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Abstract14

Intracellular endosymbiotic bacteria are found in many terrestrial arthropods, and have a profound influ-15

ence on host biology. A basic question about these symbionts is why they infect the hosts that they do,16

but estimating symbiont incidence (the proportion of potential host species that are actually infected) is17

complicated by dynamic or low prevalence infections. We develop a maximum likelihood approach to18

estimating incidence, and testing hypotheses about its variation. We apply our method to a database of19

screens for bacterial symbionts, containing >3600 distinct arthropod species, and >150,000 individual20

arthropods. After accounting for sampling bias, we estimate that 52% (CIs: 48-57) of arthropod species21

are infected with Wolbachia, 24% (CIs: 20-42) with Rickettsia and 13% (CIs: 13-55) with Cardinium.22

We then show that these differences stem from the significantly reduced incidence of Rickettsia and Car-23

dinium in most hexapod orders, which might be explained by evolutionary differences in the arthropod24

immune response. Finally, we test the prediction that symbiont incidence should be higher in speciose25

host clades. But while some groups do show a trend for more infection in species-rich families, the26

correlations are generally weak and inconsistent. These results argue against a major role for parasitic27

symbionts in driving arthropod diversification.28

29
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Introduction30

Terrestrial arthropods carry an array of intracellular endosymbiotic bacteria. These bacteria have a pro-31

found influence on their hosts, and are thought to affect areas of biology ranging from reproductive mode32

and resistance to viruses, to effective population size and rate of speciation [1-9]. Some of the bacteria33

are also remarkable for the breadth of their host range [3,9-11], but relatively little is known about why34

they infect the hosts that they do.35

Several authors have suggested that symbiont infection frequency might vary predictably with host36

biology [e.g., 1,3,8,9,12-19]. For example, two distinct arguments predict that symbionts should be more37

common in host taxa that are species rich. First, some symbionts might cause reproductive isolation38

in their hosts, thus increasing the number of species in infected groups, relative to uninfected groups39

[20-22]. Second, if symbionts occasionally switch hosts, and if these switches take place preferentially40

between closely-related host species, then symbionts should be more common in host groups with many41

closely-related species, since these relatives can act as ready sources of infection [23,24].42

Hypotheses of this kind are common, but difficult to test in a rigorous comparative framework (though43

see, e.g., [8,18]). This is partly because symbiont incidence (i.e., the proportion of potential host species44

that are actually infected) is not easy to measure. While symbionts can be detected with PCR-based45

screens, infections vary in their prevalence (i.e., the proportion of individuals infected), and so it follows46

that low prevalence infections will be difficult to detect, that symbiont absence is impossible to prove,47

and that the number of infected samples might grossly underestimate the number of infected populations48

[e.g., 11,25]. Furthermore, the infection status of a population can change rapidly [e.g., 3,23,26,27], and49

this makes any single sample a mere snapshot of the ongoing ecological dynamics.50

A way to mitigate these problems is to combine data from several populations, and estimate the51

distribution of prevalences across a group of potential hosts [11]. This distribution might be relatively52

stable, even when infection in any single species changes rapidly [23,24,28,29], and the distribution53

allows us to infer the number of unobserved, low prevalence infections, even when few populations were54

sampled in depth. Such an approach to estimating incidence was pioneered by Hilgenboecker et al. [11],55

and has since been applied to several bacterial symbionts [11,29,30]. Here, we extend the approach of56

[11] in a full likelihood-based framework; this allows us to place proper confidence intervals on our57
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incidence estimates, and to formally test hypotheses about whether and why incidence varies.58

We apply our method to a newly collated database of published screens for three genera of bacterial59

secondary symbionts: Wolbachia, Rickettsia and Cardinium. Each genus employs a range of transmission60

strategies, but is best known as a reproductive parasite, manipulating the sexual biology of hosts to61

facilitate vertical transmission via the egg cytoplasm [1,3,5,9]. Most importantly, each genus has been62

extensively studied, and so our database contains screens of over 150,000 individuals from over 350063

distinct arthropod species.64

Methods65

Data collection66

We searched the literature for PCR-based screens of Wolbachia, Rickettsia and Cardinium in wild popula-67

tions of terrestrial arthropods (full details of our inclusion criteria are given in supplementary information68

section 1). For each population, we recorded the host species, the number of individuals screened, and69

the number of individuals found to be infected. The final database included data from 361 distinct source70

publications, comprising screens of over 10,000 populations. Each screened arthropod was classified ac-71

cording to up-to-date taxonomy, and a taxonomic breakdown of the database is shown in supplementary72

Figure S1. The full database is included as online supplementary information. To estimate the rela-73

tive species richness of different arthropod groups, we used estimates of the number of described species.74

These will, of course, be a crude proxy for true species number, but are acceptable for our purposes, given75

the many well-known difficulties in extrapolation [31]. All estimates used are listed in supplementary76

Table S2 and online supplementary information.77

Model78

We estimate symbiont incidence by first inferring the distribution of infection prevalences across many79

populations. Following [11], we initially assume that between-population variation in prevalences can be80
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adequately described by a beta distribution, whose parameters are estimated from the screen data. From81

the best fit distribution, we then calculate the proportion of species infected above a given threshold82

frequency c, and denote this estimate of incidence as xc [11]. Most results reported below use c = 0.001,83

and thus we define a population as “infected” if it has a prevalence of greater than one in a thousand84

individuals. We use this threshold frequency for expedience, but it is clear that the proportion of species in85

which no single individual is infected will be difficult to estimate with much confidence or precision (and86

this is borne out by results reported below). Furthermore, the threshold frequency reflects a biologically87

meaningful distinction between established infections and very low prevalence “dead-end” infections,88

which are unlikely to persist in the host population [32,33]. All equations associated with the model, and89

details of the numerical methods are found in the supplementary methods section 2.90

Results91

Estimating symbiont incidence92

We begin by estimating symbiont incidence across the terrestrial arthropods as a whole. Figure 1 shows93

three such estimates for each bacterial genus. The initial estimates (labelled (a) in Fig. 1), were obtained94

from fitting a simple beta distribution to our complete database of screens. However, due to the shape95

of the beta distribution, these estimates entail the assumption that no population is completely free from96

infection (with a prevalence of exactly zero), and no population is completely infected (with a prevalence97

of exactly one, as with an obligate or primary symbiont). To relax this questionable assumption, we98

developed a method of fitting a doubly-inflated beta distribution [34] which does allow for completely99

uninfected and completely infected host populations, as well as populations with intermediate prevalence.100

Comparing the two models on simulated data shows that the doubly-inflated distribution is much more101

accurate when, in reality, a large fraction of populations do not harbour the symbionts (see supplementary102

methods section 3 and Fig. S2 for full details). However, for our real data, fitting the doubly-inflated103

distribution had almost no effect on the incidence estimates (see results labelled (b) in Fig. 1). This104

suggests that model inadequacy is not greatly influencing our results.105
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More fundamentally, we are most interested in the incidence across arthropod species (i.e., the pro-106

portion of species infected), and for this purpose, estimates from our complete database will be biased in107

at least three ways. First, and most obviously, some species are represented by only a single population108

sample, and some by a very large number. For example, the vectors of Rickettsial disease (Parasitiformes109

and Siphonaptera) are hugely overrepresented (Supp. Figure S1). Second, there are clear taxonomic110

biases in the sampled species. In particular, minor arthropod orders are overrpresented (presumably from111

studies of symbiont host range; Supp. Figure S1). Third, and more subtly, sampling might be biased112

by the concentration of research effort on populations and species that were already known to contain113

infection [11].114

To mitigate and test for these biases, we developed a three-stage process, which we call “standardised115

sampling”. First, we subsampled our data, retaining only the single largest screen from each species.116

Second, we devised a method of estimating incidence for each of the major groups of arthropods, and then117

combining these estimates in a weighted sum, weighting the estimate from each group by its contribution118

to total arthropod biodiversity. Third, we tested for differences in symbiont prevalence between multi-119

individual screens (which are more likely to be carried out on species known to carry infection), and120

single-individual screens (which are most likely to resemble a quasi-random sample of species). Full121

details of the “standardised sampling” are given in supplementary methods section 4, and Tables S2 and122

S3, and results obtained with this approach are labelled (c) in Figure 1.123

These improved estimates (Fig. 1c) are substantially lower than the estimates from the complete124

database, but they remain remarkably high. We estimate that just over half of terrestrial arthropod species125

are infected with Wolbachia at a non-neglible frequency (52%, CIs 48-57), around a quarter infected with126

Rickettsia (24% CIs 20-42) and around an eighth infected with Cardinium (13%, CIs 13-55). Further-127

more, we cannot reject the possibility that Rickettsia and Cardinium incidences are much higher (Fig.128

1). Their large and skewed confidence intervals reflect the shape of the underlying distributions of preva-129

lences that we inferred from the data. In particular, for all bacteria, we inferred that most single species130

were subject to either very high, or very low levels of infection at any given time (Table S1; [11,29,30]).131

However, estimates of mean prevalence levels were much lower for Cardinium and Rickettsia (<6%) than132

for Wolbachia (24%; Table S1). As such, for Cardinium and Rickettsia, it was difficult to distinguish133
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between low incidence, and a high incidence of low-prevalence infections; this uncertainty is reflected in134

the high upper bounds on our estimates (Fig. 1).135

Variation in incidence between bacteria and major arthropod host groups136

We next tested for differences in symbiont incidence between bacteria and between major host groups.137

Figure 2 compares estimates of incidence for the best-sampled subphyla of arthropods, namely Hexapoda138

(insects and relatives), and Chelicerata (represented solely by arachnids in our database), after applying139

our standardised sampling approach. Results show no significant difference in the incidences of Wol-140

bachia in hexapods (51%) versus chelicerates (61%), and no significant difference in the incidences of141

the three bacteria in chelicerates (Wolbachia 61%, Rickettsia 51% and Cardinium 60%). As such, the142

clearest pattern in our data is significantly lower incidences, in hexapod hosts, of Rickettsia (22%) and143

especially Cardinium (8%) [17]. (We note that results are quite different when standardised sampling is144

not applied, confirming the benefits of this approach; Figure S4).145

The pattern in Fig. 2 might be explained in many ways, but one possibility is differences in arthro-146

pod innate immunity [35-37]. Comparative genomics has shown that chelicerates lack key components147

of the IMD immune pathway [37], which is primarily responsive to gram-negative bacteria [38], and148

activated by DAP-type peptidoglycans [39]. Crucially, peptidoglycans are not thought to be produced149

by Wolbachia [40,41], but are produced by Cardinium [40,42], and also by Rickettsia, albeit sometimes150

at very low levels [43,44]. Therefore, the low incidence in hexapods of Rickettsia and especially Car-151

dinium, might be due to their eliciting an additional immune response, not found in chelicerates, and not152

induced by Wolbachia in any host group. Suggestive support for this hypothesis comes from estimates153

of incidence within the hexapod host orders, where the paraneopteran orders Hemiptera (true bugs), and154

Psocodea (lice) are also known to lack components of the IMD pathway [36]. Figure 3 shows that for155

Cardinium, the six arthropod groups with the highest estimated incidence (the five sampled chelicerate156

groups, and Hemiptera) all lack IMD components. This pattern is weakly present in Rickettsia (where it157

applies the three groups with highest incidence), and wholly absent in Wolbachia.158

Regardless of its cause, Figure 3 suggests that closely-related groups of host might have similar159

levels of symbiont incidence. This is borne out in formal tests, where Cardinium and Rickettsia, but160
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not Wolbachia show weak evidence of phylogenetic signal in their incidence levels (see supplementary161

methods section 5.1 and Table S4 for full details).162

Species richness and symbiont incidence163

We next tested the prediction that infection levels in a host group will tend to increase with its species164

richness [21-24]; this is best tested with many taxonomic groups of similar age, and a rough biological165

similarity [14,16,21], and so we considered arthropod families or genera within major orders. For the166

best sampled orders, we asked whether higher symbiont incidence is found in families containing more167

species. We did this by fitting the linear model ŷi = a+ b log10(Si) where Si is the number of described168

species in family i, and yi ≡ ln(xc,i/(1− xc,i)) is the logit transformed incidence for that family. This169

model was fit directly to the likelihood surface of the xc,i, and so all of the uncertainty in our incidence170

estimates was taken into account (see supplementary information section 5.2 for further details).171

As with Figures 1-2, we first considered a species “infected” if more than 1/1000 individuals har-172

boured the bacteria (i.e., we used x0.001 as our response variable), but it is unlikely that, say, a speciation173

event would be caused by a very low prevalence infection, and so we also repeated all analyses consid-174

ering only host species infected at prevalences greater than 50% and 90% (i.e., using x0.5 and x0.9 as175

response variables). All results are shown in Table S5 and some illustrative cases are plotted in Figure 4.176

Considered together, no clear pattern emerges from the results. For example, in Coleoptera (beetles),177

a significant positive relationship between incidence and species richness is found for both Wolbachia178

and Rickettsia (Fig. 4a). However, Araneae (spiders) show the opposite result - a significant tendency179

for higher Wolbachia incidence in species-poor groups (Fig. 4c-d). Furthermore, the explanatory power180

of the model is very low in almost all cases (only with Wolbachia infections at >50% prevalence in181

Coleoptera does the model yield a pseudo-r2 above 10%).182
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Discussion183

Terrestrial arthropods cannot be understood without considering their bacterial symbionts, and one key to184

understanding symbiont biology is to explain why particular symbionts are present or absent in particular185

groups of potential hosts [e.g., 9,13,17,19]. Following Hilgenboecker et al. [11], we have introduced a186

maximum likelihood estimator of symbiont incidence (the proportion of potential host species that are187

actually infected), and applied our estimator to a large database of PCR screens for Wolbachia, Rickettsia188

and Cardinium. We have also introduced methods to account for the most serious sources of sampling189

bias in our data, including weighting estimates from different arthropod groups by their contribution to190

total arthropod diversity. Of course, biases will remain (nobody could hope to obtain a truly random191

sample of all arthropod species) and it remains practically impossible to prove the absence of a symbiont192

in a given species; for example, infections might have been missed due to primer issues [11,45] or PCR193

inhibitors, particularly with older methods of DNA extraction [46]. Most seriously, our estimates will194

be reliable only if prevalences in the sampled populations are representative of the species range as a195

whole. When only a tiny proportion of the species range has been sampled, it is impossible to know if196

the sample is representative. For while migration between populations and species-specific susceptibil-197

ities will act to homogenise prevalences across populations, geographical isolation, habitat variation, or198

intraspecific genetic variation, could lead to large, sustained differences in prevalence across a species199

range. In the worst case scenario, prevalences across populations of a given species would be completely200

uncorrelated with each other. In such a case, the xc that we estimate would correspond, roughly, to the201

incidence across populations, while the incidence across species would tend towards 100% (since, with202

uncorrelated prevalences, it becomes extremely unlikely for all populations of a given species to be free203

from infection at any given time). Reality must lie somewhere between these two extremes, and so our204

incidence estimates are probably downwardly biased (see also Supp. Figure S3).205

With these caveats, we have estimated that Wolbachia, Rickettsia and Cardinium infect, respectively,206

around a half, a quarter and an eighth of terrestrial arthropod species (Fig. 1). These differences mask207

remarkably similar incidences in chelicerates (Fig. 2), and stem from the significantly lower incidences208

of Rickettsia and especially Cardinium in hexapod hosts (Fig. 2; see also [17,28]). This results in the209

incidence of Cardinium and Rickettsia - though not Wolbachia - showing weak phylogenetic signal across210
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host orders (Table S4). We have speculated that this pattern might reflect evolutionary changes in the211

arthropod immune system [35-37], which strongly affect Cardinium, but have no effect on Wolbachia.212

When transferred to a novel host species, all three bacteria can induce an immune response [38,47],213

but they probably do so in different ways [40]. We have noted that many arthropod groups lack key214

components of the IMD pathway, which is activated by DAP-type peptidoglycan, a common components215

of the gram-negative cell wall [36,37]. We have also noted that the incidence of Cardinium, which216

produces peptidoglycan [40,42], is highest in those host groups, while Wolbachia, which does not produce217

peptidoglycan [40,41], shows no such pattern.218

Finally, we tested the prediction that incidence levels would be higher in host groups that are more219

speciose (Table S5; Fig. 4). This prediction follows from (i) the observation that horizontally-transferred220

parasites often establish more easily on novel hosts that are closely related to their existing hosts [14,16,48]221

which implies that speciose host groups contain more sources of potential infection, leading to higher in-222

cidence [23,24], and (ii) suggestions that symbionts might cause speciation in their hosts [20-22]. Data223

from some groups, such as Coleoptera, supported the prediction, but across all host groups, the correla-224

tions were inconsistent and generally weak (Table S5; Fig. 4).225

There are three possible explanations of these negative results. First, there is the limited power of226

our tests: inconsistent sampling, screening errors, and reliance on described species numbers, might227

all have made a true correlation difficult to detect. Furthermore, a general conclusion of this study is228

that symbiont incidence is difficult to estimate with high precision - even with very large samples (e.g.,229

Figs. 3-4). Nevertheless, several of the data sets did yield significant results - but not consistently in the230

predicted direction (Table S5).231

Second, a confounding factor might have masked a true underlying correlation. Several alternatives232

are possible. For example, competitive exclusion among symbionts might lead to high incidence of233

one bacterium being predictably associated with low incidence of another (though see, e.g., [25,49]),234

or species richness might correlate with clade age, which might also affect symbiont incidence [50].235

Alternatively, symbionts might induce speciation without transferring to the new daughter species, or236

parasitic symbionts might drive their hosts extinct [e.g., 51,52], creating a negative correlation between237

species richness and infection.238
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Third, and finally, there might be no causal relationship between species number and symbiont inci-239

dence. Regarding host shifting, there is evidence of between-species transfer in all three bacteria, both240

from phylogenetic incongruence [3,9,53-56] and, in Wolbachia, from experimental transfers [45,57].241

There is also evidence that transfer success increases with host relatedness - but this evidence is largely in-242

direct, coming from phylogenetic clustering [9,14,16,27,53-55], and strong experimental evidence comes243

solely from Spiroplasma, an ecologically similar, but phylogenetically distant endosymbiont [48]. The244

evidence for symbiont-mediated speciation is even sparser. Host reproductive isolation might arise as245

a passive byproduct of host-symbiont coevolution (since any genomic change, whether in host or sym-246

biont, might have negative epistatic fitness effects in a hybrid background [4,22]). But the most plausible247

route to rapid speciation is through reproductive manipulations which cause reproductive isolation, such248

as cytoplasmic incompatibility, or host parthenogenesis. Not all manipulations have been observed in all249

host-parasite combinations, and so this might explain the inconsistency in our results (Table S5). Never-250

theless, taken together, our results must count as evidence against the claim that symbionts are a major251

cause of diversification across the arthropods as a whole.252

But while no consistent effect of species-richness has been found, many further hypotheses about the253

causes of endosymbiont incidence in nature remain to be tested, and we hope that the methods presented254

here will prove useful for this purpose.255
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Figure Captions413

Figure 1414

Estimates of symbiont incidence, x0.001 (i.e., the proportion of species infected at a prevalence of greater415

than 1/1000) in terrestrial arthropods. Estimates obtained from (a) fitting a beta distribution to the com-416

plete database; (b) fitting a doubly-inflated beta distribution to the complete database, and so allowing for417

completely uninfected or completely infected species; (c) standardised sampling (i.e., a weighted sum of418

estimates from the largest arthropod taxa, using the single largest population sample from each sampled419

species within each taxon).420

Figure 2421

Estimates of symbiont incidence, x0.001 (i.e., the proportion of species infected at a prevalence of greater422

than 1/1000) in the two major subphyla of arthropoda. Each pair of bars shows the incidence of a different423

bacterial genus, and compares estimates for Hexapoda (left-hand bar) and Chelicerata (right-hand bar).424

Estimates used “standardised sampling” (see main text). p-values above each set of bars are from a425

Likelihood Ratio Tests of heterogeneity in the estimates.426

Figure 3427

Estimates of symbiont incidence, x0.001 (i.e., the proportion of species infected at a prevalence of greater428

than 1/1000) for three genera of bacterial endosymbionts, across orders (and some superordinal groups)429

of terrestrial arthropods. Grey points show estimates from our complete database, and black points show430

estimates with standardised sampling, in which all sampled species in each group were represented by the431

single largest population sample. Shading and vertical lines demarcate some major host groups, including432

Hexapoda (left-hand panel) and Chelicerata (right-hand panel).433
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Figure 4434

Estimated incidence of bacterial endosymbionts for individual families of terrestrial arthropods, plotted435

against the number of described species in that family. Each point represents the estimated proportion of436

populations in a single family infected at a prevalence of greater than 1/1000 (x0.001). Solid lines show437

the best-fit line linking symbiont incidence and host species richness (see main text), while the dashed438

lines show the best-fitting null model (in which all families have the same expected incidence). Results439

are shown only for host groups that were well sampled for two bacteria.440
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1 Database collation

Each entry in our database comprised data from a single arthropod population. In general, it was
not always possible to use a single consistent definition of a “population”, but where possible, we split
the data by sampling location, date of collection and host subspecies, while for vertebrate-associated
arthropods, we treated samples from different vertebrate host species in the same geographical location
as belonging to different populations. For most studies, arthropod individuals were screened individually,
but screens of multi-individual pools were also included, as these too can inform estimates [e.g., 1;
see below], but we excluded any population where pool size was variable, or unreported. In addition,
we excluded any population that had been kept in a laboratory for more than twelve months, or where
individuals were screened long after death, unless stored in solution or frozen immediately after death.
Source publications used a variety of primers and protocols, but we did exclude studies using long PCR
- which is highly sensitive to very low titre infections, but might yield a high rate of false positives [2,3].

During the collation of the database, many authors provided important clarifications or additional
data, and we are very grateful to all of the following: A. N. Alekseev, C. S. Apperson, H.-N. Chai, G. A.
Dasch, Y.-Z. Du, M. Eremeeva, K. D. Floate, N. Guz, S. Hornok, L. Hun, M.-X. Jiang, T. Kurtti, M. L.
Levin, Z. Lijuan, J. H. McQuiston, O. Mediannikov, C. S. Moreau, N. Nakamura, M.-M. Nogueras, J. A.
Oteo Revuelta, Y. Peng, A. Portillo, R. Rajagopal, A. Richards, Y. Sakamoto, P. Shimabukuro, P.-Y. Shu,
C. Silaghi, M. Škaljac, C. Strube, L. Tomassone, A. Troyo, K.-H. Tsai, J. Walochnik, M. Wijnveld, and
K. Wilson.

2 Likelihood function and numerical methods

2.1 The likelihood function

We estimate symbiont incidence by first inferring the distribution of prevalence values across arthropod

populations. Let us first assume that the true prevalence of bacterial infection in a single population is

q, where 0 ≤ q ≤ 1, and that we are estimating this prevalence by screening n pools, each containing m

randomly-sampled individuals - and thereby screening nm individuals in total (for data sets where each

arthropod was individually screened, we simply set m = 1). In this case, the probability that a given pool

will be free of infection is (1−q)m, and the probability of observing k infected pools is

p(k;n,m,q) =
�

n
k

�
(1− (1−q)m)k(1−q)m(n−k) (1)

We must now make some assumptions about the distribution of prevalences [3]. Initially, we assume

2



that the across-population distribution of prevalences can be adequately described by a beta distribution

P(q;α,β ) = qα−1(1−q)β−1

B(α,β )
(2)

In eq. (2), α,β > 0 are shape parameters, and B(α,β ) = Γ(α)Γ(β )/Γ(α +β ) is the beta function.

The likelihood of observing our data can now be derived by combining eqs. (1) and (2).

L(k,n,m; α,β ) =

1ˆ

q=0

P(q;α,β )p(k;n,m,q)dq (3)

=

�n
k
�

B(α,β )

k

∑
i=0

(−1)i
�

k
i

�
B(α,β +m(n− k+ i)) (4)

The complete log likelihood function follows from including screens from many different popula-

tions:

lnL =
pops.

∑
i

lnL(ki,ni,mi;α,β ) (5)

The maximum likelihood estimates of the parameters α and β are the values that maximise this func-

tion, and likelihood-based confidence intervals (as reported in the main text) are the values that reduce

this maximised log likelihood by two units [4]. For our major datasets, we also produced confidence

intervals by bootstrapping the data, and these were nearly identical to the likelihood-based intervals (not

shown).

2.2 Meaningful parameterisation

The shape parameters in eq. (2) are not readily interpretable in biological terms, but the distribution

can be written in terms of two alternative parameters, namely the mean prevalence (denoted q̄), and the

proportion of the total variance in infection status that is distributed between arthropod populations, as

opposed to within populations (denoted F).
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q̄ ≡ E [q] (6)

F ≡ Var[q]
q̄(1− q̄)

(7)

For the beta distribution, these more meaningful parameters can be derived via

q̄ = α/(α +β ) (8)

F ≡ 1/(1+α +β ) (9)

We note that the parameter F is defined by analogy with Wright’s Fst [5]. Its value ranges between
F = 0, when all populations have the same prevalence, and F = 1 when there is no variation in infec-
tion status within populations, such that each population is either completely infected, or completely
uninfected. As such, it is also be defined as the correlation in infection probability among members
of the same population. Given this definition, the value of F is undefined if all populations are free
from infection (q̄ = 0) or if all populations are completely infected (q̄ = 1). Similarly, the parameter is
not identifiable for data sets without multi-individual screens (i.e., when all ni = 1). For this reason, to
generate bootstrap confidence intervals on parameters, we sampled single- and multi-individual screens
separately. We also set the maximum likelihood value of F at F̂ = 1 for data sets that contained no
infected individuals (i.e., for which ˆ̄q = 0). This is because F̂ = 1 maximizes the likelihood with when
q̄ > 0 for any data set that contains no partially infected samples.

Finally, following Hilgenboecker et al. [3], we define the incidence as the proportion of populations

that are infected above a certain threshold prevalence, 0 ≤ c ≤ 1. This is found from:

xc ≡ Pr(q > c) =

1ˆ
q=c

P(q;α,β )dq

≈ 1− cα

αB(α,β )
, c � 1 (10)
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Confidence intervals on these compound parameters can also be generated as described above [4].

2.3 Numerical methods

In general, either eq. (3) or eq. (4) can be used to calculate the likelihood. However, there are also

simplifications and transformations that can be used in some regions of parameter space. First, and most

importantly, when arthropods were screened individually, solving the integral in eq. (3) with m = 1,

shows that the summation in eq. (4) simplifies, as in standard beta-binomial modelling [3].

k

∑
i=0

(−1)i
�

k
i

�
B(α,β +n− k+ i) = B(α + k,β +n− k) (11)

There are also further simplications that arise in data sets without partially infected samples, e.g.,

when F is not defined (see above). Finally, in some parameter combinations (e.g., when n = k, m > 1 and

β < 1), both eqs. (3) and (4) can become numerically unstable. In such regimes, we used an exponential

transformation of eq. (3) [6,7]. This transformation is as follows:

ˆ 1

0
f (q)dq =

ˆ ∞

−∞
f (ϕ(t))ϕ �(t)dt (12)

where

ϕ(t) ≡ 1
2
[tanh(π sinh(t)/2)+1] (13)

ϕ �(t) =
π cosh(t)

4cosh2(π sinh(t)/2)

Working with the compound parameters was straightforward for q̄ and F , because the likelihood

function can be easily rewritten as a function of these parameters. For xc, we first calculated the likelihood

for a fine grid of q̄ and F values, and then used the observation that the likelihood surface for xc was

smooth and unimodal. This allowed us to generate this surface using linear interpolation. Computer

code to calculate and maximise the likelihood was written in R [8] and is included as supplementary
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information.

3 More complex models and simulations

3.1 Inflated beta distributions

A major limitation of the beta distribution is that, in most cases, it does not allow for a substantial

fraction of populations to be completely free of infection (with q= 0), or completely infected (with q= 1).

This is why we had to define a non-zero threshold prevalence, c (eq. (10)) because - given the form of

the beta distribution - an infinitesimal fraction of populations will contain exactly no infection, except in

the special cases of q̄ = 0 (i.e., when all populations are infection free), or when F = 1 (i.e., when all

populations are either completely uninfected or completely infected). In all other cases, therefore, x0 = 1.

An alternative that avoids this limitation is the doubly-inflated beta distribution [9], i.e., a beta distri-

bution combined with two spikes of probability at the extreme values.

P(q;φ ,γ,α,β ) =






φ(1− γ), if q = 0

φγ, if q = 1

(1−φ)qα−1(1−q)β−1

B(α,β ) , if q ∈ (0,1)

(14)

In eq. (14), α,β > 0 are the shape parameters, and 1 ≥ φ ,γ ≥ 0 control the weight of the spikes. The

meaningful quantities, q̄, F and xc (eqs. (6), (7) and (10)) can then be derived for this new distribution.

q̄ = φγ + (1−φ)α
α +β

F = 1− (1−φ)αβ
q̄(1− q̄)(α +β )(1+α +β )

(15)

xc = φγ +(1−φ)
1ˆ

q=c

P(q;α,β )dq
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Note that x0 < 1 is now possible, even when some populations do contain intermediate levels of

infection. Furthermore, we can define two new useful parameters that define the proportion of species

that are completely uninfected or completely infected.

p0 ≡ Pr(q = 0) = φ(1− γ)

(16)

p1 ≡ Pr(q = 1) = φγ

3.2 Performance of estimators on simulated data sets

To compare the performance of the two models (eqs. (2) and (14)), and to compare the performance

of our maximum likelihood approach to the moment-based estimators of Hilgenboecker et al. ([3]; see

their eqs. 1-5), we generated a large number of simulated data sets with known parameters, and then

reestimated these parameters using the three methods. To generate the simulated data, we assumed that

the true distribution of prevalences followed the doubly-inflated beta distribution (eq. (14)), with a range

of different parameter values. Each simulated data set contained the same number of screens and in-

dividuals as our true Wolbachia data (the largest of our data sets), but for each screen, the number of

individuals infected was generated by (i) drawing a true prevalence at random from the doubly-inflated

beta distribution (eq. (14)), and (ii) drawing the sample prevalence, at random, from a binomial distribu-

tion parameterised with the randomly generated prevalence level (eq. (1)). Because the moment-based

approach cannot be used with pooled samples (m > 1), we removed all screens of pooled samples before

carrying out the simulation procedure described above. However, this had little effect on the performance

of the likelihood-based methods (not shown).

Figure S2 shows the results of the simulations. Each column of panels (a)-(j) contains results for a

different set of true parameters, while each row contains estimates for one of the important parameters (xc,

q̄, F), under each of the three methods, with the true values - used to simulate the data - indicated in red.

The first message of Figure S2 is that the heuristic moment-based estimators for the beta distribution [3]
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have a similar level of accuracy to our maximum likelihood approach, but the moment-based estimates

are generally less precise (i.e., there is much wider spread of estimates for the same true parameter

values); this is a benefit of using the full likelihood approach. Second, Figure S2 shows that fitting a

standard beta distribution can yield misleading results when, in reality, a substantial fraction of species

are either completely infected, or completely uninfected (see particularly panels (a), (c)-(e)) - i.e., when

the doubly-inflated distribution is the true model. In such cases, fitting a doubly-inflated beta distribution

does provide a substantial improvement in accuracy. Furthermore, the doubly-inflated distribution shows

good performance even when the smaller, beta distribution is the true model.

3.3 Performance of estimators on the real data

Table S1 contains parameter estimates for our major data sets from the beta distribution (a) and

the doubly-inflated distribution (b). In both cases, the estimates correspond to the incidence estimates

shown in Figure 1 labelled (a) and (b). Table S1 also contains Akaike weights for the two models,

i.e., the probability that this distribution, and not the alternative, minimises the information loss [10,11].

Table S1 shows that the doubly-inflated distribution is strongly preferred for two of our three data sets

(Rickettsia and Cardinium). However, as with the incidence estimates (Fig. 1), none of the parameter

estimates is substantially changed, and the estimates from the larger model are less precise. Furthermore,

the additional parameter p0 is very imprecisely estimated; for example, for Cardinium, we cannot reject

the proportion of completely uninfected species being as low as 0% or as high as 75%. Furthermore,

simulation results suggest that when the two models give similar parameters estimates, both methods will

be reasonably accurate (Fig. S2). These results explain why we continue to report incidence assuming a

threshold cutoff of 1/1000 infected individuals, and why we used the simpler beta distribution to calculate

estimates for individual host orders (e.g., Fig. 3).

4 Standardised sampling

4.1 Unequal representation of species

Some arthropod species are represented in our database by many populations, and others by only one.
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To balance the sampling, we chose to subsample our database, retaining only a single population sample
from each species. To determine which sample to retain, we preferred samples with larger numbers of
pools (larger ni), and in the case of ties (equal numbers of pools), samples with larger pool sizes (larger
mi). For our database, in almost every case, we were not forced to choose between screens with identical
numbers of pools and pool sizes but unequal sample prevalences, and so the subsampling involved no
random choice. The sole exception was the Acariformes (“true mites”), in which there were very few
screens for Rickettsia, and so we retained all of these data, but merged the samples of Tetranychus urticae
[14], as if they had come from a single population. Since our database contained a large number of
samples where taxonomy was incomplete (Figure S1), we treated each unidentified species as if it were
unique. This maximised the use of the data, and is probably reasonably accurate, given that the taxonomy
was least complete for very large, speciose groups, and that many of the unidentified species came from
families or genera that were not otherwise represented.

To test the robustness of our results, we also examined a second approach to equalising the repre-
sentation of all species, namely, merging all samples with a common pool size from each species, and
treating them as a single sample, and then retaining the largest “merged” sample for each species. This
approach includes information from across the species range when it is available, and so it could mitigate
any downward bias in estimates of incidence. We rejected this approach for our main results, however, as
it could upwardly bias incidence estimates when samples were obtained on different dates and prevalence
varied over time.

Figure S3 compares parameter estimates for the major terrestrial arthropod orders (see below and
Table S2), obtained with these two approaches to sampling. Figure S3 shows two cases where the dif-
ferent approaches to sampling did create substantial differences in the estimated incidence (one each in
panels (f) and (i)). In particular, our “single largest sample” approach led to substantially lower incidence
estimates for Rickettsia in Diptera, and for Cardinium in Opiliones. However, for the remaining 28/30
cases, incidence estimates were generally highly congruent between the two approaches, and particularly
for our largest, Wolbachia data set (panel (c)). Overall, the similarity of the estimates must partly reflect
the trivial fact that the single largest sample of each species often comprises a substantial fraction of the
total number of individuals sampled for that species, but it also reflects the fact that the largest samples
were often taken over larger sections of the species range, and might thus be more representative.

4.2 Sampling bias towards minor orders

Even after subsampling our data, our database contained a highly unrepresentative sample of arthro-
pod species (Fig. S1). To correct for this taxonomic bias, we used weighted sums of the incidence es-
timates from each of the major terrestrial arthropod orders (Table S2; Fig. S3), weighting each estimate
by the (estimated) contribution of that order to total arthropod biodiversity. In particular, for symbiont
incidence we used
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xc = ∑
i

fixc,i (17)

where xc,i is the estimated incidence for host order i, and fi is the proportion of all arthropod species

that are members of order i (such that ∑i fi = 1). For the results reported, we used only the largest orders

of hexapods and/or chelicerates, and estimated fi from the number of described species in those groups,

as obtained from [12]. The estimates that we used are found in Table S2. So, for example, to obtain

an estimate for chelicerates alone (Fig. 2), for Araneae we calculated fi = 43678/(43678+ 41939+

12338+6534) = 0.418, thus assuming that ~42% of chelicerate species are spiders.

To generate confidence intervals on this estimate, and to use its likelihood surface for model fitting,

we wrote xc,1 = (xc −∑i>1 fixc,i)/ f1, and then found the values of the xc,i that maximised the likelihood,

conditional on xc taking a given value. This was the approach used to produce the estimates labelled (c)

in Figure 1, and all estimates in Figure 2.

Table S1 also applies the same approach to the other quantities of interest. These were calculated

from:

q̄ = ∑
i

fiq̄i (18)

F =
∑i fiFiq̄i(1− q̄i)

q̄(1− q̄)

although confidence intervals could not be provided for F , which is a ratio of variances, and not a

simple sum.

4.3 Sampling bias towards infected populations

Another source of potential sampling bias is the overrepresentation in our database of species or
populations already known to contain infection [3]. This bias is clearly evident from noting the species
that are represented by a large number of screens (e.g., Ixodes ricinus, the castor bean tick, which is a
known vector of rickettsial pathogens). This bias will be mitigated by the subsampling of screens, since
no species will represented by more than one sample, but it could still remain. To test for this bias, we
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note that it is least likely to affect screens of single individuals from a large number of haphazardly-
sampled arthropod species (e.g., [13]), and most likely to affect large multi-individual screens designed
as stand-alone studies [3]. Accordingly, a suitable test is to compare estimates of the mean prevalence,
q̄, from single-individual screens and multi-individual screens (noting that q̄ is the sole parameter than
can be estimated from single-individual screens alone). If multi-individual screens have a significantly
higher mean prevalence, this indicates that at least some of the screened populations were selected on the
basis of prior knowledge of infection. To carry out this test, we fitted a model in which single-individual
screens and multi-individual screens were each assigned their own value of q̄ (the sole parameter that can
be estimated from single-individual screens alone), and compared results to a model in which all screens
had the same mean prevalence. Results shown in Table S3 suggest that this source of sampling bias is
substantial across our data set as a whole: for all three symbionts, the two-q̄ model provides a significantly
better fit to the data, and the estimates for multi-individual screens were always substantially higher than
those from single-individual screens (Table S3). Furthermore, for all three symbionts, the difference in
q̄ estimates from single- and multi-individual screens was always greater than the differences between
estimates obtained from equivalently-sized but randomised divisions of the data (not shown).

However, we then applied the test to the subsampled data from each of the major arthropod orders
(Table S2), which we used to produce our most reliable estimates. For the subsampled Wolbachia data,
no order showed a significant difference in q̄ estimates between single- and multi-individual screens (Ta-
ble S2). For Rickettsia and Cardinium, four groups did show a significant difference, but there was no
consistent tendency for the multi-individual screens to have a higher prevalence (as predicted if sam-
pling were biased towards known infection). For example, for Araneae infected with Cardinium, and
Diptera infected with Rickettsia, we found significantly higher levels of infection in the single-individual
screens (Table S2). Thus, we concluded that the subsampled database showed no evidence of this kind
of sampling bias.

The importance of the standardising sampling procedure, described above, is evident from Figure 1.
To show how sampling bias can also affect between host-group comparisons, we repeated the analysis
shown in Figure 2, but without applying standardised sampling. Results, shown in Figure S4, would lead
us to conclude that there was a significantly higher incidence in chelicerates for all three bacteria, and
significant differences between the bacteria within both groups; these results differ qualitatively from
those shown in Figure 2, and reported in the main text.

5 Tests of predictors of incidence and prevalence

5.1 Tests for phylogenetic signal

To obtain a dated phylogeny of the higher arthropod taxa (Figure 3), we combined phylogenetic trees
from published sources [15-17]. Since these trees included no dates for the Thysanoptera/Hemiptera
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split, we dated that node at 270.6 MA, which is consistent with fossil evidence [18], and with the dates
of its parental nodes. In most cases, we divided the data by order, but we included some monophyletic
superordinal groups where sampling was sparse.

To test for phylogenetic signal in symbiont incidence, we compared the fit of models in which these

parameter values were assumed to have evolved over the true arthropod phylogeny (Fig. 3), to a model

in which they evolved over a star phylogeny. Formally, we assumed that the logit transformed mean

prevalence, ln(xc/(1− xc)), for each order, evolved over the phylogeny by Brownian motion. This meant

that the likelihood equation (eq. (5)), was combined with a multivariate normal distribution, with a

covariance matrix determined by the phylogeny. The parameters of this distribution, namely its variance

(“evolutionary rate”), and mean (“ancestral mean prevalence”), were then estimated along with the other

model parameters. To assess the support for the non-nested models, we again used Akaike weights

[10,11].

Table S4 shows results, using standardised sampling within each order. Results show that an explicit
phylogenetic model gives a superior fit to the data for Cardinium and Rickettsia, but not for Wolbachia.
However, the non-phylogenetic model could not be rejected in any case (Table S4), and this is consistent
with the wide confidence intervals on estimates for many poorly-sampled orders (Fig. 3).

5.2 Species number and incidence

To test whether species rich families have higher levels of incidence, we used estimates of described

species number from 39 published sources (see online supplementary information for full details). We

then fit the linear model ŷi = a+ b log(Si) where Si is the number of described species for host family i

and yi = ln(xc,i/(1− xc,i)) is the logit transformed incidence. This model was fit directly to the sample

prevalence data using the likelihood surface of eq. (5) expressed as a function of xc, and compared to the

fit of the null model (with b = 0) using a Likelihood Ratio Test. As a goodness of fit measure, we used

McFadden’s [19] pseudo-r2, which is defined as

r2 ≡ 1− ln L̂lm/ ln L̂null (19)

where L̂lm and L̂null are the maximised likelihood values under, respectively, the linear model (with b

free to vary) and the null model (with b = 0). To be a meaningful test, we required host groups that con-
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tained sufficient variation in both predictor and response variables. Therefore, Table S5 contains results

from only those orders (or superordinal groups), which contained 5 or more families whose maximum

likelihood estimate of incidence was intermediate (i.e., 0 < x̂c,i < 1). We retained all families in these

groups, including those represented by only a single screened individual, because the uncertainty in the

incidence estimate for poorly sampled families is taken into account during the model fitting. The het-

erogeneity in the precision of the parameter estimates for individual families can be seen clearly in the

large confidence intervals shown in Figure 4.
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Supplementary Tables

Table S1: The estimated distribution of symbiont prevalences in terrestrial arthropods

Symbiont q F p0 p1 w

Wolbachia (a) 0.313 (0.303, 0.325) 0.718 (0.704, 0.732) 0 0 0.815

(b) 0.313 (0.302, 0.324) 0.715 (0.699, 0.731) 0.115 (0.000, 0.282) 0.027 (0.000, 0.066) 0.185

(c) 0.236 (0.219 , 0.255) 0.747 - - -

Rickettsia (a) 0.146 (0.136, 0.158) 0.443 (0.416, 0.472) 0 0 0.016

(b) 0.144 (0.134, 0.155) 0.443 (0.412, 0.473) 0.000 (0.000, 0.205) 0.011 (0.004, 0.019) 0.984

(c) 0.051 (0.040, 0.069) 0.577 - - -

Cardinium (a) 0.108 (0.095, 0.123) 0.734 (0.680, 0.780) 0 0 0.091

(b) 0.105 (0.092, 0.119) 0.712 (0.656, 0.764) 0.407 (0.000, 0.745) 0.038 (0.017, 0.055) 0.909

(c) 0.059 (0.051, 0.073) 0.596 - - -

Parameter values show maximum likelihood estimates, with confidence intervals in parentheses. Parameters estimated are q̄: the mean
prevalence; F : the proportion of the variance in infection status that is due to between-species variation in prevalence; p0: the proportion
of species free from infection; p1: the proportion of species that are completely infected (as with a primary symbiont). As with Figure
1, estimates were obtained from (a) fitting a beta distribution to the complete database; (b) fitting a doubly-inflated beta distribution to the
complete database; (c) standardised sampling (i.e., a weighted sum of estimates from the largest arthropod taxa, using an equalised number of
screens per sampled species within in each taxon); w is the Akaike weight associated with the chosen form of the distribution of prevalences,
i.e., the probability that this model, and not the alternative, minimises the information loss [10,11].
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Table S2: Numbers of described species, and tests of sampling bias for major arthropod groups

Wolbachia Rickettsia Cardinium

Group No. spp. all (SIS/MIS) all (SIS/MIS) all (SIS/MIS)

Hexapoda Coleoptera 389,487 0.211 (0.225, 0.188) 0.049 (0.015, 0.110)* 0.000 (0.000, 0.000)

Lepidoptera 158,423 0.283 (0.277, 0.292) 0.029 (0.038, 0.000) 0.000 (0.000, 0.000)

Hymenoptera 153,088 0.346 (0.324, 0.369) 0.006 (0.003, 0.008) 0.022 (0.022, 0.024)

Diptera 156,774 0.182 (0.183, 0.180) 0.143 (0.154, 0.027)* 0.057 (0.000, 0.087)*

Paraneoptera 118,867 0.206 (0.227, 0.195) 0.027 (0.030, 0.008) 0.114 (0.035, 0.171)*

Orthoptera 23,830 0.233 (0.179, 0.311) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Chelicerata Araneae 43,678 0.192 (0.233, 0.170) 0.030 (0.000, 0.037) 0.446 (0.667, 0.323)*

Acariformes 41,939 0.282 (0.211, 0.350) 0.076 (0.000, 0.078) 0.394 (0.412, 0.371)

Parasitiformes 12,338 0.157 (0.214, 0.114) 0.191 (0.273, 0.188) 0.092 (0.000, 0.165)

Opiliones 6,534 0.000 (0.000, 0.000) 0.000 0.333 (0.313, 0.500)

No. spp.: Estimated number of described species [12]; Remaining columns show estimates of the mean prevalence, ˆ̄q, for subsamples of

the data, with equalised representation of each species in the data set. Estimates in parentheses show the same estimates for single-individual

screens (SIS), and multi-individual screens (MIS) for each subset of the data. * indicates a significant improvement in model fit when SIS and

MIS were allowed to have their own mean prevalences (Likelihood Ratio Test, with significance at the 5% level).
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Table S3: Evidence of sampling bias in the full data sets

No. screens ˆ̄q

Symbiont SIS MIS SIS MIS ∆ lnL p

Wolbachia 2965 3222 0.249 0.355 47.428 < 10−6

Rickettsia 1427 1427 0.107 0.165 13.516 < 10−6

Cardinium 1095 672 0.056 0.174 35.301 < 10−6

SIS: single-individual screens; MIS: multi-individual screens. No. screens: the number of screens of each type; ˆ̄q: maximum likelihood

estimates of the mean prevalence from screens of each type; ∆ lnL: the improvement in log likelihood obtained by allowing SIS and MIS to

have different mean prevalences; p: p-value of Likelihood Ratio Test comparing one- and two-q̄ models.
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Table S4: Phylogenetic signal in symbiont incidence

ln L̂

Symbiont star phylogeny true phylogeny p

Wolbachia -3135.16 -3137.35 0.101

Rickettsia -859.25 -856.91 0.088

Cardinium -392.00 -389.54 0.079

ln L̂: the maximised log likelihood under a model in which the logit transformed incidence (x0.001) in each arthropod group was assumed to

have evolved over a star phylogeny, or the true phylogeny, by Brownian motion. The higher likelihood for each data set is underlined, and p is

the probability that this higher-likelihood model minimises the information loss (calculated using Akaike weights; [10,11]).

19



Table S5: The relationship between species richness and symbiont incidence

>0.1% prevalence (x0.001) >50% prevalence (x0.5) >90% prevalence (x0.9)

Symbiont Host group Tax. level n b̂ pseudo-r2 p b̂ pseudo-r2 p b̂ pseudo-r2 p

Wolbachia Coleoptera family 40 2.93 0.040 < 10−6** 6.25 0.154 < 10−6** 5.97 0.078 < 10−6**

Lepidoptera family 29 0.82 0.002 0.038* -0.32 0.001 0.11 -0.73 0.002 0.017*

Hymenoptera family 40 0.02 0.000 0.91 -0.54 0.008 < 10−6** -0.73 0.010 < 10−6**

Diptera family 45 0.04 0.000 0.85 -0.19 0.001 0.07 0.02 0.000 0.89

Hemiptera family 56 -2.29 0.028 < 10−6** -1.21 0.024 < 10−6** -0.67 0.006 0.001**

Araneae family 19 -2.39 0.007 0.05* -0.78 0.007 0.04* -0.73 0.001 0.40

genus 93 -6.47 0.032 0.0002** -1.67 0.014 0.007** -0.59 0.001 0.59

Acari genus 28 4.57 0.032 0.0003** 1.73 0.029 0.0001** 0.29 0.000 0.84

Malacostraca family 32 0.69 0.001 0.41 0.35 0.002 0.26 0.76 0.002 0.36

Rickettsia Coleoptera family 33 3.24 0.043 < 10−6** 1.15 0.008 0.029* 0.01 0.000 0.96

Acari genus 14 0.43 0.000 0.27 -0.98 0.004 0.0002* -1.84 0.001 0.045*

Siphonaptera genus 36 0.17 0.000 0.87 -2.45 0.040 < 10−6** -3.14 0.007 0.017*

Cardinium Araneae family 15 0.22 0.000 0.82 -0.66 0.007 0.15 2.87 0.006 0.18

genus 35 -0.59 0.001 0.68 0.35 0.006 0.19 0.65 0.005 0.24

n: number of sampled families or genera within each host group; b̂: best-fitting slope in the linear model connecting symbiont incidence

(proportion of species infected above a given prevalence) in an arthropod family or genus to the species richness of that family or genus;

pseudo-r2: the goodness-of-fit measure, eq. (19); p: p-value from a Likelihood Ratio Test of the null model b = 0; * p < 0.05; ** p < 0.01.
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A summary of our database of arthropod screens for three genera of endosymbiotic bacteria, namely Wolbachia (a)-(c), Rickettsia (d)-(f), and Cardinium (g)-(i). The 
content of the database is summarised in terms of host taxonomy. Left-to-right, columns show plots for arthropod individuals; populations (each of which might be 
represented by one or more individuals); and species (each of which might be represented by one or more populations). For the number of species, two values are listed. 
The larger value treats each population with incomplete taxonomy as if it came from a unique species, otherwise absent from the database. The smaller value, in 
parentheses, counts only those species whose taxonomy was complete. As such, these two numbers represent upper and lower bounds on the true numbers of species 
sampled. The full database is provided as online supplementary information. !



Figure S2!

Estimated parameters of the distribution of across-species prevalences for simulated data sets based on the real Wolbachia data. Each column of panels (a)-(j) contains 
results for data simulated under a different set of parameters for the true distribution of prevalences across species, while each row of panels shows estimates for a different 
parameter, namely, the proportion of species estimated to be infected at a prevalence above 0.001 (xc), the mean prevalence (q), and the proportion of the variance in 
infection status due to between-species variation in prevalence (F). The true values of these parameters - used to simulate the data - are shown in red. Each plot compares 
parameter estimates from a maximum likelihood fitting of a beta distribution (eq. 2), a moment-based approach to estimating these same parameters [3], and maximum 
likelihood fitting of a doubly-inflated beta distribution (eqs. 14-15). For the moment-based approach, we used estimators of the shape parameters ! and " reported by 
Hilgenboecker et al. ([3]; their eqs. 1-4), and then used eqs. (8)-(10). The box-and-whiskers were generated using the boxplot function in R [8] with default settings. #
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Figure S3!
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Comparison of maximum likelihood parameter estimates for the major groups of arthropods under two methods of equalising the representation of each species, to better 
estimate the distribution of prevalences across arthropod species. The x-axis shows estimates obtained from retaining only the single largest population sample from each 
species (the approach used in the main text). The y-axis shows equivalent estimates when all of the samples from each species were combined, and treated as if they came 
from a single population. In each plot, points correspond to the ten arthropod taxa listed in Table S2, with hexapod groups shown as circles, and chelicerates as triangles. !



Figure S4!

Estimates of symbiont incidence in the two major subphyla of arthropoda. Estimates used our 
complete database, without applying “standardised sampling”. All other details match Figure 2. !

0.
00

0.
25

0.
50

0.
75

1.
00

x c

0.002* <10!5** <10!5**

<10!5**

4.03 " 10!4**

Wolbachia! Rickettsia Cardinium 

sy
m

bi
on

t i
nc

id
en

ce
 (x

0.
00

1)
 


