spike-

rate”) adaptation (Dayan & Abbott, 2001, p. 165; Kandel, Schwartz, & Jessell, 2000, 

 



 27

p. 424). In the model, adaptation is realised (in E-cells only) by allowing the value of 

parameter φ in Eq. (2.2) to vary in time. In particular, φ is tied to the time-average of 

the cell’s recent output,4 so that higher- (lower)-than-average values of O(x,t) lead to a 

gradual increase (decrease) in φ. This has the effect of adapting the cell’s response to 

the input level.  

 

2.2.2 Modelling Hebbian Synaptic Plasticity  

The weights of the links between E-cells are not fixed but are allowed to change in 

time, modelling the neurobiological phenomena of long-term potentiation (LTP) and 

depression (LTD) (Buonomano & Merzenich, 1998; Malenka & Nicoll, 1999). We 

tried two different computational abstractions of LTP and LTD: one based on 

Sejnowski’s covariance rule (Sejnowski, 1977), a well-known Hebbian learning rule, 

the other one based on the ABS model of LTP and LTD (Artola & Singer, 1993).  

The adoption of Sejnowski’s co-variance rule (Sejnowski, 1977) was motivated by 

the following considerations: (i) as a Hebbian rule, it is neurobiologically based (e.g., 

see (Crepel & Jaillard, 1991; Stanton & Sejnowski, 1989; Tsumoto, 1992); but cf. 

Miller (1996) for a discussion); (ii) it is one of the most simple and computationally 

tractable correlation-based rules, and (iii) it has been successfully used by a number of 

connectionist models (e.g. (Peter Dayan & Sejnowski, 1993; Linsker, 1988; Penke & 

Westermann, 2006; Westermann & Miranda, 2004)). In this rule, the change of 

synaptic weight ωij of the excitatory link from pre-synaptic cell i to post-synaptic cell 

j per unit time is defined as: 

))(( 〉〈−〉〈−=∆ jjiiij xxxxαω    (2.3) 

where α∈]0,1] is a constant <<1 specifying the learning rate, xi is the current output of 

cell i, and  is the time-average output of cell i. In our simulations, we used α = 

0.004.  

〉〈 ix

                                                 
4 For computational efficiency, the time-average of the output O(x,t) of each E-cell is 

estimated numerically by low-pass filtering O(x,t) with time constant τa=15. The final φ is 

then obtained by scaling down the estimated time-average by a small factor (0.026 in our 

simulations; see Appendix A). 
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While this rule captures well the essence of Hebbian learning (neurons that ‘‘fire-

together, wire-together’’), it was not originally built to accurately mimic known 

mechanisms of synaptic plasticity. Miller & Mackay (1994) have shown, for example, 

that the co-variance rule cannot implement competitive learning (see also Sec. 3.1.3), 

a behaviour which is often considered a hallmark of many forms of developmental 

plasticity (Buonomano & Merzenich, 1998; Katz & Shatz, 1996). Indeed, subsequent 

and more realistic computational models of LTP/LTD exist which address this 

shortcoming (e.g. (Bienenstock, Cooper, & Munro, 1982; Shastri, 2001; Song, Miller, 

& Abbott, 2000); see Bi & Poo (2001) for a review).  

In view of this, and to attain higher biological realism, we chose the ABS model of 

LTP and LTD (Artola, Bröcher, & Singer, 1990; Artola & Singer, 1993) as a basis for 

implementing the second learning rule. This rule: (1) is based on experimental 

evidence and closely mirrors well-known neurophysiological phenomena (see below); 

(2) is computationally tractable; (3) addresses some of the limitations of the 

covariance rule (see Sec. 3.1.3); and (4) is an extended and more neurobiologically 

accurate version of the well-known ‘‘Bienenstock-Cooper-Munro’’ (BCM) rule 

(Bienenstock, Cooper, & Munro, 1982), which exhibits competitive learning.5 While 

the BCM rule had been originally developed to account for cortical organization and 

receptive field properties during development, the ABS model is derived from 

neurophysiological data obtained in the mature cortex. Such experimental data 

(Artola, Bröcher, & Singer, 1990) suggest that similar presynaptic activity (namely, 

brief activation of an excitatory pathway) can lead to synaptic LTD or LTP, 

depending on the level of postsynaptic depolarization co-occurring with the 

presynaptic activity. In particular, data from structures susceptible to both LTP and 

LTD indicate that a stronger depolarization is required to induce LTP than to initiate 

LTD.6 Accordingly, the ABS rule postulates the existence of two voltage dependent 

thresholds in the postsynaptic cell, called θ− and θ+ (with θ− < θ+). The direction of 

change in synaptic efficacy depends on the membrane potential of the postsynaptic 

                                                 
5  A direct comparison of ABS and BCM rules is included in the discussion section of this 

Chapter, Sec. 2.3. 
6 The level of postsynaptic depolarization determines the amount of Ca2+ entering the 

dendritic spine: a moderate rise in Ca2+ leads to a predominant activation of phosphatases and 

LTD, while a stronger increase favours activation of kinases and LTP. 

 



 29

cell: if the potential reaches the first threshold (θ−), all active synapses depress; if the 

second threshold (θ+) is reached, all active synapses potentiate.  

We implemented a tractable version of the full ABS model (Artola & Singer, 1993), 

as described below. The simplifications involve discretizing the continuous range of 

possible synaptic efficacy changes to only two levels, +∆w and −∆w (∆w∈]0,1] is 

fixed a priori and represents the learning rate), and defining as “active” at time t any 

input link from a cell x such that O(x,t) > θpre, where θpre∈]0,1] is an arbitrary 

threshold representing the minimum level of presynaptic activity required for LTP to 

occur. More precisely, given any two E-cells x and y currently linked with weight 

wt(x,y), the new weight wt+1(x,y) is calculated as follows: 

 wt(x,y)+∆w if O(x,t)≥ θpre and V(y,t) ≥ θ+   

wt(x,y)−∆w if O(x,t)≥ θpre and θ− ≤V(y,t) < θ+  

wt(x,y)−∆w if O(x,t)< θpre and V(y,t) ≥ θ+

wt(x,y)         otherwise  

 
(2.4) wt+1(x,y) =

 

 

where V(y,t) is the membrane potential of the postsynaptic cell y at time t (Eq. (2.1)). 

In our simulations, we used θ−=0.15, θ+=0.25, θpre=0.05 and ∆w = 0.0005. The three 

cases of Eq. (2.4) model, respectively, (i) homosynaptic and associative LTP, (ii) 

homosynaptic LTD, and (iii) heterosynaptic LTD. The latter type of LTD involves 

synaptic change at inputs that are themselves inactive but that undergo depression due 

to depolarization spreading from adjacent active synapses.  

It should be noted that in order to avoid runaway synaptic strengths and 

unphysiologically high cell activities, in both implementations of the synaptic 

plasticity mechanisms, synaptic weight values were limited to the range [0, 0.2]. (This 

means that five fully potentiated synapses could drive a cell to saturation). 

 

2.2.3 System-level Architecture 

The neural-network model (see Fig. 2.1.(b)) reproduces the auditory input areas (A1, 

AB and PB) and motor output areas (M1, PM and PF) of the language cortex (Fig. 

2.1.(a)). Each of these (primary, secondary and association) areas is modelled as a 

lattice (grid) of interconnected cells; more precisely, each model area consists of an 

area of 25x25 graded-response excitatory cells (E-cells) sitting on an underlying area 
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of 25x25 graded-response inhibitory cells (I-cells, not shown in Figure 2.1.(b)). We 

assume that each E-cell (together with its underlying I-cell) represents a cortical 

column of size 0.25mm2; thus, each model area simulates the activity of a cortical 

area of about 625 times 0.25mm2 ≈1.6cm2. Both between- (cortico-cortical) and 

within-area (lateral and recurrent) excitatory connections are realised, so that one E-

cell can project to neighbouring E-cells within the same area and to E-cells of 

adjacent areas. Links between non-adjacent areas are not implemented (however, note 

that the two adjacent Areas 3 and 4 correspond to cortical areas that are not 

anatomically adjacent). This results in a hierarchical architecture that closely reflects 

the neuroanatomical data discussed in Sec. 1.3; in fact, the primary cortical areas (M1 

and A1) are reciprocally connected to their neighbouring secondary areas (PM and 

AB); these, in turn, are reciprocally linked to their respective association areas (PF 

and PB), which are also interconnected (via long cortico-cortical links). The same 

type of hierarchical (or multi-layer) architecture is also found in other sensory 

modalities, a notable example being the visual system (Lamme & Roelfsema, 2000; 

Maunsell & Newsome, 1987; Young, 2000). Finally, the two areas of E- and I-cells 

that constitute a single area are closely and reciprocally connected, forming negative-

feedback circuits that model local activity control and lateral inhibition (i.e., winner-

take-all) mechanisms. The presence of lateral inhibition and next-neighbour 

connectivity, based on known characteristics of the cortex (Braitenberg & Schüz, 

1998; Douglas & Martin, 2004), is shared by many neurobiologically based 

connectionist models of the cortex (e.g., (Riesenhuber & Poggio, 1999; Rolls & Deco, 

2002)). The precise characteristics of the connections realised are now described in 

more detail (refer to Figure 2.2).  

The recurrent excitatory links projecting from an E-cell to E-cells of the same area 

are realised as follows: a link from a cell A to a cell B is created with probability 

plink(A,B), where plink(A,B) decreases as the cortical distance between A and B (in 

lattice units, i.e., cells) increases, according to a Gaussian curve. More formally:  

 

2)/),(( σBAdek −⋅

0            if sq(A,B) > ρ 

 otherwise 

plink (A,B) = (2.5)   

 

where ρ∈ℵ+, σ∈ℜ+, k∈[0,1], and, if cells A and B have lattice (or area) co-ordinates 
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(xA,yA), (xB,yB), respectively, then sq(A,B) and d(A,B) are defined as 

sq(A,B) = max (|xA−xB|, |yA−yB|) (2.6) 

(2.7) d(A,B)=((xA−xB)2 +(yA−yB)2 )1/2

In short: if B is located outside a square of (2ρ+1)2 cells centred on A, the probability 

of a “synapse” being created between A and B is null; otherwise, the probability is a 

Gaussian function (with variance σ2 and amplitude k) of the (“cortical”) Euclidean 

distance between cells A and B (we used k=0.15, ρ=7 and σ=4.5).7 Thus, E-cells that 

are more than ρ lattice units (cells) apart cannot be (directly) connected. If one cell is 

assumed to represent a cortical column of size ~ 0.5x0.5 mm2, the radius of within-

area lateral projections is 0.5⋅ρ ≈ 3.5mm. Finally, if an excitatory link between two E-

cells is created, its weight is initialised to a real number chosen randomly between 0 

and wup, with wup = 0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
 Equation (2.5) implies that the probability of having any E-cell linked to itself is exactly7  k. 

Figure 2.2 Connectivity and structure of a single “cortical” area. Each model area comprises 

two overlaying bi-dimensional layers of 25-by-25 excitatory (E) and inhibitory (I) cells each. 

Each E-cell (depicted as a filled black circle) projects (in a sparse, “patchy” manner) to 

neighbouring E-cells in the same area (REC, cell 1) but also to E-cells in the previous (FB) 

and next (FF) areas via feedback (cell 2) and forward (cell 3) connections, respectively. The 

small brighter squares on the black background represent an example of where such patchy 

links might be established, brighter levels of gray indicating stronger link weights. Inhibitory 

cells (e.g., I-cell 4, depicted as a dashed circle) receive input from (all) E-cells located within 

an overlaying 5×5 neighbourhood (INH) and inhibit the E-cell located at the centre of it 

(i.e., I-cell 4 inhibits E-cell 5). Area-specific inhibition feedback loops are not depicted. 
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Excitatory “forward” and “backward” links, connecting any E-cell A with co-

ordinates (xA,yA) in area a1 to other E-cells of an adjacent area, a2, are realised in the 

same way: randomly weighted links may only be established between A and a square 

of  (2ρ+1)2 cells centred on cell (xA,yA) in area a2, where the probability of creating a 

link between any two cells is defined by Equation (2.5). For forward and backward 

connections, the parameters that we used are k=0.28, ρ=9 and σ=6.5. Hence, within-

area projections are smaller and less dense, on average, than between-area ones (see 

Fig. 2.2). Whilst the exact values of these parameters were calibrated through 

simulation studies, the type of excitatory connections realised in the network is 

biologically motivated and aims at reproducing the next-neighbour, patchy and sparse 

connectivity typically found in the mammalian cortex (Amir, Harel, & Malach, 1993; 

Braitenberg & Schüz, 1998; Douglas & Martin, 2004; Gilbert & Wiesel, 1983).8  

The reciprocal connections between a layer of E-cells and its underlying lattice of 

inhibitory I-cells are similar but somewhat simpler than those described above. First 

of all, each I-cell (pool of inter-neurons) receives excitatory inputs from all E-cells 

situated within an overlying 5x5 neighbourhood (i.e., within a radius ρ=2, equivalent 

to ~1mm) and projects back (with weight =1) to the single E-cell located directly 

above it. The smaller radius ρ reflects the fact that inhibitory inter-neurons (basket or 

chandelier cells) present smaller and more verticalised dendritic arborizations than 

pyramidal cells do (Jin, Mathers, Szabo, Katarova, & Agmon, 2001; Somogyi, 

Cowey, Halasz, & Freund, 1981). Moreover, the weight of the lateral connections 

from E-cells to I-cells is not assigned randomly, but decreases with the distance 

according to the Gaussian function defined in Eq. (2.5) (with σ=2.0, k=0.295).  This 

negative feedback circuits function both as local activation control and lateral 

inhibition mechanism, simulating the action of a pool of inhibitory interneurons 

surrounding a pyramidal cell in the cortex (Braitenberg & Schüz, 1998). 

As discussed in Sec. 1.3, in order to prevent overactivation or bursting, the network 

                                                 
8 In addition to using a sparsely connected network, the stimuli representing acoustic or motor 

cortical activity were also activating the network in a random and sparse way (see Sec. 3.2.1 

for details). Some experimental evidence suggests that the neural code adopted by the brain to 

represent complex stimuli may indeed be distributed and sparse (e.g., (Olshausen & Field, 

1996; Rolls & Tovee, 1995); cf. (Reddy & Kanwisher, 2006) for a discussion). 
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had to implement a self-regulatory mechanism. This mechanism was realised by 

introducing area-specific feedback-inhibition (FI) loops that control the total activity 

within each area (see Fig. 2.3). More precisely, all E-cells of each area project (with 

weight =1) to a single, area-specific I-cell (not part of the underlying layer of local I-

cells), henceforth called FI-cell. Each FI-cell, in turn, projects back to all the E-cells 

of that area, providing an amount of inhibition proportional to the total activity within 

that area. This guarantees that the total network activation is maintained within 

“physiological” bounds. Note that, as explained in Sec. 1.5, the strength of these FI 

loops (depicted as striped arrows in Fig. 2.3) was manipulated during the experiments 

described in Chapter 4 in order to simulate the presence of different amounts of 

attentional resources during language processing. 
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Figure 2.3. Implementation of the self-regulatory cortical mechanism in the network 

architecture. Each feedback-inhibition (FI) cell, depicted in grey, receives input from 

and projects to all E-cells of one area. See text for details.
omplete formulation of the computational features of the model, summarizing and 

plementing the description given in this chapter, is reported in Appendix A. 

 Discussion 

e neural network model implemented aims at mimicking the basic properties of the 

an perisylvian language cortex during word learning. The basic anatomical 

perties that were translated into network structure were the following: 
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I. The parcellation of perisylvian cortex into M1, PM, PF, and A1, AB and PB, 

which is known from work in animals and humans; 

II. The next neighbour and long-distance connections linking these areas directly, 

which is based on work in animals and humans; 

III. General principles of cortical connectivity, especially sparseness and patchiness, 

topography of projections of long-distance connections and next-neighbour 

preference of local links; 

IV. Embedding of excitatory cortical neurons into a network of local inhibitory 

cells; 

V. Embedding of excitatory cortical neurons into area-specific inhibitory feedback 

loops designed to regulate local activation levels. 

Although the connections that were realised are well motivated by neuroanatomical 

studies in both humans and monkeys (see Pulvermüller (1992) for a discussion), we 

only reproduced the predominating next-neighbour connections and long-distance, 

cortico-cortical links that are known to exist in this part of the brain, and did not 

include fine-grained details such as connections between non-adjacent cortical areas 

(for example, linking A1 to the auditory parabelt). There are several reasons for these 

choices. First, neuroanatomical data indicate that each cortical neuron may receive 

links from fewer than 3% of neurons underlying the surrounding square millimetre of 

cortex (Stevens, 1989), and that the probability for a connection between two cortical 

neurons decreases with their distance (Braitenberg & Schüz, 1998). Second, there is 

little evidence for some of these “jumping” connections: for example, pronounced 

direct connections between primary auditory and motor cortex do not seem to exist. 

Third, adding connections that link non adjacent areas (e.g., from area A1 to PB, or 

from AB to PM, as some evidence would suggest (Catani, Jones, & Ffytche, 2005)) 

would reduce the minimum number of areas that separate area A1 from M1, making 

the binding of sensory-motor pattern pairs even easier and effectively resulting in a 

simplified version of the same model (cf. also Sec. 3.1.3). 

As noted in Sec. 1.3, the network is primarily designed as a model of the left 

language dominant perisylvian cortex, as the direct links between superior temporal 

and inferior frontal cortex appear much more developed there than in the non-

dominant right hemisphere (Parker et al., 2005; Rilling et al., 2008). The present 
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number of six areas seems to constitute a minimum for approximating the relevant 

cortical structures, and, at the same time, a sufficient level of complexity for 

replicating and explaining, at cortical-circuit level, the rich dynamics and temporal 

aspects of the neurophysiological brain responses of interest (recall that the neural-

network model of the left perisylvian areas proposed by Husain and colleagues (2004) 

contained four areas, while the connectionist model of early language acquisition 

described by Westermann & Miranda (2004) simulated only two cortical areas, and 

assumed all-to-all connectivity between their constituent cells). 

We conclude this discussion by clarifying the main aspects which distinguish the 

ABS learning rule (implemented here) from the well-known, classical BCM rule. First 

of all, in the BCM rule the LTP/LTD threshold – corresponding to parameter θ+ in Eq. 

(2.4) – is not, like here, a predefined, fixed value, but a sliding threshold that changes 

according to the running average of the postsynaptic cell’s activity.9 As pointed out by 

Miller (1996), although evidence suggesting that the LTP/LTD threshold may be 

affected by the activity of the cell does exist (Bear, 1995; Kirkwood, Rioult, & Bear, 

1996), it has been established that this effect is input (i.e. synapse) specific, and that it 

depends on the pattern of pre-synaptic rather than postsynaptic activity (Abraham & 

Bear, 1996). Thus, the assumption of a single, postsynaptic-driven LTP/LTD 

threshold that applies to all the synapses of a cell is not entirely justified.10 Second, in 

the BCM rule LTD occurs even with very small postsynaptic potentials, whereas 

experimental evidence suggests that if postsynaptic depolarization remains below a 

                                                 
9 More precisely, for the BCM rule to exhibit stable learning behaviour, the threshold must be 

a more-than-linear function of the cell’s average output rate (a power of 2 is usually adopted). 
10 Although evidence in support of the existence of homeostatic plasticity mechanisms exists 

(see (Turrigiano & Nelson, 2004) for a review), phenomena such as that of synaptic scaling 

— showing that prolonged changes in the cell’s activity lead to the  multiplicative scaling of 

all the amplitudes of the miniature excitatory postsynaptic currents (Turrigiano, Leslie, Desai, 

Rutherford, & Nelson, 1998) — do not constitute direct evidence for the presence of a single 

sliding LTP/LTD cell-threshold. Equally, synaptic scaling does not justify assuming that the 

norm of the vector of the synaptic strengths is conserved and equal for all cells, as often 

presupposed by neurobiologically inspired implementations of Hebbian learning (e.g. 

(Krichmar, Seth, Nitz, Fleischer, & Edelman, 2005)). 
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certain threshold, the synaptic efficacy should remain unchanged, regardless of any 

presynaptic activity (Artola, Bröcher, & Singer, 1990). This aspect was implemented 

in the ABS rule using the second (fixed) threshold, parameter θ− in Eq. (2.4). Finally, 

unlike the ABS rule, the BCM rule is unable to model heterosynaptic LTD (the 

weakening of synaptic inputs that are themselves inactive), as it requires at least some 

presynaptic activity to be present at a synapse for LTD to take place. This form of 

LTD has been observed in the hippocampus and neocortex (Hirsch, Barrionuevo, & 

Crepel, 1992); the induction protocols require strong postsynaptic activation (e.g., 

high frequency stimulation of the cell through excitatory inputs), which is accurately 

reflected in the third line of Eq. (2.4) by the condition requiring V(y,t) ≥ θ+.   

 

2.4 Summary and main contributions 

This chapter described the neurocomputational model of the human perisylvian 

language that was implemented. The original contribution lies in the level of accuracy 

that the network model incorporates in terms of neuroanatomical structure, 

connectivity and neurobiological features: (1) six interconnected cortical areas were 

modelled, identified on the basis of neuroanatomical studies; (2) cell activity was 

modelled at the level of single cortical columns; (3) within- and between-area 

synaptic connections were not “all-to-all” but sparse, random, patchy and next-

neighbour, as typically found in the mammalian cortex; (4) both local (lateral) and 

global (area-specific) cortical inhibition mechanisms were implemented;  (5) learning 

was modelled solely as synaptic plasticity (LTD/LTP) mechanisms that are known to 

take place in the neocortex. As discussed in Sec. 2.1 and 2.3 (and earlier, in Sec. 1.4), 

there is, at present, no other computational model of language processing specified at 

the level of cortical columns that implements all of the above features.  

Neurobiological faithfulness was necessary for (i) modelling and explaining existing 

neurophysiological data on lexical processes at the cortical-circuit level, and (ii) 

making precise predictions on the spatio-temporal patterns of brain activation during 

language processing, which could be tested experimentally using MEG techniques. 

The accomplishment of these goals is described in Chapters 4 and 5, respectively.  
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Chapter 3 – 

Simulating the emergence of discrete and distributed 

cell assemblies for words 

 

 

In this Chapter we describe two sets of experiments carried out using the neural-

network model of the left-perisylvian language cortex described in Chapter 2. The 

main focus here was on simulating and explaining, at the cortical-circuit level, the 

processes that may take place in the cortex during early word acquisition. 

 

3.1 Experiment Set 1 – Introduction 

Even during the earliest stage of speech-like behaviour, near-simultaneous correlated 

activity is present in different brain parts (see Sect. 1.2 and Sec. 1.4). Word 

production (controlled in inferior-frontal and prefrontal areas) leads to acoustic 

signals that cause stimulation of superior-temporal auditory areas. Since inferior-

frontal (IF) and superior-temporal (ST) areas are connected reciprocally, and neurons 

that “fire together wire together” (Hebb, 1949), speech-related co-activation of 

neurons in these areas should lead to the formation of word cell assemblies (CAs) 

distributed over IF and ST cortex (Braitenberg, 1978; Pulvermüller, 1999). In order to 

test the mechanistic validity of this theory, we used the model described in Chapter 2 

to carry out proof-of-concept simulations aimed at demonstrating the spontaneous 

emergence of such perception-action circuits in a neurobiologically realistic model of 

the language cortex.  

Word learning was simulated in the model as repeated simultaneous activation of 

predetermined sets of cells in Area 1 (the primary auditory cortex – see Fig. 3.1) and 

Area 6 (primary motor cortex, M1). The presence of an activity pattern in Area 6 can 

be thought to represent the spontaneous motor-cortical activity that one might observe 

in M1 during the babbling phase (Fry, 1966). The pattern presented as input to Area 1 
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simulated the cortical activation that would result in A1 from the near-simultaneous 

perception of the speech sounds generated by the articulatory movements driven by 

the activity in M1. The main prediction here was that well-defined, strongly 

connected CAs would develop for the sensory-motor pairs, associating auditory and 

articulatory activation patterns and representing the network equivalents of brain 

circuits for words (Pulvermüller, 2003). The theory predicted that these CAs should 

be (a) distributed across cortical areas; (b) word-specific, and (c) activated even by 

partial (e.g., only auditory) stimulation. Due to their strong internal and reciprocal 

connections, CAs were also expected to exhibit “memory” and “pattern completion” 

features (see also (Wennekers & Palm, 2007)), i.e., reverberation of excitation within 

the circuit in absence of any input following stimulation, and full activation after only 

partial stimulation. 

 

3.1.1 Experiment Set 1 – Methods  

The network was confronted with four stimulation patterns, each pattern representing 

auditory and articulatory components of a word form: two predetermined, randomly 

generated sets of cells were activated at the same time in the primary auditory (A1) 

and motor (M1) areas (see Fig. 3.1), simulating speech production and correlated 

perception of the same speech element.  

 

 

 

 

 

A1 AB PB PF PM M1 

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 

 
Figure 3.1. Schematic illustration of network simulation of early word acquisition 

processes: predefined stimulus patterns were presented simultaneously to areas A1 and 

M1, resulting in a temporary wave of activation that spread across the network. Black 

(gray) cells indicate strongly (weakly) activated cells. Synaptic links between cells are not 

depicted to avoid clutter. See text for details.  

 

 

 

 

The number of cells (seventeen) activated in each primary area equalled 2.72% of the 
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total number of cells of one area. The training consisted of the cyclic presentation of 

the four different pairs of patterns; during each cycle, one stimulus pair was presented 

continuously to the network for 2 simulation time-steps, followed by a period of 50 

steps during which no input was given and activity was driven by white noise. A 

different stimulus pair, chosen randomly among the other three, would then follow, 

until each of the four stimuli had been presented to the network for thirty five hundred 

times (adding up to 14·103 stimulus presentations in total). 

Throughout the training (including the period in which no input patterns were 

present) the weights of all the links between E-cells were left free to adapt according 

to Sejnowski’s covariance rule (see Sec. 2.2.2), which leads to the strengthening of 

the links between co-activated cells and the weakening of links between cells that 

present uncorrelated activation. 

After the training, the network was tested with a view to reveal the presence and 

properties of cell assemblies, which were expected to emerge for the given auditory-

motor pattern pairs. More precisely, for each of the four patterns presented in input, 

the time-average of the response (output value, or “firing rate”) of each E-cell in the 

network was computed and stored.11 These averages were used to identify the CAs 

that developed in the network in response to the four input pairs, as follows: a CA was 

defined simply as the subset of E-cells exhibiting average output above a given 

threshold γ∈[0,1] during stimulus presentation.12 Using the above functional 

definition, we then measured, for different values of γ, (i) CA size (averaged across 

the CAs that emerged in the network as a result of learning) and (ii) distinctiveness of 

a CA, quantified as the average overlap (number of cells that two CAs shared) 

between one randomly chosen CA and the other three (this is also a measure of the 

amount of cross-talk between pairs of CAs). We repeated the above process and 

collected these measures for ten different networks, each randomly initialized and 

trained with a different set of stimulus pairs.  

 

                                                 
11 The time-averages of the output values were computed during the training, recording the 

cell responses as the four patterns were presented to the network for learning.  
12 E.g., if γ = 0.75, all cells presenting output above 75% of the output of the maximally active 

cell in their area during stimulus presentation were considered to belong to the active CA. 
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3.1.2 Experiment Set 1 – Results  

As the training progressed, we observed the emergence of distributed cell assemblies, 

different assemblies responding selectively to a different input pattern. This 

phenomenon becomes apparent by examining the time-averaged response that each 

input pattern induced in the network at the different stages of the learning process.  
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Figure 3.2 (panels (a) and (b) are shown on two separate pages) contains the time-

averaged response of one (randomly chosen) network to the four input patterns pairs 

(one for each row), at different points during the training (after 10, 50, 100 stimulus 

presentations in Fig. 3.4.(a), and after 1000, 2000, 3500 in Fig. 3.4.(b)).  
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Figure 3.2.(b). Average response of one network to the 4 input patterns after 1000

(top), 2000 (middle) and 3500 (bottom) stimulus presentations. See text for details. 
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In the figure, the different output value (firing rate) of each cell within an area is 

coded using different brightness levels: very bright or white squares indicate cells 

with average output ∼1.0, dark or black areas indicate silent cells (output ∼0.0).  

Initially, the presentation of the input pattern pairs produces only weak activation in 

the two secondary areas AB and PM, and no activation in the central (or associative) 

areas PB and PF. As the learning progresses, however, the average response produced 

by the same stimulus reaches further towards the central areas (Fig. 3.2.(a)), where the 

binding of the sensory-motor patterns is expected to take place. Note that the average 

responses after 2000 and 3500 stimulus presentations (Fig. 3.2.(b)) are essentially 

identical, suggesting that the four CAs have reached a stable size and their boundaries 

have not changed during the past six thousand alternated stimuli presentations. The 

time-averaged response of the other trained networks was qualitatively equivalent. 

To see that the binding of the four auditory and articulatory pattern pairs induced by 

the learning process has taken place, consider Figures 3.3 and 3.4. In them, the rows 

represent “snapshots” of a network activity taken at successive time points following 

brief (2-step) stimulation pulse to Area 1 with the auditory part (left pattern only) of a 

stimulus pair. Time t is in simulation steps. The network of Fig. 3.3 was untrained 

(i.e., the stimulus presented to A1, shown in the leftmost column, had never been 

“heard” before by the network). Figure 3.4 shows the response of the network to a 

learnt auditory pattern after the training had been completed. In absence of training, 

activity propagates in a rather cloudy and unfocussed manner, reaching only the first 

and second areas, and is then dispersed (Fig. 3.3). One point to notice is that the wave 

of activation spreading appears to be “pushed” to the right. This is due to the presence 

of the FI mechanism (see Sec. 2.2.3): the area-specific inhibition loop takes effect as 

soon as the activation within one area increases, and remains active for a few steps; 

this prevents activation to immediately “re-enter” an area which has just been active. 

The response of a trained network to a known, familiar auditory pattern differs 

significantly (see Fig. 3.4). First of all, the activity is now much more focussed: only 

very specific sets of cells are strongly activated. At time t=2 the active cells in Area 

A1 already produce activation in a specific subset of cells in area AB. The activity of 

these cells is significantly higher than that of cells activated in the surround by the 

non-specific wave (compare their brightness with that of the active cells in AB in Fig. 

3.3). This indicates that their input must come directly from the strongly active cells 
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in A1. Hence, these cells will respond strongly whenever this specific input pattern is 

present. Furthermore, the activation does not stop at the first few areas, but progresses 

through the entire network until it reaches area M1. This indicates the existence of 

strong (possibly reciprocal) links between cells distributed across the six areas, which 

developed as a result of learning. Crucially, the cells activated in M1 reconstruct part 

of the motor pattern (shown in the figure for illustrative purposes only) that had been 

presented to that area in association with this specific “word”. Thus, the observed 

behaviour suggests the presence of a distributed, stimulus-specific CA in the network 

associating the two sensory-motor patterns. 
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Input to A1 A1 AB PB PF PM M1 

Figure 3.3. Network response to stimulation of A1 (auditory cortex) with an 

activation pattern before training. Each row in the figure is a snapshot (taken at 

time-steps t=0, 1, 2, ..., 10) of the output activity of the six model areas 

(columns). The input pattern briefly presented to Area 1 is shown on the left.  
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Figure 3.4. Network response to A1 stimulation with an auditory activation pattern 

(on the left) after training. The motor pattern that had been paired with the auditory 

input is shown on the right for illustrative purposes. Refer also to Fig. 3.2 [after 

(Garagnani, Wennekers, & Pulvermüller, 2007)] 
res 3.5 and 3.6 below plot cell assembly size and specificity, respectively 

raged across ten trained networks) as a function of the minimal-activation 

hold γ, the parameter used for identifying the CAs and their boundaries (see Sec. 

). Fig. 3.5 indicates that, on average, distributed, stimulus-specific CAs reliably 

rged in all the network simulations. However, their size decreased approximately 

linear function of the minimal-activation threshold γ. This suggests the absence of 

ritical” level of activation above which only a well-identifiable set of cells is 

bly activated. Instead, the boundaries of the CAs appear to be somewhat “fuzzy” 

not so well defined, and to overlap significantly with those of other CAs. The 

age overlap (or cross-talk) between pairs of CAs is reported in Figure 3.6, which 

s the % of shared cells between a randomly chosen CA and (i) the other three 

 (we plot the mean of the three overlaps) and (ii) the CA maximally overlapping 

 the chosen one, averaged across the ten networks. 
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Figure 3.5. Average cell-assembly size. The average (SEM) number of cells

within the entire network that were activated above threshold γ by a specific input

stimulus (auditory and articulatory word forms) is plotted as a function of the

threshold γ. Vertical bars give standard errors of the mean (SEM).  
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Figure 3.6. Cell-assembly distinctiveness: average (SEM) overlap between pairs 

of CAs as a function of the minimal-activation threshold γ (see text for details). 
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3.1.3 Experiment Set 1 – Interim Discussion 

We applied the model of the left-perisylvian language cortex to simulate brain 

processes of early language learning. The sensory-motor patterns that were repeatedly 

presented to the network (producing simultaneous activation of Area 1 and Area 6) 

led to the formation, through Hebbian learning processes, of strongly interconnected 

sets of cells, associating the acoustic and articulatory components of the simulated 

word patterns. These cell assemblies were (a) distributed across cortical areas, (b) 

word-specific, and (c) activated even by partial (e.g., purely auditory) stimulation.  

The formation of distributed and distinct (although partly overlapping) circuits 

associating activity patterns as a result of biologically grounded correlation learning in 

a network structure involving several areas is remarkable and of theoretical 

significance, particularly in view of the random and sparse connectivity realised 

between and within the areas. Indeed, it is often argued (O'Reilly, 1998) that learning 

(hetero) associations between arbitrary pairs of patterns requires supervised 

mechanisms analogous to back-propagation (Rumelhart, Hinton, & Williams, 1986), 

whose biological plausibility remains questionable. 

As discussed in Sec. 2.3, the connections implemented in the model are well 

motivated by neuroanatomical studies in both humans and monkeys (cf. (Pulvermüller 

& Preissl, 1991)). Still, one may want to ask questions about the dependence of the 

results on the network structure. The model is robust to a reduction in the number of 

areas, and produces analogous results when 4 or 3 areas are used. This is because a 

smaller number of areas actually means a shorter path to be traversed by the auditory 

and motor activation patterns in order to “meet” the wave of activity coming from the 

opposite end. Indeed, if the number of areas is reduced to only two, the model 

becomes a simple two-layer interactive network with no “associative” layer 

(analogous to that used by Westermann & Miranda (2004)) and the binding between 

the two patterns takes place through the reinforcement of the synapses that exist 

between co-active cells. Hence, the introduction of such more direct links is not 

expected to produce any significant change in the qualitative behaviour of the 

network. 

On the other hand, an increase in the total number of areas separating the two 

“primary” areas A1 and M1 is expected to make CA formation slower and more 
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difficult. Subject to some parameter changes, however, and up to a certain number of 

additional areas, results should still hold, although a greater number of training steps 

will be required. It should be noted, however, that there is relatively strong evidence 

for the existence of a 6-area pathway connecting A1 to perisylvian primary motor 

cortex (Pulvermüller, 1992). Even if additional, “parallel” pathways, connecting A1 

and M1 through a number of areas higher than 6, were introduced in the model (see, 

e.g., (Catani, Jones, & Ffytche, 2005)), it is unlikely that their presence would prevent 

the development of cell assemblies within the shorter, still viable, 6-area pathway, 

which would be automatically recruited. 

Although in many cases CAs were entirely word-specific (i.e., none of the cells 

active above threshold for a specific word was also active for a different word), 

sometimes they did overlap significantly (see Fig. 3.6). A high level of overlap (or 

cross-talk) is undesirable as it may cause a CA to activate in response to the wrong 

stimulus pattern, and activity in one CA to reliably induce ignition of another CA; in 

presence of Hebbian correlational learning, this eventually leads the two CAs to 

merge into a single one which responds to both input stimuli. Indeed, this 

phenomenon (and other inter-related problems) often hindered the formation of 

distinct CAs in the network during preliminary simulations (see Appendix B). The 

significant overlap between CAs is a symptom of the network’s inability to separate, 

or “pull apart” input representations that produce overlapping activations. We 

attribute this to the fact that Sejnowski’s covariance rule (Sec. 2.2.2) does not 

implement competitive learning (K. D. Miller & Mackay, 1994).  

Competitive learning (Grossberg, 1976a, , 1976b; Kohonen, 1984; Kohonen & 

Makisara, 1989) is a form of unsupervised learning in which the network learns how 

to categorize and gradually “separate” input patterns so that only one output unit 

responds to a given pattern. The covariance rule fails to achieve this, and encourages 

CA merging rather than CA separation. To see why this is so, consider the 2-area 

network of cells depicted in Figure 3.7 below. Let us assume that the network uses 

sparse coding, and that the cells in area 1 are repeatedly confronted with different 

patterns of activation. Assume that two input patterns (called A and B) strongly 

activate cells A1, A2, C1, C2 and B1, B2, C2, C3 respectively. 
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During learning, the weights are modified according to the co-variance rule, which 

can be summarized by the following table: 

 

Pre-synaptic cell Post-synaptic cell  ∆w= pre* post

active ↑ active ↑ ↑ 

silent  ↓ active ↑ ↓ 

active ↑ silent ↓ ↓ 

silent ↓ silent ↓ ↑

 

The size of the arrows in the table indicates the magnitude of the difference 

current and average activity of that cell; the orientation indicates the sign 

difference (up: positive; down: negative). The differences are larger when 

fully active than when they are silent (in a sparsely active network, a cell’s 

activity is much closer to zero than to its maximum level of activation).  

First, note that links between two cells that are simultaneously sil

strengthened (case (d)). In addition to not being neurobiologically plausible, th

to an overall “gluing” effect. Addressing this issue by simply setting ∆w = 0

(d) would not be sufficient to solve the merging problem. In fact, becaus

Figure 3.7 Schematic illustration depicting an example of overlapping cell assemblies. 

Nodes simultaneously active are depicted using the same fill pattern. The weights of 

the links between area 1 and area 2 are labelled w1,....,w6. The dashed and dotted lines 

identify the two CAs activated by two different input patterns (see text for details). 
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differences in magnitude, the net effect produced by the alternated strengthening (a) 

and weakening (cases (b) or (c)) of a link is an increase in strength. In the example of 

Fig. 3.7, alternation of inputs A and B means alternated increase (a) and decrease (b) 

of w3 and w4: the net effect is a weight increase in both, which, in the long run, will 

cause the two cell assemblies to merge into a single one. 

This problem may be addressed in different ways, e.g., by imposing a fixed ∆w (so 

that weakening and strengthening would produce weight changes of equal 

magnitude), changing the density of the between-areas connectivity, or increasing the 

level of spontaneous activity in the network (so that the average activation of a cell is 

mid-way between silent and fully active). Some of these strategies were adopted in 

the revised version of the model, in which the covariance rule was replaced by the 

second, more biologically accurate Hebbian rule, based on the ABS model of 

LTP/LTD (see Sec. 2.2.2). Unlike the covariance rule, the ABS rule: 

• uses the same amount of weight change ∆w per unit time for both LTP and 

LTD; 

• does not strengthen links between cells that are simultaneously silent; 

• uses a single parameter’s value (the postsynaptic membrane potential) to 

determine whether LTP or LTD should occur – see Eq. (2.4). 

In view of the previous considerations, we expected the first two features to lead to a 

lower degree of merging and overlap between CAs. The last feature (also based on 

neurobiological evidence) allows one to precisely define the ranges of values of the 

postsynaptic membrane potential for which either LTP or LTD will occur. We 

conjectured that, by changing the ratio between the widths of these ranges, it should 

be possible to modulate the total amount of competitive learning that takes place in 

the network. Experiment 1 was then repeated using the revised model; the results of 

these simulations are reported below.  

 

3.2 Experiment Set 2 – Emergence of CAs in the revised model 
This set of experiments was analogous to Experiment Set 1 (previous section), but 

was performed using a model that implemented the Artola-Bröcher-Singer rule 

instead of Sejnowski’s covariance rule to simulate synaptic plasticity. This aimed at 
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reducing the amount of overlap between the CAs and hence the likelihood of them 

merging. In addition to replicating and improving on the results of Experiment Set 1, 

we were interested in quantifying the functional characteristics and 

neurophysiological properties of the CAs in terms of their distributedness, memory 

features and pattern completion abilities.  

 

3.2.1 Experiment Set 2 – Methods 

The methods for this set of experiments are analogous to those used in Experiment Set 

1, Sec. 3.1.1: we generated and randomly initialised eight different networks, and 

trained each of them with four different pairs of random sensory-motor patterns; here, 

each stimulus pair was presented five thousand times. As in Experiment 1, 

subsequently to the successful emergence of distributed cell assemblies, we measured 

(i) average CA size and (ii) average overlap (number of cells that two CAs shared). In 

addition, by recording the networks’ responses to stimulation of Area 1 only, we also 

measured CA input specificity and recollection (or “pattern reconstruction”) ability of 

a CA, which quantified how easily (what portion of) a CA became fully active 

following activation of just a subset of its component cells. This was done by 

presenting, for four time steps, only the auditory component of the four learnt pairs 

and measuring, area by area, the average of (a) the induced CA activity (in %), and 

(b) the cumulative portion of CA cells that were reactivated by the stimulus. The 

averages were calculated across all the four patterns for each of the eight different 

networks, producing a total of 32 different (stimulus, network) pairs.  

 

3.2.2 Experiment Set 2 – Results 

Like in Experiment Set 1, as the training progressed, we observed the emergence of 

distributed cell assemblies associating sensory-motor patterns. However, the CAs that 

emerged were qualitatively different from those observed in the previous set of 

experiments. Figure 3.8.(a) shows the time-averaged response of one (randomly 

chosen) of the networks to the presentation of one of the four input patterns (words) at 

different stages of learning. Compare the network responses shown in this figure with 

those shown in Figure 3.2 (a) and (b). 
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 Figure 3.8.(a). Average response of one network to one of the 4 word pattern pairs that 

it had been trained with, at different stages of learning: after 10, 100, 1000 and 5000 

stimulus presentations. 

 

 

Like before, activation is initially weak in the middle areas; however, as learning 

progresses, the CA quickly reaches and expands within areas PB and PF, where the 

binding between sensory and motor patterns takes place. The number of cells that are 

involved in the binding is significantly higher than that observed in the previous 

simulations. Crucially, at later learning stages, the size of the CA in the middle areas 

decreases (compare the responses after 100 and 5000 stimulus presentations: both the 

number of white squares and the intensity of their activation is reduced). This 

indicates that, after the initial period of expansion, the cells in areas PB and PF, most 

densely populated, undergo a process of competition, which allows only the most 

active ones (and the strongest links) to survive, leading to a “pruning” of the synaptic 

connections and CA size reduction.  

Figure 3.8.(b) illustrates an interesting example of one of the networks responding to 

the auditory pattern of a word stimulus after training. The behaviour of the network 

during the first 12-16 steps is analogous to that obtained with the previous version of 

the model (see Fig. 3.4). Notice, however, also the presence of a fast, unfocussed 

wave of activity, produced by non-specific activation in the auditory area, which 

quickly traverses the entire network and is over by time t=20. 
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Figure 3.8.(b). 

Network response to 

Area 1 stimulation 

with the auditory 

component of one of 

the learnt pairs after 

training. Each row is 

a snapshot of the 

network output taken 

at successive time 

points. The associated 

motor pattern that the 

network was trained 

with is shown, for 

comparison only, on 

the right hand side. 

See text for details. 
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Consider Area 1-3: the specific cells activated there remain active well beyond the 

removal of the input stimulus. This suggests that these cells are part of a circuit of 

strongly connected cells, which emerged with learning and which create within- and 

between-area reverberant activity. As in Experiment 1, the somewhat slower 

propagation of activity within specific, isolated cells continues across the network, 

although the number of cells strongly active appears to decrease as the middle and 

rightmost areas of the network are reached (time t=12–24). When the reverberant 

activity reaches the final area (t=20), an interesting process takes place: from the 

activity of a few cells situated mostly in the top part of Areas 4-6, an entire new 

“pulse” of reverberant activation develops, not producing a dispersed cloud but 

strongly activating only a very specific set of cells in Areas 6, 5 and 4. Notice that 

when this second slow wave “peaks” (t~36), the articulatory activation pattern (shown 

in the rightmost column of Fig. 3.8.(b) for illustrative purposes only) that had been 

paired with this auditory input pattern is reproduced almost entirely in Area 6. Finally, 

the wave of reverberant activation stops when it fails to activate a specific set of cells 

in Area 3 strongly enough so as to allow self-sustained activation to continue. 
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 Figure 3.9. Average CA size. The average (SEM) number of cells within the 

entire network that responded above threshold to a specific input stimulus is 

plotted as a function of the threshold γ.  
 

 

Figure 3.9 plots CA size (averaged across 32 CAs, produced by the four input stimuli 

in each of the eight networks) as a function of the threshold γ, where a CA is defined 

as specified in Sec. 3.1.1. As one would expect from such a functional definition, 
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small values of γ still correspond to larger assembly sizes, and vice versa.  However, 

the size of the CA does not change much when γ is in the range [0.05, 0.7], and, even 

for γ=0.95, the CA size is around 50 cells. Thus, CAs appear to be well identifiable 

entities formed by a “core” of about 50 cells that respond very strongly (at least 95% 

of the maximally active cell, on average) to the input stimulus, and by an additional 

“belt” of about 30 cells that respond more moderately but still well above average (at 

least 70% of the maximally active cell). 

Figure 3.10 plots the results concerning the CA distinctiveness. The maximum 

overlap (i.e., maximum % of cells in a CA that are shared with another CA) is above 

5% only for values of γ < 0.1. The average overlap between two CAs, on the other 

hand, is always below 5% and less than 2% for γ > 0.2. This makes cross-talk very 

unlikely, as activation of 2%-5% of the cells is not sufficient to cause full CA 

activation (see also Fig. 3.13). 
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Figure 3.10. CA distinctiveness. The graph plots the mean overlap between one CA 

and the other three (solid line) and the overlap between one CA and the maximally 

overlapping CA (dashed line) as a function of the minimal-activation threshold γ. 

The data are the average (SEM) of the results of eight network simulations. 

 

 

 

Figure 3.11 and 3.12 show the area-specific spatio-temporal activation and pattern 

completion properties of the CAs, respectively. Figure 3.11 plots the percentage of 
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CA cells active above threshold γ13 in each area after stimulation of Area 1 only with 

a learnt auditory pattern. The figure delineates how the wave of CA activation spreads 

across the network, and the contributions of the different areas to the total activation, 

each area peaking at a different time and with different intensity. Figure 3.12 

summarizes the average pattern-completion abilities of the network, plotting the 

cumulative portion (in %) of CA cells in the different areas that are re-activated 

following stimulation of Area 1. This graph is obtained by integrating over time the 

plots of Figure 3.11. As one might expect, pattern completion worsens as activity 

propagates further away from the input area and activation becomes weaker. The 

motor pattern that had been paired in Area 6 with the auditory pattern in Area 1 (now 

given as input to the network) is, on average, reconstructed only partially 

(approximately 30%), while the average pattern reconstruction across the six areas is 

above 75%. It should be noted that the network responses to learnt patterns never 

contained any “spurious” cells; in other words, the only “errors” are missing cells that 

fail to be fully reactivated. Thus, although the associated pattern is not entirely 

reconstructed, all the cells activated by the stimulus are correct and can be seen as a 

reliable set of “core” representation units. 
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Figure 3.11. Spatio-temporal pattern of activation of a CA. The curves show the 

average area-specific CA activation following Area-1 stimulation with one of the 

learnt auditory patterns (words) as a function of time.  

13 We used γ=0.45, but, as discussed above, any γ∈]0.2, 0.7] is expected to produce similar 

results. 
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Figure 3.12. Average pattern-completion abilities of a CA. The bars show the 

cumulative portion of a CA (% of CA cells per area) that a learnt stimulus presented 

to Area 1 successfully reactivates over the 50 steps following stimulation, averaged 

across 32 different auditory patterns (four patterns per network). The rightmost bar 

indicates the average of the six area-specific values. 

 

 

 

 

 

 

 

 

 

 

 

 

Cell-assembly responses to Area-1 stimulation with a word
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 Figure 3.13. CA specificity. The graph shows the average (SEM) response of the 

four different CAs following auditory (Area 1) stimulation with one of the learnt 

patterns. The activation threshold used was γ=0.45. 
 

 

Finally, Figure 3.13 illustrates the results on CA input specificity. Each curve plots 

the sum, across the six areas, of the output of all the cells of each CA as a function of 

time. CAs appear to be highly specific: only one CA is strongly activated by the 

pattern in input, while the others show very little, if any, activity. These results 
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confirm the conclusions drawn from Figure 3.10, which suggested little probability of 

cross talk between CAs. 

 

3.2.3 Experiment Sets 1 & 2 - Discussion 

The results of Experiment Sets 1 and 2 demonstrate the emergence of CAs in the 

network. As mentioned in Sec. 3.1.3, the successful setup of distributed Hebbian 

circuits spanning a realistic number of cortical areas forming the substrate of 

perception-action learning is remarkable, given that no computational “tricks” such as 

back-propagation of errors (Rumelhart, Hinton, & Williams, 1986) were used during 

the training.  

The emerging CAs are strongly interconnected sets of cells that exhibit:  

(a) Distributedness and sparseness (Fig. 3.9 and Fig., 3.11, respectively): one CA 

consists, on average, of less than 100 cells distributed across the six areas, 

equivalent to less than 2.67% of all cells within the network; 

(b) reverberation and persistence of activity (Fig. 3.13 shows strong CA activity 

until 35-40 steps after stimulus offset) in absence of input within well-

identifiable sets of cells; 

(c) relatively stable size for different critical activation thresholds γ (Fig. 3.9); 

(d) small overlap and cross-talk between pairs of CAs (less than 5% on average), 

and high specificity of response (Figures 3.10 and 3.13); 

(e) pattern completion abilities (averaged across areas) above 75%, in spite of the 

sparse and random character of the network connectivity (Fig. 3.12). 

These results suggest that a CA behaves as a highly specialised, discrete activation 

(“on-off”) functional unit which, if sufficiently stimulated, becomes fully active 

through a positive-feedback process of reverberation (Braitenberg, 1978; Hebb, 1949; 

Pulvermüller, 1999). Indeed, the macroscopic behaviour of a CA appears to be non-

linear and characterised by a specific activation threshold, very much like a single 

neuron. For the positive-feedback loops that form a CA to be able to “drive” the 

circuit towards full activation, it is necessary that sufficient activity is captured by 

them so that the amount of self-generated excitation overcomes the amount of 

“leakage” and dispersion. If the activity present in the positive-feedback loops 
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exceeds this threshold (the value of which depends on the specific characteristics – 

strength, reciprocity – of the internal connections of the CA), the total activity in the 

CA does not dissipate but starts to increase and propagate to the rest of the CA, in a 

wave-like fashion (see Figures 3.4 and 3.8), producing a momentary “pulse” or peak 

of activation in the entire CA (see Fig. 3.13). This surge of activity in the network 

(sometimes called “ignition” (Braitenberg, 1978)) causes the area-specific inhibition 

mechanism to take effect, which then subsequently inhibits the CA and the entire 

network (overshoot).  

In the revised version of the model, Hebbian learning was implemented according to 

the ABS model of LTP and LTD (Artola & Singer, 1993). Compared with the original 

concept of coincidence learning mentioned by Hebb (in which synaptic modification 

occurs only as strengthening of connections between two co-active neurons), both the 

covariance and ABS rules envisage, in certain cases, the weakening of links: more 

precisely, while co-occurrence of sufficient pre-synaptic activity (O(x,t)≥θpre) and 

strong post-synaptic depolarization (V(y,t)≥θ+) leads to a weight increase (LTP), 

presence of only one of these conditions leads to a decrease (LTD). Such weakening 

contrasts the ever increasing synaptic weights that are brought about by coincident 

activation. The effects of adopting the more neurobiologically realistic (ABS) rule, 

however, are evident. First of all, CA size is much more stable across different 

threshold values (compare Fig. 3.9 and Fig. 3.5); the results indicate that the 

distributed representations that emerged are clearly identifiable sets of strongly 

interconnected cells. Secondly, CAs are significantly “thicker” in the middle areas 

(compare Fig. 3.8.(a) and Fig. 3.2); this allows more cells to be involved in the 

binding between sensory and motor patterns, leading to stronger CAs and better 

pattern completion capabilities (compare the portion of the motor pattern 

reconstructed in Area 6 by the response shown in Fig. 3.8.(b) with that shown in Fig. 

3.4). Most importantly, the adoption of the ABS rule introduced a competitive 

element in the learning process (see Fig. 3.8.(a)) which minimized the problems of 

merging and cross-talk (compare Fig. 3.10 and Fig. 3.6) and led CAs to become 

anatomically distinct (and functionally discrete) units. 

The adoption of a more realistic unsupervised learning rule made the formation of 

relatively stable cell assemblies more difficult than it would have been using 

supervised (e.g.,  backpropagation) learning methods, and made it subject to the 
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optimization of various parameters of the network. Appendix B describes these 

problems in detail and the way in which they were addressed. In the past, some of 

these issues have been used as arguments against the feasibility of correlation learning 

and of the Hebbian cell-assembly model. For example, in a useful compendium of 

such arguments, Milner (1996) wrote:  

“It is difficult […] to understand why the synaptic modification that links 

neurons to form an assembly fails to involve more and more neurons until the 

whole brain becomes one immense and useless cell assembly” (ibid., p.70) 

and, later: 

“Another serious problem is that an assembly of neurons linked by excitatory 

connections would be inherently unstable and liable to fire out of control at the 

slightest disturbance” (ibid., p.72). 

Our model provides evidence that these problems can be overcome, even if 

biologically plausible associative learning is used. First of all, the growth of a CA is 

limited by the slow but constant competition for shared cells that takes place between 

different CAs (see Fig. 3.8.(a)). To clarify: every time a CA is stimulated, the learning 

causes some synapses to strengthen and others to weaken. As a result, some cells 

become more strongly connected to a CA (i.e., more likely to be activated by it), and 

less to other, inactive, CAs. If the network were always confronted with only one 

stimulus, the corresponding CA would indeed keep growing and take over the entire 

network. However, during training, the input stimuli alternate continuously (see Sec. 

3.1.1); each different stimulus excites a different CA, possibly overlapping with other 

CAs. The continuous alternation of different stimuli causes the cells that are shared 

by the different CAs to be alternatively bound more strongly into one or the other 

assembly. If the input stimuli alternate in a balanced way (as was ensured here), the 

cells in the overlap never become entirely an exclusive part of any of the competing 

CAs; rather, they are the site of a constant competition in which each of the 

assemblies is limiting the growth of the others, producing a state of dynamic 

equilibrium.  

Secondly, regarding the instability of a CA (and of the network), spontaneous 

activation of CAs during periods in which no input was presented did occur, as 
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predicted, due to the background noise present in the network.14 However, whenever 

this happened, the self-regulation mechanism (FI) started to operate, causing the CA 

to be “switched off” soon after its full activation and preparing the ground for the next 

CA activation. 

One last point concerns the number of (sensory-motor) pattern pairs used to train 

and test the network, which is very small (four) when compared to the number of 

words that our brain can store. Implementing a large-scale network capable of storing 

a realistic number of lexical items was not one of the objectives of this work: our 

main aim was to show proof-of-concept simulations that enable the explanation of 

previous experimental findings and prediction of future ones. As the next Chapter will 

demonstrate, for these purposes it is sufficient to model the acquisition and processing 

of a limited number of exemplar sensorimotor patterns, lexical items, or words. 

 

3.3 Summary and main contributions 
We used the model described in Chapter 2 to test the mechanistic validity of the 

theory according to which speech-related co-activation of neurons in IF and ST cortex 

should lead, in presence of Hebbian learning, to the formation of word cell assemblies 

(CAs) distributed over these areas (Braitenberg, 1978; Pulvermüller, 1999). The 

simulations demonstrated the spontaneous, unsupervised emergence of such strongly 

connected perception-action circuits, providing proof-of-principle evidence in support 

of the theory, and demonstrating the viability of correlational learning for the 

formation of (sensory-motor) associations in a hierarchical, brain-like, multi-layered 

neural network architecture. 

A second contribution of the simulations is the prediction that the emerging lexical 

representations will exhibit the following characteristics: functional discreteness (“on-

off” activation levels), cortical distributedness, sparseness, reverberation (short-term 

memory features), anatomical distinctiveness, and pattern completion abilities. Some 

of these characteristics, together with the simulations described in Chapter 4, will give 

rise to specific predictions about the neurophysiological effects of attention on lexical 

processes, which will be tested in Chapter 5. 

                                                 
14 This behaviour was not entirely undesired, as it can be interpreted as a model analogue of a 

“spontaneous thought”. 
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Chapter 4 – 

Simulating Lexicality and Attention effects 

 

 

This chapter describes two additional sets of experiments carried out using the neural-

network model of the language cortex presented in Chapter 2. These tested whether a 

network that had developed a set of word representations as a result of learning (see 

Chapter 3) could replicate and explain existing neurophysiological data on the effects 

of lexicality and attention on the processing of speech.  

 

4.1 Experiment Set 3 – Replicating lexicality effects 

Here we used the set of eight networks resulting from Experiment Set 2 (Sec. 3.2) to 

simulate the brain responses to meaningful words and meaningless pseudowords (i.e., 

non-English, phonotactically correct word-like material, such as “sklued”, or 

“drock”). We wanted to test whether the model could replicate recent evidence 

according to which early (< 200 ms. post stimulus onset) neurophysiological 

responses are larger to (spoken) words than to pseudowords – see Sec. 1.1., Figure 1.2 

(Korpilahti, Krause, Holopainen, & Lang, 2001; Pettigrew et al., 2004; Pulvermüller 

et al., 2001; Pulvermüller & Shtyrov, 2006; Shtyrov & Pulvermüller, 2002). 

 

4.1.1 Experiment Set 3 – Methods 

We recorded the network responses following brief stimulation (four time steps) of 

the auditory area only (Area 1, see Fig. 3.1) with either one of the learnt patterns 

(words) or a new, previously unseen, pattern (pseudoword). We generated 

pseudoword patterns by “gluing” together randomly scrambled sub-word patterns. 

More precisely, for each network, the four pseudoword patterns were generated by 

combining sub-parts of the four word patterns at random (recall that these are 25-by-

25 squares of binary configurations containing n=17 cells set to “1” and 608 cells set 

to “0”), using the following procedure: 
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• For all i∈{1,..4}, divide word pattern wi  into 25 sub-patterns of size 5x5; 

• For all j∈{1,..4}, initialise the pseudoword pattern pwj as empty; 

• let j=1: 

(A) copy six randomly chosen sub-patterns from each of the four wi into 

pwj , so that the original position of each sub-pattern in wi is preserved 

in pwj; 

(B) if the number of active cells in pwj is > (<) n, set a randomly chosen 

cell in pwj to 0 (to 1) until pattern pwj contains exactly n set to “1”; 

• Repeat steps (A—B) for j=2,3,4. 

In sum, each pseudoword pattern pwj was made up of 24 quadrants (sub-patterns) of 

size 5x5 that had been “cut and pasted” from the word patterns, plus one empty 5x5 

square. Each sub-pattern in pwj was located just where it was in the original word, and 

each word pattern wi contributed the same number of sub-patterns (six) to each pwj. 

Thus, this algorithm produces pseudoword patterns that preserve part of the original 

features of the words (the total number of active cells in each pattern is preserved, and 

subsets from each of the wi are reproduced in each pwj) while, at the same time, 

mixing the four words in a random and balanced way.  

 

4.1.2 Experiment Set 3 – Results 

Presentation of patterns not previously stored in the network (pseudowords) produced, 

on average, a smaller initial response in the network than the one obtained with learnt 

patterns (words), and led to only partial activation of the cell assemblies.  

Figure 4.1 below summarises the results from eight different networks, obtained 

from Experiment Set 2 and each trained using a different set of four word patterns. In 

the graph, the average total network response to a word (learnt pattern) or pseudoword 

presentation is plotted against time (in simulation steps). The total network activity 

was calculated as the sum, across the six areas, of the output values (or “firing rates”) 

of all the E-cells. Bars indicate standard errors of the mean (SEM). 

 

 

 



 63

 Network response to words and pseudowords
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Figure 4.1. Simulated cortical response to spoken words and pseudowords. The graph 

plots the average total network activity (sum of all cells’ firing rates in the entire 

network, averaged across 32 different trials using eight different networks) following 

presentation of a word or pseudoword pattern to Area 1 (auditory cortex). Note the 

delayed and reduced peak of the pseudoword curve compared with the word response. 
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Figure 4.2. CA-specific response to pseudowords. The graph shows the average 

(SEM) response of the four different CAs following auditory (Area 1) stimulation 

with a pseudoword pattern, averaged across eight networks (cf. Fig. 3.12).  
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Figure 4.2 plots the average response of each of the four CAs (identified using 

threshold γ=0.45) to stimulation with a pseudoword pattern. Unlike the response 

produced by a word (Fig. 3.13), in which essentially only one CA was activated, here, 

all four CAs initially responded, although to different degrees. After about 10 steps, 

the maximally stimulated CA “prevails” over the other three and becomes strongly 

active, while activity in the other CAs quickly falls to zero (although some activation 

continues to reverberate in their circuits). Note that the peak of the activity of the CA 

responding most strongly is still (on average) significantly smaller than the peak of 

the CA’s activation following stimulation with a word (cf. Fig. 3.13).  
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Figure 4.3. Area-specific network responses to stimulation of the auditory cortex 

(Area 1) with learnt word patterns, averaged across 32 pattern-network pairs. The sum 

of the six curves equals to the word response plotted in Fig. 4.1 (red curve). 

 

 

 

Figures 4.3 and 4.4 break down the total network responses to words and 

pseudowords plotted in Fig. 4.1 into area-specific contributions (as a function of 

time). The difference between the two responses appears to be caused mostly by 

reduced activation amplitudes in Areas 2, 3, 4 and 5 following pseudoword 

stimulation. The peaks of these curves also appear to be delayed in time. Apart from 
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this delay, the amount of activation produced in the motor area (Area 6) is relatively 

unaffected by the lexical status of the stimulus.  
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Figure 4.4. Area-specific network responses to stimulation of the auditory cortex 

(Area 1) with pseudoword patterns, averaged across 32 pattern-network pairs. The 

sum of the six curves equals the pseudoword response plotted (in blue) in Fig. 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.3 Experiment Set 3 – Interim Discussion 

The implemented neural-network model of the language cortex can straightforwardly 

replicate a feature of language processing in the human brain – namely, that within 

certain experimental conditions, spoken words stimuli elicit stronger brain responses 

in the left perisylvian language cortex than meaningless pseudowords never heard 

before (see Sec. 1.1, Fig. 1.2). The critical feature, according to the present 

simulations, is that the distributed representations that had emerged for the learned 

patterns amplify cortical activation due to reverberant (feedforward and 

feedbackward) connections within the word cell assembly.  

Notice that the conjecture that information about pseudoword stimuli propagates 

through synapses that have a mean strength significantly lower, on average, than those 

mediating word information is not entirely correct. In fact, a pseudoword pattern is 

built by combining smaller sub-word patterns extracted from the four words; thus, 

when four words or the corresponding four pseudoword patterns are presented, overall 
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the same neuronal populations are being stimulated. However, the wave of activity 

generated by each pseudoword produces, overall, much less (and delayed) activation, 

particularly in the central areas. In what follows, we explain the neuronal mechanisms 

underlying these different responses. 

As pointed out in the previous Chapter, words CAs behave as discrete, non-linear, 

“all-or-nothing” functional units which, if stimulated above threshold, become fully 

active (see Sec. 3.2.3). What happens when a pseudoword is presented as input to the 

auditory area of the network? Recall that a pseudoword pattern consists of a 

combination of different subparts of the four word patterns. Hence, upon presentation 

of a pseudoword, the cells belonging to the four different CAs that happen to be 

present in the pseudoword are activated in Area 1. Thus, all four word CAs (see Fig. 

4.2) are simultaneously (but partially) stimulated, and activity starts to reverberate in 

their circuits. However, due to the presence of non-specific (and local) inhibition 

mechanisms, the different CAs simultaneously activated start to inhibit each other, in 

a “winner-takes-all” manner (refer to Sec. 1.4 and 1.5). This transient period of 

competition surfaces in the graphs plotted in Fig. 4.1; in particular, the pseudoword 

curve (in blue) is “s” shaped, i.e., it exhibits a rapid change of convexity that starts to 

appear at around 5 simulation time-steps after stimulus onset. This effect is due to the 

fact that, during that period, several co-activated CAs are competing, “pushing” each 

other down and causing a temporary reduction in (or a reduced rate of increase of) the 

total network output. Subsequently to this transient competition, the most strongly 

active CA emerges as a “winner” and continues, for some time, to increase and feed 

on its internal activity (see Fig. 4.2). However, this process stops (on average) well 

before the CA has reached full activation (compare with Fig. 3.13). This is due to the 

initial period of competition, during which the CAs inhibit each other, with the result 

that the activity flow is delayed and global inhibition acts as a “break”. After peaking, 

activation plateaus and reverberates within the CA circuits for a few time steps, until 

the dispersion of activation eventually leads to the CA switching “off” (at ~ 40 steps 

after stimulus offset). 

The initial competition between the four CAs also explains the delay in the 

activation peak of the response to pseudowords: the words curve peaks earlier as a 

word activates just one CA, and the competing CAs simultaneously stimulated by a 

pseudoword (which would act as sources of inhibition and alter and delay the normal 
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course of CA activation) remain silent in the case of words (see Fig. 3.13). 

The above discussion highlights the crucial role that the area-specific (global) 

inhibition, implementing here the “item level” type of competition between lexical 

representations (see Sec. 1.5), plays in the network activation dynamics. The question 

of how, exactly, the strength of the non-specific inhibition (the model correlate of the 

amount of attentional resources) affects the observed simulation results was addressed 

in the last set of experiments, Experiment Set 4.  

 

4.2 Experiment Set 4 – Modelling effects of Lexicality and Attention 

Having implemented a model of the left perisylvian cortex, trained it with a set of 

words, and shown that it could replicate the pattern of responses to words and 

pseudowords observed in MMN experiments, it was finally possible to simulate and 

predict the effects of attention on lexical processes, addressing one of the main 

research questions that motivated this work (see Sec. 1.1). In particular, this set of 

experiments aimed at using the model to replicate and explain the different patterns of 

neurophysiological responses observed in N400 and MMN experiments. The 

hypothesis was that the reverse patterns of neurophysiological data are the result of 

the different attentional conditions under which these responses are elicited. 

Consistent with the biased competition model of attention (Duncan, 2006), attention 

to speech was simulated by reducing the strength of the global (non-specific) 

feedback inhibition circuits (which corresponds to greater availability of processing 

resources)15, and attention away from speech by increasing it (and, thus, reducing 

processing capacity). 

 

4.2.1 Experiment Set 4 – Methods  

As in the previous Experiments, word and pseudoword perception was simulated in 

the model by stimulating the auditory cortex (Area 1) of eight trained networks with 

well-learnt, familiar word and unknown pseudoword patterns (see Section 4.1.1).  

                                                 
15 As discussed in Sec. 1.5, the more available attentional resources, the more competing 

representations can be coactive, the less “object level” competition between lexical 

representations; this situation is induced in the model by reducing the strength of the area-

specific inhibition circuits, or feedback inhibition (FI). 
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The network was tested under different conditions simulating different attentional 

loads, induced by systematically varying a single parameter in the model, namely, the 

strength of the FI loops (α5 in Appendix A, see also Sec. 2.2.3). Thus, we investigated 

the effects of attention modulation on the timing and magnitude of the responses to 

familiar vs. unknown speech stimuli by presenting, for four time-steps, words and 

pseudowords patterns to Area 1 at increasing levels of FI. We repeated the stimulation 

at four different levels of FI (0.90, 1.05, 1.20 and 1.25) and measured the total 

network activity during the following 50 time steps.  

 

4.2.2 Experiment Set 4 – Results 

Figure 4.5 shows the results produced by the network when it was used to simulate 

brain responses to word and pseudoword stimuli under different amounts of 

attentional resources. The graphs plot the total network output as a function of 

(simulation) time. The main point to note is the difference between the top and bottom 

graphs. In the top graph, weak FI (high attention) produces larger responses to 

pseudowords than to words, with a “late” peak of the difference between the curves 

(at 20 simulation time-steps). In the bottom graph, strong FI (low attention) produces 

the opposite effect (larger responses to words than to pseudowords), with an “early” 

peaking difference (around 9-10 time-steps). Hence, the modulation of FI strength (or 

attention) in the network produces a pattern of results that reflects the experimental 

data discussed in the introduction (Sec. 1.1); in particular, the top graph reflects the 

characteristics (relative magnitude and latency) of a classical N400 response (Fig. 

1.1), while the bottom graph more closely resembles the features of the MMN 

response (Fig. 1.2).  

A second important point to note is that the “swap” in the sign (and change in 

latency) of the word/pseudoword difference caused by the increase in FI is the result 

of a strong reduction in the amplitude (and change in shape) of the pseudoword 

(dotted) curves, and not of an increase in the amplitude of the word response (solid 

curves). Indeed, if anything, the maximum average amplitude of the word responses 

appears to be attenuated as well, going from about 45 for FI=0.90 to about 35 for 

FI=1.25. 
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 70

 
Figure 4.5 (previous page). Network simulations of brain response to word (solid 

lines) and pseudoword (dotted lines) stimuli under different amounts of attentional 

resources (FI strength). The total network activation (in abscissa) is computed as the 

sum of the output values of all the E-cells of the network at a specific time point. 

Responses are averaged across eight different networks (vertical bars are SEM). The 

“auditory” stimulation pattern was present only until t=4. Increasing levels of FI 

strength simulated decreasing amounts of attentional resources available. 

 

 

 

 

 

 

 

4.3 Experiment Sets 3 & 4 – Discussion 
Experiment Set 3 was replicated in Experiment Set 4 (compare Fig. 4.1 with the graph 

obtained for FI = 1.20 in Fig. 4.5; Experiment Set 3 used FI = 1.23). These results 

demonstrate the ability of the network to replicate the lexicality effects on the 

neurophysiological responses to spoken items documented in a number of MMN 

studies in which subjects’ attention was directed away from speech (Korpilahti, 

Krause, Holopainen, & Lang, 2001; Pettigrew et al., 2004; Pulvermüller et al., 2001; 

Pulvermüller & Shtyrov, 2006; Shtyrov & Pulvermüller, 2002), and allowed us to 

identify and explain, at the level of cortical circuits, the brain mechanisms which may 

be responsible for the observed effects (see Sec. 4.1.3). 

One point that needs clarifying for both experiment sets concerns the fact that the 

differences observed in the network simulations are not obtained using an oddball 

stimulation paradigm, which is normally required to elicit the MMN response. How 

can one claim to be simulating the MMN response if the network is not being 

stimulated using the oddball paradigm? We take the view that MMN indexes not only 

automatic processes of change detection but, in addition, reflects the automatic 

activation of memory traces (Näätänen, 2001; Pulvermüller et al., 2001; Pulvermüller 

& Shtyrov, 2006). According to this view, the MMN paradigm represents just one 

way to visualize the physiological side of memory traces. The simulations are not, 

indeed, aimed at directly replicating the MMN response per se, but the neural 

processes that underlie and govern the activation of memory traces in the cortex, and 

which are reflected in the MMN. The simulations predict that these mechanisms are 

such that words>pseudowords difference should become significant early in the 

response, and that this should always happen, if subjects are distracted. 
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Experiment Set 4 shows that variation of the amount of area-specific feedback 

inhibition (FI) of the network modulates the relative magnitude and latency of the 

simulated brain responses to words and pseudowords. More precisely, weak FI 

(corresponding to high attention and excitability) produced – on average – late 

activation differences, with a stronger response to pseudowords than to words. In 

contrast, strong FI, simulating suppression and a lack of attentional resources, lead to 

early activation differences, with a stronger response to words than to pseudowords. 

Thus, the network behaviour replicates the divergent neurophysiological data 

presented in Section 1.1 (see Fig. 4.6 below), as the N400 response presents a late 

(around 400ms) difference, with relatively larger responses to pseudowords, while the 

MMN exhibits an early (100-250ms) difference, with larger responses to words. We 

shall now explain the underlying mechanisms that make the neural network respond 

in this particular way. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Real and simulated N400 and MMN brain responses. (A): Typical N400 

response to spoken words and pseudowords (from Fig. 1.1). Note the larger N400 

amplitude to pseudowords. (B): Magnetic Mismatch Negativity (MMN) response to 

words and pseudowords (adapted from (Pulvermüller et al., 2001, their Fig. 4)). 

Note the larger MMN amplitude to words. (C-D): Simulated brain responses to 

word and pseudoword stimuli under different amounts of attention (from Fig. 4.5). 

Left: FI=0.90; right: FI=1.20.  
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4.3.1 Explaining the Influences of Lexicality and Attention 

The network behaviour during the first 8-10 time steps is analogous to that observed 

in Experiment Set 3 (see Fig. 4.1). As described, when a pseudoword is presented to 

Area 1, the four CAs are simultaneously (but partially) stimulated, and, as they gather 

activation, they begin to inhibit each other. What happens afterwards depends entirely 

on the strength of the FI loop.  

In case of weak FI, there is weak competition between the CAs; thus, the activity in 

the maximally active CA is not significantly affected by the activity of the other CAs 

(indeed, the “wobble” in the pseudoword curve is barely noticeable when FI=0.90). 

Hence, as exemplified by Fig. 4.2, after a brief period of competition, the “winning” 

CA will resume its progress16 towards full activation, reached at around 20 simulation 

time-steps. Unlike in Experiment Set 3, however, here the CA becomes fully active 

(“on”), as the weak global inhibition is not sufficient (on average) to prevent it from 

reaching activation threshold. Nevertheless, albeit brief, the transient period of 

competition still affects the spreading of activation within the CA, making it peak 

later than it would have if it had been stimulated in isolation. Simultaneously, activity 

in the other CAs is suppressed; due to the presence of strong self-excitatory loops 

within the CAs circuits and the weak FI, however, this activity does not immediately 

disappear, but continues to reverberate and is still present in one (or more) non-

winning CAs when the winner CA reaches full activation. At that point, the total 

network output is the result of the activity of the maximally active CA (at its peak) 

plus the residual activation in the other CAs. This makes the peak of the total network 

response to a pseudoword larger than that to a word: all the rest being equal, the total 

activation due to one fully active CA is (on average) smaller than the total activation 

due to one fully active CA plus one or more partially active CAs. The possible 

psycholinguistic correlate of this computational process may be the activation of 

several neighbours of a stimulus pseudoword. 

Let us now consider the case of strong FI (this was the case in Experiment Set 3). If 

the level of FI is sufficiently high, the co-activated CAs inhibit each other so strongly 

that they will be prevented from entering the unstable positive-feedback state that 

                                                 
16 This now takes place in complete absence of the input stimulus, which lasts only 4 steps. 
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leads to their full activation. As a result, the total network response to a pseudoword, 

consisting of the sum of the activities produced by only partially active CAs, remains 

(on average) below the total response to a word (as exemplified by Fig. 4.2).  

While attention modulation induced a large variation in the amplitude of the 

pseudoword curves, word responses do not appear to be significantly affected by 

attention. At the basis of this phenomenon are the strong and reciprocal connections 

that form the word CAs. As mentioned in Sec. 3.2.3, such positive-feedback circuits 

produce a non-linear behaviour in the CAs, such that, when activation threshold is 

reached, the CA ignition is largely independent of the level of attention/inhibition. As 

Hebb wrote, when igniting the cell assembly is “acting briefly as a closed functional 

system” (Hebb, 1949, p. xix). This functional discreteness explains the relative 

stability of the responses to words under variable inhibition. In contrast, as 

pseudowords activate several CAs but only partially, the reduced (below threshold) 

activity is strongly dependent on inhibition level, extinguishing under low attention 

and resuming full activation if FI is low.  

The possible psycholinguistic correlates of these processes may be, in the case of a 

pseudoword stimulus, the lack of recognition of any lexical item under distraction, 

and, in the case of words, the ability to automatically recognize and respond to 

familiar items even when heavily distracted. An example of this phenomenon, known 

as attentional capture (or “cocktail party”) effect, is our ability to automatically detect 

the sound of our own name even under conditions of inattention (Moray, 1959; Wood 

& Cowan, 1995). 

 

4.3.2 Fit of model predictions and neurophysiological data 

The model simulates the cortical sources that generate electric potentials and magnetic 

fields at the surface of the head. Therefore, strictly speaking, the predictions and 

explanations apply at the level of brain activation, not at that of event-related 

potentials and fields (ERP/Fs). However, the differential activation to words and 

pseudowords revealed by ERP/Fs is also manifest at the level of sources localised in 

the perisylvian region (e.g., Hauk, Davis, Ford, Pulvermüller & Marslen-Wilson 

(2006); Pulvermüller et al. (2001)). Thus, larger (smaller) words/pseudowords 

responses or ERP/Fs are assumed to be generated by correspondingly larger (smaller) 
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underlying sources. This assumption is supported by experimental evidence reported 

in Chapter 5. Furthermore, other works have adopted the same approach and 

successfully modelled EEG/MEG signals as the average depolarisation of pyramidal 

cells (e.g., David & Friston (2003)). 

Interestingly, the time course of the simulated peak differences between word and 

pseudoword responses roughly reflects the one exhibited by experimental data. In 

fact, in the model, early differences (see Figure 4.5, bottom graph) peak at around 7-8 

time-steps after stimulus onset (which is at step 2 in all cases), while the late 

differences peak at 18 time-steps after stimulus onset (Fig. 4.5, top graph). If we 

assume that the MMN response peaks at about 120ms after stimulus onset, one ∆t in 

the simulation corresponds to 120/7≈17ms, and the simulations predict a late peak (in 

presence of attention) at around 18*17ms = 306ms. If, on the other hand, we work 

from the assumption that the N400 response peaks at 400ms, then one ∆t corresponds 

to 400/18ms ≈ 22ms, and the simulations predict an early peak (when attention is 

directed away) at around 7*22ms = 154ms. Although these calculations should be 

taken with caution as they are the result of simple extrapolations, they do provide 

some evidence for the ability of the model to make predictions of the correct order of 

magnitude on the spatio-temporal patterns of cortical activation. In view of the above, 

one simulation time-step ∆t can be considered to correspond approximately to 20ms.  

 

4.3 Summary and main contributions  

Chapter 2 described the implementation of a neuroanatomically grounded neural-

network model of the left-perisylvian language cortex, and its use to simulate brain 

processes of early language learning. Chapter 3 described the formation of sets of 

strongly interconnected circuits across cortical areas in the network, which we 

referred to as cell assemblies. Building on these results, this Chapter simulated 

activation of the language cortex when meaningful familiar words (learnt patterns) 

and senseless unknown pseudowords are presented as input under different amounts 

of attention. The model simulations replicate both MMN and N400 brain responses to 

words and pseudowords, typically observed under different experimental conditions, 

suggesting that these opposite results can be explained by the modulatory effects of 

attention on the cortical responses to pseudoword (and not to word) stimuli. The main 

original contributions of the work described in this chapter are the following: (1) the 
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model is the first one to reconcile and mechanistically explain, at the cortical-circuit 

level and by means of a single set of neurobiological principles, existing experimental 

results previously not well-understood; (2) the model points to the level of area-

specific feedback inhibition as a basis for the brain mechanisms of attention, and 

makes strong predictions on how and why this cognitive process modulates the 

magnitude of event-related brain responses to speech stimuli. In particular, according 

to the simulation results, attention modulation should be able to bring out both types 

of responses (N400 and MMN, i.e., words up vs. pseudowords up) in the same 

experiment. In other words, attention modulation should make the MMN bigger to 

words when subjects’ attention is directed away from speech, but produce the 

reversed effect (MMN larger to pseudowords) when subjects are paying attention to 

the – same – speech stimuli. Crucially, the model also predicts that the amount of 

attentional resources available should significantly modulate the brain responses to 

pseudowords, but not to words, which should be relatively unaffected by changes in 

attention. The experimental testing of these critical predictions is the object of the 

next Chapter.
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Chapter 5 – 

Neurophysiology of Attention and Language 

interactions: an MEG study 
 

 

This Chapter describes the use of magneto-encephalography (MEG) techniques to test 

the novel predictions of the model of the language cortex that were generated by the 

simulations described in Chapter 3 and Chapter 4. 

 

5.1 Introduction 

The network simulations presented in Chapter 4 explain the opposite 

neurophysiological activation patterns to words and pseudowords seen in N400 and 

MMN experiments. The explanation rests on the fact that words activate discrete cell 

assemblies whose strong internal connections guarantee that activation is largely 

independent of external inhibition level (Hebb, 1949; Pulvermüller, 1999). 

Pseudoword stimuli, in contrast, activate several competing representations and global 

inhibition determines the degree to which their activations may co-exist: with 

attention to stimuli, the model response is therefore larger to pseudowords than to 

words, but under limited attentional resources (stronger inhibition) pseudoword 

responses are reduced below the level of word responses (see Fig. 4.6). 

Although the model provides a tentative explanation of N400 and MMN results, it 

attributes the difference to a single factor (attention), and it is this statement that needs 

testing in new critical neurophysiological experiments. Comparing typical tasks used 

to record the N400 and the passive oddball paradigm, where the lexical MMN 

enhancement is seen, there are differences in memory requirements, lexico-semantic 

processing, context processing, variability and repetition of stimuli and, of course, 

attentional demands which make it impossible to attribute with certainty 

neurophysiological differences to a single psychological variable. Here, we used 

MEG to test the predictions of the model, namely, that keeping all other features 

constant, focussed attention to speech is the critical variable leading to the reversal of 

the neurophysiological lexicality effect. A second prediction was that such inversion 
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is mainly produced by the (strong) modulation of the pseudoword response, whereas 

the word response stays relatively stable (see Fig. 4.5).  

In order to administer this critical experiment, we used variants of the oddball task. 

To precisely control for stimuli properties, we applied an orthogonal design where the 

same sounds were played in word and pseudoword contexts. In addition, attention was 

also varied orthogonally, so that, for each lexical context, the same sounds were 

processed while attention was either directed (1) to speech, or (2) away from speech. 

 

5.2 Materials and Methods  
5.2.1 Subjects 

Twenty four healthy right-handed (Oldfield, 1971) monolingual native speakers of 

English (9 women) aged 20-41 years participated in all parts of the experiment. They 

had no record of neurological diseases, vision or hearing problems, and reported no 

history of drug abuse. All subjects gave their written informed consent to participate 

in the experiment and were paid for their participation. The experiments were 

performed in accordance with the Helsinki Declaration. Ethics approval had been 

issued by the Cambridge Psychology Research Ethics Committee (CPREC). 

 
5.2.2 Design 

The processing of spoken words and pseudowords was studied in two tasks carried 

out in separate sessions, referred to as “Attend” and “Ignore” sessions (or conditions). 

Attention was manipulated in the two sessions by instructing subjects to either focus 

completely on the auditory stimuli (Attend condition) or on a silent video (Ignore 

condition). The auditory stimuli were identical across the two sessions; each session 

consisted of two blocks; block and session order was counterbalanced across subjects. 

As clarified by Table 5.1, we adopted an orthogonal design: across the two blocks, 

lexicality and acoustic-phonetic features of the auditory stimuli were varied 

independently of each other (see details below).  
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5.2.3 Instructions 

Subjects were seated in front of a screen on which the silent film was being projected; 

during the recording, acoustic stimuli were delivered binaurally to the subjects. In the 

Ignore session, subjects were asked to ignore the auditory stimuli and concentrate on 

the video; they were made aware that at the end of the recording they would be given 

a test on the contents of the movie to assess whether they had paid attention to the 

video. In the Attend session, subjects had to focus their attention on the acoustic 

stimuli and react to some of them by pressing a button with their left index finger; 

they were asked to ignore the movie but not close their eyes. In order to become 

familiar with this task, subjects were given a 15-minute training prior to the beginning 

of the recording. 

 

5.2.4 Tests 

Perceptual and cognitive properties of the stimuli which could, in principle, affect 

neurophysiological activity and confound the results were assessed through a 

questionnaire posed at the end of the second session. All subjects rated (1) whether 

they could easily understand the recording, (2) whether they would consider the 

stimuli to be frequently used in everyday language, (3) whether the stimuli made 

sense, (4) whether they reminded subjects of an action they could perform themselves, 

(5) whether the stimuli were imageable, and (6) whether they reminded them of 

bodily sensations. At the end of each session, subjects were asked to rate (on a scale 

from 1 to 7) the amount of attention that they had paid to the sounds and silent video 

during the session, and had to answer 10 multiple-choice questions on the contents of 

the film. 

 

5.2.5 Stimuli preparation and delivery  

Digital recordings (sampling rate 44.1 kHz) of a large sample of the items [baj], [paj], 

[hajp], [hajt], [hajk] and *[hajg] spoken in random order by a female native English 

speaker were acquired in a soundproof room. From this set we chose a pair of CV 

syllables [baj] and [paj] and extracted the syllable-final phonemes [p], [t], [k] and [g]. 

The full set of stimuli used in the experiment (including the two critical words [bajt] 

(bite) and [pajp] (pipe) and pseudowords *[bajp] and *[pajt]) were obtained by cross-

splicing the same recordings of the coda consonants [p], [t], [k], [g] onto both CV 
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syllables [baj], [paj] (see Table 5.1 and Fig. 5.1). This avoided differential 

coarticulation cues and minimized acoustic differences between the stimuli. 

The two chosen CV syllables had the same F0 frequency (272Hz), and were 

carefully adjusted to have equal duration (330ms) and average sound energy (root-

mean-square (RMS) power; −9.4dB). The chosen samples of the critical phonemes 

[p], [t] had the same length (75ms) and similar envelopes; their amplitudes were also 

normalized to match for averaged RMS power (−36.6dB). The silent closure time 

between CV end and onset of the plosion of the final stop consonant was adjusted to a 

value typical for English unvoiced (80ms) and voiced (30ms) stops. The [k] and [g] 

plosions were also presented after an exceptionally long closure time (230ms and 

180ms, respectively), a phenomenon occurring naturally in the geminate stops of 

some languages (e.g., Finnish, Italian). The pseudowords containing such “artificial” 

geminates were used as target stimuli in the Attend condition; this was intended to 

make the detection of targets more challenging for the monolingual native English 

speakers. 

 
Block A Block B

 Context

 

 

 

 

 

 

 

 

 

 

For the analysis and generation of the acoustic stimuli, we used the CoolEdit 2000 

program (Syntrillium Software Corp., AZ). The stimuli were delivered at a 

[bajp] 

pseudoword 

  0         622 

[pajp] 

word 

22       605 

[bajt] 

word 

18      2601 

[pajt] 

pseudoword

0        2558 
[t]

   Coda     CV
          C

[baj] [paj]

[p]

Table 5.1. Orthogonal variation of acoustic-phonetic features and 

lexicality across blocks for the four critical items. Numbers indicate

word (left) and trigram (right) frequency (per million) for that item

(CELEX Lexical Database (Baayen, Piepenbrock, & van Rijn, 1993)). 
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comfortable hearing level through plastic tubing attached to foam earplugs using the 

MEG Etymotic system, based on ER·3A insert earphones (Etymotic Research, Inc., 

IL). The delivery was controlled by a personal computer running E-prime software 

(Psychology Software Tools, Inc., Pittsburgh, PA).  
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 Figure 5.1. Stimulation paradigm and stimuli of interest. Top: schematic illustration of 

the oddball design used for the presentation of the auditory stimuli (STD = standard, DEV 

= deviant stimuli; horizontal axis represents time). Bottom: waveforms of the standard 

and deviant stimuli of interest, with respective durations and phonetic representation.  

 

 

 

5.2.6 Procedures 

The auditory stimuli were delivered using an oddball design. The stimulus onset 

asynchrony between two consecutive items was 1000ms. Conforming to Näätänen 

and colleagues’ optimal paradigm (Näätänen, Pakarinen, Rinne, & Takegata, 2004), 

the frequently-occurring standard stimulus (STD) constituted 55% of a block 

sequence; four different deviant stimuli (DEV1-4), each with 10% frequency, were 

randomly presented in alternation with the standard (see Figure 5.2, top). A fifth 

deviant stimulus (DEV5) filled the remaining 5% of the sequence: this was one of the 

two possible targets that the subjects had been instructed to respond to (each 2.5% 

frequency). Each block sequence contained 1920 stimuli in total, providing 32 

minutes of auditory stimulation.  

 



 81

During each session recorded in the Attend condition, subjects were provided online 

feedback on their performance (hit rate and number of false alarms) at four different 

times (in the middle and at the end of each of the two blocks) to ensure their attention 

to the stimuli, at which point auditory and visual stimulation was temporarily 

suspended. In the Ignore condition sessions, auditory and visual stimulation was also 

suspended briefly at the same time points (during which the condition of the subjects 

was assessed).  

 

5.2.7 MEG Recording 

Throughout the experiment, the brain’s magnetic activity was continuously recorded 

using a 306-channel Vectorview MEG system (Elekta Neuromag, Helsinki, FI) with 

passband 0.10–330 Hz and 1KHz sampling rate. To enable the removal of artifacts 

introduced by head movements, the position of the subject’s head with respect to the 

recording device was tracked throughout the session. In order to do so, magnetic coils 

were attached to the head and their position (with respect to a system of reference 

determined by three standard points: nasion, left and right pre-auricular) was digitized 

using the Polhemus Isotrak digital tracker system (Polhemus, Colchester, VT). To 

allow the off-line reconstruction of the head model, an additional set of points 

randomly distributed over the scalp was also digitized. During the recording, the 

position of the magnetic coils was continuously tracked (continuous HPI, 5Hz 

sampling rate), providing information on the exact position of the head in the dewar. 

 

5.2.8 MEG Data Processing 

For each subject, MEG channel, block and condition, we applied the following 

preprocessing steps: 

 (a) The continuous raw data from the 306 channels where pre-processed off-line 

using MaxFilterTM software (Elekta Neuromag, Helsinki), which minimises possible 

effects of magnetic sources outside the head as well as sensor artifacts using a Signal 

Space Separation method (Taulu & Kajola, 2005; Taulu, Kajola, & Simola, 2004). 

MaxFilter was applied with spatio-temporal filtering and head-movement 

compensation, which corrected for within-block motion artifacts.  
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(b) Using the MNE Suite (Martinos Center for Biomedical Imaging, Charlestown, 

MA), stimulus-triggered event-related fields (ERFs) starting at 100ms before stimulus 

onset and ending 500ms after offset were computed from the MaxFiltered data for 

each stimulus of interest ([baj], [paj], [bajt], *[bajp], *[pajt], [pajp]). Epochs 

containing gradiometer, magnetometer or EOG peak-to-peak amplitudes larger than 

3000fT/cm, 6500fT or 150µV, respectively, were rejected. Only ERFs with a 

minimum of 100 accepted trials were used (this led to the exclusion of four subjects). 

The responses to the (deviant) stimuli ending in [k] or [g] were excluded from the 

analysis because of their acoustic similarity to the target stimuli. 

(c) In each block, the magnetic MMNs were obtained by subtracting the averaged 

response to the CV sound presented as standard stimulus from that to the CVC 

deviant stimuli: in block A, the ERF to the standard [baj] was subtracted from the 

ERFs to the deviants [bajt] and *[bajp]; similarly, in block B, [paj] was subtracted 

from *[pajt] and [pajp].  

(d) The resulting magnetic MMN and standard curves were detrended, filtered on 2–

20 Hz and baseline-corrected. For the MMN responses, the baseline used was the 

80ms silent closure period preceding the onset of the plosion of the syllable-final 

(coda) stop consonant (point at which standard and deviant stimuli differed for the 

first time – see Fig. 5.1); this time interval (330 to 410 ms after standard stimulus 

onset) will below be referred to as “pre-coda baseline”. For the responses to the 

standard CV stimuli, the 100 ms preceding stimulus onset were used as baseline 

(“pre-stimulus baseline”). 

(e) The amplitude of the local magnetic gradient response was calculated for each 

local pair of orthogonal gradiometers as the square-root of the summed squares (SRS) 

of their amplitudes. The resulting SRS data were used in the statistical analysis and 

for producing grand-average data. Matlab 6.5 programming environment (Matlab 6.5 

– MathWorks, Boston, MA) was used for preprocessing steps (c)-(e). 

Finally, in order to estimate the cortical sources underlying the magnetic MMN, we 

applied a minimum-norm current estimation (MCE) technique (Hämäläinen, Hari, 

Ilmoniemi, Knuutila, & Lounasmaa, 1993; Ilmoniemi, 1993), L1 MCE (Uutela, 

Hämäläinen, & Somersalo, 1999), which minimizes the sum of the rectified current 

amplitudes over the whole brain, and previously has been shown to produce a realistic 
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and robust set of generators in experiments on spoken language processing 

(Pulvermüller, Shtyrov, & Ilmoniemi, 2003, , 2005). Using the MCE Matlab toolbox 

(Elekta Neuromag, Helsinki), MCEs were calculated for the across-subject averaged 

MMN responses for each Stimulus type (word or pseudoword), Condition and time 

point (in 20-millisecond time-steps), and projected on a triangularized gray matter 

surface of an averaged brain (Uutela, Hämäläinen, & Somersalo, 1999). 

 

5.2.9 Statistical Analysis 

Statistical analyses were performed on local magnetic gradient responses. Using the 

maximal local SRS of the standard responses in the Ignore condition, we computed 

signal-to-noise ratios (SNR) as the ratio between the peak in the 0–150ms interval 

post stimulus onset and the peak in the pre-stimulus baseline. Only datasets with SNR 

larger than 5 were included in further analyses.  

Loci with the largest MMN gradient vector amplitudes were entered in the analyses. 

These were located above the left hemisphere’s temporal and fronto-central areas (see 

Sec. 5.3). For each locus, the averages of the local SRS of the magnetic MMN were 

computed for the 60-ms window around the peak of the maximal local SRS response. 

To ascertain the effects of attention on the brain responses to lexical items, we also 

computed the average local SRS of the ERFs to the standard stimuli in the two 

conditions during six different time windows: pre-stimulus baseline (-100–0ms), pre-

coda baseline (330–410ms), the 80-ms window 500–580ms centred around the MMN 

main peak, and three additional windows centred at the times at which the standard 

responses displayed three prominent peaks (see Sec. 5.3, Results). Window widths 

were adjusted to the width of the half maximum of the respective peak (30, 40 and 60 

ms).  

The time-averaged SRS values obtained from each of the critical recording 

locations, subjects, stimulus types and conditions were subjected to repeated-

measures analyses of variance (ANOVAs). ANOVA tests with the factors Attention 

(Attend vs. Ignore), Lexicality (word vs. pseudoword), Stimulus (coda [p] vs. [t]) and 

Region-of-Interest (ROI, further split into “Anterior-Posterior” and “Lateral-Central” 

factors, with two and up to four levels, respectively) were computed on the data 

extracted from the MMN curves; additional ANOVAs with the factors Attention, 

Stimulus ([baj] vs. [paj]) and ROI were calculated on the local SRS extracted from the 
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responses to the standard stimuli, one for each time window of interest. Significant 

interactions were investigated further using additional t tests for planned comparisons. 

 

5.3 Results 
5.3.1 Behavioral  

ANOVA tests on the attention ratings data (Fig. 5.2) revealed a significant 2-way 

interaction of the factors Condition (Attend vs. Ignore) and Modality-Attended 

(Sound vs. Video) (F(1,15)=134.2, p<0.00001). There was also a main effect of 

Modality (F(1,15)=10.8, p<0.01). During the Attend condition, average hit rate was 

70.2% (SE=4.3%). After the Ignore condition, on average subjects answered correctly 

80.6% (SE=3.0%) of the questions about the video; percent correct answers dropped 

to 47.5% (SE=7.1%) after the Attend condition, confirming different levels 

(t(15)=5.15, p< 0.0001) of attention to the input stimuli, as expected.  

  

 

 

 

 

 
Figure 5.2. Average (SEM) attention ratings (1=“Absent”, 7=“Complete”) for 16 subjects. 

Note the significant difference in the amount of attention to Sound between the two 

conditions.

 

 

 

Figure 5.3 plots the ratings of the critical stimuli that subjects provided at the end of the 

experiment. While the two deviant pseudowords *[bajp], *[pajt] never differed 

significantly between each other or from zero, the word [bajt] was judged to be more 

action- (t(15)=4.45, p<0.0005) and body-related (t(15)=7.69, p<0.000005) than [pajp]. 

Within each lexical pair, no significant differences emerged for frequency, 

meaningfulness, comprehensibility and imageability ratings. Although frequency 

might appear marginally higher for [bait] than for [pajp] (t(15)=1.706, p = 0.109, n.s.), 

frequencies of these words according to the CELEX psycholinguistic database 
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(Baayen, Piepenbrock, & van Rijn, 1993) show a trend in the opposite direction (18 

bite- and 22 pipe-occurrences per million), not confirming the ratings. With the 

exception of action and bodily semantic relatedness ratings, the psycholinguistic 

features of the stimulus words were thus well matched. 

 

 

 

 

 

 

 

 

 

Figure 5.3. Average (SEM) ratings of critical stimuli across 16 subjects. Subjects 

indicated Frequency of use, Action-relatedness, Meaningfulness, Comprehensibility, 

Imageability, and relatedness to Body sensations.

 

 
 

 
5.3.2 MEG results 

Figure 5.4 plots the local magnetic gradient response as SRS of the magnetic MMN to 

pseudowords (blue) and words (red) in the “attend” condition for all loci (averaged 

across 16 subjects)17, highlighting the left perisylvian locations exhibiting largest 

amplitudes that were used in the statistical analysis. Figure 5.5 plots the local 

magnetic gradient response as SRS for standard stimuli and MMN data recorded from 

one of these loci. During the first 400ms responses to the two standards differed (see 

top graph); differences tended to disappear at times greater than 400ms. Due to the 

different acoustic-phonetic features of the stimuli, the MMNs to the coda [p] and [t] 

(see Fig. 5.5, Inset) peaked, at the locus with largest amplitudes, at 137 and 115 ms. 

post coda onset (on average), respectively. When grouped by condition (Fig. 5.5, 

bottom graph), the standard curves suggest a main effect of attention, which was 

investigated in the statistical analysis (see below). 
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Figure 5.4. Local magnetic gradient vector amplitude (SRS) of magnetic MMN  to 

pseudowords (blue) and words (red) in the “attend” condition (averaged across 16 

subjects; top: frontal; bottom: occipital). Each graph shows the amplitude of the local 

SRS in time (see text). The vertical axis indicates the coda onset time (410ms post 

stimulus-onset). Note the left- > right-hemisphere differences, clearest at left 

perisylvian loci. 

 

 

 

 

 

A three-way ANOVA with the factors Attention, Stimulus and ROI carried out on the 

SRS of the responses to the standard stimuli revealed a main effect of Attention 

already in the pre-stimulus baseline (-100–0ms), with the responses in the Attend 

condition larger than in the Ignore condition (Attention main effect; F(1,15)=5.91, 

p<0.03). An analogous effect (F(1,15)= 7.15, p<0.02) was also present in the pre-coda 

baseline of the MMN curves (330–410ms). As these effects emerged in the analysis of 

local magnetic gradient vector amplitudes after baseline correction had been 

performed on the data from each channel (SQUID) individually, they must be due to a 

stronger variability (fluctuation around the zero line) of the magnetic signals in the 

Attend condition. In order to test for effects of attention over and above the baseline 

                                                                                                                                            
17 Four subjects did not fulfil the SNR criterion (see Methods) and were therefore 
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fluctuation, we subtracted the (time-averaged) local SRS value in the pre-stimulus 

baseline (-100–0) from the (time-averaged) local SRS of the responses to the 

standards at time windows 58–88, 93–133, 156–216, 330–410 (pre-coda baseline) and 

500–580 (MMN main peak) ms after stimulus onset.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.5. Local magnetic gradient amplitude (SRS) of standard stimuli and 

magnetic MMN (averaged across 16 subjects) at a representative location. Top 

graph: responses to the standard stimuli [baj], [paj] (averaged across conditions); 

note the absence of differences during the MMN main-peak window (120–150ms 

post coda-onset). Inset (top-right): magnetic MMN of the four deviant stimuli, 

grouped by coda stimulus ([p] or [t]). Note the delay between the early peaks of the 

two curves, at approximately 60-90 and 120-150 ms post coda onset. Bottom graph: 

standard responses grouped by Condition (collapsing [baj] and [paj]); note the 

divergence of the two curves, particularly evident at time ~150-200ms (third peak).

 

 

 

 

 

 

 

                                                                                                                                            
discarded.  
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Three-way ANOVAs (Attention x Stimulus x ROI) on the corrected standard 

magnetic field gradients revealed a significant interaction of these three factors (Table 

5.2, top) in the 156–216 ms interval only (third peak of the standard responses in Fig. 

5.5) with greater attention effects for [baj] than for [paj] (between conditions) at loci 

exhibiting larger signals.  

 

Time Effect F (degr. freedom) ε p remark 

Standard  

Peak III  

([156, 216] ms 

post stim. onset) 

AP 

LC 

AP * LC 

AP * BP 

AP * LC * BP 

ATT * LC 

ATT * LC * BP 

ATT * AP * LC * BP 

F(1, 15)=37.8 

F(3, 45)=32.7  

F(3, 45)=15.0 

F(1, 15)=10.5 

F(3, 45)=5.62 

F(3, 45)=3.41 

F(3, 45)=4.15 

F(3, 45)=3.02 

1.00 

.526 

.762 

1.00 

 .672 

.648 

.747 

.781 

p < .001 

p < .001 

p < .001 

p < .01 

p < .01 

p < .05 

p < .02 

p < .04 

 

      

 

 

 

see Fig. 5.5, 

Bottom plot 

 

MMN  

Main Peak 

(~[100,150] ms 

post coda-onset) 

AP 

LC 

LEX 

AP * LEX   

LC * LEX  

ATT * LEX  

AP * PT * ATT 

AP * PT * LEX 

AP * LC * PT * LEX 

AP * PT * ATT * LEX 

F(1, 15)=12.3 

F(3, 45)=18.1 

F(1, 15)=4.84 

F(1, 15)=6.87 

F(3, 45)=6.96 

F(1, 15)=5.36 

F(1, 15)=10.6 

F(1, 15)=15.5 

F(3, 45)=3.33 

F(1, 15)=6.48 

1.00 

.577 

1.00 

1.00 

.560 

1.00 

1.00 

1.00 

.715 

1.00 

p < .005 

p < .001 

p < .05 

p < .02 

p < .007 

p < .04 

p < .006  

p < .002 

p < .03 

p < .03 

 

 

 

 

 

see Fig. 5.6 

 

 

 

 

Table 5.2. Statistical results: local magnetic gradient vector strengths at 8 high-amplitude 

loci (see Fig. 5). Legend: ATT=Attention; LEX = Lexicality; PT=coda Stimulus ([p], [t]); 

BP=CV Stimulus ([baj],[paj]); AP=anterior-posterior; LC=laterality; ε=Greenhouse-

Geisser’s epsilon (p was corrected if Mauchly’s test indicated non-spherical data). 
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No significant effects of attention emerged in the other intervals considered. A similar 

correction was done on the MMN data by subtracting the pre-coda baseline from the 

MMN, which left all critical effects reported below unchanged. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.6. Local SRS of magnetic MMN to words ([bajt], [pajp]) and pseudowords 

(*[bajp], *[pajt]), averaged across 16 subjects. (A) Average of the eight loci 

exhibiting largest responses (refer to Fig. 5). (B) Average of the four superior 

(dorsal) high-amplitude locations. The bar plots on the right show the respective 

average (SEM) values during the 60ms interval around the peak. Note the larger peak 

of the MMN to pseudowords than to words in the Attend condition and the opposite 

pattern (words > pseudowords) emerging in the Ignore condition. (C) Responses 

predicted by the neural-network model simulations (Fig. 4.6.(C-D)). Solid 

lines: Attend; dotted lines: Ignore. Red: words; blue: pseudowords. 

 

 

 

 

 

 

 

Statistical analysis of the magnetic MMN revealed a significant interaction between 

Lexicality and Attention. In particular, a four-way ANOVA (Attention x Lexicality x 
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Stimulus x ROI) was performed on the data extracted from the MMN curves for the 

two quadruplets of high-amplitude loci (see Fig. 5.4) in the left hemisphere. The 

results are reported in Table 5.2 (lower half), and plotted in Figure 5.6. 

Figure 5.6.(A) plots the local SRS of the magnetic MMN at the eight high-amplitude 

locations, illustrating the Attention-by-Lexicality interaction. Additional tests 

confirmed that in the Attend condition, the peak of the magnetic MMN was larger to 

pseudowords than that to words (simple effect of Lexicality; t(15)=2.43, p<0.02). 

Interestingly, these dynamics were largely due to a modulation of the pseudoword 

response (Attention simple effect; t(15)=2.39, p<0.02), whereas the magnetic MMN 

to words did not differ significantly between Attend and Ignore (t(15)=1.02, p>0.1; 

n.s.). When analysing the superior and inferior quadruplets of the eight critical loci 

separately, the interaction of Attention and Lexicality was confirmed (superior 

quadruplet: F(1,15)=4.58, p<0.05; inferior quadruplet: F(1,15)=5.06, p<0.04) with 

stronger MMN gradient responses to pseudowords than words in the attend condition 

and, in the superior quadruplet only, stronger word than pseudoword responses in the 

Ignore condition (simple effect of Lexicality; t(15)=1.91, p<0.04) (Fig. 5.6.(B)).  

Responses were generally larger at anterior and lateral loci, and to pseudowords than 

to words (see Table 5.2). There was also  an interaction of ROI (anterior-posterior), 

Stimulus, Attention, and Lexicality, due to the pseudoword-word differences in the 

Attend condition being most pronounced at anterior loci for the coda [t], and the 

differences for the [p] being equally large across anterior and posterior locations. 

Later time intervals revealed a significant Attention-by-Lexicality interaction at 250–

300ms post coda onset (F(1,15)=4.93, p<0.05), with larger magnetic gradient to 

pseudowords than to words in the Attend condition (as for the earlier time window). 

At times 300–400ms, a main effect of Attention (F(1,15)=10.1, p<0.01) was found. 

Source strengths calculated for a Region of Interest centred at the left posterior-

superior sylvian fissure (radii: x=30mm, y=30mm, z=25mm) once again confirmed 

stronger pseudoword sources than those underlying words when attention was 

directed to speech, and the reverse pattern when ignoring speech (see Figure 5.7). 
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Figure 5.7. Cortical sources underlying magnetic MMN in the left hemisphere for words 

and pseudowords (averaged across 16 subjects). Left: sources distribution and average 

intensity during MMN peak (130-150ms post coda onset). Right: sum of all source 

strengths within the Region of Interest including posterior perisylvian cortical areas at 

t=140ms (red: words; blue: pseudowords).

 

 

 

 

 

 

 

 

 

 

 
 

 

 

5.3 Discussion  
Attention changed the neurophysiological response to spoken words and pseudowords 

in different ways. Whereas neuromagnetic responses were larger to attended 

pseudowords than to unattended pseudowords, brain processes induced by spoken 

words only showed minimal changes with attention. This result confirms the 

predictions of the model (see Fig. 4.5). Larger responses to words than to 

pseudowords in the Ignore condition replicates the previously documented dynamics 

of the MMN in the passive oddball paradigm  (Endrass, Mohr, & Pulvermüller, 2004; 

Korpilahti, Krause, Holopainen, & Lang, 2001; Kujala et al., 2002; Näätänen, 2001; 

Pettigrew et al., 2004; Pulvermüller, 2001; Pulvermüller et al., 2001; Pulvermüller & 

Shtyrov, 2006; Pulvermüller, Shtyrov, Kujala, & Näätänen, 2004; Shtyrov, Pihko, & 

Pulvermüller, 2005; Shtyrov & Pulvermüller, 2002). The reverse effect in the Attend 

condition (larger responses to pseudowords than to words), a strong prediction of the 
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model that could not be foreseen on the basis of the above MMN studies, resembles 

the pattern seen in the N400 component and its magnetic correlate (Halgren et al., 

2002; Holcomb & Neville, 1990; Maess, Herrmann, Hahne, Nakamura, & Friederici, 

2006; Pulvermüller et al., 1996), which usually emerges when subjects attend to 

words. These previously unexplained reverse dynamics of N400 and MMN to familiar 

and unfamiliar stimuli can now be attributed to a single psychological variable, the 

locus of attention.  

The explanation of these results is based on the simulations obtained in Chapters 3 

and 4: the responses to familiar words exhibit relative stability under different 

attentional load as the strong connections that form the cortical circuits (CAs) 

representing words ensure that the (non-linear) activation spreading within them is 

largely unaffected by the level of competition (attentional resources). On the other 

hand, responses to unfamiliar, unrepresented linguistic items (pseudowords) show 

strong attention dependence, explained by the different degrees of competition 

(induced by the different amounts of available attentional resources) between the 

multiple memory circuits activated by a non-matching stimulus. In sum, the 

discreteness of processing in learned neuronal circuits and the absence of 

corresponding discrete circuits for unfamiliar items together explain the differential 

effects of attention on word and pseudoword brain responses observed in the present 

study. 

We note that attention effects on standard stimuli were present only at times greater 

than 150ms after stimulus onset. This is in line with reports on visual object 

processing that attention effects in MEG responses to faces and houses emerged at 

post stimulus-onset latencies larger than 170ms (Furey et al., 2006). However, 

significant effects of attention on the magnetic correlate of the Mismatch Negativity, 

MMN, to pseudowords – but not words – were seen already at ~100-150 ms after the 

relevant acoustic change (onset of plosion of [p] or [t]) was present in the input. This 

contradicts earlier claims that the MMN is largely independent of attention for the 

specific case of pseudowords, but confirms this statement for words, for which a 

memory circuit has been set up in the brain (see (Näätänen, 2001)). The model 

predicts that a similar difference will emerge for spectrotemporally rich unfamiliar 

sounds and matched learned sounds for which a memory circuit has been set up. The 

explanation lies in the nature of the underlying neuronal memory trace activated, 
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which appears to be both distributed and discrete. Previous research documenting a 

reduced MMN to unfamiliar complex sounds compared with familiar ones so far 

partly support this suggestion (Näätänen et al., 1997; Schröger, Näätänen, & 

Paavilainen, 1992). 

The results exhibit larger MMN responses to pseudowords than to words in the 

Attend condition at around ~130ms and in the 250–300ms interval post coda onset. 

As the N400 is usually computed from word onset, which here started 410ms before 

the coda, our effects emerge between ~540-710ms after stimulus onset. This time 

range is later than that typically reported for the N400 component; however, such 

increased latency may be due to the absence of co-articulation effects in our stimuli: 

indeed, had information about subsequent phonemes been present in earlier parts of 

the word, the word-pseudoword difference might have become manifest earlier, 

possibly at and even before 400ms post spoken-word onset (Holcomb & Neville, 

1990).  

A phonetic signal detection task was used here to direct attention towards speech 

processing, while a video watching task was administered to direct their attention 

away from speech. Behavioural results were used to confirm high attention levels and 

to ascertain specificity of attention to one modality. However, alternative paradigms 

to direct attention exist. Previous research has shown that depending on the task used 

to direct attention and kind of stimuli presented, attention effects may be different 

(Cristescu & Nobre, 2008; Hohlfeld, Mierke, & Sommer, 2004; Pulvermüller, 

Shtyrov, Hasting, & Carlyon, 2008; Sabri et al., 2008). The phonetic task that was 

used drew attention to fine acoustic detail of single spoken words, while the visual 

task did so to aspects of the visual environment. In future studies, it will be 

worthwhile to examine the role of different tasks directing attention to different 

linguistic aspects (phonological, lexical, semantic) of the speech stimuli and observe 

any related neurophysiological changes. 

 
5.4 Summary and main contributions 
A novel MEG experiment was administered to test the crucial predictions of the 

model of the language cortex implemented in Chapter 2, namely, that focussed 

attention to speech is the critical variable leading to the reversal of the 
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neurophysiological lexicality effect, and that such inversion is mainly produced by the 

modulation of the pseudoword response, whereas the word response stays relatively 

stable. Both predictions were confirmed by the experimental results.  

The original contributions of this Chapter are: (i) experimental evidence confirming 

the validity of the model and supporting the correctness of the theoretical account 

upon which it was built, and (ii) a novel MEG study and original neurophysiological 

data on the effects of attention on spoken language processing. 
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Chapter 6 – 

Summary and Conclusions  

 

The overall aim of this research was to investigate the neuronal mechanisms at the 

basis of language acquisition and processing, and the interactions of language and 

attention processes in the human brain. One of the main objectives was to shed light 

on the nature of knowledge representation in the brain, focussing on language: we 

were interested in clarifying the functional nature (discrete vs. non-discrete activation) 

and anatomical characteristics (local vs. distributed networks) of the cortical traces 

underlying lexical representations.  

Research in neurophysiology reveals different brain responses if the stimuli 

presented in input consist of either (i) familiar and meaningful units (e.g., words, 

faces, objects) or (ii) equivalently complex but unfamiliar, meaningless items 

(pseudowords, scrambled faces, imaginary objects). In the area of language research, 

familiar words and senseless pseudowords lead to different patterns of responses: the 

N400, a negative-going ERP peaking around 400ms after stimulus onset, is larger for 

pseudowords than for matched words. The opposite result, however (larger early brain 

responses to words compared with pseudowords) has also been reported, in particular, 

in the Mismatch Negativity MMN, an early automatic brain response elicited under 

distraction using an oddball stimulation paradigm. These diverging patterns of results 

were, until now, left unexplained by psycholinguistic accounts.  

The above questions were addressed here by combining neurocomputational 

modelling and neuroimaging (MEG) experimental methods. 

The results of the simulations in Chapter 3 provide proof-of-principle evidence that, 

as previously conjectured only at theoretical level (Braitenberg, 1978; Hebb, 1949; 

Pulvermüller, 1999), speech-related co-activation of neurons in IF and ST cortex can 

lead, in presence of Hebbian learning, to the formation of strongly connected word 

cell assemblies that are distributed over these areas and exhibit discrete levels of 

activation (“on-off”). Subsequently to the spontaneous formation of such word 

representations (resulting from purely biologically realistic mechanisms of synaptic 
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plasticity), the model was capable of replicating the neurophysiological effects of 

lexicality normally observed in MMN experiments (larger responses to words than to 

pseudowords). In order to account for the opposite pattern (N400) of data, the network 

responses were investigated under different processing conditions, obtained by 

modulating the strength of the non-specific (global) cortical inhibition, the model 

correlate of attentional load. We found that variation of the inhibition differentially 

modulated the simulated brain response to words and pseudowords, producing either 

an N400- or an MMN-like response depending on the amount of available attentional 

resources. In addition to providing a unifying explanatory account (at cortical level) of 

divergent experimental observations, the model made precise, crucial predictions on 

the effects of attention on the magnitude of ERPs to lexical items, which were tested 

in a novel MEG experiment (Chapter 5). The experimental results confirmed the 

model’s predictions, providing evidence in support of the neurophysiological validity 

of the model. 

The original contributions of this work are:  

(i) a neurobiologically realistic model of language acquisition and 

processing, unique with respect to the level of neuroanatomical, 

connectivity and neurobiological detail (Chapter 2);  

(ii) proof-of-principle simulation results in support of the theory 

according to which speech-related co-activation of neurons in IF and 

ST cortex lead, in the presence of (neurobiologically plausible) 

Hebbian learning, to the formation of word cell assemblies 

distributed over these areas and associating sensory-motor activation 

patterns (Chapter 3);  

(iii) a working model that explains and unifies existing experimental 

results that were not accounted for by current psycholinguistic 

theories (Chapter 4);  

(iv) a mechanistic explanation, at the level of cortical circuits, of how 

and why attention modulates the magnitude and latency of event-

related brain responses to speech stimuli (Chapter 4);  

(v) novel MEG data on the effects of attention on spoken language 

processing, and  

(vi) experimental evidence supporting the mechanistic correctness of the 

theoretical account upon which this work is built (Chapter 5).  
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In particular, the results presented here provide evidence in support of the hypothesis 

that words, similar to other units of cognitive processing (e.g., objects, faces), are 

represented in the human brain as distributed and discrete action-perception circuits. 

Existing theoretical and computational accounts of knowledge representation in the 

brain explain memory either as the discrete activation of localist elements, or on the 

basis of fully distributed, graded-activation patterns (see Sec. 1.1). These two 

accounts make different predictions about the functional nature (discrete vs. graded 

activation) and cortical characteristics (local vs. distributed networks) of the 

knowledge representations in the brain: localist accounts predict local activity 

differences between words and pseudowords, and relative stability of brain responses 

to words as compared to variability of pseudoword responses with attention level;  

distributed theories predict widespread activity differences, but, as their linguistic 

representations typically lack functional discreteness, they fall short of reproducing 

and explaining lexicality differences as a function of attention. 

In view of the simulation results presented in Chapters 3 and 4, and 

neurophysiological evidence (Chapter 5), neither of these two approaches appears to 

be entirely correct. We have shown in Chapter 3 that functionally discrete and 

distributed action-perception circuits can emerge spontaneously in the cortex as a 

result of synaptic plasticity, and do not need to be assumed a priori. Overcoming the 

limitations and combining the advantages of localist and distributed approaches, the 

model implemented here predicts and explains the formation of lexical representations 

consisting of strongly interconnected, distributed (but anatomically distinct) cortical 

circuits. These circuits behave as coherent, discrete-activation units, and allow two or 

more lexical circuits to remain active at the same time (as in the case of pseudoword 

processing). The simulations in Chapter 4 showed how the discreteness of the cell 

assemblies predicted and explained the relative stability of lexical representation 

activation under different amounts of processing resources (attention); the absence of 

discrete processing devices for unfamiliar (non-represented) items predicted 

substantial attention-dependence of pseudoword brain responses. The experimental 

results described in Chapter 5 confirmed these predictions and provided evidence in 

support of the existence of discrete and distributed networks representing lexical items 

in the brain. 
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The model presented here, of course, is not exempt from limitations. For example, it 

does not account for psycholinguistics phenomena related to word frequency, 

similarity, or meaning; it does not model cortical areas belonging to the 

somatosensory speech region (see Fig. 1.4); it exhibits the learning of only a small 

number of sensory-motor patterns; and it incorporates only up to a certain level of 

neurobiological detail (e.g., different types of ion channels, neurotransmitters or 

synaptic receptors were not included) and neuroanatomical connectivity (some of the 

“jumping” connections between cortical areas were not implemented). Nevertheless, 

in spite of such simplifying assumptions, it was sufficiently complex to account for 

and mechanistically explain, at the cortical-circuit level, the cognitive and 

neurophysiological processes of interest.  

To conclude, although many issues still remain to be addressed, this work represents 

a first step towards a better understanding, at the level of the neuronal circuits, of the 

complex neurophysiological mechanisms at work during word acquisition and spoken 

language processing under variable attentional demands. It is hoped that this research 

will open up new perspectives in the theoretical and empirical investigation of high-

level cognitive brain processes. 
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Appendix A 

This appendix presents details of the network model. Figure 2.2 displays the generic 

cortical area model. Our simulations use six such areas in sequence with identical 

structure and dynamics, and mutual connections between adjacent areas (see Fig. 

2.1(b)). Each area comprises two mutually-connected layers of excitatory neurons (E) 

and inhibitory cells (I). Their dynamics is given by the following equations: 

 

 

 

 

In Eq. (1) to (4), VE and VI are the membrane potentials of the excitatory (E-) and 

inhibitory (I-) cells on a grid, with x = (x1, x2), 0 ≤ x1, x2 < 25 representing one cell 

location. We use cyclic boundary conditions. The membrane dynamics is modelled by 

low-pass filters with time-constants τE and τI , respectively. The φ(x,t) and φS(t) 

variables represent cell-intrinsic adaptation and area-specific inhibition (see Sec. 

2.2.1), respectively. Their dynamics is low-pass, too, with time constants τa and τS. 

Time-constants and time t are in arbitrary time units. Dynamic equations are 

integrated using a simple Euler scheme with step size ∆t (Press et al., 1992). 

Excitatory cells are graded response neurons with sigmoid output functions 

(reflecting firing rates) ƒE(x,t). We identify ƒE[VE(x,t) – φ(x,t)] with O(x,t) as defined 
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in Eq. (2.2), Sec. 2.2.1, where the parameter φ in Eq. (2.2) corresponds now with the 

space and time dependent adaptation variable φ(x,t) in (1-4). As (3) shows, φ(x,t) 

computes a gliding average of the output firing rates of the E-cells, such that φ(x,t) 

gets higher the more strongly a cell is activated. φ(x,t) in turn affects the rates of the 

cells suppressively, acting as a cell-intrinsic dynamic threshold (see also Eq. (2.2)). 

The inhibitory cells (“interneurons”) are also graded response neurons, but have semi-

linear rate function ƒI such that ƒI(x)=x if x>0, and ƒI(x)=0 elsewhere. Note that I-cells 

were not endowed with an adaptation mechanism; consistently with biology, their 

main task is to control the activity in the E-cell subnetwork locally. 

The term φS(t) in (4) is an additional slow inhibitory process (time-constant τS >> τE) 

that provides area-specific activity control by inhibiting all E-cells within one area in 

equal amounts, proportional to the total within-area activity. This has the net effect of 

introducing competition between functional representations (cell assemblies) 

distributed across cortical areas, restricting activity to the most strongly excited ones 

(see Sec. 1.5). 

The η(x,t) in (1) are further identical and independent Gaussian white noise 

processes N(0,1) (Kloeden & Platen, 1995) with noise amplitude σ set to 1.04. 

Symbols ⊗ in (1) to (4) denote spatial convolution with cyclic boundary conditions 

in order to avoid boundary effects (simply put, each “convolution” calculates, for each 

neuron x, the scalar product between its input weights – projection kernel – and its 

presynaptic cells’ outputs). Ranges of the connectivity kernels kFF , kFB, kREC  and kINH 

are indicated in Fig. 2.2, Sec. 2.2.3. The inhibitory kernel kINH is identical for all I-

cells, i.e., a shift-invariant 2D-Gaussian with standard-deviation 2 (lattice units, i.e., 

cells) and amplitude 0.295. The precise nature of the initialisation of the excitatory 

kernels as well as the learning rule according to which they change over time is 

described in the main text, Section 2.2. 

Inputs IFF(x,t) and IFB(x,t) in (1) are from earlier and subsequent areas, respectively. 

For the second to fifth area they are the fields of firing rates O(x,t) of the E-cells in the 

previous and subsequent area, but for the first and last areas external inputs are 

provided as 0/1-bit patterns (clamped input currents).  

Finally, the factors αi, i=1,..,5 control the relative weight of feedforward, feedback, 

recurrent, and fast and slow inhibitory synaptic inputs into the excitatory cells. The 
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network function does not depend crucially on the time-constants and connection 

weights as long as stable operation can be guaranteed. 

Parameters used were τE =2.5, τI =5, τa=15, τS =37, ∆t=0.5, α1=α2=α3=α4=5, α5=0.9, 

αa=0.026, σ =1.04. During the testing, α5 (the area-specific inhibition feedback, or FI 

– see Sec. 2.2.3) was varied between 0.90 and 1.25 (see Fig. 4.5).  
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Appendix B 

The networks and parameters used for the experiments described in Chapters 3 and 4 

are the result of a phase of preliminary simulations aimed at calibrating the model’s 

behaviour. In these studies, a set of inter-related problems often prevented CA 

formation in the network:  

(i) CA Merging. The different CAs that developed for the four pairs of input 

patterns often merged together during the training, becoming, in the worst 

case, a single CA that responded to any of the four stimuli (see (Milner, 

1996)). This problem was a symptom of the network inability to learn to 

“discriminate” between input patterns that produced overlapping network 

activations. For this type of discrimination to take place, the sets of links 

connecting two overlapping CAs should be gradually weakened (or at least 

not strengthened).  

(ii)   CA overgrowth. During the training, if the number of cells that were 

strongly activated by one of the stimuli in one area exceeded a certain 

threshold (around 10-15% of the total number of cells in one area), an 

unstable positive-feedback loop developed, whereby stronger and stronger 

responses would follow each new presentation of a given stimulus, leading 

to the “overgrowth” of one of the CAs. This CA would rapidly extend and 

cover most of the network, causing widespread unphysiological states of 

saturated activation (notice that overgrowth of one CA often caused 

merging, and vice versa). 

(iii)   Contact. For the binding between two co-activated patterns in Area 1 and 6 

to occur, it is necessary that the two “waves” of activity produced are 

strong enough to reach the middle areas (3 and 4); in addition, these two 

waves must either (1) jointly activate a common set of E-cells, or (2) co-

activate two disjoint (but loosely connected) sets of E-cells that will, as a 

consequence, become strongly linked. Put it simply, for CAs to develop, 

the two opposite waves of activity have to make “contact” with each other 

in the middle of the network. This did not always happen, as the way in 

which activity from the input areas propagated is strongly influenced by 

the radius of the within- and between-area projections (parameter ρ in Eq. 
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(2.5)). In particular, smaller projection sizes cause more “focussed” and 

stronger propagation of activity towards the middle areas; however, if the 

projection sizes are too small, neither of the conditions (1) or (2) above is 

likely to be satisfied.  

(iv)   CA Off-switching. During the training, in some cases some CAs became 

“over-stable”: i.e., once activated, they would remain active even after the 

removal of the input stimulus; activity would last for a period of time that 

depended on the strengths of the links and degree of “reciprocity” existing 

between the E-cells that formed the CA. Although reverberation (memory) 

was one of the desirable property of the CAs, having over-permanent CAs 

activation was not. When a CA did not switch off after stimulus removal 

and remained active even upon arrival of a new stimulus, merging 

typically occurred (due to co-activation of the two CAs).  

To prevent this phenomenon, the arrival of a new stimulus must 

automatically trigger the off-switching of any currently active CA. The key 

parameters that determined whether this would happen were the strengths 

of the global and local inhibitory circuits (i.e., of the links between I-cells 

and E-cells of one area). If global and/or local inhibition were sufficiently 

strong, the incoming waves of activity induced by a new stimulus and 

corresponding CA produced sufficient inhibition to “disrupt” the activation 

of any other CA. Of course, too much inhibition prevented CAs from 

developing at all (as the activity in input was “filtered” by the first two 

areas and would not reach the middle).  

 

(v)   Unbalanced CAs (a.k.a. “pre-inhibition problem”). During training, when 

a new stimulus was presented to the network, the level of global inhibition 

in all the areas had to be sufficiently low so that the incoming waves of 

activity from areas 1 and 6 could reach the middle. However, since the 

very beginning of the training some of the stimulus patterns caused a 

slightly higher response in the network than others (this was due to the 

random nature of the input patterns and network connectivity). Higher 

activity allowed more learning, and some CAs quickly became “stronger” 

than others. A stronger network response, in turn, caused more global 
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inhibition in the network after stimulus presentation, which meant that the 

pattern presented next was less likely to induce the formation of a CA. 

This further enhanced the already present differences between CAs 

strengths, causing an unbalance in their size, with some CAs becoming 

much larger and stronger than others, and some being entirely prevented 

from developing. Lengthening the periods of time during which no input 

was presented in order to allow the global inhibition to decay before the 

arrival of the new stimulus did not solve this problem: some CAs produced 

more inhibition than others, and if too much time was allowed to pass, the 

level of inhibition would drop so much that (i) the sudden arrival of the 

next input pattern would “over-excite” the network, causing CA 

overgrowth, or (ii) the random noise present in the network produced 

“spontaneous” activation of one of the CAs, causing an overlap (and 

consequent merging) between the spontaneously activated CA and the 

incoming stimulus. 

 

Some of these problems often co-occurred and had to be addressed simultaneously 

and using a combination of strategies, as described below. 

In order to address the issues of overgrowth, off-switching and unbalanced CAs, we 

attempted several parameter changes. First of all, we reduced the maximum strength 

of the synaptic weights (restricting the weight range to [0, 0.2] instead of the original 

[0, 1.0]) and increased the strength of the local and global inhibition (parameters α4 

and α5 in Appendix A), so as to and trigger the off-switching of the previously 

activated CA and prevent overgrowth by limiting the total amount of activity allowed 

within one area at any one time. However, an increase in the overall inhibition level 

prevented not only overgrowth and over-permanent CAs but also CA formation, and 

caused unbalanced CAs. The solution that we adopted was to make the presentation of 

a new stimulus subject to the level of mid-area global inhibition being lower than a 

specific threshold. This significantly reduced the impact that the strength of the 

response to one pattern-pair had on the learning of the subsequent one. Notice that in 

order to prevent overgrowth and off-switching, this threshold could not be set 

arbitrarily low. Secondly, we reduced the time constant τS (see Appendix A) of the FI-

cells (i.e., increased the “speed” of the global-inhibition response) by 70%, so that 
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even sudden “surges” of activity within one area would be quickly suppressed. The 

response of the global-inhibition cell associated to an area (i.e., the speed with which 

the input affected the cell’s membrane potential) was originally very slow when 

compared to that of normal E- and I-Cells (time constants of 2.5 and 5.0, 

respectively). A very slow response of the global inhibition mechanism meant that 

activity within an area was essentially unrestricted during the period of time in which 

the associated cell’s activation was still low; a fast response was required to prevent 

overactivation within one area, potentially leading to CA overgrowth. Thirdly, we 

increased the radius ρ of the within- and between-area excitatory projections (see 

Equation 2.5) to 15 and 19 cells, respectively. A larger radius (a) helped preventing 

overactivation by making activity more “dispersed”, (b) increased the probability of 

the “contact” conditions (1),(2) being satisfied, and (c) allowed linking of co-active 

cells that were normally too far apart to be bound together, increasing the general 

pattern completion ability of the network. On the other hand, it also meant a higher 

probability of overlap between patterns and of their merging into a single CA. Thus 

the parameter ρ had to be carefully chosen to achieve a good compromise between 

costs and benefits. 

While the above changes addressed the issues of overlearning/overgrowth, off-

switching and unbalanced CAs, they left the problem of CA merging basically 

unsolved. In order to deal with this obstacle, first of all we randomized the order of 

pattern presentation during the training (a sequence of patterns that repeats always 

identically is likely to encourage the merging of patterns that are adjacent in the 

training sequence). Secondly, we reduced the density of the network connectivity 

(determined by parameters k and σ in Eq. (2.5)) so as to minimize the probability of 

CA overlap. Of course, while excessive density caused merging and overlearning, 

excessive sparseness might re-introduce the problems of contact or unbalanced CAs. 

Indeed, the projection radius ρ and density of the connectivity had to be calibrated in 

conjunction, as they determine the average number of synaptic links of a single E-cell: 

if the density increases, radius must decrease for the total number of synapses to 

remain constant, and vice versa. Choosing (and maintaining constant) the total 

number of synapses is important to avoid over-activation and overgrowth. 
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In spite of these changes, the problem of merging was still pervasive. As mentioned 

in Sec. 3.1.3, the key to addressing this lay in the learning rule used to train the 

network.  
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Abbreviations 

ABS Artola-Bröcher-Singer 

BA Brodmann’s area 

BCM Bienenstock-Cooper-Munro 

EEG Electro-encephalography 

EPSP Excitatory post-synaptic potential 

ERF/P Event-related field/potential 

E-cell Excitatory cell 

FI Feedback inhibition  

fMRI functional magnetic resonance imaging 

IF Inferior frontal / prefrontal cortex 

IPSP Inhibitory post-synaptic potential 

I-cell Inhibitory cell  

LTD Long-term depression 

LTP Long-term potentiation 

MEG Magneto-encephalography 

MMN Mismatch Negativity 

N400 Negative component of ERP peaking at around 400ms  

PFC Prefrontal cortex 

SRS Square-root of the summed squares 

SEM Standard error of the mean 

SQUID  Superconducting Quantum Interference Devices 

ST Superior temporal gyrus/sulcus 

WTA Winner-take-all 
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