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Abstract

This thesis deals with problems arising in the study of nonlinear partial dif-

ferential equations arising from many-body problems. It is divided into two

parts: The first part concerns the derivation of a nonlinear diffusion equation

from a microscopic stochastic process. We give a new method to show that in

the hydrodynamic limit, the particle densities of a one-dimensional zero range

process on a periodic lattice converge to the solution of a nonlinear diffusion

equation. This method allows for the first time an explicit uniform-in-time

bound on the rate of convergence in the hydrodynamic limit. We also discuss

how to extend this method to the multi-dimensional case. Furthermore we

present an argument, which seems to be new in the context of hydrodynamic

limits, how to deduce the convergence of the microscopic entropy and Fisher

information towards the corresponding macroscopic quantities from the valid-

ity of the hydrodynamic limit and the initial convergence of the entropy.

The second part deals with problems arising in the analysis of nonlinear

Schrödinger equations of Gross–Pitaevskii type. First, we consider the Cauchy

problem for (energy-subcritical) nonlinear Schrödinger equations with sub-

quadratic external potentials and an additional angular momentum rotation

term. This equation is a well-known model for superfluid quantum gases in

rotating traps. We prove global existence (in the energy space) for defocusing

nonlinearities without any restriction on the rotation frequency, generalizing

earlier results given in the literature. Moreover, we find that the rotation term

has a considerable influence in proving finite time blow-up in the focusing case.

Finally, a mathematical framework for optimal bilinear control of nonlinear

Schrödinger equations arising in the description of Bose–Einstein condensates

is presented. The obtained results generalize earlier efforts found in the liter-

ature in several aspects. In particular, the cost induced by the physical work

load over the control process is taken into account rather then often used L2–

or H1–norms for the cost of the control action. We prove well-posedness of

the problem and existence of an optimal control. In addition, the first order

optimality system is rigorously derived. Also a numerical solution method is

proposed, which is based on a Newton type iteration, and used to solve several

coherent quantum control problems.
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Chapter 1

Introduction

The theory of partial differential equations (PDE) is one of the main research areas in

mathematics and has applications in many disciplines, among them physics, engineering,

economics, and chemistry. While the fundamental laws of nature as discovered by Isaac

Newton, Albert Einstein, Erwin Schrödinger, Werner Heisenberg, and many others, can

be expressed as differential equations, there is a plethora of models describing nature in

terms of a partial differential equation, which cannot yet be justified from first principles.

Often these models are obtained by considering systems of many interacting entities (in

gases on the order of 1026 particles), where the entities can be comprised of anything from

classical particles in gases to pedestrians within crowds. These systems inherently possess

two scales, a microscopic one and a macroscopic one. While it is usually fairly simple to

establish the microscopic laws, it is impossible to solve them for most many body systems,

making a purely microscopic description infeasible. Fortunately, we are not interested in

the properties of every single entity (henceforth called particle). Instead it often suffices to

know certain macroscopic, measurable quantities like the density, the temperature, or the

velocity. One of the important challenges of science lies in the derivation of macroscopic,

effective PDE models for these macroscopic quantities when only the microscopic laws

of interaction are known. In the many body systems under consideration in this thesis,

this effective description is accurate in the limit of infinitely many particles. An impor-

tant step in the study of scaling limits of interacting particle systems usually consists in

showing that correlations (between particles or occupation numbers) vanish in the limit.

This allows one to replace the interactions between different particles by a self-consistent

field according to a mean-field theory. These self-consistent fields imply that the limit

equation is in general nonlinear. The analysis of nonlinear partial differential equations

is in and of itself an important field of study. In this thesis we will show how to obtain

a limit description from a class of microscopic dynamics and investigate two problems

related to a particular limit system, the nonlinear Schrödinger equation.

Part I of this thesis deals with the rigorous derivation of a macroscopic PDE descrip-
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Introduction

tion from a microscopic stochastic particle dynamics. The derivation of limit descriptions

from stochastic interacting particle systems has a long history that can be traced back to

Ludwig Boltzmann. Since a rigorous approach is so far only feasible for simple models,

we concentrate on a well-studied interacting particle system, the zero range process on a

domain with periodic boundary conditions. The zero range process is a stochastic jump

process consisting of discrete particles on a lattice, where particles only interact if they

occupy the same lattice site. The macroscopic limit for the zero range process in the

hydrodynamic scaling, i.e. large time and space scales, is well-known and has been shown

to hold in [36] and [86], using different methods. Our contribution to the hydrodynamic

limit, presented in Chapter 2, is a new approach that allows us to obtain an explicit rate

of convergence which holds uniform in time. This approach is based on a Duhamel–type

formula in the space of observables, here taken to be the space of continuous functions of

the state space. Furthermore, we present an argument which seems to be new in the con-

text of hydrodynamic limits, which allows to establish the convergence of the microscopic

entropy and Fisher information to their macroscopic versions.

In Part II, we consider the nonlinear Schrödinger equation, which in a special (cubic)

case is obtained in a scaling limit of the Schrödinger equation for infinitely many Bosonic

particles (Bose-Einstein condensation) [28]. Here the microscopic scale is given by the

scattering length of the interaction potential, which must be macroscopically small for

the particle correlations to vanish in the limit of infintely many particles. The nonlinear

Schrödinger equation has received a lot of attention in mathematical physics not only

as a model for ultra-cold dilute atomic gases, but also for nonlinear optics and shallow

water waves. From the mathematical point of view, it is a dispersive semilinear equa-

tion exhibiting many interesting phenomena such as the existence of solitons, scattering,

blow-up, and global existence in different parameter ranges. In this thesis we concentrate

on two problems for the nonlinear Schrödinger equation. First we consider in Chapter 3

a nonlinear Schr ”odinger equation with an angular momentum rotation term which has

been used in the physics literature as a model for Bose-Einstein condensates in a rotating

trap. We investigate local and global existence in the usual parameter ranges, i.e. local

existence for energy-subcritical nonlinearities, and global existence for mass-subcritical or

defocusing nonlinearities. Furthermore we deduce conditions on the existence of blow-up

solutions by a virial argument (following Glassey’s approach [32]).

As a second application, in Chapter 4 we consider the optimal control problem corre-

sponding to the nonlinear Schrödinger equation. The experimental control of quantum

systems described by linear and nonlinear Schrödinger equations has applications in mi-

croscopic magnetic-field imaging, atom interferometry, and quantum computing, to name

but a few examples. In many applications, one is not interested in controlling the whole

state of the system but only a few observables. In order to guarantee well-posedness of

the control problem, we restrict ourselves to minimizing a certain objective functional

18



1.1. Quantitative uniform hydrodynamic limits

consisting of the observable quantity we want to minimize and a “regularizing” cost term.

Thus we propose a mathematical framework for optimal control of nonlinear Schrödinger

equations through an external potential, where the objective functional is given by the

expected value of the observable with the H1–norm of the energy as regularizing term.

In our example, the external potential depends on the control parameter only through its

amplitude, whereas its general shape is fixed. The choice of the H1–norm of the energy

has the advantage that it penalizes large oscillations which are typically found for cost

terms involving the L2–norm. Furthermore it has a direct physical interpretation as the

L2–norm of the power, i.e. the time–derivative of the energy.

In the rest of this introduction, I will give a brief mathematical exposition of the results

obtained in this thesis.

1.1 Quantitative uniform hydrodynamic limits

The zero range process on the discrete torus is an stochastic interacting particle system

on the lattice TdN = {1, . . . , N}d with state space XN = NTdN , i.e. η ∈ XN is the particle

configuration with η(x) particles at each site x ∈ TdN . Particles are randomly distributed

over the lattice and perform a jump process, jumping to neighbouring sites at a rate

that only depends on the number of particles at the original site, see Figure 1.1. The

distribution of particle configurations at each time t > 0 is a probability measure µNt ∈
P (XN), where P (XN) is the set of probability measures on XN . Let us denote by Cb(XN)

the space of uniformly bounded, continuous functions and the integral of a function fN ∈
Cb(XN) with respect to the measure µN ∈ P (XN) by

〈µN , fN〉 =

∫
XN

fN(η); dµN(η).

Then the evolution of the state µNt ∈ P (XN) of the particle process, given an initial

distribution µN0 ∈ P (XN), is determined by

d

dt
〈µNt , fN〉 = 〈µNt , GNfN〉 for all fN ∈ Cb(XN),

where the generator GN : Cb(XN)→ Cb(XN) satisfies

(1.1) GNfN(η) = N2
∑

x∼y∈TdN

g(η(x))
(
fN(ηx,y)− fN(η)

)
.

Here the sum over x ∼ y is over all sites x, y ∈ TdN that are neighbours, i.e. |x − y| = 1,

and ηx,y is the state of the particle system after one particle has jumped from x to y.
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Explicitly it holds that

ηx,y(z) =


η(x)− 1 if z = x,

η(y) + 1 if z = y,

η(z) otherwise.

In this thesis, we shall assume that the jump rates are not degenerate and satisfy a

monotonicity condition which corresponds to uniform ellipticity of the limit equation. A

x ∈ Td
N

g(η(x))

Figure 1.1: The microscopic model. A particle jumps from a site x with η(x) particles to
a randomly chosen neighbouring site at a rate g(η(x)).

measure νN ∈ P (XN) is invariant under the evolution of the zero range process if

〈νN , GNfN〉 = 0 for all fN ∈ Cb(XN).

We shall see in Chapter 2 that there exists a family of invariant (and translation-invariant)

measures νNρ , indexed by their mean density ρ ≥ 0, for which the occupation numbers

η(x), x ∈ TdN , are mutually independent. The average jump rate under the law of νNρ is

a smooth function σ : [0,∞)→ [0,∞), i.e.

〈νNρ , g(η(x))〉 = σ(ρ).

If we assume the process to equilibrate locally, we can expect the densities to converge

locally by a law of large numbers and the densities ft(u) at macroscopic points u ∈ Td

to change according to a partial differential equation. The limit equation is the filtration

equation

(1.2) ∂tft(u) = ∆σ(ft(u)) for all t > 0, u ∈ Td,

where ft : Td → [0,∞) denotes the particle density at time t. Here we shall only consider

uniformly elliptic limit equations, i.e. σ′(ρ) ≥ δ > 0 for all ρ ≥ 0.

The scaling factor N2 in the definition (1.1) of GN yields a (macroscopic) time scale and

is related to the fact that the limit equation is a second order PDE. In order to get a

continuum description via a partial differential equation, we also need to scale space by

embedding the discrete torus into the continuous (macroscopic) torus TdN ⊂ Td = Rd/Zd

20



1.1. Quantitative uniform hydrodynamic limits

via x 7→ x/N ∈ Td. Thus the microscopic spatial scale is N−1, whereas the microscopic

time scale is N2. This implies a macroscopically visible displacement of particles through

the non-zero variance of the jumps, since by symmetry the mean displacement of the

particles vanishes. If the number of particles remains roughly constant with respect to

N , we expect that the average density N−1
∑

x∈TdN
η(x) does not scale with N . The zero

range process has only one conserved quantity, the total number of particles, and hence

the particle density is the only macroscopic information which we can expect to retain in

the limit as N →∞. We measure particle densities via the empirical measure

αNη (du) =
1

Nd

∑
x∈TdN

η(x)δ x
N

(du),

where δu is the Dirac mass at u ∈ Td. The convergence of local particle densities can be

quantified in terms of weak convergence of the empirical measure. Thus we test αNη with

a function ϕ ∈ C(Td) and expect convergence of the resulting random variable 〈αNη , ϕ〉
under the law µNt . Assuming that the initial data are compatible and ft solves (1.2), it

u ∈ Td

ft(u)

1
N

x
N

Figure 1.2: Embedding TdN into Td yields lattice sites of distance 1/N . In the limit, we
obtain a limit density ft.

holds that

(1.3) lim
N→∞

PµNt
(
|〈αNη , ϕ〉 − 〈ϕ, ft〉| > δ

)
= 0,

where PµNt (A) denotes the probability of the event A under µNt , i.e. 〈µNt , χA〉, where χA

is the characteristic function of A. Figure 1.2 gives an idea of the microscopic scaling (in

space) and the local particle densities. The proof of this result was given in [36] for the

Ginzburg-Landau model with Kawasaki dynamics, which is a closely related model. Their

proof holds for the zero range process with only minor modifications, see for instance [47].

Further results are available in the literature, e.g. the relative entropy method [86] which

shows convergence of the relative entropy with respect to local equilibrium states and can

probably be extended to give an explicit rate of convergence - however there is no reason

to expect the convergence to be uniform in time. Let us also mention that there exists a

result [34] for the Ginzburg-Landau model with Kawasaki dynamics with (almost) explicit

rate of convergence which can be extended to hold uniformly in time - however it is not

yet clear how to extend this result to the zero range process. Our contribution to the

theory is a new approach to quantify the rate of convergence and make it uniform in time.
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Specifically, letting F ∈ C2
b (R), we prove the convergence

(1.4)
∣∣∣〈µNt , F(〈αNη , ϕ)〉 − F(〈ft, ϕ〉L2

)∣∣∣ ≤ CN−β

for some β > 0, uniformly in t > 0. This implies the convergence in probability in (1.3)

upon choosing F to be an approximation of an indicator function with support on a trans-

lation of (−ε, ε). Even though the particle trajectories diverge as t→∞, the dissipative

properties of the system motivate the uniform convergence: As t→∞, the system relaxes

to an invariant measure, for which the hydrodynamic limit holds. Our approach seems to

be fairly flexible and we hope that it can be applied to more complex problems. It was

originally developed by Mischler and Mouhot [67] to derive an explicit uniform rate of

convergence of a jump process towards the (homogeneous in space) Boltzmann equation.

Let us now present the idea of this approach. First, without worrying about regularity,

we set

Ψ(f) = F (〈f, ϕ〉)

for any function or distribution f on Td. The function Ψ can be turned into a function

of the empirical measure by employing the map πN defined by

(πNΨ)(η) = Ψ(µNη ) for all η ∈ XN .

Furthermore we can define a limit semigroup on functions on Td via the pushforward

T∞t Ψ(f) = Ψ(ft),

where ft solves the filtration equation (1.2) with initial datum f0. Employing this notation,

we can estimate the hydrodynamic limit (1.4) by∣∣∣〈µN0 , (TNt πNΨ)(η)− (πNT∞t Ψ)(η)〉
∣∣∣+
∣∣∣〈µN0 , T∞t Ψ(αNη )− T∞t Ψ(f0)〉

∣∣∣.
If the initial data converge in an appropriate sense, we can estimate the second term by

a stability estimate on the limit equation corresponding to contractivity of the semigroup

T∞t . The idea that allows us to estimate the first term is as follows. Just like TNt has

a generator GN , so, too, the limit semigroup T∞t has a generator (time-derivative) G∞.

Then we obtain that

πN(T∞t Ψ)− TNt (πNΨ) =

∫ t

0

d

ds

(
TNt−sπ

NT∞s Ψ
)
ds

=

∫ t

0

TNt−s
(
πNG∞ −GNπN

)
T∞s Ψ ds.
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We will provide a consistency estimate for the difference πNG∞−GNπN and use stability

results to transport this convergence along the evolution of the limit equation which is

given by T∞s . This will allow us to obtain a uniform explicit rate of convergence.

Finally we shall present a new argument which allows one to prove convergence of the

microscopic entropy to a macroscopic entropy. Let f∞ =
∫
Td f0(u) du be the constant to-

wards which the macroscopic density equilibrates due to the dissipation. The microscopic

entropy with respect to the invariant measure νNf∞ is given by

HN(µNt |νNf∞) =

∫
XN

log
( dµNt
dνNf∞

(η)
)
dµNt (η).

It holds that

(1.5)
1

Nd
HN(µNt |νNf∞) +

∫ t

0

4N2−dDN(µNs |νNf∞) ds ≤ 1

Nd
HN(µN0 |νNf∞),

where

DN(µNs |νNf∞) = 〈νNf∞ ,

√
dµNt
νNf∞

GN

√
dµNt
νNf∞
〉

is the microscopic Fisher information. Variational formulae are readily available for both

the entropy and the Fisher information which allow us to prove that

lim inf
N→∞

1

Nd
HN(µNt |νNf∞) ≥ H∞(ft), where(1.6)

H∞(ft) =

∫
Td

∫ ft(u)

f∞

log σ(ρ) dρ du

is the macroscopic entropy and

lim inf
N→∞

4

Nd−2
DN(µNt |νNf∞) ≥ D∞(ft), where(1.7)

D∞(ft) =

∫
Td

|∇σ(ft(u))|2

σ(ft(u))
du

is the macroscopic Fisher information. Differentiation of H∞(ft) in time yields

(1.8) H∞(ft) +

∫ t

0

D∞(fs) ds = H∞(f0)

Now, let us assume that the initial microscopic entropy converges to the initial macroscopic

entropy, i.e.

(1.9) lim
N→∞

1

Nd
HN(µNt |νNf∞) = H∞(ft).
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Collecting the relations (1.5)-(1.9), we obtain that

lim
N→∞

1

Nd
HN(µNt |νNf∞) = H∞(ft) and

lim
N→∞

∫ t

0

4N2−dDN(µNs |νNf∞) ds =

∫ t

0

D∞(fs) ds

Note that in Chapter 2 we shall use an equivalent formulation of H∞(ft) in order to prove

the above inequality on the limit inferior of the microscopic entropy.

1.2 The nonlinear Schrödinger equation

In Part II, we shall consider the nonlinear Schrödinger equation (NLS), by which we mean

the partial differential equation

i∂tψ(t, x) = −1

2
∆ψ(t, x) + U(x)ψ(t, x) + λ|ψ(t, x)|2σψ(t, x)

for all (t, x) ∈ R × Rd. Here i =
√
−1, λ ∈ R and σ ≥ 0 are two parameters describing

the nonlinearity, and V : Rd → R is an external potential. As mentioned before, at least

in the cubic case σ = 1, this equation can be obtained from the usual (linear) Schrödinger

equation in the limit of infinitely many bosons. In the cubic case, the equation is also

known as Gross-Pitaevskii equation. The NLS conserves mass and energy

M = ‖ψ‖2
L2(Rd), E =

∫
Rd

(1

2
|∇ψ|2 +

λ

σ + 2
|ψ|2σ+2 + U |ψ|2

)
dx.

One of the interesting features of this equation is the occurrence of blow-up in certain

parameter regimes. Let us quickly discuss some aspects of the existence theory for the

NLS without external potential, i.e. U = 0. In this thesis, we will look for solutions in

the energy space, i.e. the space where the energy is finite. Since it holds that H1(Rd) ⊂
L2σ+2(Rd) if σ < 2/(d − 2), a good choice for the energy space is H1(Rd), where the

contribution of the nonlinearity to the energy can be estimated by the contribution of

the linear part. This is further motivated by the observation that the NLS is semilinear,

i.e. the nonlinear part only involves derivatives of the solution ψ which are of lower order

than the whole PDE. Hence it is convenient to treat the nonlinearity as a perturbation of

the linear part. To this end, let S(t) = e
i
2

∆t denote the semigroup of the free Schrödinger

equation

i∂tψ(t, x) = −1

2
∆ψ(t, x).
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1.2. The nonlinear Schrödinger equation

The mild form of the NLS with initial datum ψ(t = 0, x) = ψ0(x) then becomes

ψ(t) = S(t)ψ0 − iλ
∫ t

0

S(t− s)|ψ(s)|2σψ(s) ds

where we have set ψ(t) = ψ(t, ·) for ease of notation. If σ = 0, there is of course global

existence. Similar to ordinary differential equations, we can look for mild solutions as

fixed points of an appropriately defined map. Local existence is then shown by smoothing

properties of the linear part of the equation combined with (Sobolev) embeddings in order

to control the nonlinear part. The free Schrödinger equation is not dissipative and does

not possess the strong smoothing effects of the heat equation, but its dispersive nature

accords us with weaker decay estimates, the so-called Strichartz estimates. These can

indeed be used to prove local existence in the energy space H1(Rd) if σ < 2/(d − 2).

These local solutions can be continued until the H1(Rd)–norm of the solution diverges.

In the special case of a positive nonlinearity λ ≥ 0, the energy is the sum of two positive

quantities. Since the energy is also conserved, both quantities are indeed bounded and in

particular, the L2–norm of the gradient of the solution is uniformly bounded in time. Since

the mass ‖ψ‖L2(Rd) is conserved as well, we conclude that there exists a global solution if

λ ≥ 0. Let us now consider the case λ < 0. A quick calculation yields the virial identity

d2

dt2

∫
Rd
x2|ψ(t, x)|2 dx =

∫
Rd

(
|∇ψ(t, x)|2 + λ

dσ

σ + 1
|ψ(t, x)|2σ+2

)
dx

= 2E +

∫
Rd
λ
dσ − 2

σ + 1
|ψ(t, x)|2σ+2 dx.

Hence if σ ≥ d/2 and E < 0, the (positive) integral on the left hand side is bounded by an

inverted parabola, which is not possible for all times. Note that it can also be shown that

the solution is global if σ < d/2, whatever the sign of λ. To summarize, local existence

holds in the following case:

• initial datum in the energy space ψ ∈ H1(Rd) and energy-subcritical nonlinearity

σ < 2/(d− 2)

and global existence holds if additionally

• defocusing nonlinearity λ ≥ 0, or

• mass-subcritical nonlinearity σ < d/2.

Otherwise, blow-up solutions exist. The described situation generally remains the same in

the presence of an external potential U , provided this potential satisfies certain regularity

properties, e.g. |U(x)| ≤ C|x|2 is subquadratic. In Chapter 3, we shall investigate the NLS

with an additional angular momentum term, which describes a rotating Bose-Einstein
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condensate. In Chapter 4, we consider an optimal control problem for the NLS. Our

results are summarized in the next two subsections.

1.2.1 Existence theory with an angular momentum rotation term

The NLS with angular momentum rotation term is the partial differential equation

i∂tψ = −1

2
∆ψ + U(x)ψ + λ|ψ|2σψ − Ω · Lψ, (t, x) ∈ R× R3,

where λ ∈ R, σ ≥ 0, and U subquadratic. The angular momentum rotation term is given

by a angular velocity vector Ω ∈ R3 and the angular momentum L = −ix ∧ ∇, where ∧
denotes the cross product in R3. This equation also makes sense in two dimensions, where

the plane of rotation is the space R2. In fact, the two-dimensional NLS is usually obtained

as an approximation of the three-dimensional NLS in the case of a strongly confining

potential (a disc-shaped condensate). Hence we shall consider both cases d = 2, 3. So

far this equation has only been considered in [37, 38] for the special case where U is a

harmonic trapping potential with frequency exactly equal to |Ω|. In the present setting,

the energy space is Σ = {ψ ∈ H1(Rd) : xψ ∈ L2(Rd)}. Using Strichartz estimates for

the linear part including the rotation term, we find that local existence in Σ holds in the

usual case σ < 2/(d− 2) (i.e. sigma <∞ if d = 2). The same methods also allow us to

deduce global existence if σ < 2/d is mass-subcritical. In order to obtain global existence

in the defocusing case λ > 0, we change into a rotating coordinate system. Let X(t, x)

denote the vector obtained from rotating x around the axis Ω by an angle of −|Ω|t, then

the wave function ψ̃ in the new coordinates X(t, x) solves

i∂tψ̃ = −1

2
∆ψ̃ + U(X(t, x))ψ̃ + λ|ψ̃|2σψ̃.

This is a NLS with time-dependent potential and as such can be treated as in [18], where

global existence has been shown to hold in the presence of time-dependent potentials if

λ > 0. Furthermore we present two variants of Glassey’s virial identity to deduce existence

of blow-up if λ < 0. These conditions are stricter than the above conditions due to Glassey,

but coincide in the symmetric or rotation-less case. We finish the chapter on the NLS with

angular momentum rotation term with a discussion of numerical simulations, where we

emphasize how the change of coordinates X(t,X) can be employed to simplify numerical

treatment of the equation.
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1.2. The nonlinear Schrödinger equation

1.2.2 Optimal control of nonlinear Schrödinger equations

The optimal control problem we shall consider is given by

J∗ = inf
ψ̃,α̃

J(ψ̃, α̃) where

i∂tψ = −1

2
∆ψ + U(x)ψ + λ|ψ|2σψ + α(t)V (x)ψ, x ∈ Rd, t ∈ R, and(1.10)

J(ψ, α) = 〈ψ(T, ·), Aψ(T, ·)〉2L2(Rd) + γ1

∫ T

0

(Ė(t))2 dt+ γ2

∫ T

0

(α̇(t))2 dt,

with λ ≥ 0, σ < 2/(d−2), external potential U , control potential V , and subject to initial

data

ψ(0, ·) = ψ0 ∈ Σ, α(0) = α0 ∈ R.

Here A is an observable, i.e. an operator with domain in L2(Rd), γ1 > 0 and γ2 ≥ 0

are two cost parameters, and E(t) is the energy corresponding to the NLS (1.10). In

this problem, the energy is not constant due to the presence of variations in the control

parameter α(t). The above optimal control problem models an experimenter trying to

achieve a certain value for an observable of a condensate (without loss of generality, this

value is set to zero) by manipulating the amplitude of an external field, e.g. a field induced

by a laser. The cost term models the cost of absorbing variations in total energy stored

in the condensate. Note that the underlying NLS implies the following expression for the

cost term involving γ1:

γ1

∫ T

0

(Ė(t))2 dt = γ1

∫ T

0

(α̇(t))2

(∫
Rd
V (x)|ψ(t, x)|2 dx

)2

dt.

The optimal control problem is well-posed with γ2 = 0 if the potential V (x) is strictly

bounded away from zero. On the other hand if this is not the case, it becomes necessary

to set γ2 > 0. Even in the case λ = 0, this is a bilinear control problem since the term

α(t)V (x)ψ(t, x) is linear in both the control and the wave function, making this optimal

control problem highly nonlinear. In our analysis of this optimal control problem, we

first show the existence of at least one minimizer (α∗, ψ∗) ∈ H1(0, T ) ×W (0, T ), where

W (0, T ) denotes an appropriate function space for the solutions to the NLS. We prove

this result by the direct method, i.e. we consider a minimizing sequence (αn, ψn) and

use boundedness of the functional J(ψn, αn) in order to obtain bounds on the sequence

in order to obtain a (weak) limit point (α∗, ψ∗). By going to the limit in the NLS, we

then show that (α∗, ψ∗) is itself a solution to the NLS and finally conclude by lower-

semicontinuity of J that (α∗, ψ∗) is indeed a minimizer.

In a next step, we characterize minimizers by deriving a system of equations that must
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be satisfied at critical points. This system can be formally derived using the Lagrangian

L(ψ, α, ϕ) = J(ψ, α)− 〈ϕ, P (ψ, α)〉L2
tL

2
x
,

where P (ψ, α) = 0 denotes the NLS, i.e.

P (ψ, α) = i∂tψ +
1

2
∆ψ − U(x)ψ − λ|ψ|2σψ − α(t)V (x)ψ.

Formally, a minimum of J over (ψ, α) under the constraint P (ψ, α) = 0 is a minimum of

the unconstrained Lagrangian over (ψ, α, ϕ) and we expect

(
DψL(ψ, α, ϕ), DαL(ψ, α, ϕ), DϕL(ψ, α, ϕ)

)
= 0.

This is a system of three equations, the third one DϕL = 0 one being the NLS, and the

other two identifying a critical α and ϕ. Of course, there is not reason to expect any

solution to this critical system to be unique, corresponding to the lack of convexity of our

optimal control problem. The usual way to make this argument rigorous requires the use

of an implicit function theorem. However, due to the lack of regularity properties of the

Schrödinger operator, we could not make this approach work in the fully nonlinear case

λ > 0 and instead we derive the derivative of a reduced functional J(α) = J(ψ(α), α)

directly, where ψ(α) is the solution to the NLS with control α. In order to handle this

differentiability problem, we restrict ourselve to cases where σ ∈ N. The condition σ <

2/(d − 2) then implies d ≤ 3, which are of course the most relevant cases in physics.

Finally, we present some numerical experiments based on a Newton–type method in order

to illustrate our optimal control problem.
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Quantitative uniform in time

hydrodynamic limits
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Chapter 2

A quantitative perturbative

approach to hydrodynamic limits

The work in this part has been carried out in collaboration with Clément Mouhot.

2.1 Introduction

We shall consider the problem of hydrodynamic limits for interacting particle systems

on a lattice. The problem is to show that under an appropriate scaling of time and

space, the local particle densities of a stochastic lattice gas converge to the solution

of a partial differential equation. The goal of this work is to provide a fairly general

framework allowing us to prove a hydrodynamic limit with an explicit uniform in time

rate of convergence. We will present our method using as an example the zero range

process for which a hydrodynamic limit is well-known and the limit equation is given by

a nonlinear diffusion equation. Our method is inspired by the work [67] on propagation

of chaos for the Boltzmann equation, see also [66] for an announcement and summary of

the work.

To make our notions precise, we need to introduce some notation. We consider a particle

process on the discrete torus

TdN = {1, . . . , N}d

and consider particle configurations as elements in

XN := NTdN ,
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Quantitative hydrodynamic limits

the state space for the zero range process. The lattice TdN can be thought of as a discrete

approximation of the d-dimensional Torus

Td = Rd/Zd

with periodic boundary conditions x + e ≡ x for all x ∈ Td and e ∈ Zd. Variables in the

discrete torus TdN are called microscopic and denoted by x, y, z, whereas variables in the

continuous torus Td are called macroscopic and denoted by u. In fact, we embed TdN in

Td via

TdN 3 x 7→ x
N
∈ Td.

This embeds the microscopic variables x ∈ TdN to the macroscopic variables u ∈ Td.
Hence the macroscopic distance between sites of the lattice is N−1. In general, we will

denote particle configurations in XN by the letters η or ξ. The interacting particle system

is given by a stochastic process and we let P (XN) be the set of probability (Radon)

measures over the state space. For any initial measure µN0 ∈ P (XN) we obtain a unique

measure µNt ∈ P (XN) describing the state of the process at a later time t. This also

yields a semigroup (SNt )t≥0 on P (XN), which is given by µNt = SNt µ
N
0 for all t ≥ 0. The

semigroup SNt is a Feller-semigroup uniquely determined by its generator, see [54]. The

generator is a map GN : Cb(XN)→ Cb(XN) and satisfies

(2.1)
d

dt
〈µNt , fN〉 = 〈µNt , GNfN〉,

where we have denoted by 〈·, ·〉 the integral of a continuous function with respect to a

measure. Equivalently, this is the duality pairing between (Radon) measures and contin-

uous functions. Thus GN can also be thought of as the generator of the dual semigroup

on Cb(XN). Here we consider

(2.2) GNfN(η) = N2
∑
x,y∼x

g(η(x))
[
fN(ηx,y)− fN(η)

]
for each fN ∈ Cb(XN), where ηx,y is the configuration of the particle system after one

particle has jumped from site x to y and where y ∼ x whenever x and y are neighbours.

To be precise, ηx,y is given by

ηx,y(z) =


η(x)− 1 if z = x,

η(y) + 1 if z = y,

η(z) otherwise.

In order for the process to remain in the state space XN , we always demand g(0) = 0.

The jump rate g : N→ [0,∞) can be thought of as describing the interactions of particles
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occupying the same site. Since the jump rate on a given site only depends on the number

of particles at that particular site, this process is called zero range process. A special

case is the case of linear g, where the particles perform independent random walks on

the lattice. The factor N2 in the definition of the generator GN corresponds to a time

scale. Thus we consider a hydrodynamic limit under diffusive scaling, i.e. the microscopic

spatial variables scale with N and time with N2.

We will show that, under diffusive scaling, the zero range process is well approximated by

the solution ft : Td → [0,∞) to the filtration equation

(2.3) ∂tft(u) = ∆σ(ft(u)) t ∈ [0,∞), u ∈ Td.

We shall have to specify the space H of solutions to our limit partial differential equation.

Throughout this chapter, H will be a subspace of the space M+(Td) of positive Radon

measures on the torus. Recall that the space of Radon measures can be defined as the

dual space of continuous functions. Let us make precise the notion of convergence of the

particle process. Given a particle configuration η ∈ XN , the particle densities are given

by the empirical measure

(2.4) αNη :=
1

Nd

∑
x∈TdN

η(x)δ x
N
∈M+(Td).

Thus we have defined an embedding

αN : XN →M+(Td), η 7→ αNη ,

which allows us to compare solutions to the particle system with the solutions ft ∈ H ⊆
M+(Td) to the partial differential equation. Furthermore let ft be the solution to the

filtration equation given an initial density f0. The goal is to show that the empirical

measure (2.4) possesses an asymptotic density profile ft(·). By this we mean that for any

smooth function ϕ : Td → R, it holds that

(2.5) lim
N→∞

PµNt
(
|〈αNη , ϕ〉 − 〈ft, ϕ〉| > ε

)
= 0

for all t ≥ 0 and ε > 0. Furthermore we want to specify the rate of convergence explicitly.

Here PµN (A) denotes the probability corresponding to the (measurable) set A under the

probability measure µN ∈ P (XN). In other words,

PµN (A) =

∫
χA(η) dµN(η),

where χA denotes the characteristic function of the set A. In the following, we shall

denote the expectation of a measurable function fN with respect to a probability measure
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µN ∈ P (XN) by

EµN [fN(η)] = 〈µN , fN〉 =

∫
fN(η) dµN(η).

A measure µN is called invariant (or equilibrium) measure, if

〈µN , GNfN〉 = 0 for all fN ∈ Cb(XN),

cf. equation (2.1). A convenient family of invariant measures is given by the grand-

canonical (or Gibbs) measures, i.e. the measures

(2.6) νNρ (η) =
∏
x∈TdN

σ(ρ)η(x)

g(η(x))! Z(σ(ρ))
,

where Z is the partition function of the zero range process, ρ ≥ 0, and

g(n)! := g(1)g(2) · · · g(n) with g(0)! := 1.

The partition function is defined as

(2.7) Z(ρ) =
∞∑
n=0

ρn

g(n)!

and the function σ(ρ) is chosen such that

〈νNρ , η(0)〉 = ρ.

We shall elaborate on the construction of σ in Section 2.4. Since the number of particles

is conserved and the process has no other conserved quantities, another important set of

invariant measure is given by the canonical measures

(2.8) νN,K(η) = νNρ
(
η
∣∣ ∑

x η(x) = K
)
,

which are the grand-canonical measures conditioned on hyperplanes of constant number

of particles. Note that this definition is independent of ρ > 0. Since the equilibrium νNρ

is made up of independent random variables, we expect the convergence (2.5) to hold if

we can show that the process is in equilibrium νNft(u) locally around u ∈ Td with average

density ft(u).

The organization of this chapter is as follows. First we present some previous results in

Section 2.2. In Section 2.3, we present our method with the help of the particularly easy

case of independent random walks. Section 2.4 contains our main result, the hydrody-
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namic limit for the zero range process in one dimension with an explicit estimate on the

rate of convergence. Section 2.5 contains an argument, which is new in the context of

hydrodynamic limits, that allows us to prove convergence of the microscopic entropy if

the entropy converges initially. In Section 2.6 we prove an important ingredient in our

proof, the so-called replacement lemma. The replacement lemma is not new, see [36], but

we include its proof for the sake of completeness and in order to derive an explicit bound

on the rate of convergence in the replacement lemma. We also mention that our slightly

modified version of the replacement lemma shows convergence with respect to an L2–

norm instead of the usual L1–norm. Finally, in Section 2.7, we discuss a strategy, which

is work in progress, how to extend our result to the multi-dimensional case. Throughout

this chapter, any constant C should be understood to be generic, i.e. it can change from

line to line and only depends on the “general” parameters of the problem - this should be

clear from context.

2.2 Previous results

Using the notation introduced in Section 2.1, we now consider the general zero range

process on TdN given by generator (2.2). Let us make the following assumptions on the

rate function g : N→ [0,∞).

Assumption 1. (i) Non-degeneracy: Assume that g satisfies g(0) = 0 and g(n) > 0 for

all n > 0.

(ii) Lipschitz-property: We require that g is Lipschitz continuous with

0 ≤ |g(n+ 1)− g(n)| ≤ g∗ < +∞

for all n ∈ N.

(iii) Spectral gap: We also assume that there exist n0 > 0 and δ > 0 such that

g(n)− g(j) ≥ δ

for any j ∈ N and n ≥ j + n0.

(iv) Attractivity: Let the jump rate g be monotonously increasing, i.e.

g(n+ 1) ≥ g(n)

for all n ∈ N.

Remark 2.2.1. Let us comment on the different parts of Assumption 1: Part (i) is

essential to avoid degeneracies of the particle system. We need the spectral gap property
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(iii) in order to prove an explicit uniform in time rate of convergence, since it allows us

to quantify the local relaxation to equilibrium of the particle system as well as the global

convergence to equilibrium on the level of the limit equation. It implies in particular that

g(n) ≥ g0n with g0 > 0. The attractivity (iv) is important to obtain moment–bounds on

the particle system, see Subsection 2.6.1. The question of moment bounds is still an open

problem in its absence. Assumption (ii) is used at several points in the proof, but could

possibly be replaced using the uniform moment bounds originating from assumption (iv)

- however, it would affect our strategy to prove the regularity result in several dimensions,

see Section 2.7.

In the context of the zero range process with diffusive scaling, two very well-known meth-

ods of proving a hydrodynamic limit are the entropy method due to Guo, Papanicolaou,

and Varadhan [36], see Theorem 2.2.2, and the relative entropy method due to Yau [86],

see Theorem 2.2.3. For an extensive account of these methods in the context of zero range

process, see [47].

In order to proceed, we need one more definition. Let µ, ν ∈ P (XN) be two probability

measures. Then the relative entropy of µ relative to ν is defined as

(2.9) HN(µ|ν) =

∫
XN

log
(
dµ
dν

)
dµ

whenever µ is absolutely continuous with respect to ν. The relative entropy is connected

to the Fisher information

(2.10) DN(µ|ν) =

∫
XN

√
dµ
dν
GN
√

dµ
dν
dν.

The entropy method can be summarized in the following theorem. Note that we have not

taken great care to optimize the assumptions. The proofs under the assumptions given

below can be found in [47].

Theorem 2.2.2 (Guo, Papanicolaou, Varadhan). Assume (i) and (ii) of Assumption 1

as well as g(n) ≥ g0n for some g0 > 0 and let µN0 ∈ P (XN) and f0 ∈ L∞(Td) such that

lim
N→∞

PµN0
(
|〈αNη , ϕ〉 − 〈f0, ϕ〉| > ε

)
= 0,

for every continuous function ϕ ∈ C(Td) and every ε > 0. Furthermore we assume that

the initial data satisfy the bounds

HN(µN0 |νNρ ) ≤ CNd and

〈
µN0 ,

1

Nd

∑
x∈TdN

η(x)2

〉
≤ C

for some ρ > 0 and a constant C < +∞.
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Then, for every t ≥ 0, every continuous function ϕ ∈ C(Td), and every ε > 0, it holds

that

lim
N→∞

PµNt
(
|〈αNη , ϕ〉 − 〈ft, ϕ〉| > ε

)
= 0,

where ft is the unique weak solution to (2.3) and µNt solves (2.1) with Cauchy datum µN0 .

Thus the entropy method yields propagation of the hydrodynamic profile. The relative

entropy method by Yau, on the other hand, concerns the conservation of a stronger notion.

In analogy to (2.6), we define a local Gibbs measure with macroscopic profile ft ∈ C(Td)
by

(2.11) νNft(·)(η) =
∏
x∈TdN

σ(ft(
x
N

))η(x)

g(η(x))! Z(σ(ft(
x
N

)))
.

This measure has the property that it is locally (in infinitesimal macroscopic neighbour-

hoods where ft is constant) in equilibrium with a macroscopic non-equilibrium profile ft

as N →∞. The relative entropy method then yields the following theorem.

Theorem 2.2.3 (Yau). Assume (i) and (ii) of Assumption 1 as well as that the partition

function Z(·) is finite on all [0,∞), e.g. g(n) ≥ g0n for some g0 > 0. Furthermore,

assume that the solution ft to (2.3) satisfies ft ∈ C2(Td) and let µNt ∈ P (XN) solve (2.1).

Finally assume that initially at t = 0, the relative entropy HN(µN0 |νNf0(·)) vanishes in the

limit, i.e.

lim
N→∞

1

Nd
HN
(
µN0 |νNf0(·)

)
= 0.

Then it holds that

(2.12) lim
N→∞

1

Nd
HN
(
µNt |νNft(·)

)
= 0

for every t ≥ 0.

Note that the convergence of the relative entropy (2.12) implies that µNt has profile ft,

i.e.

lim
N→∞

PµNt
(
|〈αNη , ϕ〉 − 〈ϕ, ft〉| > ε

)
= 0.

Thus the convergence of the relative entropy can be thought of as a stronger notion of

the hydrodynamic limit. Yau’s relative entropy method shows that this stronger notion

is conserved by the evolution.

Remark 2.2.4. It appears that using a quantitative replacement lemma, see Section 2.6,

this result can be translated to a quantitative result of the form

HN
(
µNt |νNft(·)

)
≤ Ceγ

−1tHN
(
µN0 |νNf0(·)

)
+ tr(N),
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where limN→∞ r(N) = 0 if γ is sufficiently small, and r(N) can be made explicit (al-

though, to our knowledge, such a result has never been published). Thus it seems that a

quantitative estimate on the rate of convergence is available in the stronger form of the

hydrodynamic limit given by the convergence of the entropy relative to the local Gibbs

state. However, this convergence is not uniform in time, since γ might be very small.

Therefore even if one manages to prove exponential decay in time of the relative entropy

HN
(
µNt |νNft(·)

)
≤ Ce−λt, e.g. by employing a logarithmic Sobolev inequality, it is still not

possible to conclude uniform in time convergence if λ < γ−1. In the context of the zero

range process, the following logarithmic Sobolev inequality holds [27, 59]:

(2.13) HN(µ|νN,K) ≤ CN2DN(µ|νN,K)

uniformly in N , K, and µ ∈ P (XN), where we recall that νN,K denotes the canoni-

cal measure (2.8). Logarithmic Sobolev inequalities are very effective tools to describe

concentration of measure and have been employed widely starting with the works [5, 33].

For a related model, the Ginzburg-Landau model with Kawasaki dynamics, there exists an

additional method due to Grunewald, Otto, Villani, and Westdickenberg [34], who prove

a logarithmic Sobolev inequality and hydrodynamic limit based on a coarse-graining of

the state-space. In principle, it should be possible to extend their method to obtain a

uniform rate of convergence. On the other hand, it is not clear how to extend the method

to the zero range process and how to obtain uniform-in-time convergence.

2.3 A toy model: independent random walks

In order to demonstrate our method, let us consider the especially simple case where

g(n) = n. Then all the particles perform random walks independently of each other. The

invariant measures νNρ are now given by the Poisson distribution

νNρ (η) =
∏
x∈TdN

e−ρ
ρη(x)

η(x)!
.

Note that 〈νNρ , η(x)〉 = ρ and hence σ(ρ) = ρ in (2.6) in this case. We want to show

that in the sense of Theorem 2.2.2, as the number N of sites in the lattice TdN approaches

infinity, the particle system is approximated by the heat equation

(2.14) ∂tft = ∆ft.
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2.3. A toy model: independent random walks

Here we consider the heat equation in the space of positive Radon measures

H = M+(Td).

It is clear that we have a well-established theory for strong solutions for the heat equation

with continuous initial data ω ∈ C(Td). Denote the corresponding semigroup on C(Td)
by S∞t ω. We define solutions in H via

(2.15) 〈S∞t f, ω〉H,C(Td) = 〈f, S∞t ω〉H,C(Td)

for all f ∈ H,ω ∈ C(Td). Note that indeed S∞t f stays a positive measure by the maximum

principle. Thus the solution ft to the heat equation (2.14) with initial datum f ∈ H is

given by ft = S∞t f . Let us denote by Ck
b (R) the space of uniformly bounded and k times

continuously differentiable functions on R with uniformly bounded derivatives. The main

result of this section is the following theorem, detailing a hydrodynamic limit with explicit

and uniform-in-time rate of convergence.

Theorem 2.3.1 (Hydrodynamic limit for independent random walks). Let F ∈ C2
b (R),

ϕ ∈ C3(Td), and M1 be given. There exists a constant C < +∞ depending only on the

dimension d, such that for all N ∈ N, f0 ∈ H, fN0 ∈ P (XN) such that the average density

is bounded, i.e. 〈
µN0 ,

1

Nd

∑
x∈TdN

η(x)
〉
≤M1,

it holds that

(2.16)
〈
µNt , F

(
〈αNη , ϕ〉

)
− F

(
〈ft, ϕ〉

)〉
≤ C

N
M1‖F ′‖C1

(
‖∇ϕ‖C2 + ‖S∞1 ∇ϕ‖Hn

)
+ ‖F ′‖L∞‖ϕ‖C3 sup

ω∈C3(Td)

‖ω‖C3≤1

〈
fN0 , 〈αNη − f0, ω〉

〉

uniformly for all t ≥ 0. Here n denotes the smallest integer greater than 2 + d/2, ft is

given by the solution to the heat equation ∂tft = ∆ft, and µNt is given by the evolution of

the particle process, i.e. a system of independent random walks.

Theorem 2.3.1 yields convergence to the hydrodynamic limit under the condition that the

initial data are compatible. If f0 is continuous, it is straightforward to construct an initial

particle distribution µN0 for which the initial convergence holds. Indeed let f0 ∈ C(Td),
f0 ≥ 0, be given. Then we consider the product measure νNf0(·) introduced in (2.11), i.e.

νNf0(·)(η) =
∏
x∈TdN

e−f0( x
N

)f0( x
N

)η(x)

η(x)!
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for all x ∈ TdN . Under the law µN0 := νNf0(·), the term 〈αNη , ω〉 converges in mean to 〈f0, ω〉
and one can show that

(2.17) sup
ω∈C3(Td)

‖ω‖C3≤1

〈
fN0 , 〈αNη − f0, ω〉

〉
≤ C√

N
.

This can be deduced from an application of the law of large numbers and the central limit

theorem, also see the proof of Corollary 2.4.9. Under µN0 , the average density is bounded

by ‖f0‖L∞ . Hence we arrive at the following corollary.

Corollary 2.3.2. Let F ∈ C2
b (R), ϕ ∈ C3(Td), and f0 ∈ C(Td) be given. Then there

exists a constant C < +∞ and a fN0 ∈ P (XN) for all N ∈ N, such that

〈
µNt , F

(
〈αNη , ϕ〉

)
− F

(
〈ft, ϕ〉

)〉
≤ C√

N

for all N ∈ N, where ft is given by the solution to the heat equation ∂tft = ∆ft and µNt

is given by a system of independent random walks.

In other words, αNη ⇀∗ ft in distribution (in law) as N →∞ where the symbol ⇀∗ denotes

weak-* convergence for measures in P (XN).

Let us make several comments.

Remarks 2.3.3. (1) The rate of convergence O(1/
√
N) is the optimal rate appearing in

the law of large numbers for sums of independent random variables, similarly to the esti-

mate (2.17). Hence we see that the largest contribution to the error in the hydrodynamic

limit for independent random walks comes from the approximation of the initial datum

f0 by the initial particle distribution fN0 , since this error is typically O(1/
√
N).

(2) As we have seen, the restriction that 〈µN0 , N−d
∑
η(x)〉 ≤ M1 in Theorem 2.3.1 is

hardly any restriction and usually follows from the convergence of the initial data.

(3) The function

Ψ ∈ Cb(H) given by Ψ(f) = F (〈f, ϕ〉) for all f ∈ H

thus satisfies 〈µNt ,Ψ(αNη )〉 → Ψ(ft) as N →∞ under the assumptions of Corollary 2.3.2.

(4) Here we have the convergence of the empirical measures in distribution. This sense of

convergence is the same as found in the literature on hydrodynamic limits for interacting

particle systems, but it is different in spirit from the convergence result found in [67],

from where our method of proof was inspired. In contrast to ours, the result in [67]

pertains convergence of the marginals of µNt . An analogous result in our setting would be

the convergence of marginals of µNt to the corresponding marginals of νNft(·), where νNft(·)
denotes as above the local Gibbs measure (2.11). In [47], a result of this kind is called
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2.3. A toy model: independent random walks

strong conservation of local equilibrium. Indeed it seems likely that a result like this could

be deduced using a similar approach.

(5) Convergence in distribution of the random variable JN := 〈αNη , ϕ〉 to the deterministic

result J := 〈ft, ϕ〉 implies convergence in probability, cf. Theorem 2.2.2, as follows. Let

ε > 0 be arbitrary and note that

PµNt (|JN − J | > ε) ≤ PµNt (JN > J + ε) + PµNt (JN < J − ε)

≤ EµNt [Fε(JN)] + EµNt [F̃ε(JN)]

where Fε and F̃ε are smooth approximations from above of the indicator functions of

[J + ε,+∞) and (−∞, J − ε], respectively, such that Fε(J) = 0 = F̃ε(J). Under the

assumptions of Corollary 2.3.2, the right hand side converges as N →∞ with an explicit,

ε-dependent rate.

(6) Consider the embedding

πNP : P (XN)→ P (H)

given by 〈πNP fN ,Φ〉 = 〈fN ,Φ(αNη )〉 for all Φ ∈ Cb(H). Returning to the map Ψ ∈ Cb(H),

defined in (3), let us mention that the convergence

〈µNt ,Ψ(αNη )〉 −Ψ(ft)→ 0

can also be rewritten as

〈πNp (µNt ),Ψ〉 − 〈δft ,Ψ〉 → 0,

or, equivalently, πNP (µNt ) ⇀∗ δft in P (H), at least insofar as Ψ given in (3) can represent

all of Cb(H).

(7) The choice of a norm for the convergence of the initial data, here given by the dual of

the C3–norm, is rather flexible. Since the heat equation is a contraction in many spaces,

e.g. in Ck or Hk, for k ∈ N, we could use (the dual space of) any of these spaces, provided

ϕ is regular enough and the Dirac distribution δ lies in the dual space. Later, in Section

2.4, we shall use the H−1–norm, dual to the H1–norm, to measure the convergence of the

initial data. Here this is not possible since the Dirac delta is not an element of H−1(Td)
if d > 1.

Before proceeding with the proof of Theorem 2.3.1, let us collect some semigroups related

to the evolution of the particle system and the limit equation. We cannot compare the

semigroups of the particle system on P (XN) and of the limit equation on H directly.

Instead we will compare them on the level of observables by considering dual spaces.

Particle system: We already defined the semigroup SNt on P (XN). Let TNt denote the
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semigroup on Cb(XN) that is dual to SNt , i.e. the semigroup given by

〈µN , TNt fN〉 = 〈SNt µN , fN〉

for all µN ∈ P (XN), fN ∈ Cb(XN). Thus the generator of TNt in Cb(XN) is given by GN

in (2.2) with g = idN.

Limit equation: Recall the definition (2.15) of the limit semigroup S∞t on H. Next we

define a pullback semigroup T∞t on Cb(H) corresponding to the solution of the limit

partial differential equation S∞t via

T∞t Ψ(f) = Ψ(S∞t f)

for all Ψ ∈ Cb(H), f ∈ H, and t ≥ 0.

Thus we get a collection of semigroups

SNt : P (XN)→ P (XN) with dual TNt : Cb(XN)→ Cb(XN),

S∞t : H → H with pullback T∞t : Cb(H)→ Cb(H).

Note that for a general nonlinear limit equation, the operator S∞t will not be linear but

the semigroup T∞t will be linear.

Instead of comparing the semigroup SNt on P (XN) and the semigroup S∞t on H, we shall

compare the two semigroups TNt on Cb(XN) and T∞t on Cb(H). To this end let us define

an embedding

(2.18) πN : Cb(H)→ Cb(XN), Ψ 7→ πNΨ = (η 7→ Ψ(αNη )).

We shall need to identify the time-derivative of T∞t for a special class of functions in

Cb(H) which are of special importance for our version of the hydrodynamic limit, see

Theorem 2.3.1. These functions are all functions Ψ ∈ Cb(H) such that

(2.19) Ψ(f) = F (〈f, ϕ〉)

for some F ∈ C1
b (R) and ϕ ∈ C2(Td), c.f. Remark 2.3.3 (3). Here we speak of time-

derivative instead of generator, because even though it is possible to prove that T∞t

induces a C0–semigroup of contractions on a suitable subspace of Cb(H), we shall not do

so here.

Before we prove the hydrodynamic limit, Theorem 2.3.1, let us state and prove two lemmas

on the discrete particle system and the limit equation. Both lemmas will be used in the

proof of the hydrodynamic limit. The first lemma concerns the stability of the limit
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partial differential equation.

Lemma 2.3.4 (Stability). Let F ∈ C1
b (R) and ϕ ∈ C3(Td), and define Ψ as in equation

(2.19).

(i) Then for all t ≥ 0, there exists ϕt ∈ C3(Td) such that

(2.20) T∞t Ψ(f) = F (〈f, ϕt〉)

for all f ∈ H. Furthermore ϕt satisfies

(2.21) ‖ϕt‖C3 ≤ ‖ϕ‖C3 .

(ii) For any t ≥ 0, it holds

|T∞t Ψ(f2)− T∞t Ψ(f1)| ≤ ‖F ′‖L∞‖ϕ‖C3 sup
ω∈C3(Td)
‖ω‖C3≤1

〈f2 − f1, ω〉

for all f1, f2 ∈ H.

Proof. (i) Since S∞t was constructed on H by duality, it holds that 〈S∞t f, ϕ〉 = 〈f, S∞t ϕ〉.
Hence the choice ϕt = S∞t ϕ yields (2.20). Since ϕ ∈ C3(Td), the function Dsϕt, where

s is any multi-index such that |s| ≤ 3, solves the heat equation with initial datum Dsϕ.

Now the maximum principle yields ϕt ∈ C3(Td) with estimate (2.21).

(ii) Using the notation and results of part (i) of this lemma, it is not difficult to see that

|Ψ(S∞t f2)−Ψ(S∞t f1)| = |F (〈f2, ϕt〉)− F (〈f1, ϕt〉)| ≤ ‖F ′‖L∞
∣∣〈f2 − f1, ϕt〉

∣∣,
which implies the result.

The stability result yields that the form (2.19) is preserved by the flow T∞t , since

T∞t Ψ(f) = F
(
〈f, S∞t ϕ〉

)
〈f, S∞t ϕ〉,

where S∞t ϕ ∈ C3(Td). For such functions Ψ ∈ Cb(H), its time-derivative is given in the

next lemma.

Lemma 2.3.5. Let F ∈ C1
b (R) and ϕ ∈ C2(Td), and define Ψ as in equation (2.19).

Then its derivative G∞T∞t at time t ≥ 0 is given by

G∞T∞t Ψ(f) :=
d

dt
T∞t Ψ(f) = F ′ (〈f, ϕt〉) 〈f,∆ϕt〉

for all f ∈ H, where ϕt = S∞t ϕ. Note that at time t = 0, the derivative is to be understood

as the right-hand derivative (as t↘ 0) only.
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Proof. By definition of weak solutions to the heat equation, see (2.15), it holds that

d

dt
〈S∞t f, ϕ〉 = 〈S∞t f,∆ϕ〉.

The chain rule yields

d

dt
T∞t Ψ(f) =

d

dt
Ψ(S∞t f) = F ′(〈S∞t f, ϕ〉)〈S∞t f,∆ϕ〉.

Hence
d

dt
T∞t Ψ(f) = F ′(〈f, ϕt〉)〈f,∆ϕt〉

by the stability result, Lemma 2.3.4.

Remark 2.3.6. (1) Note that we can write formally

F ′ (〈f, ϕ〉) 〈f̃ , ϕ〉 = DΨ(f)(f̃),

where DΨ(f) : H → R denotes the derivative of Ψ : H → R with respect to f ∈ H.

Indeed, it holds that

|Ψ(f2)−Ψ(f1)−DΨ(f1)(f2 − f1)| ≤ ‖F ′′‖L∞(R)|〈f2 − f1, ϕ〉|2,

which can be understood as differentiability in H, if H is equipped with weak-* conver-

gence, cf. Section 2.4.

(2) Note that it is possible to prove that the semigroup T∞t is a C0–semigroup of con-

tractions with generator G∞ on an appropriate subspace of Cb(H), but we just need its

time-derivative as obtained in Lemma 2.3.5 for the particular maps Ψ given by (2.19),

since the form of Ψ is conserved in the special case of random walks. In order to keep the

function spaces involved simple, we shall not prove the C0–semigroup property.

In order to prove a uniform in time hydrodynamic limit, we need some results on the

decay of solutions to the heat equation in the spirit of a spectral gap. Let Ḣn(Td) denote

the homogeneous Sobolev space of degree n, i.e. the space of functions such that

‖f‖2
Ḣn :=

∑
|s|=n

∫
Td
|Dsf |2 du

is finite.

Lemma 2.3.7 (Spectral gap). For all ϕ ∈ C(Td) and t > 0, the solution S∞t ϕ to the heat

equation is in C∞(Td). Furthermore there exist positive, finite constants c and C such

that

‖∇S∞t+1ϕ‖C2 ≤ C‖∇S∞t+1ϕ‖Ḣn ≤ C‖∇S∞1 ϕ‖Ḣne−t
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for all t ≥ 0 and n > 2 + d/2.

Proof. The regularization property of the heat equation is classical. Hence h := ∇S∞1 ϕ ∈
Ḣn(Td) for n > 2 + d/2 and in Fourier space it holds that

‖∇S∞t+1ϕ‖2
Ḣn =

∑
ζ∈Zd
|ĥ(ζ)|2|ζ|2ne−2ζ2t ≤

∑
ζ∈Zd
|ĥ(ζ)|2|ζ|2ne−2t ≤ ‖∇S∞1 ϕ‖2

Ḣne
−2t.

Furthermore a standard Sobolev embedding and Poincaré’s inequality yield

‖∇S∞t+1ϕ‖C2 ≤ C‖∇S∞t+1ϕ‖Ḣn

since n > 2 + d/2 and the integral of gradient over the torus vanishes.

The next lemma yields closeness of the time-derivatives GN and G∞.

Lemma 2.3.8 (Consistency). Let F ∈ C2
b (R) and ϕ ∈ C3(Td), and define Ψ as in

equation (2.19). Furthermore assume that the average density is bounded, i.e.

〈
µN0 , N

−d∑
xη(x)

〉
≤M1.

Then there exists a constant C < +∞ depending only on the dimension d such that

∣∣〈µNt , (GNπN − πNG∞
)

Ψ
〉∣∣ ≤ CM1‖∇ϕ‖C2‖F ′‖C1

1

N

for all t ≥ 0.

Proof. Let I :=
〈
µNt , G

NπNΨ
〉

denote one of the two terms we want to estimate. In view

of the expression for the particle generator (2.2) with g = idN, it holds that

I =

〈
µNt , N

2
∑
x,y∼x

η(x){(πNΨ)(ηx,y)− (πNΨ)(η)}

〉
.

By definition (2.18) of πN , we obtain that

I =

〈
µNt , N

2
∑
x,y∼x

η(x){Ψ(αNηx,y)−Ψ(αNη )}

〉
.

Let R1 be the error term given by

R1 =

〈
µNt , N

2
∑
x,y∼x

η(x)
(
Ψ(αNηx,y)−Ψ(αNη )−DΨ(αNη )(αNηx,y − αNη )

)〉
,
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where DΨ is defined in Remark 2.3.6. Then it holds that

I = R1 +

〈
µNt , N

2
∑
x,y∼x

η(x)F ′
(
〈αNη , ϕ〉

)
〈αNηx,y − αNη , ϕ〉

〉
.

Definition (2.4) of the empirical measure then yields

I = R1 +

〈
µNt , F

′ (〈αNη , ϕ〉)N2−d
∑
x,y∼x

η(x)〈δ y
N
− δ x

N
, ϕ〉

〉

= R1 +

〈
µNt , F

′ (〈αNη , ϕ〉)N−d ∑
x∈TdN

η(x)∆Nϕ( x
N

)

〉

where

(2.22) ∆Nf(x) = N2
∑

e∈Zd:|e|=1

(f(x+ e
N

)− f(x))

denotes the discrete Laplacian. Replacing the discrete Laplacian with its continuous

version yields that

I = R1 + R2 +
〈
µNt , F

′(〈αNη , ϕ〉)〈αNη ,∆ϕ〉〉
with an error term

R2 =
〈
µNt , F

′(〈αNη , ϕ〉)〈αNη ,∆Nϕ−∆ϕ〉
〉
.

Hence the expression for G∞, Lemma 2.3.5, yields

I =
〈
µNt , G

NπNΨ
〉

= R1 + R2 +
〈
µNt , F

′ (〈αNη , ϕ〉) 〈αNη ,∆ϕ〉〉
= R1 + R2 +

〈
µNt , π

NG∞Ψ(αNη )
〉
.

In order to finish the proof of Lemma 2.3.8, we just need to bound the error terms R1

and R2.

First we bound R1. Setting

G(τ) = Ψ
(
αNη + τ(αNηx,y − αNη ))

)
yields

G′(τ) = F ′
(
〈αNη + τ(αNηx,y − αNη ), ϕ〉

)
〈αNηx,y − αNη , ϕ〉

and

G′′(τ) = F ′′
(
〈αNη + τ(αNηx,y − αNη ), ϕ〉

)
〈αNηx,y − αNη , ϕ〉2.
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The mean value theorem yields

G(1)−G(0)−G′(0) = 1/2G′′(ξ)

for some ξ ∈ (0, 1). Consequently |R1| is bounded by

|R1| ≤
1

2
‖F ′′‖L∞

〈
µNt , N

2
∑
x∼y

η(x)
〈
αNηx,y − αNη , ϕ

〉2
〉
.

For each fixed x ∈ TdN it holds that

N2
∑

y s.t.y∼x

〈αNηx,y − αNη , ϕ〉2 =
N2

N2d

∑
y s.t.y∼x

(
ϕ( y

N
)− ϕ( x

N
)
)2 ≤ 2d

N2d
‖∇ϕ‖2

L∞ ,

where the factor 2d stems from the number of neighbours y of x. Hence the error is

bounded by

R1 ≤
2d−1

Nd
‖F ′′‖L∞ ‖∇ϕ‖L∞

〈
µNt ,

1

Nd

∑
x∈TdN

η(x)
〉
.

Since the number of particles is conserved under the evolution, the last of these factors

yields 〈
µNt ,

1

Nd

∑
x∈TdN

η(x)
〉

=
〈
µN0 ,

1

Nd

∑
x∈TdN

η(x)
〉
≤M1,

and hence |R1| ≤ CM1‖F ′‖C1‖∇ϕ‖L∞N−1. Finally, a Taylor expansion yields

‖∆Nϕ−∆ϕ‖L∞ ≤ ‖∆ϕ‖C1

1

N

and therefore |R2| ≤ CM1‖F ′‖L∞‖∆ϕ‖C1N−1.

Using the Lemmas 2.3.4 to 2.3.8, we can prove the hydrodynamic limit.

Proof of Theorem 2.3.1. Let Ψ be as defined in equation (2.19). Then the term to be

estimated is

〈
µNt , F

(
〈αNη , ϕ〉

)〉
− F (〈ft, ϕ〉) =

〈
SNt µ

N
0 ,Ψ

(
αNη
)
−Ψ

(
S∞t f0

)〉
.

Consequently the definitions of TNt and T∞t yield

〈
SNt µ

N
0 ,Ψ

(
αNη
)
−Ψ (S∞t f0)

〉
=
〈
µN0 , T

N
t Ψ
(
αNη
)
− T∞t Ψ(f0)

〉
.

Note here that TNt acts on Ψ(αNη ) through η. Recalling the definition (2.18) of πN , we

need to bound the term ∣∣∣〈µN0 , TNt πNΨ− T∞t Ψ(f0)
〉∣∣∣.
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The triangle inequality and (2.18) yield∣∣∣〈µN0 , TNt πNΨ− T∞t Ψ(f0)
〉∣∣∣

≤
∣∣〈µN0 , TNt (πNΨ)− πN(T∞t Ψ)

〉∣∣+
∣∣〈µN0 , (T∞t Ψ)

(
αNη
)
− (T∞t Ψ)(f0)

〉∣∣
=: T1 + T2.

Since Ψ as defined in (2.19) satisfies

d

dt
T∞t Ψ(f) = G∞T∞t Ψ(f),

it follows

d

ds

(
TNs π

NT∞t−s(η)
)

= TNs G
NπNT∞t−sΨ(η)− TNs πNG∞T∞t−sΨ(η).

Consequently, it holds that

T1 =
∣∣〈µN0 , TNt πNΨ− πNT∞t Ψ

〉∣∣
≤
∫ t

0

∣∣〈SNs µN0 , (GNπN − πNG∞)(T∞t−sΨ)〉
∣∣ ds.

Note that T∞t−sΨ is of the form (2.19) with F and ϕt−s as given in Lemma 2.3.4 on stability.

Hence Lemma 2.3.8, which regards consistency, yields

T1 ≤
CM1

N
‖F ′‖C1

∫ t

0

‖∇ϕt−s‖C2 ds.

If we split up the above integral into the contributions t ≤ 1 and t > 1, Lemma 2.3.7

yields

T1 ≤
CM1

N
‖F ′‖C1

(
‖∇ϕ‖C2 + ‖S∞1 ∇ϕ‖Hn

)
.

For the second term T2, Lemma 2.3.4, (ii) yields

T2 ≤ ‖F ′‖C1‖ϕ‖C3 sup
ω∈C3(Td)
‖ω‖C3≤1

〈
µN0 ,

∣∣〈αNη − f0, ω〉
∣∣〉,

which completes the proof of the hydrodynamic limit.

Remark. The term T1 is a measure for the difference between the discrete and the con-

tinuous semigroups along the empirical measure, whereas T2 measures the evolution under

the limit equation of the distance between the initial empirical measure and the initial

macroscopic datum.

This is reminiscent of the results in numerical analysis, where the convergence of a nu-

merical scheme usually requires a consistency and a stability estimate.
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2.4. Hydrodynamic limit for zero range processes

2.4 Hydrodynamic limit for zero range processes

In this section we shall apply the method outlined in Section 2.3 using the example of

independent random walks to prove a hydrodynamic limit for the zero range process with

an explicit bound on the rate of convergence. Throughout we require Assumption 1 to

hold. Furthermore, in this section we demand d = 1. This restriction on the dimension of

the problem is necessary only for the propagation of the regularity, Lemma 2.4.13. In or-

der to emphasize the generality of our approach, we shall still denote the dimension by d,

and understand d = 1. We shall see that indeed Lemma 2.4.13 is the only result where we

explicitly need d = 1 - assuming a corresponding result in higher dimensions, our method

implies the hydrodynamic limit with an explicit, uniform-in-time rate of convergence in

d dimensions. In Section 2.7, we shall discuss work in progress on how to achieve this.

We shall show that in the sense of Theorem 2.3.1, as the number N of sites in the lattice

TdN approaches infinity, the empirical measure converges to the solution of the limit partial

differential equation, specifically the filtration equation

∂tft = ∆σ(ft)

for the nonlinearity σ : [0,∞)→ [0,∞) appearing in (2.6). The nonlinearity is explicitly

given as follows: let Z : [0, λ∗) → R be the partition function of the zero range process

given by (2.7), with λ∗ denoting the radius of convergence of Z(·). Assumption 1 (iii) in

fact yields λ∗ = +∞, since the assumption implies g(n) ≥ δ̃n for some δ̃ ≤ δ/n0.

The density function as a function of the fugacity λ is given by

(2.23) R(λ) = λ∂λ log(Z(λ)) =
1

Z(λ)

∑
n≥0

nλn

g(n)!
.

This is a smooth function R : [0,∞) → R. It is not hard to prove, see [47], that R

strictly monotonously increasing with limλ→∞R(λ) = ∞. Then σ : [0,∞) → [0,∞) is

well-defined as its inverse function. Thus νNρ , as defined in (2.6), is an invariant and

translation-invariant product measure with density

〈νNρ , η(x)〉 = ρ.

Furthermore its average jump rate satisfies

〈νNρ , g(η(x))〉 = σ(ρ).

The Lipschitz continuity of the rate function implies that σ(ρ) is also Lipschitz continuous

with constant g∗, see [47]. The second assumption implies that g(n) ≥ δ̃n and hence
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Quantitative hydrodynamic limits

infρ σ(ρ)/ρ > 0. Therefore it is impossible to obtain a porous medium equation, e.g.

σ(ρ) = ρm, m > 1, in this limit. Indeed Assumption 1 yields

Lemma 2.4.1. It holds that

(2.24) 0 < inf
ρ≥0

σ′(ρ) ≤ sup
ρ≥0

σ′(ρ) < +∞.

For the higher derivatives of order j ≥ 2, there exist constants Cj < +∞ such that

(2.25) σ(j)(ρ) ≤ Cj(1 + ρj−1)

for all ρ ≥ 0 and j ≥ 2.

Proof. The upper bound in (2.24) is well-known and can be proved by coupling two

measures νNρ and νNρ̃ , cf. [47]. We obtain the lower bound corresponding to ellipticity of

(2.3) by a formula expressing σ′ through the variation of the number of particles, see [52].

Let us start by proving (2.25) in the case j = 2. This second order bound can be seen

from

(2.26) σ′′(ρ) = −R
′′(σ(ρ))σ′(ρ)

R′(σ(ρ))2
= −R′′(σ(ρ))σ′(ρ)3,

since σ and R are inverse to each other, i.e. R(σ(ρ)) = ρ. Recall that

R(λ) = λ∂λ logZ(λ).

Assumption 1 yields that

δj ≤ Z(j)(λ)/Z(λ) ≤ (g∗)j

is bounded for all j–th order derivatives with j ≥ 0. Therefore it holds that

dj

dλj
R(λ) = λ

dj

dλj
logZ(λ) + jλ

dj−1

dλj−1
logZ(λ) ≤ C(1 + λ)

and consequently setting λ = σ(ρ) ≤ g∗ρ yields σ′′(ρ) ≤ C(1 + ρ). Iterating, we see that

with each derivative of (2.26), we pick up another power of ρ.

Remark 2.4.2. The rather naive estimates on the higher derivatives can be significantly

improved using the estimates found in [52].

Since the limit partial differential equation does not allow measure-valued weak solutions,

we consider solutions in

H := L∞(Td).

Note that in particular H ⊂ L2(Td). We shall also work a lot in the weak space H−1(Td).
Let us recall its definition and a few basic facts in the following remark.
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2.4. Hydrodynamic limit for zero range processes

Remark 2.4.3 (The weak space H−1(Td)). Set

H1(Td) :=
{
f ∈ H1(Td) |

∫
Td f(u) du = 0

}
and let H−1(Td) denote its dual space, i.e. the space of linear bounded maps H1(Td)→ R.

It follows that

−∆ : H1(Td)→ H−1(Td), f 7→ −∆f

is an isomorphism, where (−∆)−1f corresponds to the weak solution to the Poisson equa-

tion on Td, i.e.

〈∇(−∆)−1f,∇f̃〉 = 〈f, f̃〉

for all f̃ ∈ H1(Td), f ∈ H−1(Td). Thus we set

‖f‖2
H−1 := 〈f, (−∆)−1f〉

for all f ∈ H−1(Td). In Fourier space, this norm is given by

‖f‖2
H−1 =

∑
ζ∈Zd\{0}

1

|ζ|2
|f̂(ζ)|2.

This norm is indeed equivalent to the usual H−1–operator norm, e.g. it holds that

(2.27) 〈f̃ , f〉L2 ≤ ‖∇f‖L2‖f̃‖H−1

for all f ∈ H1(Td) and f̃ ∈ L2(Td). A slightly complicating factor is the fact that the

H−1–norm vanishes for constants, i.e. members of H−1(Td) are only uniquely identified

up to constants. It directly follows that (2.27) also holds for all f ∈ H1(Td) as soon as

f̃ ∈ L2(Td) satisfies
∫
Td f̃(u) du = 0. It also holds that

‖f‖H−1 ≤ C‖f‖L2

for all f ∈ H−1(Td), which can be seen as a variant of the Poincaré inequality.

In the almost linear case, when (2.24) holds, the theory of weak solutions to equation

(2.3) is stated in the following lemma.

Lemma 2.4.4 (Weak solutions to the filtration equation). For every f0 ∈ H, the filtration

equation (2.3) possesses a unique weak solution ft ∈ H, t ∈ [0,∞), in the sense that∫ ∞
0

∫
Td

(
ft(u)∂tω(t, u) + σ(ft(u))∆ω(t, u)

)
dudt+

∫
Td
f0(u)ω(0, u) du = 0

for all ω ∈ C1([0,∞);C2(Td)) with compact support in [0,∞) × Td. The solution f =
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Quantitative hydrodynamic limits

(ft)t∈[0,∞) also satisfies

f ∈ L2(0,∞;H1(Td)) ∩H1(0,∞;H−1(Td)) ⊂ C([0,∞);L2(Td)).

In particular

(2.28)
d

dt
〈ft, ϕ〉 = 〈σ(ft),∆ϕ〉

for all t ≥ 0 and all ϕ ∈ C2(Td).

Proof. Starting from smooth solutions in C∞(Td), cf. Ladyzhenskaya [51], it is classical

to construct a weak solutions, see for example [83] or [47, Appendix 2]. The maximum

principle shows that the semigroup S∞t conserves the L∞(Td)–norm, i.e.

‖S∞t f0‖L∞ ≤ ‖f0‖L∞ .

Therefore it holds that S∞t : H → H. The solution is unique, cf. the stability estimates

of Lemma 2.4.12. Furthermore it holds that

d

dt
‖ft‖2

L2 = −2

∫
Td
σ′(ft)|∇ft|2 du,

whence S∞t conserves the L2(Td)–norm and∫ T

0

∫
Td
|∇ft|2 dudt ≤ C

∫ T

0

∫
Td
σ′(ft)|∇ft|2 dudt ≤ C‖f0‖2

L2 .

is bounded. It follows that f = (ft)t≥0 ∈ L2(0,∞;H1(Td)). The filtration equation

∂tft = ∆σ(ft) consequently yields (∂tft)t≥0 ∈ L2(0,∞;H−1(Td)) and therefore

f ∈ L2(0,∞;H1(Td)) ∩H1(0,∞;H−1(Td)).

Interpolation, see Theorem 3 in §5.9.2 of [29], then yields f ∈ C([0,∞);L2(Td)). Now

the weak form of the filtration equation yields equation (2.28) for all ϕ ∈ C2(Td) and

almost all t ≥ 0. Since f is continuous in time with values in L2(Td), this equation indeed

extends to all t ≥ 0.

Before we can proceed with the statement of the hydrodynamic limit and its proof, we

need to introduce a last bit of notation.

Definition 2.4.5. We say that two configurations η, ζ ∈ XN satisfy

η ≤ ζ
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2.4. Hydrodynamic limit for zero range processes

if η(x) ≤ ζ(x) for all x ∈ TdN . A function fN ∈ Cb(XN) is said to be monotonous if

fN(η) ≤ fN(ζ)

for all η ≤ ζ. Given two probability measures µ, ν ∈ P (XN), we say that µ is bounded by

ν, written

µ ≤ ν,

if it holds that 〈µ, fN〉 ≤ 〈ν, fN〉 for all monotonous fN ∈ Cb(XN).

Furthermore the empirical measure as defined in (2.4) is not regular enough to give sense

to ∆σ(αNη ). Hence we shall measure particle densities of the configuration η ∈ XN of the

discrete system via the mollified empirical measure

(2.29) αN,εη :=
1

Nd

∑
x∈TdN

η(x)δ
(ε)
x
N
∈ H,

where

(2.30) δ
(ε)
0 =

1

εd
χ( ·

ε
) ∈ H

is an approximation of the dirac distribution and δ
(ε)
u its translation by u ∈ Td. We let

χ ∈ C∞0 (Rd) have compact support in, for example, (−1/2, 1/2)d. Since we are working on

the torus, χ(u/ε) should be understood in Td, e.g. by taking its periodization
∑

z∈Zd χ((u+

z)/ε).

2.4.1 The hydrodynamic limit

The following theorem is our main result, detailing a hydrodynamic limit with an explicit

rate of convergence in one dimension.

Theorem 2.4.6 (Hydrodynamic limit for zero range processes). Assume d = 1 and let

F ∈ C2
b (R), ϕ ∈ C3(Td), k > (d+ 2)/2, CH > 0, and ρ > 0 be given. Then there exists a

rate of convergence rHL(ε,N) with polynomial dependence on ε and N , whose exponents

only depend on k (and d), such that the following hydrodynamic limit holds. For all t ≥ 0,

N ∈ N, 1/N < ε < 1, f0 ∈ H, and µN0 ∈ P (XN) such that the entropy and the measure

itself are bounded relative to the grand-canonical measure νNρ , i.e.

HN
(
µN0 |νNρ

)
≤ CHN

d and µN0 ≤ νNρ ,
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it holds that there exists a rate of convergence rHL(ε,N) such that

(2.31)
〈
µNt , F

(
〈αNη , ϕ〉L2

)
− F

(
〈ft, ϕ〉L2

)〉
≤ rHL(ε,N)

+ ‖F ′‖L∞‖ϕ‖L∞
〈
µN0 , ‖αN,εη − f0‖L1

〉
where ft is given by the solution to the filtration equation (2.3) and µNt is given by the

zero range process, as detailed above. For all T > 0, % > 0, and 0 ≤ 2l + 1 ≤ N , the rate

of convergence rHL(ε,N) is bounded by

C‖F‖C2(1 + ‖ϕ‖C3 + ‖ϕ‖2
H1)
(
Tε−(d+4)((1+ d

2
) 2k2+k

2k+2
+kd)−d(1− θ

2
)N1−θ(d+1)

+ T
1
2 ε−

4+d
2 N−2 + ε+ e−cTN2+dε−2d + T

1
2 rRL(%, l, ε, N)

)
for some finite, positive constants c and C depending only on d, k, CH , and ρ. Here

θ = θ(k) = (2k−d−2)/(2k+2) and the additional rate function rRL(%, l, ε, N) is bounded

by (
N−

1
2 l

1
2 + ε

1
2 l

1
4

)
%l

d
4 + %l−

d
4 + %−

1
4 +

l

εN
.

It stems from the replacement lemma, Lemma 2.4.19.

Remark 2.4.7. Thus we see that the contributions to the hydrodynamic limit can be

divided into three parts. The first term describes the propagation of the initial error due

to the approximation of f0 by the discrete particle configurations at time t = 0 and the

other two are errors coming from stability properties of the limit equation and an error

term due to the replacement lemma, respectively. The replacement lemma is an older

result, appearing first in [36].

Note that the choice of the density ρ in the assumption regarding the Gibbs measure νNρ

is a slightly arbitrary. Indeed, if the relative entropy

1

Nd
HN(µN0 |νNρ ) ≤ C

is bounded, then so is
1

Nd
HN(µN0 |νNρ̃ ) ≤ C(ρ̃)

for any ρ̃ > 0. Furthermore, if ‖f0‖L∞ ≤ ρ, the local Gibbs measure (2.11) satisfies

νNf0(·) ≤ νNρ

and this choice for µN0 satisfies the bound on the entropy as well. The rate here is much

slower than the rate for independent random walks, given in Theorem 2.3.1. This is

mainly due to the fact that we shall need to replace the rate function g with its local
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2.4. Hydrodynamic limit for zero range processes

average via a replacement lemma.

Remark 2.4.8. We can replace the term estimating the compatibility of the initial data

by a slightly modified version. Under the assumptions of Theorem 2.4.6, its proof also

yields

〈
µNt , F

(
〈αNη , ϕ〉L2

)
− F

(
〈ft, ϕ〉L2

)〉
≤ rHL(ε,N) + ‖F ′‖L∞‖ϕ‖H1

〈
µN0 , ‖αN,εη − f0‖H−1

〉
+ ‖F ′‖L∞ |

∫
Td ϕ(u) du|

〈
µN0 , |N−d

∑
x η(x)−

∫
Td f0(u) du|

〉
.

This is a consequence of the following variant of the basic H−1–stability estimate in

Lemma 2.4.12:

‖f̃t − f̃∞ − ft + f∞‖H−1 ≤ ‖f̃0 − f̃∞ − f0 + f∞‖H−1 + C|f̃∞ − f∞|,

where f∞ =
∫
Td ft(u)du is the (constant) integral of the solution ft and likewise for f̃∞.

The above estimate of the hydrodynamic limit can be useful if we only have information

about the H−1–convergence of the initial data and some information on the number of

particles of the zero range process. For example, we might require that there exists some

N0 ∈ N such that
1

Nd

∑
x∈TdN

η(x) =

∫
Td
f0(u) du

holds µN0 –almost surely for all N ≥ N0. Of course, this is only possible if the integral∫
Td f0(u)du is an integer. The convergence of αN,εη in H−1(Td) is more favourable in

terms of powers of ε than the convergence in L1(Td). On the other hand, the initial data

converges much faster in general than the bounds we can give for rHL(ε,N), so it will not

matter much in which norm we measure the convergence of the initial data, see the proof

of Corollar 2.4.9 below.

As before Theorem 2.4.6 yields convergence to the hydrodynamic limit, conditional on

convergence of the initial data.

Corollary 2.4.9. Assume d = 1 and let F ∈ C2
b (R), and ϕ ∈ C3(Td) be given. Then for

all N ∈ N and f0 ∈ C1(Td), there exists a µN0 ∈ P (XN) such that it holds

〈
µNt , F

(
〈αNη , ϕ〉L2

)
− F

(
〈ft, ϕ〉L2

)〉
≤ CN−κ

for some κ > 0, e.g. any κ < 1/6700 works. Here µNt is given by the zero range process

and ft by the solution to the corresponding filtration equation ∂tft = ∆σ(ft).

In other words, if η is distributed according to law µNt , then αNη ⇀∗ ft in distribution as

N →∞.
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Remarks 2.4.10. (1) The statements (3)-(6) of Remark 2.3.3 remain valid and relevant

to this case.

(2) The condition HN(µN0 |νNρ ) ≤ CNd is quite useful in connection with the so-called

entropy inequality. This inequality states that for all γ > 0, f ∈ Cb(XN) and any two

probability measures µ, ν ∈ P (XN), it holds that

(2.32) 〈µ, f〉 ≤ 1

γ

(
HN(µ|ν) + log

〈
ν, exp(γf)

〉)
.

For example, if we set f(η) =
∑

x η(x), µ = µN0 , and ν = νNρ in estimate (2.32), we obtain

that

〈µN0 , N−d
∑

x η(x)〉 ≤ 1

γ

(
N−dHN(µN0 |νNρ ) + log

〈
νNρ , exp(γη(0))

〉)
,

since νNρ is a product measure. Thus we obtain a bound on the average particle density

〈µN0 , N−d
∑
x∈TdN

η(x)〉 ≤ C.

Note here that the infinite radius of convergence ρ∗ = +∞ of the partition function Z(·)
yields finite exponential moments

〈νNρ , exp(γη(0))〉 =
Z(ρeγ)

Z(ρ)
< +∞

for all γ ∈ R. Of course in our case, the bound on the average number of particles also

follows from fN0 ≤ νNρ and the monotonicity of N−d
∑

x η(x) in η.

(3) While the size of κ is certainly not optimal, it is qualitatively correct since has the

expected polynomial dependence on N . As far as we are aware, it also constitutes the first

example of an explicit rate of convergence of the zero range process to the hydrodynamic

limit and the first example of a uniform-in-time rate of convergence. It has the added

advantage that the exponents do not depend on the function g. Thus, for example, it

should allow for perturbative arguments to be applied to prove the hydrodynamic limit

of small perturbations of the zero range process as given in the assumptions.

Proof of Corollary 2.4.9. First of all we can choose µN0 := νNf0(·) which was defined in

(2.11). Then in a rough first estimate it holds that

〈µN0 , ‖αN,εη − f0‖L1〉 ≤ 〈µN0 , ‖αN,εη − f0‖L2〉
1
2 ≤ C√

εN
.
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We can deduce this as follows. First, it holds that

〈
µN0 , ‖αN,εη − f0‖2

L2

〉
=

∫
Td

〈
µN0 ,

1

N2d

∑
x,y

η(x)η(y)δ
(ε)
x
N

(u)δ
(ε)
y
N

(u)

− 2

Nd

∑
x

η(x)δ
(ε)
x
N
f0(u) + f0(u)2

〉
du.

Since η(x) and η(y) are independently distributed under µN0 as long as x 6= y, this equals

∫
Td

(
1

N2d

∑
x 6=y

f0( x
N

)f0( y
N

)δ
(ε)
x
N

(u)δ
(ε)
y
N

(u)

+
1

N2d

∑
x∈TdN

〈νNf0( x
N

), η(0)2〉δ(ε)
x
N

(u)2 − 2

Nd

∑
x∈TdN

f0( x
N

)δ
(ε)
x
N
f0(u) + f0(u)2

)
du.

Since f0 ∈ C1(Td) is bounded, it follows that the second moment 〈νNf0( x
N

), η(0)2〉 is bounded

uniformly in x and N . Furthermore it holds that ‖δ(ε)
x/N‖2

L2 ≤ Cε−d. Thus the above is

bounded from above by∥∥∥∥ 1

Nd

∑
x∈TdN

f0( x
N

)δ
(ε)
x
N
− f0

∥∥∥∥2

L2

+ O
( 1

(εN)d
)
,

Note that
∫
Td χ(u) du = 1 and hence

(2.33)

∣∣∣∣ 1

(εN)d

∑
x∈TdN

χ
( x
εN

)
− 1

∣∣∣∣ ≤ ‖∇χ‖∞ C

εN
.

Since f0 ∈ C1(Td) is uniformly Lipschitz and the support of χ in (2.30) is compact, this

shows that ∣∣∣∣ 1

Nd

∑
x∈TdN

f0( x
N

)δ
(ε)
x
N

(u)− f0(u)

∣∣∣∣ ≤ C

εN
.

Thus we have shown that 〈
µN0 , ‖αN,εη − f0‖2

L2

〉
≤ C

εN
.

In order to estimate a rate of convergence for the hydrodynamic limit, we make the Ansatz

that ε = ε(N), l = l(N), % = %(N), and T = T (N) are all monomials in N . If we optimize

over the set of possible powers, we find that indeed

〈
µNt , F

(
〈αNη , ϕ〉L2

)
− F

(
〈ft, ϕ〉L2

)〉
= O(N−κ)

for some κ > 0. Since d = 1, we obtain that, for example, we can achieve any rate κ with

κ < 1/6700. Note that this bound is much larger than one would expect in view of the
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law of large numbers and not optimal. On the other hand, it is independent of the rate

function g, as long as g satisfies Assumption 1.

As in Section 2.3 we have a collection of semigroups SNt and TNt describing the dynamics

of the particle process as well as S∞t and T∞t describing the evolution of the limit equation.

The semigroup S∞t is defined by

S∞t f0 := ft,

for all f0 ∈ H, where ft ∈ H is the solution (2.3) corresponding to the initial datum f0.

Uniqueness of the solutions shows that it is indeed a semigroup. Then T∞t is again given

by

T∞t Ψ(f) = Ψ(S∞t f)

for all Ψ ∈ Cb(H) and f ∈ H. The relationships of the semigroups can be summarized as

SNt : P (XN)→ P (XN) with dual TNt : Cb(XN)→ Cb(XN),

S∞t : H → H with pullback T∞t : Cb(H)→ Cb(H).

The semigroup TNt has generator GN given in equation (2.2), whereas the time-derivative

G∞ of T∞t will be given in Lemma 2.4.18 below. Using the empirical measures, we also

define an embedding πN,ε : Cb(H)→ Cb(XN) via

(
πN,εΨ

)
(η) = Ψ(αN,εη ),

where we shall usually drop the superscript ε for ease of notation. This embedding will

allow us to compare the semigroups TNt and T∞t directly.

Remark 2.4.11. The heat equation admits measure-valued solutions and hence we could

give sense to ∆αNη . Even though there exist solutions to the nonlinear heat equation

∂tf = ∆σ(f) started from a measure, this approach is not feasible here, since we cannot

give sense to G∞Ψ(f) = DΨ(f)(∆σ(f)) if f is just a measure. This is the main reason

we need to use the mollified empirical measure

αN,εη = αNη ∗ δ(ε),

which can be seen as obtained through a convolution. The mollified empirical measure

induces the following local averages: For any function h : N→ R, we set

(2.34) (h ◦ η)(ε)(u) :=
1

Nd

∑
x∈TdN

h(η(x))δ
(ε)
x
N

(u)

where we recall that δ(ε)(u) is given in (2.30). The mollification introduces another scale,

which might be called mesoscopic. It has microscopic size εN and macroscopic size ε.
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2.4. Hydrodynamic limit for zero range processes

Such an intermediate scale appears in virtually all works on the hydrodynamic limit,

see for example the replacement lemma. Here the intermediate scale is inherent in the

(mollified) empirical measure.

2.4.2 Regularity of the limit equation

We have seen in Section 2.3, that our proof of the hydrodynamic limit relies on a stability

and a consistency result. Since the limit equation in Section 2.3 is linear, its stability

is reduced to some bounds on its solutions. Here the question of stability is much more

difficult and relies on delicate estimates on the (uniform) propagation of higher regularity.

These estimates are crucial to obtaining stability by interpolating with weak contractivity

estimates. The weak contractivity estimates and some a-priori bounds on the solutions are

the content of the following Lemma 2.4.12, whereas the preservation of higher regularity

in d = 1 dimension will be proved in Lemma 2.4.13 below.

The filtration equation (2.3) satisfies the following basic estimates, which can all be shown

by simple differentiation in time, c.f. Vazquez [83].

Lemma 2.4.12 (Basic estimates). Let f0 ∈ H1(Td) ∩ L∞(Td) and denote by ft the

corresponding solution to (2.3) with initial datum f0. Then the following bounds hold

for all t ≥ 0. The Lp–norms do not grow, i.e.

(2.35) ‖ft‖Lp ≤ ‖f0‖Lp

for all 1 ≤ p ≤ ∞. The H1–norm of ft is bounded since

(2.36)

∫
Td
|∇σ(ft)|2 du+ 2

∫ t

0

∫
Td
σ′(fs)|∆σ(fs)|2 duds =

∫
Td
|∇σ(f0)|2 du.

In particular, it follows ‖∇ft‖L2 ≤ C‖∇f0‖L2. If f̃t is another solution to (2.3) with

initial datum f̃0, the following stability estimates hold:

(2.37)

∫
Td
|f̃t(u)− ft(u)| du ≤

∫
Td
|f̃0(u)− f0(u)| du

for all f̃0, f0 ∈ H, t ≥ 0, as well as

(2.38) ‖f̃t − ft‖2
H−1 + 2

∫ t

0

∫
Td

(
f̃s − fs

)(
σ(f̃s)− σ(fs)

)
duds = ‖f̃0 − f0‖2

H−1

for all f̃0, f0 ∈ H such that
∫
Td f̃0(u) du =

∫
Td f0(u) du and t ≥ 0.

The above bound in H1(Td) does not suffice to prove stability. We will also need an

estimate on the conservation of higher regularity. This is harder for the nonlinear filtration
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equation (2.3) than it was for the heat equation. Given f0 ∈ H, consider the solution ft

to the filtration equation (2.3) with initial datum f0. It is a classical result that solutions

to the nonlinear, uniformly parabolic equation (2.3) are smooth, i.e. ft ∈ C∞(Td) for all

t > 0, if f0 ∈ H. On the other hand, in order to prove the hydrodynamic limit with an

explicit rate of convergence, we need to obtain explicit information on the size of ‖ft‖Hk

for some large enough k > 0 in terms of f0. In d = 1 dimensions, this can be achieved

by elementary calculations. This is the reason why in the hydrodynamic limit, Theorem

2.4.6, we restricted ourselves to the case d = 1. Recall that in order to emphasize the

generality of our approach, we still write out the parameter d, understanding d = 1 and

that we shall illustrate in Section 2.7 how we plan to remove the assumption in future

research.

For any integer k > 0 and f ∈ Hk(Td), let Dkf denote the k–th derivative of f , a tensor.

Furthermore we denote multi-indices in Nd by s, r and the corresponding scalar derivatives

by Dsft, D
rft.

Lemma 2.4.13. Assume that d = 1. Then for every k > 0, it holds that

‖Dkft‖L2 ≤ C
(
1 + ‖Dkf0‖L2 + ‖f0‖2k2

L∞‖∇f0‖2k2+k
L2

)
for all t ≥ 0 and f0 ∈ Hk(Td).

Proof. Let s ∈ Nd be any multi-index such that |s| = k. The filtration equation yields

that
d

dt

∫
Td
|Dsft|2 du = −2

∫
Td
∇DsftD

s
(
σ′(ft)∇ft

)
du

By Faà di Bruno’s formula, this is bounded by

−2

∫
Td
σ′(ft)|∇Dsft|2 du+

∑
m;ri

C(r)

∫
Td
σ(m+1)(ft) ∇Dsft · ∇Ds−

∑
i rift

m∏
j=1

Drjft

where the sum is over all integers m > 0 and multi-indices ri ∈ Nd, i = 1, . . . ,m, such

that
∑m

i=1 ri ≤ s and ri 6= 0 for all i. Here C(r) denotes a constant depending only on

r and we shall now bound each of the above summands of this sum. Thanks to Lemma

2.4.1, each summand is bounded by

C
∥∥∇Dsft

∥∥
L2(1 + ‖ft‖mL∞)

∥∥∇Ds−
∑
i rift

m∏
j=1

Drjft
∥∥
L2 .

Now we choose any coefficients p, (pi)
m
i=1 such that 1/2 = 1/p+

∑
i 1/pi to obtain that

∥∥∇Ds−
∑
i rift

m∏
j=1

Drjft
∥∥
L2 ≤

∥∥∇Ds−
∑
i rift

∥∥
Lp

m∏
j=1

∥∥Drjft
∥∥
Lpj
.
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2.4. Hydrodynamic limit for zero range processes

Note that every order n of the derivatives appearing in this product satisfies 1 ≤ n ≤ k.

Recall that a generalized Gagliardo-Nirenberg-Sobolev inequality yields

‖Drf‖Lp ≤ C‖Dk+1f‖θL2‖∇f‖1−θ
L2 ,

if

|r| − d

p
= θ
(
k + 1− d

2

)
+ (1− θ)

(
1− d

2

)
,

as well as 0 ≤ θ ≤ 1, 0 ≤ |r| < k + 1, and θ ≥ (|r| − 1)/k, see [20]. Set

θi =
|ri| − 1 + d(1

2
− 1

pi
)

k
, θ =

|s−
∑

i ri|+ d(1
2
− 1

p
)

k

and note that θi ≥ (|ri| − 1)/k since pi ≥ 2 (likewise for θ). Summing over all θi yields

θ +
m∑
i=1

θi =
k −m+ d

2
(m+ 1)− d

2

k
=
k − m

2

k
≤ 1− 1

2k
,

since
∑

i 1/pi + 1/p = 1/2, 1 ≤ m ≤ k, and d = 1. We also calculate

(1− θ) +
m∑
i=1

(1− θi) = m+ 1−
k − m

2

k
= m+

m

2k
≤ k +

1

2

Therefore the Gagliardo-Nirenberg-Sobolev inequality yields

∥∥∇Ds−
∑
i rift

∥∥
Lp

m∏
i=1

∥∥Drift
∥∥
Lpi
≤ C‖Dk+1ft‖

2k−m
2k

L2 ‖∇ft‖
m+m

2k

L2

≤ C
(
‖Dk+1ft‖

2k−1
2k

L2 ‖∇ft‖
2k+1

2

L2 + 1
)
.

By Lemma 2.4.12, it holds that ‖∇ft‖L2 ≤ C‖∇f0‖L2 and ‖ft‖L∞ ≤ ‖f0‖L∞ . Therefore

we conclude that for any k > 0, there exist constants 0 < c and C <∞ such that

(2.39)
d

dt
‖Dkft‖2

L2 ≤ −c‖Dk+1ft‖2
L2 + C

(
‖Dk+1ft‖

2− 1
2k

L2 ‖f0‖kL∞‖∇f0‖
2k+1

2

L2 + 1
)
.

Since the integral of the derivative Dkft over the torus Td vanishes, Poincaré’s inequality

yields

‖Dkft‖2
L2 ≤ C‖Dk+1ft‖2

L2 .

Hence we can choose C ′ > 0 large enough, such that whenever ‖Dkft‖L2 ≥ C ′ holds, then

the right hand side of estimate (2.39) is negative. Therefore we deduce that

‖Dkft‖
1
2k

L2 ≤ C max
{
‖Dkf0‖

1
2k

L2 , ‖f0‖kL∞‖∇f0‖
2k+1

2

L2 + 1
}
,
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which concludes the proof of the proposition.

Remark. Lemma 2.4.12 yielded a-priori bounds in H1(Td), which is stronger in d = 1

dimension than the L∞(Td)–bound from the maximum principle. Furthermore L∞(Td) is

just the critical case, in which simple interpolation arguments do not yield a bound onDkft

of the form of Lemma 2.4.13. Thus, without any stronger bounds, we needed to restrict

ourselves to d = 1. This dichotomy in regularity between low and high dimensions is

natural for quasilinear parabolic equations like the filtration equation (2.3). The regularity

of the filtration equation in d = 1, 2 was known even before de Giorgi’s and Nash’s

famous results on the Hölder-continuity of the solutions to parabolic equations. Indeed

our proposed approach in Section 2.7 depends on the regularity result of de Giorgi and

Nash.

2.4.3 Consistency and stability

Before we prove the hydrodynamic limit Theorem 2.4.6, we need to prove stability and

consistency estimates similar to Section 2.3. Since the limit PDE is nonlinear, this is

more involved and we shall mostly work with Hk–norms, not the Ck–norms of Section 2.3

(where the choice was convenient because of the use of Dirac distributions). Again, we first

show stability estimates on the filtration equation. These estimates allow us to control the

fluctuations around the hydrodynamic limit along the evolution of the filtration equation.

The consistency result concerns the closeness of the generators generators GN and G∞.

Lemma 2.4.14 (Stability). Assume d = 1 and let F ∈ C2
b (R) and ϕ ∈ C2(Td), and

define Ψ as in equation (2.19).

(i) For any t ≥ 0, the map S∞t : H → H is differentiable with respect to the H−1–norm in

the sense given below. Its derivative DS∞t (f) : H → H can be given as the weak solution

vt := DS∞t (f)(f̃ − f) ∈ H to the linearized filtration equation

(2.40) ∂tvt = ∆ (σ′(S∞t f)vt) ,

such that v0 = f̃ − f at time t = 0. Differentiability holds in the sense that for each

integer k > (d+ 2)/2 and

θ = θ(k) =
2k − d− 2

2k + 2
,

there exists a constant C < +∞ such that

‖S∞t f̃ − S∞t f‖H−1 ≤ ‖f̃ − f‖H−1 ,

‖S∞t f̃ − S∞t f −DS∞t (f)(f̃ − f)‖H−1 ≤ C max{Λ(f̃),Λ(f)}‖f̃ − f‖1+θ
H−1 ,

62



2.4. Hydrodynamic limit for zero range processes

for all f̃ , f ∈ Hk(Td) such that
∫
Td f̃(u)du =

∫
Td f(u)du. The factor Λ(f) is given by

(2.41) Λ(f) = 1 + ‖f‖L∞
(
1 + ‖Dkf‖L2 + ‖f‖2k2

L∞‖∇f‖2k2+k
L2

) d+4
2k+2

for all f ∈ Hk(Td).

(ii) Furthermore S∞t : H → H satisfies the continuity estimates

‖S∞t f − f‖H−1 ≤ C‖f‖L2

√
t and ‖S∞t f − f‖H−1 ≤ C‖∇f‖L2t

for all f ∈ H and t ≥ 0.

(iii) For any t ≥ 0, the map T∞t Ψ : H → R is differentiable with respect to the H−1–norm

in the sense detailed below and it holds that

(2.42) D (T∞t Ψ) (f) = F ′ (〈S∞t f, ϕ〉L2)DS∞t (f)∗ϕ ∈ H1(Td)

for all f ∈ H. The function wt := DS∞t (f)∗ϕ ∈ H is given as the weak solution of

(2.43) ∂twt = σ′(S∞t f)∆wt,

such that w0 = ϕ. We have the estimates

|T∞t Ψ(f̃)− T∞t Ψ(f)| ≤ ‖F ′‖L∞‖ϕ‖H1‖f̃ − f‖H−1 and

|T∞t Ψ(f̃)− T∞t Ψ(f)−DT∞t Ψ(f)(f̃ − f)|

≤ 1

2
‖F ′‖C1‖ϕ‖2

H1‖f̃ − f‖2
H−1 + C max{Λ(f̃),Λ(f)}‖F ′‖L∞‖ϕ‖H1‖f̃ − f‖1+θ

H−1

for all f̃ , f ∈ Hk(Td) such that
∫
Td f̃(u)du =

∫
Td f(u)du, where Λ(·) denotes the same

function as in (i).

(iv) Furthermore, it holds that DS∞t (f)∗ϕ ∈ L∞(0,∞;H1(Td)) ∩ L2(0,∞;H2(Td)) with

uniform bounds

‖∇DS∞t (f)∗ϕ‖L2 ≤ ‖∇ϕ‖L2 , and

∫ t

0

‖∆DS∞s (f)∗ϕ‖2
L2 ds ≤ C‖∇ϕ‖2

L2

for all ϕ ∈ H1(Td), f ∈ H, and t ≥ 0.

Proof. (i) The filtration equation (2.3) yields

d

dt
‖f̃t − ft‖2

H−1 = −2

∫
(σ(f̃t)− σ(ft))(f̃t − ft) du ≤ 0

because σ is monotonous. This contraction property in weak measure distance is key to

most stability estimates.
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Let now additionally vt denote the solution to (2.40). The respective equations for ft, f̃t,

and vt yield

d

dt
‖f̃t − ft − vt‖2

H−1 = −2

∫
(σ(f̃t)− σ(ft)− σ′(ft)vt)(f̃t − ft − vt) du.

The mean value theorem implies that the right hand side is bounded by

−2

∫ (
σ′(ft)(f̃t − ft − vt)2 +

1

2
σ′′(ξ)(f̃t − ft)2(f̃t − ft − vt)

)
du

for some ξ(u) (measurable in u) in the interval between ft(u) and f̃t(u). Therefore the

bound (2.24) on σ′ yields that

d

dt
‖f̃t − ft − vt‖2

H−1 ≤ −c‖f̃t − ft − vt‖2
L2 −

∫
σ′′(ξ)(f̃t − ft)2(f̃t − ft − vt) du

for a positive constant c > 0. Now, Lemma 2.4.1 yields |σ′′(ρ)| ≤ C(1+ρ). Hence Young’s

inequality yields a bound

(2.44)
d

dt
‖f̃t − ft − vt‖2

H−1

≤ − c
2
‖f̃t − ft − vt‖2

L2 − C
(
1 + ‖f̃t‖2

L∞ + ‖ft‖2
L∞

) ∫
Td

(f̃t − ft)4 du.

Now the Cauchy-Schwarz inequality in Fourier space and the standard Gagliardo-Nirenberg-

Sobolev inequality yield

‖f‖L2 ≤ C‖f‖
1

1+k

Hk ‖f‖
k
k+1

H−1

‖f‖L4 ≤ C‖f‖
d
4k

Hk‖f‖
1− d

4k

L2

for all f ∈ Hk. Taken together these inequalities yield

‖f‖4
L4 ≤ C‖f‖

d+4
k+1

Hk ‖f‖
4k−d
1+k

H−1 .

Since d = 1, Lemma 2.4.13 implies

d

dt
‖f̃t − ft − vt‖2

H−1 ≤ C max{Λ(f̃),Λ(f)}‖f̃t − ft‖
4k−d
1+k

H−1 ,

where Λ(·) is given in (2.41). Thus the H−1–contractivity yields the desired result.

(ii) Recall that we set ft = S∞t f . Since
∫
Td ft(u)du =

∫
Td f(u)du, it holds that

d

dt
‖ft − f‖2

H−1 = −2

∫
Td
σ(ft)(ft − f) du.
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2.4. Hydrodynamic limit for zero range processes

Adding and subtracting σ(f) from σ(ft) yields

(2.45)
d

dt
‖ft − f‖2

H−1 = −2

∫
Td

(σ(ft)− σ(f))(ft − f) du− 2

∫
Td
σ(f)(ft − f) du.

We apply ellipticity of σ on the first summand and the Cauchy-Schwarz inequality on the

second summand to obtain that

d

dt
‖ft − f‖2

H−1 ≤ −c‖ft − f‖2
L2 + C‖f‖L2‖ft − f‖L2 .

for some finite constants c, C > 0. Young’s inequality yields

d

dt
‖ft − f‖2

H−1 ≤ C‖f‖2
L2

which yields

‖ft − f‖2
H−1 ≤ C‖f‖2

L2t.

On the other hand, estimate (2.45) yields

d

dt
‖ft − f‖2

H−1 ≤ −c‖ft − f‖2
L2 + C‖∇f‖L2‖ft − f‖H−1 .

by interpolation between H1 and H−1, see (2.27). Here we have used again that∫
Td
ft(u) du =

∫
Td
f(u) du.

Hence it holds that
d

dt
‖ft − f‖H−1 ≤ C‖∇f‖L2 ,

which yields the desired estimate by integration over t.

(iii) First we want to show that DS∞t (f)∗ is the adjoint in L2(Td) of the operator DS∞t (f).

This is standard except for the time-dependence through ft of the coefficients of the

linearized equation (2.40). Let us denote for all 0 ≤ s < t the propagator from time

s to time t of the evolution equation (2.40) with time-dependent coefficients by S(t, s).

Likewise the propagator from s to t of equation (2.43) is denoted by S(t, s)∗. To be

precise, we denote by S(·, s)f the solution to equation (2.40) such that at time s the

solution equals f and similarly for S(t, s)∗. We show that S(t, 0)∗ is indeed the adjoint of

S(t, 0). For all 0 ≤ s < t, it holds that

d

ds

〈
S(t, s)(f̃ − f), S(s, 0)∗ϕ

〉
L2

=
〈
S(t, s)(f̃ − f), σ′(fs)∆[S(s, 0)∗ϕ]

〉
L2 −

〈
∆
(
σ′(fs)[S(t, s)(f̃ − f)]

)
, S(s, 0)∗ϕ

〉
L2

= 0.
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Integrating with respect to s yields

(2.46)
〈
DS∞t (f)(f̃ − f), ϕ

〉
L2 =

〈
f̃ − f,DS∞t (f)∗ϕ

〉
L2 .

The differentiability estimates are a consequence of the chain rule and (i) as follows.

Lipschitz continuity of F and (i) yield the first estimate. Using equation (2.46), the

second term to be estimated can be rewritten as∣∣∣F(〈S∞t f̃ , ϕ〉)− F(〈S∞t f, ϕ〉)− F ′(〈S∞t f, ϕ〉)〈DS∞t (f)(f̃ − f), ϕ〉
∣∣∣.

We bound this term by the sum of the following two terms:∣∣∣F ′(〈S∞t f, ϕ〉)〈S∞t f̃ − S∞t f −DS∞t (f)(f̃ − f), ϕ
〉∣∣∣

and ∣∣∣F(〈S∞t f̃ , ϕ〉)− F(〈S∞t f, ϕ〉)− F ′(〈S∞t f, ϕ〉)〈S∞t f̃ − S∞t f, ϕ〉∣∣∣.
The results of part (i) yield a bound on the first term by

C‖F ′‖L∞‖ϕ‖H1 max{Λ(f̃),Λ(f)}‖f̃ − f‖1+θ
H−1 ,

whereas the second term is bounded by

1

2
‖F ′‖C1

∣∣〈S∞t f̃ − S∞t f, ϕ〉∣∣2 ≤ 1

2
‖F ′‖C1‖ϕ‖2

H1‖f̃ − f‖2
H−1 .

(iv) Equation (2.43) yields

(2.47)
d

dt

∫
Td
|∇wt(u)|2 du = −2

∫
Td
σ′(S∞t f(u))|∆wt(u)|2 du ≤ 0,

since σ′ > 0. Since furthermore ∇w0(u) = ∇ϕ(u), integration of this equation yields

2

∫ ∞
0

∫
Td
σ′(S∞t f(u))|∆wt(u)|2 dudt ≤ ‖∇ϕ‖2

L2 ,

uniformly and f and ϕ. Thus we obtain that∫ ∞
0

∫
Td
|∆wt(u)|2 dudt ≤ C‖∇ϕ‖2

L2

using the uniform ellipticity of σ′ again, see (2.24).

Next provide some large–time decay estimates which will enable us to provide uniform in

time bounds in the hydrodynamic limit.
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2.4. Hydrodynamic limit for zero range processes

Lemma 2.4.15 (Spectral gap). Let F ∈ C2
b (R) and ϕ ∈ C3(Td) and define Ψ as in

(2.19). Using the notation of the stability lemma 2.4.14, let f̃ , f ∈ H. Furthermore let

f∞ =
∫
f(u)du denote the spatial average of f and set

(2.48) T1(f̃ , f ; Ψ) := Ψ(f̃)−Ψ(f)−DΨ(f)(f̃ − f).

(This is the difference of the function Ψ evaluated at f̃ ∈ H and its first Taylor polynomial

around f ∈ H.) Then there exist finite, positive constants c, C such that

‖S∞t f − f∞‖
p
Lp ≤ Ce−ct‖f − f∞‖pLp ,

‖S∞t f − f∞‖H−1 ≤ Ce−ct‖f − f∞‖H−1 ,

‖T1(f̃ , f ;S∞t )‖2
H−1 ≤ Ce−ct

(
‖f − f∞‖4

L4 + ‖f̃ − f̃∞‖4
L4

)
, and

‖∇DS∞t (f)∗ϕ‖L2 ≤ Ce−ct‖∇ϕ‖L2

for all 2 ≤ p < +∞. Furthermore it holds that

|T1(f̃ , f ;T∞t Ψ)| ≤ Ce−ct
(
‖f − f∞‖2

L4 + ‖f̃ − f̃∞‖2
L4

)
where Ψ is defined in (2.19) with F ∈ C2

b (R) and ϕ ∈ C2(Td).

Proof. We will use the notation of the stability lemma 2.4.14, letting

ft := S∞t f and f̃t := S∞t f̃

denote two solutions of the filtration equation and

vt := DS∞t (f)(f̃ − f) and wt := DS∞t (f)∗ϕ

the linearization around ft as well as its L2-dual.

First of all, conservation of mass yields
∫
ft(u) du = f∞. Set f̄t := ft − f∞, which solves

the equation

∂tf̄t = ∇ ·
(
σ′(f̄t + f∞)∇f̄t

)
.

Note that in contrast to ft, the function f̄t is no longer non-negative everywhere. The

equation for f̄t yields

d

dt

∫
Td
|f̄t|p du = p

∫
Td
|f̄t|p−2f̄t∇ ·

(
σ′(f̄t + f∞)∇f̄t

)
du.

Now integration by parts yields

d

dt

∫
Td
|f̄t|p du = −p(p− 1)

∫
Td
σ′(f̄t + f∞)|f̄t|p−2|∇f̄t|2 du.
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Since

|f̄t|p−2|∇f̄t|2 =
∣∣|f̄t|p/2−1∇f̄t

∣∣2 =
4

p2

∣∣∇|f̄t|p/2∣∣2,
it holds that

d

dt

∫
Td
|f̄t|p du = −4(p− 1)

p

∫
Td
σ′(f̄t + f∞)

∣∣∇|f̄t|p/2∣∣2 du ≤ −c ∫
Td

∣∣∇|f̄t|p/2∣∣2 du.
Now Poincaré’s inequality in the L2–norm applied to |f̄t|p/2 yields

d

dt

∫
Td
|f̄t|p du ≤ −c

∫
Td
|f̄t|p du,

which yields the decay of the Lp–norms of f̄t = ft − f∞. Note that c, C can be taken to

be independent of the choice of p ≥ 2.

The decay of the H−1–norm follows from

d

dt
‖ft − f∞‖2

H−1 = −2

∫
Td

(σ(ft(u))− σ(f∞))(ft(u)− f∞) du ≤ −c‖ft − f∞‖2
H−1

by uniform ellipticity and (2.27).

The third statement follows directly from equation (2.44) and the exponential decay of

the L4–norm.

To prove the fourth statement, recall equation (2.47). The lower bound on σ′ yields

d

dt

∫
Td
|∇wt(u)|2 du ≤ −c

∫
Td
|∆wt(u)|2 du.

Applying once again Poincaré’s inequality yields

d

dt

∫
Td
|∇wt(u)|2 du ≤ −c

∫
Td
|∇wt(u)|2 du,

and hence exponential decay. Consequently, the proof of Lemma 2.4.14 yields

|T1(f̃ , f ;T∞t Ψ)| ≤ Ce−ct
(
‖f − f∞‖2

L4 + ‖f̃ − f̃∞‖2
L4 + ‖f − f∞‖2

H−1 + ‖f̃ − f̃∞‖2
H−1

)
,

and the result follows since the H−1(Td)–norm is bounded by the L4(Td)–norm.

Many of the differentiability properties we have just shown fit in the framework of dif-

ferentiable functions on Cb(H) whose derivative is bounded uniformly with respect to a

weight function. The following definition formalizes this. It is an adaptation of Definition

2.10 in [67].

Definition 2.4.16. Let H̃1 and H̃2 be any two metric spaces and consider two Banach

spaces (H1, ‖ · ‖H1), (H2, ‖ · ‖H2) such that H̃i− H̃i ⊂ Hi, i = 1, 2. In general the metric of
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2.4. Hydrodynamic limit for zero range processes

the subspace H̃i is stronger than the norm of Hi. We can understand Hi to be a tangent

space of H̃i. Let

Λ : H̃1 → [0,+∞)

be a weight function. Abusing notation, we also set

Λ(f̃ , f) := max{Λ(f̃),Λ(f)}.

Then we denote by C1,θ
Λ (H̃1, H1; H̃2, H2), the space of continuously differentiable function

from H̃1 to H̃2 whose derivative approximates the original function to the order 1 + θ and

is uniformly bounded with respect to the weight function Λ. Specifically, a function

Φ : H̃1 → H̃2 is in C1,θ
Λ (H̃1, H1; H̃2, H2)

if and only if there exists a continuous function

DΦ : H̃1 → L(H1, H2)

and finite constants C1, C2, and C3, such that it holds

‖Φ(f̃)− Φ(f)‖H2 ≤ C1Λ(f̃ , f)‖f̃ − f‖H1(2.49)

‖DΦ(f)(f̃ − f)‖H2 ≤ C2Λ(f̃ , f)‖f̃ − f‖H1 and(2.50)

‖Φ(f̃)− Φ(f)−DΦ(f)(f̃ − f)‖H2 ≤ C3Λ(f̃ , f)‖f̃ − f‖1+θ
H1

(2.51)

for all f̃ , f ∈ H̃1. Let Copt
i , i = 1, 2, 3, be the optimal constant in each of (2.49)-(2.51),

i.e. the infimum over all Ci, i = 1, 2, 3, such that each of the inequalities holds. Then we

set

[Φ]C0,1
Λ

:= Copt
1 , [Φ]C1,0

Λ
:= Copt

2 , and [Φ]C1,θ
Λ

:= Copt
3 ,

which are seminorms associated to C1,θ
Λ (H̃1, H1; H̃2, H2).

Note that the proof of the hydrodynamic limit can be understood without using the

above notation, since in principle all we need to do is keep track of various differences.

We include it to provide context and simplify notation, especially in order to distinguish

clearly between stability and consistency estimates. Let us translate the stability result

(i) and (ii) of Lemma 2.4.14 to the language of Definition 2.4.16.

Corollary 2.4.17 (Stability in terms of differentiability). Let R ≥ 0, k ∈ N and denote

HR :=
{
f ∈ Hk(Td)|

∫
Td f(u) du = R

}
.

Furthermore, let F ∈ C2
b (R) and ϕ ∈ C2(Td), and define Ψ as in equation (2.19). Then

there exists a constant C = C(F, ϕ) independent of t and R such that the following holds.
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(i) For any t ≥ 0 and k > (d+ 2)/2, it holds that

S∞t ∈ C
1,θ
Λ (HR, H

−1(Td);HR, H
−1(Td)) and [S∞t ]C1,θ

Λ
≤ C

in the sense of Definition 2.4.16, where

θ =
2k − d− 2

2k + 2
and Λ(f) = 1 + ‖f‖L∞

(
1 + ‖Dkf‖L2 + ‖f‖2k2

L∞‖∇f‖2k2+k
L2

) d+4
2k+2 .

(ii) For any t ≥ 0, it holds that

T∞t Ψ ∈ C1,θ
Λ (HR, H

−1(Td);R,R) and [T∞t Ψ]C1,θ
Λ
≤ C

where θ and Λ are given as above.

Proof. Again, part (ii) is a direct consequence of the corresponding estimates on part (i)

and the regularity of F ∈ C2
b (R) and ϕ ∈ C2(Td). To show (i), just let H̃1 = H̃2 = HR

and H1 = H2 = H−1(Td). Note that since all functions in HR have the same integral over

Td, it holds that indeed

HR −HR ⊂ H−1(Td).

The function S∞t maps HR to HR according to Lemma 2.4.13. Note that the (distribu-

tional) solution

vt = DS∞t (f)(f̃ − f)

to (2.40) also exists for initial data f̃ − f ∈ H−1(Td) and satisfies the bounds given in

Lemma 2.4.14. Hence [Ψ]C0,1
Λ

and [Ψ]C1,θ
Λ

of Definition 2.4.16 are indeed finite. We just

need to estimate [Ψ]C1,0
Λ

. Calculations similar to the proof of Lemma 2.4.14 yield

d

dt
‖vt‖2

H−1 = −2

∫
Td
vtσ
′(ft)vt du ≤ 0,

if the initial datum satisfies f̃ − f ∈ L2(Td). This shows

‖DS∞t (f)(f̃ − f)‖H−1 ≤ ‖f̃ − f‖H−1 ,

if f̃ − f ∈ L2(Td), and by approximation in general. In particular, it holds that

DS∞t (f) ∈ L(H−1(Td), H−1(Td)).

It remains to prove the continuity of DS∞t (f) ∈ L(H−1(Td), H−1(Td)) with respect to

f ∈ HR (even though we shall not make use of this property in this thesis). This is easiest

to see in the dual setting. Let f̃ , f ∈ HR. As in the stability result, Lemma 2.4.14, we
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2.4. Hydrodynamic limit for zero range processes

set wt := DS∞t (f)∗ϕ and we also set w̃t := DS∞t (f̃)∗ϕ. Then the continuity estimate

∥∥DS∞t (f)−DS∞t (f̃)
∥∥
L(H−1,H−1)

→ 0 as ‖f̃ − f‖Hk → 0

corresponds by duality to showing that

(2.52) ‖∇(w̃t − wt)‖L2 ≤ ω(‖f̃ − f‖Hk)‖∇ϕ‖L2

for some modulus of continuity ω, i.e. some function ω : [0,∞) → [0,∞) such that

ω(τ) → 0 as τ → 0. Note that we may allow ω to depend on ‖f̃‖Hk , ‖f‖Hk , and t. The

equations for w̃t and wt yield

d

dt

∫
Td
|∇(w̃t − wt)|2 du = −2

∫
Td

∆(w̃t − wt)
(
σ′(f̃t)∆w̃t − σ′(ft)∆wt

)
du.

Hence it holds that

d

dt

∫
Td
|∇(w̃t − wt)|2 du = −2

∫
Td
|∆(w̃t − wt)|2σ′(f̃t) du

− 2

∫
Td

∆(w̃t − wt)
(
σ′(f̃t)− σ′(ft)

)
∆wt du.

Young’s inequality yields a bound on the right hand side by

(2.53) C
∥∥(σ′(f̃t)− σ′(ft))∆wt

∥∥2

L2 .

The mean value theorem and Lemma 2.4.1 yield

∣∣σ′(f̃t)− σ′(ft)∣∣ ≤ C (‖f̃t‖L∞ + ‖ft‖L∞)‖f̃t − ft‖L∞ .

By the maximum principle and since k > (d + 2)/2 yields an embedding Hk(Td) ↪→
L∞(Td), we can therefore bound (2.53) by

C
(
‖f̃‖Hk , ‖f‖Hk

)
‖f̃t − ft‖L∞‖∆wt‖2

L2 ,

where C(‖f̃‖Hk , ‖f‖Hk) denotes some constant depending on its arguments, but not on t

or wt. Again since k > (d+2)/2, there exists a bounded embedding Hk−1(Td) ↪→ L∞(Td)
and therefore

‖f̃t − ft‖L∞ ≤ C‖f̃t − ft‖Hk−1 .

Hence interpolation yields

‖f̃t − ft‖Hk−1 ≤ ‖f̃t − ft‖
k
k+1

Hk ‖f̃t − ft‖
1
k+1

H−1
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Since Lemma 2.4.13 yields uniform-in-time bounds on the Hk–norms of f̃ and f , the

contractivity of S∞t with respect to the H−1–norm yields

‖f̃t − ft‖
k
k+1

Hk ‖f̃t − ft‖
1
k+1

H−1 ≤ C
(
‖f̃‖Hk , ‖f‖Hk

)
‖f̃ − f‖

1
k+1

H−1 ,

for some (possibly different) constant C(‖f̃‖Hk , ‖f‖Hk). In summary, we have proved that

d

dt
‖∇(w̃t − wt)‖2

L2 ≤ C
(
‖f̃‖Hk , ‖f‖Hk

)
‖f̃ − f‖

1
k+1

H−1‖∆wt‖2
L2 .

Since w̃0 = ϕ = w0, integration with respect to time yields

‖∇(w̃t − wt)‖2
L2 ≤ C

(
‖f̃‖Hk , ‖f‖Hk

)
‖f̃ − f‖

1
k+1

H−1

∫ t

0

‖∆ws‖2
L2 ds.

Lemma 2.4.14 (iv) yields

‖∇(w̃t − wt)‖2
L2 ≤ C

(
‖f̃‖Hk , ‖f‖Hk

)
‖f̃ − f‖

1
k+1

H−1‖∇ϕ‖2
L2 ,

which shows the desired estimate (2.52).

Now let us identify an expression for the time-derivative dT∞t Ψ(f)/dt.

Lemma 2.4.18. Let F ∈ C1
b (R) and ϕ ∈ C2(Td), and define Ψ as in equation (2.19).

Furthermore let S∞t f solve the filtration equation with initial datum f ∈ Hk(Td) with

k > (d+ 2)/2. Then we obtain the following characterizations of the derivative in t of the

limit evolution.

(i) It holds that
d

dt
S∞t f = DS∞t (f)(∆σ(f)).

(ii) We can lift this result to the level of observables. Recalling the definition

G∞T∞t Ψ(f) :=
d

dt
T∞t Ψ(f),

the result (i) translates to T∞t as

G∞T∞t Ψ(f) = F ′ (〈S∞t f, ϕ〉L2) 〈∆σ(f), DS∞t (f)∗ϕ〉L2 =: T∞t G
∞Ψ(f).

for all f ∈ Hk(Td) and all t ≥ 0, where Ψ is given in (2.19).

Proof. (i) Consider

I :=
1

s

(
S∞t+sf − S∞t f

)
−DS∞t (f)(∆σ(f))
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2.4. Hydrodynamic limit for zero range processes

The semigroup property of S∞t (a direct consequence of uniqueness of solutions to the

filtration equation (2.3)) yields

I =
1

s

(
S∞t S

∞
s f − S∞t f

)
−DS∞t (f)(∆σ(f)).

Therefore, the stability result of Lemma 2.4.14 yields

(2.54) ‖I‖H−1 =

∥∥∥∥1

s

(
DS∞t (f)(S∞s f − f)

)
−DS∞t (f)(∆σ(f))

∥∥∥∥
H−1

+ O
(
s−1Λ(f, S∞s f)‖S∞s f − f‖1+θ

H−1

)
,

where θ = (2k−d−2)/(2k+2) > 0. The maximum principle and the improved regularity

of Lemma 2.4.13 yield that Λ(f, S∞s f) ≤ C(f) independent of s. Furthermore Lemma

2.4.14 (ii) yields

‖S∞s f − f‖H−1 ≤ C‖∇f‖L2s,

and hence

O
(
s−1Λ(f, S∞s f)‖S∞s f − f‖1+θ

H−1

))
= O(sθ)

for fixed f ∈ Hk(Td). Since DS∞t (f) ∈ L(H−1(Td), H−1(Td)) is a contraction, the other

summand on the right hand side of (2.54) equals∥∥∥∥DS∞t (f)

(
S∞s f − f

s

)
−DS∞t (f)(∆σ(f))

∥∥∥∥
H−1

≤
∥∥∥∥S∞s f − fs

−∆σ(f)

∥∥∥∥
H−1

,

where we have used that∫
Td

(
S∞s f(u)− f(u)

)
du = 0 =

∫
Td

∆σ(f(u)) du.

The right hand side vanishes since ft is a solution to equation (2.3).

(ii) This part is a direct consequence of (i) and the chain rule.

For the statement of the consistency result, we will need a replacement lemma, which in

the spirit of an ergodic theorem (or a law of large numbers) allows us to replace locally

the spatial average of a function of the number of particles over a small box with its

expectation value with respect to the local density in this box. Since we are interested

in obtaining qualitative results, we will prove a quantitative L2–version with an explicit

upper bound on the rate of convergence. The proof is deferred until Section 2.6.

Lemma 2.4.19 (A quantitative replacement lemma). Assuming that the initial data

possess bounded relative entropy and are bounded with respect to some Gibbs measure, i.e.

HN
(
µN0 |νNρ

)
≤ CNd, and µN0 ≤ νNρ
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for some ρ > 0. Then it holds that(
1

T

∫ T

0

∫
Td

〈
µNt ,

∣∣(g ◦ η)(ε)(uN)− σ(η(ε)(uN))
∣∣2〉 dudt

)1/2

≤ rRL(%, l, ε, N),

where we recall definition (2.34). The rate function rRL satisfies

rRL(%, l, ε, N) ≤ C
(

(N−
1
2 l

1
2 + ε

1
2 l

1
4 )%l

d
4 + %l−

d
4 + %−

1
4 +

l

εN

)
for all N ∈ N, 1/N < ε < 1, l < N , and % > 0.

Now we are ready to state the consistency result.

Lemma 2.4.20 (Consistency). Let F ∈ C2
b (R) and ϕ ∈ C3(Td), and define Ψ as in

equation (2.19). Furthermore assume that the initial data µN0 of the ZRP have bounded

relative entropy and are bounded relative to some Gibbs measure

HN
(
µN0 |νNρ

)
≤ CNd and µN0 ≤ νNρ

for all N ∈ N. Then it holds that∣∣∣∣∫ t

0

〈
µNs ,

(
GNπN − πNG∞

)
T∞t−sΨ

〉
ds

∣∣∣∣ ≤ rC(T, %, l, ε, N)

for all 0 ≤ t < +∞, T > 0, N ∈ N, and 1/N < ε < 1. The consistency bound

rC(T, %, l, ε, N) is given explicitly by the function

(2.55) C
(
ε−

dθ
2 N1−θ(d+1)T sup

0≤s≤t
sup
x∼y

〈
µNt−s,

[
T∞s Ψ

]
C1+θΛ(αN,εηx,y , α

N,ε
η )N−d

∑
z η(z)

〉
+ ε−(3+ d

2
) sup
η∈XN

∫ ∞
T

‖∇(DS∞s (αN,εη )∗ϕ)‖L2(Td) ds

+N2+d sup
t≥T

∫ t

T

〈
µNt−s, sup

x∼y

∣∣T1(αN,εηx,y , α
N,ε
η ;T∞s Ψ)

∣∣〉 ds
+
∥∥∆(DS∞t (αN,εη )∗ϕ)

∥∥
L∞η L

2
t,u

√
T
(
rRL(%, l, ε, N) + ε−(2+ d

2
)N−2

))
.

for any θ = θ(k) and k > 0. Here θ, Λ, and [T∞s Ψ]C1+θ
Λ

are given in Corollary 2.4.17 and

rRL(%, l, ε, N) stems from Lemma 2.4.19. The notation T1 is explained in Lemma 2.4.15

and the function DS∞s (αN,εη )∗ϕ is given in Lemma 2.4.14.

Note that in contrast to Section 2.3, the form (2.19) of Ψ is not conserved under the

application T∞t , hence we need to keep track of T∞t−s. This also explains why we needed

to derive the above fairly complex stability results.

74



2.4. Hydrodynamic limit for zero range processes

Proof of Lemma 2.4.20. Let us first assume that t ≤ T . Denote the quantity to be

estimated by

I :=

∣∣∣∣∣
∫ t

0

〈
µNt−s,

(
GNπN − πNG∞

)
T∞s Ψ

〉
ds

∣∣∣∣∣.
Inserting the expressions for the generators GN and G∞, cf. Lemma 2.4.18, we obtain

that

I =

∣∣∣∣∣
∫ t

0

〈
µNt−s, N

2
∑
x∼y

g(η(x))
[
T∞s Ψ(αN,εηx,y)− T∞s Ψ(αN,εη )

]
− 〈DT∞s Ψ(αN,εη ),∆σ(αN,εη )〉L2

〉
ds

∣∣∣∣∣,
where DT∞s Ψ is defined in equation (2.42). Linearizing T∞s Ψ around αN,εη yields

I ≤ R1 +

∣∣∣∣∣
∫ t

0

〈
µNt−s, N

2
∑
x∼y

g(η(x))DT∞s Ψ(αN,εη )(αN,εηx,y − αN,εη )

− 〈DT∞s Ψ(αN,εη ),∆σ(αN,εη )〉L2

〉
ds

∣∣∣∣∣
with an error term

(2.56) R1 =

∫ t

0

〈
µNt−s, N

2
∑
x∼y

g(η(x))
∣∣∣T∞s Ψ(αN,εηx,y)− T∞s Ψ(αN,εη )

−DT∞s Ψ(αN,εη )(αN,εηx,y − αN,εη )
∣∣∣〉ds.

Substituting the definition (2.29) of the empirical measure into the right hand side then

yields

I ≤ R1 +

∣∣∣∣∣
∫ t

0

〈
µNt−s, N

2−d
∑
x∼y

g(η(x))DT∞s Ψ(αN,εη )(δ
(ε)
y
N
− δ(ε)

x
N

)

− 〈DT∞s Ψ(αN,εη ),∆σ(αN,εη )〉L2

〉
ds

∣∣∣∣∣.
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The explicit expression for DT∞s Ψ, see (2.42), then yields

I ≤ R1

+

∣∣∣∣∣
∫ t

0

〈
µNt−s, F

′
(〈
S∞s α

N,ε
η , ϕ

〉
L2

)(
N−d

∑
x

g(η(x))
〈
DS∞s (αN,εη )∗ϕ,∆Nδ

(ε)
x
N

〉
L2

−
〈
DS∞s (αN,εη )∗ϕ,∆σ(αN,εη )

〉
L2

)〉
ds

∣∣∣∣∣.
Next, up to an error R2, we replace the discrete Laplacian ∆N by its continuous version

∆ and, after an integration by parts, obtain that

I ≤ R1 + R2 +

∣∣∣∣∣
∫ t

0

〈
µNt−s, F

′(〈S∞s αN,εη , ϕ〉L2

) ∫
Td

(
N−d

∑
x

g(η(x))δ
(ε)
x
N

(u)

− σ(αN,εη (u))
)

∆
(
DS∞s (αN,εη )∗ϕ

)
(u) du

〉
ds

∣∣∣∣∣.
The explicit expression for the error term is

(2.57) R2 =

∣∣∣∣∣
∫ t

0

〈
µNt−s, F

′(〈S∞s αN,εη , ϕ〉L2

)
[
N−d

∑
x

g(η(x))〈DS∞s (αN,εη )∗ϕ,∆Nδ
(ε)
x
N
−∆δ

(ε)
x
N
〉L2

]〉
ds

∣∣∣∣∣
Recall that DS∞s (αN,εη )∗ϕ ∈ L2(0,∞;H2(Td)). Thus we apply Hölder’s inequality to

obtain

I ≤ R1 + R2 + ‖F ′‖L∞×(∫ t

0

∫
Td

〈
µNt−s,

( 1

Nd

∑
x

g(η(x))δ
(ε)
x
N

(u)− σ(αN,εη (u))
)2〉

duds

)1/2

×
∥∥∆u(DS

∞
s (αN,εη )∗ϕ)

∥∥
L∞η L

2
s,u
.

Since t ≤ T , Lemma 2.4.19 yields

I ≤ R1 + R2 +
√
T
∥∥∆u(DS

∞
s (αN,εη )∗ϕ)

∥∥
L∞η L

2
s,u
rRL(%, l, ε, N).

It remains to find a bound on R1 and R2 to finish the proof of the consistency result.

Since ∫
Td
αN,εη (u) du =

∫
Td
αN,εηx,y(u) du,
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2.4. Hydrodynamic limit for zero range processes

the first error term (2.56) is bounded from above by

R1 ≤ N2+dT sup
t∈[0,T ]

sup
s∈[0,t]

〈µNt−s,
[
T∞s Ψ

]
C1,θ

Λ
Λ(αN,εηx,y , α

N,ε
η )‖αN,εηx,y − αN,εη ‖1+θ

H−1〉,

where we have used the notation of Definition 2.4.16. To calculate the difference ‖αN,εηx,y −
αN,εη ‖1+θ

H−1 , we test with a function ω ∈ H1(Td). Thus we obtain that

〈ω, αN,εηx,y − αN,εη 〉L2 =

∫
ω(u)

1

Nd

(
δ

(ε)
y
N
− δ(ε)

x
N

)
du

=

∫
1

Nd

(
ω(u+

y

N
)− ω(u+

x

N
)
)
δ

(ε)
0 du

≤ C

Nd+1
‖∇ω‖L2‖δ(ε)

0 ‖L2 ,

and hence

‖αN,εηx,y − αN,εη ‖H−1 ≤ Cε−d/2N−(d+1).

The second error term (2.57) is bounded from above by

R2 ≤ g∗‖F ′‖L∞
(∫ t

0

〈
µNt−s,

∑
x∈TdN

η(x)

Nd

〉2

ds

) 1
2

× ‖∆DS∞s (αN,εη )∗ϕ‖L∞η L2
s,u
‖(−∆)−1(∆N −∆)δ

(ε)
0 ‖L2

u
.

Now it holds that

(2.58) ‖(−∆)−1(∆N −∆)δ
(ε)
0 ‖L2 ≤ CN−2‖D2δ

(ε)
0 ‖L2 ≤ C

N2ε2+d/2
.

Hence we obtain that

R2 ≤ C
√
T‖∆DS∞s (αN,εη )∗ϕ‖L∞η L2

s,u
N−2ε−(2+d/2),

which completes the proof of Lemma 2.4.20 if t ≤ T . If t > T , all bounds remain valid

for ∣∣∣∣∣
∫ T

0

〈
µNt−s,

(
GNπN − πNG∞

)
T∞s Ψ

〉
ds

∣∣∣∣∣,
and it remains to estimate

II :=

∣∣∣∣∣
∫ t

T

〈
µNt−s,

(
GNπN − πNG∞

)
T∞s Ψ

〉
ds

∣∣∣∣∣.
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Quantitative hydrodynamic limits

Again we will have three contributions to this quantity. The first one equals

R̃1 =

∫ t

T

〈
µNt−s, N

2
∑
x∼y

g(η(x))
∣∣∣T∞t Ψ(αN,εηx,y)− T∞t Ψ(αN,εη )

−DT∞t Ψ(αN,εη )(αN,εηx,y − αN,εη )
∣∣∣〉ds.

It holds that

R̃1 ≤ CN2+d sup
t≥T

∫ t

T

〈
µNt−s, sup

x∼y

∣∣T1(αN,εηx,y , α
N,ε
η ;T∞s Ψ)

∣∣N−d∑
z

η(z)
〉
ds,

where the second supremum is taken over all neighbours x and y in TdN . The second

contribution to II is given by

R̃2 ≤

∣∣∣∣∣
∫ t

T

〈
µNt−s, F

′(〈S∞s αN,εη , ϕ〉L2)

(
N−d

∑
x

g(η(x))〈DS∞s (αN,εη )∗ϕ,∆Nδ
(ε)
x
N
−∆δ

(ε)
x
N
〉L2

)〉
ds

∣∣∣∣∣.
Since the mass is conserved and bounded, it follows that

R̃2 ≤ C‖F ′‖L∞‖(∆−∆N)δ
(ε)
0 ‖H−1 sup

η∈XN

∫ ∞
T

‖∇DS∞s (αN,εη )∗ϕ‖L2 ds

Similarly to (2.58), we obtain

‖(∆−∆N)δ
(ε)
0 ‖H−1 ≤ CN−2‖D3δ

(ε)
0 ‖L2 ≤ Cε−(3+d/2)N−2.

Thus we have shown

R̃2 ≤ Cε−(3+d/2)N−2 sup
η∈XN

∫ ∞
T

‖∇DS∞s (αN,εη )∗ϕ‖L2 ds

Finally, the remaining term is bounded by∣∣∣∣∣
∫ t

T

〈
µNt−s, F

′(〈S∞s αN,εη , ϕ〉L2)

∫
Td
∇
(
N−d

∑
x

g(η(x))δ
(ε)
x
N

(u)

− σ(αN,εη (u))
)
∇
(
DS∞s (αN,εη )∗ϕ

)
(u) du

〉
ds

∣∣∣∣∣.

78



2.4. Hydrodynamic limit for zero range processes

Hölder’s inequality yields a bound by

‖F ′‖L∞
∫ t

T

〈
µNt−s,

∥∥∥∇(N−d∑
x

g(η(x))δ
(ε)
x
N

(u)− σ(αN,εη (u))
)∥∥∥

L2
×

∥∥∥∇(DS∞s (αN,εη )∗ϕ
)∥∥∥

L2

〉
ds.

Since g and σ are uniformly Lipschitz-continuous, the first term is bounded by∥∥∥∇(N−d∑
x

g(η(x))δ
(ε)
x
N
− σ(αN,εη )

)∥∥∥
L2
≤ CN−d

∑
x

η(x)‖∇δ(ε)
x
N
‖L2 .

By the conservation of particles, this term is uniformly bounded by Cε−(1+d/2), which

completes the proof.

Remark 2.4.21. Similarly to the proof of Lemma 2.4.18, where we needed to take the

time-derivative at t = 0 and which can be understood as proving

πNG∞T∞t Ψ = πNT∞t G
∞Ψ = DT∞t Ψ(∆σ(αN,ε)),

the term R1 can be seen as capturing the “commutation relation”

GNπNT∞t Ψ(η) ≈ DT∞t Ψ(GNαN,εη ).

Closer inspection of the proof shows that in order to prove the former relationship between

G∞ and T∞t , we just need θ > 0 in the stability result, Lemma 2.4.14. On the other hand,

we need θ > 1/(d+1) in order to guarantee that the error term R1 coming from the latter

relationship between GN and T∞t vanishes in the limit.

2.4.4 Proof of the hydrodynamic limit

Using the stability and consistency results, we can prove the hydrodynamic limit.

Proof of Theorem 2.4.6. Let us split the left hand side of (2.31) into three separate con-

tributions which we shall call T1 to T3. It holds that∣∣∣〈µNt , F(〈αNη , ϕ〉)〉− F(〈ft, ϕ〉L2

)∣∣∣
≤
∣∣∣〈µNt , F(〈αNη , ϕ〉)〉− F(〈αN,εη , ϕ〉L2

)∣∣∣+
∣∣∣〈µNt , F(〈αN,εη , ϕ〉L2

)〉
− F

(
〈ft, ϕ〉L2

)∣∣∣.
As before, the definitions of Ψ, see (2.19), and the generators TNt and T∞t yield∣∣∣〈µNt , F(〈αN,εη , ϕ〉L2

)〉
− F

(
〈ft, ϕ〉L2

)∣∣∣ =
∣∣∣〈µN0 , TNt πNΨ− T∞t Ψ(f0)

〉∣∣∣.
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Quantitative hydrodynamic limits

If we add and subtract 〈µN0 , πNT∞t Ψ〉 = 〈µN0 , T∞t Ψ(αN,εη )〉, we obtain that the right hand

side is bounded by∣∣∣〈µN0 , TNt πNΨ− πNT∞t Ψ
〉∣∣∣+∣∣∣〈µN0 , T∞t Ψ(αN,εη )− T∞t Ψ

(
f0

)〉∣∣∣
+
∣∣∣〈µNt ,Ψ(αNη )−Ψ

(
αN,εη

)〉∣∣∣
=: T1 + T2 + T3,

where we have written Ψ(αNη ) = F (〈αNη , ϕ〉) in analogy with (2.19), even though αNη is

not in H. As in Section 2.3 it holds that

d

ds

(
TNs π

NT∞t−s(η)
)

= TNs G
NπNT∞t−sΨ(η)− TNs πNG∞T∞t−sΨ(η).

Hence Lemma 2.4.20 yields

T1 ≤
∫ t

0

∣∣〈SNs µN0 , (GNπN − πNG∞)(T∞t−sΨ)(η)〉
∣∣ ds ≤ rC(T, %, l, ε, N),

where rC(T, %, l, ε, N) is given in the consistency lemma 2.4.20 as

C
(
ε−

dθ
2 N1−θ(d+1)T sup

0≤s≤t
sup
x∼y

〈
µNt−s,

[
T∞s Ψ

]
C1+θΛ(αN,εηx,y , α

N,ε
η )N−d

∑
z η(z)

〉
+ ε−(3+ d

2
) sup
η∈XN

∫ ∞
T

‖∇(DS∞s (αN,εη )∗ϕ)‖L2(Td) ds

+N2+d sup
t≥T

∫ t

T

〈
µNt−s, sup

x∼y

∣∣T1(αN,εηx,y , α
N,ε
η ;T∞s Ψ)

∣∣〉 ds
+
∥∥∆(DS∞t (αN,εη )∗ϕ)

∥∥
L∞η L

2
t,u

√
T
(
rRL(%, l, ε, N) + ε−(2+ d

2
)N−2

))
.

Next, using the stability result, we need to make the expression for rC(T, %, l, ε, N) explicit

in terms of l, ε, and N . Let us consider first the two middle terms, which describe the

large–time behaviour t ≥ T . Lemma 2.4.15 yields∫ ∞
T

‖∇DS∞s (αN,εη )∗ϕ‖L2 ds ≤ Ce−cT‖∇ϕ‖L2

as well as∫ ∞
T

∣∣T1(αN,εηx,y , α
N,ε
η ;T∞s Ψ)

∣∣ ds ≤ Ce−cT
(
‖αN,εηx,y −N−d

∑
z η(z)‖2

L4

+ ‖αN,εη −N−d
∑

z η(z)‖2
L4

)
,
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2.4. Hydrodynamic limit for zero range processes

since ∫
Td
αN,εηx,y(u) du =

∫
Td
αN,εη (u) du =

1

Nd

∑
z∈TdN

η(z).

The bound δ
(ε)
0 (u) ≤ Cε−d yields

‖αN,εη ‖4
L4
u

=

∫
Td

∣∣∣ 1

Nd

∑
x∈TdN

η(x)δ
(ε)
x
N

(u)
∣∣∣4 du ≤ Cε−4d

( 1

Nd

∑
z∈TdN

η(z)
)4

.

Collecting the three previous equations, we have shown that

sup
t≥T

∣∣T1(αN,εηx,y , α
N,ε
η ;T∞t Ψ)

∣∣ ≤ Ce−cT ε−2d
( 1

Nd

∑
z∈TdN

η(z)
)2

uniformly in x, y, and η. Conservation of the number of particles and the assumption

µN0 ≤ νNρ now yield uniform bounds

〈
µNt ,

( 1

Nd

∑
x∈TdN

η(x)
)m〉

=
〈
µN0 ,

( 1

Nd

∑
x∈TdN

η(x)
)m〉

≤
〈
νNρ ,

( 1

Nd

∑
x∈TdN

η(x)
)m〉

≤ Cm

(2.59)

for each m > 0.

The stability results of Lemma 2.4.14 yield

sup
s≥0

[
T∞s Ψ

]
C1,θ

Λ
≤ C.

Furthermore, it holds that

‖αN,εη ‖L∞ ≤ C
1

εdNd

∑
x∈TdN

η(x)

as well as

‖αN,εη ‖Hk ≤ N−d
∑
x∈TdN

η(x)‖δ(ε)‖Hk ≤ Cε−(k+ d
2

)N−d
∑
x∈TdN

η(x).

Corollary 2.4.17 yields

Λ(αN,εη ) ≤ C

(
1 + ε−(k+ d

2
) d+4

2k+2
−d
( 1

Nd

∑
x∈TdN

η(x)
) d+4

2k+2
+1

+ ε−(1+ d
2

)(d+4) 2k2+k
2k+2

−kd(d+4)−d
( 1

Nd

∑
x∈TdN

η(x)
)( 2k2+k

2k+2
+k)(d+4)+1

)
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Quantitative hydrodynamic limits

Since k > (d+ 2)/2 and ε < 1 is small, conservation of the number of particles yields

〈
µNt ,Λ(αN,εη )N−d

∑
z η(z)

〉
≤ Cε−(1+ d

2
)(d+4) 2k2+k

2k+2
−kd(d+4)−d.

for some constant C depending on the quantities k, d, and ρ appearing in the statement

of the hydrodynamic limit. Replacing above η by ηx,y yields the identical bound

〈
µNt ,Λ(αN,εη , αN,εηx,y)N

−d∑
z η(z)

〉
≤ Cε−(1+ d

2
)(d+4) 2k2+k

2k+2
−kd(d+4)−d.

Finally we just have to recall that Lemma (2.4.14) (iv) yields the uniform bound

‖∆uDS
∞
s (αN,εη )∗ϕ‖L∞η L2

s,u
≤ C,

in order to obtain that

T1 ≤ Ck

(
ε−(1+ d

2
)(d+4) 2k2+k

2k+2
−kd(d+4)−dε−θ

d
2N−θ(d+1) + ε−(2+ d

2
)N−2

+ e−cTN2+dε−2d + T
1
2 rRL(%, l, ε, N)

)
.

The stability estimate (2.37) yields

T2 =
∣∣〈µN0 , T∞t Ψ

(
αN,εη

)
− T∞t Ψ(f0)

〉∣∣ ≤ ‖F ′‖L∞‖ϕ‖L∞〈µN0 , ‖αN,εη − f0‖L1〉.

The stability estimate (2.38) yields the validity of Remark 2.4.8, once we have substracted∫
Td ϕ(y) du from ϕ. Finally, the last term equals

T3 =
∣∣〈µNt , F (〈αNη , ϕ〉)− F (〈αN,εη , ϕ〉L2)

〉∣∣ ≤ ‖F ′‖L∞ ∣∣〈µNt , 〈αNη − αN,εη , ϕ〉L2

〉∣∣ .
Note that

〈αNη − αN,εη , ϕ〉 =
1

Nd

∑
x∈TdN

η(x)

∫
Td

1

εd
χ(u

ε
)(ϕ( x

N
)− ϕ(u+ x

N
)) du

=
1

Nd

∑
x∈TdN

η(x)

∫
Td
χ(u)(ϕ( x

N
)− ϕ(εu+ x

N
))) du,

and hence ∣∣〈αNη − αN,εη , ϕ〉
∣∣ ≤ Cε‖∇ϕ‖L2

1

Nd

∑
x∈TdN

η(x)

Since the total mass is conserved and F ∈ C2
b (Td) is Lipschitz-continuous, it follows that

T3 ≤ Cε‖F ′‖L∞‖∇ϕ‖L2

〈
µNt ,

1

Nd

∑
x∈TdN

η(x)
〉
≤ Cε,
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2.5. Convergence of the entropy

since the average number of particles is bounded. Collecting all available bounds, this

completes the proof of the hydrodynamic limit.

Remark. As in the proof of the hydrodynamic limit for independent random walks,

Theorem 2.3.1, the term T1 is a measure for the difference of the particle semigroup

and the limit semigroup on the level of observables and is (for fixed Ψ) bounded by a

consistency result on the two generators. Furthermore we have seen that this consistency

estimate is transported along the flow of the limit equation by the stability result. The

second term T2 measures the propagation of the difference between the initial data of

the particle system and the limit partial differential equation along the flow of the limit

equation. Hence it is bounded by a stability result on the limit equation. The last

term T3 did not appear in the proof of Theorem 2.3.1 and measures the error due to the

mollification of the empirical measure.

2.5 Convergence of the entropy

One important question in the field of statistical mechanics is the convergence of the

microscopic entropy N−dHN(µNt |νNρ ) towards the macroscopic entropy. In this section we

investigate this problem and its relation to entropic chaos. The problem can be thought

of independently from the results of the previous sections, once a hydrodynamic limit has

been established. In order to make this explicit, let us consider a zero range process with

generator (2.2) and with the filtration equation (2.3) as the limit equation. Suppose that

the function space for the limit equation is H ⊆ L∞(Td). The hydrodynamic limit will

be codified in Assumption 2. Throughout this section we suppose that any rate functions

r(N), which is only a function of N , vanishes in the limit as N →∞ and we absorb any

constants in the rate function, i.e. without loss of generality Cr(N) = r(N). Furthermore

suppose that all rate functions are polynomial in N .

Assumption 2. Let us fix solutions (ft)t≥0 and (µNt )t≥0 to the limit equation and the zero

range process, respectively, and assume that they satisfy a hydrodynamic limit, i.e. for all

F ∈ C2
b (R), ϕ ∈ C3(Td), and N ∈ N, it holds that

〈
µNt , F

(
〈αNη , ϕ〉L2

)
− F

(
〈ft, ϕ〉L2

)〉
≤ ‖F‖C2(1 + ‖ϕ‖2

H1 + ‖ϕ‖C3)rHL(N)

for a rate function rHL(N) which vanishes as N →∞, cf. Corollary 2.4.9.

Furthermore assume that the limit solution ft ∈ H satisfies ft ∈ C3(Td) and that there

exists a constant c > 0 such that ft ≥ c for all t ≥ 0. Finally assume a replacement
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Quantitative hydrodynamic limits

lemma with a rate rRL(ε,N), i.e.

1

TNd

∫ T

0

∑
x∈TdN

〈
µNt ,

∣∣(g ◦ η)(ε)(x)− σ(η(ε)(x))
∣∣〉 dt ≤ rRL(ε,N)

for ε > 0, N ∈ N such that εN < 1 and all T > 0, where we suppose that

lim sup
ε→0

lim sup
N→∞

rRL(ε,N) = 0.

To keep notation simple, we allow all constants in this section (in contrast to the last) to

depend on (ft)t∈[0,∞) ⊂ C3(Td), although it is possible in principle to keep track of this

dependence as well. We set

f∞ =

∫
Td
ft(u) du,

which is independent of t since ft solves the limit equation (2.3). The notation is fur-

thermore justified on noting that we expect ft → f∞ as t → ∞, cf. Lemma 2.4.15.

Furthermore we denote the pressure by

(2.60) p(λ) = logZ(eλ),

where Z is the partition function given in equation (2.7). Then we define the macroscopic

entropy as

(2.61) H∞(ft) :=

∫
Td
h(ft(u)) du− h(f∞),

where the function h is given by

h(ρ) = ρ log σ(ρ)− p
(

log σ(ρ)
)
.

Let us find the corresponding macroscopic Fisher information by differentiating in time.

It holds that

d

dt
H∞(ft) =

∫
Td

(
∂tft log σ(ft) + ft

σ′(ft)

σ(ft)
∂tft − p′(log σ(ft))

σ′(ft)

σ(ft)
∂tft

)
du.

Since σ is the inverse function of ρ∂ρ logZ(ρ), we find that p′(λ) = σ−1(eλ) and hence

(2.62)
d

dt
H∞(ft) = −

∫
Td

|∇σ(ft(u))|2

σ(ft(u))
du =: −D∞(ft),

where D∞(ft) is called the macroscopic Fisher information. Next we establish a micro-

scopic analogue of equation (2.62), relating the microscopic entropy HN(µNt |νNρ ) and its
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2.5. Convergence of the entropy

Fisher information DN(µNt |νNρ ), to be defined presently. Let fNt ∈ Cb(XN) denote the

density of µNt ∈ P (XN) with respect to the grand-canonical measure νNf∞ ∈ P (XN), i.e.

set

(2.63) fNt (η) :=
dµNt
dνNf∞

(η).

The microscopic Fisher information is then defined as

DN(µNt |νNf∞) :=

∫
XN

√
fNt N

−2GN
√
fNt dν

N
f∞(2.64)

=

〈√
fNt , N

−2GN
√
fNt

〉
L2(νNf∞ )

.

Remark 2.5.1. Abusing notation, we shall sometimes refer to DN(µNt |νNf∞) by DN(fNt |νNf∞),

where fNt is the density defined in (2.63). Also note that we have left out a factor of N2 as

opposed to the natural (macroscopic) time-scaling, i.e. the time scale of the microscopic

Fisher information is the microscopic time scale.

As a first result we show the equivalence of the convergence of the entropy and entropic

chaos, by which we mean

lim
N→∞

1

Nd
HN(µNt |νNft(·)) = 0.

.

Lemma 2.5.2. Under assumption 2, it holds that

1

Nd
HN(µNt |νNf∞) = H∞(ft) +

1

Nd
HN(µNt |νNft(·)) + O

( 1

N
+ rHL(N)

)
.

In particular, the microscopic entropy N−dHN(µNt |νNf∞) converges to the macroscopic en-

tropy H∞(ft) if and only if there is entropic chaos.

Proof. It holds that

1

Nd
HN(µNt |νNf∞) =

1

Nd

∫
XN

log

(
dµNt
dνNf∞

)
dµNt

=
1

Nd

∫
XN

log

(
dµNt
dνNft(·)

)
dµNt +

∫
XN

log

(
dνNft(·)
dνNf∞

)
dµNt .

By definition, it also holds that

(2.65)
dνNft(·)
dνNf∞

(η) =
∏
x∈TdN

Z(σ(f∞))

Z(σ(ft(
x
N

)))

(
σ(ft(

x
N

))

σ(f∞)

)η(x)

.
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Consequently, the second term equals

1

Nd

∫
XN

log

(
dνNft(·)
dνNf∞

)
dµNt

=
1

Nd

∑
x∈TdN

∫
XN

(
log

Z(σ(f∞))

Z(σ(ft(
x
N

)))
+ η(x) log

σ(ft(
x
N

))

σ(f∞)

)
dµNt (η).

By Assumption 2, the macroscopic solution ft is differentiable, and the hydrodynamic

limit yields that the right hand side converges to∫
Td
ft(u) log σ(ft(u)) du−

∫
Td
p
(

log σ(ft(u))
)
du− f∞ log σ(f∞) + p

(
log σ(f∞)

)
as N →∞. Thus, in view of (2.61), we have shown that

1

Nd
HN(µNt |νNf∞) =

1

Nd
HN(µNt |νNft(·)) +H∞(ft) + O

( 1

N
+ rHL(N)

)
.

which concludes the proof.

The main result of this section is the following theorem.

Theorem 2.5.3. Under Assumption 2, let the initial microscopic entropy converge, i.e.

let

(2.66)
∣∣∣ 1

Nd
HN(µN0 |νNf∞)−H∞(f0)

∣∣∣ ≤ rH,0(N)

for some rate function rH,0(N). Then both the microscopic entropy and the time aver-

age of the Fisher information converge towards the corresponding macroscopic quantities.

Specifically, it holds that∣∣∣ 1

Nd
HN(µNt |νNf∞)−H∞(ft)

∣∣∣ ≤ rH,0(N) + C
(
ε+

1

N
+

1

ε3+d
rHL(N) + t rRL(ε,N)

)
,

and

∣∣∣ ∫ t

0

4N2−dDN(µNs |νNf∞) ds−
∫ t

0

D∞(fs) ds
∣∣∣

≤ rH,0(N) + C
(
ε+

1

N
+

1

ε3+d
rHL(N) + t rRL(ε,N)

)
for all ε > 0, N ∈ N, and t ≥ 0 (note that this bound is not uniform in time). In
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particular, it holds that

lim
N→∞

1

Nd
HN(µNt |νNf∞) = H∞(ft) and

lim
N→∞

∫ t

0

4N2−dDN(µNs |νNf∞) ds =

∫ t

0

D∞(fs) ds

for all t ≥ 0.

The key to the proof of Theorem 2.5.3 is the following lemma.

Lemma 2.5.4. Under the assumptions of Theorem 2.4.6, it holds that

1

Nd
HN(µNt |νNf∞) ≥ H∞(ft)− C

( 1

N
+ rHL(N)

)
,

as well as∫ t

0

4N2−dDN(µNs |νNf∞) ds ≥
∫ t

0

D∞(ft) ds− C
( 1

N
+ ε+

1

ε3+d
rHL(N) + trRL(ε,N)

)
.

In particular, it holds that

lim inf
N→∞

1

Nd
HN(µNt |νNf∞) ≥ H∞(ft) and lim inf

N→∞

∫ t

0

4
N2

Nd
DN(µNs |νNf∞) ds ≥ D∞(ft)

for all t ≥ 0.

Proof. The bound on the relative entropy is a direct consequence of Lemma 2.5.2 and

the fact that all entropies HN are non-negative. As a warm-up for the bound on the

Fisher-information, let us give an alternative proof. The well-known variational formula

for the relative entropy, see [47], yields

HN(µNt |νNf∞) = sup
f∈Cb(XN )

{
〈µNt , f〉 − log〈νNf∞ , e

f〉
}
,

where the supremum is (formally) obtained by taking f = log dµNt /dν
N
f∞

. In view of the

hydrodynamic limit and Yau’s results using the relative entropy method, we expect that

µNt is close to the local Gibbs state νNft(·). Thus we choose

f(η) = log
dνNft(·)
dνNf∞

(η).

Then we obtain a lower bound

1

Nd
HN(µNt |νNf∞) ≥ 1

Nd

∫
XN

log
dνNft(·)
dνNf∞

(η)dµNt (η).
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Equation (2.65) thus yields a lower bound on the entropy of the form

1

Nd

∑
x∈TdN

∫
XN

(
η(x) log

σ
(
ft
(
x
N

))
σ(f∞)

+ log
Z(σ(f∞))

Z
(
σ
(
ft
(
x
N

))))dµNt (η).

As in the proof of Lemma 2.5.2, since the macroscopic solution ft is differentiable, the

hydrodynamic limit yields a bound from below by

H∞(ft)− C
( 1

N
+ rHL(N)

)
.

To prove a similar estimate for the Fisher information, we need the following variational

formula, cf. [47]. It holds that

DN(µNt |νNf∞) = sup
f

{
−
∫
XN

N−2GNf(η)

f(η)
dµNt (η)

}
,

where the supremum is taken over all positive f ∈ Cb(XN) such that f is strictly bounded

away from zero. The supremum is (formally) obtained at the function f =
√
dµNt /dν

N
f∞

,

so here we choose

f(η) =

√
dνNft(·)
dνNf∞

(η).

After cancelling factors, this corresponds to taking

f(η) =
∏
x∈TdN

√
σ
(
ft(

x

N

))η(x)

.

We obtain that

N−2GNf(η) =
∑
x∈TdN

∑
|e|=1

g(η(x))

(√
σ
(
ft
(
x+e
N

))
σ
(
ft
(
x
N

)) − 1

)
f(η),

and hence

GNf(η)

N2f(η)
=
∑
x∈TdN

∑
|e|=1

g(η(x))√
σ
(
ft(

x
N

))(√σ
(
ft
(x+ e

N

))
−
√
σ
(
ft
( x
N

)))
.

Hence it holds that

4N2−dDN(µNt |νNf∞) ≥ −4

∫
XN

1

Nd

∑
x∈TdN

g(η(x))√
σ
(
ft(

x
N

))∆N

√
σ
(
ft
( x
N

))
dµNt (η),

where we recall that ∆N denotes the discrete Laplacian (2.22). Even though f as chosen
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2.5. Convergence of the entropy

above is not strictly bounded away from zero (uniformly in η), this can be made rigorous

by a standard approximation argument. Since ft ∈ C3(Td) is bounded away from zero,

we replace g(η(x)) by (g ◦ η)(ε)(x), up to an error of O(ε). Now the replacement lemma

yields

∫ t

0

4N2−dDN(µNs |νNf∞) ds ≥ −4

∫ t

0

∫
XN

(
1

Nd

∑
x∈TdN

σ(η(ε)(x))√
σ
(
fs(

x
N

))
×∆N

√
σ
(
fs
( x
N

)))
dµNs (η)ds− C(ε+ trRL(ε,N)).

It holds that η(ε)(x) = 〈αNη , δ
(ε)
x
N
〉 and the following bounds are satisfied:

‖δ(ε)
x
N
‖C3 ≤ ε−3−d as well as ‖δ(ε)

x
N
‖2
H1 ≤ ε−2−d.

Hence the hydrodynamic limit yields

4N2−dDN(µNt |νNf∞) ≥ −4

∫
Td

√
σ(ft(u))∆N

√
σ(ft(u)) du

− C(ε+ trRL(ε,N) + ε−3−drHL(N)).

Finally we replace, up to an error O(N−1), the discrete Laplacian ∆N by its continuous

version ∆ and note that

−4

∫
Td

√
σ(ft(u))∆

√
σ(ft(u)) du =

∫
Td

|∇σ(ft(u))|2

σ(ft(u))
du.

This completes the proof of Lemma 2.5.4.

Proof of Theorem 2.5.3. Equation (2.62) yields

(2.67) H∞(ft) +

∫ t

0

D∞(fs) ds = H∞(f0).

Next, we establish a corresponding microscopic relation. First we note that fNt defined

in (2.63) satisfies the forward Kolmogorov equation

∂tf
N
t (η) = GNfNt (η).

Since GN is self-adjoint in L2(νNf∞) and in particular 〈GNfNt , 1〉L2(νNf∞ ) = 0, it holds that

(2.68)
d

dt
HN(µNt |νNf∞) =

d

dt

∫
XN

fNt log fNt dν
N
f∞ =

∫
XN

(
GNfNt

)
log fNt dν

N
f∞ .
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Now we note that

DN(µNt |νNf∞) =
〈√

fNt , N
−2GN

√
fNt
〉
L2(νNf∞ )

=
1

2

∫
XN

∑
x∈TdN

∑
|e|=1

g(η(x))

(√
fNt (ηx,x+e)−

√
fNt (η)

)2

dνNf∞ ,

see for example [47, Appendix 1]. Polarization yields∫
XN

(
N−2GNfNt

)
log fNt dν

N
f∞ = 〈N−2GNfNt , log fNt 〉L2(νNf∞ )

=
1

2

∫
XN

∑
x∈Td

N
|e|=1

g(η(x))
(
fNt (ηx,x+e)− fNt (η)

)(
log fNt (ηx,x+e)− log fNt (η)

)
dνNf∞ .

Therefore the elementary inequality (
√
a −
√
b)2 ≤ (a − b)(log a − log b)/4, which holds

for all a, b > 0, yields∫
XN

(
N−2GNfNt

)
log fNt dν

N
f∞ ≥ 4

∫
XN

√
fNt N

−2GN
√
fNt dν

N
f∞ = 4DN(µNt |νNf∞).

Therefore time-integration of equation (2.68) yields

(2.69) HN(µNt |νNf∞) + 4N2

∫ t

0

DN(µNs |νNf∞) ds ≤ HN(µN0 |νNf∞).

Note that this inequality holds for any ρ > 0 replacing f∞ > 0. Since the microscopic

entropy converges initially and Lemma 2.5.4 yields lower bounds on each term on the left

hand side, a simple technical lemma completes the proof, i.e. we set

a =
1

Nd
HN(µNt |νNf∞)−H∞(ft) and b =

∫ t

0

(
4N2−dDN(µNs |νNf∞)−D∞(fs)

)
ds

in Lemma 2.5.5.

Lemma 2.5.5. Let a, b ∈ R, and ri > 0, i = 1, 2, 3 be any reals such that

|a+ b| ≤ r1, a ≥ −r2, and b ≥ −r3.

Then it holds that

|a| ≤ r1 + r2 + r3 and |b| ≤ r1 + r2 + r3.

Proof. For any λ ∈ R, we set

λ+ = max{0, λ} and λ− = max{0,−λ},
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2.6. The replacement lemma

i.e. λ = λ+ − λ−, |λ| = λ+ + λ−. The first inequality of the assumptions yields

a+ b = a+ − a− + b+ − b− ≤ |a+ b| ≤ r1.

On the other hand, the other two assumptions yield

a− ≤ r2 and b− ≤ r3

and hence

a+ + b+ ≤ r1 + r2 + r3.

Since both terms on the left hand side are positive and we already established bounds on

a− and b−, this shows the hypothesis.

As a consequence of Lemma 2.5.2 and Theorem 2.5.3, we recover Yau’s result on entropic

chaos. Of course, our proof is very different in spirit, since we assumed the hydrodynamic

limit in order to arrive at entropic chaos. In other words, we conclude the conservation

of the hydrodynamic limit in the strong form of Theorem 2.2.3 from the conservation of

the hydrodynamic limit in the weak form of Theorem 2.2.2.

Corollary 2.5.6. Under Assumption 2, suppose that entropic chaos holds initially, i.e.

lim
N→∞

1

Nd
HN
(
µN0 |νNf0(·)

)
= 0.

Then this property is conserved along the evolution of the process, i.e.

lim
N→∞

1

Nd
HN
(
µNt |νNft(·)

)
= 0 for all t ≥ 0.

Note that so far we have not proved that the rate of convergence of the microscopic

entropy is uniform in time. This should be done in future work.

2.6 The replacement lemma

In this section we want to prove the replacement lemma, Lemma 2.4.19. This is a quan-

titative L2–version of the usual replacement lemma found in the literature, e.g. [47],with

an explicit estimate on its rate of convergence. The biggest difference from the classical

proof of Guo, Papanicolaou, and Varadhan [36] lies in the use of a logarithmic Sobolev

inequality (LSI) to obtain a rate of convergence. The classical reference for LSI is [33]; for

the zero range process, the LSI has been proven in [27] using only that the rate function

satisfies Assumption 1 (i)-(iii). The plan of this section is as follows. In Subsection 2.6.1,
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we use Assumption 1 (iv) to deduce uniform (in N) bounds on all moments. We state the

block estimates and use them to deduce the replacement lemma in Subsection 2.6.2. Sub-

section 2.6.3 deals with the equivalence of ensembles, a statement concerning the closeness

of grand-canonical and canonical measures and which appears in the proof of the block

estimates. In Subsection 2.6.4 we show how to restrict ourselves to bounded particle

configurations and consequently introduce the density bound %, which can be understood

as introducing a density scale. Finally, we prove the block estimates in Subsections 2.6.5

and 2.6.6.

The aim of this section is to prove Lemma 2.4.19, which we restate here for the reader’s

convenience.

Lemma (A quantitative replacement lemma). Assuming that the initial data possess

bounded relative entropy and are bounded with respect to some Gibbs measure, i.e.

HN
(
µN0 |νNρ

)
≤ CNd, and µN0 ≤ νNρ

for some ρ > 0. Then it holds that

(
1

T

∫ T

0

∫
Td

〈
µNt ,

∣∣(g ◦ η)(ε)(uN)− σ(η(ε)(uN))
∣∣2〉 dudt

) 1
2

≤ rRL(%, l, ε, N),

where we recall definition (2.34). The rate function rRL satisfies

rRL(%, lε, N) ≤ C
(

(N−
1
2 l

1
2 + ε

1
2 l

1
4 )%l

d
4 + %l−

d
4 + %−

1
4 +

l

εN

)
for all N ∈ N, 1/N < ε < 1, l < N , and % > 0.

The proof will take up the rest of this section. First we note the following consequence

of the bound on the initial microscopic entropy. Equation (2.69) yields

(2.70) HN
(
µNt |νNρ

)
≤ CNd and

1

t

∫ t

0

DN(µNt |νNρ ) dt ≤ CNd−2

for all t ≥ 0 and N ∈ N.

2.6.1 Attractivity and moment bounds

This section is the only place where we need to take advantage of attractivity, i.e. Assump-

tion 1 (iv). This assumption is useful when combined with a coupling of two processes

and allows us to provide uniform estimates on the particle moments. Since we do not

make use of attractivity anywhere else and the theory of attractivity is well-developed,
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2.6. The replacement lemma

see [47, 54], we simply sketch the results here.

Consider two copies of the zero range process with initial configurations η, ζ ∈ XN , which

satisfy

η ≤ ζ, i.e. η(x) ≤ ζ(x) for all x ∈ TdN .

Assumption 1 (iv) simply states g(n + 1) ≥ g(n) for all n ∈ N and hence we can always

let particles of the process with more particles jump at a higher rate. Specifically, at an

arbitrary site x ∈ TdN , at time t = 0 where we have η(x) ≤ ζ(x), we let one particle at

x ∈ TdN of both processes η and ζ jump at the same time at a rate g(η(x)) and additionally

let just one particles of ζ jump at a rate g(ζ(x))−g(η(x)) ≥ 0. This coupling almost surely

preserves the property η(x) ≤ ζ(x) for all x ∈ TdN . Thus we have arrived at a random

particle process (ηt, ζt)t≥0 (understood as random variables) with state space XN × XN

and whose marginals ηt and ζt each are zero range processes with jump rate g, such that

the property ηt(x) ≤ ζt(x) for all x ∈ TdN is almost surely preserved by the evolution of

the process.

A consequence of this coupling is the preservation of stochastic ordering. Recall that in

Section 2.4, we defined a function fN ∈ Cb(XN) to be monotonous if fN(η) ≤ fN(ζ) for

all η ≤ ζ. Two probability measures µ, ν ∈ P (XN) were said to be ordered, µ ≤ ν, if

〈µ, fN〉 ≤ 〈ν, fN〉 for all monotonous fN ∈ Cb(XN).

Suppose now µN0 , µ̃
N
0 ∈ P (XN) are two initial measures of the zero range process such

that

µ̃N0 ≤ µN0 .

It can be shown [54, Theorem II.2.4] that this property is equivalent to the existence of a

coupling measure on XN ×XN with marginals µ̃N0 and µN0 that concentrates on {η ≤ ζ}.
As shown above, under the evolution of the coupled process, the support of the coupled

probability measure remains within {η ≤ ζ} and it follows, again by [54, Theorem II.2.4],

that µ̃Nt ≤ µNt .

Let us now turn to the problem of bounding moments of the particle system. We define

the k-th order moment as

Mk

[
µNt
]

:=

〈
µNt ,

1

Nd

∑
x∈TdN

η(x)k

〉
.

Recall that in Remark 2.4.10 we have already obtained a bound on the average number

of particles M1[µNt ] (which is conserved by the evolution).

Lemma 2.6.1. Assume that the initial measure is bounded from above by νNρ for some
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ρ > 0, i.e. µN0 ≤ νNρ . Then for any k > 0, it holds that

Mk

[
µNt
]
≤Mk

[
νNρ
]

= Ck < +∞

for all N > 0 and t ≥ 0.

Proof. Attractivity yields

µNt ≤ νNρ ,

and hence

Mk

[
µNt
]
≤Mk

[
νNρ
]

by monotonicity of η(x)k. All moments of νNρ are finite and translation-invariance yields

Mk

[
νNρ
]

= 〈νNρ , η(0)k〉 = Ck

uniformly in N .

2.6.2 Proof of the replacement lemma from the block estimates

In order to prove the replacement lemma with the correct rates, we shall separate scales

and introduce another scaling parameter l. Thus we shall first prove a one block estimate,

which corresponds to the replacement lemma on blocks of size l instead of εN . Then we

will prove a two blocks estimate which allows us to estimate the difference in the scales l

and εN and conclude the replacement lemma with an explicit rate of convergence. Here we

shall also use that the one block estimate is proved on boxes where δ(ε) is approximately

constant and hence there is no added difficulty compared to the classical replacement

lemma in [36] by introducing χ different from a characteristic function. Similarly to the

definition (2.34), where we defined weighted averages (h ◦ η)(ε)(u), we define the average

number of a function h : N→ R of the number of particles over the translation of a box

Λl by x ∈ TdN to be

h ◦ ηl(x) =
1

(2l + 1)d

∑
|y|≤l

h(η(x+ y)).

Furthermore, we set ηl = id ◦ ηl.

Lemma 2.6.2 (A quantitative one block estimate). Under the assumptions of the Lemma

2.4.19, it holds that

(
1

TNd

∫ T

0

∑
x∈TdN

〈
µNt ,

∣∣∣g ◦ ηl(x)− σ(ηl(x))
∣∣∣2 〉 dt) 1

2

≤ rOBE(%, l, N)
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for some rate function satisfying

rOBE(%, l, N) = C
(
N−

1
2 l

2+d
4 %+ %l−

d
4 + %−

1
4

)
for all l, N ∈ N, T > 0, 0 < l < N , and % > 0.

The two blocks estimate estimates the error made when averaging over the smaller box

of size l instead of the box of size εN (with a weighted average given by χ).

Lemma 2.6.3 (A quantitative two blocks estimate). Under the assumptions of Lemma

2.4.19, it holds that

(
sup
|y|≤εN

1

TNd

∫ T

0

∑
x∈TdN

〈
µNt ,

∣∣ηl(x+ y)− η(ε)(x)
∣∣2 〉 dt) 1

2

≤ rTBE(%, l, ε, N)

for some rate function satisfying

rTBE(%, l, ε, N) = C
((
N−

1
2 l

1
2 + ε

1
2 l

1
4

)
l
d
4%+ %l−

d
4 + %−

1
4 +

l

εN

)
for all l, N ∈ N, T > 0, 1/N < ε < 1, 0 < l < N , and % > 0.

From these two estimate we shall presently deduce the Lemma 2.4.19.

Proof of Lemma 2.4.19. First we replace the integral over u ∈ Td by am discrete sum

over x ∈ TdN , thus allowing us to only bound the quantity

(2.71)

(
1

TNd

∫ T

0

∑
x∈TdN

〈
µNt ,

∣∣(g ◦ η)(ε)( x
N

)− σ(η(ε)( x
N

))
∣∣2 〉 dt) 1

2

.

This will be done as follows. Let us define

ṼεN,x(η) := (g ◦ η)(ε)( x
N

)− σ(η(ε)( x
N

)).

For notational convenience we leave out the integration over t and η in comparison to

(2.71) from now on. It holds that

∣∣∣∣ ∫
Td
Ṽ 2
εN,uN du− 1

Nd

∑
x∈TdN

Ṽ 2
εN,x

∣∣∣∣ 1
2

≤
(

1

Nd

∑
x∈TdN

sup
|e|≤
√
d

∣∣Ṽ 2
εN,x+e − Ṽ 2

εN,x

∣∣) 1
2

,
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where the supremum is taken over all e ∈ Rd such that |e| ≤
√
d. It holds that

1

Nd

∑
x∈TdN

sup
|e|≤
√
d

∣∣Ṽ 2
εN,x+e − Ṽ 2

εN,x

∣∣
≤
(

1

Nd

∑
x∈TdN

sup
|e|≤
√
d

∣∣ṼεN,x+e − ṼεN,x
∣∣2) 1

2
(

1

Nd

∑
x∈TdN

sup
|e|≤
√
d

∣∣ṼεN,x+e + ṼεN,x
∣∣2) 1

2

by Cauchy-Schwarz. Next note that Lipschitz-continuity g∗ yields that

∣∣(g ◦ η)(ε)(x+e
N

)− (g ◦ η)(ε)( x
N

)
∣∣ ≤ C

εN
‖∇χ‖L∞

1

εdNd

∑
|y|≤CεN

η(y + x),

since x 7→ δ
(ε)
0 (x/N) vanishes outside of a box of size CεN , cf. the definition of the

smoothed empirical measure (2.29). Jensen’s inequality (convexity) yields

(2.72)

(
1

(2εN + 1)d

∑
|y|≤εN

η(x+ y)

)2

≤ 1

(2εN + 1)d

∑
|y|≤εN

η(x+ y)2.

Therefore we obtain a bound

1

Nd

∑
x∈Td

sup
|e|≤
√
d

∣∣(g ◦ η)(ε)(x+e
N

)− (g ◦ η)(ε)( x
N

)
∣∣2 ≤ C(εN)−2 1

Nd

∑
x∈TdN

η(x)2.

Thus Lemma 2.6.1 allows us to replace, up to an error of O(1/εN), the integral over

u ∈ Td by a discrete sum and we just need to estimate the term (2.71). Let us add and

subtract the expression

1

(εN)d

∑
y∈TdN

χ
( y
εN

)(
g ◦ η

l
(x+ y)− σ(ηl(x+ y))

)
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inside the absolute value appearing in (2.71). Then we obtain

(
1

Nd

∑
x∈TdN

∣∣(g ◦ η)(ε)(x)− σ(η(ε)(x))
∣∣2) 1

2

≤
(

1

Nd

∑
x∈TdN

∣∣∣∣(g ◦ η)(ε)(x)− 1

(εN)d

∑
y∈TdN

χ
( y
εN

)
g ◦ η

l
(x+ y)

∣∣∣∣2) 1
2

+

(
1

Nd

∑
x∈TdN

∣∣∣∣ 1

(εN)d

∑
y∈TdN

χ
( y
εN

)(
g ◦ η

l
(x+ y)− σ(ηl(x+ y))

)∣∣∣∣2) 1
2

+

(
1

Nd

∑
x∈TdN

∣∣∣∣ 1

(εN)d

∑
y∈TdN

χ
( y
εN

)
σ(ηl(x+ y))− σ(η(ε)(x))

∣∣∣∣2) 1
2

.

We estimate the three terms separately. The first one equals

(
1

Nd

∑
x∈TdN

∣∣∣∣ 1

(εN)d

∑
y∈TdN

χ
( y
εN

)(
g(η(x+ y))− g ◦ η

l
(x+ y)

)∣∣∣∣2) 1
2

.

Since

|χ( y
εN

)− χ( z
εN

)| ≤ l

εN
‖∇χ‖L∞ if |z − y| ≤ l

and g(η(x)) ≤ g∗η(x), this term is bounded by

C
l

εN

( ∑
x∈TdN

η(x)2

Nd

) 1
2

,

and hence by O(l/εN) in view of the moment bound of Lemma 2.6.1. Recall that similarly

to the previous replacement of the integral over u ∈ Td by a discrete sum, the identity∫
Td χ(u) du = 1 yields (2.33). A change of variables x → x + y yields a bound on the

second term by

C‖χ‖L∞
(

1

Nd

∑
x∈TdN

∣∣∣g ◦ ηl(x+ y)− σ(ηl(x+ y))
∣∣∣2) 1

2

.

This in turn is bounded by the one block estimate. The third term is bounded from above
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as follows. It holds that

(2.73)

(
1

Nd

∑
x∈TdN

∣∣∣σ(η(ε)(x))− 1

(εN)d

∑
y∈TdN

χ
( y
εN

)
σ(ηl(x+ y))

∣∣∣2) 1
2

≤
(

1

Nd

∑
x∈TdN

1

(εN)d

∑
y∈TdN

χ
( y
εN

)∣∣∣σ(η(ε)(x))− σ(ηl(x+ y))
∣∣∣2) 1

2

+ O
( 1

εN

)
,

where we employed (2.33) and the moment bounds again. Recall that χ(y/(εN)) = 0 if

|y| > εN . Hence, up to a term O( 1
εN

), it holds that (2.73) is bounded from above by

C‖χ‖∞
(

sup
|y|≤εN

1

Nd

∑
x∈TdN

∣∣η(ε)(x)− ηl(x+ y)
∣∣2) 1

2

which is bounded by the two blocks estimate. Note in view of the statement of the two

blocks estimate that if we include the the integration over t and η, we take the supremum

outside the integration.

Thus it remains to prove the one and two block estimates in order to deduce the replace-

ment lemma.

However, we are still missing one important ingredient in order to be able to present the

proof of the block estimates. This is the equivalence of ensembles which concerns the

closeness of the grand-canonical measures νLρ and the canonical measures νL,K for large

L under the condition that the densities are identical. Here L denotes the size of an

arbitrary lattice, not necessarily TdN .

2.6.3 Equivalence of ensembles

Equivalence of ensembles concerns the closeness of the canonical and the grand-canonical

measures in the limit of infinitely many sites. Consider a lattice ΛL of size |ΛL| = (2L+

1)d. For now, we shall not assume anything except Assumption 1 (i), (ii), (iii). These

assumptions guarantee the existence of the grand-canonical measures νLρ , defined in (2.6),

with finite exponential moments for all ρ ∈ R. Let us fix some notation: From now on,

for any integer l, we set l∗ := 2l + 1. Let Λl be a box of size |Λl| = ld∗ with l < L and

assume that Λl ⊂ ΛL.

We denote the standard deviation of the grand-canonical (product) measure νLρ by

s(ρ)2 = EνLρ
[
η(0)2

]
− EνLρ [η(0)]2 .

98



2.6. The replacement lemma

Recall that, with σ given as the inverse function (2.23), the measure νLρ is the invariant

measure with particle density ρ, i.e.

EνLρ [η(0)] = ρ.

Let Hm denote the m-th Hermite polyomial

Hm(λ) = (−1)me
λ2

2
dm

dλm
e−

λ2

2

for all λ ∈ R. Define two polynomials

q0(λ) =
1√
2π
e−

λ2

2 and

q1(λ) =
1√
2π
e−

λ2

2 H3(λ)
γ3(ρ)

6s(ρ)3
=

γ3(ρ)

6
√

2πs(ρ)3
e−

λ2

2 (λ3 − 3λ),

where

γ3(ρ) = EνLρ
[(
η(0)− ρ

)3]
.

The case of bounded densities

The contents of this section are mostly contained in [47, Appendix 2] and [52]. We include

them here for the reader’s convenience. Let us state, without proof, the following uniform

central limit theorem. The theorem, including higher order expansions, can be found in

[47], see also [73]. The results of this subsection are essentially valid without Assumption

1 (iii).

Lemma 2.6.4. For all 0 < ρ0 < +∞, there exist finite constants E1 = E1(ρ0) and

E2 = E2(ρ0) such that

sup
K≥0

∣∣∣∣√Ld∗s(ρ)PνLρ
(∑

x∈ΛL
η(x) = K

)
− q0(λ)− q1(λ)√

Ld∗

∣∣∣∣ ≤ E1

Ld∗s(ρ)2

for all ρ ≤ ρ0, such that s(ρ)2Ld∗ ≥ E2. Here we set λ = (K − Ld∗ρ)/(L
d/2
∗ s(ρ)).

The following result is Corollary 1.6 in Appendix 2 of Kipnis and Landim [47].

Lemma 2.6.5. Fix 0 < ρ0 <∞, a positive integer l and a cylinder function f : NΛl → R
with finite second moment with respect to νLρ for all ρ ≤ ρ0. Then there exist finite
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constants E3 = E3(ρ0) and E4 = E4(ρ0), independent of the choice of f , such that∣∣∣EνL,K [f ]− EνL
K/Ld∗

[f ]
∣∣∣(2.74)

≤ E3
ld∗
Ld∗

(
1

s(ρ)2
EνLρ

[∣∣∣f − EνLρ [f ]
∣∣∣]+

1

s(ρ)

√
EνLρ

[(
f − EνLρ [f ]

)2
])

for all L ≥ 2l and all K such that K/Ld∗ ≤ ρ0 and s(K/Ld∗)
2Ld∗ ≥ E4. On the right hand

side of the inequality, we have set ρ = K/Ld∗.

Proof. First, we note that there exist constants 0 < c1(ρ0) and c2(ρ0) <∞ such that

c1 ≤
ρ

s(ρ)2
≤ c2 and c1 ≤

γ3(ρ)

s(ρ)2
≤ c2.

For ρ bounded away from zero, this is an obvious consequence of continuity in ρ, whereas

for small ρ, all moments of η grow linearly in ρ to first order, see equation (2.80) below.

It holds that
q1(λ)√
Ld∗
≤ C

|λ|√
Ld∗s(ρ)2

≤ C
( 1

Ld∗s(ρ)2
+ |λ|2

)
uniformly in ρ, λ, and L. Consequently, Lemma 2.6.4 yields

(2.75) sup
K≥0

∣∣∣∣√Ld∗ − ld∗s(ρ)PνLρ
(∑

x∈ΛL\Λl η(x) = K
)
− 1√

2π
e−

λ2

2

∣∣∣∣
≤ C

( 1

Ld∗s(ρ)2
+ |λ|2

)
,

where

λ =
M(ξ)− ld∗ρ√
(Ld∗ − ld∗)s(ρ)2

and M(ξ) =
∑

x∈Λl
ξ(x). The difference |EνL,K [f ]− EνLρ [f ]| equals

(2.76)

∣∣∣∣∣ ∑
ξ∈NΛl

νlρ(ξ)
(
f(ξ)− Eνlρ [f ]

){νLρ (
∑

x∈ΛL\Λl η(x) = K −M(ξ))

νLρ (
∑

x∈ΛL
η(x) = K)

− 1

}∣∣∣∣∣.
Thus the central limit theorem, see Lemma 2.6.4, yields a bound on the term in braces

by

(2.77)

∣∣∣∣∣
√
Ld∗s(ρ)2√

(Ld∗ − ld∗)s(ρ)2
e−

λ2

2 − 1

∣∣∣∣∣+ C
( 1

Ld∗s(ρ)2
+ |λ|2

)
,
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where in the denominator, we have used that s(ρ)2Ld∗ ≥ E2. We now bound

|λ|2 =
1

Ld∗ − ld∗
(M(ξ)− ld∗ρ)2

s(ρ)2
≤ C

ld∗
Ld∗

(
√
l−d∗ M(ξ)−

√
ld∗ρ)2

s(ρ)2

and plug this into (2.77). Since s(ρ)2 ≤ C1(ρ0)ρ0, it follows that (2.77) is bounded by

E ′3(ρ0)
ld∗

Ld∗s(ρ)2

(
1 +

(√
l−d∗ M(ξ)−

√
ld∗ρ
)2
)
.

By a law of large numbers (a straightforward direct computation) together with bounds

similar to the bounds at the beginning of this proof, it holds that

Eνlρ
[∑
x∈Λl

(η(x)− ρ)4
]
≤ C

(
l2d∗ s(ρ)4 + ld∗Eνlρ [(η(x)− ρ)4]

)
≤ E ′3(ρ0)l2d∗ s(ρ)2

after possibly changing the value of E ′3(ρ0). Therefore it holds that

Eνlρ
[(√

l−d∗ M(ξ)−
√
ld∗ρ
)4
]
≤ E ′3(ρ0)s(ρ)2,

and therefore the Cauchy-Schwarz inequality yields a bound on (2.76) by

E3
ld∗
Ld∗

(
1

s(ρ)2
EνLρ
[∣∣f − EνLρ [f ]

∣∣]+
1

s(ρ)

√
EνLρ
[(
f − EνLρ [f ]

)2
])

for some constant E3 = E3(ρ0).

This lemma is used in [47] to prove the equivalence of ensembles without the lower bound

s(ρ)2Ld∗ ≥ E4. Since we are interested in obtaining explicit bounds on the rate of con-

vergence to the hydrodynamic limit, we need to be a bit more careful in our analysis to

identify the dependence on the size l and not just L. The good news so far is that E1 and

E2 do not depend on l and f , and that in our proof of the replacement lemma we shall

not need to consider any cylinder function f , but only the function

(2.78) f(ξ) :=
1

ld∗

∑
x∈Λl

g(ξ(x))2 ≤ (g∗)2

ld∗

∑
x∈Λl

ξ(x)2.

Carefully keeping track of the dependence on the integer l, we now prove equivalence of

ensembles.

Lemma 2.6.6 (Equivalence of ensembles for bounded densities). Fix 0 < ρ0 < ∞ and

let f as in (2.78). Then there exists a constant E5 = E5(ρ0) such that∣∣∣∣EνL,K [f ]− EνL
K/Ld∗

[f ]

∣∣∣∣ ≤ E5
ld∗
Ld∗
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for all L large enough, all L ≥ 2l and all K such that 0 ≤ K/Ld∗ ≤ ρ0.

Proof. The proof follows Corollary 1.7 in Appendix II of [47]. Let E3, E4 as in Lemma

2.6.5 and consider first the case s(K/Ld∗)
2Ld∗ ≥ E4. In this case, if ρ = K/Ld∗ is bounded

strictly away from zero, the bracket on the right hand side of the inequality in Lemma

2.6.5 is bounded by a constant since the variance s(ρ)2 and all the expectations on the

right hand side are continuous with respect to ρ ≤ ρ0. Hence let us consider ρ close to

zero and s(ρ)2Ld∗ ≥ E4. It holds

EνLρ [f ] =
∞∑

M=0

Eνl,M [f ] · νlρ
(∑

x∈Λl
ξ(x) = M

)
.

Since g grows at most linearly, the explicit form (2.78) yields that f(ξ) ≤ CM2 for particle

configurations ξ with M particles. For M ≥ 2 particles it holds that

(2.79) Eνl,M [f ] · νlρ
(∑

x∈Λl
ξ(x) = M

)
≤ CM2ρM ,

where we have used that νlρ(ξ(x) = n) = σ(ρ)n/(Z(σ(ρ))g(n)!) ≤ Cρk since g ≥ δ̃k and

ρ ≤ ρ0. Furthermore, for M = 0, 1 we obtain

νlρ
(∑

x∈Λl
ξ(x) = M

)
≤

 1
Z(ρ)l

if M = 0,

l ρ
g(1)Z(ρ)l

if M = 1.

Hence we can expand

Eνlρ [f ] = f(0) +
∑
x∈Λl

{f(dx)− f(0)} ρ

g(1)
+ O(ρ2)

for ρ small enough, where 0 denotes the particle configuration in NΛl without any particles

and dx denotes the configuration containing only a single particle situated at the site

x ∈ Λl. Note that (2.79) yields that the term O(ρ2) is bounded independently of l and K

for small enough ρ. Likewise we obtain

Eνlρ

[(
f − Eνlρ [f ]

)2
]

=
∑
x∈Λl

{f(dx)− f(0)}2 ρ

g(1)
+ O(ρ2) and

Eνlρ [f ] =

[∣∣∣∣∑
x∈Λl

{f(dx)− f(0)}
∣∣∣∣+

∑
x∈Λl

|f(dx)− f(0)|

]
ρ

g(1)
+ O(ρ2).

Of course, in our case these expressions simplify due to f(0) = 0 but we shall not take

advantage of this just yet. Replacing f by ξ(0) we also see that

(2.80) s(ρ)2 =
ρ

g(1)
+ O(ρ2).
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Putting all together we can bound the right hand side of inequality (2.74) by E3l
d
∗/L

d
∗.

Hence it remains only to consider the case of densities K/Ld∗ such that 0 ≤ s(K/Ld∗)
2Ld∗ ≤

E4. Note that as before equation (2.80) implies that

0 < c1 ≤
s(ρ)2

ρ
≤ c2 < +∞

near ρ = 0 and hence for all 0 ≤ ρ ≤ ρ0. Hence the particle numbers K = ρLd∗ under

consideration are bounded by K ≤ c2E4. In the following we shall use the explicit form

of f . Translation invariance of the canonical measures yields that

EνL,K [f ] = EνL,K

[
1

ld∗

∑
x∈Λl

g(ξ(x))2

]
≤ (g∗)2

Ld∗
EνL,K

[∑
x∈ΛL

ξ(x)2

]
≤ (g∗K)2

Ld∗

as well as

EνL
σ(K/Ld∗)

[f ] ≤ (g∗)2EνL
K/Ld∗

[η(0)2]

= (g∗)2
(
s( K

Ld∗
)2 + ( K

Ld∗
)2
)
≤ (g∗)2E2

Ld∗
+

(g∗K)2

L2d
∗

.

Similar computations hold for the expectations of f 2. Again, this shows that the right

hand side of (2.74) is bounded by E5l
d
∗/L

d
∗. This concludes the proof of the equivalence

of ensembles in the case of bounded densities.

The case of large densities

Using Assumption 1 (i)-(iii), the following result has been shown in [52]. The proof is

similar to the proof of the equivalence of ensembles in the case of bounded densities, but

relies on Assumption 1 (iii) in order to obtain estimates on the growth of moments of η(x)

under νLρ .

Lemma 2.6.7. There exist 0 < ρ1 <∞ and constants E6, L0 such that

∣∣∣∣EνL,K [f ]− EνL
K/Ld∗

[f ]

∣∣∣∣ ≤ E6
ld∗
Ld∗

√
EνLρ

[(
f − EνLρ [f ]

)2
]

for all l > 0, cylinder functions f : NΛl → R with finite second moment with respect to

νLρ , L ≥ max{L0, 2l}, and K such that ρ = K/Ld∗ ≥ ρ1.

Choosing f as in (2.78), we obtain that

EνLρ

[(
f − EνLρ [f ]

)2
]
≤ Cρ4
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for all ρ ≥ ρ1. Consequently Lemma (2.6.7) yields the equivalence of ensembles for large

densities.

Lemma 2.6.8 (Equivalence of ensembles for large densities). Let f as in (2.78). There

exist 0 < ρ1 <∞ and constants E7, L0 such that∣∣∣∣EνL,K [f ]− EνL
K/Ld∗

[f ]

∣∣∣∣ ≤ E7
ld∗
Ld∗
ρ2

for all L ≥ L0 large enough, l < L/2, and K such that ρ = K/Ld∗ ≥ ρ1.

Equivalence of ensembles for arbitrary densities

Combining Lemmas 2.6.6 and 2.6.8, we arrive at the main result of this section.

Theorem 2.6.9. Let f as in (2.78). Then there exist constants E8 and L0 such that∣∣∣∣EνL,K [f ]− EνL
K/Ld∗

[f ]

∣∣∣∣ ≤ E8
ld∗
Ld∗

(
1 +

K2

L2d
∗

)
for all L ≥ L0 large enough, l < L/2 and K > 0.

2.6.4 Restriction to bounded particle configurations

As a first step we prove that it suffices to take bounded configurations.

Lemma 2.6.10. Under the assumptions of Lemma 2.4.19, there exists a constant C <

+∞ such that
1

Nd

∑
x∈TdN

EµNt

[
ηl(x)2χ{ηl(x)≥%}

]
≤ C
√
%

for all l > 0 and % > 0.

Proof. The proof follows Kipnis and Landim [47], Lemma V.4.2. A few modifications are

necessary in order to obtain an explicit, sufficiently fast rate of convergence.

First, by convexity it suffices to prove Lemma 2.6.10 with ηl(x)2 replaced by η(x)2 in the

hypothesis. Then Hölder’s inequality yields

(2.81)
1

Nd

∑
x∈TdN

EµNt

[
η(x)2χ{ηl(x)≥%}

]

≤ EµNt

[
1

Nd

∑
x∈TdN

η(x)4

]1/2(
1

Nd

∑
x∈TdN

PµNt
(
ηl(x) ≥ %

))1/2

.
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Lemma 2.6.1 yields a uniform bound on the fourth moment and we shall presently deduce

a vanishing bound on the probability P(ηl(x) ≥ %). The second term on the right hand

side of (2.81) can be estimated by the entropy inequality (2.32), which yields

1

Nd

∑
x∈TdN

PµNt
(
ηl(x) ≥ %

)
≤ 1

γNd

(
HN(µNt |νNρ ) + log

∫
XN

exp

(
γ
∑
x∈TdN

χ{ηl(x)≥%}

)
dνNρ (η)

)

for any γ > 0. Since the relative entropy is bounded by assumption, we have that

1

γNd
HN
(
µNt |νNρ

)
≤ C0

γ
.

The second term on the right hand side can be split up as follows. Let the set Γx :=

{z ∈ TdN |z − x ∈ (2l + 1)Zd} denote the sites in TdN equal to x modulo 2l + 1. With this

notation, we can write ∑
x∈TdN

χ{ηl(x)≥%} =
∑
|x|≤l

∑
y∈Γx

χ{ηl(y)≥%}.

Together with the independence of ηl(x) and ηl(y) for |x − y| > 2l, Hölder’s inequality

yields

C0

γ
+

1

γNd
log

∫
XN

exp

[
γ
∑
x

χ{ηl(x)≥%}

]
dνNρ (η)

≤ C0

γ
+

1

γ(2l + 1)d
log

∫
XN

exp
[
γ(2l + 1)dχ{ηl(0)≥%}

]
dνlρ(η).

The presence of the indicator function means that the integral of the exponential on the

right hand side can be estimated by

1 + Eνlρ
[
χ{ηl(0)≥%}e

γ(2l+1)d
]
.

Then Chebyshev’s inequality yields a bound on the last expectation by

e(2l+1)d(γ−%)Eνlρ
[
e
∑
|x|≤l η(x)

]
≤ exp

(
− (2l + 1)d(%− γ − logEρ(1))

)
,

where

Eρ(θ) := EνNρ
[
eθη(x)

]
=
Z(eθρ)

Z(ρ)

can be thought of as the Laplace transform of ν1
ρ . Under Assumption 1, all exponential
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moments are finite. Now the elementary inequality log(1 + x) ≤ x yields a bound

1

Nd

∑
x∈TdN

PµNt
(
ηl(x) ≥ %

)
≤ C0

γ
+

1

γ(2l + 1)d
exp

[
− (2l + 1)d(%− γ − logEρ(1))

]
Hence we can choose γ = %− logEρ(1) and use that the second term vanishes at least as

fast as the first term if l > 0.

2.6.5 Proof of the one block estimate

The aim of this section is to prove Lemma 2.6.2. Up to an error of C/
√
%, Lemma 2.6.10

allows us to consider only configurations with bounded particle numbers. Therefore we

will assume that the support of the density function fNt , defined in equation (2.63), is

contained in {
η ∈ XN | ηl(x) ≤ % for all x ∈ TdN

}
.

Specifically, recall that

fNt (η) =
dµNt
dνNf∞

(η).

Setting

(2.82) Vl,x(η) :=
∣∣∣g ◦ ηl(x)− σ(ηl(x))

∣∣∣2
and Vl := Vl,0, we need to control the term

1

TNd

∫ T

0

∑
x∈TdN

∫
XN

Vl,x(η)fNt (η)dνNρ (η).

Next we reduce the problem to only a box of size l. Let us introduce the short-hand

(2.83) f
N

=
1

TNd

∫ T

0

∑
x

τxf
N
t dt,

were τx is the translation operator τxf(η) ≡ f(τxη) and (τxη)(y) = η(y − x). Then it

holds that

(2.84)
1

TNd

∫ T

0

∑
x∈TdN

∫
XN

Vl,x(η)fNt (η)dνNρ (η) =

∫
XN

Vl(η)f
N

(η)dνNρ (η).
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Due to convexity and translation invariance of the Fisher information, it also holds that

(2.85) DN
(
f
N |νNρ

)
≤ 1

T

∫ T

0

DN
(
fNt |νNρ

)
dt ≤ CNd−2,

where the last bound follows from (2.70). Now let f l(ξ) be the density with respect to νlρ

of the marginal of f
N

(η)dνNρ (η) on Λl, i.e. let

f l(ξ) =
1

νlρ(ξ)

∫
{η:η|Λl=ξ}

f
N

(η)dνNρ (η)

where

(2.86) Λl = {−l, . . . , l}d,

is a box of size l and where νlρ is the Λl-marginal of the translation invariant measure νNρ .

Then it holds

(2.87)

∫
XN

Vl(η)f
N

(η)dνNρ (η) =

∫
NΛl

Vl(ξ)f l(ξ)dν
l
ρ(ξ).

The Fisher information on the box Λl is given by

(2.88) Dl

(
f |νlρ

)
=

∑
x,y∈Λl,x∼y

Ix,y(f |νlρ),

where

(2.89) Ix,y(f |νlρ) =
1

2

∫
g(ξ(x))

(√
f(ξx,y)−

√
f(ξ)

)2

dνlρ(ξ).

Thus we can formally write

Dl

(
f |νlρ

)
= −

∫
NΛl

√
fGN

√
f dνlρ(ξ),

if we neglect jumps that would take particles outside the box Λl. By convexity of the

“bond-Fisher-information” Ix,y we obtain

(2.90) Ix,y(f l|νlρ) ≤ Ix,y(f
N |νNρ ).

The Fisher information and the density f
N

are translation invariant. Hence it holds

Ix,y(f
N |νlρ) ≤

C

Nd
DN
(
f
N |νlρ

)
.
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Summing (2.90) over all neighbours x ∼ y ∈ z + Λl yields

(2.91) NdDl

(
f l|νlρ

)
≤ (2l + 1)dDN

(
f
N |νNρ

) (2.85)

≤ C(2l + 1)dNd−2.

Now we would like to apply the logarithmic Sobolev inequality. This means we have to

decompose along the canonical measures. Thus we shall only consider the problem on

hyperplanes of given particle numbers

ΩK :=
{
ξ ∈ NΛl

∣∣∣ ∑
x∈Λl

ξ(x) = K
}
.

The canonical measures on Λl are given by

νl,K(ξ) = νlρ

(
ξ
∣∣∑
x∈Λl

ξ(x) = K
)
,

for all ξ ∈ ΩK , cf. (2.8). We decompose this problem along the canonical measures on

noting

νlρ =
∞∑
K=0

νlρ(ΩK)νl,K .

Thus we define

f l,K := Z−1
K νlρ(ΩK)f l

∣∣
ΩK
, where

ZK :=

∫
ΩK

f l
∣∣
ΩK

(ξ)dνlρ(ξ).

This definition yields∫
NΛl

f l,K(ξ) dνl,K(ξ) = 1, ZK ≥ 0 and
∑
K

ZK = 1

Let us now consider the canonical Fisher information on Λl given by

Dl

(
f l,K |νl,K

)
:= −

∫
ΩK

√
f l,KG

N
√
f l,Kdν

l,K ,

where again we neglect possible jumps given by GN outside of ΛL, cf. (2.88). Denote the

relative entropy of measures on the smaller box by

Hl(µ|νl,K) :=

∫
NΛl

log
dµ

dνl,K
dµ
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for all µ ∈ P (ΩK). Under Assumption 1 (i)-(iii), the canonical Fisher information satisfies

the logarithmic Sobolev inequality

(2.92) Hl(µ|νl,K) ≤ Cl2Dl(µ|νl,K)

for all square boxes Λl, all K > 0, and all µ ∈ P (ΩK), cf. (2.13) and [27]. The definitions

yield that

(2.93)

Dl

(
f l|νlρ

)
= −

∫
NΛl

√
f lG

N

√
f ldν

l
ρ

= −
∞∑
K=0

νlρ(ΩK)

∫
ΩK

√
f l
∣∣
ΩK
GN
√
f l
∣∣
ΩK
dνl,K

= −
∞∑
K=0

ZK

∫
ΩK

√
f l,KG

N
√
f l,Kdν

l,K

=
∞∑
K=0

ZKDl

(
f l,K |νl,K

)
.

Equation (2.93) and the logarithmic Sobolev inequality (2.92) then yield

∑
K

ZKH
l
(
f l,K |νl,K

) (2.92)

≤
∑
K

ZKCl
2Dl

(
f l,K |νl,K

) (2.93)
= Cl2Dl

(
f l|νlρ

)
(2.91)

≤ Cl2(2l + 1)dN−dDN
(
f
N |νNρ

)
≤ C

l2

N2
(2l + 1)d.

Hence the Csiszár-Kullback-Pinsker inequality, cf. [47], yields

(2.94)
∞∑
K=0

ZK

∥∥∥f l,K − 1
∥∥∥
L1(dνl,K)

≤ C(2l + 1)d/2
l

N
.

Remark 2.6.11. The two functional inequalities, the logarithmic Sobolev inequality and

the Csiszár-Kullback-Pinsker inequality, were thus instrumental in replacing locally in

the infinitesimal volume element Λl the particle distribution by its local thermodynamic

equilibrium with an explicit error estimate.

Now we decompose the right hand side of (2.87) to obtain that

(2.95)

∫
NΛl

Vl(ξ)f l(ξ)dν
l
ρ(ξ) =

∞∑
K=0

ZK

∫
ΩK

Vl(ξ)f l,K(ξ)dνl,K(ξ).

Recall that Lemma 2.6.10 allowed us to restrict ourselves to density functions with support

contained in {ηl(x) ≤ %}. This implies that ZK = 0 for all K > %(2l + 1)d. On ΩK , the

function Vl(ξ) is bounded by a multiple of %2. Thus estimate (2.94) implies that we can
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bound (2.95) by

(2.96) C(2l + 1)
d
2
l

N
%2 +

∑
K

ZK

∫
ΩK

Vl(ξ)dν
l,K(ξ).

Let us show that the equivalence of ensembles yields a bound on the latter term. To this

end, we introduce another parameter k < l, to be chosen later in terms of l, such that

(2k+ 1)d divides (2l+ 1)d, i.e. (2l+ 1)d/(2k+ 1)d = m ∈ N. Then split up the box Λl into

m disjoint smaller boxes Bi, such that for each i = 1, . . . ,m, the box Bi is a translation

of Λk, defined in (2.86). Furthermore we note that

σ

(
1

(2l + 1)d

∑
|x|≤l

ξ(x)

)
= Eνl

K/(2l+1)d

[
g(ξ(0))

]
under the law νl,K . Thus we split∫

ΩK

Vl(ξ)dν
l,K(ξ)

=

∫
ΩK

∣∣∣∣ 1

(2l + 1)d

∑
|x|≤l

g(ξ(x))− σ
(

1

(2l + 1)d

∑
|x|≤l

ξ(x)

)∣∣∣∣2dνl,K(ξ)

≤
m∑
i=1

|Bi|
|Λl|

∫
ΩK

∣∣∣∣ 1

|Bi|
∑
x∈Bi

g(ξ(x))− Eνl
K/(2l+1)d

[g(ξ(0))]

∣∣∣∣2dνl,K(ξ),

by convexity of the function x 7→ x2. By translation invariance, the above sum can be

rewritten as

|Λk|
|Λl|

m∑
i=1

∫
ΩK

∣∣∣∣ 1

(2k + 1)d

∑
|x|≤k

g(ξ(x))− Eνl
K/(2l+1)d

[g(ξ(0))]

∣∣∣∣2dνl,K(ξ).

Since by construction m(2k + 1)d/(2l + 1)d = 1, this in turn is bounded by∫
ΩK

∣∣∣∣ 1

(2k + 1)d

∑
|x|≤k

g(ξ(x))− Eνl
K/(2l+1)d

[g(ξ(0))]

∣∣∣∣2dνl,K(ξ)

Since K(2l + 1)−d ≤ %, the equivalence of ensembles, Lemma 2.6.9, yields a bound of∫
NΛl

∣∣∣∣ 1

(2k + 1)d

∑
|x|≤k

g(ξ(x))− Eνl
K/(2l+1)d

[g(ξ(0))]

∣∣∣∣2dνlK/(2l+1)d(ξ) + C
|Λk|
|Λl|

%2.

Finally due to the law of large numbers, this is bounded by

(2.97) C

(
1

(2k + 1)d
+

(2k + 1)d

(2l + 1)d

)
%2.
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We can still choose k as a function of l. The asymptotically optimal choice is k =
√
l,

and in this case the last bound (2.97) vanishes as l−d/2%2. This error term together with

Lemma 2.6.10 and the error term appearing in (2.96) yield the one block estimate.

Remark 2.6.12. Note that the hydrodynamic limit is an asymptotic statement, in which

we choose l arbitrarily large. Therefore it was justified that k can be chosen in such a

way that (2k + 1)d divides (2l + 1)d and still k ∼
√
l.

2.6.6 Proof of the two blocks estimate

The aim of this section is to prove Lemma 2.6.3. First let us simplify the term under

investigation. Recall that

η(ε)( x
N

) =
1

(εN)d

∑
z∈TdN

χ
( z
εN

)
η(x+ z), and ηl(x) =

1

(2l + 1)d

∑
|z|≤l

η(x+ z).

Furthermore recall that the term to be estimated is(
sup
|y|≤εN

1

TNd

∫ T

0

∑
x∈TdN

〈
µNt ,

∣∣ηl(x+ y)− η(ε)(x)
∣∣2〉 dt

) 1
2

.

For ease of notation, let us temporarily drop the integral over t and η in the next line.

Since χ is differentiable, we can replace each η(x+z) appearing in the definition of η(ε)(x)

by ηl(x+ z) to obtain

(
sup
|y|≤εN

1

Nd

∑
x∈TdN

∣∣ηl(x+ y)− η(ε)( x
N

)
∣∣2) 1

2

≤

(
Cl2

(εN)2

∑
x∈TdN

η(x)2

Nd

) 1
2

+

+

(
sup
|y|≤εN

1

Nd

∑
x∈TdN

∣∣∣∣ηl(x+ y)− 1

(εN)d

∑
z∈TdN

χ
(
z
εN

)
ηl(x+ z)

∣∣∣∣2
) 1

2

.

Hence upon inserting estimate (2.33) we deduce that, up to an error term O( l
εN

), the term

to be estimated in the two blocks estimate is bounded by

(
sup

cl<|y|≤2εN

1

TNd

∫ T

0

∑
x∈TdN

EµNt
[∣∣ηl(x)− ηl(x+ y)

∣∣2] dt) 1
2

for a suitable c > 0. Hence it suffices to estimate the rate of convergence of

sup
cl<|y|≤2εN

1

TNd

∫ T

0

∑
x∈TdN

EµNt
[∣∣ηl(x)− ηl(x+ y)

∣∣2] dt.
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As before, let fNt denote the Radon-Nikodym density

fNt =
dµNt
dνNρ

.

Recalling definition (2.83) for the average f
N

over time T and lattice TdN of the density

fNt , the above expression is equal to

sup
cl<|y|≤2εN

∫
XN

f
N

(η)
∣∣ηl(0)− ηl(y)

∣∣2 dνNρ (η).

Furthermore, we can bound the number of particles on the disjoint boxes x + Λl and

x + y + Λl as in Lemma 2.6.10. Again the resulting error is bounded by C/
√
% for some

constant C < +∞. Hence it is enough to consider

sup
cl<|y|≤2εN

∫
XN

f
N

(η)V2,l(η)dνNρ (η)

where

(2.98) V2,l(η) := χ{ηl(0)∨ηl(y)≤%}
∣∣ηl(0)− ηl(y)

∣∣2
with the notation a ∨ b = max{a, b}. From here the proof of the two blocks estimate is

similar to the proof of the one block estimate and we will only highlight the differences.

It would now suffice to restrict the problem to a union of boxes Λl ∪ (y + Λl), but, put

together, these do not form a square (hypercubic) box of equal side length and hence they

do not guarantee the validity of an LSI. Hence we take into account a larger hypercube

of side length 4l + 2, which contains (translations of) both boxes Λl and (y + Λl) glued

together. Since the number of sites in this larger box still scales as ld, this choice does not

change the scaling of the rate of convergence. Specifically, consider a square (hypercubic)

box in Zd with each side length being exactly equal to 4l + 2. Now we split up this box

along a plane into two equal halfs Λ1
l and Λ2

l and translate each part such that Λl ⊂ Λ1
l ,

y + Λl ⊂ Λ2
l . Since |y| > cl, we can choose c > 0 ( depending only on the dimension d)

such that Λ1
l ∩ Λ2

l = ∅. Then we set

Λy,l := Λ1
l ∪ Λ2

l

and we shall presently consider the process only on Λy,l. First we introduce some new

notation. Let X2,l := NΛ1
l × NΛ2

l be the configuration space on the two boxes, ν2,l
ρ be the

product measure νNρ restricted to X2,l, and ξ = (ξ1, ξ2) be a configuration in X2,l. Let f y,l
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εN

Λ2
l

x∗

z∗

Λ1
l

Figure 2.1: The two boxes Λ1
l and Λ2

l . Opposite faces have been chosen for Γ, defined
below, and it holds (x∗, z∗) ∈ Γ.

to be the density conditional on configurations ξ ∈ X2,l, i.e.

f y,l(ξ) =
1

ν2,l
ρ (ξ)

∫
X2,l

χ{η∈XN :η|Λy,l=ξ}f
N

(η)dν2,l
ρ (η).

In a next step, we need to obtain bounds on the Fisher information of f y,l. Since f y,l is a

density over two disjoint boxes, this is technically more involved than the corresponding

calculations in the proof of the one block estimate. First we recall that convexity yields

DN
(
f
N |νNρ

)
≤ 1

T

∫ T

0

DN
(
fNt |νNρ

)
dt ≤ CNd−2.

Now we compare with an appropriate Fisher information on X2,l. For all f ∈ Cb(X2,l),

we set

I1,l
x,z(f |ν2,l

ρ ) =
1

2

∫
X2,l

g(ξ(x))
(√

f(ξx,z1 , ξ2)−
√
f(ξ)

)2

dν2,l
ρ (ξ)

for all neighbours x, z ∈ Λ1
l ,

I2,l
x,z(f |ν2,l

ρ ) =
1

2

∫
X2,l

g(ξ(x))
(√

f(ξ1, ξ
x,z
2 )−

√
f(ξ)

)2

dν2,l
ρ (ξ)

for all neighbours x, z ∈ Λ2
l , and

I l,+x∗,z∗(f |ν
2,l
ρ ) =

1

2

∫
X2,l

g(ξ1(x∗))

(√
f(ξx∗,−1 , ξz∗,+2 )−

√
f(ξ)

)2

dν2,l
ρ (ξ)

for all x∗ ∈ ∂Λ1
l , z∗ ∈ ∂Λ2

l on the boundaries of the boxes. Here ξx,z is the configuration ξ

after a particle jumped from site x to site z, cf. (2.2), and (ξx∗,−1 , ξz∗,+2 ) is the configuration

ξ = (ξ1, ξ2) after a particle jumped from the boundary point x∗ of the first box to the
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boundary point z∗ of the second box, i.e. we set

ξx,±j (z) =

{
ξj(x)± 1 if z = x ∈ Λj

l ,

ξj(z) otherwise

for all z ∈ Λj
l . Now consider one face each of the two rectangular boxes Λ1

l ,Λ
2
l , which are

facing each other and along which we have split up the original box. Then we say that

(x∗, z∗) ∈ Γ if and only if x∗ is on the face belonging to one face of ∂Λ1
l , and z∗ is the

corresponding site directly opposite x∗ on the face of ∂Λ2
l belonging to the other box, see

Figure 2.1. In this fashion we join two faces of Λy,l back together. Note that it holds that

|Γ| = (4l+ 2)d−1. Using the above “bond-Fisher-information”, we define a corresponding

Fisher information on Λy,l as

(2.99) D2,l

(
f |ν2,l

ρ

)
:=

∑
(x∗,z∗)∈Γ

I l,+x∗,z∗(f |ν
2,l
ρ ) +

∑
|x−z|=1

(
I1,l
x,z(f |ν2,l

ρ ) + I2,l
x,z(f |ν2,l

ρ )
)

for all f ∈ Cb(X2,l). This Fisher information corresponds to a particle process where

particles move according to a zero range process on each box and where they can jump

from the boundary of one box to the other. As in inequality (2.90), convexity yields

I1,l
x,z

(
f y,l|ν2,l

ρ

)
≤ Ix,z

(
f
N)

and I2,l
x,z

(
f y,l|ν2,l

ρ

)
≤ Ix+y,z+y

(
f
N)
,

where Ix,z was defined in (2.89). Summing over all x, z ∈ TdN such that |x − z| = 1 we

obtain by translation invariance that

(2.100)
∑
|x−z|=1

(
I1,l
x,z

(
f y,l|ν2,l

ρ

)
+ I2,l

x,z

(
f y,l|ν2,l

ρ

))
≤ 2C(2l + 1)dN−2.

since DN(f
N |νNρ ) ≤ CNd−2. Recall from Subsection 2.6.3 that dx denotes the configura-

tion with a single particle at x ∈ TdN . Since

PνNρ
(
η(x) = n

)
=

σ(ρ)n

g(n)!Z(σ(ρ))
,

a change of variables ξ′ = ξ + dx∗ resp. η′ = η + dx yields

I l,+x∗,z∗(f |ν
2,l
ρ ) =

σ(ρ)

2

∫
X2,l

(√
f(ξx∗,+1 , ξ2)−

√
f(ξ1, ξ

z∗,+
2 )

)2

dν2,l
ρ (ξ), and

Ix,z(f
N) =

σ(ρ)

2

∫
XN

(√
fN(ηx,+)−

√
fN(ηz,+)

)2

dνNρ (η),
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where f ∈ Cb(X2,l) and fN ∈ Cb(XN), and where Ix,z(f) is the ordinary bond-Fisher

information defined in (2.89). Again we take advantage of convexity to see that

(2.101) I l,+x∗,z∗
(
f y,l|ν2,l

ρ

)
≤ σ(ρ)

2

∫ (√
f
N

(ηx∗,+)−
√
f
N

(ηz∗,+)

)2

dνNρ (η)

for the average f
N

defined in (2.83). Of course the right hand side is not a summand of

DN(f
N |νNρ ). Therefore we consider a path (xk)0≤k≤R from x∗ ∈ ∂Λ1

l to z∗ ∈ ∂Λ2
l . Here

R := ‖z∗ − x∗‖`1 =
∑

1≤j≤d

|z∗j − x∗j|

represents the `1–norm on TdN , and the path satisfies

x0 = x∗, xR = z∗, and |xk+1 − xk| = 1 for every 0 ≤ k ≤ R− 1.

The telescope identity

√
f
N

(ηx∗,+)−
√
f
N

(ηz∗,+) =
R−1∑
k=0

(√
f
N

(ηxk+1,+)−
√
f
N

(ηxk,+)

)

together with Cauchy–Schwarz inequality(
R−1∑
k=0

ak

)2

≤ R
R−1∑
k=0

a2
k

yields a bound on the right hand side of (2.101) by

Rσ(ρ)

2

R−1∑
k=0

∫
XN

(√
f
N

(ηxk,+)−
√
f
N

(ηxk+1,+)

)2

dνNρ (η) = R

R−1∑
k=0

Ixk,xk+1

(
f
N)
.

Since f
N

is translation-invariant and xk, xk+1 are neighbours, we obtain

Ixk,xk+1
(f

N
) ≤ N−dDN(f

N |νNρ )

and hence

I l,+x∗,z∗
(
f y,l|ν2,l

ρ

)
≤ R2N−dDN

(
f
N |νNρ

)
.

Without loss of generality we can assume that we joined the two boxes such that |x∗−z∗| ≤
|y| ≤ 2εN and hence

R = ‖z∗ − x∗‖`1 ≤
√
d|y| ≤ 2

√
dεN.
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The bound on the Fisher information DN(f
N |νNρ ) ≤ CNd−2 thus yields

I l,+x∗,z∗
(
f y,l|ν2,l

ρ

)
≤ Cε2.

Summing over all pairs (x∗, z∗) ∈ Γ, yields another factor of Cld−1. In conjunction with

(2.100), we have shown that the Fisher information defined in (2.99) satisfies

(2.102) D2,l

(
f y,l|ν2,l

ρ

)
≤ C

( ld
N2

+ ε2ld−1
)
.

As before, we decompose the problem along hyperplanes of configurations on X2,l with

constant number of particles K and corresponding canonical measure

ν2,l,K(ξ) = ν2,l
ρ

(
ξ
∣∣ ∑
x∈Λ1

l

ξ1(x) +
∑
x∈Λ2

l

ξ2(x) = K
)
.

Similarly to the proof of the one block estimate we denote

Ω2
K =

{
ξ ∈ Λy,l

∣∣ ∑
x∈Λ1

l

ξ1(x) +
∑
x∈Λ2

l

ξ2(x) = K
}
,

see Subsection 2.6.5. On Ω2
K , we introduce the density

f 2,l,K := Z−1
K ν2,l

ρ (Ω2
K)f y,l

∣∣
Ω2
K
,

ZK :=

∫
Ω2
K

f y,l
∣∣
Ω2
K
dν2,l

ρ (η).

Then it holds that

(2.103)

∫
NΛl

V2,l(ξ)f y,l(ξ)dν
2,l
ρ (ξ) =

∞∑
K=0

ZK

∫
Ω2
K

V2,l(ξ)f 2,l,K(ξ)dν2,l,K(ξ).

By construction, the Fisher information (2.99) is equivalent to the Fisher information of

a ZRP on a box of side length 4l + 2. Thus it satisfies an LSI, if we replace ν2,l
ρ by its

canonical version ν2,l,K . The measure ν2,l,K is invariant with respect to this zero range

process and again we define a canonical Fisher information by

D2,l

(
f 2,l,K |ν2,l,K

)
=

∑
(x∗,z∗)∈Γ

I l,+x∗,z∗(f |ν
2,l,K) +

∑
|x−z|=1

(
I1,l
x,z(f |ν2,l,K) + I2,l

x,z(f |ν2,l,K
)
.

We can formally write

D2,l

(
f 2,l,K |ν2,l,K

)
=

∫
NΛy,l

√
f 2,l,KG

N
√
f 2,l,K dν2,l,K
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2.7. Perspective: the case of d ≥ 2 dimensions

if we neglect jumps outside of Λy,l. Of course, equation (2.93) holds for the equivalent

quantities on Λy,l as well. Also denote the relative entropy on X2,l by

H2,l(µ|ν2,l,K) :=

∫
X2,l

log
dµ

dν2,l,K
dµ

for all µ ∈ P (Ω2
K). Furthermore, we constructed our canonical Fisher information in such

a way that it is the canonical Fisher information of a zero range process on the square

lattice Λy,l with the two faces glued together. Hence [27] yields the logarithmic Sobolev

inequality

H2,l(µ|ν2,l,K) ≤ Cl2D2,l(µ|ν2,l,K)

uniformly in l > 0, K > 0, and µ ∈ P (Ω2
K), cf. (2.92). This logarithmic Sobolev inequality

yields ∑
K

ZKH
(
f 2,l,K |ν2,l,K

)
≤
∑
K

ZKCl
2D2,l

(
f 2,l,K |ν2,l,K

) (2.93)
= Cl2D2,l

(
f y,l|ν2,l

ρ

)
as in Subsection 2.6.5. Now the Csiszár-Kullback-Pinsker inequality and estimate (2.99)

yield
∞∑
K=0

ZK
∥∥f 2,l,K − 1

∥∥
L1(dν2,l,K)

≤ C
(
lN−1 + ε

√
l
)
ld/2.

Therefore we can replace f 2,l,K by 1 in (2.103), up to an error bounded by

C
(
lN−1 + ε

√
l
)
ld/2%2,

where % is the bound on the number of particles introduced in Lemma 2.6.10, see also

(2.98). Thus we are left to consider

∞∑
K=0

ZK

∫
Ω2
K

V2,l(ξ)dν
2,l,K(ξ),

which is bounded by C%2l−d/2 analogously to Subsection 2.6.5 by the equivalence of en-

sembles and the law of large numbers.

2.7 Perspective: the case of d ≥ 2 dimensions

Disclaimer: This section is included for its mathematical interest, but does not constitute

a proof of any of its statements - all results are still work in progress.

So far in our proof of the hydrodynamic limit, we have assumed d = 1. Let us now give

an exposition of work in progress on how to remove this restriction. Regularity results
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for uniformly parabolic equations in higher dimensions usually rely on the famous results

of Nash, de Giorgi, and Moser. We shall see that this is the case here, too. First make

the following conjecture on the propagation of higher regularity in Hk(Td) for general

dimensions.

Conjecture 1 (Improved regularity). We conjecture that for each k > 0, there exist

constants C < +∞ and α, β > 0 such that

‖ft‖Hk ≤ C
(
1 + ‖f0‖Hk + ‖f0‖αL∞‖f0‖βHk

)
for all f0 ∈ Hk(Td) and t ≥ 0.

Let us derive the consequences for the hydrodynamic limit if we assume this conjecture

to be true.

Stability estimates : Lemma 2.4.14 remains true if we change Λ to be

Λ(f) = ‖f0‖L∞
(
1 + ‖f0‖Hk + ‖f0‖αL∞‖f0‖βHk

) d+4
2k+2 .

Abstract differential calculus of the semigroup: Lemma 2.4.17 remains true with Λ given

as in the previous equation.

Rate of convergence on the hydrodynamic limit : Theorem 2.4.6 remains true if we change

rHL to be

rHL(T, %, l, ε, N) ≤ C
(
ε+ ε−d−(dα+(k+ d

2
)β) d+4

2k+2N1−θ(d+1) + ε−
4+d

2 N−2

+ e−cTN2+dε−2d + T
1
2

(
N−

1
2 l

1
2 + ε

1
2 l

1
4

)
%l

d
4 + %2l−

d
4 + %−

1
4 +

l

εN

)
.

Optimal rate of convergence: Corollary 2.4.9 remains true with a different optimal rate

N−κ, with κ depending on the exact values of α and β.

The strategy for the proof is the following: We know that solutions to equation (2.3) are

smooth due to the ellipticity of σ. The difficulty lies in obtaining explicit bounds on the

propagation of the Sobolev norms in Hk(Td). First of all, let us go back to the proof of the

regularity estimate, Lemma 2.4.13. Instead of interpolating Drift between ‖Dk+1ft‖L2 and

‖∇ft‖L2 , we can interpolate between ‖Dk+1ft‖L2 and ‖ft‖L∞ . The generalized Gagliardo-

Nirenberg-inequality, see [20], yields

‖Drf‖Lp ≤ C‖Dk+1f‖θL2‖f‖1−θ
L∞ ,

if

|r| − d

p
= θ
(
k + 1− d

2

)
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2.7. Perspective: the case of d ≥ 2 dimensions

and 1 ≥ θ ≥ |r|/(k + 1). Interpolating between, say, ‖Dkft‖L2 , ‖Dk+1ft‖L2 , and ‖ft‖L∞ ,

we should be able to obtain a local in time bound of the form

‖Dkft‖L2 ≤ C‖Dkf0‖L2 for all t ≤ T (‖Dkf0‖L2 , ‖f0‖L∞)

with polynomial dependence of T (·, ·) in each argument. (Otherwise there are analytic

norms available to perform a similar job.) Thus we have reduced the problem to obtaining

“large” time bounds only. In the terms that appear in the proof of Lemma 2.4.13, we

choose pi = |ri|/(2(k + 1)), which corresponds to the critical case θi = |ri|/(k + 1). This

choice yields

d

dt
‖Dsft‖2

L2 ≤ −c‖∇Dsft‖2
L2 + C(1 + ‖f0‖k+1

L∞ )‖∇Dsft‖2
L2 ,

which is exactly the critical case. Therefore we need a slightly better space than L∞(Td) to

interpolate. A suitable function space is the space C0,s(Td) of s–Hölder-continuous func-

tions. There are several ways to obtain an interpolation inequality between W |r|,p(Td),
Hk+1(Td) and C0,s(Td). A suitable approach could be Littlewood-Paley theory (microlocal

analysis). Assuming the correctness of this approach, we simply need to find a (polyno-

mial) bound on the C0,s–norm of the solutions for some s > 0. Now by Nash’s result [68]

on the Hölder-continuity of solutions to uniformly parabolic equations there indeed exists

some s > 0 such that

[ft]C0,s ≤ C‖f0‖L∞t
s
2

for all t > 0. Applying this bound for t ≥ T (‖Dkft‖L2 , ‖ft‖L∞) completes the proof.
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Chapter 3

On the Cauchy-problem of nonlinear

Schrödinger equations with angular

momentum rotation term

The work in this chapter has been carried out in collaboration with Paolo Antonelli and

Christof Sparber, most of which has been published in [2].

3.1 Introduction

Ever since the realization of Bose-Einstein condensation (BEC) in dilute atomic gases,

much attention has been given to dynamical phenomena associated to its superfluid na-

ture. One remarkable feature of a superfluid is the appearance of quantized vortices, cf.

[1] for a broad introduction to these kind of phenomena. In physical experiments, the

BEC is thereby set into rotation by a stirring potential, which is usually induced by a laser

[61, 62, 64, 79] (see also [6] for numerical simulations). The corresponding mathematical

model is a nonlinear Schrödinger equation (NLS) of Gross-Pitaevskii type with angular

momentum rotation term, i.e.

(3.1) i~∂tψ = −~2

2
∆ψ + λ|ψ|2ψ + U(x)ψ − Ω · Lψ, (t, x) ∈ R× R3,

where ψ = ψ(t, x) is the complex-valued wave function of the condensate and ~ is Planck’s

constant. In the physics literature, (3.1) is known as the Gross-Pitaevskii equation

for rotating Bose gases. The coupling constant λ ∈ R can be experimentally tuned to

account for both defocusing (λ > 0) and focusing (λ < 0) nonlinearities. The potential
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On the NLS with rotation term

U(x) describes the magnetic trap and is usually assumed to be of the form

(3.2) U(x) =
1

2

3∑
j=1

γ2
jx

2
j , γj ∈ R.

Finally, Ω · L denotes rotation term, where

(3.3) L := −ix ∧∇

is the quantum mechanical angular momentum operator and Ω ∈ R3 is a given angular

velocity vector. For a rigorous derivation of (3.1) in the stationary case, we refer to [53].

Furthermore, we remark that the appearance of quantized vortices has been rigorously

proved in [77], by means of a spontaneous symmetry breaking for the ground state of the

stationary equations (provided λ > 0 is sufficiently big). For further mathematical results

in this direction we refer to [1] and the references given therein.

The aforementioned works illustrate the fact that there is a considerable amount of math-

ematical studies devoted the stationary equation. On the other hand, the time-dependent

equation (3.1), has not been given as much attention, even though it is considered to pro-

vide the basis for a dynamical description of vortex creation. Indeed, except for numerical

simulations [6], we are only aware of [37, 38] providing rigorous results for (3.1). In [37]

global well-posedness of the Cauchy problem (in the energy space) is proved in the case

where λ > 0, U(x) = γ2

2
|x|2, i.e. an isotropic confinement, and |Ω| = γ. The analogous

result in d = 2 spatial dimensions is given in [38].

Remark 3.1.1. Let us mention that in [56, 57], the NLS model (3.1) is also rigorously

studied. The results, however, mainly concern an asymptotic regime, the so-called semi-

classical limit, and are thus very different from the present work.

In view of these results the main goal of our work is twofold: First, we shall prove global

well-posedness of (3.1) in the defocusing case, without any restriction on |Ω| or {γj}3
j=1.

The latter is needed to describe actual physical experiments, which often require |Ω| 6= γ.

To this end, we shall show that by a suitable time-dependent change of coordinates,

we can transform equation (3.1) into a nonlinear Schrödinger equation without rotation

term but with a time-dependent trapping potential. In a second step, we shall analyze

the possibility of finite time blow-up of solutions, in the case of a focusing nonlinearity.

Recall that finite time blow-up means, that there is a T ∗ < +∞, such that

lim
t→T ∗

‖∇ψ(t)‖L2 = +∞.

As we shall see, the usual proof of finite time blow-up, based on the classical virial

argument of Glassey [32] (see also [19]), in general does not go through in a straight-
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forward way, due to the influence of the rotation term. Instead, it has to be slightly

modified, yielding blow-up conditions which depend on |Ω|, and which coincide with the

usual conditions in the limit |Ω| → 0.

3.2 Mathematical setting and main result

In the following we shall consider the Cauchy problem for the following, slightly more

general NLS type model

(3.4) i∂tψ = −1

2
∆ψ + λ|ψ|2σψ + U(x)ψ − Ω · Lψ, ψ(0) = ψ0(x),

where x ∈ Rd, for d = 2 or d = 3, respectively, and σ < 2
d−2

, i.e. the nonlinearity is

assumed to be energy-subcritical. In d = 2 the rotation term simply reads

(3.5) Ω · L = −iω(x1∂x2 − x2∂x1)

for some ω ∈ R.

Remark 3.2.1. In d = 3 we could, without restriction of generality, choose a reference

frame such that Ω = (0, 0, ω)>, ω ∈ R, yielding the same formula as in (3.5). For the

sake of generality we shall not do so but consider the term Ω · L ≡ −iΩ · (x ∧ ∇) in full

generality.

A potential U(x) ∈ Rd, satisfying (Ω · L)U(x) = 0, ∀x ∈ Rd, is said to be axially

symmetric (with respect to the rotation axis Ω ∈ R3). In particular, this holds in the case

of an isotropic trap potential, i.e. a potential of the form (3.2) with γ1 = γ2 = γ3.

Formally, (3.4) preserves the total mass

M :=

∫
Rd
|ψ(t, x)|2 dx,

and the energy

(3.6) EΩ :=

∫
Rd

1

2
|∇ψ|2 + U(x)|ψ|2 +

λ

σ + 1
|ψ|2σ+2 − ψ(Ω · L)ψ dx.

Note that, the last term is indeed real valued (as can be seen by a partial integration).

In order for these two quantities to be well defined, we shall study the Cauchy problem

corresponding to (3.4) in the space

Σ := {f ∈ H1(Rd) : |x|f ∈ L2(Rd)},
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On the NLS with rotation term

equipped with the norm

‖f‖2
Σ := ‖f‖2

L2 + ‖∇f‖2
L2 + ‖xf‖2

L2 .

We remark that even if the potential U(x) is chosen to be identically zero, it would not

be enough to consider the Cauchy problem for ψ ∈ H1(Rd), since in this case we can no

longer guarantee that

(3.7) LΩ(t) :=

∫
Rd
ψ(t)(Ω · L)ψ(t) dx < +∞.

Physically speaking, this means that ψ has finite angular momentum. The choice of Σ is

therefore natural in our situation and not necessarily linked to the presence of a harmonic

trapping potential, in contrast to [16, 17, 18]. The usual definition of a solution ψ to the

nonlinear Schrödinger equation (3.4) is the following.

Definition 3.2.2. We say that ψ is a (mild) solution to (3.4) if ψ ∈ C([0, T ]; Σ) and it

holds that

(3.8) ψ(t) = S(t)ψ0 − i
∫ t

0

S(t− s)|ψ(s)|2σψ(s) ds,

where S(t) = eiHt denotes the unitary semigroup generated by the Hamiltonian

(3.9) H = −1

2
∆ + U(x)− Ω · L,

which corresponds to solving the linear Schrödinger equation.

Equation (3.8) is usually called Duhamel’s formula. Existence of S(t) is established in

Yajima [85], cf. Section 3.3. We can now state the main result of this work.

Theorem 3.2.3. Let 0 < σ < 2/(d − 2), λ ∈ R, Ω ∈ Rd, for d = 2, 3 and denote the

smallest trap frequency by γ := min{γj}dj=1.

(1) Then, for any given initial data ψ0 ∈ Σ, there exists a unique global in-time solution

ψ ∈ C([0,∞); Σ) to (3.4), provided one of the following conditions is satisfied:

(i) the nonlinearity is L2-subcritical σ < 2/d, or

(ii) σ ≥ 2/d and λ ≥ 0, i.e. the nonlinearity is defocusing.

(2) On the other hand, if λ < 0, and if either:

(i) (Ω · L)U = 0, i.e. U is axially symmetric, and σ ≥ 2/d,
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(ii) (Ω · L)U 6= 0, |Ω| ≤ γ, and σ ≥ κΩ/d, where

(3.10) κΩ :=

√
4γ2

γ2 − |Ω|2
, or

(iii) σ ≥ 2/d, without loss of generality Ω = (0, 0, ω)>, and there exists a T > 0 such

that

T <
2γ

|(γ2
1 − γ2

2)ω|
and (EΩ − LΩ(0))T 2 + İ(0)T + I(0) ≤ 0.(3.11)

Then there exist initial data ψ0 ∈ Σ such that finite time blow-up of the corresponding

solution ψ(t) occurs.

Note that assertions (2)(ii) coincides with (2)(i) in the limit Ω → 0 and that (2)(iii)

coincides with (2)(i) in the limit as γ1 − γ2 → 0.

In fact, we shall prove Assertions (1)(i) and (ii) under the more general assumptions on

U(x), see Assumption 3 below. This, together with the fact that no condition on the size

of |Ω| or {γj}dj=1 is required, generalizes the earlier results given in [37, 38].

Remark 3.2.4. The exact conditions on the initial data for Assertion (2) of the Theo-

rem 3.2.3 can be found in Lemma 3.4.1.

Concerning the possibility of finite time blow-up, we see that one has to distinguish

between the case of axially symmetric potential and the case where this symmetry is

broken. The reason will become clear in the proof given below. In the case of a non-

axially symmetric potential we can rigorously prove the occurrence of blow-up only under

the additional restrictions |Ω| ≤ γ, and σ ≥ κΩ/d, i.e. only for a limited range of

nonlinearities. It is easily seen that in d = 3, the set of σ’s satisfying our conditions

is non-empty, provided |Ω|2 < 8
9
γ2. Also note that in the case of vanishing rotation

lim|Ω|→0 κΩ = 2, yielding the usual range of L2-supercritical nonlinearities. At this point

it is not clear if these additional restrictions are only due to the strategy of our proof, or if

they indicate an actual difference in the behavior of solutions to (3.4). In particular, the

question whether or not finite time blow-up occurs in situations where Ω > γ is completely

open so far. In terms of physics, the latter would correspond to the case where the rotation

is stronger than the trap and thus one would expect a behavior which is similar (at least

qualitatively) to the “free” case, i.e. without any potential. We finally remark that the

question whether or not rotation can stabilize an attractive BEC is also debated from the

physics point of view, see [44] and [81].

This Chapter is now organized as follows: Section 3.3 is devoted to the proof of Assertion

(1) of Theorem 3.2.3. To this end, we shall first prove local in-time existence for solutions
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to (3.4). Also, we shall see that a naive use of the conservation laws for mass and energy

in general leads to restrictions on |Ω| or {γj}dj=1. We shall show in a second step how to

overcome this problems using a coordinate-change. Assertion (2) of our main Theorem is

then proved in Section 3.4 and we finally collect some concluding remarks in Chapter 5.

3.3 Local and global existence

In this section we shall allow for more general class of potentials U(x) satisfying the

following assumption.

Assumption 3. The potential U : Rd → R is assumed to be smooth and sub-quadratic,

i.e. for all multi-indices k ∈ Nd, with |k| ≥ 2, there exists a constant C = C(k) > 0 such

that

(3.12) |∂kU(x)| ≤ C for all x ∈ Rd.

Remark 3.3.1. Clearly, a harmonic trapping potential of the form (3.2) is sub-quadratic.

Assumption 3 allows us to take into account more general situations of physical interest,

such as a combined harmonic trap plus optical lattice potential, see e.g. [22]. Note how-

ever, that under Assumption 3, the potential is not necessarily bounded below (or con-

fining). In particular we can also allow for repulsive potentials such as U(x) = −γ2|x|2,

see [16].

As a first, preliminary step, we shall prove the following local well-posedness result.

Lemma 3.3.2. Let ψ0 ∈ Σ, ω ∈ R, and 0 < σ < 2/(d − 2). Moreover, assume that U

satisfies Assumption 3. Then there exists a time T = T (‖ψ0‖Σ) > 0 and a unique solution

ψ ∈ C([0, T ]; Σ) of equation (3.1) with ψ(0) = ψ0.

Thus we can construct a maximal solution ψ ∈ C([0, Tmax); Σ). The solution is maximal

in the sense that, if Tmax < +∞, then

lim
t→Tmax

‖∇ψ(t)‖L2 = +∞.

Moreover, the following conservation laws hold:

M(t) = M(0), and EΩ(t) = EΩ(0),(3.13)

whereas for the angular momentum we have

(3.14) LΩ(t) +

∫ t

0

∫
Rd
i|ψ|2(Ω · L)U(x)dx = LΩ(0).
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The proof is an adaptation of classical arguments, based on a contraction mapping (via

Duhamel’s formula (3.8)) and Strichartz estimates for the linear (unitary) group S(t) =

eitH generated by the Hamiltonian (3.9). In our case, Strichartz estimates can be obtained

by following the approach of Yajima [85]. As defined, the Hamiltonian is not of the form

necessary for the results in [85] to hold. However, the Hamiltonian can be rewritten as

H =
1

2
(i∇+ A(x))2 + U(x)− 1

2
A(x)2, where A(x) = Ω ∧ x.

Indeed it holds that

(i∇+ Ω ∧ x)2 = −∆ + (Ω ∧ x)2 + 2i(Ω ∧ x) · ∇+ i(∇ · A)

= −∆ + (Ω ∧ x)2 + 2iΩ · (x ∧∇).

Since the rotation B(x) = ∇ ∧ A(x) = 2Ω is constant and the potential U(x)− A(x)2/2

is subquadratic, the results in [85] imply that there exist finite, positive, constants C and

δ such that

‖S(t)ϕ‖L∞ ≤
C

|t|d/2
‖ϕ‖L1 , for |t| < δ.

In particular it follows that the Strichartz estimates for H are analogous to those found in

the well-known case of NLS with quadratic potentials [17], i.e. the rotation term does not

influence the dispersive behavior (locally in time). These Strichartz estimates have been

proven under general circumstances in [46]. Recall that p′ denotes the conjugate Hölder

coefficient of p, i.e. 1/p+ 1/p′ = 1.

Lemma 3.3.3 (Strichartz estimates). The unitary group S(t) = eitH with Hamiltonian

H defined in (3.9) satisfies a local in time Strichartz estimate. There exist TS > 0 and

constants Cq, Cq,q̃ such that

‖S(t)ϕ‖Lp(0,TS ;Lq(Rd)) ≤ Cq‖ϕ‖L2(Rd)

for all ϕ ∈ L2(Rd) and

∥∥∥∫ t

0

S(t− s)F (s) ds
∥∥∥
Lp(0,TS ;Lq(Rd))

≤ Cq,q̃‖F‖Lp̃′ (0,TS ;Lq̃′ (Rd))

if (p, q) and (p̃, q̃) are admissible coefficients, i.e. 2 ≤ q < 2d/(d − 2) and 2/p = δ(q) :=

d(1/2− 1/q) and likewise for (p̃, q̃).

Since the semigroup (S(t))t∈R ⊂ L(L2(Rd)) is continuous in time, the Strichartz estimates

also yield the following continuity property.
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Remark 3.3.4. Under the conditions of Lemma 3.3.3, it holds that

S(t)ϕ ∈ C([0, TS];L2(Rd)) and

∫ t

0

S(t− s)F (s) ds ∈ C([0, TS];L2(Rd)),

which will later allow us to prove continuity of time of fixed points of Duhamel’s for-

mula (3.8).

The existence of a local in-time solution is then standard and we repeat it here for the

reader’s convenience.

Proof of Lemma 3.3.2. The idea is to write the nonlinear Schrödinger equation as the

solution of a fixed point equation, using Duhamel’s formula:

ψ(t) = S(t)ψ0 − iλ
∫ t

0

S(t− s)
(
|ψ|2σ(s)ψ(s)

)
ds

=: Φ(ψ)(t).

Let us define parameters

q = 2σ + 2, p =
4σ + 4

dσ
, k =

2σ(2σ + 2)

2− (d− 2)σ
.

We will presently show that Φ as a maps the space

XT :=
{
ψ ∈ L∞(0, T ; Σ) : ψ, xψ,∇ψ ∈ Lp(0, T ;Lq(Rd))

}
onto itself. Indeed, setting R := ‖ψ0‖Σ, we shall establish that Φ is a contraction mapping

in

XT,R :=
{
ψ ∈ XT : ‖ψ‖L∞(0,T ;Σ) ≤ 2R,

‖xψ‖Lp(0,T ;Lq), ‖∇ψ‖Lp(0,T ;Lq) ≤ 2CqR
}
,

for all T small enough. We equip the space XT,R with a metric

d(ψ, ψ̃) = ‖ψ − ψ̃‖L∞t L2
x

+ ‖ψ − ψ̃‖LptLqx .

Then (XT,R, d) forms a complete metric space, cf. [19].
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In order to proceed, we calculate the commutators [∇, S(t)] and [x, S(t)]. We find that

[∇, H] =− 1

2
[∇,∆] + [∇, U ] + i[∇,Ω · (x ∧∇)]

=∇U + i[∇, x · (∇∧ Ω)]

=∇U + i∇∧ Ω

by the well-known formula a ·(b∧c) = det(a, b, c) = (a∧b) ·c for three-dimensional vectors

a, b, c. Similar calculations yield

[x,H] = ∇− iΩ ∧ x.

Since

i∂t[∇, S(t)] = [∇, HS(t)] = H[∇, S(t)] + [∇, H]S(t),

we deduce that

(3.15) ∇Φ(ψ)(t) = S(t)∇ψ0 − iλ
∫ t

0

S(t− τ)∇
(
|ψ(τ)|2σψ(τ)

)
dτ

− i
∫ t

0

S(t− τ) (∇U − iΩ ∧∇) Φ(ψ)(τ) dτ,

and

xΦ(ψ)(t) = S(t)∇ψ0 − iλ
∫ t

0

S(t− τ)∇
(
|ψ(τ)|2σψ(τ)

)
dτ

− i
∫ t

0

S(t− τ) (∇− iΩ ∧ x) Φ(ψ)(τ) dτ.

Since T < TS, the Strichartz estimates of Lemma 3.3.3 yield

(3.16) ‖∇Φ(ψ)‖LptLqx ≤ Cq‖ψ0‖Σ + |λ|Cq,q
∥∥∇ (|ψ(τ)|2σψ(τ)

) ∥∥
Lp
′
t L

q′
x

+ Cq,2
∥∥∇UΦ(ψ)

∥∥
L1
tL

2
x

+ Cq,2
∥∥Ω ∧∇Φ(ψ)

∥∥
L1
tL

2
x
.

Since
1

q′
=

2σ

q
+

1

q
and

1

p′
=

2σ

k
+

1

p
,

Hölder’s inequality yields

∥∥∇(|ψ|2σψ)∥∥
Lp
′
t L

q′
x
≤ (2σ + 1)

∥∥|ψ|2σ∇ψ∥∥
Lp
′
t L

q′
x

≤ (2σ + 1)
∥∥ψ∥∥2σ

LktL
q
x

∥∥∇ψ∥∥
LptL

q
x
.
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Furthermore, it holds that

∥∥ψ∥∥2σ

LktL
q
x
≤ T

2σ
k

∥∥ψ∥∥ 2σ
k

L∞t L
q
x
≤ T

2σ
k

∥∥ψ∥∥2σ

L∞t H
1
x

where we used the Gagliardo-Nirenberg inequality in the last estimate. Recall that the

Gagliardo-Nirenberg inequality implies

‖ϕ‖Lqx ≤ C‖ϕ‖1−δ(q)
L2
x
‖∇ϕ‖δ(q)L2

x

for all ϕ ∈ H1(Rd), where δ(q) is defined in the statement of Lemma 3.3.3. Furthermore

we can bound |∇U | ≤ Cx. Thus estimate (3.16) yields

‖∇Φ(ψ)‖LptLqx ≤ Cq‖ψ0‖Σ + CT
2σ
k

∥∥ψ∥∥2σ

L∞t Σx
‖∇ψ‖LptLqx

+ CT
∥∥xΦ(ψ)

∥∥
L∞t L

2
x

+ CT
∥∥∇Φ(ψ)

∥∥
L∞t L

2
x
.

Similarly we obtain that

‖Φ(ψ)‖LptLqx ≤ Cq‖ψ0‖Σ + CT
2σ
k

∥∥ψ∥∥2σ

L∞t Σx
‖ψ‖LptLqx

and

‖xΦ(ψ)‖LptLqx ≤ Cq‖ψ0‖Σ + CT
2σ
k

∥∥ψ∥∥2σ

L∞t Σx
‖xψ‖LptLqx
+ CT

∥∥∇UΦ(ψ)
∥∥
L∞t L

2
x

+ CT
∥∥∇Φ(ψ)

∥∥
L∞t L

2
x
.

Since (∞, 2) is an admissible pair, the same estimates hold for the L∞t L
2
x-norm, with Cq

replaced by 1. If we choose T sufficiently small, this shows that Φ indeed constitutes a

mapping Φ : XT,R → XT,R. In order to show that Φ : XT,R → XT,R is also a contraction,

we take two functions ψ, ψ̃ ∈ XT,R and estimate the difference Φ(ψ)−Φ(ψ̃). In the same

way as above, we obtain that

∥∥Φ(ψ)− Φ(ψ̃)
∥∥
LptL

q
x

=

∥∥∥∥∫ t

0

S(t− s)
(
|ψ(s)|2σψ(s)− |ψ̃(s)|2σψ̃(s)

)
ds

∥∥∥∥
LptL

q
x

≤
∥∥|ψ|2σψ − |ψ̃|2σψ̃∥∥

Lp
′
t L

q′
x
,

The point-wise inequality

∣∣|ψ|2σψ − |ψ̃|2σψ̃∣∣ ≤ 2σ
(
|ψ|2σ + |ψ̃)|2σ

)
|ψ − ψ̃|
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and the same Hölder and Gagliardo-Nirenberg estimates used before then yield

∥∥Φ(ψ)− Φ(ψ̃)
∥∥
LptL

q
x

+
∥∥Φ(ψ)− Φ(ψ̃)

∥∥
L∞t L

2
x

≤ C
(
‖ψ‖2σ

LktL
q
x

+ ‖ψ̃‖2σ
LktL

q
x

)
‖ψ − ψ̃‖LptLqx

≤ CT
2σ
k

(
‖ψ‖2σ

L∞t H
1
x

+ ‖ψ̃‖2σ
L∞t H

1
x

)
‖ψ − ψ̃‖LptLqx .

Thus, choosing T ≤ TS small enough, there exists a fixed point ψ ∈ XT,R satisfying

Φ(ψ) = ψ. Remark 3.3.4 applied to the fixed point equations, e.g. (3.15), yields ψ ∈
C([0, T ]; Σ). Hence ψ is indeed a mild solution to the Schrödinger equation (3.4). The

conservation laws (3.13) follow from straightforward calculations in combination with a

standard density argument and reversibility (see e.g. [19]). Finally, in order to prove the

blow-up alternative we first notice that the above local existence argument can be iterated

as long as ‖ψ(t)‖Σ stays bounded. Thus we obtain a maximal solution ψ ∈ C([0, Tmax); Σ)

with Tmax > 0. Assume that Tmax < +∞. In view of mass conservation, it follows that

lim
t→Tmax

(
‖xψ(t)‖L2 + ‖∇ψ(t)‖L2

)
= +∞.

Furthermore we compute

(3.17)
d

dt
‖xψ(t)‖2

L2 = 2Im

∫
Rd
xψ(t)∇ψ(t) dx ≤ ‖xψ(t)‖2

L2 + ‖∇ψ(t)‖2
L2 .

Thus, as long as ‖∇ψ(t)‖L2 is bounded, Gronwall’s inequality yields a bound on ‖xψ(t)‖L2

as well. The only obstruction to global existence is therefore given by the possible un-

boundedness of ‖∇ψ(t)‖L2 in [0, T ].

Remark 3.3.5. For quadratic potentials of the form (3.2), Strichartz estimates can be

obtained explicitly by invoking a generalization of Mehler’s formula for the kernel of S(t),

c.f. [18]. Indeed, by making the following ansatz

S(t)ψ0(x) =
d∏
j=1

(2πiµj(t))
−1/2

∫ d

R
e
i
2
F (t,x,y)ψ0(y) dy,

where µj(t) ∈ R+ and F (t, x, y) is a general quadratic form in x and y with (yet to be

determined) time-dependent coefficients. Substituting this into the linear Schrödinger

equation yields a coupled system of differential equations for these coefficients. Solving

this system, however, is in general rather tedious. This approach is therefore only feasible

under some simplifying assumptions, such as Ω = 0 [16, 17], or U(x) = γ2

2
|x|2 with |Ω| = γ

as it is done in [37, 38].

In view, of (3.14), we immediately conclude the following important corollary.
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On the NLS with rotation term

Corollary 3.3.6. If U(x) is such that (Ω · L)U = 0, then we also have conservation of

angular momentum, i.e. LΩ(t) = LΩ(0), and in addition it holds

(3.18) E0(t) ≡
∫
Rd

1

2
|∇ψ|2 + U(x)|ψ|2 +

λ

σ + 1
|ψ|2σ+2dx = E0(0).

Thus, in the case of axially symmetric potentials U(x), there are in fact two conserved

energy functionals corresponding to (3.4).

With a local existence result in hand, we can ask about global existence. In order to infer

T = +∞, one usually invokes the conservation of mass and energy (3.13). The problem

is, that due to the appearance of the angular momentum rotation term, the energy EΩ(t)

has no definite sign even if U ≥ 0 and λ ≥ 0 (defocusing nonlinearity). A possible strategy

to overcome this problem is to rewrite the linear Hamiltonian as

(3.19) H = −1

2
∆− Ω · L+ U(x) =

1

2
(−i∇− A(x))2 + U(x)− |Ω|

2

2
r2,

where A(x) = Ω ∧ x and r = |x ∧ Ω|/|Ω| denotes the radial distance perpenticular

to Ω. Note that A(x) can be considered as the vector potential corresponding to a

constant magnetic field B = ∇ ∧ A = 2Ω. The corresponding “magnetic derivative”

DA := −i(∇+ A(x)) is known to satisfy, cf. [19, Chapter 7]:

‖∇|ψ|‖L2 ≤ ‖DAψ‖L2 ≤ ‖∇ψ‖L2 + ‖xψ‖L2 .

It can therefore be used to control the nonlinear potential energy∝ ‖ψ‖L2σ+2 via Gagliardo-

Nirenberg type inequalities. If in addition, U(x) is given by (3.2) with |Ω| ≤ γ we infer

that U(x) − |Ω|2
2
r2 ≥ 0. In this case, the linear part of the energy is seen to be a sum

of non-negative terms, and global existence can be concluded as in the case of NLS with

quadratic confinement [17]. However, it seems impossible to extend this approach to sit-

uations in which |Ω| > γ, even if λ > 0. In order to do so, we shall follow a different idea,

which invokes a time-dependent change of coordinates.

Proof of Assertion (1) of Theorem 3.2.3. We start with the L2-subcritical case, i.e. 0 <

σ < 2/d which follows by standard arguments. Recall that in the proof of Lemma 3.3.2

we showed that

‖ψ‖Lp(0,T ;Lq)∩L∞(0,T ;L2) ≤ C‖ψ0‖L2 + C‖ψ‖2σ
Lk(0,T ;Lq) ,

where

q = 2σ + 2, p =
4σ + 4

dσ
, k =

2σ(2σ + 2)

2− (d− 2)σ
.
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3.3. Local and global existence

Moreover, we showed that

‖xψ‖Lp(0,T ;Lq)∩L∞(0,T ;L2) + ‖∇ψ‖Lp(0,T ;Lq)∩L∞(0,T ;L2)

≤ C‖ψ0‖Σ + C‖ψ‖2σ
Lk(0,T ;Lq)

(
‖xψ‖Lp(0,T ;Lq) + ‖∇ψ‖Lp(0,T ;Lq)

)
+

+ CT
(
‖xψ‖L∞(0,T ;L2) + ‖∇ψ‖L∞(0,T ;L2)

)
.

If σ < 2/d, it holds that 1/p < 1/k and thus

‖ψ‖Lk(0,T ;Lq) ≤ T 1/k−1/p‖ψ‖Lp(0,T ;Lq).

If we choose T = T ∗ > 0 small enough, we can absorb all terms on the right hand

side except the term involving ψ0 and obtain a bound on ‖ψ‖L∞(0,T ∗;Σ). Since we can

shift the time interval [0, T ∗] by an arbitrary amount of time, in the same way we

can get a uniform bound on ‖ψ‖L∞(0,T ∗;Σ) for every interval of length |I| ≤ T ∗. Thus,

by splitting any arbitrarily large time interval [0, T ] into sufficiently small sub-intervals

{In}Nn=1 such that |In| ≤ T ∗ and iterating the bound ‖ψ‖Lp(In;Lq)∩L∞(I;L2) ≤ C∗, we infer

‖ψ‖Lp(0,T ;Lq)∩L∞(0,T ;L2) ≤ C where C < +∞ depends on the value of T . From here, we

proceed as before to obtain a uniform bound for the left hand side for small T ∗ and thus

by iteration for arbitrary time intervals [0, T ].

Next we consider the case of an L2-supercritical nonlinearity σ > 2/d. In this case,

the iterative argument given above breaks down. The basic idea is to use a change of

coordinates in order to bring equation (3.4) into a more suitable form. For the sake of

notation we shall only consider the case d = 3 in the following. We first note that by

using the skew-symmetric matrix

Θ :=

 0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

 ,

the wedge product with the angular momentum can be written as

Ω ∧ x = −Θ · x.

Then the matrix-exponential

X(t, x) := eΘt · x

defines a rotation of the vector x ∈ R3 around the axis Ω by an angle of −|Ω|t. Its

time-derivative can be calculated as

(3.20) ∂tX(t, x) = Θ ·X(t, x) = −Ω ∧X(t, x).
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On the NLS with rotation term

Denoting the wave function in rotated coordinates via

(3.21) ψ̃(t, x) = ψ(t,X(t, x)),

we conclude from (3.20) that

i∂tψ̃(t, x) = i∂tψ(t,X(t, x))− i (Ω ∧X(t, x)) · ∇ψ(t,X(t, x)).

Rewriting −i(Ω ∧X) · ∇ = −iΩ · (X ∧∇) = Ω · L, we arrive at

i∂tψ̃ = −1

2
∆ψ̃ + λ|ψ̃|2σψ̃ + U(X(t, x))ψ̃,

where we have also used the fact that the Laplace operator is invariant with respect to

rotations, i.e.

∆Xψ(t,X(t, x)) = ∆xψ(t,X(t, x)).

Dropping all the tildes and denoting W (t, x) = U(X(t, x)), we conclude that up to

a change of coordinates, equation (3.4) is equivalent to the following NLS with time-

dependent potential

(3.22) i∂tψ = −1

2
∆ψ + λ|ψ|2σψ +W (t, x)ψ.

Note that W (t, x) is smooth w.r.t. t ∈ R and sub-quadratic w.r.t. x ∈ R3 with the same

(uniform) constants C(k) as given in Assumption 3 for U(x). Moreover, if U(x) is axially

symmetric, i.e. (Ω · L)U(x) = 0, equation (3.20) implies that

∂tW (t, x) = −Ω ∧X(t, x) · ∇U(X(t, x)) = −i(Ω · L)U(X(t, x)) = 0,

and hence W (t, x) = W (0, x) ≡ U(x). The energy corresponding to the transformed NLS

(3.22) is given by

EW (t) :=

∫
1

2
|∇ψ(t, x)|2 + λ|ψ(t, x)|2σ+2 +W (t, x)|ψ(t, x)|2 dx.

However, since the potential W (t, x) in general is time-dependent, the EW (t) is no longer

a conserved quantity. Rather, we obtain that

(3.23)
d

dt
EW (t) =

∫
∂tW (t, x)|ψ(t, x)|2 dx.

Nevertheless it is not hard to prove Assertion (1)(ii) of Theorem 3.2.3: In view of the

blow-up alternative, stated in Lemma 3.3.2, it suffices to show ‖∇ψ(t)‖L2 < +∞, for all
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T > 0. To this end, we first estimate

1

2
‖∇ψ(t)‖2

L2 ≤ EW (t) +

∣∣∣∣∫ W (t, x)|ψ(t, x)|2 dx
∣∣∣∣ ≤ EW (t) + C‖xψ(t)‖2

L2 ,

under the assumption that λ > 0. Integrating equation (3.23) and having in mind that

W (t, x) is sub-quadratic in x, we obtain that

‖∇ψ(t)‖2
L2 ≤EW (0) +

∫ t

0

d

ds
EW (s) ds+ C‖xψ(t)‖2

L2(3.24)

≤C0

(
1 + ‖xψ(t)‖2

L2 +

∫ t

0

‖xψ(s)‖2
L2 ds

)
.

Recalling inequality (3.17), we infer

d

dt
‖xψ(t)‖2

L2 + ‖xψ(t)‖2
L2 ≤ C0

(
1 + ‖xψ(t)‖2

L2 +

∫ t

0

‖xψ(s)‖2
L2 ds

)
,

which by Gronwall’s inequality yields an uniform bound on ‖xψ(t)‖L2 for every time inter-

val [0, T ]. With this in hand, we can bound ‖∇ψ(t)‖L2 by simply using inequality (3.24)

once more.

Remark 3.3.7. In particular, for Ω = (0, 0, ω)> and U(x) given by (3.2), we explicitly

find

W (t, x) =
1

2

( (
γ2

1 cos2(ωt) + γ2
2 sin2(ωt)

)
x2

1

+
(
γ2

1 sin2(ωt) + γ2
2 cos2(ωt)

)
x2

2 + sin(2ωt)
(
γ2

1 − γ2
2

)
x1x2 + γ2

3x
2
3

)
.

Clearly, W = 1
2
(γ2

1x
2
1 + γ2

2x
2
2 + γ2

3x
2
3) in the axially symmetric case γ2

1 = γ2
2 .

3.4 Finite time blow-up

This section is devoted to the proof of assertion (2) of Theorem 3.2.3. The statements

(2)(i) and (ii) follow from the following lemma.

Lemma 3.4.1. Let λ < 0, σ < 2/(d− 2), Ω ∈ Rd, for d = 2, 3, and U(x) be a quadratic

potential of the form (3.2). Denote γ = min{γj}dj=1 and let κΩ be as in (3.10). If either

(i) (Ω · L)U = 0, σ ≥ 2/d, and E0(0) < 0, or

(ii) (Ω · L)U 6= 0, |Ω| ≤ γ, σ ≥ κΩ/d, and EΩ(0) < 0,

then the corresponding solution to equation (3.4) necessarily blows up in finite time.
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On the NLS with rotation term

Note that the condition for the energy of the initial data ψ0 are not identical in both

cases. The reason will become clear in the proof given below.

Proof. To simplify the arguments later on, let us first compute the conservation laws

for the mass and momentum densities, i.e. ρ := |ψ|2 and J := Im(ψ∇ψ). Indeed a

straightforward calculation yields

(3.25) ∂tρ+ div J = iΩ · Lρ.

On the other hand, for the current density J we find

(3.26)

∂t
(
Im(ψ∇ψ)

)
= Im

((
− i

2
∆ψ + iU(x)ψ + iλ|ψ|2σψ + iΩ · Lψ

)
∇ψ
)

+ Im

(
ψ∇

(
i

2
∆ψ − iU(x)ψ − iλ|ψ|2σψ + i(Ω · Lψ)

))
.

Next, we calculate

Im
(
ψ∇(iΩ · Lψ)

)
= Im

(
ψ(iΩ · L)∇ψ

)
− Ω ∧ J.

Thus we can combine the two terms in (3.26) which stem from the rotation via

Im
(
(iΩ · L)ψ∇ψ

)
+ Im

(
ψ(iΩ · L)∇ψ

)
− Ω ∧ J = (iΩ · L)J − Ω ∧ J

where we have used that iΩ · L is real-valued. The other terms in (3.26) are usual in

quantum hydrodynamics, see e.g. [3], yielding the following equation for J :

(3.27) ∂tJ + div
(
Re(∇ψ ⊗∇ψ)

)
+

λσ

σ + 1
∇|ψ|2σ+2 + ρ∇U =

1

4
∆∇ρ+ (iΩ ·L)J −Ω∧ J.

The proof of finite time blow-up now follows by the classical argument of Glassey [32].

To this end, we consider the time evolution of

I(t) :=
1

2

∫
Rd
|x|2|ψ(t, x)|2 dx.

Differentiating with respect to time and using (3.25), we obtain

d

dt
I(t) =

∫
Rd
x · J(t, x) dx+

∫
Rd

|x|2

2
(iΩ · L)ρ(t, x) dx.

Integrating by parts and using (Ω · L)|x|2 = 0 shows that the second integral in fact

vanishes, i.e. we have
d

dt
I(t) =

∫
Rd
x · J dx.
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Differentiating in time once more and using (3.27), we obtain

d

dt

∫
x · J dx =

∫
x ·
(
− div

(
Re(∇ψ ⊗∇ψ)

)
− λ σ

σ + 1
∇|ψ|2σ+2 − ρ∇U

+
1

4
∆∇ρ+ (iΩ · L)J − Ω ∧ J

)
dx,

which we rewrite as

(3.28)

d

dt

∫
x · J dx =

∫ (
|∇ψ|2 + λ

dσ

σ + 1
|ψ|2σ+2 − ρx · ∇U

+ x · (iΩ · L)J − x · Ω ∧ J
)
dx.

Now we first note that for any potential U(x) of the form (3.2) we have x · ∇U = 2U .

Moreover, we compute∫
Rd
x · (iΩ · LJ) dx =−

∫
Rd

(Ω · Lx) · J dx = −
∫
Rd

(Ω · (x ∧∇)x) · J dx

=−
∫
Rd

((Ω ∧ x) · ∇)x · J dx = −
∫
Rd

(Ω ∧ x) · J dx,

which shows that the last two terms in (3.28) cancel each other. In summary we arrive

at the following identity

(3.29)
d2

dt2
I(t) =

∫ (
|∇ψ|2 + λ

dσ

σ + 1
|ψ|2σ+2 − 2U |ψ|2

)
dx,

which is in fact exactly the same as in the case of NLS without rotation, c.f. [19].

We can now prove assertion (i): Recall from Corollary 3.3.6 that if the potential U(x) is

axially symmetric, then E0(t) = E0(0), with E0 defined in (3.18). Hence from (3.29) and

U ≥ 0 we can write
d2

dt2
I(t) ≤ 2E0 + λ

dσ − 2

σ + 1

∫
Rd
|ψ|2σ+2dx.

Assuming E0 < 0, λ < 0, and σ ≥ 2/d, we consequently obtain

d2

dt2
I(t) < −C,

for some constant C > 0. Integrating this relation twice, we obtain

I(t) < −C
2
t2 + c1t+ c2

with some integration constants c1 and c2. Thus, if the solution ψ(t) ∈ Σ were to exist

for all times, there would be a time T ∗ < +∞, such that I(T ∗) < 0. This however is
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in contradiction with the fact that, by definition, I(t) ≥ 0 for all t ∈ R and hence the

assertion is proved.

In order to prove assertion (ii) we again consider (3.29): The problem is that in the case of

a non-axially symmetric potential (Ω · LU(x) 6= 0), the energy E0 is no longer conserved.

Rather we only have the conservation law for EΩ(t) = EΩ(0). In order to use this piece

of information, we first add and subtract to (3.29) a multiple of the angular momentum

LΩ(t), i.e.

d2

dt2
I(t) =

∫
Rd

(
|∇ψ|2 +

λσd

σ + 1
|ψ|2σ+2 − 2U |ψ|2 + κψΩ · Lψ

)
dx−

∫
κψΩ · Lψ dx,

where κ > 0 is a parameter to be chosen later on. Using Cauchy-Schwarz and Young’s

inequality, the last term on the right hand side can be bounded by

κ

∫
Rd
ψΩ · Lψdx ≤ κ|Ω|‖∇ψ‖L2‖xψ‖L2 ≤ κθ

2
‖∇ψ‖2

L2 +
κ|Ω|2

2θ
‖xψ‖2

L2 ,

where θ > 0 is another free parameter to be chosen later on. We consequently estimate

d2

dt2
I(t) ≤

∫
Rd

(
1 +

κθ

2

)
|∇ψ|2 +

λσd

σ + 1
|ψ|2σ+2 +

(
−2U +

κ|Ω|2

2θ
|x|2
)
|ψ|2 dx

−
∫
Rd
κψΩ · Lψ dx.

Now, we choose θ such that 2(1 + κθ
2

) = κ, that is θ = κ−2
κ

. In this way we have

d2

dt2
I(t) ≤

∫
Rd
κ

(
1

2
|∇ψ|2 + λ

1

σ + 1
|ψ|2σ+2 + U |ψ|2 − ψΩ · Lψ

)
dx

+

∫
Rd
λ
σd− κ
σ + 1

|ψ|2σ+2dx+

∫
Rd

(
−(κ+ 2)U +

κ2|Ω|2

2(κ− 2)
|x|2
)
|ψ|2dx.

Let γ := min(γ1, γ2, γ3), and choose κ such that

(κ+ 2)

2
γ2 = κ2 |Ω|2

2(κ− 2)
.

This yields κ = κΩ with

κΩ =

√
4γ2

γ2 − |Ω|2
.

By doing so, the last term in the previous inequality is seen to be non-positive and

furthermore we conclude that, for λ < 0 and σ ≥ κΩ

d
, it holds:

(3.30)
d2

dt2
I(t) ≤ κΩEΩ(t) ≡ κΩEΩ(0).
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Thus, if the initial energy EΩ(0) < 0 the second derivative of I(t) is again negative and

we can argue (by contradiction) as before.

The next lemma gives a proof of assertion (2)(ii) in Theorem 3.2.3.

Lemma 3.4.2. Let λ < 0, σ < 2/(d− 2), d = 2, 3, and U(x) be a quadratic potential of

the form (3.2). Denote γ = min{γj}dj=1 and suppose that Ω = (0, 0, ω)> if d = 3 or Ω · L
is of the form (3.5) if d = 2. If there exists a T > 0 such that

T <
2γ2

|(γ2
1 − γ2

2)ω|

as well as

E0(0)T 2 + İ(0)T + I(0) < 0,

then the corresponding solution to equation (3.4) necessarily blows up in finite time.

Note that if one does not care about the orientation of the rotation, one can always change

the sign of Ω such that LΩ(0) ≤ 0 in which case EΩ < 0 implies E0(0) < 0.

Proof. Again, we let

I(t) =

∫
x2|ψ(t, x)|2 dx

denote the second moment of |ψ|2. In equation (3.29), we already showed that

d2

dt2
I(t) =

∫
Rd

(
|∇ψ|2 +

λdσ

σ + 1
|ψ|2σ+2 − 2U |ψ|2

)
dx.

In the special case where Ω = (0, 0, ω)>, equation (3.14) yields

d

dt
LΩ(t) = (γ2

1 − γ2
2)ω

∫
Rd
x1x2|ψ|2 dx.

Integrating twice and applying Hölder’s inequality yields∫ t

0

LΩ(s) ds = tLΩ(0) +

∫ t

0

∫ s

0

(γ2
1 − γ2

2)ω

∫
Rd
x1x2|ψ(τ)|2 dx dτds

≤ tLΩ(0) +

∫ t

0

∫ s

0

|(γ2
1 − γ2

2)ω|
∫
Rd

1

2

(
x2

1 + x2
2

)
|ψ(τ)|2 dx dτds.

The integrand on the right hand side is positive and we can estimate the integral over

{0 ≤ τ ≤ s} by the integral over the larger set {0 ≤ τ ≤ t}. Hence it holds that∫ t

0

LΩ(s) ds ≤ tLΩ(0) + t

∫ t

0

|(γ2
1 − γ2

2)ω|
∫
Rd

1

2

(
x2

1 + x2
2

)
|ψ(s)|2 dx ds

≤ tLΩ(0) + t

∫ t

0

|(γ2
1 − γ2

2)ω|
γ2

∫
Rd
U |ψ(s)|2 dx ds

(3.31)
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On the NLS with rotation term

by the definition of γ. Integrating (3.29) yields

İ(t) = İ(0) +

∫ t

0

∫
Rd

(
|∇ψ|2 +

λdσ

σ + 1
|ψ|2σ+2 − 2U |ψ|2

)
dx ds

Adding and substracting the integral over 2LΩ yields

İ(t) = İ(0) +

∫ t

0

∫
Rd

(
|∇ψ|2 +

λdσ

σ + 1
|ψ|2σ+2 − 2U |ψ|2

)
dx ds

+ 2

∫ t

0

LΩ(s) ds− 2

∫ t

0

LΩ(s) ds.

The definition of the energy (3.6) thus yields

İ(t) = İ(0) +

∫ t

0

EΩ ds+
λ(dσ − 2)

σ + 1

∫ t

0

∫
Rd
|ψ|2σ+2 dx ds

− 4

∫ t

0

∫
Rd
U |ψ|2 dx ds− 2

∫ t

0

LΩ(s) ds.

The energy EΩ is constant, the term involving the nonlinearity is non-positive, and hence

estimate (3.31) yields

İ(t) ≤ İ(0) + 2t(EΩ − LΩ(0)) +

∫ t

0

(
2
(
t
|(γ2

1 − γ2
2)ω|

γ2
− 2
)∫

Rd
U |ψ(s)|2 dx

)
ds

Of course, E0(0) = EΩ−LΩ(0). Under the conditions of the theorem, we obtain I(T ) ≤ 0

upon another integration with respect to time, thus yielding a contradiction!

3.5 Numerical simulations of a rotating Bose-Einstein

condensate

In this section, we will present some numerical results regarding the numerical simulation

of equation (3.4). Numerical simulations of the nonlinear Schrödinger equations will also

be necessary in Chapter 4, so that this section can be seen as a preparation for the next

chapter. It is well-known that the nonlinear Schrödinger equation without rotation term,

i.e. (3.4) with Ω = 0, can be efficiently simulated using operator splitting combined with

pseudo–spectral methods. For example, let us suppose we want to solve the rotation-less

NLS

(3.32) i∂tψ = −1

2
∆ψ + U(x)ψ + λ|ψ|2σψ, ψ(t = 0) = ψ0(x),
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3.5. Numerical simulations of a rotating Bose-Einstein condensate

with (t, x) ∈ [0, T ]×Rd. In order to perform numerical simulations, we restrict ourselves

to a bounded set, say, [−L,L]d for some L ∈ [0,∞) and periodic solutions ψ. This can

be justified by choosing a trapping potential U or a focusing nonlinearity λ < 0 which

is strong enough to ensure that the support of the solution effectively remains within

the box [−L,L]d. In practice, we stop simulations if the numerical support of the wave

function ψ reaches the boundary of our domain [−L,L]d. We discretize time and space

into the equidistant grid

tn = n∆t, n = 0, . . . , N such that tN = T and

xm = −L+m∆x,m = 0, . . . ,M such that ∆x =
2L

M
.

Our goal is to calculate approximations Ψn,m to the correct solution ψ(tn, xm) for all

n = 0, . . . , N and m = 0, . . . ,M . Let us first consider only the discretization in time. We

perform an operator-splitting method, i.e. at each time-step we split equation (3.32) into

two equations

(3.33) i∂tψ(t, x) = −1

2
∆ψ(t, x), t ∈ [tn, tn+1]

and

(3.34) i∂tψ(t, x) = U(x)ψ(t, x) + λ|ψ(t, x)|2σψ(t, x), t ∈ [tn, tn+1].

Thus, at each time step, given initial datum ψn(x) (which we take to be an approximation

of ψ(tn, x)), we solve the first equation to obtain a solution ψ̃n+1(x) at t = tn+1. Then we

use ψ̃n+1 as initial datum in the second equation to obtain ψn+1(x).

The first equation (3.33) is solved exactly in Fourier space

i∂tFψ(t, k) =
k2

2
Fψ(t, k), t ∈ [tn, tn+1], x ∈ Rd

where F : L2(Td)→ L2(Rd) is the Fourier transform. Thus we obtain that

(3.35) ψ̃n+1 = F−1
[
e−i

k2

2
∆tFψ(tn, ·)

]
, t ∈ [tn, tn+1], x ∈ Rd,

where F−1 denotes the inverse Fourier transform. Since the probability density |ψ(t, x)|
is constant under the evolution of equation (3.34), the (exact) solution of equation (3.34)

is given by

ψn+1(x) = e−i(U(x)+λ|ψ(t,x)|2)∆tψ̃n+1(x).

By iterating this procedure, we obtain an approximate solution ψ(tn, ·), n = 0, . . . , N .

When introducing the time-discretization equation, we just need to replace the Fourier
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On the NLS with rotation term

transform in (3.35) by the discrete Fourier transform on the spatial lattice. Thus we

obtain an approximate function (ψ(tn, xm)), n = 0, . . . , N , m = 0, . . . ,M . The numerical

mass ∑
xm∈ΛM

|ψ(tn, xm)|2(∆x)d

is conserved up to rounding errors.

In the linear case, convergence of the time-splitting scheme as ∆t → 0 is a direct conse-

quence of Trotter’s product formula

e(A+B)t = lim
N→∞

(
eA

t
N eB

t
N

)N
where A and B are generators of C0-continuous semigroups. Here we take A = i∆/2

to be the free Schrödinger operator and B = U to be the multiplaction operator with

the potential U . For examples of explicit error estimates, see the works [43, 80]. In the

nonlinear case, convergence has been investigated in, for example, [30, 60]. In practice

we use Fast Fourier Transform (FFT) and Strang-splitting which is second-order in time

and of spectral order in space. A Strang-splitting time-step consists of performing half a

time-step ∆t/2 solving (3.34), then a full time-step ∆t solving (3.33), followed by another

half-step ∆t/2 solving (3.34).

In the presence of the angular momentum rotation term −Ω · L with L given in (3.3),

we would need to include the rotation term in equation (3.33) or (3.34). Then it is in

general no longer possible to solve the separate equations exactly. In the literature sev-

eral discretizations for the nonlinear Schrödinger equations (3.4) have been suggested, see

[6, 8, 9, 88]. Here we point out a simple alternative approach based on the change of coor-

dinates (3.21) and present some numerical experiments. As detailed in section 3.3, after

the change of coordinates, the wave function ψ solves the NLS with a time-dependent

potential (3.22). Again we restrict ourselves to the finite box [−L,L]d for L large enough.

Then the time-splitting procedure given by (3.33) and (3.34) remains valid with U(x)

replaced by W (t, x).

This well-known pseudo-spectral time-splitting method is an efficient and easy-to-implement

alternative to numerical methods for equation (3.4) proposed in the literature [6, 8, 9, 88].

Note that many of the proposed methods are also valid for more general equations, e.g.

the NLS with a dissipation term. On the other hand, the pseudo-spectral method does

not introduce highly undesirable numerical dissipation to the solution of (3.4). Let us

compare the pseudo-spectral method based on the change of coordinates with an example

taken from the work [6]. We take d = 2, λ = 1000, and Ω = 0.9 in (3.4). We replace U(x)

by a time-dependent potential

W (t, x) =
1

2

(
(1 + ε)x̃2 + (1− ε)ỹ2

)
,
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3.5. Numerical simulations of a rotating Bose-Einstein condensate

where x̃ = x cos(ω̃t) + y sin(ω̃t), ỹ = y cos(ω̃t) − x sin(ω̃t) and we take ε = 0.35. This a

rotating potential with frequency ω̃, which in rotating coordinates rotates with frequency

ω+ω̃. Note that our results also hold for time-dependent potentials, cf. [18]. The problem

is solved (in rotating coordinates) on the numerical domain [−14, 14] with N = 358 steps

and ∆t = 0.0001. The initial datum is taken to be a groundstate of (3.4) with ε = 0 and

ω̃ = 0 which has been obtained by the normalized gradient flow for (3.4) with the backward

Euler finite difference method proposed in [10]. Our results are shown in Figure 3.1 and,

for comparison, the results of [6] are shown in Figure 3.2. Our results are transformed back

into the original (non-rotating) coordinates so that both figures show the wave functions

in the same coordinates. Note that the back-transformation from the rotated lattice to

the lattice in the original coordinates introduces small errors into some of the plots in

Figure 3.1, which are not present in Figure 3.2 and which could in principle be reduced

by using a more suitable (numerical) back-transformation. Comparison of the results

shows that the gradient-flow method produces slightly different vortex lattices as a ground

state. The lattice seems to be slightly less stable, but the results agree both in the number

of vortices as well as the orientation of the condensate, down to the position of the four

outer-most vortices (at t = 0, these are the two on the north-facing side of the condensate

and the two on the south-facing side).
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On the NLS with rotation term

Figure 3.1: Contour plots of the density function |ψ(t, x)|2 for dynamics of a vortex lattice
at different times
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3.5. Numerical simulations of a rotating Bose-Einstein condensate

Figure 3.2: Contour plots of the density function |ψ(t, x)|2 for dynamics of a vortex lattice
as found in [6]
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Chapter 4

Optimal bilinear control of

Gross–Pitaevskii equations

The work in this chapter has been carried out in collaboration with Michael Hintermüller,

Peter A. Markowich, and Christof Sparber and is a slightly extended version of the pub-

lished work [39].

4.1 Introduction

4.1.1 Physics background

Ever since the first experimental realization of Bose–Einstein condensates (BECs) in 1995,

the possibility to store, manipulate, and measure a single quantum system with extremely

high precision has provided great stimulus in many fields of physical and mathematical

research, among them quantum control theory. In the regime of dilute gases, a BEC,

consisting of N particles, can be modeled by the Gross–Pitaevskii equation [74], i.e. a

cubically nonlinear Schrödinger equation (NLS) of the form

i~∂tψ = − ~2

2m
∆ψ + U(x)ψ +Ng|ψ|2ψ +W (t, x)ψ, x ∈ R3, t ∈ R,

with m denoting the mass of the particles, ~ Planck’s constant, g = 4π~2asc/m, and

asc ∈ R their characteristic scattering length, describing the inter-particle collisions. The

function U(x) describes an external trapping potential which is necessary for the exper-

imental realization of a BEC. Typically, U(x) is assumed to be a harmonic confinement.

In situations where U(x) is strongly anisotropic, one experimentally obtains a quasi one-

dimensional (“cigar-shaped”), or quasi two-dimensional (“pancake shaped”) BEC, see for

instance [49]. In the following, we shall assume U(x) to be fixed. The condensate is
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Optimal control of NLS

consequently manipulated via a time-dependent control potential W (t, x), which we shall

assume to be of the following form:

W (t, x) = α(t)V (x),

Here, α(t) denotes the control parameter (typically, a switching function acting within a

certain time-interval [0, T ]) and V (x) is a given potential. In our context, the potential

V (x) models the spatial profile of a laser field used to manipulate the BEC and α(t) its

intensity.

The problem of quantum control, i.e. the coherent manipulation of quantum systems

(in particular Bose–Einstein condensates) via external potentials W (t, x), has attracted

considerable interest in the physics literature, cf. [15, 23, 40, 41, 72, 75, 89]. From the

mathematical point of view, quantum control problems are a specific example of bilinear

control systems [24]. It is known that linear or nonlinear Schrödinger–type equations are

in general not exactly controllable in, say, L2(R3), cf. [82]. Similarly, approximate con-

trollability is known to hold for only some specific systems, such as [65]. More recently,

however, sufficient conditions for approximate controllability of linear Schrödinger equa-

tions with purely discrete spectrum have been derived in [21]. In [63] these conditions have

been shown to be generically satisfied, but, to the best of our knowledge, a generalization

to the case of nonlinear Schrödinger equations is still lacking.

The goal of the current paper is to consider quantum control systems within the framework

of optimal control, cf. [84] for a general introduction, from a partial differential equation

constrained point of view. The objective of the control process is thereby quantified

through an objective functional J = J(ψ, α), which is minimized subject to the condition

that the time-evolution of the quantum state is governed by the Gross–Pitaevskii equation

(GPE). Such objective functionals J(ψ, α) usually consist of two parts, one being the

desired physical quantity (observable) to be minimized, the other one describing the cost

it takes to obtain the desired outcome through the control process. In quantum mechanics,

the wave function ψ(t, ·) itself is not a physical observable. Rather, one considers self-

adjoint linear operators A acting on ψ(t, ·) and aims for a prescribed expectation value of

A at time t = T > 0, the final time of the control process. Such expectation values are

computed by taking the L2–inner product 〈ψ(T, ·), Aψ(T, ·)〉L2(Rd). Note that this implies

that the corresponding ψ(t, ·) is only determined up to a constant phase. This fact makes

quantum control less “rigid” when compared to classical control problems in which one

usually aims to optimize for a prescribed target state.

There are many possible ways of modeling the cost it takes to reach a certain prescribed

expectation value. The corresponding cost terms within J(ψ, α) are often given by the

norm of the control α(t) in some function space. Typical choices are L2(0, T ) or H1(0, T ).

However, these choices of function spaces for α(t) often lack a clear physical interpretation.
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In addition, cost terms based on, say, the L2–norm of α tend to yield highly oscillatory

optimal controls due to the oscillatory nature of the underlying (nonlinear) Schrödinger

equation. The same is true for quantum control via so-called Lyapunov tracking methods,

see, e.g., [25]. In the present work we shall present a novel choice for the cost term, which

is based on the corresponding physical work performed throughout the control process.

We continue this introductory section by describing the mathematical setting in more

detail.

4.1.2 Mathematical setting

We consider a quantum mechanical system described by a wave function ψ(t, ·) ∈ L2(Rd)

within d = 1, 2, 3 spatial dimensions. The case d = 1, 2 models the effective dynamics

within strongly anisotropic potentials (resulting in a quasi one or two-dimensional BEC).

The time-evolution of ψ(t, ·) is governed by the following generalized Gross–Pitaevskii

equation (rescaled into dimensionless form):

(4.1) i∂tψ = −1

2
∆ψ + U(x)ψ + λ|ψ|2σψ + α(t)V (x)ψ, x ∈ Rd, t ∈ R,

with λ ≥ 0, σ < 2/(d− 2), and subject to initial data

ψ(0, ·) = ψ0 ∈ L2(Rd), α(0) = α0 ∈ R.

For physical reasons we normalize ‖ψ0‖L2(Rd) = 1, which is henceforth preserved by the

time-evolution of (4.1). In addition, the control potential is assumed to be V ∈ W 1,∞(Rd),

whereas for U(x) we require

U ∈ C∞(Rd) such that ∂kU ∈ L∞(Rd) for all multi-indices k with |k| ≥ 2.

In other words, the external potential is assumed to be smooth and subquadratic. One

of the most important examples is the harmonic oscillator U(x) = 1
2
|x|2. Due to the

presence of a subquadratic potential, we restrict ourselves to initial data ψ0 in the energy

space

(4.2) Σ :=
{
ψ ∈ H1(Rd) : xψ ∈ L2(Rd)

}
.

In particular, this definition guarantees that the quantum mechanical energy functional

(4.3) E(t) =

∫
Rd

1

2
|∇ψ(t, x)|2 +

λ

σ + 1
|ψ(t, x)|2σ+2 + (α(t)V (x) + U(x))|ψ(t, x)|2dx

associated to (4.1) is well defined.
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Remark 4.1.1. Note that σ < 2/(d − 2) allows for general power law nonlinearities in

dimensions d = 1, 2, whereas in d = 3 the nonlinearity is assumed to be less than quintic.

From the physics point of view a cubic nonlinearity σ = 1 is the most natural choice,

but higher order nonlinearities also arise in systems with more complicated inter-particle

interactions, in particular in lower dimensions; compare [49]. From the mathematical

point of view, it is well known that the restriction σ < 2/(d−2) guarantees well-posedness

of the initial value problem in the energy space Σ; see [18, 19]. In addition, the condition

λ ≥ 0 (defocusing nonlinearity) guarantees the existence of global in-time solutions to

(4.1); see [18]. Hence, we do not encounter the problem of finite-time blow-up in our

work.

Although (4.1) conserves mass, i.e. ‖ψ(t, ·)‖L2(Rd) = ‖ψ0‖L2(Rd) for all t ∈ R, the energy

E(t) is not conserved. This is in contrast to the case of time-independent potentials. In

our case, rather one finds that

(4.4)
d

dt
E(t) = α̇(t)

∫
Rd
V (x)|ψ(t, x)|2dx.

The physical work performed by the system within a given time-interval [0, T ] is therefore

equal to

(4.5) E(T )− E(0) =

∫ T

0

α̇(t)

∫
Rd
V (x)|ψ(t, x)|2dx dt.

Thus a control α(t) acting for t ∈ [0, T ] upon a system described by (4.1) requires a

certain amount of energy, which is given by (4.5). It, thus, seems natural to include such

a term in the cost functional of our problem in order to quantify the control action.

Indeed, for any given final control time T > 0, and parameters γ1 ≥ 0, γ2 > 0, we define

the following objective functional :

(4.6) J(ψ, α) := 〈ψ(T, ·), Aψ(T, ·)〉2L2(Rd) + γ1

∫ T

0

(Ė(t))2 dt+ γ2

∫ T

0

(α̇(t))2 dt,

where A : Σ → L2(Rd) is a bounded linear operator which is assumed to be essentially

self-adjoint on L2(Rd). In other words, A represents a physical observable with spectrum

spec (A) ⊆ R. A typical choice for A would be A = A′−a where a ∈ R is some prescribed

expectation value for the observable A′ in the state ψ(T, x). For example, if a ∈ spec (A′)

is chosen to be an eigenvalue of A′, the first term in J(ψ, α) is zero as soon as the target

state ψ(T, ·) is, up to a phase factor, given by an associated eigenfunction of A′. However,

one may consider choosing a ∈ R such that it “forces” the functional to equidistribute

between, say, two eigenfunctions.

Remark 4.1.2. We also remark that in the case A = Pϕ − 1, where Pϕ denotes the
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orthogonal projection onto a given target state ϕ ∈ L2(Rd), the first term on the right

hand side of (4.6) reads

(4.7) 〈ψ(T, ·), Aψ(T, ·)〉L2(Rd) =
∣∣〈ψ(T, ·), ϕ(·)〉L2(Rd)

∣∣2 − 1,

using the fact that ‖ψ(T, ·)‖L2(Rd) = 1. Expression (4.7) is the same as used in recent

works in the physics literature; see [40].

Using (4.4), we find that the objective functional J(ψ, α) explicitly reads

J(ψ, α) := 〈ψ(T, ·), Aψ(T, ·)〉2L2(Rd)

+ γ1

∫ T

0

(α̇(t))2

(∫
Rd
V (x)|ψ(t, x)|2 dx

)2

dt+ γ2

∫ T

0

(α̇(t))2 dt.
(4.8)

Here, the second line on the right hand side displays two cost (or penalization) terms for

the control: The first one, involving γ1 ≥ 0, is given by the square of the physical work,

i.e. the right hand side of (4.4). The second is a classical cost term as used in [40]. In our

case, the second term is required as a mathematical regularization of the optimal control

problem, since for general (sign changing) potentials V ∈ L∞(Rd) the weight factor

(4.9) ω(t) :=

∫
Rd
V (x)|ψ(t, x)|2dx

might vanish for some t ∈ R. In such a situation, the boundedness of variations of α(t)

is in jeopardy and the optimal control problem lacks well-posedness. Hence, we require

γ2 > 0 for our mathematical analysis, but typically take γ2 � γ1 in our numerics in

Section 4.5 to keep its influence small. Note, however, that in the case where the control

potential satisfies the positivity condition

V (x) ≥ δ > 0 ∀x ∈ Rd,

we may choose γ2 = 0 and all of our results remain valid.

Remark 4.1.3. In situations where the above positivity condition on V (x) does not hold,

one might think of performing a time-dependent gauge transform of ψ, i.e.

ψ̃(t, x) = exp

(
−iκ

∫ t

0

α(s) ds

)
ψ(t, x),

with a constant κ > minx∈RdV (x), assuming that the minimum exists. This yields a

Gross–Pitaevskii equation for the wave function ψ̃ with modified control potential Ṽ (x) =

(κ + V (x)) > 0 for all x ∈ Rd. Note, however, that this gauge transform leaves the

expression (4.8) unchanged and hence does not improve the stuation. Only if one also
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changes the potential V (x) within J(ψ, α) into Ṽ (x), the problem does not require any

regularization term (proportional to γ2). Note, however, that such a modification yields a

control system which is no longer (mathematically) equivalent to the original problem. In

fact, replacing V (x) by Ṽ (x) in the objective functional J(ψ, α) corresponds to increasing

the parameter γ2 by κ.

4.1.3 Relation to other works and organization of the chapter

The mathematical research field of optimal bilinear control of systems governed by partial

differential equations is by now classical, cf. [31, 55] for a general overview. Surprisingly,

rigorous mathematical work on optimal (bilinear) control of quantum systems appears

very limited, despite the physical significance of the involved applications (cf. the refer-

ences given above). Results on simplified situations, as, e.g., for finite dimensional quan-

tum systems, can be found in [14] (see also the references therein). More recently, optimal

control problems for linear Schrödinger equations have been studied in [11, 13, 42]. In

addition, numerical questions related to quantum control are studied in [12, 87]. Among

these papers, the work in [42] appears closest to our effort. Indeed, in [42], the authors pro-

vide a framework for bilinear optimal control of abstract (linear) Schrödinger equations.

The considered objective functional involves a cost term proportional to the L2–norm of

the control parameter α(t). The present work goes beyond the results obtained in [42] in

several repects: First, we generalize the cost functional to account for oscillations in α(t)

and in particular for the physical work load performed throughout the control process. In

addition, we allow for observables A which are unbounded operators on L2. Second, we

consider nonlinear Schrödinger equations of Gross–Pitaevskii type, including unbounded

(subquadratic) potentials, which are highly significant in the quantum control of BECs.

This type of equation makes the study of the associated control problem considerably

more involved from a mathematical point of view.

The rest of this work is organized as follows. In section 4.2 we clarify existence of a

minimizer for our control problem. In particular, we prove that the corresponding optimal

solution ψ∗(t, x) is indeed a mild (and not only a weak) solution of (4.1), depending

continuously on the initial data ψ0. Then, in section 4.3 the adjoint equation is derived

and analyzed with respect to existence and uniqueness of a solution. It is our primary

tool for the description of the derivative of the objective function reduced onto the control

space through considering the solution of the Gross-Pitaevskii equation as a function of

the control variable α. The results of section 4.3 are paramount for the derivation of the

first order optimality system in section 4.4. In section 4.5 a gradient- and a Newton-type

descent method are defined, respectively, and then used for computing numerical solutions

for several illustrative quantum control problems. In particular, we consider the optimal
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shifting of a linear wave package, splitting of a linear wave package and splitting of a

BEC. The paper ends with conclusions on our findings in Chapter 5.

Throughout this chapter we shall denote strong convergence of a sequence (xn)n∈N by

xn → x and weak convergence by xn ⇀ x. For simplicity, we shall often write ψ(t) ≡
ψ(t, ·) and also use the shorthand notation LptL

q
x instead of Lp(0, T ;Lq(Rd)). Similarly,

H1
t stands for H1(0, T ), with dual (H1

t )∗ = (H1(0, T ))∗.

4.2 Existence of minimizers

We start by specifying the basic functional analytic framework. For any given T > 0, we

consider H1(0, T ) as the real vector space of control parameters α(t) ∈ R. It is known

[19] that for every α ∈ H1(0, T ), there exists a unique mild solution ψ ∈ C([0, T ]; Σ) of

the Gross-Pitaevskii equation, also see Chapter 3. More precisely, ψ solves

ψ(t, x) = S(t)ψ0(x)− i
∫ t

0

S(t− s)
(
λ|ψ(s, ·)|2σψ(s, ·) + α(s)V ψ(s, ·)

)
(x)ds,

where from now on we denote by

(4.10) S(t) = e−itH , H = −1

2
∆ + U(x),

the group of unitary operators {S(t)}t∈R generated by the Hamiltonian H. In other words,

S(t) describes the time-evolution of the linear, uncontrolled system. Next, we define

(4.11) Υ(0, T ) := L2(0, T ; Σ) ∩H1(0, T ; Σ∗),

where Σ∗ is the dual of the energy space Σ. Then the appropriate space for our mini-

mization problem is

Λ(0, T ) := {(ψ, α) ∈ Υ(0, T )×H1(0, T ) : ψ is a mild solution of (4.1) }.

Since the control α is real-valued, it is natural to consider Λ(0, T ) as a real vector space

and we shall henceforth equip L2(Rd) with the scalar product

(4.12) 〈ξ, ψ〉L2(Rd) = Re

∫
Rd
ξ(x)ψ(x) dx,

which is subsequently inherited by all L2-based Sobolev spaces. (Note that this choice

is also used in [19].) From what is said above, we infer that the space Λ(0, T ) is indeed

nonempty.
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With these definitions at hand, the optimal control problem under investigation is to find

(4.13) J∗ = inf
(ψ,α)∈Λ(0,T )

J(ψ, α).

We are now in the position to state the first main result of this work.

Theorem 4.2.1. Let λ ≥ 0, 0 < σ < 2/(d − 2), V ∈ W 1,∞(Rd), and U ∈ C∞(Rd) be

subquadratic. Then, for any T > 0, any initial data ψ0 ∈ Σ, α0 ∈ R and any choice of

parameters γ1 ≥ 0, γ2 > 0 the optimal control problem (4.13) has a minimizer (ψ∗, α∗) ∈
Λ(0, T ).

The proof of this theorem will be split into three steps: In subsection 4.2.1 we shall

first prove a convergence result for minimizing, or more precisely, infimizing sequences.

We consequently deduce in subsection 4.2.2 that the obtained limit ψ∗ is indeed a mild

solution of (4.1). Finally, we shall prove lower semicontinuity of J(ψ, α) with respect to

the convergence obtained before.

4.2.1 Convergence of infimizing sequences

First note that there exists at least one infimizing sequence with an infimum −∞ ≤ J∗ <

+∞, since Λ(0, T ) 6= ∅ and J : Λ(0, T ) → R. Then we have the following result for any

infimizing sequence.

Proposition 4.2.2. Let (ψn, αn)n∈N be an infimizing sequence of the optimal control prob-

lem given by (4.6). Then under the assumptions of Theorem 4.2.1 there exist a subse-

quence, still denoted by (ψn, αn)n∈N, and functions α∗ ∈ H1(0, T ), ψ∗ ∈ L∞(0, T ; Σ), such

that

αn ⇀ α∗ in H1(0, T ), and αn → α∗ in L2(0, T ),

ψn ⇀ ψ∗ in L2(0, T ; Σ),

ψn → ψ∗ in L2(0, T ;L2(Rd)) ∩ L2(0, T ;L2σ+2(Rd)),

as n→ +∞. Furthermore it holds that

(4.14) ψn(t)→ ψ∗(t) in L2(Rd), and ψn(t) ⇀ ψ∗(t) in Σ

for almost all t ∈ [0, T ].

Proof. By definition, J ≥ 0 and thus it is bounded from below. For an infimizing sequence

(ψn, αn)n∈N the sequence of objective functional values (J(ψn, αn))n∈N converges and is
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bounded on R. Hence, it holds that J(ψn, αn) ≤ C < +∞ for all n ∈ N. Since γ2 > 0 it

follows that ∫ T

0

(α̇n(t))2 dt ≤ C < +∞.

For smooth αn : [0, T ]→ R we compute

αn(t) = αn(0) +

∫ t

0

α̇n(s) ds ≤ αn(0) +

(
T

∫ T

0

(α̇n(s))2 ds

)1/2

< +∞,

and thus αn is bounded in L∞(0, T ). By approximation (using the fact that αn(0) = α0

is fixed), the sequence (αn)n∈N is uniformly bounded in L∞(0, T ), which in turn implies a

uniform bound in L2(0, T ) and thus in H1(0, T ). Hence, there exists a subsequence, still

denoted (αn)n∈N, and α∗ ∈ H1(0, T ), such that

αn ⇀ α∗ ∈ H1(0, T ).

Moreover, since H1(0, T ) is compactly embedded into L2(0, T ), we deduce that αn → α∗

in L2(0, T ). Next, we recall that

d

dt
En(t) = α̇n(t)

∫
Rd
V (x)|ψn(t, x)|2 dx

and hence

‖Ėn‖L2
t
≤ ‖α̇n‖L2

t
‖V ‖L∞x ‖ψ0‖2

L2
x
,

in view of mass conservation ‖ψn(t)‖L2
x

= ‖ψ0‖L2
x
. Since En(0) = E0 depends only on

ψ0 and α0 (and is thus independent of n ∈ N), the same argument as before yields

‖En‖L∞t ≤ C. Recalling the definition of the energy (4.3) and the fact that λ ≥ 0, we

obtain

(4.15)
1

2
‖∇ψn(t)‖2

L2
x
≤ ‖En‖L∞t + c‖αn‖L∞t ‖ψ0‖2

L2
x

+ C‖xψn(t)‖2
L2
x
,

again using conservation of mass ‖ψn(t)‖L2
x

= ‖ψ0‖L2
x
. Furthermore, it holds that

d

dt

∫
Rd
|x|2|ψ|2 dx = 2 Re

∫
Rd
i|x|2ψ

(
1

2
∆ψ − λ|ψ|2σψ − λαV ψ − Uψ

)
dx

= 2 Im

∫
Rd
xψ∇ψ dx ≤ ‖xψ(t)‖2

L2
x

+ ‖∇ψ(t)‖2
L2
x
,

which, in view of the bound (4.15) and Gronwall’s inequality, yields

‖xψ(t)‖2
L2
x
≤ C

(
‖En‖L∞t + ‖αn‖L∞t ‖ψ0‖2

L2
x

)
,
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for all t ∈ [0, T ]. In summary we have shown

(4.16) ‖ψn(t)‖2
Σ = ‖ψn(t)‖2

H1
x

+ ‖xψn(t)‖2
L2
x
≤ C,

where C > 0 is independent of n ∈ N and t ∈ [0, T ]. Hence, ψn is uniformly bounded in

L∞(0, T ; Σ) and in particular in L2(0, T ; Σ). By reflexivity of L2(0, T ; Σ), we consequently

infer the existence of a subsequence (denoted by the same symbol) such that

ψn ⇀ ψ∗ in L2(0, T ; Σ) as n→ +∞.

To obtain the strong convergence announced above, we first note that (4.1) implies ∂tψn ∈
L∞(0, T ; Σ∗). Now we notice the following Lemma.

Lemma 4.2.3. The energy space Σ is compactly embedded in L2(Rd).

The proof of this statement can be found, for instance, in [26, Proposition 2.1]. We repeat

it here for the reader’s convenience. Due to the reflexivity of Σ it suffices to show that

ωn → ω in L2(Rd) whenever a sequence (ωn)n∈N ⊂ Σ satisfies ωn ⇀ ω in Σ as n → ∞.

Take any ball BR ⊂ Rd of radius R > 0 around the origin. Restricting to test functions

with support in BR, we see that ωn|BR ⇀ ω|BR in H1(BR) as n → ∞. Since H1(BR) is

compactly embedded in L2(BR), it follows ωn|BR → ω|BR in L2(BR). In order to show

convergence on the whole L2(Rd), we split up the L2–norm as follows. It holds that∫
Rd
|ω(x)− ωn(x)|2 dx =

∫
BR

|ω(x)− ωn(x)|2 dx+

∫
Rd\BR

|ω(x)− ωn(x)|2 dx

For fixed R > 0, the second term on the right hand side vanishes in the limit as n→∞.

On the other hand, the first term on the right hand side is bounded by C/R2, since

(ωn)n∈N is bounded in Σ by assumption. Given any ε > 0, we thus choose first R > 0

large enough such that the first term is bounded by ε and then n large enough such that

the second term is bounded by ε in order to show that ωn → ω in L2(Rd) as n → ∞.

Hence Σ is indeed compactly embedded in L2(Rd).

Thus, we can apply the Aubin–Lions Lemma [78] to deduce

ψn
n→∞−−−→ ψ∗ in L2((0, T )× Rd).

In particular, there exists yet another subsequence (still denoted by the same symbol),

such that

ψn(t)
n→∞−−−→ ψ∗(t) in L2(Rd), for almost all t ∈ [0, T ].

In order to obtain weak convergence in the energy space, i.e. ψn(t) ⇀ ψ∗(t) in Σ, we fix

t ∈ [0, T ] such that ψn(t) → ψ∗(t) in L2(Rd). In view of (4.16), every subsequence of

ψn(t) has yet another subsequence such that ψn(t) converges weakly in Σ to some limit.
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On the other hand, this limit is necessarily given by ψ∗(t), since ψn(t)→ ψ∗(t) in L2(Rd).

Hence the whole sequence converges weakly in Σ to ψ∗(t). By lower-semicontinuity of the

Σ–norm we can deduce ‖ψn(t)‖Σ ≤ C and thus ψ∗ ∈ L∞(0, T ; Σ).

Finally, the announced convergence in L2(0, T ;L2σ+2(Rd)) is obtained by invoking the

Gagliardo–Nirenberg inequality, i.e.

(4.17) ‖ξ‖Lrx ≤ C‖ξ‖1−δ(r)
L2
x
‖∇ξ‖δ(r)L2

x
,

where 2 ≤ r < 2d
d−2

and δ(r) = d(1
2
− 1

r
). This concludes the proof of Proposition 4.2.2.

4.2.2 Minimizers as mild solutions

Next we prove that the limit ψ∗ obtained in the previous subsection is indeed a mild

solution of (4.1) with corresponding control α∗. From the physical point of view, this is

important since it implies continuous (in time) dependence of ψ∗ upon a given initial data

ψ0. To this end, one should also note that H1(0, T ) ↪→ C(0, T ) (using Sobolev imbed-

dings), and hence the obtained optimal control parameter α∗(t) is indeed a continuous

function on [0, T ].

Proposition 4.2.4. Let (ψ∗, α∗) ∈ Υ(0, T ) × H1(0, T ) be the limit obtained in Proposi-

tion 4.2.2. Then ψ∗ is a mild solution of (4.1) with control α∗ and

ψ∗ ∈ C([0, T ]; Σ) ∩ C1([0, T ]; Σ∗).

In particular, this implies that the convergence result (4.14) holds for all t ∈ [0, T ].

Proof. First we note that, by construction, each ψn satisfies

(4.18) ψn(t) = S(t)ψ0 − i
∫ t

0

S(t− s)
(
λ|ψn(s)|2σψn(s) + αn(s)V ψn(s)

)
ds

for all t ∈ [0, T ]. Here and in the following we shall suppress the x–dependence of ψ for

notational convenience. In order to prove that ψ∗ is a mild solution corresponding to

the control α∗, we take the L2–scalar product of the above equation with a test function

χ ∈ C∞0 (Rd). This yields

〈ψn(t), χ〉L2
x

= 〈S(t)ψ0, χ〉L2
x
− iλ

∫ t

0

〈
S(t− s)|ψn(s)|2σψn(s), χ

〉
L2
x
ds

− i
∫ t

0

〈
S(t− s)αn(s)V ψn(s), χ

〉
L2
x
ds.

(4.19)

In view of Proposition 4.2.2, the term on the left hand side of this identity converges to
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the desired expression for almost all t ∈ [0, T ], i.e.

lim
n→∞
〈ψn(t), χ〉L2

x
= 〈ψ∗(t), χ〉L2

x
.

In order to proceed further, we note that for any f ∈ D′(Rd) it holds that

(4.20) 〈S(t− s)f(s), χ〉L2
x

= 〈f(s), S(s− t)χ〉L2
x
,

and we therefore define

(4.21) χ̃ : [0, t]× Rd → C, χ 7→ χ̃(·, x) := S(· − t)χ(x),

for which we can prove the following regularity properties.

Lemma 4.2.5. There exists a constant C = C(T ) > 0 such that for all t ∈ [0, T ] it holds

that

sup
s∈[0,t]

(
‖xχ̃(s)‖L2

x
+ ‖∇χ̃(s)‖L2

x

)
≤ C(T ) < +∞,

where the function χ̃ is defined in (4.21). In particular, the function χ̃ is bounded in

L∞(0, t;L2σ+2(Rd)).

Proof of Lemma 4.2.5. The norm ‖χ̃(s)‖L2
x

= ‖S(s − t)χ‖L2
x

is conserved since S(t) is a

unitary operator on L2(Rd). Furthermore, it holds that

i∂t[∇, S(t)] = H[∇, S(t)] + [∇, H]S(t) = H[∇, S(t)] +∇US(t),

and hence

[∇, S(t)] = −i
∫ t

0

S(t− s)∇U S(s) ds.

We can thus estimate

‖∇χ̃(s)‖L2
x

= ‖∇S(t− s)χ‖L2
x

≤ ‖S(t− s)∇χ‖L2
x

+
∥∥∥∫ t−s

0

S(t− s− τ)∇Uχ̃(τ) dτ
∥∥∥
L2
x

≤ ‖∇χ‖L2
x

+ C

∫ t−s

0

‖xχ̃(τ)‖L2
x
dτ,

(4.22)

since U is subquadratic, i.e. |∇U(x)| ≤ C|x|. Likewise, we deduce

[x, S(t)] = −i
∫ t

0

S(t− s)∇S(s) ds
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and hence

(4.23) ‖xχ̃(s)‖L2
x
≤ ‖xχ‖L2

x
+

∫ t−s

0

‖∇χ̃(τ)‖L2
x
dτ.

Combining the estimates (4.22) and (4.23) and applying Gronwall’s inequality yields

‖xχ̃(s)‖L2
x

+ ‖∇χ̃(s)‖L2
x
≤ C

(
‖xχ‖L2

x
+ ‖∇χ‖L2

x

)
< +∞,

where C > 0. The bound in L∞(0, t;L2σ+2(Rd)) then follows from the uniform-in-time

bound in H1(Rd) and the Gagliardo–Nirenberg inequality (4.17).

With the result of Lemma 4.2.5 at hand, we consider the second term on the right hand

side of (4.19). Rewriting it using (4.20), we estimate∣∣∣∣∫ t

0

〈
|ψn(s)|2σψn(s)− |ψ∗(s)|2σψ∗(s), χ̃(s)

〉
L2
x
ds

∣∣∣∣
≤
∫ t

0

∫
Rd

∣∣|ψn(s, x)|2σψn(s, x)− |ψ∗(s, x)|2σψ∗(s, x)
∣∣ |χ̃(s, x)| dx ds

≤ C

∫ t

0

∫
Rd

(
|ψn(s, x)|2σ + |ψ∗(s, x)|2σ

)
|ψn(s, x)− ψ∗(s, x)||χ̃(s, x)| dx ds.

By Hölder’s inequality, it holds that∫ t

0

∫
Rd

∣∣|ψn(s, x)|2σ + |ψ∗(s, x)|2σ
∣∣ |ψn(s, x)− ψ∗(s, x)||χ̃(s)| dx ds

≤
√
T
(
‖ψn‖2σ

L∞t L
2σ+2
x

+ ‖ψ∗‖2σ
L∞t L

2σ+2
x

)
‖ψn − ψ∗‖L2

tL
2σ+2
x
‖χ̃‖L∞t L2σ+2

x
,

where, in view of Lemma 4.2.5, we have ‖χ̃‖L∞t L2σ+2
x

< +∞. In addition, Proposition 4.2.2

implies that the factor inside the parentheses is bounded and that

lim
n→∞

‖ψn − ψ∗‖L2
tL

2σ+2
x

= 0.

Thus, we have shown that the second term on the right hand side of (4.19) vanishes in

the limit n→∞.

It remains to treat the last term on the right hand side of (4.19), rewritten via (4.20).

We first estimate∣∣∣∣∫ t

0

〈
αn(s)V ψn(s)− α∗(s)V ψ∗(s), χ̃(s)

〉
L2
x
ds

∣∣∣∣
≤
∫ t

0

∫
Rd
|αn(s)| |V (x)| |ψn(s, x)− ψ∗(s, x)| |χ̃(s, x)| dx ds

+

∫ t

0

∫
Rd
|αn(s)− α∗(s)| |V (x)| |ψ∗(s, x)||χ̃(s, x)| dx ds.
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Here, the last term on the right hand side can be bounded by∫ t

0

∫
Rd
|αn(s)− α∗(s)||V (x)||ψ∗(s, x)||χ̃(s, x)| dx ds

≤ ‖αn − α∗‖L2
t
‖V ‖L∞x ‖ψ‖L2

tL
2
x
‖χ̃‖L∞t L2

x

n→∞−−−→ 0,

in view of the convergence of αn → α∗ in L2(0, T ). For the remaining term we use the

fact that V ∈ L∞(Rd) and Hölder’s inequality to obtain that∫ t

0

∫
Rd
|αn(s)| |V (x)| |ψn(s, x)− ψ∗(s, x)||χ̃(s, x)| dx ds

≤ ‖αn‖L2
t
‖V ‖L∞x ‖ψn − ψ∗‖L2

tL
2
x
‖χ̃‖L∞t L2

x

n→∞−−−→ 0,

due to the results of Proposition 4.2.2 and Lemma 4.2.5.

In summary this proves that ψ∗ ∈ Υ(0, T ) satisfies, for almost all t ∈ [0, T ],

ψ∗(t) = S(t)ψ0 − i
∫ t

0

S(t− s)
(
λ|ψ∗(s)|2σψ∗(s) + α∗(s)V ψ∗(s)

)
ds,

i.e. ψ∗ is a weak Σ–solution in the terminology of [19, Definition 3.1.1] (where the analogous

notion of weak H1–solutions is introduced). In order to obtain that ψ∗ is indeed a mild

solution we note that

ψ∗ ∈ Υ(0, T ) ↪→ C([0, T ];L2(Rd)) ∩ C([0, T ];L2σ+2(Rd))

by interpolation and the Gagliardo–Nirenberg inequality (4.17). Classical arguments

based on Strichartz estimates then yield uniqueness of the weak Σ–solution ψ∗. Arguing

as in the proof of [19, Theorem 3.3.9], we infer that ψ∗ is indeed a mild solution to (4.1),

satisfying ψ∗ ∈ C([0, T ]; Σ) ∩ C1([0, T ]; Σ∗).

4.2.3 Lower semicontinuity of objective functional

In order to conclude that the pair (ψ∗, α∗) ∈ Λ(0, T ) is indeed a minimizer of our optimal

control problem, it remains to show lower semicontinuity of the functional J(ψ, α) with

respect to the convergence results established in Proposition 4.2.2.

Lemma 4.2.6. For the sequence constructed in Proposition 4.2.2, it holds that

J∗ = lim inf
n→∞

J(ψn, αn) ≥ J(ψ∗, α∗).

Proof. Since A ∈ L(Σ, L2(Rd)) by assumption, the sequence (Aψn(T ))n∈N converges

weakly to Aψ(T ) in L2(Rd). In addition ψn(T ) → ψ∗(T ) in L2(Rd) as n → ∞ by
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Proposition 4.2.4, and hence the estimate

∣∣〈ψn(T ), Aψn(T )〉L2
x
− 〈ψ∗(T ), Aψ∗(T )〉L2

x

∣∣
≤
∣∣〈ψn(T )− ψ∗(T ), Aψn(T )〉L2

x

∣∣+
∣∣〈ψ∗(T ), A(ψn(T )− ψ∗(T ))〉L2

x

∣∣ .
yields convergence of the corresponding term in the objective functional (4.8). Next, we

consider the cost term involving γ1. In view of (4.9), we define

ωn(t) :=

∫
Rd
V (x)|ψn(t, x)|2dx, ω∗(t) :=

∫
Rd
V (x)|ψ∗(t, x)|2dx,

and estimate

lim inf
n→∞

∫ T

0

(α̇n(t))2ω2
n(t)dt ≥

lim inf
n→∞

∫ T

0

(α̇n(t))2ω2
∗(t) dt+ lim inf

n→∞

∫ T

0

(α̇n(t))2
(
ω2
n(t)− ω2

∗(t)
)
dt.

(4.24)

Note that 0 ≤ ωn(t) ≤ ‖V ‖L∞x ‖ψ0‖2
L2
x

independently of n ∈ N and t ∈ [0, T ] and that the

same holds for ω∗(t). The first term on the right hand side of (4.24) is convex in αn and

thus satisfies

(4.25) lim inf
n→∞

∫ T

0

(α̇n(t))2ω2
∗(t) dt ≥

∫ T

0

(α̇∗(t))
2ω2
∗(t) dt,

since any convex and lower semicontinuous functional is weakly lower semicontinuous. On

the other hand, Proposition 4.2.2 implies

(4.26) lim inf
n→∞

ωn(t) ≥ ω∗(t) ≥ 0 for all t ∈ [0, T ].

Thus, using (4.25) and (4.26) together with Fatou’s Lemma yields

lim inf
n→∞

∫ T

0

(α̇n(t))2ω2
n(t) dt

≥
∫ T

0

(α̇∗(t))
2ω2
∗(t) dt+

∫ T

0

lim inf
n→∞

(α̇n(t))2 lim inf
n→∞

(
ω2
n(t)− ω2

∗(t)
)
dt

≥
∫ T

0

(α̇∗(t))
2ω2
∗(t) dt.

Finally the cost term involving γ2 is lower semicontinuous by convexity and weak conver-

gence of αn in H1(0, T ).

In summary, we have shown that J∗ = lim infn→∞ J(ψn, αn) ≥ J(ψ∗, α∗) and thus indeed

J∗ = J(ψ∗, α∗). In other words, (ψ∗, α∗) ∈ Λ(0, T ) solves the optimization problem.
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Remark 4.2.7. Note that the bound on xψn(t, ·) in L2(Rd), obtained in Proposition

4.2.2, is indeed crucial for proving the weak lower-semicontinuity of J(ψ, α). Without

such a bound on the second moment, we would only have

ψn(t)
n→∞−−−→ ψ(t) in L2

loc(Rd),

due to the lack of compactness of H1(Rd) ↪→ L2(Rd). In this case, the lower semi-

continuity of the term 〈ψ(T ), Aψ(T )〉L2
x

is not guaranteed. A possible way to circumvent

this problem would be to assume that A is positive definite, which, however, is not true

for general observables of the form A = A′ − a, with a ∈ R. A second possibility would

be to assume that A is localizing, i.e. for all ψ ∈ H1(Rd): suppx∈Rd(Aψ(x)) ⊆ B(R), for

some R < +∞.

4.3 Derivation and analysis of the adjoint equation

In order to give a characterization of a minimizer (ψ∗, α∗) ∈ Λ(0, T ), we need to derive

the first order optimality conditions for our optimal control problem (4.13). For this

purpose, we shall first formally compute the derivative of the objective functional J(ψ, α)

in the next subsection and consequently analyze the resulting adjoint problem. A rigorous

justification for the derivative will be given in Section 4.4.

4.3.1 Identification of the derivative of J(ψ, α)

The mild solution of the nonlinear Schrödinger equation (4.1), corresponding to the control

α ∈ H1(0, T ), induces a map

ψ : H1(0, T )→ Υ(0, T ) : α 7→ ψ(α).

Using this map we introduce the unconstrained or reduced functional

J : H1(0, T )→ R, α 7→ J(α) := J(ψ(α), α).

For the characterization of critical points, we need to compute the derivative of J. For this

calculation let δα ∈ H1(0, T ) with δα(0) = 0 be a feasible control perturbation. (Recall

that H1(0, T ) ↪→ C(0, T ) and hence it makes sense to evaluate δα(t) at t = 0.) Then the

chain rule yields

〈J′(α), δα〉(H1
t )∗,H1

t
= 〈∂ψJ(ψ(α), α), ψ′(α)δα〉Υ∗,Υ

+ 〈∂αJ(ψ(α), α), δα〉(H1
t )∗,H1

t

(4.27)
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where Υ∗ denotes the dual space of Υ ≡ Υ(0, T ) for any given T > 0. The main difficulty

lies in computing ψ′(α) since ψ is given only implicitly through the nonlinear Schrödinger

equation (4.1).

In the following, we shall write the (nonlinear) partial differential equation (4.1) in a more

abstract form, i.e.

(4.28) P (ψ, α) := i∂tψ −Hψ − α(t)V (x)ψ − λ|ψ|2σψ = 0,

where H = −1
2
∆ + U(x) denotes the linear, uncontrolled Hamiltonian operator. Setting

ψ = ψ(α) and differentiating with respect to α formally yields

d

dα
P (ψ(α), α) = ∂ψP (ψ(α), α)ψ′(α) + ∂αP (ψ(α), α) = 0.

Next, assuming that ∂ψP is invertible, we solve for ψ′(α) via

ψ′(α) = −∂ψP (ψ, α)−1∂αP (ψ(α), α).

Thus it holds that

〈∂ψJ(ψ(α), α), ψ′(α)δα〉Υ∗,Υ
=
〈
−∂ψJ(ψ(α), α), ∂ψP (ψ(α), α)−1∂αP (ψ(α), α)δα

〉
Υ∗,Υ

,

which can be rewritten as

〈∂ψJ(ψ(α), α), ψ′(α)δα〉Υ∗,Υ
=
〈
−∂αP (ψ(α), α)∗∂ψP (ψ(α), α)−∗∂ψJ(ψ(α), α), δα

〉
(H1

t )∗,H1
t
.

(4.29)

Here we abbreviate

∂ψP (ψ(α), α)−∗ := (∂ψP (ψ(α), α)∗)−1 = (∂ψP (ψ(α), α)−1)∗.

Substituting (4.29) into equation (4.27), we see that critical points of (4.13) satisfy

0 = 〈J′(α), δα〉(H1
t )∗,H1

t
= 〈∂αJ(ψ(α), α), δα〉(H1

t )∗,H1
t
+

〈−∂αP (ψ(α), α)∗∂ψP (ψ(α), α)−∗∂ψJ(ψ(α), α), δα〉(H1
t )∗,H1

t

(4.30)

for all δα ∈ H1(0, T ) such that δα(0) = 0. In order to obtain (4.30) in a more explicit

form, we (formally) compute the derivative

∂ψP (ψ, α)ξ = i∂tξ −Hξ − α(t)V (x)ξ − λ(σ + 1)|ψ|2σξ − λσ|ψ|2σ−2ψ2ξ,(4.31)
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acting on ξ ∈ L2(Rd) ⊂ Σ∗. Analogously, we find

∂αP (ψ, α) = −V (x)ψ.

Next, we define

(4.32) ϕ := ∂ψP (ψ(α), α)−∗∂ψJ(ψ(α), α),

which, in view of (4.30), allows us to express J′(α) ∈ (H1(0, T ))∗ in the following form:

(4.33) J′(α) = ∂αJ(ψ(α), α)− ∂αP (ψ(α), α)∗ϕ.

We consequently obtain J′(α) by explicitly calculating the right hand side of this equation

(given in (4.47) below), provided we can determine ϕ.

In order to perform this calculation, we recall that the duality pairing between ξ ∈
L2(Rd) ⊂ Σ∗ and ψ ∈ Σ can be expressed by the inner product defined in (4.12). Thus,

(4.32) implies

(4.34) 〈ϕ, ∂ψP (ψ(α), α)δψ〉L2
tL

2
x

= 〈∂ψJ(ψ(α), α), δψ〉L2
tL

2
x
,

for all test functions δψ ∈ Υ(0, T ) such that δψ(0) = 0. This is the correct “tangent space”

for ψ in view of the Cauchy data

ψ(0) + δψ(0) = ψ0 and ψ(0) = ψ0.

By virtue of the symmetry of the linearized operator ∂ψP (ψ(α), α), equation (4.34) cor-

responds to the weak formulation of the following adjoint equation:

(4.35)


i∂tϕ−Hϕ− α(t)V (x)ϕ− λ(σ + 1)|ψ|2σϕ− λσ|ψ|2σ−2ψ2ϕ =

δJ(ψ, α)

δψ(t)
,

for all t ∈ [0, T ] and with data: ϕ(T ) = i
δJ(ψ, α)

δψ(T )
.

Here, δJ(ψ,α)
δψ(t)

denotes the first variation of J(ψ, α) with respect to the value of ψ(t) ∈
H1(Rd), where ψ is the solution of (4.1) with control α. Likewise, δJ(ψ,α)

δψ(T )
denotes the first

variation with respect to solutions of (4.1) evaluated at the final time t = T . Explicitly,

these derivatives are given by

δJ(ψ, α)

δψ(t)
= 4(α̇(t))2

(∫
Rd
V (x)|ψ(t, x)|2dx

)
V (x)ψ(t, x)

≡ 4(α̇(t))2ω(t)V (x)ψ(t, x),

(4.36)
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in view of the definition (4.9), and

δJ(ψ, α)

δψ(T )
= 4〈ψ(T, ·), Aψ(T, ·)〉L2

x
Aψ(T, x).(4.37)

The system (4.35) consequently defines a Cauchy problem for ϕ with data given at t = T ,

the final time. Thus, one needs to solve (4.35) backwards in time, a common feature of

adjoint systems for time-dependent phenomena.

Remark 4.3.1. In fact, ϕ can also be seen as a Lagrange multiplier within the Lagrangian

formulation of the optimal control problem. In oder to see this, one defines the Lagrangian

L(ψ, α, ϕ) = J(ψ, α)− 〈ϕ, P (ψ, α)〉L2
tL

2
x
,

where P (ψ, α) is the nonlinear Schrödinger equation given in (4.28). Formally, the Euler–

Lagrange equations associated to L(ψ, α, p) yield (4.33) and (4.35). In Section 4.5 we shall

use the Lagrangian formulation to formally compute the Hessian of the reduced objective

functional J(α).

4.3.2 Local and global existence theory for solutions of higher

regularity

In order to obtain existence of solutions to (4.35), we need sufficiently high regularity of

ψ, the solution of the Gross–Pitaevskii equation (4.1). For this purpose, for every m ∈ N
we define

Σm :=
{
ψ ∈ L2(Rd) : xj∂kψ ∈ L2(Rd) for all multi-indices j and k with

|j|+ |k| ≤ m} ,

equipped with the norm (note that Σ1 ≡ Σ):

‖ψ‖Σm :=
∑

|j|+|k|≤m

∥∥xj∂kψ∥∥
L2
x
.

Remark 4.3.2. If the external potential U(x) were in L∞(Rd), it would be enough to

work in the space Hm(Rd) instead of Σm. In the presence of an external subquadratic

potential, however, we also require control of higher moments of the wave function ψ with

respect to x.

The goal of this section is to show the following regularity result for solutions to (4.1).
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Lemma 4.3.3. Let λ ≥ 0, σ ∈ N with σ < 2/(d− 2), and U ∈ C∞(Rd) be subquadratic.

For m > d/2, let ψ0 ∈ Σm, and V ∈ Wm,∞(Rd). Then the mild solution of (4.1) satisfies

ψ ∈ L∞(0, T ; Σm).

The proof of this lemma will require a local existence theory in Σm. This is the content of

Lemma 4.3.7. The proof of Lemma 4.3.3 then consists of showing that the local solutions

in Σm coincide with the (global) mild solutions in Σ. To proceed further, we need two

technical results. The first concerns estimates on the nonlinearity in Σm.

Lemma 4.3.4. Let σ ∈ N, and m > d/2. Then there exists a constant C > 0, such that

for all ψ, ψ̃ ∈ Σm it holds that

∥∥|ψ|2σψ‖Σm ≤ C‖ψ‖2σ
L∞‖ψ‖Σm∥∥|ψ|2σψ − |ψ̃|2σψ̃∥∥

Σm
≤ C

(
‖ψ‖2σ

L∞ + ‖ψ̃‖2σ
L∞

)
‖ψ − ψ̃‖Σm .

In other words, ψ 7→ |ψ|2σψ is locally Lipschitz in Σm.

Proof. Consider two multi-indices j, k ∈ Nd such that n := |j|+ |k| ≤ m and any ψ ∈ Σm.

Then it holds that |xj∂kψ| is a sum of terms of the form

(4.38) |xj||ψ|2σ+1−r
r∏
l=1

∣∣∂k(l)

ψ
∣∣

for some 1 ≤ r ≤ 2σ+ 1, and some multi-indices k(l), l = 1, . . . , r such that
∑r

l=1 k
(l) = k.

Using Hölder’s inequality, we bound the L2–norm of each summand as follows:

∥∥xj|ψ|2σ+1−r
r∏
l=1

∂k
(l)

ψ
∥∥
L2 ≤ ‖xj|ψ|2σ+1−r‖Lpr+1

r∏
l=1

∥∥∂k(l)

ψ
∥∥
Lpl
,

where

pl =
2n

|k(l)|
, l = 1, . . . , r, and pr+1 =

2n

|j|
.

It holds that

∥∥xj|ψ|2σ+1−r∥∥
Lpr+1

=
∥∥|x| |j|2 pr+1|ψ|

2σ+1−r
2

pr+1
∥∥ 2
pr+1

L2

≤ ‖ψ‖
2σ+1−r− 2

pr+1

L∞ ‖xnψ‖
2

pr+1

L2 ≤ ‖ψ‖2σ+1−r− |j|
n

L∞ ‖ψ‖
|j|
n

Σm .

Furthermore the Gagliardo–Nirenberg inequality yields

∥∥∂k(l)

ψ
∥∥
Lpl
≤ C‖ψ‖1− |k

(l)|
n

L∞ ‖ψ‖
|k(l)|
n

Hn .
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Since |j|+
∑

l |k(l)| = n ≤ m, it follows that

∥∥xj|ψ|2σ+1−r
r∏
l=1

∂k
(l)

ψ
∥∥
L2 ≤ C‖ψ‖2σ

L∞‖ψ‖Σm ,

and hence ∥∥xj∂k(|ψ|2σψ)
∥∥
L2 ≤ C‖ψ‖2σ

L∞‖ψ‖Σm .

Thus we conclude the proof of the first estimate of Lemma 4.3.4 by summing over all

multi-indices k and j such that |k|+ |j| ≤ m. The second estimate follows similarly once

we apply the expansion

r∏
l=1

al −
r∏
l=1

bl =
r∑
l=1

∏
l̃<l

al̃
∏
l̃>l

bl̃(al − bl)

to obtain

xj|ψ|2σ+1−r
r∏
l=1

∂k
(l)

ψ − xj|ψ̃|2σ+1−r
r∏
l=1

∂k
(l)

ψ̃

= xj
(
|ψ|2σ+1−r − |ψ̃|2σ+1−r) r∏

l=1

∂k
(l)

ψ

+ xj|ψ̃|2σ+1−r
r∑
l=1

∏
l̃<l

∂k
(l̃)

ψ
∏
l̃>l

∂k
(l̃)

ψ̃(∂k
(l)

ψ − ∂k(l)

ψ̃).

Then we can estimate each term separately using the estimates above.

Remark 4.3.5. This technical lemma is ultimately the reason why we need to restrict

ourselves to σ ∈ N. If σ 6∈ N, we cannot guarantee that r ≤ 2σ + 1 in (4.38) and hence

‖xj|ψ|2σ+1−r‖Lpr+1 will not, in general, be bounded.

The second technical result yields a bound on the linear Schrödinger equation in Σm.

Lemma 4.3.6. Let S(t) be given by (4.10) with U ∈ C∞(Rd;R) and subquadratic. Then,

there exists a constant c > 0 such that

‖S(t)ψ0‖Σm ≤ ect‖ψ0‖Σm ,

for all t ∈ [0,∞) and ψ0 ∈ Σm.

The proof can be found in Kitada [48, Theorem 6.3]. Next we use this technical lemma

to prove local existence of mild solutions to equation (4.1) which lie in Σm.

Lemma 4.3.7. Let λ ≥ 0, σ ∈ N with σ < 2/(d− 2), and U ∈ C∞(Rd) be subquadratic.

For m > d/2, let ψ0 ∈ Σm, and V ∈ Wm,∞(Rd). Then there exists a τ > 0 and a unique
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mild solution of (4.1) in ψ̃ ∈ L∞(0, τ ; Σm). If Tmax is the finite time of existence and

Tmax happens to be finite, it holds that

lim sup
t→Tmax

‖ψ(t)‖L∞ = +∞,

which is the blow-up alternative for solutions in L∞(0, τ ; Σm).

Proof. The proof is similar to the local existence proof of Lemma 3.3.2 and we only sketch

it here. The proof in Hm(Rd) in the absence of a subquadratic potential can be found

in [19, Theorem 4.10.1]. The idea is to find a mild solution as a fixed point of the map

Φ : Xτ,R → Xτ,R given by

Φ(ψ)(t) = S(t)ψ0 − i
∫ t

0

S(t− s)
(
λ|ψ(s)|2σψ(s) + α(s)V ψ(s)

)
ds,

in a suitable space Xτ,R. Here we let

Xτ,R :=
{
ψ ∈ L∞(0, τ ; Σm) : ‖ψ‖L∞(0,τ ;Σm) ≤ 2R

}
,

and set R := ‖ψ0‖Σm . Lemma 4.3.4 and 4.3.6 immediately yield

(4.39) ‖Φ(ψ)‖L∞(0,τ ;Σm) ≤ ecτ‖ψ0‖Σm

+ C

∫ τ

0

eτ−s‖ψ‖2σ
L∞(0,τ ;L∞)‖ψ(s)‖L∞(0,τ ;Σm) ds ≤ 2R,

for all ψ ∈ Xτ,R, if τ > 0 is small enough. Furthermore, choosing τ possibly even smaller,

it holds that

‖Φ(ψ)− Φ(ψ̃)‖L∞(0,τ ;Σm)

≤ Cτ
(
‖ψ‖2σ

L∞(0,τ ;Σm) + ‖ψ̃‖2σ
L∞(0,τ ;Σm)

)
‖ψ − ψ̃‖L∞(0,τ ;Σm) < 1.

Thus Φ : Xτ,R → Xτ,R is indeed a contraction mapping and has a unique fixed point.

This local solution can be extended as long as ‖ψ(t)‖Σm stays bounded. The blow-up

alternative follows from the fact that estimate (4.39) and Gronwall’s inequality yield a

bound on ‖ψ(t)‖Σm as long as ‖ψ(t)‖L∞ remains bounded.

Equipped with a local existence theory we now prove that the local solution ψ̃ ∈ L∞(0, τ ; Σm)

coincides with the solution ψ ∈ C([0, T ]; Σ), and hence the regularity in Σm propagates

for all times t ∈ [0, T ].

Proof of Lemma 4.3.3. The proof now closely follows the proof of [19, Theorem 5.5.1].

For the sake of the reader’s convenience, we state the proof in a self-contained form.
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The Σm–solution is global on [0, T ] and indeed coincides with the Σ–solution if we can

show that ψ ∈ L∞(0, T ; Σm). Let us first assume that ψ ∈ L2σ(0, T ;L∞(Rd)). Then

Lemma 4.3.4, Lemma 4.3.6, and the mild form of the NLS, cf. 4.18, yield

‖ψ(t)‖Σm ≤ C‖ψ0‖Σm + C

∫ t

0

‖ψ(s)‖2σ
L∞‖ψ(s)‖Σm ds

for all t ∈ [0, T ]. Thus Gronwall’s lemma yields

‖ψ(t)‖Σm ≤ C exp
(
C

∫ t

0

‖ψ(s)‖2σ
L∞ ds

)
,

which is bounded since ψ ∈ L2σ(0, T ;L∞(Rd)). Therefore the solution indeed exists in

L∞(0, T ; Σm).

It remains to prove ψ ∈ L2σ(0, T ;L∞(Rd)). If d = 1, this follows directly from the

embedding H1(R) ↪→ L∞(R), since ψ ∈ L∞(0, T ;H1(Rd)). If d ≥ 2, the local existence

theory in Σ, which we will not repeat here (instead we refer to the proof of Lemma 3.3.2),

yields that

ψ, xψ,∇ψ ∈ L
4σ+4
dσ (0, T ;L2σ+2(Rd)).

Now the same calculations, using Strichartz estimates, that yielded the existence of a

solution via a fixed point argument, yield

ψ, xψ,∇ψ ∈ Lp(0, T ;Lq(Rd))

for any admissible pair (p, q), cf. Lemma 3.3.3. Finally we choose some d < q < 2dσ/(dσ−
2) and let p such that (p, q) is an admissible pair. This is indeed possible since σ < 2/(d−2)

(σ < +∞, if d = 2), whence d < 2dσ/(dσ − 2). It follows p > 2σ and the embedding

W 1,r(Rd) ↪→ L∞(Rd) yields the desired property ψ inL2σ(0, T ;L∞(Rd)).

In the next subsection, we shall set up an existence theory for (4.35), which in turn will

be used to rigorously justify the above derivation in Section 4.4 below.

4.3.3 Existence of solutions to the adjoint equation

Having obtained ψ ∈ L∞(0, T ; Σm), we infer ψ ∈ L∞((0, T ) × Rd) by the Sobolev em-

bedding Hm(Rd) ↪→ L∞(Rd) whenever m > d/2. Thus, all the ψ–dependent coefficients

appearing in adjoint equation (4.35) are indeed in L∞.

Remark 4.3.8. Note that Lemma 4.3.3 requires us to impose σ ∈ N, which together

with the condition σ < 2/(d− 2) necessarily implies d ≤ 3. The reason is that for general

σ > 0 (not necessarily an integer) the nonlinearity |ψ|2σψ is not locally Lipschitz in Σm
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(cf. Lemma 4.3.4) and the life-span of solution ψ(t, ·) ∈ Σm is in general not known, see

[19] for more details.

From now on, we shall always assume that V ∈ Wm,∞(Rd) for m > d/2 and U ∈ C∞(Rd)

subquadratic. With the above regularity result at hand, classical semigroup theory [71]

allows us to construct a solution to the adjoint problem.

Proposition 4.3.9. Let λ ≥ 0, σ ∈ N with σ < 2/(d − 2), and U ∈ C∞(Rd) be sub-

quadratic. For m > d/2, let ψ0 ∈ Σm, V ∈ Wm,∞(Rd). Then, (4.35) admits a unique

mild solution

ϕ ∈ C([0, T ];L2(Rd)).

Proof. First, we study the homogenous equation ∂ψP (ψ(α), α)ξ = 0, associated to (4.35).

It can be written as

∂tξ = −iHξ +B(t)ξ,

where

B(t)ξ := −i
(
λ(σ + 1)|ψ|2σξ + λσ|ψ|2σ−2ψ2ξ + α(t)V (x)ξ

)
.

The operator −iH : Σ2 → L2(Rd) is simply the generator of the Schrödinger group

S(t) = e−iHt. On the other hand, for any t ∈ [0, T ], B(t) is a linear operator on the

real vector space L2(Rd), equipped with the inner product (4.12) (the same would not be

true if we would consider L2(Rd) as a complex vector space). In addition, B(t)∗ = B(t)

is symmetric with respect to this inner product and the same is true for iB(t). Since

V ∈ Wm,∞(Rd), α ∈ L∞(0, T ) by assumption and ψ ∈ L∞((0, T )×Rd) in view of Lemma

4.3.3, we infer B ∈ L∞(0, T ;L(L2(Rd))). The operator B(t) may therefore be considered as

a (time-dependent) perturbation of the generator −iH. Following the construction given

in Proposition 1.2, Chapter 3 of [71], we obtain the existence of a propagator F (t, s), i.e.

a family of bounded operators

{F (t, s) : L2(Rd)→ L2(Rd)}s,t∈[0,T ]

which are strongly continuous in time and satisfy F (t, s) = F (t, r)F (r, s). This propagator

F (t, s) is implicitly given by

(4.40) F (t, s) = e−iH(t−s) +

∫ t

s

e−iH(t−τ)B(τ)F (τ, s) dτ.

It solves the homogeneous linearized equation in the sense that

(4.41)
d

dt
F (t, s)ξ = (−iH +B(t))F (t, s)ξ
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weakly in (Σ2)∗ for every ξ ∈ L2(Rd) and almost every t ∈ [0, T ]. Clearly, it provides

a unique mild solution ξ(t) = F (t, s)ϕ(s) of the homogenous equation. For the reader’s

convenience, we give here a detailed construction of F (t, s). We iteratively set

(4.42) F0(t, s) := e−iH(t−s), Fn+1(t, s) :=

∫ t

s

e−iH(t−τ)B(τ)Fn(τ, s) dτ

for all s, t ∈ [0, T ]. As a first step, we show that

‖Fn(s, t)‖L(L2) ≤
‖B‖nL∞(0,T ;L(L2))(t− s)n

n!
.

This is obviously true for n = 0. Assuming it is true for n ∈ N, it follows from the

definition of Fn+1 that

‖Fn+1(s, t)‖L(L2) ≤
‖B‖n+1

L∞(0,T ;L(L2))

n!

∫ t

s

(τ − s)ndτ =
‖B‖n+1

L∞(0,T ;L(L2))(t− s)
n+1

(n+ 1)!
.

Hence the series

(4.43) F (t, s) :=
∞∑
n=0

Fn(t, s)

converges absolutely in the operator topology of L(L2(Rd)) with uniform convergence

with respect to s and t on the (bounded) interval [0, T ]. Hence the definitions (4.43) and

(4.42) of F and Fn respectively, yield

F (t, s) =
∞∑
n=0

Fn(t, s) = e−iH(t−s) +
∞∑
n=0

Fn+1(t, s)

= e−iH(t−s) +

∫ t

s

e−iH(t−τ)B(τ)
∞∑
n=0

Fn(τ, s) dτ,

due to the uniform in time convergence. Substituting the definition (4.43) of F , we obtain

the desired expression (4.40). Differentiation of equation (4.40) indeed yields (4.41).

Duhamel’s formula applied to the adjoint problem (4.35) consequently yields

(4.44) ϕ(t) = iF (t, T )
δJ(ψ, α)

δψ(T )
+ i

∫ T

t

F (t, s)
δJ(ψ, α)

δψ(s)
ds.

Under our assumptions on ψ and A we have that

δJ(ψ, α)

δψ(t)
∈ L1(0, T ;L2(Rd)),

δJ(ψ, α)

δψ(T )
∈ L2(Rd),

which in view of Duhamel’s formula (4.44) implies the existence of a mild solution
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ϕ ∈ C([0, T ];L2(Rd)). Uniqueness follows from linearity and the uniqueness of the homo-

geneous equation.

4.4 Rigorous characterization of critical points

A classical approach for making the derivation of the adjoint system rigorous is based on

the implicit function theorem. The latter is used to show that ∂ψP (ψ(α), α) is indeed

invertible, but it requires the identification of a linear function space X such that

P : Υ(0, T )×H1(0, T )→ X ; (ψ, α) 7→ P (ψ, α),

and

∂ψP (ψ, α)−1 : X → Υ(0, T ).

In other words, we require the solution of (4.35) with a right hand side in X to be in

Υ(0, T ). It seems, however, that the linearized operator ∂ψP (ψ, α)−1 is not sufficiently

regularizing to allow for an easy identification of X. Therefore we shall not invoke the

implicit function theorem but rather calculate the Gâteaux-derivative J′(α) directly. (We

do not prove Fréchet-differentiability; see Remark 4.4.3 below.) To this end, we shall first

show that the solution ψ = ψ(α) to (4.1) depends Lipschitz-continuously on the control

parameter α. This will henceforth be used to estimate the error terms appearing in the

derivative of J(α).

4.4.1 Lipschitz continuity with respect to the control

As a first step towards full Lipschitz continuity, we prove local-in-time Lipschitz continuity

of ψ = ψ(α) with respect to the control parameter α.

Proposition 4.4.1. Let λ ≥ 0, σ ∈ N with σ < 2/(d − 2), and U ∈ C∞(Rd) be sub-

quadratic. For m > d/2, let V ∈ Wm,∞(Rd) and ψ̃, ψ ∈ L∞(0, T ; Σm) be two mild

solutions to (4.1), corresponding to initial data ψ̃0, ψ0 ∈ Σm and control parameters

α̃, α ∈ H1(0, T ), respectively. Assume that

‖α̃‖H1
t
, ‖α‖H1

t
, ‖ψ̃(t, ·)‖Σm , ‖ψ(t, ·)‖Σm ≤M

for some given M ≥ 0. Then there exist τ = τ(M) > 0 and a constant C = C(M) < +∞,

such that

(4.45) ‖ψ̃ − ψ‖L∞(It;Σm) ≤ C
(
‖ψ̃(t)− ψ(t)‖Σm + ‖α̃− α‖H1

t

)
,
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where It := [t, t+τ ]∩ [0, T ]. In particular, the mapping α 7→ ψ(α) ∈ Υ(0, T ) is continuous

with respect to α ∈ H1(0, T ).

Proof. To simplify notation, let us assume t + τ ≤ T . By construction, there exists a

τ > 0 depending only on M , such that ψ|It is a fixed point of the mapping

ψ 7→ S( · )ψ0 − i
∫ ·

t

S(· − s)
(
λ|ψ(s)|2σψ(s) + α(s)V ψ(s)

)
ds,

which maps the set

Y = {ψ ∈ L∞(It; Σm) : ‖ψ‖L∞(It;Σm) ≤ 2M}

into itself. Of course, the same holds true for ψ̃ and α̃ in place of ψ and α, respectively.

In particular, the embedding Σm(Rd) ↪→ L∞(Rd), m > d/2, yields

‖ψ‖L∞(It×Rd) ≤ 2CM.

Subtracting the two fixed point expressions for ψ̃ and ψ gives

ψ̃(s)− ψ(s) = S(s− t)(ψ̃(t)− ψ(t))

− i
∫ s−t

0

S(s− r)
(
λ(|ψ̃|2σψ̃ − |ψ|2σψ) + V (x)(α̃ ψ̃ − αψ)

)
(τ) dτ

for all s ∈ [t, t + τ ]. Taking the L∞(It; Σm)-norm and recalling Lemma 4.3.6, together

with ‖ψ(s)‖Σm , ‖ψ̃(s)‖Σm ≤ 2M , for s ≤ t+ τ , yields

‖ψ̃ − ψ‖L∞(It;Σm) ≤ C‖ψ̃(t)− ψ(t)‖Σm + 2M‖α̃− α‖H1
t
‖V ‖Wm,∞

x

+ Cτ
(
C(2M) + ‖α̃‖H1

t
‖V ‖Wm,∞

x

)
‖ψ̃ − ψ‖L∞(t,t+τ ;Σm),

where C(2M) is the constant appearing in Lemma 4.3.4 with 2M replacing M . Since

‖α̃‖H1
t
≤M , the estimate (4.45) follows from possibly choosing τ even smaller.

Finally, we show the continuity of the map H1(0, T )→ Υ(0, T ), α 7→ ψ(α). Set

t∗ := inf
{

0 ≤ t ≤ T : lim sup
α̃→α

‖ψ̃ − ψ‖L∞(0,t;Σm) > 0
}
,

with the convention inf ∅ := +∞. We have to show that t∗ = +∞. Assuming t∗ ≤ T <

+∞, fix M ′ ≥ M such that ‖ψ‖L∞(0,T ;Σm) ≤ M ′, let τ ′ = τ(M ′ + 1) > 0 be chosen as

above, with M ′+1 replacing M . Furthermore let ∆t = τ ′/2. The definition of of t∗ yields

lim sup
α̃→α

‖ψ̃ − ψ‖L∞(0,t∗−∆t;Σm) = 0.
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In particular, it holds that ‖ψ̃‖L∞(0,t∗−∆t;Σm) ≤M ′ + 1 for all (α̃− α) small enough. But

now we see that the Lipschitz continuity (4.45) is satisfied by ψ̃ and ψ and such controls

α̃, α on the interval [t∗ −∆t, t∗ −∆t+ τ ′]. Hence

lim sup
α̃→α

‖ψ̃ − ψ‖L∞(0,t∗−∆t+τ ′;Σm) = 0,

a contradiction to the definition of t∗. Hence we must have t∗ = ∞, and continuity

holds.

As a direct consequence of this continuity result, we obtain uniform boundedness of the

solution ψ(α) on compact sets in α ∈ H1(0, T ). Of course, bounded sets in H1(0, T ) are in

general not compact and thus we have to restrict ourselves to finite-dimensional subsets.

Corollary 4.4.2. Under the assumptions of Proposition 4.4.1, let δα ∈ H1(0, T ) with

δα(0) = 0 be a direction of change for α and let ψ(α + εδα) be the solution to (4.1) with

control α + εδα and initial data ψ0 ∈ Σm, m > d/2. Then there exists M <∞ such that

‖ψ(α + εδα)‖L∞(0,T ;Σm) ≤M, ∀ ε ∈ [−1, 1].

Remark 4.4.3. This bound on finite dimensional subsets of H1(0, T ) is the reason why

we can only prove Gâteaux-differentiability. If we had a bound on ψ(α) in the Σm–norm

which was uniform in t ≤ T and ‖α‖H1
t
≤ M , we could prove Fréchet-differentiability.

For our further analysis, however, this will not be of any consequence.

Now we are ready to prove Lipschitz-continuity of the solution ψ(α) with respect to the

control parameter α ∈ H1(0, T ) on the whole control interval [0, T ].

Proposition 4.4.4. Let λ ≥ 0, σ ∈ N with σ < 2/(d − 2), and U ∈ C∞(Rd) be sub-

quadratic. For m > d/2, let V ∈ Wm,∞(Rd), ψ0 ∈ Σm, α ∈ H1(0, T ), and ψ ≡ ψ(α) ∈
L∞(0, T ; Σm) be the solution to (4.1). Set ψ̃ ≡ ψ(α̃) where for any ε ∈ [−1, 1], we let

α̃ := α+ εδα with δα ∈ H1(0, T ) such that δα(0) = 0. Then there exists a constant C > 0,

such that

(4.46) ‖ψ̃ − ψ‖L∞(0,T ;Σm) ≤ C‖α̃− α‖H1(0,T ) = C|ε|‖δα‖H1(0,T ).

In other words, the solution to (4.1) depends Lipschitz-continuously on the control α for

each fixed direction δα.

Proof. Since Corollary 4.4.2 provides a uniform (in ε) bound on ‖ψ̃‖L∞(0,T ;Σm), the quan-

tity τ in the local Lipschitz estimate (4.45) is now independent of ε and t and the estimate

indeed holds on every interval [t, t+ τ ], i.e.

‖ψ̃ − ψ‖L∞(t,t+τ ;Σm) ≤ C
(
‖ψ̃(t)− ψ(t)‖Σm + ‖α̃− α‖H1(t,t+τ)

)
.
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Since both solutions ψ̃ and ψ coincide at t = 0, finite summation of this estimate over

intervals [nτ, (n+ 1)τ ] yields (4.46).

4.4.2 Proof of differentiability and characterization of critical

points

We are now in a position to state the second main result of this work.

Theorem 4.4.5. Let λ ≥ 0, σ ∈ N with σ < 2/(d−2), and U ∈ C∞(Rd) be subquadratic.

In addition, let ψ0 ∈ Σm, V ∈ Wm,∞(Rd) for some m ∈ N, m ≥ 2, and α ∈ H1(0, T ).

Then the solution of (4.1) satisfies ψ ∈ L∞(0, T ; Σm) and the functional J(α) is Gâteaux-

differentiable for all t ∈ [0, T ], with

(4.47) J′(α) = Re

∫
Rd
ϕ(t, x)V (x)ψ(t, x) dx− 2

d

dt

(
α̇(t)

(
γ2 + γ1ω

2(t)
))
,

in the sense of distributions, where ω(t) is the weight factor defined in (4.9) and ϕ ∈
C([0, T ];L2(Rd)) is the solution of the adjoint equation

(4.48)
i∂tϕ = − 1

2
∆ϕ+ U(x)ϕ+ α(t)V (x)ϕ+ λ(σ + 1)|ψ|2σϕ+ λσ|ψ|2σ−2ψ2ϕ

+ 4γ1(α̇(t))2 ω(t)V (x)ψ,

subject to Cauchy data ϕ(T, x) = 4i〈ψ(T, ·), Aψ(T, ·)〉L2
x
Aψ(T, x).

Remark 4.4.6. When compared to the assumptions of Theorem 4.2.1, the result of

Theorem 4.4.5 requires additional regularity (and stronger decay) of the initial data ψ0 and

the potential V (plus, we need to restrict ourselves to σ ∈ N). Note that the requirement

m ∈ N and m ≥ 2 implies m > d/2 for d = 1, 2, 3 spatial dimensions.

Proof. We need to prove that J′(α) is of the form (4.4.2). For this purpose, let ψ = ψ(α),

ψ̃ = ψ(α̃) with α̃ = α + εδα, satisfy the assumptions of Lemma 4.4.4 and consider the

difference of the corresponding objective functionals J(α), J(α̃). This difference can be

written as the sum of three terms

J(α̃)− J(α) = I + II + III,

where we define

I := 〈ψ̃(T ), Aψ̃(T )〉2L2
x
− 〈ψ(T ), Aψ(T )〉2L2

x
, II := γ2

∫ T

0

( ˙̃α(t))2 − (α̇(t))2 dt,
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and

III := γ1

∫ T

0

( ˙̃α(t))2

(∫
Rd
V (x)|ψ̃(t, x)|2 dx

)2

dt

− γ1

∫ T

0

(α̇(t))2

(∫
Rd
V (x)|ψ(t, x)|2 dx

)2

dt.

The general strategy will be to use the Lipschitz property established in Lemma 4.4.4 and

rewrite the terms I, II, and III in such a way that

J(α̃)− J(α) = linear terms in (α̃− α) + O(‖α̃− α‖2
H1
t
).

Since α̃ = α+εδα and thus O(‖α̃−α‖2
H1
t
) = O(ε2), the limit ε→ 0 then yields the desired

functional derivative.

We start by considering the term I. It can be rewritten in the form

I = 〈ψ̃(T ), Aψ̃(T )〉2L2
x
− 〈ψ(T ), Aψ(T )〉2L2

x

= 2〈ψ(T ), Aψ(T )〉L2
x

(
〈ψ̃(T ), Aψ̃(T )〉L2

x
− 〈ψ(T ), Aψ(T )〉L2

x

)
+
(
〈ψ̃(T ), Aψ̃(T )〉L2

x
− 〈ψ(T ), Aψ(T )〉L2

x

)2

.

Using the essential self-adjointness of A, the terms within the parentheses yield

〈ψ̃(T ), Aψ̃(T )〉L2
x
− 〈ψ(T ), Aψ(T )〉L2

x

= 2〈ψ̃(T )− ψ(T ), Aψ(T )〉L2
x

+ 〈ψ̃(T )− ψ(T ), A(ψ̃(T )− ψ(T ))〉L2
x
.

Using the Lipschitz-estimate (4.46), we obtain∣∣∣〈ψ̃(T )− ψ(T ), A(ψ̃(T )− ψ(T ))〉L2
x

∣∣∣ ≤ ‖A‖L(Σ,L2
x)‖ψ̃(T )− ψ(T )‖2

Σ ≤ Cε2‖δα‖2
H1
t
,

and hence

〈ψ̃(T ), Aψ̃(T )〉L2
x
− 〈ψ(T ), Aψ(T )〉L2

x
= 2〈ψ̃(T )− ψ(T ), Aψ(T )〉L2

x
+ O(‖α̃− α‖2

H1
t
).

Squaring the above result and plugging it into our expression for I consequently yields

(4.49) I = 4〈ψ(T ), Aψ(T )〉L2
x
〈ψ̃(T )− ψ(T ), Aψ(T )〉L2

x
+ O(‖α̃− α‖2

H1
t
).
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4.4. Rigorous characterization of critical points

Next we consider II, which can be written as

II = 2γ2

∫ T

0

α̇(t)
(

˙̃α(t)− α̇(t)
)
dt+ γ2

∫ T

0

(
˙̃α(t)− α̇(t)

)2
dt

= 2γ2

∫ T

0

α̇(t)
(

˙̃α(t)− α̇(t)
)
dt+ O(‖α̃− α‖2

H1
t
).

The first term in the second line is thereby seen to be of the form given in (4.4.2). Finally

we consider III, which in view of definition (4.9) can be written as

III = γ1

∫ T

0

(
( ˙̃α(t))2 − (α̇(t))2

)
ω2(t) dt

+ γ1

∫ T

0

( ˙̃α(t))2

((∫
Rd
V (x)|ψ̃(t, x)|2dx

)2

− ω2(t)

)
dt.

As before, we can expand these terms using quadratic expansions in both ψ̃ and α̃. In

view of the Lipschitz estimate (4.46), any quadratic error ‖ψ̃ − ψ‖2
L∞t L

2
x

is bounded by

O(‖α̃− α‖2
H1
t
) and hence we obtain

III = 4γ1

∫ T

0

(α̇(t))2 ω(t)
(

Re

∫
Rd

(
(ψ̃ − ψ)V ψ

)
(t, x) dx

)
dt

+ 2γ1

∫ T

0

(
˙̃α(t)− α̇(t)

)
α̇(t)ω2(t) dt+ O(‖α̃− α‖2

H1
t
).

(4.50)

Here the second term on the right hand side is linear in (α̃− α) and hence of the desired

form. In order to treat the first term, we note that the expression

4γ1

(
(α̇(t))2

∫
Rd
V (x)|ψ(t, x)|2 dx

)
V (x)ψ(t, x)

appears as a source term in the adjoint equation (4.48). Thus we obtain

4γ1

∫ T

0

(α̇(t))2 ω(t)
(

Re

∫
Rd

(
(ψ̃ − ψ)V ψ

)
(t, x) dx

)
dt

= Re

∫ T

0

∫
Rd
ϕ(t, x)

(
∂ψP (ψ, α)(ψ̃ − ψ)

)
(t, x) dx

− Re

∫
Rd
i ϕ(T, x)

(
ψ̃(T, x)− ψ(T, x)

)
dx,

(4.51)

where we recall that ∂ψP (ψ, α) denotes the linearized Schrödinger operator obtained in

(4.31). The last term on the right hand side of (4.51) stems from the boundary condition

at t = T . Note that the boundary term at t = 0 vanishes since ψ̃(0) = ψ0 = ψ(0) by
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assumption. We recall that ϕ ∈ C([0, T ];L2(Rd)) and

ψ̃, ψ ∈ L∞(0, T ; Σm) ∩W 1,∞(0, T ; Σm−2), with m ≥ 2,

and hence the right hand side of (4.51) is well-defined. In addition, since both ψ̃ and ψ

solve the nonlinear Schrödinger equation (4.1), we can write

∂ψP (ψ, α)(ψ̃ − ψ) = i∂t(ψ̃ − ψ)−H(ψ̃ − ψ)− V (x)(α̃(t)ψ̃ − α(t)ψ)

+ λ|ψ|2σψ − λ|ψ̃|2σψ̃ + (α̃(t)− α(t))V (x)ψ̃ + %(ψ̃, ψ)

= (α̃(t)− α(t))V (x)ψ̃ + %(ψ̃, ψ),

(4.52)

where the remainder %(ψ̃, ψ) is given by

1

λ
%(ψ̃, ψ) = |ψ̃|2σψ̃ − |ψ|2σψ − (σ + 1)|ψ|2σ(ψ̃ − ψ)− σ|ψ|2σ−2ψ2

(
ψ̃ − ψ

)
.

Since 2σ ≥ 2 by assumption, ‖ψ̃‖L∞t L∞x , ‖ψ‖L∞t L∞x ≤ C in view of Corollary 4.4.2, and

Σm ↪→ L∞(Rd), the remainder can be bounded by

|%(ψ̃, ψ)| ≤ C
(
|ψ̃|2σ−1 + |ψ|2σ−1

)
|ψ̃ − ψ|2 ≤ C|ψ̃ − ψ|2.

In addition, since ϕ ∈ C([0, T ];L2(Rd)) and Σm ⊂ Hm(Rd) ↪→ L4(Rd), we find that∫
Rd
|ϕ(t, x)||ψ̃(t, x)− ψ(t, x)|2 dx ≤ ‖ϕ‖L∞t L2

x
‖ψ̃ − ψ‖2

L∞t L
4
x

= O(‖α̃− α‖2
H1
t
).

Furthermore, the contribution of (α̃(t)− α(t))V (x)ψ̃ in (4.52) equals

(α̃(t)− α(t))V (x)ψ + (α̃(t)− α(t))V (x)(ψ̃ − ψ),

where the latter term can be estimated by O(‖α̃ − α‖2
H1
t
) as before. In summary, this

shows that

(4.51) =

∫ T

0

(α̃(t)− α(t))Re

∫
Rd
ϕ(t, x)V (x)ψ(t, x)dxdt+O(‖α̃− α‖2

H1
t
)

− 4〈ψ(T ), Aψ(T )〉L2
x
〈ψ̃(T )− ψ(T ), Aψ(T )〉L2

x
,

(4.53)

where we have used the fact that the data of the adjoint problem at t = T is given by

ϕ(T, x) = 4i〈ψ(T, ·), Aψ(T, ·)〉L2
x
Aψ(T, x).

Thus, we infer that, up to quadratic errors, the second line in (4.53) cancels with the

terms obtained in (4.49). Collecting all the expressions obtained for I, II, III and taking
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the limit ε→ 0, we have shown that J(α) is Gâteaux-differentiable with derivative J′(α)

given by (4.4.2). This concludes proof of Theorem 4.4.5.

Equation (4.47) yields the following characterization of the critical points α∗ ∈ H1(0, T ),

i.e. points where J′(α∗) = 0.

Corollary 4.4.7. Let ψ∗ be the solution of (4.1) with control α∗. Also, let ϕ∗ be the

corresponding solution of the adjoint equation (4.48), and denote by ω∗ the function defined

in (4.9) with ψ replaced by ψ∗. Then α∗ ∈ C2(0, T ) is a classical solution of the following

ordinary differential equation

(4.54)
d

dt

(
α̇∗(t)

(
γ2 + γ1ω

2
∗(t)
))

=
1

2
Re

∫
Rd
ϕ∗(t, x)V (x)ψ∗(t, x) dx,

subject to α∗(0) = α0, α̇∗(T ) = 0.

Remark 4.4.8. In the case γ1 = 0 this simplifies to the expression used in the physics

literature; cf. [40].

Proof. Let µ ∈ C∞0 (0, T ) be a test function with compact support in (0, T ). Then,

Theorem 4.2.1 and Theorem 4.4.5 imply that there exists α∗ ∈ H1(0, T ) such that J′(α∗) =

0, satisfying (4.47) in the sense of distributions, i.e.∫ T

0

α̇∗(t)µ̇(t)
(
γ2 + γ1ω

2
∗(t)
)
dt =

1

2
Re

∫ T

0

∫
Rd
µ(t)ϕ∗(t, x)V (x)ψ∗(t, x)dxdt,

where we have used the fact that the boundary terms at t = 0 and t = T vanish due to

the compact support of µ(t). We shall show that the weak solution α∗ is in fact unique.

This can be seen by considering two different α1
∗(t), α

2
∗(t), satisfying α1

∗(0) = α2
∗(0) = α0.

Denoting their difference by β∗ = α1
∗ − α2

∗, we have that β∗(t) solves∫ T

0

β̇∗(t)µ̇(t)
(
γ2 + γ1ω

2
∗(t)
)
dt = 0, for all µ ∈ C∞0 (0, T ).

Since γ2 > 0 and γ1 ≥ 0, this implies that β̇∗(t) = 0 in the sense of distributions. However,

since α1
∗, α

2
∗ ∈ H1(0, T ) ↪→ C(0, T ), we conclude that β∗ ∈ C(0, T ) and thus β∗(t) = const

for all t ∈ [0, T ]. Since β∗(0) = 0 by assumption, we infer uniqueness of the weak solution

α∗(t). On the other hand, standard arguments imply that (4.54) admits a unique classical

solution α∗ ∈ C2(0, T ), provided ω∗ ∈ C1(0, T ) and the (source term on the) right hand

side is continuous in time. The latter is obviously true in view of Proposition 4.2.4 and

Proposition 4.3.9. In addition, since V ∈ W 1,∞(Rd), we infer that for all ψ(t) ∈ Σ it holds

that χ(t) := (V (x)ψ(t)) ∈ Σ. From Proposition 4.2.4 it follows that

ω̇∗(t) = 2Re

∫
Rd
V (x)∂tψ∗(t, x)ψ∗(t, x) dx = 2〈χ(t), ψ̇∗(t)〉Σ,Σ∗ < +∞.
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Thus, ω(t) ∈ C1(0, T ), yielding the existence of a unique classical solution α∗ ∈ C2(0, T ).

We therefore conclude that the unique weak solution α∗ obtained above is in fact a classical

solution, satisfying (4.54) subject to α∗(0) = α0, α̇∗(T ) = 0.

We call α∗ ∈ H1(0, T ) a critical or stationary point of the problem

(4.55) minimize J(α) over α ∈ H1(0, T ),

if J′(α∗) = 0, where J′ is given in Theorem 4.4.5. In order the check computationally

whether α∗ is critical, one needs to solve (4.1) for α = α∗ to obtain ψ∗ and then the adjoint

equation (4.48) with ψ = ψ∗ and α = α∗ to compute ϕ∗. Inserting (α, ψ, ϕ) = (α∗, ψ∗, ϕ∗)

in (4.47) yields J′(α∗) which has to vanish for α∗ to be critical, i.e., (4.54) is satisfied. We

therefore call (4.1), (4.48) and (4.54) the first order optimality conditions associated with

(4.55).

4.5 Numerical simulation of the optimal control prob-

lem

For our numerical treatment we simplify to the case d = σ = 1. In this case, the first

order optimality conditions for our optimal control problem are given by:

d

dt

(
α̇(t)

(
γ2 + γ1ω

2(t)
))

=
1

2
Re

∫
Rd
ϕ(t, x)V (x)ψ(t, x) dx,

i∂tψ +
1

2
∂2
xψ = (U(x) + α(t)V (x))ψ + λ|ψ|2ψ,

i∂tϕ+
1

2
∂2
xϕ = (U(x) + α(t)V (x))ϕ+ 2λ|ψ|2ϕ+ λψ2ϕ+ 4γ1(α̇)2 ω(t)V (x)ψ,

subject to the following conditions: α(0) = α0, α̇(T ) = 0, and

ψ(0, x) = ψ0(x), ϕ(T, x) = 4i〈ψ(T, ·), Aψ(T, ·)〉L2
x
Aψ(T, x).

In our numerical simulations, we solve the minimization problem (4.55) iteratively, con-

structing a minimizing sequence (αk)k ⊂ H1(0, T ). We determine a sequence of descent

directions (δkα)k ⊂ H1(0, T ), i.e., for every k ∈ N

(4.56) J(αk + δkα) < J(αk) = J(ψ(αk), αk)

is satisfied, where the iteration is given by αk+1 = αk + δkα. If αk is such that there is

no descent direction, αk is indeed a (local) minimum of J and ψ(αk) is the corresponding

(locally) optimal solution to the NLS (4.1).
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4.5. Numerical simulation of the optimal control problem

We solve the resulting Cauchy problems for Schrödinger–type equations by a time-splitting

spectral method of second order (Strang-splitting), as can be found in Section 3.5 or, for

instance, in [7]. This computational approach is unconditionally stable and allows for

spectral accuracy in the resolution of the wave function ψ(t, x). This is needed due

to the highly oscillatory nature of solutions to (nonlinear) Schrödinger–type equations.

We consequently perform our simulations on a numerical domain Ω ⊂ R, equipped with

periodic boundary conditions. The trapping potential U(x) is thereby chosen such that the

“effective” (i.e. the numerically relevant) support of the wave function ψ(t, x) stays away

from the boundary. In doing so, the boundary conditions do not significantly influence

our results. A good test of the accuracy of our numerical code is given by the fact that the

Gross-Pitaevskii equation conserves the physical mass (i.e. the L2-norm of ψ(t)). Indeed,

in all our numerical examples presented in Section 4.5.3 below, we find that the L2-norm

is numerically preserved up to relative errors of the order 10−13.

4.5.1 Gradient-related descent method

Once a suitable solver for the state and the adjoint equations is at hand, our gradient-

related descent scheme operates as follows. Given αk ∈ H1(0, T ), determine δkα such that

the condition (4.56) is satisfied. A simple Taylor expansion of J around αk shows that

〈J′(αk), δkα〉 < 0

is sufficient for δkα to be a descent direction for J at αk. We are in particular interested in

gradient-related descent directions which satisfy

Mδkα = −J′(αk), where M : H1(0, T )→ H1(0, T )∗

is a suitably chosen positive definite operator.

A rather straightforward choice of M is given by M = ∂2
αJ(ψ, αk). In this case δkα is

obtained as the solution of the following ordinary differential equation (of second order):

J′(αk) = 2
d

dt

(
δ̇kα(t)

(
γ2 + γ1

(∫
R
V (x)|ψk(t, x)|2dx

)2
))

,

with δkα(0) = 0 and δ̇kα(T ) = 0. Here ψk(t, x) denotes the solution of the Gross–Pitaevskii

equation with α(t) = αk(t). With this choice of a descent direction, we then perform a

line search in order to decide on the length of the step taken along δkα. In fact, we seek

for νk > 0 such that

(4.57) J(αk + νkδ
k
α) ≤ J(αk) + µνk〈J′(αk), δkα〉
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with some fixed µ ∈ (0, 1). Within each line search, we determine νk iteratively by a

backtracking strategy. Starting from ν
(0)
k > 0, we iteratively test the condition (4.57); if

it holds for ν
(`)
k , then we accept αk+1 := αk + ν

(`)
k δkα, and if not, we choose ν

(`+1)
k < ν

(`)
k

and repeat. Thus, the whole procedure amounts to an Armijo line search method with

backtracking. Of course, more elaborate strategies based on interpolation or alternative

line search criteria are possible; see for instance [69] for more details.

We stop the gradient descent method whenever

(4.58) ‖J′(αk)‖H−1
t
≤ TOL · ‖J′(α1)‖H−1

t

is satisfied for the first time. Here, TOL ∈ (0, 1) is a given stopping tolerance and α1 ∈
H1(0, T ) is the initial guess satisfying the boundary conditions α1(0) = α0 and α̇1(T ) = 0.

As a safeguard, also an upper bound on the number of iterations is implemented.

In our tests, we observe the usual behavior of steepest descent type algorithms, i.e., the

method exhibits rather fast progress towards a stationary point in early iterations, but

then suffers from scaling effects reducing the convergence speed. Therefore, often the

maximum number of iterations is reached. Thus, we connect the first-order, gradient

method to a Newton-type method which relies on second derivatives or approximations

thereof.

4.5.2 Newton method

The majority of iterations within our simulations are performed via a second order

method, Newton’s method, for which we use the full Hessian

M := D2
αJ(αk) : H1(0, T )×H1(0, T )→ R,

or a sufficiently close positive definite approximation thereof. Note that we can also

consider the Hessian as a map D2
αJ : H1(0, T ) → H1(0, T )∗. Recall that the gradient-

related method above simply uses M = ∂2
αJ(ψ, αk).

We derive D2
αJ formally form the Lagrangian formulation; see Remark 4.3.1. The La-

grangian is given by

L(ψ, α, ϕ) = J(ψ, α)− 〈ϕ, P (ψ, α)〉L2
t,x
,

where ϕ is the solution to the adjoint equation (4.48) and P (ψ, α) is the Gross–Pitaevksii

operator written in abstract form. Proceeding formally, we find

〈(D2
αJ)δα, δ̃α〉L2

t
= 〈(∂2

ψL)δψ, δ̃ψ〉L2
t,x

+ 〈(∂ψαL)δα, δ̃ψ〉L2
t,x

+ 〈(∂αψL)δ̃α, δψ〉L2
t

+ 〈(∂2
αL)δα, δ̃α〉L2

t
,
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4.5. Numerical simulation of the optimal control problem

where δψ and δ̃ψ solve the linearized Gross–Pitaevksii equation with controls δα, δ̃α, re-

spectively. In view of the derivation given in Section 4.3.1 we have

δψ = ψ′(α)δα = −∂ψP (ψ(α), α)−1∂αP (ψ(α), α)δα,

and analogously for δ̃ψ. Hence we conclude that

(4.59)
〈(D2

αJ)δα, δ̃α〉L2
t

= 〈(∂2
ψJ)ψ′(α)δα, ψ

′(α)δ̃α〉L2
t,x

+ 〈(∂αψJ)δα, ψ
′(α)δ̃α〉L2

t,x

+ 〈(∂ψαJ)ψ′(α)δα, δ̃α〉L2
t

+ 〈(∂2
αJ)δα, δ̃α〉L2

t
− 〈ϕ,

(
D2
αP (ψ, α)δα

)
δ̃α〉L2

t,x
,

where

(D2
αP (ψ, α)δα)δ̃α =

(
∂2
ψP (ψ, α)(ψ′(α)δα)

)
(ψ′(α)δ̃α)

+
(
∂αψP (ψ, α)δα

)
(ψ′(α)δ̃α) +

(
∂ψαP (ψ, α)(ψ′(α)δα)

)
δ̃α,

since ∂2
αP (ψ, α) = 0. All of the terms appearing on the right hand side of (4.59) can

be evaluated by replacing ψ′(α)δα by −∂ψP (ψ, α)−1∂αP (ψ, α)δα. Consequently for calcu-

lating the action of the Hessian this requires to solve several linearized Schrödinger-type

equations with different source terms and boundary data. For example, the term involving

(∂αψJ) can be evaluated by using

χ := ∂ψP (ψ, α)−∗((∂αψJ)δα),

which solves the following Cauchy problem

i∂tχ+
1

2
∂2
xχ = U(x)χ+ α(t)V (x)χ+ 2λ|ψ|2χ+ λψ2χ+ 8γ1h(t, x)ψ,

where h(t, x) := ω(t)α̇(t)δ̇α(t)V (x) and

χ(T, x) =
δ2J(ψ, α)

δψ(T, x) δα(T )
= 0.

Bearing this in mind, we have to solve the following equation for δkα ∈ H1(0, T ):

(4.60) Mδkα = D2
αJδ

k
α = −J′(αk) ∈ H1(0, T )∗.

Hence, we need to invert D2
αJ, which, in view of (4.59) is not directly possible. Rather we

resort to an iterative method, the preconditioned MINRES algorithm, see [70], with the

preconditioner (∂2
αJ(ψ, α))−1 : H1(0, T )∗ → H1(0, T ).

Remark 4.5.1. (1) Note that D2
αJ maps H1(0, T ) to H1(0, T )∗ and thus makes it neces-

sary to precondition the iterative MINRES algorithm with a map H1(0, T )→ H1(0, T )∗.
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The choice ∂2
αJ(ψ(αk), αk) is easy to implement and can be expected to contain some of

the features of the full Hessian D2
αJ, thus making the inversion problem for the MINRES

algorithm better-conditioned.

(2) We choose here the MINRES algorithm over alternatives like the conjugated gradient

(CG) method, because the Hessian D2
αJ is symmetric but not necessarily positive defi-

nite. In this setting the MINRES algorithm is superior to the CG-method. Note that

the partial derivative ∂2
αJ(ψ(αk), αk) is indeed positive definite and therefore is a valid

preconditioner.

(3) The map ∂2
αJ(ψ(αk), αk) can also be understood as inducing a scalar product in the

dual space H1(0, T )∗. The correspondence between the scalar product in the dual space

and the preconditioner of the MINRES algorithm has been investigated in [35].

The description of the MINRES-algorithm is given in Algorithm 1. Setting A := D2
αJ(αk),

R := ∂2
αJ(ψ(αk), αk)

−1, and r0 := −J′(αk), it seeks at the `-th step to minimize the

residual r` of Aδα` + J′(αk) with respect to the norm 〈r`,Rr`〉 over all δα ∈ r0 +

span{Ar0, . . . ,A
`r0} using the result of the previous step. Here and in the description

of Algorithm 1 the brackets 〈·, ·〉 denote the dual product between H1(0, T ) and H1(0, T )∗.

We emphasize that here we aim to study the behavior of solutions of our control problem

rather than at optimizing the respective solution algorithm or its implementation.

4.5.3 Numerical examples

In all our examples, we choose the numerical domain Ω = [−L,L] with L = 20 and periodic

boundary conditions. The number of spatial grid points is N = 256. In addition, we set

the final control time to be T = 10, and we use M = 1024 equidistant time steps. In order

to avoid the influence of the boundary, we choose a trapping potential U(x) = 30
(
x
L

)2
.

The initial guess for the control is taken to be just α1 ≡ 0 in the linear case (λ = 0),

whereas each algorithm in the nonlinear case (λ 6= 0) is started from the control obtained

by solving the linear problem. In our tests of the first-order gradient method, we choose

TOL = 10−8 in the terminating condition (4.58) for the whole algorithm, µ = 10−3,

and a maximum number of 20000 iterations. For the Newton method, we likewise set

TOL = 10−8 and we stop the algorithm after at most 45 Newton steps.

Example: shifting a linear wave packet

For validation purposes, we consider the time-evolution of a linear wave packet, i.e. λ = 0,

whose center of mass we aim to shift towards a prescribed point y1 ∈ [−L,L]. For this
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4.5. Numerical simulation of the optimal control problem

Algorithm 1: Preconditioned MINRES algorithm

Given δkα0, set r0 := −Aδkα0 − J′(αk), z1 = Rr0, β1 = 〈r0, z1〉
1
2 , z1 = z1

β1
, v1 = r0

β1
,

γ0 = γ1 = 1, σ0 = σ1 = 0, η = β1 foreach ` = 1, 2, . . . do
if η < TOLMINRES then

Stop, δkα := δkα` is the solution to (4.60).
else

Set µ` = 〈z`,Rz`〉,
v`+1 = Az` − β`v` − µ`v`,
z`+1 = Rv`+1,
β`+1 = 〈z`+1,Rz`+1〉

1
2 ,

z`+1 = z`+1

β`+1
,

v`+1 = v`+1

β`+1
,

ρ0 = γ`µ` − σ`γ`−1β`,

ρ1 =
√
ρ2

0 + β2
`+1,

ρ2 = σ`µ` + γ`−1γ`β`,
ρ3 = σ`−1β`,
γ`+1 = ρ0

ρ1
,

σ`+1 = β`+1

ρ1
,

w`+1 = 1
ρ1

(
z`+1 − ρ3w`−1 − ρ2w`

)
,

x`+1 = x` + γ`+1ηw`+1,
η = −σ`+1η

end

end

purpose consider a control potential

V (x) =
3

10
+

3x

200
≥ 0, ∀x ∈ [−L,L],

and the observable

A(x) = 1− e−(κ(x−y1))2/L2

.

In this case, we find that the algorithm converges well even if we only invoke the first order

gradient method. Indeed, as we decrease the regularization parameters γ1, γ2 � 1, we

approach an optimal solution which, as it seems, cannot be improved upon. This optimal

solution, or, more precisely, its spatial density ρ = |ψ|2, is depicted in Figure 4.1 (right

plot), where we denote by “target” the function proportional to 1 − A(x) with κ = 0.07

and y1 = −2L/8, such that it has the same L2–norm as ψ0. The left plot shows the

associated control.

Since this solution seems optimal, the choice of γ1, γ2 becomes negligible below a certain

threshold. Thus, it suffices to consider γ1 = 0 and only include the cost term proportional

to γ2. Similar results hold for any other given point y1 ∈ Ω, provided y1 stays sufficiently
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Figure 4.1: Shifting a linear wave paket

far away from the boundary.

Example: splitting a linear wave paket

We still consider the linear case, i.e., λ = 0, and aim to split a given initial wave packet

into two separate packets centered around y1 and y2, respectively. The control potential

is chosen as

V (x) = e−8x2/L2 ≥ 0,

and the observable

A(x) = 1−
(
e−(κ(x−y1))2/L2

+ e−(κ(x−y2))2/L2
)
.

In the following we fix κ = 0.07, y1 = −2L/8, and y2 = 2L/8. In this case we find that

the residual of the first order gradient method does not drop below the tolerance given

in (4.58) before the maximum number of iterations is reached. With the Newton method,

however, we find a (local) minimum of the objective functional J(ψ, α) in less than 20

Newton iterations. Of course there is no guarantee that this is a global minimum.

In order to illustrate our results, we consider the case where γ1 = 0, γ2 = 1.5× 10−6. At

the final control time T = 10 we then obtain:

〈Aψ(T ), ψ(T )〉2L2
x
≈ 2.261× 10−3.

The spatial density ρ = |ψ|2 of the corresponding solution is shown in the right plot of

Figure 4.2. The associated control is depicted in the left plot. If, instead, we choose

γ1 = 4× 10−5, γ2 = 1× 10−9, we find

〈Aψ(T ), ψ(T )〉2L2
x
≈ 2.269× 10−3,
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Figure 4.2: Splitting a linear wave paket with γ1 = 0

and the corresponding solution is given in Figure 4.3. Here the intermediate state is a

plot of ρ(t) at t = 4 = 0.4× T .

Figure 4.3: Splitting a linear wave paket with γ1 > 0

A direct comparison of the (spatial densities of the) resulting wave functions and the

respective controls is given in Figure 4.4. We see that the spatial densities are nearly

identical, but the variability of the respective control parameters is not the same. This

is, of course, related to time–evolution of the weight factor ω(t), defined in (4.9), which

is shown in Figure 4.5 for the case of γ1 = 4× 10−5 and γ2 = 1× 10−9.

By construction, the time–integral of ω(t) can be interpreted as the physical work

performed during the control process. We find that compared to the case γ1 > 0, the

term ‖E(·)‖2
L2
t

is around 30% larger (64.5 versus 49.1) and ‖Ė(·)‖2
L2
t

is around twice as

large (95.0 versus 43.4) in the case where γ1 = 0, yielding a significant advantage of our

control cost over terms considering the H1-norm only; see [40] for the latter.

Finally, Figure 4.6 shows an example of the evolution of the objective functional J(ψ, α)
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Figure 4.4: Direct comparison between results

Figure 4.5: The weight factor ω =
∫
V |ψ|2dx over time

over the number of iterations of the Newton method, here for the case where γ1 = 0.

Example: splitting a Bose–Einstein condensate

We consider the same situation as in the previous example, but with an additional (cubic)

nonlinearity. More precisely, we choose λ = 8 > 0. It turns out that the conclusions are

similar to the ones found in the linear case (λ = 0). Qualitatively, the main difference

is that during the time–evolution, the wave function spreads out more because of the

additionally repulsive (defocusing) nonlinearity. In the linear case, the widest extension

of the wave packet is always comparable to its final value. Choosing as before γ1 = 4×10−5

and γ2 = 1× 10−9, we obtain the solution depicted in the right plot of Figure 4.7, where

we show the spatial density at the times t = 0, t = T = 10 and at the intermediate time

t = 4. The control is shown in the left plot. In comparison to the linear case (λ = 0), the
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Figure 4.6: Value of J(ψ, α) over number of iterations

observable term in the objective functional J(ψ, α) is found to be slightly larger. Indeed,

we obtain

〈Aψ(T ), ψ(T )〉2L2
x
≈ 3.720× 10−3.

This seems to indicate that nonlinear effects counteract the influence of the control po-

tential.

Figure 4.7: Splitting a condensate with γ1 > 0

We again compare the present case with the one where γ1 = 0 (i.e. no cost term propor-

tional to the physical work) and γ2 = 1.5× 10−6. First, we find that

〈Aψ(T ), ψ(T )〉2L2
x
≈ 3.382× 10−3.

Moreover, ‖Ė‖2
L2
t

is about 150% larger (172.1 versus 68.5) than in the case where γ1 6= 0.

Similarly, the total energy ‖E‖2
L2
t

is around 15% larger (91.8 versus 79.5).
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Example: splitting an attractive Bose–Einstein condensate

Our numerical method allows us to go beyond the rigorous mathematical theory developed

in the early chapters. In particular we may try to control the behavior of attractive

condensates, which are modeled by (4.1) with λ < 0, i.e. a focusing nonlinearity. Here

we choose λ = −1, whereas the parameters γ1 = 4× 10−5, γ2 = 1× 10−9 are the same as

before. The results are shown in Figure 4.8 (control in the left plot and the state at times

t = 0, 10, 4 in the right plot). The observable part of the objective functional satisfies

〈Aψ(T ), ψ(T )〉2L2
x
≈ 2.143× 10−3.

Figure 4.8: Splitting a focusing condensate with γ1 > 0

In comparison to the case of a repulsive (defocusing) nonlinearity the final value for the

observable term 〈Aψ(T ), ψ(T )〉2L2
x

is much smaller, confirming the basic intuition that an

attractive condensate does not tend to spread out as much as in the repulsive case.
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Chapter 5

Concluding remarks and future work

5.1 On the Cauchy-problem of nonlinear Schrödinger

equations with angular momentum rotation term

In Chapter 3, we have investigated local and global existence for the nonlinear Schrödinger

equation with angular momentum rotation term, generalizing earlier results in the liter-

ature [37, 38]. As we have seen there, equation (3.4) can be considered (upon a change

of coordinates) as a special case of NLS with time-dependent potentials (sub-quadratic

in x). This class of models has recently been studied in [18]. Following the arguments

given therein, one could infer global in-time existence of (3.4) for sufficiently small initial

data ψ0 ∈ Σ, regardless of the sign of the nonlinearity. Moreover, growth rates for higher

order (weighted) Sobolev norms can also be obtained as in [18]. In addition, we note

that for a repulsive, isotropic quadratic potential V (x) = −γ2

2
|x|2, the time-dependent

change of coordinates is trivial and we could henceforth conclude global in-time existence

for sufficiently large γ > 0 by following the arguments given in [16].

We also want to point out that for the usual NLS with σ = 2/d there is an extra symmetry

which has been successfully deployed in the study of blow-up (yielding explicit blow-up

solutions and blow-up rates), see e.g. [76]. Using the so-called Lens transform [45] one

can transfer (most of) these results to the case of NLS with isotropic time dependent

quadratic potential W (t, x) = γ(t)|x|2, see [18]. However, it is argued in [18] that such

an approach is only feasible in the case of isotropic potentials and thus, we cannot expect

from it any further insight on the possibility of blow-up in our case, when (L ·Ω)V (x) 6= 0

and |Ω| > γ.

Finally, it is worth noting that the effect of the angular momentum rotation term in our

model is very different from other situations. For example, it has been shown for the

Euler equations with Coriolis force that blow-up can be delayed through a sufficiently
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strong rotation term [58] (see also as [4] for a related result). Clearly, the situation in our

model is much more involved, and we can not expect an analogous result to be true (the

counterexample being the case where V (x) is axially symmetric).

In future work, we would like to numerically test the blow-up conditions of Theorem 3.2.3.

In particular, we are intested in establishing whether the conditions are due to technical

difficulties or present real obstacles to blow-up.

5.2 Optimal bilinear control of Gross-Pitaevskii equa-

tions

In Chapter 4, we have introduced a rigorous mathematical framework for optimal quantum

control of linear and nonlinear Schrödinger equations of Gross-Pitaevskii type. We remark

that in the physics literature, L2(Rd) is usually considered as a complex Hilbert space,

equipped with the inner product 〈ϕ, ξ〉 =
∫
Rd ϕ(x)ξ(x)dx, whereas we consider L2(Rd) as

a real Hilbert space (of complex functions), equipped with (4.12). Note, however, that

the expectation value of any physical observable A and thus also J(ψ, α) is the same for

both choices.

Let us briefly discuss possible generalizations for which our results remain valid. First,

we point out that in our analysis above, we did not take advantage of the fact that γ1 > 0

and hence all of our results remain true in the case γ1 = 0. However, Example 4.5.3

shows a significant quantitative difference in the behavior of the cost functionals with and

without the term proportional to γ1.

Second, it is straightforward to extend our analysis to the case of several control param-

eters, i.e.

V (t, x) =
K∑
k=1

αk(t)Vk(x), K ≥ 2.

Clearly, for Vk ∈ Wm,∞(Rd), m ≥ 2 > d/2, all of our results remain valid. In addition,

it is not difficult to extend our framework to cases of more general control potentials

V (α(t), x), not necessarily given in the form of a product. Such potentials are of physical

significance; see cf. [40]. From the mathematical point of view, all of our results still apply

provided that

‖V (α, ·)‖Wm,∞
x
≤ C1, ‖∂sαV (α, ·)‖L∞x ≤ C2, ∀|s| ≤ 2.

Note that in this case, the cost term in J(ψ, α), which is proportional to the physical
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work performed throughout the control process, reads

∫ T

0

(Ė(t))2dt =

∫ T

0

(α̇(t))2

(∫
Rd
∂αV (α(t), x)|ψ(t, x)|2 dx

)2

dt.

It is more problematic to provide a rigorous mathematical framework for control potentials

V (α, x) which are unbounded with respect to x ∈ Rd. Only in the case where V (α, x) is

subquadratic with respect to x and in L∞(Rd) with respect to α, existence of a minimizer

can be proved along the lines of the proof of Theorem 4.2.1. More general unbounded

control potentials V (α, x) definitely require new mathematical techniques. Note that in

this case, even the existence of solutions to the nonlinear Schrödinger equation is not

obvious.

Finally, we want to mention that it is possible to extend our results (with some technical

effort) to the case of focusing nonlinearities, λ < 0, provided σ < 2/d. The latter prohibits

the appearance of finite-time blow-up in the dynamics of the Gross–Pitaevskii equation.

Clearly, the optimal control problem ceases to make sense if the solution to the underlying

partial differential equation no longer exists.

5.3 Uniform quantitative hydrodynamic limits

First and foremost, it remains to pursue the strategy outline in Section 2.7 to extend our

results to general dimensions.

In Section 2.5, we showed, assuming initial convergence of the microscopic entropy towards

the macroscopic entropy, this convergence is propagated along the evolution of the system.

It would be interesting to prove uniformity in time of this convergence. The difficulty

here lies in the fact that in general, the microscopic relative entropy HN(µNt |νNf∞) does

not decay in t, since the weight of PµNt (
∑

x η(x) = K) on the hyperplanes of constant

particles is invariant under the evolution of the particle system. Thus as long as µN0 is

not chosen exactly such that

PµNt
(∑

x

η(x) = K
)

= PνNf∞
(∑

x

η(x) = K
)
,

we cannot take advantage of decay of the microscopic entropy. On the other hand, by the

equivalence of ensembles, we expect that

PµNt
(∑

x

η(x) = K
)
≈ PνNf∞

(∑
x

η(x) = K
)
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and that we can still deduce a uniform-in-time convergence of the entropy. This remains

to be clarified in future work. Another question, answered in Kosygina [50] for simple

exclusion processes, is whether the entropies converge for all positive times even if we

only assume a hydrodynamic limit (macroscopic profile) initially and no convergence of

the initial entropies.

It should be possible to prove a strong conservation of local equilibrium using our tech-

niques, see Remark 2.3.3 (4). In the case of attractive processes, this is a known result

- however, our method has the advantage of yielding explicit uniform-in-time bounds on

the rate of convergence.

Finally, it remains to be seen if this method can be extended to problems where the

hydrodynamic limit is not yet known, especially limit equations that can exhibit shocks.
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