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Abstract—Development of vehicle active steering collision avoidance systems calls for mathematical 

models capable of predicting a human driver’s response so as to reduce the cost involved in field tests whilst 

accelerate product development. This article provides a discussion on the paradigms that may be used for 

modelling a driver’s steering interaction with vehicle collision avoidance control in path-following scenarios. 

Four paradigms, namely decentralized, noncooperative Nash, noncooperative Stackelberg and cooperative 

Pareto are established. The decentralized paradigm, developed based on optimal control theory, represents a 

driver’s interaction with the collision avoidance controllers that disregard driver steering control. The 

noncooperative Nash and Stackelberg paradigms are used for predicting a driver’s steering behaviour in 

response to the collision avoidance control that actively compensates for driver steering action. These two 

are devised based on the principles of equilibria in noncooperative game theory. The cooperative Pareto 

paradigm is derived from cooperative game theory to model a driver’s interaction with the collision 

avoidance systems that take into account the driver’s target path. The driver and the collision avoidance 

controllers’ optimization problems and their resulting steering strategies arise in each paradigm are 

delineated. Two mathematical approaches applicable to these optimization problems, namely the distributed 

Model Predictive Control and the Linear Quadratic dynamic optimization approaches are described in some 

detail. A case study illustrating a conflict in steering control between driver and vehicle collision avoidance 

system is performed via simulation. It was found that variation of driver path-error cost function weights 

results in a variety of steering behaviours which are distinct between paradigms. 

Index Terms—Driver, Vehicle, Active Steering Collision Avoidance, Interaction, Modelling, Game Theory 
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I. INTRODUCTION 

ACTIVE FRONT STEERING (AFS) technology enables an angle to be superimposed upon the steering angle 

generated by a human driver. It allows vehicle handling and stability to be improved [1]. Recently, AFS was 

used for automatic collision avoidance control [2]-[4]. Such control generally involves three steps: 

surrounding objects and road boundaries are detected by onboard sensing devices; a target path for collision 

avoidance is planned by AFS controller when an imminent collision is detected; a steering angle action is 

finally applied by AFS controller to guide vehicle to follow the target path.  

Development of vehicle active-steering-based collision avoidance control currently relies largely on 

experimental approaches using test drivers [5]-[7]. A consequence is that the process is time-consuming and 

expensive. Alternatively, decision-making could be supported in low-cost design phases using mathematical 

models capable of reproducing drivers’ reactions to vehicle active steering intervention. Such models may 

also allow deeper insights into physiological and cognitive behaviours of human drivers so that optimization 

of present or future driver-automation interfaces, e.g. continuous sharing control [8] becomes a possibility. 

However, little attention has yet been paid to this particular research arena. One example of the limited work 

is by Cole [9] who proposed a driver model with arm neuromuscular dynamics to investigate driver response 

to a step angle fault in AFS system. The aim of the work described in the present paper is to address the lack 

of theoretical analysis of the interaction between driver steering and vehicle AFS collision avoidance control. 

In a collision avoidance scenario, when the AFS controller determines its steering control using merely its 

planned target path and vehicle state feedback but not taking the driver’s handwheel action into consideration, 

such as that described in [3], the driver may react by ignoring the AFS steering action in return whilst 

deriving his/her steering wheel control using the driver’s planned target path and perceived vehicle states. 

Such driver behaviour can be modelled using optimal control theory [10] where the driver and the AFS 

controller are treated as independent authorities. On the other hand, when the AFS controller is designed to 

neutralize the effects of the driver’s steering angle action [2], the driver may respond by further increasing 
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his/her steering wheel angle input to compensate for the effects of AFS control. In this event, each of the two 

controllers appears to take into account the other’s control in the development of its own steering action. 

Such driver-AFS interaction corresponds to the features of a dynamic game of which the definitions have 

been detailed by Cruz [11], and Basar and Olsder [12]. Under such circumstance, dynamic game theory is 

used in the present article to shape the steering interplay between the driver and the AFS controller. 

There are three aspects considered as the cores of a dynamic game: (i) mode of play; (ii) equilibrium type; 

and (iii) information pattern. Explanation of these three aspects is provided in the following paragraphs; the 

diagram in Fig. 1 depicts the relationship between the three aspects. 
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Fig. 1.  Classification of dynamic games 

The ‘mode of play’ [13] describes each player’s attitude towards his/her own as well as the other players’ 

interests in a game. It can be either noncooperative or cooperative. Shoham and Leyton-Brown [14] 

explained that in a noncooperative game players consider themselves individuals and concentrate on 

pursuing their own interest whilst in the cooperative case each player has a sense of collectivity and attempts 

to enter into a binding agreement of interest. 
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The ‘equilibrium type’ concerns each player’s strategy adopted for pursuing his/her goal. Here, a ‘strategy’ 

of a player is a law that tells him/her which action to take at each instant during the game [15]. In other words, 

it is a mapping from system states or outputs to a player’s control action [16]. An equilibrium denotes a 

strategy profile consisting of the strategies of all the game players in which no one is willing to change his/her 

strategy unilaterally [17]. An equilibrium strategy of a player is therefore his/her strategy that constitutes the 

equilibrium. Nash equilibrium and Stackelberg equilibrium are two typical equilibria that can be frequently 

observed in noncooperative games. A Nash equilibrium emerges in situations where each player derives 

his/her strategy by taking the others’ strategies into account, and all the players act simultaneously. A 

Stackelberg equilibrium, on the other hand, emerges in situations where one player serves as the leader and 

the others serve as followers. The leader derives his strategy by taking into account all the followers’ optimal 

responses, whilst all the followers react to the leader’s action by simply using their individual optimal 

responses. Reference [11] provides an overview of these two equilibria, and [12] gives more technical detail. 

A concept comparable to Nash and Stackelberg equilibrium, but which emerges in a cooperative game, is 

called Pareto equilibrium. Since in a cooperative game the goal of each player is identical, the Pareto 

equilibrium is considered as a global optimality [16]. In view of this, Pareto equilibrium is also called Pareto 

optimality.  

The ‘information pattern’ describes each player’s knowledge of the states of the game system [12]. The 

players are defined as possessing the ‘open-loop’ information pattern when only the initial states of the game 

are known to them. On the contrary, if the dynamic states or outputs are available during the game play, 

players are considered as having the ‘closed-loop’ information pattern. The closed-loop information pattern 

can be further characterized by the measurability and memory of the states of the game system. In terms of 

measurability, the closed-loop information pattern is of ‘perfect state’ if the states of the system are 

completely accessible; whilst it is of ‘imperfect state’ if only the outputs of the system are available. 

Regarding the memory feature, the closed-loop information pattern is ‘memoryless’ if only the initial and the 

current states or outputs are remembered by the players; whilst it is ‘with memory’ if all past values of system 
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states or outputs can be recalled. Under the ‘closed-loop memoryless’ information pattern (can be either of 

‘perfect state’ or ‘imperfect state’), a special case, known as the ‘feedback’ information pattern can be 

defined by placing a restriction that the players will forget the initial states upon the start of the game and rely 

on merely the current states or outputs for deriving their strategies as the game evolves. 

A dynamic game whose state evolution is describable by a differential equation is called a differential 

game [12]. A linear quadratic game is a special case of a differential game in which the system equation is 

linear, and all players’ cost functions are modelled as containing just affine quadratic terms [13].  

There are very few published reports of game theory applied in driver-vehicle dynamics. Ma and Peng [18] 

developed a method to identify the worst-case performance of a car under simultaneous control of a human 

driver and a vehicle stability controller. The linear quadratic game framework was used and the driver was 

assumed to be a disturbance who attempts to obstruct the stability controller. The open-loop Nash strategies 

were calculated to represent the worst-case control of the two controllers. In a separate study, Tamaddoni et 

al. [19] showed that the linear quadratic game framework can be used in the algorithm design of a vehicle 

stability controller. The vehicle controller was designed to take the driver’s steering input into account based 

on the perfect state feedback Nash equilibrium. Na and Cole [20] developed a mathematical model to 

represent the noncooperative steering control between driver and AFS, where the open-loop Nash strategies 

are derived using two alternative game theoretic approaches: noncooperative Model Predictive Control 

(MPC) and Linear Quadratic (LQ) dynamic optimization. It was found that the two approaches give identical 

controller gain arrays. In summary, these three published works primarily focus on the use of a Nash 

equilibrium strategy in investigating driver-vehicle interaction, whilst the potential of applying a Stackelberg 

equilibrium as well as Pareto optimality appears not to have been explored. 

The objectives of the present paper are to: (i) identify and outline a series of paradigms which might be 

viable in representing a driver’s steering interaction with various AFS collision avoidance controllers; and (ii) 

derive analytical solutions to these paradigms. In the remainder of the paper, these two objectives are 

addressed respectively in sections II and III. A case study is provided in section IV where simulated time 
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histories of driver-AFS interaction in different paradigms are exhibited and described. Conclusions and 

aspects for further investigation are finally presented in section V. 

 

II. DRIVER-AFS INTERACTIVE STEERING CONTROL PARADIGMS 

In this section, the steering interaction between driver and AFS-based collision avoidance control is 

categorized into four possible paradigms, namely decentralized, noncooperative Nash, noncooperative 

Stackelberg and cooperative Pareto paradigms. Each features a unique communication manner between the 

driver and AFS, which in turn leads to distinctive formulation of the two controllers’ optimization problems 

and steering control strategies. This section starts with a description of the steering control scheme of the 

driver and then the AFS collision avoidance system. On this basis, the four paradigms will be established and 

elucidated one after another. 

 

A. Driver Steering Control Scheme 

There exist various mathematical methods of representing human driver steering control behaviour [8], for 

example the transfer function method, Proportional-Integral-Derivative (PID) control, Model Predictive 

Control (MPC) and Linear Quadratic Regulator (LQR). Particular attention here is given to the MPC and 

LQR which serve as the foundation of the distributed MPC and LQ dynamic optimization approaches to be 

described in section III. A comparative study of MPC and LQR for modelling driver steering control has been 

performed by Cole et al. [21]. It was found that the two methods bear close similarity in terms of the 

expressions of driver steering control strategies. Furthermore, it was found that the two methods yield 

identical numerical results when the preview and control horizons are set to be the same. In light of these 

observations, the driver steering control scheme used in the present work is constructed as shown in Fig. 2, 

which is capable of illustrating the operating mechanism of both MPC and LQR-based driver models. 
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Fig. 2.  Driver steering control scheme, applicable to both MPC and LQR methods 

When performing a steering control task, the human driver normally previews the road ahead and 

determines a target path )(1 kR  to follow at each time step k . This )(1 kR  is expressed a sequence of vectors 

from )(1 kr  to )(1 Nk �r  denoting respectively the target vehicle orientations at future time steps up to the 

driver’s preview horizon N. Each )(1 jk �r  where Nj  ... 2 ,1 ,0  consist of three elements: target lateral 

displacement )(1 jkr y � , target lateral displacement integral )(1 jkr inty �  and target yaw angle )(1 jkr �\ , that is 

^ `)()()()( 1111 jkrjkrjkrjk intyy ��� � \r .  

In the mean time, the driver perceives the state feedback of the vehicle )(kx  and predicts vehicle future 

orientation trajectory )(1 kZ  according to his/her knowledge of vehicle dynamics. This process is carried out 

in the ‘Predictor’ module shown in Fig. 2. )(1 kZ  here has the same dimension as )(1 kR  but consists of those 

vehicle orientation elements predicted. In both MPC and LQR methods, derivation of )(1 kZ  is carried out by 

iterating an equation that represents the driver’s knowledge of vehicle dynamics for N  times [21]. The 

vehicle in the present research is modelled to operate in the linear regime at constant speed. Consequently, a 

linear time-invariant ‘bicycle’ model [20] is used to represent vehicle dynamics, as described in equation (1).  

)()(    
)()()1(

11

11

kk
kkk

xCz
BAxx

 
� � G                                                                                (1) 

In equation (1) state vector )(kx  incorporates vehicle lateral velocity )(kv , yaw rate )(kZ , lateral 

displacement )(ky , yaw angle )(k\  and lateral displacement integral )(kyint , that is, 

^ `T)()()()()()( kykkykkvk int\Z x . A  and 1B  are state and input matrices whilst 1C  is the output matrix 
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that transforms )(kx  into )(1 kz , the vehicle orientation vector that the driver is interested in. The driver is 

assumed to have full knowledge of such vehicle dynamics. This assumption applies generally to expert 

drivers and may work for normal drivers who already received extensive training on particular vehicles. 

The driver then uses )(1 kR  and )(1 kZ  to determine an optimum steering angle )(1 kG  in the ‘Optimizer’ 

module and finally applies it to the vehicle. Specifically, the driver minimizes a cost function that penalizes 

both the difference between )(1 kZ  and )(1 kR  and the driver’s own steering action. The cost function used in 

the MPC framework and that in the LQR can be expressed in a unified form as: 

 jkδpjkq

jkqjkqkJ intint yyyy
N

j

])()(                  

)()([)(

2
11

2
11

2
11

2
11

0
1

���'�

�'��' ¦
 

\\

                                                                 (2) 

where )(1 jky �' , )(1 jkinty �'  and )(1 jk �'\  are respectively the lateral displacement error, lateral displacement 

error integral and yaw angle error from the driver’s view, that is, 

)()()( 111 jkrjkzjk yyy ��� �'                                                                         (3a) 

)()()( 111 jkrjkzjk intintint yyy ��� �'                                                                      (3b) 

)()()( 111 jkrjkzjk ��� �' \\\                                                                        (3c) 

yq1 , intyq1  and \
1q  are corresponding weights. 1p  is the weight on driver steering angle action. Cost function (2) 

can be further simplified as: 

) ,() ,()( 11111 pkSkEkJ � Q                                                                             (4) 

where 1Q  is the driver’s path-error weighting matrix: 
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Q                                                                                 (5a) 

) ,( 11 QkE  is a scalar representing the driver’s weighted predicted path errors at time step k : 

 jkq

jkqjkqkE intint yyyy
N

j
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and ) ,( 11 pkS  is a scalar denoting the weighted steering effort: 

¦
 

� 
N

j
jkppkS

0

2
1111 ])([) ,( G                                                                            (5c) 

Consequently, the optimization problem of the driver can be described as: 

¯
®
­
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                                                                         (6) 

Solving (6) by using either MPC or LQR method results in the driver’s optimal steering control strategy as 

expressed below [21]: 

^ `T
111 )()( )( kkk RxK G                                                                                (7) 

where 1K  is a time-invariant gain array which is a function of system matrices A , 1B  , 1C , and weights yq1 , 

intyq1 , \
1q  and 1p . 

 

B. AFS Collision Avoidance Control Scheme 

It was noted earlier that the AFS-based collision avoidance control normally involves three steps: object 

detection, target path planning and evasive steering. As the detection of surrounding objects and planning of 

target path are not the focus of the present work, and there are already a number of approaches available, for 

example [22], [23], it is assumed in this article that the desired collision-free path )(2 kR  is already known to 

the AFS. With regard to the algorithms for evasive steering control, applications of both MPC and LQR exist, 

for example [24], [25]. In view of this, a structure similar to that of the driver steering controller proposed 

above is used for representing vehicle AFS collision avoidance system. Therefore the dynamics equation of a 

linear time-invariant vehicle system under AFS steering control can be expressed as: 

)()(    
)()()1(
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� � G                                                                               (8) 
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where A , 2B  and 2C  are system matrices, )(2 kG  the AFS steering input generated at time step k , and )(2 kz  

the vehicle orientation vector with which the AFS controller is concerned. Similar to the driver’s cost 

function presented as (2) the AFS controller’s cost function can be written as: 

 jkδpjkq

jkqjkqkJ intint yyyy
N

j
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                                                                (9) 

where yq2 , intyq2  and \
2q  are respectively the weights on vehicle lateral deviation y

2' , lateral deviation integral 

inty
2'  and yaw deviation \

2'  from the AFS controller’s view. 2p  is the weight on AFS steering input 2G . (9) 

can be simplified to: 

) ,() ,()( 22222 pkSkEkJ � Q                                                                        (10) 

where 2Q  is driver’s path-following error weighting matrix: 
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) ,( 22 QkE  is a scalar representing the AFS controller’s weighted predicted path-following errors at time step 

k  and ) ,( 22 pkS  is a scalar describing the weighted AFS steering effort. As a result, the optimization problem 

faced by the AFS controller can be expressed as: 

¯
®
­
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                                                                     (12) 

Solving the optimization problem (12) yields the AFS controller’s optimal steering control strategy: 

^ `T
222 )()( )( kkk RxK G                                                                          (13) 

where 2K  is a time-invariant gain array which is a function of matrices A , 2B  and 2C , and weights yq2 , intyq2 , 

\
2q  and 2p . 
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C. Driver-AFS Decentralized Steering Control Paradigm 

 In a collision avoidance scenario, the vehicle is subject to the steering control of the driver and the AFS 

controller simultaneously, and each controller has a target path to follow. Under such circumstances, the 

most fundamental type of driver-AFS steering interaction, namely the ‘decentralized’ paradigm, can be 

established by directly combining the two controllers’ steering control schemes together, as shown in Fig. 3.  

AFS
Collision Avoidance

Controller

Driver
Steering

Controller

Vehicle

Z -1

Z -1

R2 (k)

R1 (k) δ1 (k)

δ2 (k)

X (k +1)

X (k)

X (k)

 

Fig. 3.  Driver-AFS decentralized steering control paradigm 

It can be seen from Fig. 3 that the state evolution of the vehicle is now governed by: 

)()()()1( 2211 kkkk GG BBAxx �� �                                                                    (14) 

which indicates that the vehicle state vector x  is influenced by both driver steering angle 1G  and AFS steering 

angle 2G . The AFS collision avoidance controller studied in the decentralized paradigm has the feature that it 

disregards the driver’s steering action whilst solves an optimization problem identical to (12). Such design 

concept is used in [3], [24] and [25]. In response, the driver may ignore the influence of the AFS steering 

action as well and views his/her own optimization problem the same as (6). In other words, no 

communication exists between driver and AFS. As a result, the optimization problems faced by the two 

controllers can be rewritten as: 
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Driver: 
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AFS: 
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Solving (15a) and (15b) either by using the MPC or LQR method gives the decentralized steering control 

strategies of the two controllers at time step k : 

Driver:  ^ `T
11

Decen
1 )()( )( kkk Decen RxK G                                                             (16a) 

AFS:  ^ `T
22

Decen
2 )()( )( kkk Decen RxK G                                                              (16b) 

where 1
Decen
1 KK   and 2

Decen
2 KK   hold. 

 

D. Driver-AFS Noncooperative Nash Steering Control Paradigm 

In the practice of AFS-based collision avoidance control, there also exists the design that the AFS 

controller compensates for driver steering action so as to mitigate possible adverse effects due to the driver’s 

erroneous manoeuvres. Such a design concept has been implemented in [2] and [19]. The human driver, on 

the other hand, may still expect to control the vehicle to follow his/her own target path. Accordingly, the 

driver may try to estimate the control action applied by AFS and to neutralize its influence by further 

increasing his/her own handwheel angle input. As a result, communication between driver and AFS in terms 

of accounting for each others’ steering action emerges, and the two controllers’ steering strategies converge 

to the Nash equilibrium defined in noncooperative game theory. Such form of driver-AFS interaction is 

diagrammatically described in Fig. 4, namely the driver-AFS noncooperative Nash steering control 

paradigm. 
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Fig. 4.  Driver-AFS noncooperative Nash steering control paradigm 

In this case, the dynamics of the driver-AFS system viewed by the driver can be expressed as: 

)()(    
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�� � GG                                                                   (17) 

whilst that viewed by the AFS controller is: 
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Accordingly, the optimization problems faced by the two controllers can be respectively written as: 
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By comparing (19a) and (19b) with (15a) and (15b), which were formulated according to the decentralized 

paradigm, it can be seen that the cost functions in the noncooperative Nash and the decentralized cases are 

identical. This implies that the objectives of controllers do not change. The key difference is that under the 

noncooperative Nash paradigm the two controllers are aware of the influence of one another’s steering action 
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on the vehicle system. Solving (19a) and (19b) yields the two controllers’ respective Nash steering control 

strategies at time step k :  

Driver: ^ `T
21

Nash
1

Nash
1 )()()()( kkkk RRxK G                                                        (20a) 

AFS: ^ `T
21

Nash
2

Nash
2 )()()()( kkkk RRxK G                                                         (20b) 

where both Nash
1K  and Nash

2K  are time-invariant gain arrays which are functions of state matrices A , 1B , 2B , 

1C  and 2C , and weights yq1 , intyq1 , \
1q , yq2 , intyq2 , \

2q , 1p  and 2p . Here, two remarks on (20a) and (20b) are 

made. Firstly, it might be questionable that it has been described in Fig. 4 that the driver and the AFS derive 

their steering strategies by compensating for each other’s steering action. However, equations (20a) and (20b) 

seem not to embody this idea. A brief explanation is that such an idea has been implicitly involved in the 

procedure for the derivation of the two controllers’ steering strategies (20a) and (20b). More details on this 

will be provided in the next section. Secondly, the reader might be eager to know which particular 

information pattern was assumed during the derivation of (20a) and (20b). It was suggested in [12] that both 

the open-loop and the closed-loop information patterns could lead to expressions of strategies as described by 

(20a) and (20b), however, the elements involved in gain arrays Nash
1K  and Nash

2K  differ in these two cases. 

Investigation in the present work is limited to the open-loop information pattern.  

 

E. Driver-AFS Noncooperative Stackelberg Steering Control Paradigm 

When interacting with an AFS controller capable of compensating for driver steering action, as described 

in Fig. 4, the driver may react in a slightly different manner from that delineated in the noncooperative Nash 

paradigm. Specifically, the driver may attempt to compensate for the steering control algorithm of the AFS in 

deriving his/her desirable handwheel angle input, given that the driver knows very well how the AFS 

collision avoidance control operates. In this event, the interplay between the driver and the AFS controller 

bears close similarity to that existing in a leader-follower game as explained in section I: the AFS controller 

plays the role of the follower by making an optimal response to the driver by compensating for the driver’s 
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control action, whilst the driver serves as the leader by taking into consideration the way in which the AFS 

controller (follower) gives out its optimal response. As a result, steering strategies of the driver (leader) and 

the AFS (follower) converge to the Stackelberg equilibrium defined in noncooperative game theory. Fig. 5 

shows the driver-AFS interaction under such circumstance. 
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Fig. 5.  Driver-AFS noncooperative Stackelberg steering control paradigm 

The optimization problems that driver (leader) and AFS (follower) face can be therefore expressed as: 

Driver (leader): 
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AFS (follower): 
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By comparing (21a) and (21b) with (19a) and (19b), it can be seen that the cost functions used in the 

Stackelberg case are identical to those in the Nash case. The key difference is that under the Stackelberg 

paradigm the driver (leader) takes into account the optimal response Stack
2G  of the AFS controller (follower) in 

minimizing his/her own cost function. Solving (21a) and (21b) by assuming the open-loop information 

pattern gives the two controllers’ open-loop Stackelberg steering control strategies at time step k :  

Driver (leader): ^ `T
21

Stack
1

Stack
1 )()()()( kkkk RRxK G                                              (22a) 
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AFS (follower): ^ `T
21

Stack
2

Stack
2 )()()()( kkkk RRxK G                                             (22b) 

where both Stack
1K  and Stack

2K  are time-invariant gain arrays which are functions of system matrices A , 1B , 2B , 

1C  and 2C , and weights yq1 , intyq1 , \
1q , yq2 , intyq2 , \

2q , 1p  and 2p . At this point, readers might be somewhat 

confused because it was stated that the follower (AFS controller) uses its optimal response to react to the 

leader (driver), however, why does the resulting AFS steering control strategy (22b) not seem to show this 

idea? A short answer is that the derivation of (22b) follows an analytical approach where this idea is 

implemented as an intermediate step. Detailed explanation will be provided in the next section.  

 

F. Driver-AFS Cooperative Pareto Steering Control Paradigm 

In the preceding paragraphs, two noncooperative-game-theory-based steering control paradigms, namely 

the Nash and Stackelberg paradigms, are delineated. In the present subsection, an alternative driver-AFS 

interaction paradigm developed based on the principle of Pareto optimality in cooperative game theory is 

proposed, namely the cooperative Pareto paradigm. Under this paradigm, the AFS collision avoidance 

controller keeps track of both the driver’s steering angle action and the driver’s path-following objective 

whilst the driver is modelled to react to the AFS control in the same manner, as depicted in Fig. 6.  

AFS
Collision Avoidance

Controller

Driver
Steering

Controller

Vehicle

Z -1

Z -1

R2 (k)

R1 (k) δ1 (k)

δ2 (k)

X (k +1)

X (k)

X (k)

Driver and 
AFS tracks 

each other’s 
steering action 

Driver and 
AFS tracks 

each other’s 
target path 

 

Fig. 6.  Driver-AFS cooperative Pareto steering control paradigm 
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It can be seen in Fig. 6 that two communication channels exist in the Pareto paradigm, such that the driver 

and the AFS controller get access to one another’s target path )(1 kR  or )(2 kR  allows each controller to be 

able to evaluate the other’s path-following error )(1 kE  or )(2 kE . Accordingly, the two controllers tend to 

hold a global path-following objective that minimizes )(1 kE  and )(2 kE  synchronously. The communication 

of steering angle action in the present paradigm is closely comparable to that exhibited in the noncooperative 

Nash paradigm. Such communication allows each controller to track how its own as well as the other’s 

steering actions influence the vehicle path-following performance. In light of the explanations made above, 

the driver and the AFS controllers’ optimization problems can be formulated respectively as:  

Driver: 
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AFS: 
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It can be seen that the driver employs a cost function that minimizes the combination of his own weighted 

path-following errors 1E  and the AFS controller’s 2E  over the driver’s steering angle 1G , and vice versa for 

the AFS controller. The two controllers also need to know each other’s output equations in order to move to 

the optimization synchronously. Solving (23a) and (23b) by assuming the open-loop information pattern 

gives the open-loop Pareto steering control strategies at time step k : 

Driver: ^ `T
21

Pareto
1

Pareto
1 )()()()( kkkk RRxK G                                                        (24a) 

AFS: ^ `T
21

Pareto
2

Pareto
2 )()()()( kkkk RRxK G                                                       (24b) 

where both Pareto
1K  and Pareto

2K  are time-invariant gain arrays which are functions of matrices A , 1B , 2B , 1C  

and 2C  and weights yq1 , intyq1 , \
1q , yq2 , intyq2 , \

2q , 1p  and 2p . Specifically, the derivation of (24a) and (24b) 

from optimization problems (23a) and (23b) follows a game theoretic approach similar to that used for 
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calculating the Nash strategies. More details will be given in the next section. At this point, readers might 

have a question regarding the feasibility for a driver to detect the AFS controller’s target path )(2 kR . A 

possible way is to generate steering wheel torque feedback that informs the driver of the AFS controller's 

target. 

 

III. GAME THEORETIC APPROACHES TO DRIVER-AFS INTERACTIVE STEERING CONTROL 

In the previous section, four driver-AFS interactive steering paradigms were outlined. It was also revealed 

that the decentralized steering control strategies are developed using optimal control theory (MPC or LQR) 

whilst the Nash, Stackelberg and Pareto steering control strategies are derived using game theoretic 

approaches. In this section, two applicable game theoretic approaches are discussed: the distributed Model 

Predictive Control (MPC) and the Linear Quadratic (LQ) dynamic optimization approaches.  

 

A. Distributed MPC 

The idea of distributed MPC was presented in [26] as a practical approach to industrial process control of 

large-scale systems that consist of multiple networked subsystems, for example, a chemical plant comprising 

many reactors. It aims at enabling a compromise between controller performance and computation efficiency. 

The bridge from distributed MPC to dynamic game theory was examined later by Rawlings and Mayne [27] 

where its association with Nash equilibrium and Pareto optimality are discussed. The application of 

distributed MPC to the modelling of noncooperative and cooperative driver-AFS steering interaction is 

broadly based on the analysis provided in [27], with the procedure for solving controllers’ optimization 

problems following that of Maciejowski [28].  

The distributed MPC approach starts with the construction of controllers’ cost functions following a 

two-step procedure: (i) establishment of prediction equations; and (ii) evaluation of path-following errors. It 

then calculates controllers’ steering strategies in two successive steps: (iii) optimization as least-squares 
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problems; and (iv) derivation of strategies. Treatment of the three game theoretic paradigms involves all 

these four steps but differ from one another in some detail.  

 

Noncooperative Nash Strategy 

Under the noncooperative Nash paradigm, the prediction equation of the driver is established by iterating 

(17) for N  time steps ahead where N  denotes the preview horizon. As a result, the driver’s prediction 

equation can be expressed as: 

)()()()( 211111 kkkk UΩUΘxΨZ ��                                                                    (25) 

where 
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1Ψ  is a function of matrices A  and 1C , 1Θ  is a function of A , 1B  and 1C , and 1Ω  is a function of A , 2B  and 

1C . Similarly the AFS collision avoidance controller’s prediction equation can be worked out by iterating (18) 

for N  times: 

)()()()( 221222 kkkk UΩUΘxΨZ ��                                                                   (26) 

The driver’s predicted future orientation trajectory )(1 kZ  is then subtracted from the driver’s target path 

)(1 kR  to give the driver’s predicted path-error vector. Weighting this vector with 1Q and computing the 

square of the Euclidean norm of the weighted vector then yields the driver’s weighted path-following errors 

1E , as shown in (5b). On this basis, the driver’s cost function as described in (19a) can be constructed. The 

AFS cost function shown in (19b) can be built up in a similar way.  

Following Maciejowski [28], optimization problems (19a) and (19b) can be solved as least-squares 

problems by using QR decomposition which yields (27a) and (27b) below. Details on the intermediate 

algebraic steps can be found in [20]. 
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^ ` )()()()( 21
T

111 kkkk ULRxGU �                                                                  (27a) 

^ ` )()()()( 12
T

222 kkkk ULRxGU �                                                                (27b) 

where 1G  is a gain array which is a function of 1Ψ , 1Θ  and driver weights yq1 , intyq1 , \
1q  and 1p , 1L  is a gain 

array as a function of 1Θ , 2Θ  and driver weights yq1 , intyq1 , \
1q  and 1p ,  2G  is a function of 2Ψ , 2Θ  and AFS 

weights yq2 , intyq2 , \
2q  and 2p , and 2L  is a function of 1Θ , 2Θ  and AFS weights yq2 , intyq2 , \

2q  and 2p . It can be 

seen that the driver steering input sequence 1U  appearing in (27a) depends on vehicle state x , driver target 

path 1R , and the AFS controller’s steering action sequence 2U , and vice versa for the AFS. Equations (27a) 

and (27b) embody the communication between driver and AFS in terms of accounting for each other’s 

steering action, as depicted in Fig. 4. They are named the optimal responses of the driver and the AFS 

controller, respectively. By substituting (27a) and (27b) into one another, the two controllers’ open-loop 

Nash steering sequences can be obtained:  

^ `T
21

Nash
1

Nash
1 )()()()( kkkk RRxΛU                                                                 (28a) 

^ `T
21

Nash
2

Nash
2 )()()()( kkkk RRxΛU                                                                (28b) 

where both Nash
1Λ  and Nash

2Λ  are functions of 1G , 2G , 1L  and 2L . It can be seen that the driver’s Nash steering 

sequence )(Nash
1 kU  is a vector with a number of N  steering angle actions, starting from )(Nash

1 kG  to 

)1(Nash
1 �� NkG . The ‘receding horizon’ idea [28] is then used which involves taking the first element in 

)(Nash
1 kU  as the steering angle action to be applied to the vehicle at time step k .  Therefore, the Nash strategies 

described in (20a) and (20b) have the features that :)  , 1(Nash
1

Nash
1 ΛK   and :)  , 1(Nash

2
Nash
2 ΛK   where the operator 

:)  , 1(x  indicates extracting the first row of relevant matrix to form a gain array. 

 

Noncooperative Stackelberg Strategy 

Under the noncooperative Stackelberg paradigm, the AFS controller (follower) builds up its prediction 

equation in a similar way to that in the Nash case. Since its cost function is also identical to that in the Nash 
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case, the AFS controller’s optimal response can still be expressed as (27b). In contrast, the driver, as the 

leader in the Stackelberg paradigm, derives his/her strategy in a more sophisticated manner. The driver first 

develops an equation identical to (25) following the procedures adopted in the Nash case. The driver then 

substitutes the AFS optimal response (27b) into (25) to obtain his prediction equation, which gives: 

)()()()( 211111 kkkk RΞUΓxΦZ ��                                                                   (29) 

where 1Φ  is a function of 1Ψ  and 2G , 1Γ  is the summation of 1Θ  and 2L , and 1Ξ  is a function of 1Ω  and 2G . 

Minimizing the driver’s cost function (4) with (29) serving as his/her prediction equation yields: 

^ `T
21

Stack
1

Stack
1 )()()()( kkkk RRxΛU                                                             (30a) 

Equation (30a) is the open-loop Stackelberg steering sequence of the driver (leader). Since in a Stackelberg 

game the follower reacts to the leader’s action by simply using his/her optimal response, the steering 

sequence of the AFS controller (follower) can be calculated by substituting (30a) into (27b), which gives: 

^ `T
21

Stack
2

Stack
2 )()()()( kkkk RRxΛU                                                             (30b) 

By applying the ‘receding horizon’ concept to (30a) and (30b), the two controllers’ open-loop Stackelberg 

steering control strategies, as expressed by (22a) and (22b) can be derived where :)  , 1(Stack
1

Stack
1 ΛK   and 

:)  , 1(Stack
2

Stack
2 ΛK   hold. 

 

Cooperative Pareto Strategy 

Under the cooperative Pareto paradigm, the human driver and the AFS collision avoidance controller enter 

into a binding agreement in vehicle path-following control. In this event, they share a global prediction 

equation which is a combination of their individual prediction equations described by (25) and (26): 

)()()()( 21 kkkk ΩUΘUΨxZ ��                                                                       (31) 
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Equation (31) is then subtracted from the combination of the two controllers’ target paths 

^ `T
21 )()()( kkk RRR   to give a vector that incorporates both controllers’ path errors. Weighting the vector 

using 1Q  and 2Q  and computing the square of the Euclidean norm of the weighted vector yield the weighted 

path-following objective 21 EE � . On this basis, the two controllers’ cost functions respectively shown in (23a) 

and (23b) can be constructed. Following a similar procedure to that used for solving the optimization 

problems in the Nash case, the driver and AFS controller’s optimal responses under the Pareto paradigm can 

be obtained: 

^ ` )()()()()( 21
T

2111 kkkkk UNRRxMU �                                                          (32a) 

^ ` )()()()()( 22
T

2122 kkkkk UNRRxMU �                                                        (32b) 

The two controllers’ optimal responses (32a) and (32b) are then substituted into each other to give their 

open-loop Pareto steering sequences: 

^ `T
21

Pareto
1

Pareto
1 )()()()( kkkk RRxΛU                                                              (33a) 

^ `T
21

Pareto
2

Pareto
2 )()()()( kkkk RRxΛU                                                             (33b) 

Applying the ‘receding horizon’ idea finally converts (33a) and (33b) into the open-loop Pareto steering 

control strategies as shown in (24a) and (24b), where :)  , 1(Pareto
1

Pareto
1 ΛK   and :)  , 1(Pareto

2
Pareto
2 ΛK   hold. 

 

B. LQ Dynamic Optimization 

The LQ dynamic optimization approach is applicable to game theoretic models where the system dynamics 

are represented using a linear differential equation and the cost functions of players contain just affine 

quadratic terms [13]. In this subsection, the procedures for adopting this approach to the driver and AFS 

controller’s game theoretic steering control strategies will be discussed. The analysis presented hereinafter is 

generally based on Basar and Olsder [12], with the handling of the optimization problems following the 

method described by Lewis et al. [29]. 

The LQ dynamic optimization approach starts with the construction of controllers’ cost functions 
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following a two-step procedure: (i) establishment of the environment equation; and (ii) evaluation of 

path-following errors. It then calculates the steering strategies of the controllers in two successive steps: (iii) 

optimization as Lagrange multiplier problems; and (iv) derivation of strategies. In the following paragraphs, 

these four steps will be applied to the three game theoretic paradigms in turn. 

 

Noncooperative Nash Strategy 

Under the noncooperative Nash paradigm, an equation describing the environment in which the driver and 

AFS act is required. This equation should be able to represent both the evolution of the dynamics of the 

driver-AFS system and the updating of the two controllers’ target paths. Following Sharp and Valtetsiotis 

[30], the updating of the driver’s target path can be modelled using a shift register as follows: 

)()()1( next
1r1r1 kkk rBRAR � �                                                                      (34) 

where 
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B �r  and )1()( 11 �� Nkknext rr . 

Here )(1 kR  is the driver’s target path previewed at time step k  and )(1 knextr  is the driver’s demanded vehicle 

orientation that will become )(1 Nk �r  at the next time step. It can be seen that by using (34) at each step, the 

driver’s target path can be updated in time. Similarly, the AFS controller’s target path updating can be 

expressed as: 

)()()1( next
2r2r2 kkk rBRAR � �                                                                     (35) 

Consequently, the environment equation can be built up by merging (34) and (35) into the system 

dynamics equation (14) which gives: 

)()()()()1( next
22w11ww kkkkk FRBBwAw ��� � GG                                                   (36) 

where 
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Since the state vector w in (36) contains both vehicle state variables and the two controller’s target paths, 

the path-following errors of each controller can be predicted by pre-multiplying w  by a specific 

transformation matrix. For example, if a transformation matrix 1H  is defined as: 
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where )(1 ky' , )(1 kinty'  and )(1 k\'  are the human driver’s lateral displacement error, lateral displacement error 

integral and yaw angle error as described in (3a), (3b) and (3c), respectively. By further weighting )(1 kwH  

using 1Q , the driver’s cost function shown in (19a) can be constructed. The AFS controller’s cost function 

(19b) can be built up in a similar way by defining a transformation matrix 2H .  

Following Basar and Olsder [12], the optimization to each controller’s path-following performance under 

the noncooperative Nash paradigm can be formulated as a Lagrange multiplier problem. This involves 

treating the environment equation (36) as an equality constraint, and substituting it into the original cost 

function with a Lagrange multiplier associated to give an augmented cost function. By zeroing the partial 

derivatives of the augmented cost function with respect to steering angle action, system state and the 

multiplier respectively, the Lagrange multiplier problem can be translated into a two-point boundary-value 

problem shown as follows: 

)1()( Nash
w

1Nash ��� � � jkpjk iiii λBTG                                                                 (37a) 

)1()()( Nash
w

TNash ���� � jkjkjk iiiii λAwHQHλ T                                                    (37b) 
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)()()()1( Nash
22w

Nash
11ww kkkk GG BBwAw �� �                                                        (37c) 

with boundary conditions: 

)(kw  is given                                                                                   (37d) 

)()( TNash NkNk iiii � � wHQHλ                                                                   (37e) 

where 2 ,1 i , Nj  ... 2 ,1 ,0 , and Nash
iλ  is the Lagrange multiplier associated with a controller’s cost function 

( Nash
1λ  for the driver and Nash

2λ  for the AFS). Lewis et al. [22] suggests that the ‘sweep method’ can be used to 

solve the two-point boundary-value problem of the form described above, which involves assuming a linear 

relation between the environment system state w  and the Lagrange multiplier Nash
iλ  for each controller: 

)()()( NashNash jkjkjk ii �� � wTλ                                                                    (37f) 

Due to space limitation the intermediate algebraic steps of the solution are omitted whilst the resulting Nash 

steering sequences are given in (38a) and (38b). Details on the derivation can be found in [20]: 
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where  )(Nash
1 jk �T  and )(Nash

2 jk �T  can be computed using the coupled Riccati equations shown as below: 
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By applying the ‘receding horizon’ idea [28] to (38a) and (38b), the two controllers’ open-loop Nash 

steering control strategies as stated in (20a) and (20b) can be derived where the time-invariant gain arrays 

Nash
1K  and Nash

2K  have the form: 
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Noncooperative Stackelberg Strategy 

Under the noncooperative Stackelberg paradigm, the two controllers construct their cost functions in the 

same way as in the Nash case. Moreover, since the follower (AFS controller) reacts to the leader (driver) by 

simply applying its optimal response, the Lagrange multiplier problem of the AFS can be formulated the 

same as in the Nash case. As a result, equations (37a) and (37b) still hold for the AFS controller ( 2 i ). 

However, since the driver takes into account the optimal response of the AFS controller, the driver’s 

Lagrange multiplier problem differs from that defined under the Nash paradigm. Specifically, the driver uses 

the environment equation (36), and expressions (37a) and (37b) at 2 i  as equality constraints to his cost 

function. This in turn yields a more complicated two-point boundary-value problem. In this case a simple 

equation as presented in (37f) can no longer facilitate the solution of the problem [31]. Using the approach of 

Hungerländer and Neck [32], more sophisticated hypothetic equations are used in the sweep method for 

deriving the open-loop Stackelberg strategies. It was demonstrated by Na and Cole [33] that the two 

controllers’ Stackelberg strategies derived using the LQ dynamic optimization approach have the identical 

analytical expressions to those using the distributed MPC approach. 

 

Cooperative Pareto Strategy 

Under the cooperative Pareto paradigm, the two controllers share a common objective as a linear 

combination of their individual path-following objectives. Hence, each controller penalizes the summation of 

)(1 kwH  and )(2 kwH . Since the two controllers communicate in terms of getting access to one another’s 

control action, the Lagrange-multiplier-based optimization can be applied in a similar way to that in the Nash 
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case. In view of this, the environment equation (36) is still used as a constraint for constructing each 

controller’s augmented cost function. By rendering relevant partial derivatives of the two controllers’ 

augmented cost functions to vanish, a two-point boundary-value problem similar to that defined in the Nash 

paradigm is yielded: 
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with boundary conditions: 

)(kw  is given                                                                                   (41d) 
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where 2 ,1 i , Nj  ... 2 ,1 ,0 , and Pareto
iλ  is the Lagrange multiplier ( Pareto

1λ  for the driver and Pareto
2λ  for the AFS). 

On this basis, the ‘sweep method’ is used and a linear relation between the environment system state w  and 

the Lagrange multiplier Pareto
iλ  is assumed for each controller: 

)()()( ParetoPareto jkjkjk ii �� � wTλ                                                                    (41f) 

Solving the two-point boundary-value problem defined from (41a) to (41f) gives the two controllers’ 

Pareto steering sequences: 
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where  )(Pareto
1 jk �T  and )(Pareto

2 jk �T  are computed using relevant coupled Riccati equations.  

Applying the ‘receding horizon’ idea finally converts (42a) and (42b) into the open-loop Pareto steering 

control strategies as shown in (24a) and (24b), where 



 

 28 

w
1Pareto

22w
1

22w
Pareto

11w
1

11w

Pareto
11w

1
1

Pareto
1

)]1()1([       

)1(

ATBBTBBI
TBK

TT

T

���

�

�����

�� 

kpkp
kp                                             (43a) 

w
1Pareto

22w
1

22w
Pareto

11w
1

11w

Pareto
22w

1
2

Pareto
2

)]1()1([       

)1(

ATBBTBBI
TBK

TT

T

���

�

�����

�� 

kpkp
kp                                               (43b) 

 

IV. CASE STUDY 

In this subsection, the driver-AFS steering interaction modelled using the four paradigms described above 

is studied through simulation. A scenario describing a driver steering counter to the AFS collision avoidance 

control is designed. Specifically, it is assumed that when an obstacle suddenly appears in front, e.g. a 

pedestrian running into the road, the vehicle AFS controller initiates a lane change towards the left whilst the 

driver decides to carry out evasive steering to the right. Similar driver counter-steering behaviours in 

response to vehicle active steering intervention were observed by Katzourakis et al. [7] in a driving simulator 

experiment. Particular interest in the present study is given to the influence of driver path-error weights, that 

is yq1 , intyq1 and \
1q  on his/her steering behaviours and resulting vehicle lateral response. All the other 

parameters are fixed throughout the study, as described in Table I. In this table the vehicle parameters are 

measured based on an Opel Signum passenger car [34] whilst the AFS controller path-error weights are 

determined to maintain decent path-tracking performance whilst allow human drivers to override the AFS 

control [35].  
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TABLE I 
PARAMETER VALUES FOR SIMULATION STUDY 

Symbol Quantity Value 

m vehicle mass 1840 kg 
I vehicle yaw moment of inertia 3000 kgm2 
la / lb distance from vehicle centre of mass  to front axle / rear axle 1.136 / 1.663 m 
Cf / Cr cornering stiffness of front axle / rear axle 116000 / 187000 N/rad 
G vehicle overall steering ratio 15.8 
U vehicle longitudinal velocity 20 m/s 

yq2  AFS controller lateral displacement error weight 6e-2 
intyq2  AFS controller lateral displacement error integral weight 0 

\
2q  AFS controller yaw angle error weight 0 

p1 / p2 driver / AFS controller steering angle input weight 1 
N preview horizon 2.0 s 
Ts simulation time step 0.01 s 

 

Fig. 7 shows the simulation outcomes from the four paradigms. For each paradigm, the subfigure presented 

on the left displays the driver and AFS target paths and the simulated vehicle lateral displacement in relation 

to its longitudinal position, whilst the subfigure on the right depicts the two controllers’ steering angles. It 

can be seen that the driver and the AFS are set to have lane change target paths of the same geometry but in 

opposite directions, as described respectively using circle and triangle markers in the left subfigure. Within 

each paradigm four typical sets of driver path-error weight combination ),,( 111
\qqq intyy  are investigated: (i) the 

)0,0,0( 111    \qqq intyy  set representing that the driver does not care about path-following performance – 

simulation results in terms of vehicle lateral displacement (left subfigure) and controllers’ steering angles 

(right subfigure) are described using solid lines; (ii) the )0,0,2e6( 111   � \qqq intyy  set indicating that the 

driver holds identical path-error weight to the AFS controller – described by dashed lines; (iii) the 

)0,0,1e3( 111   � \qqq intyy  set indicating the driver uses larger lateral displacement error weight – described 

by dotted lines; and (iv) the )0,5e6,2e6( 111  � � \qqq intyy  set denoting the driver further penalizes vehicle 

lateral displacement error integral – described by dash-dot lines.  

Under the decentralized paradigm it can be observed that when the driver applies zero path-error weights 

(driver weight set (i), see solid lines in the left and right subfigures), no driver steering action is generated and 



 

 30 

the vehicle is controlled by the AFS to track its triangle-marked target path. When the driver uses a weight set 

identical to AFS controller’s (driver weight set (ii), see dashed lines), the two controllers give opposite 

steering angles, and the vehicle travels along the central line. When the driver increases his lateral 

displacement error weight to 1-3e1  yq  (driver weight set (iii), described by dotted lines), both controllers’ 

steering angles increase and the vehicle gets closer to the driver’s target. However, large vehicle 

path-following error can be witnessed. As the driver further introduces integral control of vehicle lateral 

displacement using 5-6e1  intyq  (driver weight set (iv), described by dash-dot lines), the vehicle converges to 

the driver’s target path at the expense of larger driver steering angles. 

The influence of driver path-error weights in the noncooperative Nash paradigm is comparable to that in 

the decentralized event: larger driver lateral displacement error weight yq1  causes the vehicle to travel closer 

to the driver’s target path at an expense of larger steering angles (see dotted lines in comparison to dashed 

lines). The use of lateral displacement error integral weight 5-6e1  intyq  leads to more accurate path-following 

with less steady-state errors (see dash-dot lines in the left and right subfigures). Nevertheless, it can be seen 

clearly that under each driver weight sets examined, both the driver and the AFS steering angles are larger 

than those in the decentralized case. This is due to the communication in steering actions as depicted in Fig. 4: 

Featuring compensation for the driver’s steering control, the AFS controller tends to add an additional 

amount of steering angle action to that determined following the decentralized strategy. In response, the 

driver also increases his/her steering angle input for neutralizing the AFS steering control. As a result, the 

two controllers’ steering actions grow simultaneously until the Nash equilibrium is achieved. 

In the noncooperative Stackelberg paradigm, it can be found that when the driver’s path-error weight is 

identical to the AFS controllers’ (driver weight set (ii), see dashed lines), the trajectory of the vehicle is closer 

to the AFS target path. This is different from those displayed in the decentralized and Nash cases. Such a 

phenomenon embodies the asymmetry in the roles that the driver and the AFS play in the Stackelberg 

paradigm, which in turn implies that as the leader the driver needs to use larger path-error weights than the 
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AFS so as to keep the vehicle travelling along the central line. By the same token, the vehicle path resulting 

from 1-3e1  yq  (driver weight set (iii), see dotted lines) is also closer to the AFS target path in comparison to 

the Nash case. Penalization of vehicle lateral displacement error integral (driver weight set (iv), see dash-dot 

lines) allows the vehicle to track the driver’s target path firmly. 

In the cooperative Pareto paradigm, each controller penalizes both its own and the other one’s path errors. 

As a result, when the driver is set to use zero weights (driver weight set (i), described by solid lines), both the 

driver and the AFS turn to focus on minimizing the AFS controller’s path errors. The two controllers generate 

identical steering angles to control the vehicle following the AFS target path. When the driver uses the same 

weight as the AFS (driver weight set (ii), described by dashed lines), the vehicle travels along the central line 

which correspond to zero steering actions. An increase of the driver’s lateral displacement error to 1-3e1  yq  

(driver weight set (iii), see dotted lines) enables the vehicle to get closer to the driver’s target path, and the 

introduction of 5-6e1  intyq  (driver weight set (iv), see dash-dot lines) enables the vehicle to travel along the 

driver’s target path. 

In summary, each of the four sets of driver controller path-error weights results in distinctive driver 

steering behaviours and vehicle path-following performance among the four paradigms developed in the 

present work. In each paradigm, variation of driver path-error weight exerts noticeable influence on the 

interaction between the driver and vehicle AFS controller. 
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Fig. 7.  Simulation results from decentralized, noncooperative Nash, noncooperative Stackelberg and cooperative 

Pareto paradigms under different driver path-error weight sets. Solid: )0,0,0( 111    \qqq intyy ; dashed: 

)0,0,2e6( 111   � \qqq intyy ; dotted: )0,0,1e3( 111   � \qqq intyy ; dash-dot: )0,5e6,2e6( 111  � � \qqq intyy . 
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V. CONCLUSION 

The first objective of the work described in this paper was to identify and outline a series of paradigms 

which might be viable in modelling a driver’s steering interaction with AFS collision avoidance controllers. 

To this end, four paradigms were proposed, known as decentralized, noncooperative Nash, noncooperative 

Stackelberg and cooperative Pareto paradigms, and the following conclusions were reached: 

1) The decentralized paradigm represents a driver’s steering control in response to an AFS controller that 

disregards driver steering action. The driver is modelled to ignore the AFS steering action as well. 

2) The noncooperative Nash and Stackelberg paradigms represent a driver’s steering interaction with an 

AFS controller that actively compensates for driver steering action. The drivers in these two paradigms 

are modelled respectively to compensate for the AFS control action and control algorithm. 

3) The cooperative Pareto paradigm represents a driver’s steering interaction with an AFS controller that 

further takes into account driver target path. The driver is modelled to react to the AFS in the same way. 

4) In the decentralized and the noncooperative cases, each controller intends to minimize its individual path 

errors, whilst in the cooperative case the two controllers share a global path-following control objective.  

5) Under the decentralized paradigm each controller’s strategy is independent of the other’s target path. 

However, under the three game theoretic paradigms the two controllers require each other’s target paths 

in formulating their own strategies. 

The second objective was to derive the analytical solutions to the four paradigms. Two game theoretic 

approaches, known as distributed MPC and LQ dynamic optimization were described, with the following 

conclusions obtained: 

6) The two approaches bear some similarity: both construct controllers’ cost functions by penalizing 

path-following errors as well as steering control inputs, and both adopt the ‘receding horizon’ idea to 

determine controllers’ game theoretic steering control strategies.  

7) There are two significant differences: first, distributed MPC requires prediction equations for the 
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optimization whilst LQ dynamic optimization needs an environment equation; second, distributed MPC 

formulates the optimization as a least-squares problem whilst LQ dynamic optimization approach treats 

the optimization as a Lagrange multiplier problem. 

8) For each approach, solutions to the three driver-AFS game theoretic paradigms also differ from one 

another due to the dissimilarity in equilibrium properties. 

A case study was performed to illustrate how a driver interacts with a vehicle AFS collision avoidance 

controller in the four paradigms proposed. The results implied that within a particular paradigm, a variety of 

driver steering control behaviours can be yielded by varying driver path-error weights. On the other hand, the 

same driver weight set gives distinct driver behaviours in different paradigms. 

In further work, the AFS collision avoidance controller discussed in each of the four paradigms will be 

implemented in a driving simulator for measuring its exclusive interaction with human drivers. The 

analytical solution of the driver steering strategy derived in each paradigm will then be used to fit 

corresponding measured driver steering behaviour. Resultant model fitting errors in both time and frequency 

domain will be analyzed to demonstrate the validity of the proposed driver-AFS steering control paradigms. 
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