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Diederen KM, Schultz W. Scaling prediction errors to reward variability
benefits error-driven learning in humans. J Neurophysiol 114: 1628–1640,
2015. First published July 15, 2015; doi:10.1152/jn.00483.2015.—Effective
error-driven learning requires individuals to adapt learning to envi-
ronmental reward variability. The adaptive mechanism may involve
decays in learning rate across subsequent trials, as shown previously,
and rescaling of reward prediction errors. The present study investi-
gated the influence of prediction error scaling and, in particular, the
consequences for learning performance. Participants explicitly pre-
dicted reward magnitudes that were drawn from different probability
distributions with specific standard deviations. By fitting the data with
reinforcement learning models, we found scaling of prediction errors,
in addition to the learning rate decay shown previously. Importantly,
the prediction error scaling was closely related to learning perfor-
mance, defined as accuracy in predicting the mean of reward distri-
butions, across individual participants. In addition, participants who
scaled prediction errors relative to standard deviation also presented
with more similar performance for different standard deviations,
indicating that increases in standard deviation did not substantially
decrease “adapters’” accuracy in predicting the means of reward
distributions. However, exaggerated scaling beyond the standard de-
viation resulted in impaired performance. Thus efficient adaptation
makes learning more robust to changing variability.

standard deviation; probability distribution; reinforcement learning;
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AN ESSENTIAL PART of daily life is to predict which rewards will
be available. Accurate estimation of future reward magnitude
depends on our ability to learn the statistics of the environment.
Rewards are not singular events with constant magnitude but
are elements of probability distributions that fluctuate from one
moment to the next. Even when fully informed about the
anticipated mean, or expected value (EV), of probability dis-
tributions, we cannot predict the size of the next reward with
certainty (O’Reilly 2013). Optimal performance can, however,
be achieved by inferring the EV of distributions (Nassar et al.
2010).

The EV can be learned through errors in our predictions, i.e.,
reward prediction errors, as formalized in reinforcement learn-
ing models (Rescorla and Wagner 1972). In the Rescorla-
Wagner reinforcement learning model, predictions are updated
as a constant fraction of the prediction error, termed the
learning rate. Rescorla-Wagner provides a powerful account of
learning in nonvariable contexts where prediction errors con-
verge to zero as predictions become more accurate (Schultz
and Dickinson 2000). However, when outcomes fluctuate,
predictions based on a constant learning rate can only become

stable with low learning rates, resulting in slow learning
(Payzan-LeNestour and Bossaerts 2011). Thus predictions can
more rapidly become stable through dynamic learning rates
that decrease as predictions become more accurate, as formal-
ized in the Pearce-Hall reinforcement learning model (Pearce
and Hall 1980) as well as in Bayesian accounts of learning
(Cox 1946; Yu and Dayan 2005).

Importantly, learning may be further improved by scaling
the prediction error relative to the expected fluctuation in
reward value (Preuschoff and Bossaerts 2007). That is, a
prediction error is more meaningful in contexts where rewards
fluctuate less. Such scaling could facilitate earlier stability in
predictions and similar learning for different degrees of reward
variability, resulting in improved overall performance. In ad-
dition, adaptation to variability enables individuals to identify
sudden changes in the outcome distribution (Nassar et al.
2010).

Thus far, it is unclear whether scaling of prediction errors
relative to the variability of reward distributions results in
improved performance, as predicted by learning models
(Preuschoff and Bossaerts 2007). Increases in computational
demands during prediction error scaling may, for instance,
impede optimal deceleration of learning rates, resulting in
suboptimal performance. In addition, although scaling of pre-
diction errors relative to the variability in reward benefits
performance, scaling with the standard deviation (SD) limits
the power of the learning rate to update predictions. For
instance, when a prediction error of 15 is divided by an SD
of 15, the prediction can only be adjusted with 1 point (see
Fig. 2F).

The main goal of this study was to investigate whether the
scaling of prediction errors to reward variability (SD) in
humans would be associated with superior performance. Par-
ticipants were required to explicitly indicate the expected
magnitude of upcoming rewards, drawn from probability dis-
tributions with different levels of variability. After each pre-
diction, participants received a reward, eliciting trial-by-trial
reward prediction errors. Participants’ payoff depended on the
points drawn by the computer, incentivizing them to treat the
points as actual rewards. Performance was increased for grad-
ual decreases in learning rates and scaling of prediction errors
relative to, but smaller than, the SD. In addition, the individual
degree of adaptation was predictive of the stability in perfor-
mance across SDs, thus suggesting that adaptation made learn-
ing more robust to changing variability.

MATERIALS AND METHODS

Participants. Thirty-one healthy volunteers (16 men, 15 women)
were recruited through local advertisements. Participants were be-
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tween 18 and 33 yr of age (mean 22.91 yr, SD 4.3); they were fluent
English speakers and did not have a history of neurological or
psychiatric illness or drug abuse. This study was approved by the
Local Research Ethics Committee of the Cambridgeshire Health
Authority. After description of the study to the participants, written
informed consent was obtained.

Behavioral task. The experimental task required participants to
predict the magnitude of upcoming rewards as closely as possible
from the past reward history. Rewards were points (i.e., numbers)
drawn from six different pseudo-Gaussian distributions (SD 5, 10, or
15 and EV 35 or 65). Each trial started with a fixation cross presented
on a computer monitor in front of the participants (Fig. 1A). After 500
ms of fixation cross presentation, a small, medium, or large green bar
cue signaled the SD (5, 10, or 15) of the reward distribution from
which the upcoming reward would be drawn (500 ms). Bar height was
proportional to SD but did not correspond to the actual SD or to the
range of the distributions. As such, the bar cue informed participants
whether rewards were drawn from a distribution with a small (SD 5),
medium (SD 10), or large (SD 15) level of variability without
revealing the actual size of the SD and/or range. Thus these explicit
cues facilitated rapid adaptation to reward variability. Importantly, the
cues did not contain information on the EV of the distributions. After
cue presentation, participants moved a horizontal bar with the numeric
value displayed on both sides on a vertical scale (0–100) with a
trackball mouse and indicated their prediction by a mouse click
(within 3,500 ms). After a short delay (300 ms), the display showed
the magnitude of the drawn reward as a green line and numbers on the

same scale, as well as the reward prediction error on that trial (a
yellow bar spanning the distance between the predicted and the
received reward). Reward prediction error was conventionally defined
as � � reward received � reward predicted. Failure to make a timely
prediction resulted in omission of the reward.

Each participant completed three sessions of 10 min each of the
task. In each session participants alternatingly predicted from one of
two conditions (i.e., distributions; Fig. 1B). Each condition had a run
length of 42 trials, resulting in 84 trials per session. There were
exactly 42 rewards per condition, ensuring that each participant
received the same rewards. The two conditions in a session alternated
in short blocks of five to eight trials (12 short blocks per session; 6
short blocks for each of the 2 conditions in a session). See Fig. 1C for
an example participant. Importantly, participants could use all 42
trials to estimate the SD and EV of a condition, independent of the
short block in which a trial occurred. All analyses and model fits were
conducted on the 42 trials of each condition, as if these trials had been
presented in direct succession. The two reward conditions (i.e.,
distributions) in a session never had the same SD and/or EV, and each
distribution occurred only once per participant. There were six pos-
sible pairs of distributions, of which each participant saw three pairs
(i.e., 1 pair per session). Sixteen participants were presented with the
first combination of pairs (SD 5 EV 35 and SD 10 EV 65, SD 10 EV
35 and SD 15 EV 65, SD 15 EV 35 and SD 5 EV 65), whereas the
remaining fifteen participants performed the second combination (SD
5 EV 35 and SD 15 EV 65, SD 10 EV 35 and SD 5 EV 65, SD 15 EV
35 and SD 10 EV 65). The six possible orders of the three pairs (over
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Fig. 1. A: example trial of the main task. After fixation cross presentation, a small, medium, or large green bar cue signaled the (relative) fluctuation in reward
value of the current distribution. After cue presentation, participants were required to indicate their prediction of the upcoming reward, after which the actual
reward on that trial was shown. RT, reaction time; RPE, reward prediction error. B: reward distributions and cues indicating the degree of reward variability (cue:
small, medium, or large green bar). Numbers listed under the distribution indicate the range of numbers per distribution: top, expected value (EV) 35; bottom,
EV 65. C: 3 example sessions of the main task for a typical participant. In each of the 3 sessions, participants alternatingly predicted rewards drawn from 2
different distributions in small blocks of 5–8 trials, as indicated by bar cues. All participants experienced all 6 reward distributions. The order and combination
of reward distributions were counterbalanced over participants. The 2 distributions in a session always had a different standard deviation (SD) and EV. D: number
(N) of reward prediction errors aggregated over participants and trials. Reward prediction errors increased with SD, indicating that the experimental manipulation
was successful. E: average (�SE) prediction errors (left) and performance errors (right) decreased for reward distributions with a higher EV, thus suggesting
that participants perceived the drawn numbers as actual rewards.
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sessions) were counterbalanced so that each order was performed by
five participants, except for the sixth order, which was performed by
six participants. The order of the two distributions within a session
was randomized. The order of rewards within a condition (i.e., 1 of the
6 distributions) was pseudorandomized. First, we randomized the
rewards within a condition. Subsequently, we ensured that outliers did
not occur in succeeding trials.

All distributions had zero skewness, no tails, and insignificant
deviation from normality (Shapiro-Wilk; P � 0.54, 0.89, and 0.92 for
SDs of 5, 10, and 15 points, respectively). However, they were
slightly less “peaked” than a true Gaussian distribution, as indicated
by a kurtosis of 2.6 (SD 5), 2.6 (SD 10), and 2.57 (SD 15). Initial
inspection of reward prediction error data revealed that these errors
increased with SD, thus indicating that the experimental manipulation
was successful (Fig. 1D).

Instructions. Participants were instructed on the experiment with
the aid of a standardized MATLAB tutorial that fully informed them
about the structure of the task. That is, we indicated that rewards were
drawn from “pots” (i.e., distributions) with a low, medium, or large
degree of variability as indicated by the bar cues. Furthermore, we
specified that each of the three task sessions required participants to
alternatingly predict from one of two pots (distributions), resulting in
a total of six different pots (small variability n � 2, medium variabil-
ity n � 2, and large variability n � 2). We indicated that two pots with
the same degree of variability (e.g., small) would be centered at a
different physical location on the scale (i.e., had a different EV).
Participants were only ignorant about the exact parameter values (i.e.,
the EVs, SDs, and range used as well as the frequency of alternation
between the 2 distributions within a session). Furthermore, although
we indicated that the two distributions within a session had a different
SD, we did not reveal that the two pots within a session would also
have a different EV. Nor did we specify that each pot had only one of
two EVs. Debriefing after the experiment revealed that participants
believed that each of the six distributions had a different EV. We
informed the participants that the goal of the experiment was to
predict the next reward as closely as possible from the past reward
history.

Payoff. Participants were informed that the experiment comprised
two different trial types, “main” and “control” trials, and that the gains
from one main and one control trial were selected pseudorandomly
and paid out to the participants at the end of the experiment. We
explicitly stated that in the main trials the payoff was a fraction (10%)
of the reward drawn by the computer (80% of all trials; e.g., £5 if a
participant received 50 points) and that in these trials rewards were
shown in green. Although participants were informed that most trials
were main trials, we did not reveal the actual contingencies. This
design motivated the participants to consider the drawn numbers as
actual rewards. Initial inspection revealed that participants’ accuracy
in predicting upcoming rewards increased for distributions with
higher EVs as reflected in lower prediction errors [T(30) � 2.27, P �
0.0306; Fig. 1E, left]. In addition, participants’ accuracy in predicting
the mean of reward distributions increased for higher EVs as reflected
in lower performance errors [|predictions � EV|; T(30) � 2.49, P �
0.0186; Fig. 1E, right], thus suggesting that participants perceived the
drawn numbers as rewards. To ensure that participants revealed their
true predictions in an incentive-compatible way, we pseudorandomly
interspersed unannounced control trials (20% of all trials). Partici-
pants were told that in these trials payoff depended on their perfor-
mance, i.e., how close their prediction was to the EV of the reward
distribution. Predictions that differed no more than 1 SD (in points)
from the EV were rewarded with £7.50, predictions that differed more
than 1 SD but less than 2 SDs from the EV led to a reward of £5, and
all other predictions led to a reward of £2.50. As in the main trials, the
monitor displayed the number drawn by the computer after the
participant had indicated his/her prediction and did not indicate
performance. However, the number drawn by the computer was
shown in red to indicate the participant’s “supervision.” Just as the

green number, this number was a reward drawn by the computer and
did not tell participants how well they were performing on that trial.
Importantly, there was no indication about the control trial at the time
the participants stated their prediction. Because of their unannounced
occurrence, these control trials thus encouraged the participants to
optimize their performance during all trials. The tutorial informed
participants that they should try to predict as well as possible on every
trial as they did not know at the moment of prediction whether their
payoff on that trial depended on their performance or on the number
drawn by the computer.

Practice sessions. Prior to the main task, each participant com-
pleted two practice sessions. Here, rewards were drawn from distri-
butions with a different SD (i.e., 7 and 14 points) and EV (i.e., 30 and
60 points). As in the main task, the height of bar cues was proportional
to, but did not reflect, the actual SD or range of distributions. To
familiarize participants with the trackball mouse, each participant also
completed a short motor task. In each trial (total of 90 trials) partic-
ipants received 3,500 ms to scroll to a number on the scale that was
printed in green on top of the scale. All stimulus presentation, data
acquisition, and data analyses were programmed with MATLAB and
Cogent 2000 (http://www.vislab.ucl.ac.uk/cogent_2000.php).

Constant vs. dynamic learning rates. Prior to investigating adap-
tation to reward variability, we determined whether predictions were
updated with constant or dynamic learning rates. As predictions can
more rapidly become stable through decreasing learning rates, we
hypothesized that a reinforcement learning model with a dynamic
learning rate would better fit the data. That is, in variable contexts,
predictions based on constant learning rates can only become stable
with low learning rates. This results in slow learning and impedes
overall performance. We fit a constant learning rate Rescorla-Wagner
model (Rescorla and Wagner 1972) and a dynamic learning rate
Pearce-Hall model (LePelley and McLaren 2004; Li et al. 2011;
Pearce and Hall 1980) to participants’ prediction sequences. Both
models updated predictions as a function of the reward prediction
error (�) and the learning rate (�). Learning rates were conventionally
constrained to the interval [0 1].

On each successive trial t of the Rescorla-Wagner model, the
prediction (P) was updated according to the prediction error (�)
multiplied by the learning rate (�):

Pt�1 � Pt � � � �t (1)

The predictions (Pt) were initialized to the first prediction (P1) of the
participant for each condition, and the constant learning rate (�) was
estimated for each participant. First, we estimated the Rescorla-
Wagner model using one learning rate across SD conditions. Subse-
quently, we adjusted this model to allow for learning rates that
differed with SD, thus adding two additional free parameters.

According to Pearce-Hall, decreases in absolute prediction error
across trials may be used to guide changes in learning rate (Pearce and
Hall 1980). Here the dynamic learning rate (�t) depends on the
weighted (�) unsigned prediction error (normalized to a value in the
range [0 1]) across the past trials. The weighing factor (�; range [0 1])
regulates the extent of the gradual change in learning rate:

Pt�1 � Pt � � � �t

at�1 � � � � �t

100 points� � �1 � �� � �t
(2)

Here large prediction errors will result in an increase in learning rate
on the next trial, whereas learning rates will decrease with smaller
prediction errors. When � � 0 the new learning rate depends on the
previous learning rate and the previous absolute prediction error.
Importantly, when � � 0 the Pearce-Hall model is equivalent to a
constant learning rate Rescorla-Wagner model. Thus the Rescorla-
Wagner model is nested in the more complicated Pearce-Hall via a
parametric restriction. The initial learning rate (�1) and decay param-
eter (�) are the free parameters that are estimated via model fitting.
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First, this model was estimated using one initial learning rate for all
SD conditions. Subsequently, we adjusted this model to allow for
initial learning rates that differed with SD, thus adding two additional
free parameters.

Simulated data. We conducted a simple simulation to determine
the theoretical effect of 1) (initial) learning rate, 2) learning rate
decay, and 3) reward variability on performance in our task. We
constructed reward distributions with 20 different SDs (i.e., SD
1–SD 20). Each distribution had an EV of 0. With MATLAB, 50
reward distributions of 42 trials each (i.e., equivalent to our task)
were generated for each SD by drawing random round numbers
from a Gaussian distribution. Subsequently, we inspected overall
performance error (|performance � EV| averaged over all trials)
for learning rates between 0 and 1 (in steps of 0.01) and gradual
decays in learning rate between 0 and 1 (in steps of 0.1). For each

SD, learning rate, and decay, performance error was averaged over
the 50 different distributions generated for each SD. The first
prediction (i.e., start point) in our simulation was randomly drawn
from a distribution with an EV of 15 and an SD of 2. This was
motivated by the observation that participants in our task tended to
predict rewards of �50 points (50.77 � 2.23) during the first trial
of each distribution, i.e., at the middle of the scale, thus resulting
in performance errors of �15 (i.e., |50 � 35| or |50 � 65|). We
removed the first prediction prior to the calculation of simulated
performance error data.

In line with previously reported results, simulated data (Fig. 2A)
show that the use of dynamically decreasing learning rates facilitates
substantial decreases in overall performance error (|prediction � EV|
averaged over all trials) compared with the use of a constant Rescorla-
Wagner learning rate (Nassar et al. 2010).
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Fig. 2. A: simulated overall performance error (|performance � EV| averaged over all trials) for the Pearce-Hall model (see text for details on the simulation).
Each line represents performance error across different learning rates for a specific decay in learning rate (y-axis). Grayscale lines represent different gradual
decays in learning rate (�; 0–1, in steps of 0.1). Lighter grays indicate increases in learning rate decay. When the decay in learning rate is 0, the Pearce-Hall
(PH) model is equivalent to the Rescorla-Wagner (RW) model. Performance error depends on both the initial learning rate (x-axis) and the gradual decay in
learning rate. For most (initial) learning rates performance error is lower when combined with a decaying rather than a constant learning rate. B: optimal initial
learning rates for SDs of 1, 5, 10, 15, and 20 and a decay of 0.1. Optimal initial learning rate was quantified as the initial learning rate for which best overall
performance could be achieved. The optimal initial learning rate decreases when SD increases. Each black line indicates performance error across different
learning rates and represents a specific SD. Red dots indicate the optimal learning rate for each SD. C: optimal learning rates (gray dots and line) for different
SDs (SD 1–SD 20) and multiple decays in learning rate (0, 0.1, 0.4, and 0.9). Optimal learning rates decrease when SD increases for each level of decay. Red
dots correspond with the red dots in B, i.e., the optimal initial learning rates for SD 5, 10, 15, and 20 with a decay of 0.1. D: simulated overall performance error
for the adaptive Pearce-Hall model where prediction errors are scaled relative to the logarithm of SD (Eq. 4; 	 � 0.5). Grayscale lines represent different gradual
decays in learning rate (�; 0–1, in steps of 0.1). Lighter grays indicate increases in learning rate decay. Although the minimum performance error is lower in
the adaptive compared with the nonadaptive Pearce-Hall model (compare red dots in A and D), performance also critically depends on the initial learning rate
and the gradual decrease in learning rate (compare blue dots in A and D). Thus performance may, but does not necessarily, improve with adaptation. E: simulated
predictions with the nonadaptive (top) and adaptive Pearce-Hall model (bottom) for distributions with an SD of 5, 10, and 15, an initial learning rate of 0.5, and
a gradual decay in learning rate of 0.1. Lines represent average of 200 simulated sessions. Shaded areas indicate SE. Adaptation facilitates faster learning and
more similar performance error across SD conditions. F: relation between the degree of adaptation (Eq. 4; prediction errors scaled with the logarithm of SD)
and performance error. Whereas scaling of prediction errors relative to but smaller than (log)SD facilitates decreases in performance error, scaling with a
magnitude close to the (log)SD may limit the power of the learning rate to update predictions, resulting in increases in performance error. Thus performance may,
but does not necessarily, improve with adaptation.
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Adaptation to reward variability. Performance may be further
improved through scaling of prediction errors relative to reward
variability. Investigating the relationship between prediction error
scaling and task performance was the main goal of this study. If such
adaptation indeed benefits performance, the optimal learning rate
should differ for varying degrees of reward variability in the absence
of prediction error scaling. The optimal learning rate was defined as
the learning rate that resulted in lowest overall performance error for
a specific SD in the simulated data. Simulated results show that the
lowest performance error could be achieved through the use of smaller
(initial) learning rates when SD increases (see Fig. 2, B and C). This
relationship was present for each level of gradual decay in learning
rate (see Fig. 2C for multiple decays). Whereas the optimal (initial)
learning rate varied with the logarithm of the SD for small decays, this
relation was linear for the highest decays (Fig. 2C). To investigate
adaptation in our experimental data, we first compared model fits for
1) a model with one (initial) learning rate across SD conditions to 2)
a model with SD-specific (initial) learning rates. If participants would
adapt to reward variability, the model with SD-specific learning rates
should provide a better fit of participants’ prediction sequences.

To determine how well a normative model including prediction
error scaling described human behavior, we divided the reward
prediction error by the SD of the received rewards. This model is
similar to the Pearce-Hall model (Eq. 2); however, in this model the
reward prediction error is divided by the SD (
t) of the received
rewards. As the relationship between optimal learning rate and SD is
logarithmic for lower decays (see simulations), we multiplied the
adaptation parameter with the logarithm of the observed SD in a
second version of the model:

Pt�1 � Pt � �t �
�t

�t

at�1 � � � ��t ⁄ �log��
t�
100 points � � �1 � �� � �t

(3)

Here 
t is the SD of rewards received on trial 1 to trial t. The initial
expected SD of rewards 
1,2 was a free parameter that was estimated
separately for each SD condition, thus resulting in three free param-
eters. The initial learning rate (�1) and decay parameter (�) were
additional free parameters that were estimated via model fitting.

As it is conceivable that participants scale prediction errors relative
to, but with a quantity smaller than, the SD, we subsequently adjusted
the adaptive model by adding a free scaling parameter (�t) on
prediction errors. To obtain the scaling parameter, a free parameter (	)
that allowed for individual variation in adaptation was multiplied with
the SD (
t). As the relationship between optimal learning rate and SD
is logarithmic for lower decays, we multiplied the adaptation param-
eter with the logarithm of the SD (
t) in a second version of the
model:

Pt�1 � Pt � �t �
�t

�t

at�1 � � � � �t ⁄ �

100 points� � �1 � �� � �t

�t � �1 � v� � v � �log��
t�

(4)

The initial expected SD of rewards 
1,2 was a free parameter that was
estimated separately for each SD condition, thus resulting in three free
parameters. The initial learning rate (�1), decay parameter (�), and
adaptation index (	) were additional free parameters that were esti-
mated via model fitting. 	 � 0 indicates that participants adjust the
initial learning rate relative to reward variability. In contrast, when
	 � 0 reward prediction errors are divided by 1, resulting in no
adaptation. 	 was constrained to the interval [0 1] where a value of 1
indicates adaptation to (the logarithm of) the SD. Importantly, this
adaptive Pearce-Hall model can be transformed into the simpler

nonadaptive Rescorla-Wagner and Pearce-Hall models by imposing a
set of constraints on the parameters. Specifically, for 	 � 0 this model
is equivalent to the nonadaptive Pearce-Hall model (Eq. 2). In addi-
tion, when 	 � 0 and � � 0 this model is equivalent to the
Rescorla-Wagner model (Eq. 1).

Model fitting and comparison. We estimated the free parameters of
each model using a constrained search algorithm (fmincon in MAT-
LAB) to minimize the total squared difference between participants’
predictions and prediction sequences generated by the model. Models
were fitted for each participant separately (i.e., using an individual set
of free parameters) using all SD conditions and trials of the main task
(n � 252; 6 distributions � 42 trials). For model comparison within
participants, we used the Akaike information criterion (AIC), which
penalizes the number of free parameters to determine the overall best
model. For model comparisons at the group level, AIC values were
aggregated over all participants for each model. Thus this approach
allowed us to conduct model comparisons on the individual as well as
the group level. In addition, as the Rescorla-Wagner (Eq. 1) and
Pearce-Hall (Eq. 2) models are nested in the adaptive Pearce-Hall
model (Eq. 4) via restrictions on model parameters, we used likeli-
hood ratio tests to investigate whether superior fits of the adaptive
model were better than chance level. Thus we determined whether the
improvement in fit gained by allowing the adaptation parameter to be
free was warranted.

As adaptation presumably required participants to learn the struc-
ture of the task and the degree of reward fluctuation associated with
SD cues, it was hypothesized that prediction error scaling relative to
reward variability would be reduced or absent during the practice
sessions. Consequently, we also obtained the best-fitting model pa-
rameters for each participants’ practice sessions (n trials: 168) and
repeated the model comparisons.

Adaptation to reward variability and learning efficiency. To test
our central hypothesis, we determined whether scaling of prediction
errors relative to reward variability would be related to improvements
in learning in humans. Efficient learning requires individuals to
rapidly acquire stable and accurate predictions in contexts with vary-
ing degrees of reward variability. Higher overall efficiency in learning
should be reflected in smaller overall performance error (|prediction �
EV| averaged over all trials). Consequently, 1) overall performance
error, 2) final performance error, and 3) final prediction (in)stability
were used as the main measures of learning efficiency. Final perfor-
mance error was quantified as the average performance error during
the final short block of the task (�trial 36:42). Final prediction
instability pertained to the SD of participants’ predictions in the final
short block. Importantly, scores on the different outcome measures
could be highly correlated, e.g., increases in (final) performance error
could result from unstable predictions rather than stable predictions
distant from the EV. Indeed, high correlations (Spearman’s � � 0.80)
were present between overall performance error, final performance
error, and prediction instability. Thus we used overall performance
error as the representative outcome measure for learning efficiency.
Failure of adaptation was hypothesized to have a larger effect on
performance error magnitude for higher SDs (see Fig. 2E). Specifi-
cally, adapters (	 � 0) and nonadapters (	 � 0) may show similar
accuracy in predicting the mean when SD is low but differ in their
performance for higher SDs. Consequently, (dis)similarity in perfor-
mance for different SD conditions was used as an additional measure
of learning efficiency. Performance dissimilarity was quantified as the
SD of overall performance error across the different SD conditions.

Although the simulated data suggest that scaling of prediction
errors relative to reward variability may improve performance (com-
pare red dots in Fig. 2A and Fig. 2D and compare Fig. 2E, top and
bottom; simulated data), performance also critically depends on the
gradual decay in learning rate and the initial learning rate (compare
blue dots in Fig. 2A and Fig. 2D; simulated data). Thus an increase in
computational demands required for adaptation may, for instance,
interfere with optimal learning rate decay. In addition, scaling with a
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magnitude close to the (logarithm of the) SD may limit the power of
the learning rate to update predictions (see Fig. 2F). Consequently
performance may, but does not necessarily, improve with adaptation
as predicted by normative models.

To allow for a nonlinear relation between learning efficiency
(overall performance error and dissimilarity in performance error
across SD conditions) and the degree of adaptation (	; Eq. 4), we
conducted quadratic regressions. The initial learning rate (�1; Eq. 4)
and the gradual decrease in learning rate (�; Eq. 4) were used as
additional independent variables in the regressions:

Y1�perf. error� � 
0 � 
1�v� � 
2��� � 
3��1� � 
4�v2�
� 
5��2� � 
6��1

2� � � (5)

Y2�SD�perf. error across SDs�� � 
0 � 
1�v� � 
2��� � 
3��1�
� 
4�v2� � 
5��2� � 
6��1

2� � � (6)

To obtain standardized regression coefficients, all independent and
dependent variables were z-transformed.

RESULTS

Participants used dynamic learning rates. As dynamic
learning rates can improve learning in variable contexts, we
inspected whether participants decelerated learning across tri-
als. Model comparisons showed that the Pearce-Hall model
with a dynamic learning rate (Eq. 2) provided a superior fit to
participants’ prediction sequences compared with a constant
learning rate Rescorla-Wagner model (see Table 1 for model
comparisons; see Fig. 3A for a typical participant). Inspection
of individual model fits revealed that the Rescorla-Wagner
model performed best in only a small minority of the partici-
pants (3/31). This result validates the nesting of adaptation to
reward variability in a Pearce-Hall model.

Adaptation to reward variability. To investigate adaptation
to reward variability, we first determined whether model fits
for the Pearce-Hall model improved by including SD-specific
initial learning rates. Indeed, model fits improved when initial
learning rates could differ across SD conditions (Table 1).
Initial learning rates decreased significantly for increases in SD
[repeated-measures ANOVA: F(2,60) � 11.0788, P �

8.0374e-005, all 1-tailed post hoc tests: P � 0.0167 (value
required for Bonferroni correction); Fig. 3B, left]. Whereas this
effect was present in the majority of participants, some partic-
ipants (9/31) used similar or increasing initial learning rates
when SD increased (Fig. 3B, right). Importantly, the superior
fit of a model with SD-specific learning rates did not solely
result from the first few trials, as model fits computed after
exclusion of the initial 10 trials of each distribution also
resulted in superior performance of the model with SD-specific
learning rates (difference in AIC participant-specific model
parameters � �152.23; �124

2 � 276.23, P � 0.001; perfor-
mance error data across trials show that participants still
updated their predictions after the first 10 trials; Fig. 3C).

As each session included two conditions that alternated in
short blocks, initial learning rates for the first condition poten-
tially depended on the second condition in that session. Spe-
cifically, initial learning rates for SD 10 conditions might
increase if the second condition in a session has a higher SD
(i.e., SD 15). However, initial learning rates estimated sepa-
rately for the two SD 10 conditions did not differ significantly
when paired with SD 5 compared with SD 15 [T(60) � 0.7424,
P � 0.4607]. This finding renders the presence of additional
contextual effects on adaptation unlikely.

To facilitate formal tests of adaptation we adjusted the
Pearce-Hall model to include prediction error scaling to reward
variability (Eqs. 3 and 4). Participants’ predictions were better
fit by adaptive Pearce-Hall models that scaled prediction errors
with (Eq. 3) or relative to (Eq. 4) the (log)SD, compared with
the nonadaptive Pearce-Hall model (Table 1). Even though the
limited number of trials posed a restriction on statistical power
on the individual level, the adaptive Pearce-Hall models pro-
vided a significantly better fit in the majority of participants
(16/31) compared with the simpler models, evidenced by lower
AIC values and significant likelihood ratio tests (see Fig. 3A
for a typical participant). The minority of participants for
whom the likelihood ratio tests were not significant comprised
both individuals (9/31) in whom initial learning rates did not
decrease for increases in SD (see above) as well as individuals

Table 1. Quality of model fits to participants’ prediction sequences using a separate set of parameters for each participant

Model RW PH
PH—SD-Specific

�1

Linear Adaptive
PH: 	 � 1

Log Adaptive
PH: 	 � 1

Linear Adaptive
PH: 	 � [0 1]

PH dAIC: �439.67
�31

2 � 501.67,
P � 0.001

PH—SD-specific �1 dAIC: �505.78 dAIC: �66.10
�93

2 � 691.78,
P � 0.001

�62
2 � 190.00,
P � 0.001

Linear adaptive PH dAIC � �544.18 dAIC � �104.51 dAIC � �38.41
Fixed parameter

adaptation: 	 � 1
�124

2 � 965.18,
P � 0.001

�93
2 � 463.50,
P � 0.001

�31
2 � 273.40,
P � 0.001

Log adaptive PH dAIC: �621.05 dAIC: �181.38 dAIC: �115.278 dAIC: �76.87
Fixed parameter

adaptation: 	 � 1
�124

2 � 869.29,
P � 0.001

�93
2 � 367.62,
P � 0.001

�31
2 � 177.51,
P � 0.001

Linear adaptive PH dAIC: �635.86 dAIC: �196.18 dAIC: �130.08 dAIC: �91.67 dAIC: �14.80
Free adaptation parameter:

	 � [0 1]
�155

2 � 945.86,
P � 0.001

�124
2 � 444.18,
P � 0.001

�62
2 � 254.08,
P � 0.001

�31
2 � 149.79,
P � 0.001

�31
2 � 76.57,
P � 0.001

Log adaptive PH dAIC: �671.02 dAIC: �231.34 dAIC: �165.24 dAIC: �35.16 dAIC: �35.16 dAIC: �35.16
Free adaptation parameter:

	 � [0 1]
�155

2 � 981.02,
P � 0.001

�124
2 � 479.34,
P � 0.001

�62
2 � 289.24,
P � 0.001

�31
2 � 184.94,
p � 0.001

�31
2 � 111.73,
P � 0.001

RW, Rescorla-Wagner; PH, Pearce-Hall; SD, standard deviation; �1, initial learning rate; 	, adaptation to reward variability; dAIC, difference in Akaike
information criterion value.
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Fig. 3. A: observed and modeled predictions of reward in a typical participant for the constant learning rate Rescorla-Wagner model, the nonadaptive Pearce-Hall model, and
the adaptive Pearce-Hall model (Eq. 4; prediction errors scaled relative to the logarithm of SD). The Pearce-Hall models with dynamic learning rate provided a superior fit to
participants’ prediction sequences compared with the constant learning rate Rescorla-Wagner model. In addition, the adaptive Pearce-Hall model provided a better fit compared
with the nonadaptive Pearce-Hall model. Whereas the difference in fit between the 2 Pearce-Hall models was relatively small for lower SDs, this difference was pronounced for
the high-SD condition (right). B, left: median initial learning rates decreased significantly for increases in SD, suggesting adaptation to reward variability. Right: changes in initial
learning rates as a function of SD in individual participants. Markers provide estimated initial learning rates; lines are least-squares lines fitted through these data points. Whereas
the majority of participants (dark gray lines) decreased initial learnings when SD decreased, some participants used the same initial learning rate across different SDs or increased
initial learning rates when SD increased (light gray lines). C: average (�SE) performance error (|prediction � EV|) data across all participants and trials showing that participants
continued to update their predictions until the final trials of each condition. D: difference in Akaike information criterion (AIC) values between the adaptive and nonadaptive
Pearce-Hall models increased for increases in SD, indicating that prediction error scaling becomes more important when SD increases. E: R2 values from linear regressions where
modeled predictions from the nonadaptive (Eq. 2) and adaptive (Eq. 4) Pearce-Hall models were the independent variables and participants’ predictions were the dependent
variable. Most participants’ predictions were better explained by the adaptive Pearce-Hall model. F, top: the logarithm of SD provides a better predictor of learning rate (average
R2 � SE) for the nonadaptive compared with the adaptive model. Importantly, for these analyses, initial learning rates and learning rate decay (and the degree of adaptation) were
allowed to vary across SD conditions for the nonadaptive as well as the adaptive model. Bottom: the logarithm of SD provides a better predictor of learning rate decay (average
R2 � SE) for the nonadaptive compared with the adaptive model. Thus initial learning rates and learning rate decays were more similar across SD conditions after adaptation.
Part pred, participants’ predictions; n-adap, nonadaptive; adap, adaptive.
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(6/31) in whom adaptation occurred but failed to reach signif-
icance, presumably because of the limited number of trials. In
line with the notion of individual differences in the degree of
adaptation, Pearce-Hall models that included a free parameter
for adaptation (Eq. 4) outperformed Pearce-Hall models that
used a fixed adaptation parameter (Eq. 3; Table 1). Of the two
adaptive models with a free adaptation parameter, the logarith-
mic adaptive model provided a slightly better fit to partici-
pants’ prediction sequences compared with the linear adaptive
model (Table 1). Consequently, this model was used for
subsequent analyses. The difference in fit between the non-
adaptive and adaptive Pearce-Hall models was most pro-
nounced for high-SD conditions [F(2,60) � 4.16, P � 0.0203;
Fig. 3D; also compare Fig. 3A, left and right]. Modeled
predictions from the log adaptive Pearce-Hall model (Eq. 4)
better predicted participants’ predictions compared with mod-
eled predictions from the nonadaptive Pearce-Hall model (Eq.
2; Wilcoxon signed-rank test on linear regression coefficients:
Z � �3.0571, P � 0.0022; Fig. 3E). In line with this finding,
estimated adaptation parameters differed significantly from
zero [0.5133 � 0.3495; T(1,30) � 8.1757, P � 0.001]. Al-
though all model fits were superior for distributions with a
higher EV (i.e., EV 65 vs. EV 35), the (log)adaptive Pearce-
Hall model provided a better fit to participants’ prediction
sequences compared with the nonadaptive Pearce-Hall model
for both EVs (difference in AIC � �110.93 and �269.46;
�124

2 � 358.93, P � 0.001 and �124
2 � 517.47, P � 0.001 for

EV 35 and EV 65, respectively). Superior performance of this
adaptive model compared with the nonadaptive Pearce-Hall
model was confirmed by pooling prediction sequence data
across participants and fitting both models on the aggregated
data using one set of free parameters across participants (dif-
ference in AIC � �3.09; �4

2 � 11.09, P � 0.0256). Finally, we
compared the log adaptive Pearce-Hall model with a free
adaptation parameter (Eq. 4) to the nonadaptive Pearce-Hall
(Eq. 2) model using the more conservative Bayesian informa-
tion criterion (BIC). Compared with AIC, BIC has a greater
preference for simplicity and penalizes models with more
parameters more heavily (Lewandowski and Farrell 2011).
With BIC, this adaptive Pearce-Hall model initially provided
an inferior fit to participants’ behavior compared with the
nonadaptive Pearce-Hall model (difference in BIC �
203.2948). However, this negative effect resulted from pun-
ishment for the three free parameters used to estimate the initial
expected SD of rewards, not from the penalty for the adapta-
tion parameter. After the requirement to estimate the initial
expected SD of rewards was removed, the adaptive model
outperformed the nonadaptive model (across participants dif-
ference in BIC � �58.56; on aggregated data difference in
BIC � �1.38). Specifically, we fit the adaptive and nonadap-
tive models to participants’ prediction sequences from the third
trial onward, using the SD of rewards received over the first
two trials as the initial SD of rewards. On subsequent trials the
SD of rewards was updated as specified in Eq. 4. In summary,
these results suggest that participants scale prediction errors in
addition to decreasing the learning rate across subsequent
trials.

Adaptation to reward variability only became apparent during
the main task as participants’ predictions in the two practice
sessions were better fit by the nonadaptive Pearce-Hall model
(difference in AIC across participants � �134.51; �124

2 � 382.51,

P � 1). This result suggests that adaptation required participants
to learn the structure of the task and the degree of reward
variability associated with the SD cues.

The presence of adaptation to reward variability implies that
dynamic learning rates varied with scaled prediction errors. To
describe this effect, we fitted participants’ prediction sequences
for each SD condition separately using the (logarithmic) adap-
tive Pearce-Hall model. Thus initial learning rates, learning
rate decay, and the degree of adaptation were allowed to vary
across SD conditions. As expected, simple linear regressions
showed that (log)SD was a significantly better predictor of
initial learning rate for the nonadaptive Pearce-Hall model
compared with the adaptive Pearce-Hall model (Wilcoxon
signed-rank test on R2: Z � �2.2732, P � 0.0203; Fig. 3F,
top). In addition, learning rate decay was better predicted by
(log)SD for the nonadaptive compared with the adaptive model
(Wilcoxon signed-rank test on R2: Z � �2.3516, P � 0.0187;
Fig. 3F, bottom). Thus, as expected from improved model fits
for the adaptive model, initial learning rates and learning rate
decays were more similar across SD conditions after
adaptation.

Adaptation and learning efficiency. Importantly, adaptation
to reward variability may serve to make learning resistant to
fluctuations in reward value. Although scaling of prediction
errors relative to reward variability should benefit perfor-
mance, scaling with the SD may limit the power of the learning
rate to update predictions (Fig. 2F). Thus we tested for a
quadratic relationship between the degree of adaptation (	; Eq.
4) and overall performance. As performance also critically
depends on the gradual decay in learning rate and the initial
learning rate, these parameters were used as additional
regressors.

We observed a significant quadratic relationship between the
individual degree of prediction error scaling and overall per-
formance error (P � 0.0067; Table 2; Fig. 4A, left). Whereas
performance error decreased for adaptation indexes up to 	 �
�0.5 (i.e., half the logarithm of the SD), higher adaptation
indexes were associated with increases in performance error
(Fig. 4A, left). Analyses using the extent of SD-dependent
changes in learning rate (Fig. 3B, right) as an alternative
measure for adaptation confirmed this result [
1

2 � 0.1614,
T(24) � 3.1066, P � 0.0048]. These results imply that efficient
adaptation required scaling of prediction errors relative to, but
smaller than, the (log)SD, in line with the simulated data (Fig.
2F). The tight relationship between the simulated and experi-
mental data suggests that participants tended to scale their
prediction errors in an optimal manner. This relationship fur-
thermore implies that the estimated adaptation parameters
provided a good fit of participants’ behavior, i.e., unreliable fits
might have resulted in erroneous adaptation parameters un-
likely to correlate with (raw) performance error data. To
further investigate the extent of prediction error scaling in
relation to performance, we repeated model estimation for the
log adaptive model without any constraints on the adaptation
parameter. Seven of the 31 participants scaled prediction errors
with a quantity larger than the log SD. These participants
presented with significantly larger performance errors com-
pared with individuals who scaled prediction errors with a
quantity smaller than the SD [T(29) � 1.9937, P � 0.0278;
Fig. 4B]. This result shows how participants can make errors
and deviate from theoretical predictions.
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Performance error not only varied with adaptation but also
depended on the gradual decay in learning rate (P � 0.0002;
Table 2; Fig. 4A, right). Performance errors slightly decreased
for small increases in learning rate decay but increased exten-
sively for larger decays (Fig. 4A, right). Thus whereas gradual
deceleration of learning benefits performance, rapid decelera-
tion results in preliminary completion of learning.

Regressions conducted for each SD separately showed that
whereas the quadratic parameter for adaptation had a signifi-
cant effect on performance error for higher SDs, there was only
a trend-level effect when SD was 5 (P � 0.079, 0.013, and
0.011 for SD 5, SD 10, and SD 15, respectively; Tables 3–5).
Gradual decay in learning rate significantly impacted on per-
formance error for each of the SDs separately (P � 0.007,
0.000, and 0.0004 for SD 5, SD 10, and SD 15 respectively;
Tables 3–5). Although learning rate decay had a larger effect
on performance in the small-SD condition, compared with
prediction error scaling both forms of adaptation had a similar
contribution to performance in the large-SD condition (see
Table 2). Thus learning rate decay and prediction error scaling
can be considered separate, additional processes that impact on
performance. Whereas learning rate decay benefits perfor-
mance independent of SD magnitude, the effect of prediction
error scaling on performance increases when SD increases.

Scaling of prediction errors relative to SD should not only
facilitate improved overall performance but also result in
similar learning across different levels of reward fluctuation.

Indeed, dissimilarity in performance error (quantified as the
standard deviation in performance error across SD conditions)
was lower for individuals who adapted to a value up to 	 �
�0.5 [i.e., half the logarithm of the (log)SD] but not for those
who adapted with larger values (P � 0.0253; Table 6; Fig. 4C,
left). Similarity in performance error across SD conditions also
depended on the initial learning rate (P � 0.0006; Table 6; Fig.
4C, right). Performance error across SD conditions was more
similar for learning rates of �0.2–0.4 but became somewhat
more dissimilar for larger learning rates and much more dis-
similar with smaller initial learning rates (Fig. 4C, right).
These results show that optimal adaptation is related to im-
proved performance in variable contexts.

As individual variability in adaptation to reward fluctua-
tion could be related to the acquisition of a proper estimate
of the level of variability, we inspected debriefing question-
naires. These questionnaires revealed that whereas individ-
uals with a higher degree of adaptation (	 � 0) correctly
indicated which session was most difficult in terms of the
level of variability, none of the participants with an adap-
tation index 	 � 0.1 ranked the sessions correctly. This
result suggests that adapters in our task seem to acquire
better estimates of the variability.

DISCUSSION

This study investigated whether human individuals achieve
superior performance through scaling of prediction errors rel-

Table 2. Parameter estimates and statistics for quadratic regressions predicting overall performance error


 SE t(24) P

95% Confidence Interval

Lower bound Upper bound

	 0.063 0.107 0.594 0.558 �0.157 0.283
� 0.056 0.167 0.337 0.739 �0.289 0.401
�1 0.078 0.172 0.454 0.654 �0.277 0.434
	2 0.388 0.131 2.970 0.007 0.118 0.658
�2 0.537 0.121 4.427 0.000 0.287 0.788
�1

2 0.053 0.129 0.409 0.686 �0.214 0.320
Intercept �0.947 0.229 �4.126 0.000 �1.420 �0.473

Fitted model: F(6,24) � 12.521, P � 0.000, R2 adjusted � 0.697. SE, standard error; 	, adaptation to reward variability; �, gradual decay in learning rate;
�, initial learning rate.

A B C

Fig. 4. A, left: overall performance error (|prediction � EV| averaged over all trials) varied significantly with the estimated degree of prediction error scaling.
Whereas performance error decreased for adaptation indexes up to 	 � 0.4–0.6 (i.e., approximately half the logarithm of the SD), higher adaptation indexes were
associated with increases in performance error. Right: relationship between learning rate (LR) decay and performance error. Performance errors slightly decreased
for small increases in learning rate decay (�) but increased substantially for larger decays (�0.6–0.8). Adaptation indexes and learning rate decays were divided
into 5 bins of equal width. Subsequently, performance errors were averaged over all adaptation/learning rate decay indexes in a certain bin. B: increases in
performance error in those individuals who scaled prediction error with a quantity greater than the log SD. C, left: dissimilarity in performance error across SD
conditions was lower for individuals who scaled prediction errors to a value up to 	 � 0.4–0.6 (i.e., approximately half the SD) but not for those who adapted
with larger values. Right: relationship between initial learning rate and performance error. Performance error was more similar for initial learning rates (�1) of
�0.2–0.4 but became more dissimilar with smaller and larger learning rates. Adaptation indexes and initial learning rates were divided into 5 bins of equal width.
Subsequently, similarity in performance error was averaged over all adaptation indexes/initial learning rates in a certain bin.
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ative to reward variability. Model comparisons confirmed that
participants adapted learning rates to reward variability, in
addition to deceleration of learning rates across subsequent
trials (Nasser et al. 2010). Improvements in individual perfor-
mance, assessed as accuracy in predicting means of reward
distributions, occurred for gradual decreases in learning rates
and scaling of prediction errors relative to, but smaller than, the
SD. Indeed, scaling of prediction errors with a quantity ex-
ceeding the (log)SD resulted in impaired performance. Impor-
tantly, performance was more similar across SD conditions for
optimal adapters. These results imply that efficient adaptation
makes learning more robust to changing variability.

The positive relationship between prediction error scaling
and task performance implies that increased computational
resources required for adaptation did not interfere with addi-
tional task requirements including use of decreasing learning
rates. Specifically, the absence of learning rate decay or very
steep decays in learning rate in combination with prediction
error scaling can impair performance (see Fig. 2D). If partic-
ipants had used suboptimal initial learning rates and learning
rate decays when scaling prediction errors, the degree of adapta-
tion alone might not have been a significant predictor of perfor-
mance error. This observation suggests that participants behaved
in a near-optimal manner in line with the simulations. However,
some (7/31) participants scaled prediction errors with a quantity
exceeding the (log)SD, resulting in impaired performance. Such
violation from theoretical predictions stresses the importance of
comparing human behavior to predictions made by normative
models (Preuschoff and Bossaerts 2007).

It is readily understandable how the observed adaptation to
the predictable variability of rewards is essential for learning.
Whereas a reward prediction error of a particular magnitude
might be very meaningful in an environment in which rewards
fluctuate less, a similar-sized error is not very meaningful when
rewards vary with similar magnitude. Consequently, reward

prediction errors should be scaled to variability for appropriate
updating of predictions. The impact of such scaling on perfor-
mance error should increase as SD increases. Indeed, whereas
the extent of prediction error scaling had a significant effect on
performance error for SD 10 and SD 15, there was only a
trend-level effect for SD 5. Importantly, this procedure would
furthermore enable individuals to detect changes in the statis-
tics of the environment, such as a change in EV and SD of a
reward probability distribution. Although previous studies
showed that participants can successfully detect changes in
distributions (Berniker et al. 2010; Nassar et al. 2010; Payzan-
LeNestour and Bossaerts 2011), they did not identify an
optimal degree of prediction error scaling or investigate the
relation of such adaptation to task performance, which was the
topic of the present study. Furthermore, none of these studies
reported adaptation to reward variability in a stable, i.e.,
nonvolatile, environment.

A positive relation between learning rate adaptation, learn-
ing, and performance is implicit in Bayesian models of optimal
learning (Jaynes 1986). This theorem specifies that each source
of information should be weighted according to its reliability
(or conversely, uncertainty). Surprising outcomes such as a
large prediction error in a distribution with low variability
should lead to larger updates in predictions, as they render
previous predictions less reliable. As such, adaptation to vari-
ability may lead to optimal performance as predicted by Bayes-
ian models of learning. Although Bayesian studies on learning
did not correlate the individual degree of adaptation to perfor-
mance, they did show that human individuals behave in an
optimal or near-optimal manner as predicted by Bayesian
decision theory in a number of tasks varying from sensorimotor
learning to perceptual decision-making (Kording and Wolpert
2004; O’Reilly et al. 2012; Stocker and Simoncelli 2006;
Yuille and Kersten 2006).

Table 3. Parameter estimates and statistics for quadratic regressions predicting performance error for SD 5


 SE t(24) P

95% Confidence Interval

Lower bound Upper bound

	 0.100 0.129 0.778 0.444 �0.166 0.367
� 0.212 0.202 1.050 0.304 �0.205 0.630
�1 �0.084 0.209 �0.402 0.691 �0.514 0.347
	2 0.291 0.158 1.837 0.079 �0.036 0.617
�2 0.437 0.147 2.973 0.007 0.134 0.740
�1

2 �0.009 0.157 �0.060 0.952 �0.333 0.314
Intercept �0.695 0.278 �2.501 0.020 �1.268 �0.121

Fitted model: F(6,24) � 7.269, P � 0.000, R2 adjusted � 0.556.

Table 4. Parameter estimates and statistics for quadratic regressions predicting performance error for SD 10


 SE t(24) P

95% Confidence Interval

Lower bound Upper bound

	 0.142 0.114 1.254 0.222 �0.092 0.377
� �0.058 0.178 �0.327 0.746 �0.426 0.309
�1 0.213 0.184 1.160 0.257 �0.166 0.592
	2 0.372 0.139 2.667 0.013 0.084 0.659
�2 0.605 0.129 4.675 0.000 0.338 0.871
�1

2 �0.081 0.138 �0.588 0.562 �0.366 0.203
Intercept �0.866 0.245 �3.542 0.002 �1.371 �0.362

Fitted model: F(6,24) � 10.545, P � 0.000, R2 adjusted � 0.656.
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The substantial variability in the degree of adaptation as
observed in the present study prompts the question of why
some individuals adapt better than others. Whereas the adap-
tive models provided a significantly better fit in the majority of
participants, some participants were fit equally well by adap-
tive and nonadaptive Pearce-Hall models. Individual variabil-
ity is often thought to reflect differences in information-pro-
cessing power (Koechlin and Hyafil 2007; O’Reilly et al.
2012), limitations of which may interfere with acquiring a
proper estimation of the variability and thus hampering adap-
tation. Indeed, superior adapters were better at estimating the
variability of each distribution, as apparent from debriefing
questionnaires, in line with improvements in performance as
observed on the task. In addition, adaptation only became
apparent after the practice sessions. This result indicates that
participants required information processing power to learn the
structure of the task and the degree of reward variability
associated with the SD cues in order to adapt.

In addition, in some participants none of the Pearce-Hall
models (adaptive or nonadaptive) provided a good fit (Fig. 3E),
three of whom were best fit by the constant learning rate
Rescorla-Wagner model. Overall performance was lower in
these participants, presumably related to a combined failure to
scale prediction errors relative to reward variability and to use
decreasing learning rates, potentially suggesting disengage-
ment from the task. Importantly, omission of the participants
who were best fit by the Rescorla-Wagner model did not
significantly alter our findings on the relation between predic-
tion error scaling and task performance.

Performance depended not only on the extent of prediction
error scaling but also on the gradual decay in learning rate.
Specifically, performance improved for gradual decays in
learning rate but decreased as the decay increased. In contrast
to prediction error scaling, learning rate decay impacted sim-
ilarly on performance error for the different SDs. Thus learning

rate decay and prediction error scaling are separate forms of
adaptation that differentially impact on performance. It is
crucial to behaviorally separate these two adaptation processes,
as they may have different neural substrates, which future
studies could examine. The observation that learning rates
decayed across subsequent trials is in line with a previous study
on belief-updating that required participants to predict the next
number in a sequence (Nassar et al. 2010). Nassar et al. (2010)
mainly focused on learning rate decreases across subsequent
trials, whereas here we investigated the effect of prediction
error scaling on performance. Thus we quantified the separate
effects of learning rate decay and prediction error scaling prior
to investigating the relation between prediction error scaling
and performance. A secondary difference between the two
studies is the absence of volatility (i.e., unexpected changes in
outcome distributions) in our study. Volatility would confound
our study goals, as participants may underestimate outcome
variability under volatile conditions (Nasser et al. 2010). In
volatile conditions the participant must decide which predic-
tion errors represent “fundamental changes” in the underlying
distribution and which prediction errors are the results of noise.
Therefore, to isolate prediction error scaling from this “funda-
mental change point” detection, we performed this study in the
absence of volatility. Finally, whereas Nassar et al. (2010)
investigated learning about numerical (nonreward) outcomes,
here we focused specifically on adaptation to reward variabil-
ity. This is a crucial difference, as a wealth of studies have
revealed specialized encoding of reward prediction errors in
midbrain dopamine neurons and in the human ventral striatum
(Garrison et al. 2013; Schultz et al. 1997). To incentivize the
participants to perceive the drawn numbers as actual rewards,
the payoff in our main trials (80% of all trials) depended on the
reward drawn by the computer. The finding that performance
predicting upcoming rewards and the EV of reward distribu-
tions increased for distributions with higher EVs suggests that

Table 5. Parameter estimates and statistics for quadratic regressions predicting performance error for SD 15


 SE t(24) P

95% Confidence Interval

Lower bound Upper bound

	 �0.041 0.124 �0.330 0.744 �0.298 0.216
� 0.022 0.195 0.111 0.913 �0.381 0.424
�1 0.084 0.201 0.416 0.681 �0.331 0.499
	2 0.419 0.153 2.748 0.011 0.104 0.734
�2 0.451 0.142 3.182 0.004 0.158 0.743
�1

2 0.197 0.151 1.307 0.204 �0.114 0.509
Intercept �1.033 0.268 �3.857 0.001 �1.586 �0.480

Fitted model: F(6,24) � 8.121, P � 0.000, R2 adjusted � 0.587.

Table 6. Parameter estimates and statistics for quadratic regressions predicting dissimilarity in performance error across SD conditions


 SE t(24) P

95% Confidence Interval

Lower bound Upper bound

	 �0.218 0.146 �1.495 0.148 �0.518 0.083
� �0.339 0.228 �1.485 0.150 �0.810 0.132
�1 0.456 0.235 1.940 0.064 �0.029 0.942
	2 0.426 0.179 2.385 0.025 0.057 0.794
�2 0.228 0.166 1.377 0.181 �0.114 0.570
�1

2 0.694 0.177 3.926 0.001 0.329 1.058
Intercept �1.304 0.313 �4.161 0.000 �1.951 �0.657

Fitted model: F(6,24) � 4.858, P � 0.002, R2 adjusted � 0.436.
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this manipulation was successful. It must be noted, though, that
during the incentive-compatible control trials, where the par-
ticipants had to predict the EV, not the rewards, the measured
prediction errors do not constitute reward prediction errors.
Importantly, omission of these control trials did not signifi-
cantly impact on the results. However, as the control trials were
unannounced, participants presumably perceived the payoff to
depend on the error estimating the EV for each trial.

The observed adaptation to reward variability involved
scaling reward prediction errors relative to SD. It must be
noted, though, that an alternative way for achieving the
observed adaptation would be for learning rates to directly
adapt to SD. Although the present study cannot distinguish
between these possibilities, the scaling of prediction errors
is the most effective strategy for adapting to variability
according to least-squares learning theory (Preuschoff and
Bossaerts 2007). Importantly, the task parameters identified
in this study can be used in combination with human
imaging methods to investigate this hypothesis. A neural
basis for this mechanism might consist of the scaling of
dopamine reward prediction error responses to SDs of
reward probability distributions (Tobler et al. 2005). As
such, dopamine reward prediction errors elicit the same
excitatory and inhibitory neuronal responses with narrower
reward distribution as larger errors do with wider distribu-
tions. Although human brain studies have not yet investi-
gated the encoding of SD-normalized reward prediction
errors, a recent study showed that striatal BOLD prediction
error responses reflected reward probability but not ex-
pected reward magnitude (Park et al. 2012), which is in
general agreement with the earlier dopamine study (Tobler
et al. 2005). Importantly, if prediction errors are encoded in
a normalized manner, learning rates should be encoded in an
absolute manner, i.e., unscaled by SD. Indeed, previous
studies reported that BOLD responses in the paracingulate
and anterior cingulate cortex, the cuneus, and the prefrontal
cortex reflect variations in absolute learning rate (Behrens et
al. 2007; Krugel et al. 2009; Payzan-LeNestour et al. 2013;
Vilares et al. 2012). Although additional support is needed,
these studies render it likely that prediction errors scale
physically to SD.

A recent study showed that human individuals tend to use
model-based approaches when uncertainty in reward increases
and that the frontal cortex encodes arbitration between model-
based and model-free learning (Lee et al. 2014). However, in
the present study participants did not scale prediction errors
during the practice sessions, rendering it unlikely that the SD
cues functioned as a prior for scaling prediction errors. Partic-
ipants may, however, have used the practice sessions to con-
struct a model of the degree of reward variability that was used
to scale prediction errors during the main task. However, the
adaptive models that provided evidence that participants scaled
prediction errors updated SD on a trial-by-trial basis. It is thus
unlikely that participants solely used a model-based approach
to guide prediction error scaling.

These results should be treated with caution, as model
comparison using BIC only favored the adaptive Pearce-Hall
model after removal of the free parameters used to estimate the
initial expected SD of reward. However, all adaptive models
were strongly favored with AIC and likelihood ratio tests.
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