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Abstract

UANTUM MONTE CARLO (QMC) methods can yield highly accurate energies for
Q correlated quantum systems. QMC calculations based on many-body wave func-
tions are considerably more accurate than density functional theory methods, and their
accuracy rivals that of the most sophisticated quantum chemistry methods. This the-
sis is concerned with the development of improved wave function forms and their use in
performing highly-accurate quantum Monte Carlo calculations.

All-electron variational and diffusion Monte Carlo (VMC and DMC) calculations are
performed for the first-row atoms and singly-positive ions. Over 98% of the correlation
energy is retrieved at the VMC level and over 99% at the DMC level for all the atoms
and ions. Their first ionization potentials are calculated within chemical accuracy. Scalar
relativistic corrections to the energies, mass-polarization terms, and one- and two-electron
expectation values are also evaluated. A form for the electron and intracule densities is
presented and fits to this form are performed.

Typical Jastrow factors used in quantum Monte Carlo calculations comprise electron-
electron, electron-nucleus and electron-electron-nucleus terms. A general Jastrow fac-
tor capable of correlating an arbitrary of number of electrons and nuclei, and including
anisotropy is outlined. Terms that depend on the relative orientation of electrons are
also introduced and applied. This Jastrow factor is applied to electron gases, atoms and
molecules and is found to give significant improvement at both VMC and DMC levels.

Similar generalizations to backflow transformations will allow useful additional vari-
ational freedom in the wave function. In particular, the use of different backflow func-
tions for different orbitals is expected to be important in systems where the orbitals are
qualitatively different. The modifications to the code necessary to accommodate orbital-
dependent backflow functions are described and some systems in which they are expected

to be important are suggested.
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Chapter 1

INTRODUCTION

1.1 ELECTRONIC STRUCTURE CALCULATIONS

HE BEHAVIOUR OF MATTER around us is determined by the behaviour of the par-
T ticles that constitute it. In condensed matter systems, these elementary building
blocks are the nuclei that create the backbone of the material and the electrons that
bind the nuclei together. Ab initio electronic structure methods give an understanding
of the qualitative behaviour of a broad range of quantum systems and allow quantitative
predictions of their properties to be made without any prior knowledge of the system. Be-
sides being of tremendous importance for systems where obtaining experimental results is
difficult, theoretical methods also give a deeper insight into the physics of such systems.

By the first postulate of quantum mechanics, the wave function W(R,¢) contains all
the information specifying the state of the system. One only needs to solve the time-

dependent Schrodinger equation which, in atomic units, is

0

i V(R 1) = HU(R, 1), (1.1)

subject to symmetry constraints imposed by the nature of the particles, to understand
the structure of the material of interest. The 3N-dimensional vector R = (ry,rs,...,ry)
denotes the positions of the N particles. For systems comprising N electrons and M

nuclei, the non-relativistic Hamiltonian reads

. v v L1 Kz, K&z
IR S S I S % I I
— — 2Ny — Tij rry — T I
i=1 I=1 1<j I<J i=1 I=1
where m; and Z; are the nuclear mass and charge, respectively, r;; = |r; — r;| and

rir = |r; — .
Solving Schrodinger’s equation exactly is generally impossible as the size of the Hilbert

space in which the eigenvectors reside grows exponentially with the number of particles.
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To be able to tackle this problem at all, approximations that allow the coupled degrees

of freedom to be separated are made.

1.1.1 BORN-OPPENHEIMER APPROXIMATION

The Born-Oppenheimer approximation [I] allows the separation of the (N + M)-body
problem into an N-body problem and an M-body problem. As nuclei are over 103 times
heavier than electrons, the electronic motion can be decoupled from the nuclear motion by
assuming that the electrons relax instantaneously in response to any nuclear motion. The
separation of time scales on which electronic and nuclear motion occurs allows nuclear mo-
tion to be viewed as a perturbation to the electronic Hamiltonian; the Born-Oppenheimer
approximation is thus also known as the adiabatic approximation[]. The wave function
can then be written as a product of an electronic and a nuclear wave function. The time-
dependence of the electronic wave function can be ignored as it depends parametrically
on the instantaneous nuclear coordinates only. If the dynamics of a system are of interest,
the nuclear degrees of motion can be solved for once the electronic configuration is found
for a fixed nuclear geometry.

The wave function of a stationary state ¢, is obtained by solving the time-independent

Schrodinger equation

Hou(R) = E,¢,(R), (1.3)

where H is the Hamiltonian operator of which the wave function is an eigenfunction
with energy eigenvalue F),. The non-relativistic Born-Oppenheimer Hamiltonian for the

electronic degrees of freedom is then

—=) V; +%Z%—Zzé (1.4)

=1 7,75] 1=

l\:)lr—t
—
0
—

As the positions of the nuclei are fixed, the nucleus-nucleus Coulomb term only contributes

a constant energy offset which has been omitted.

1.1.2 VARIATIONAL PRINCIPLE

The variational principle is indispensable in electronic structure theory as it provides an
upper bound on the exact ground-state energy.
As the exact normalized eigenstates ¢; of the Hamiltonian form a complete orthogonal

basis, a normalized trial wave function may be written ¥ = 3. ¢;¢;, where the expansion

'The condition that the nuclei move much more slowly than the electrons is most likely to be violated
for light nuclei. It may not be possible to decouple nuclear and electronic degrees of freedom when
electronic states are degenerate, or at finite temperatures when the increased kinetic energy of the nuclei
may be able to induce electronic excitations between electronic states close in energy. In these cases,
adiabaticity is not maintained and care must taken in making the Born-Oppenheimer approximation.
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coefficients satisfy Y. |c;[* = 1. The expectation value of the Hamﬂtonianﬂ for this wave

function is then
E[V] = (V|H|¥)

= (Z Ci¢i|]:]| Z ¢j¢;)

= 3" ces (il 1) (1.5)
= Z |Ci|2Ei7

where E; = (¢;|H|¢;). By definition, E; > E, where Ej is the ground-state energy, and
thus
E[V] > E. (1.6)

The expectation value of the Hamiltonian for any wave function is therefore always greater
than the true ground-state energy. In a search over all possible wave functions, that which
gives the lowest energy corresponds to the exact ground state.

In practical terms, the variational principle means that a wave function with a given
parametric form can be optimized by varying the parameters to minimize the energy.

This forms the basic operating principle of most electronic structure methods.

1.1.3 ELECTRONIC CORRELATION

Solving the Schrodinger equation analytically proves challenging for all but the simplest
systems even with the Born-Oppenheimer approximation. The form of the electron-
electron Coulomb interactions prevent further decoupling of the degrees of freedom. To
solve this equation without further approximations requires solving 3/N-dimensional cou-
pled equations for a system of N electrons.

The problem of finding an exact solution to the Schrédinger equation still scales ex-
ponentially with the number of electrons. The greatest challenge for electronic structure
methods is the representation of electron correlation and devising a treatment that allows
the problem to be solved accurately in polynomial time. Various such methods have been

developed to solve Schrodinger’s equation numerically and an overview of some of them

is given in Sec.

2To guarantee that an ordered set of real eigenvalues A\; < Ay < ... < )\, exists, the Hamiltonian must
be Hermitian.
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1.2 COMMON ELECTRONIC STRUCTURE METHODS

A natural approach to simplifying the problem of 3N coupled partial differential equations
is to approximate the electron-electron interactions by an average single-particle potential.
In this mean-field approximation, the N-body Schrodinger equation separates into /N one-
electron equations which can be easily solved. Such mean-field methods give rise to the
orbitals that scientists use as a visualization tool and a means to a basic understanding
of electronic structure including the explanation of the periodic table.

The Hartree-Fock method is one such mean-field method. It is conceptually simple
and computationally affordable with a scaling of O(N*). However, it does not account for
the Coulomb correlation between the electrons. Post-Hartree-Fock methods improve on
Hartree-Fock method by constructing more complicated wave functions either by using a
larger expansion of determinants or including an explicit correlation factor, or both. As a
result of the additional complexity, these methods suffer from poorer scaling with system
size and typically scale as O(N* — N7). Density functional theory is another mean-field
method that scales favourably, as O(N?).

1.2.1 HARTREE-FOCK THEORY

In the Hartree-Fock (HF) approximation [2], 3], the electrons are assumed to be indepen-
dent. The Hamiltonian is written as the sum of single-particle Hamiltonians h; and an

effective potential 1% resulting from the electron-electron interaction term,

=3 b = Z[__vz Zm Zi] (1.7)

i<j Y

To satisfy the Pauli exclusion principle, the wave function is written as an antisym-

metrized product of one-electron orbitals known as a Slater determinant,

Yi(x1)  Yi(x2) - Yi(xw)

W(X) = %(:Xl) %(:XQ) %(:XN) : (1.8)

wN(Xl) 7ﬁN(Xz) wN(XN)

where X = (x3,...,xy) and x; includes both spatial and spin coordinates: x; = {r;, 0;}.
In accordance with the variational principle, the best orbitals can be found by min-
imizing the energy with respect to the orbitals, subject to the orthonormality condition

(¢ilyj) = 6;; imposed by the Lagrange multipliers ¢;;,

)
5w \IJ|H|qJ ZEZ_] %bll,[l)] l]) - ° (19)
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Making a unitary transformation results in the canonical Hartree-Fock equations,

[ () i (r :
—i—Z |r—r’| Zéam/ |r—r’| ](r)dr = €1i(r). (1.10)

The second and third terms in the Hartree-Fock equation account for the electron-electron
interaction. The second term is the Hartree term (also known as the Coulomb or di-
rect term) and is the mean potential an electron feels due to the charge density n(r) =
> |i(r)]? of the N electrons, including itself. The third term is known as the exchange
term and it stems from the antisymmetric form of the wave function®] As a consequence
of the Pauli exclusion principle, each electron is surrounded by an exchange, or Fermi,
hole of positive charge that electrons of like-spin avoid. In this sense, the exchange hole is
exactly equivalent to the absence of electron. The self-interaction in the Hartree term is
cancelled out by the corresponding ¢ = 7 exchange term if 7 and j have the same spin. The
exchange term is a non-local operator in the sense that the value of the exchange operator
acting on 1; depends not only on the value of 9; locally at r, as is true for the Hartree
term, but on the value of v; everywhere. The Hartree-Fock equations are non-linear as
the Hartree and exchange operators depend functionally on 1; and they need to be solved
iteratively until self-consistency is reached.

The exchange (or Fermi correlation) effects arising from the Pauli repulsion are wholly
accounted for as a result of the antisymmetric form of the wave function. Electronic corre-
lation is neglected by construction and is only included when higher-order corrections are
included, as done in Mgller-Plesset perturbation theory [2, B]. The electron correlation en-
ergy is thus defined as the difference between the Hartree-Fock energy and the exact non-
relativistic Born-Oppenheimer energy. As the Hartree-Fock energy is an upper bound to
the exact energy, the correlation energy is always negative: Eeor = Foyact — Fur < 0. The
Hartree-Fock approximation is a good first approximation for weakly-correlated atoms and
molecules, and it forms the basis for more accurate post-Hartree-Fock methods such as

configuration interaction and coupled-cluster methods.

1.2.2 CONFIGURATION INTERACTION

Configuration interaction (CI) methods [2, 3] are a simple and elegant extension to HF.
In principle, the full CI (FCI) wave function is the exact solution to the Schrodinger
equation for a given basis set. The FCI wave function is written as a linear combination
of all the determinants D; that span the N-body Hilbert space and that can be constructed

from one-electron Hartree-Fock orbitals, |Urcr) = >, ¢;|D;). The linear coefficients ¢; are

3If the wave function is not made antisymmetric, and is simply a product of one-electron orbitals, the
Hartree-Fock approximation reduces to the Hartree approximation. The exchange term vanishes and the
mean-field becomes a purely local quantity.
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obtained variationally by minimizing the energy, and the correlation problem effectively
becomes a matrix eigenvalue problem.

In practice, the wave function is expanded in a finite basis set. For a basis set contain-
ﬁ determinants. The cost of FCI thus scales
as O(P!) and the use of the FCI method is limited to the benchmarking of the smallest

atomic and molecular systems.

ing P orbitals, |Upcr) contains (]]\D,) =

To make this problem more tractable, the FCI expansion is truncated to include deter-
minants with a few excitations (typically single and double excitations) from the Hartree-
Fock ground state. The number of excitations that need to be considered increases quickly
even for truncated expansions. CI wave functions do not give a compact description of
electronic correlation, and such methods cannot be used to study solids. Additionally,
the truncated CI expansion suffers from lack of size-extensivity, which requires that the
energy of a system be proportional to the number of particles N as N — oo. This leads
to difficulties in comparing systems of different sizes as the errors do not cancel out.

A very promising method, the full configuration interaction quantum Monte Carlo
(FCIQMC) method [4, 5], has recently been developed to maintain the accuracy of the
FCI while reducing the computational burden of the traditional formulation. It uses an al-
gorithm similar to that of diffusion Monte Carlo to stochastically integrate the Schrodinger
equation using a set of evolving walkers. To date, the method has obtained some very
accurate results [0, [7, §]. The method is still being developed and efforts are being made

at better understanding its strengths and weaknesses [9].

1.2.3 MULTI-CONFIGURATIONAL SELF-CONSISTENT FIELD

The multi-configurational self-consistent field (MCSCF) theory [2, B] can be regarded
as a generalization of HF to systems that cannot be adequately described by a single
configuration, such as systems involving degenerate or nearly-degenerate configurations.
Beginning with a truncated CI expansion, the linear expansion coefficients and orbitals
are simultaneously optimized in an iterative process analogous to that in HF theorylz_f].
As the orbitals are variationally optimized in addition to the expansion coefficients, the
MCSCEF energy is lower than the CI energy using the same truncated expansion, but
higher than the FCI energy. In practice, MCSCF expansions are much smaller than CI
expansions as they are restricted by the difficulty of the non-linear problem of optimizing

orbitals and coefficients simultaneously.

4 The MCSCF method is hence also referred to as the multi-configurational Hartree-Fock (MCHF)
method.



1.2 COMMON ELECTRONIC STRUCTURE METHODS

1.2.4 COUPLED CLUSTER

Starting with a non-interacting picture, correlation of an electron pair can be considered
as a two-electron scattering process that excites two electrons from the ground-state one-
electron orbitals into unoccupied virtual orbitals. The coupled-cluster method (CC) [2] 3]
generalizes this to N-body excitations. The wave function is written |Uec) = e |Uyp),
where |Uyr) is the HF ground-state determinant and T=T+To+...+Ty= > pbu T s
the cluster operator. T, is the operator of all n'"-order excitation and 7, is the excitation
operator corresponding to a given excited-state determinant in the FCI expansion.

A similarity transformation is made to retain the form of an eigenvalue problem:
ﬁCC|quF> = 6_TI:I€T|\I/HF> = ECCquHF> (111)

As the coupled-cluster Hamiltonian Hee is not Hermitian, the problem cannot be
solved variationally. Instead, the excitation amplitudes ¢, are calculated by projecting

the Schrédinger equation onto excited-state determinants |D;) and solving
(Dile™" He" |Uyp) = (Dy| Eco|Var) = 0. (1.12)

The coupled-cluster energy is given by projecting onto the HF ground state, Fcc =
(Wl HWoo) = (Ugple T He |[Wyy).

The FCI and CC wave functions contain the same number of parameters and so it
seems that the non-linearity of the CC model only adds unnecessary complexity. However,
when the cluster operator is truncated at Tn, the CC state continues to include higher-
excitation determinants with approximate coefficients and so is able to describe correlation
more compactly than the CI wave function. Coupled cluster with singles and doubles and
perturbative triples, abbreviated CCSD(T), is regarded as the ‘gold standard’ of quantum
chemistry and scales as O(N7). The exponential treatment of the cluster operator restores
size-extensivity even for a truncated cluster operator, in contrast to truncated CI methods.
The CC method allows a more compact wave function and is size-extensive; as such, it

addresses the shortcomings of the CI method for the price of the variational property.

1.2.5 EXPLICITLY-CORRELATED METHODS

The slow convergence of the CI energy can be attributed to the absence of terms with odd
powers of 7;; in the wave function, and in particular, to the absence of a term linear in
ri;. Without such terms, the wave function does not have the cusps to describe coalescing

electrons. A large basis set must be used to capture the high-frequency oscillations close

5The single excitations described by T do not capture any electron correlation on their own. However,
they serve as relaxations to the one-electron orbitals. These orbitals change in response to the modification
to the HF mean-field by the many-body excitations.
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to the nuclei and the slower decay at large distances. Hence, an expansion in determinants
does not give a compact wave function form.

In explicitly-correlated methods the wave function is written as a product of a corre-
lating function and either a single Slater determinant or a sum of determinants. Several

such methods improve on the truncated CI and CC formalisms [10].

1.2.5.1 TRANSCORRELATED METHOD

One interesting method based on an explicitly-correlated wave function is the transcorre-
lated (T'C) method. This method uses a correlating Jastrow factor e/(®) that is an explicit
function of two-body separations r;;. The correlated wave function is then a product of
the Jastrow factor and the HF Slater determinant, W(R). The Schrodinger equation is
given by H[e/®W(R)] = E[e/®W(R)]. A similarity transformation is made such that
the Coulomb singularities that necessitate cusps are absorbed into the Hamiltonian, and

as a result, the wave function can be written more simply as a Slater determinant,
HicU(R) = [e " ®H/®NU(R) = Erc¥(R). (1.13)

Boys and Handy [T}, 12, 13|, [14] first proposed this method for small atoms and molecules.
However, the variational principle does not hold as the more complicated similarity-
transformed Hamiltonian Hr¢ is not Hermitian. Consequently, interest in the method
faded.

Following a recent revival, the transcorrelated method has been applied to a variety of
systems including solids [15], for which traditional quantum chemistry methods struggle.
In the approach of Ten-no and coworkers [16], the Jastrow factor is fixed to satisfy the cusp
conditions and improve the convergence of a wave function originating from perturbation
and coupled-cluster methods.

Another approach is to minimize the variance of the energy [17, [I8] which satisfies
a zero-variance principle. A self-consistent field equation can be derived for the orbitals
and solved in a manner similar to that of the HF method in what is referred to as the
transcorrelated self-consistent field (TC-SCF) method. The Jastrow factor parameters are
optimized in the variational Monte Carlo framework as difficult high-dimensional integrals
must be performed in minimizing the variance. In principle, such a formalism allows the
orbitals to be optimized in the presence of a Jastrow factor resulting in a better trial wave
function without the inherent statistical errors in the orbital optimization associated with
the Monte Carlo method.

1.2.6 DENSITY FUNCTIONAL THEORY

Density functional theory (DFT) [19] is distinct from all the other electronic structure

approaches discussed thus far. The fundamental principle of DFT is to describe properties
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of a system of interacting particles as a functional of the ground-state particle density
n(r). As such, the basic variable is defined in a simpler 3-dimensional space instead of
the 3N-dimensional space that the many-body wave function resides in.

The Hohenberg-Kohn theorems [20] lay the groundwork for DFT. Their first theorem
states that the external potential Vi (r), to within an additive constant, is a unique
functional of the ground-state density n(r). Thus, the density rather than the wave
function can be viewed as the quantity of interest. The second Hohenberg-Kohn theorem
gives a variational principle for the energy functiona]ﬁ. For any given external potential,

the ground-state density n(r) minimizes the energy functional
En(r)] = Fin(r)] + /Vext(r)n(r) dr > Ey, (1.14)

where Fj is the exact ground-state energy and F' is a universal functional of the density.
However, these theorems do not define the universal functional F'.

Kohn and Sham [23] devised a practical method within which to apply the formal
theory of Hohenberg and Kohn; this method continues to be the basis of DFT codes
today. As was done in Hartree-Fock theory, the density can be varied to minimize the

energy functional subject to the density normalization constraint [n(r)dr = N, giving

o [E[n(r)] — (/ n(r) dr — N)} ) (1.15)

The energy functional E is defined by Kohn and Sham as
L [ n(c)n(r) .,
En(r)] = Tsin(r)] + = | ——=dr' + Ex.[n(r)] + [ Vex(r)n(r) dr, (1.16)

v —r'|

where T[n(r)] is the kinetic energy functional of the non-interacting electron gas with N

electrons and density n(r),

T.[n(r)] = —% > / 5 (r)V24hi(r) dr (1.17)

and Ey.[n(r)] is the exchange-correlation energy into which all the exchange and corre-
lation not captured by T, and the potential energy operator is swept. The variational

condition then becomes

dE[n(r)] _ 0T, [n(r)]
on(r) on(r)

+ Vis(r) = p, (1.18)

6An alternative and more insightful formulation is given by Levy and Lieb [21} 22] in what is known
as the constrained-search method.
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where the Kohn-Sham potential Vis(r) is

Viks(r) = Ve (r) + / % dr’ + Vi.(r) (1.19)
and
_ dEyc[n(r)]
Vie(T) “on() (1.20)

is the exchange-correlation potential.
Consider an auxiliary system of N non-interacting electrons with the same density as
the interacting system. The Kohn-Sham potential gives a set of single-particle Schrodinger

equations,

57 Vis(o) | ) = ), (1.21)

that can be solved self-consistently using the density n(r) = SV [1;(r)|* and the defini-
tions of Vks(r) and Vi.(r) (Egs. and [1.20)). Note that the eigenfunctions v;(r) do
not have physical meaning apart from the connection between 1;(r) and the true density

n(r). The ground-state energy is then given by

N /

Bln(e) =3+ Bulnlr)] - [ Vatwnyar - [ % . (122)
Knowing the exact form of the exchange-correlation functional F,. allows all many-
body effects to be included. However, finding the exact form of the exchange-correlation
functional is a great challenge, and perhaps even impossible. Instead, approximations
to the functional are used with varying success. One such example is the local density
approximation (LDA) functional, which is parametrized using accurate quantum Monte
Carlo results [24]. This choice of exchange-correlation functional remains the main uncon-
trolled approximation of DFT. Despite this, DFT has been successfully applied to a large
variety of systems that are much too large for the more expensive wave function-based

methods.

1.2.7 QUANTUM MONTE CARLO METHODS

The class of quantum Monte Carlo (QMC) techniques rely on stochastic integration of
equations resulting from various formulations of Schrodinger’s equation. This class of tech-
niques includes (but is not limited to) path-integral quantum Monte Carlo [25], auxiliary-
field quantum Monte Carlo [26] and reptation Monte Carlo [27]. The two methods used
in this thesis are the variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC)

methods [28, 29, [30]. They are applied to continuum correlated electron systems at zero

10



1.2 COMMON ELECTRONIC STRUCTURE METHODS

temperatureﬂ

VMC is the simpler technique. Expectation values of operators such as the Hamilto-
nian are calculated with an approximate many-body trial wave function and the integrals
are evaluated using a Monte Carlo technique which converges more quickly than numeri-
cal quadrature methods for high dimensions. The functional form of the wave function is
chosen to contain a number of parameters whose values are obtained by stochastic opti-
mization. Higher accuracy is obtained in the DMC method by evolving the wave function
in imaginary time so that it decays towards the ground state, while the fixed-node ap-
proximation is made to maintain fermionic symmetry. DMC is exact in principle but in
practice the method is limited by the fixed-node error. Both the VMC and DMC methods
are variational, and the DMC energy is bounded from above by the VMC energy and from
below by the exact energy. These methods are intrinsically parallel and scale favourably
with system size, normally as O(N? — N*), depending the form of the orbitals and wave
function.

One of the unique features of VMC and DMC is that the methods are inherently
independent of the form of the Hamiltonian and wave function. This is in contrast to tra-
ditional quantum chemistry methods that are generally limited to using only an expansion
of Slater determinants comprising one-electron orbitals for easy integration. Additionally,
systems with any mixture of fermionic and bosonic particles, custom potentials and exter-
nal fields can be studied with appropriate wave function forms that are best parametrized

to describe the physics of the system.

1.2.8 DISCUSSION

The simplification of an exponentially-difficult problem into one that can be solved in
polynomial time fundamentally implies the existence of limitations and a loss in accuracy.
These limitations manifest themselves differently in the various systems and the challenge
is to find the set of approximations optimizing the accuracy with respect to cost. CI
and CCSD are limited by the truncation order (the former more so than the latter),
which reflects the need for a large basis set to describe the electron-electron cusps in the
wave function. In DFT, all the complexity arising from many-body interactions is swept
into the exchange-correlation functional whose exact form is unlikely to be ever known.
In addition to the statistical error due to finite computational resources, VMC has a
systematic error arising from the incomplete parametrization of the trial wave function.
While DMC is in principle exact, the fixed-node approximation results in an uncontrolled

nodal error.

7At non-zero temperatures, the system is no longer in a pure state. The many-body wave function
is an insufficient descriptor of the system and density matrices must be considered. This is done in
path-integral Monte Carlo [25] and auxiliary-field Monte Carlo [26].

11
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1.3 THIS THESIS

The aim of the work presented in this thesis is to make systematic improvements to
trial wave functions in QMC, allowing higher-accuracy calculations to be performed more
efficiently.

The VMC and DMC methods are outlined in Chapter 2l The results from a study
of the first-row atoms is given in Chapter [3} In Chapter [4] a generalized form of the
Jastrow factor is presented and results for a variety of benchmark systems are given.
Preliminary work on the development of generalized backflow transformations is described
in Chapter [f] Finally, conclusions are drawn in Chapter [6]

All of the calculations described in this thesis were performed using the CASINO pack-
age [31]. Hartree atomic units (a.u.) in which & = |e|] = m, = 4mwey = 1, are used

throughout except where otherwise indicated.

12



Chapter 2

QUANTUM MONTE CARLO

2.1 MONTE CARLO METHODS

ERRORS IN COMMON quadrature methods scale poorly with the dimensionality of the

integral. For example, the error in the Newton-Cotes method [32] with 2-point

linear fitting, commonly known as the trapezoidal rule, has an error that scales as M~2/?.

The error in Simpson’s Rule, the Newton-Cotes method with 3-point quadratic fitting,

4/d_ The great strength of Monte Carlo integration lies in the scaling of

1/2

scales as M~
the error as M~/“, where M is the number of sampling points used, irrespective of
the dimensionality of the integral. The weak dependence of the error on dimensionality
results from the central limit theorem. While grid-based methods are suited to problems
of low dimensionality, Monte Carlo is the only practical technique for evaluating the
high-dimensional integrals encountered in realistic electronic structure calculations.
Naive Monte Carlo integration involves averaging the value of the integrand at a
random set of points within the region of integration. Each of these sets of points
R = (ry,re,...,r,) will be henceforth referred to as an electron configuration. Monte
Carlo integration can be made more efficient by using importance sampling rather than
generating uniformly-distributed configurations. Under the importance sampling transfor-
mation, the integrand is decomposed into a product of two functions, g(R) = f(R)P(R),

such that

I / g(R) dR = / F(R)P(R) dR, 2.1)

where f(R) = g(R)/P(R) and P(R) is chosen to satisfy the conditions for a probability
density function, namely it is everywhere non-negative and normalized. The integral I can
be estimated as the average of f(R) at a finite number M of configurations R; distributed
as P(R),

=)~ 5 Y IR, (2:2)
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This estimate is exact in the limit M — oco. The error of the estimate is

_ 9
o= NiTE (2.3)
where crj% is the variance of f(R),
7t = [ PRI®R) - PR
(2.4)

Here, f denotes the population mean of f.

Performing the integral efficiently is now a matter of choosing a probability density
P(R) such that f(R) is as close to (f) = I as possible, resulting in a small variance.
This is effectively smoothing out the function f and hiding the complexity of the task
in P, which will have a greater density where g is large and vice versa. Selecting P(R)
for most applications is non-trivial as these multi-dimensional probability densities are
complicated and cannot be directly sampled, and additionally, their normalizations are

unknown.

2.1.1 THE METROPOLIS ALGORITHM

The Metropolis algorithm [33] overcomes these difficulties by using a random walk to
generate a Markov chain of configurations that sample the phase spaceE]. It generates the

sequence of configurations according to the following algorithm:
1. A configuration R’ is randomly generated.
2. A trial move to R with transition probability (R’ — R) is proposed.

3. The move to the new configuration R is accepted with probability

AR = R) = min<1, PR)T(R = R') ) .

2.5
PR)T(R' — R) (25)
4. Step (2) onward is repeated for R if the move was accepted and for R’ if the move

was rejected.

The initial configurations generated are correlated with the starting configuration and
are discarded. Once the walk has equilibrated, configurations are distributed according to

P and detailed balance is satisfied such that the probability of moving in a given direction

LConfigurations are therefore also known as walkers, and these terms are used interchangeably.
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2.2 VARIATIONAL MONTE CARLO

in configuration space is the same as in the opposite direction,
PR)T(R - RHA(R - R)= P(R)T(R' — R)A(R' — R). (2.6)

The transition probability must be ergodic for the Metropolis algorithm to remain valid,
that is, any point in the configuration space must be reachable from any other point in a
finite number of moves. The configuration then executes a random walk in configuration
space and quantities of interest are measured for each configuration and averaged.

One of the drawbacks of the Metropolis algorithm is its inefficiency. The size of the
trial move proposed is important in determining how effectively the configuration space is
sampled. The move size is generally constrained to be smaller rather than larger as a large
proportion of trial moves may be rejected for large moves. However, only a small volume
of configuration space will be sampled for short moves and a large number of sequential
configurations in the walk will be serially correlated. The issue of efficiency is looked at

more closely in Sec. 2.5

2.2  VARIATIONAL MONTE CARLO

VMC is a simple and elegant method that incorporates the variational principle and
Monte Carlo integration scheme to evaluate the energy as the expectation value of the
Hamiltonian with an approximate trial wave function] ¥. Ceperley et al. [34] first used
this method to study fermionic systems.

The variational energy is expressed as

[U(R)HY(R)dR
VT JUR)U(R)dR
_ [V*(R)ELdR
~ [®%(R)dR ’

(2.7)

where E;, = W'HVU is the local energy. Using the Metropolis algorithm to sample

configuration space, the energy is estimated as

B = % > Eu(Ry), (2.8)

where the M configurations R; are distributed as

V*(R)

PR) = [W?(R)dR’

(2.9)

20nly real trial wave functions are considered here, as discussed in Sec.

15



2.3 DIFFUSION MONTE CARLO

The squared error of this estimate is
1 M
2 2
ot ——— EL(R;) — F . 2.10
V=7 (Bl — ) (2.10)

The importance function P(R) concentrates the sampling of configurations in regions
of the Hilbert space that are visited more frequently. Note that the normalization factor
J ¥2(R) dR does not need to be known explicitly as the two occurrences of this factor
in Eq. cancel out. The expectation values of other operators can be evaluated in an
analogous manner.

As the trial wave function approaches an eigenstate, Fr(R) becomes smoother and
fewer configurations are needed to obtain a given accuracy. In the limit that the trial
wave function is an exact eigenstate of the Hamiltonian ¢; with energy eigenvalue Ej,
Ey, =¢; 'H ¢; = E; is everywhere constant and the variance of the energy becomes zero.
The VMC estimate of the energy is then equal to the exact energy for even a finite num-

ber of configurations. This zero-variance property motivates one group of optimization
methods discussed in Sec. 2.6

2.3 DIFFUSION MONTE CARLO

The DMC method is fundamentally very different from the VMC method. It improves
the wave function by evolving it according to the imaginary-time Schrodinger equation
to project out the ground statdﬂ In doing so, the DMC method addresses the main
shortcoming of the VMC method, namely, its reliance on the functional form of the wave
function. Nonetheless, the DMC algorithm still depends on the quality of the wave func-
tion and particularly on the quality of the nodal surface. Only the basic DMC algorithm

is outlined here; many refinements are made in practice to reduce errors and biases.

2.3.1 IMAGINARY-TIME EVOLUTION
The time-dependent Schrédinger equation (Eq. in imaginary time 7 = it is

_02(R,7)

o= (H — Er)®(R, 1), (2.11)

where Er is a constant energy offset, and whose solution ®(R,, 7) satisfies

DR, T +dr) = e A-EDIT R, 7). (2.12)

3The DMC wave function is not known analytically; only its distribution is known.
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Expanding ®(R, 7) in the eigenfunctions ¢; of the Hamiltonian gives

O(R,7) =Y cigi(R)e”FiFom, (2.13)

(2

The oscillating time components of the real-time wave function are transformed into de-
caying exponentials. Evolving any ®(R,0) that contains a non-zero component of the
ground state ¢o(R) in imaginary time will project out the ground state which, by defini-
tion, has the lowest eigenvalue, Ey. Choosing E1T = FEj eliminates the time dependence
of the wave function and gives the steady-state solution ®(R, 7 — o0) = co(R).

For a Hamiltonian consisting of kinetic and potential terms H=T+V=-1v24

2
V(R), Eq. can be written as

0P(R,T)

o %VQ@(R, )+ (Br — V(R))P(R, 7). (2.14)

If the potential term is ignored, Eq. becomes a diffusion equation with a diffusion
constant D = 1/2 in the 3N-dimensional configuration space. If the kinetic term is
neglected, Eq. becomes a first-order rate equation with a rate constant Er — V(R).
The diffusion process can be simulated by randomly moving weighted walkers initially
distributed as ®(R,0) at a rate determined by the diffusion constant while the potential
term acts as a reweighting of the walkers. The reweighting is more efficiently simulated
as a branching process to prevent one walker from dominating over the others [35]. In
this process, a branching factor determines if walkers are created or destroyed.

This simple algorithm suffers from two severe limitations. Firstly, the branching factor
is proportional to V(R) and thus has divergences when two particles coincide as a result
of the Coulomb interactions. The resulting fluctuations in the walker population result
in a large variance in the estimated energy. Additionally, as a fermionic wave function
necessarily has positive and negative regions, the assumption that ® can be viewed as a
probability distribution is invalid. This is one manifestation of the infamous fermion sign
problem, discussed in Sec. [2.3.2] The introduction of importance sampling as discussed
in Sec. [2.3.3 addresses both of these issues.

2.3.2 THE FERMION SIGN PROBLEM

The antisymmetry of fermionic wave functions requires that they have both positive and
negative regions, preventing the wave function from being directly interpreted as a prob-
ability distribution. This fundamental property is at the root of the fermion sign problem
which plagues projector QMC methods such as DMC, where walkers are distributed ac-
cording to the wave function ®. VMC is unaffected by the fermion sign problem as walkers
are distributed according to ®2 which is positive everywhere.

The evolution of the wave function in the simple approach described in Sec. [2.3.]]
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2.3 DIFFUSION MONTE CARLO

would therefore lead to the nodeless bosonic ground state which has the lowest energy, as

shown by the following argument [36].

()

FIGURE 2.1: Evolution of a fermionic wave function into a lower energy bosonic wave
function.

Consider fixing all particle positions z; of the wave function ® except £ to obtain the
one-dimensional function ¥(§) = ®(xq,x2,...,&,...) depicted in Fig. [2.1(a). Construct
a new wave function W(€) = |¥(€)|, shown in Fig. [2.1(b). For a real wave function, the
energy is R
_ JoH®dR  [[5X,(Vi®)* + VO] dR

[ ®2dR [ ®2dR
As U(¢) and ¥(£) have the same values of (9®/9€)?, (0®/dx;)? and @2, they have the

same energy. A reduction in this energy can be obtained by smoothing out the kinks

E

(2.15)

in the wave function that occur near the node and decreasing (V®)? with only a small
increase in ®2, as shown in Fig. [2.1c). The same argument can be applied to the other
particle coordinates to conclude that the wave function for the bosonic ground state must
be nodeless.

To overcome the fermion sign problem, one can construct an antisymmetric function
from the difference of two positive symmetric functions, ®* and ®~. Release node methods

[24] are based on this idea. The two symmetric functions are treated as densities and
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2.3 DIFFUSION MONTE CARLO

two populations of walkers are evolved, one positive and one negative. Although such a
method is in principle exact, the signal-to-noise ratio of the population difference decays
exponentially in time as both positive and negative populations grow and spreadﬂ

It has been shown that solving the fermion sign problem is non-deterministic polynomial-
time hard (NP-hard) [37]. Nonetheless, DMC calculations are routinely carried out suc-
cessfully using the fixed-node approximation [38, [39]. The nodes of the DMC wave func-
tion are fixed to those of a reference wave function and Eq. is solved in each of the
nodal pockets with the boundary condition that the wave function goes to zero on the
nodal surface. The fixed nodes represent infinite potential barriers that act as sinks for
walkers, preventing positive walkers from crossing over to a negative region and vice versa.

The fixed-node approximation works surprisingly well despite being uncontrolled. The
fixed-node DMC energy is variational and for an error in the nodal surface of A, the error
in the energy is O(A?) [28]. The nodal surface of the determinant of one-electron orbitals
is a good first approximation to the exact nodal surface for many systems. As the wave
function is expected to be smooth to minimize kinetic energy, the nodal surface can be
assumed to lie in regions of low electron density. Consequently, the energy is expected to

be insensitive to small deviations in the nodal surface.

2.3.3 IMPORTANCE SAMPLING

The importance sampling transformation used in DMC [40, 41] replaces the ¥?(R) in
Eq. with f(R,7) = ®(R,7)¥(R), where U(R) is the input trial wave function and
®(R, ) is the DMC wave function. The trial wave function is typically taken from a
VMC calculation and acts as a guiding function in the importance sampling. Eq.

then becomes

O/(R.7) gi m) _ VY I(R,7) V- (vR)F(R )~ (Bu(R) ~ Br)f(R,7),  (216)

where Ep,(R) is the local energy of ¥(R) and v(R) = V"1(R)V¥(R) is the drift velocity.
The three terms on the right-hand side of Eq. represent diffusion, drift and branching
respectively. The drift term guides walkers to regions where the magnitude of the trial
wave function is larger.

Beyond introducing a drift term, the importance sampling transformation has resolved
the two shortcomings of the simple DMC algorithm described in Sec. Firstly, the
potential term V' in the branching factor is replaced by FEp,, which is much more uniform
in configuration space. Secondly, the fixed-node approximation is enforced and the nodes
of the DMC wave function ® are constrained to be those of the trial wave function W.

As f = ®¥ must be everywhere positive, ® and ¥ must be of the same sign everywhere,

41t is interesting to note that the FCIQMC method described in Sec. [1.2.2| benefits from annihilation
of walkers in the discrete space of determinants to overcome the fermion sign problem [4] [9].
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change sign together and thus be zero in the same places. The drift term prevents walkers
from crossing the nodal surface; the drift velocity grows as a walker approaches a node
of ¥ and forces it away. If the time step used to propagate walkers is sufficiently small,
walkers never attempt to cross the nodal surface. However, given the finite size of the time
step, walkers may diffuse through the nodal surface. The least-biased way of remedying
this is to reject such moved’| [43].

In integral form, Eq. becomes

fR,7+dr)= /G(R’ — R, dr)f(R/,7) dR. (2.17)
The time-dependent Green’s functionY]
G(R' — R,dr) = (R|e~THE—En)dr R/ (2.18)

obeys Eq. and satisfies the initial condition G(R’ — R,0) = 6(R — R’), where
T = —3V24+(V-v)+(v-V) and Ey is the local energy operator. If the Green’s function
G represents the probability that the particle moves from R’ to R in imaginary time dr,
a set of walkers initially distributed as ¥?(R) can be propagated in imaginary time and
their distribution will eventually represent f = ¢qV, where ¢y is the ground-state wave
function. However, the Green’s function is not known exactly and must be approximated.
The full Green’s function is simplified by factoring it into drift-diffusion and branching

components,

G(Rl N R, dT) ~ <R‘e*(EL7ET)dT/2€7TdTef(EAL7ET)dT/2’Rl>

(2.19)
= GDD(RI — R, dT)GB(R/ — R, dT)

As T and Ey, do not commute, this simplification of the Green’s function is only valid for

short time steps and becomes exact in the limit dr — 0.

2.3.3.1 DRIFT-DIFFUSION

The drift velocity v is constant between R’ and R in the limit of small time steps. The

drift-diffusion Green’s function is then

GDD(RI — R, dT) =

(R-R — v<R')dT>2) | 2.20)

e (— 2ir

®Rejecting moves that cross the nodal surface renders the random walk non-ergodic. However, the
tiling theorem [42] states that all ground-state nodal pockets are related by permutation symmetry and
thus the Schrédinger equation only needs to be solved in one such pocket.

6The time-dependent formalism presented here is closely connected to an analogous time-independent
Green’s function formalism [30].
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In the drift-diffusion process, each walker R’ drifts a distance v(R')d7r and diffuses by

a random normally-distributed distance y with variance dr such that
R =R +v(R)dr + x. (2.21)

Under the assumption that the drift velocity is constant between R’ and R, T is not Her-
mitian, Gpp is not symmetric and consequently detailed balance is not satisfied. Detailed
balance is imposed by a Metropolis accept-reject step [44] in which a move from R’ to R

is accepted with probability

(2.22)

AR - R) = min(l VAR)T(R — R) ) |

"2(R)T(R — R)

where T(R — R’) = Gpp(R — R’). The accept-reject step reduces time-step errors as
configuration space is sampled correctly regardless of the time step. As rejecting some
moves reduces the mean-square distance (r?) = 37 that each electron diffuses in time T,
the effective time step dr.g used in calculating the branching factor is determined for the
actual distance diffused [35]:

(r ted)
dreg = dT 20 (2.23)
<T§ttempted>
2.3.3.2 DBRANCHING
The branching Green’s function is
d
Ge(R' = R,dr) = exp <— T;H(EL(R) + EL(R) — QET)> . (2.24)

The branching process is simulated by allowing a walker to breed additional child walkers
or die based on its weight after all electrons have been moved. A walker will produce
int(Gp+n) identical child walkers at its position which then evolve independently, where
7 is a random number between (0 and 1 and int returns the integer component of a real
number. Alternatively, a combination of branching and weighting is used. Here, each
walker « carries a weight w{* that will be multiplied by Gg. When this weight becomes
large, the walker branches and the non-integer component of the weight, w® — int(wf),
is distributed between the int(w{) child walkers. Walkers with weight below a chosen
threshold are killed and their weight transferred to another walker.

The reference energy Er is adjusted to limit fluctuations in the size of the population.
These changes in Et were not considered in the derivation of the DMC Green’s function.
As walkers are restrained from multiplying in regions of low local energy and dying out in
regions of high local energy, this introduces a positive population control bias in the DMC
energy [43]. This bias is inversely proportional to the population size, and is negligible for

typical populations. The reference energy also provides an estimate of the ground-state
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energy.

If ¥ is equal to the exact ground-state wave function ¢q, then Ey, = Ey = Et and the
branching term disappears. Without the branching term, ® — ¥ and f — ¥?, and DMC
sampling reduces to that of VMC. For an approximate W, the branching term serves to
improve the sampling of configuration space by reducing the number of walkers in high
energy regions and increasing their number in low energy regions. In effect, branching
compensates for the error in W.

There exists some correlation between the walkers as the child walkers resulting
from the branching process begin their random walk at the same point in configura-
tion space.This correlation causes the cost of DMC calculations to scale exponentially
[45]. Fortunately, the exponential scaling takes over only for large system sizes and/or
poor trial wave functions. Most DMC studies in practice concern smaller systems for
which this unfavourable scaling is not observed. The VMC algorithm does not rely on

branching and thus does not exhibit this exponential scaling.

2.3.4 EXPECTATION VALUES

Once the walk has equilibrated, the statistics of interest are accumulated using as many
independent samples as necessary to resolve the estimate to a given accuracy. The mixed
distribution f = ®W¥ can be used to estimate the expectation value of any Hermitian

operator A that commutes with the Hamiltonian, giving the mixed estimate

(@[AlW)  [fR)A(R)dR _ 5" W(i)A(0)
(@) J F(R)dR W)

ADMC = (225)

The average value of Aj, over the N¢ (i) configurations present after ¢ time steps is

SNe® e Ar (Re)

[0

ZNc(i) we ’

o (2

AG) =

(2.26)

where AL(R?) = U~ 1(R®) AT (R?) is the local value of A for configuration .. The weight

of the it" iteration is
Nc(4)
W)=Y w (2.27)

The corresponding squared error of the estimate Apyc is

o2 S W(H)[A(6) — Apyc)®

M ) Mw 2\
M (S W) - )

(2.28)

The averages are still evaluated using the trial (VMC) wave function while the branching

process weights the sampling of configuration space in DMC. If the equilibration period
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is sufficiently long, f can be taken to be f., and the DMC local energy will be exact
for the given nodal surface of . However, some time-step bias remains as the Green’s
function is only valid for small time steps d7; this bias must be removed by extrapolating
to dr = 0 or by using a sufficiently small time step.

Fig. depicts the average local energy, reference energy and best estimate of energy
alongside the walker population for the initial 2 x 105 steps of a DMC calculation for
N,. The first 50000 steps form the equilibration period, where expectation values are not
accumulated. The best estimate of the energy is smooth in the accumulation phase and
the large numbers of samples are needed only to reduce the error in the energy estimate.
It is also clear that the reference energy mirrors the fluctuations in the population such

that the population oscillates around the desired population of 2048 walkers.

2200 . i . I ' | '
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FIGURE 2.2: Energy and population analysis for the first 2 x 10° steps of the DMC
calculation for Ny reported in Chapter [4]

The ground-state wave function is not suitable for estimating expectation values of
operators A that do not commute with the Hamiltonian as it is not an eigenfunction of
A. The systematic error in both the VMC estimate Avyc and the DMC mixed estimate
Apmc are then linear in the error in the wave function A, reflecting the fact that the
choice of ground-state wave function is not optimal for the importance sampling. This
systematic error can be reduced cheaply by combining the VMC and DMC estimates in
the extrapolated estimate Aq = 2Apmc — Avme + O(A?), such that the resulting error is
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quadratic in the error in the wave function. An unbiased pure estimate can be obtained
using the more expensive forward-walking DMC [46] 30] or reptation Monte Carlo [27]

methods. Neither of these methods were used in the work presented in this thesis.

2.4 'THE TRIAL WAVE FUNCTION

The choice of trial wave function is important in both VMC and DMC. In VMC, the trial
wave function is used in the evaluation of expectation values and it directly determines the
final accuracy obtained. The accuracy of DMC is determined by the quality of the nodal
surface of the wave function. For both methods, the statistical efficiency is dependent on
the trial wave function. As VMC and DMC allow any form of trial wave function to be
used, it is desired to design a physically-sensible form that builds in sufficient variational

freedom compactly.

2.4.1 (CHARACTERISTICS OF THE WAVE FUNCTION

The trial wave function ¥ must satisfy several conditions. It should have the correct
antisymmetry under particle exchange. Both W and its first derivative must be continuous
everywhere except where the potential diverges. The integrals [ ¥?dR, [WHW dR and
Ik UH2U dR must exist to ensure respectively normalizability, that the energy is finite
and that the variance is finite. As the bulk of the computational effort is spent on the
evaluation of the wave function and its first and second derivatives, the wave function
must have a compact form allowing rapid evaluation. The importance of a compact and
physically-meaningful trial wave function is further emphasized by the fact that the error
in an estimate may increase with the number of optimizable parameters [47].

Though VMC and DMC allow the use of complex wave functions [48], only real wave
functions are used here as the Hamiltonians considered all have time-reversal symmetry
and thus are realﬂ Additionally, as the operators of interest such as the Hamiltonian
are spin-independent, they commute with both the total spin operator 52 and the spin
projection operator S,. All electron spins are thus assumed to be collinea. The spin-
dependence of the wave function can be eliminated and further simplifications can be

made as shown below.

“For real Hamiltonians I:I, HYU = FEo¥ implies that HU* = EyU*. Either ¥ and U* differ by a
multiplicative phase factor or they are degenerate. In either case, the linear combination ¥ + ¥* is a real
eigenfunction, and if ¥ is purely imaginary, ¥ is a real eigenfunction. If several degenerate solutions
exist, additional real eigenfunctions such as (¥ — ¥*) can be constructed by considering the space of
degenerate eigenfunctions orthogonal to these solutions.

8QMC is able to simulate non-collinear spins as well [49].
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2.4 THE TRIAL WAVE FUNCTION

The expectation value of operator Ais

) U(X)A¥(X)dR
<A>:Zaf (X)A¥(X) | (2.29)
> J U(X)T(X)dR
where o = (01,09,...,0x) is the spin configuration. A fermionic wave function is anti-

symmetric with respect to exchange of the spatial and spin coordinates of two electrons.
Therefore ¥(X) can be replaced, subject to a change of sign, by W(X’) which has a
spin configuration such that the first N} electrons are up-spin electrons and the last V|

electrons are down-spin electrons:

W(X) = \IJ({rl, 0'1}, {I‘Q, 0'2}, ceey {I‘N, O'N})

(2.30)
— :t\IJ(X/) = :I:\If({ril,T}, N {I'iNT,T}, {riNT+1"l/}7 ey {r’iz\]?\l/})'
Relabelling the dummy integration variables r; ,...,r;, gives
\IJ<X,) = \Ij({rh T}7 SRR {rNT7 T}u {rNT—l-lu $}7 R {va\L})' (231)

Substituting W(X) with WU(X') clearly does not affect the expectation value of spin-
independent operators. Thus, each spin configuration contributes equally and the sums
over the spin configurations cancel. The expectation value of A becomes

_ JI(R)AT(R)dR

(4) = JYR)Y(R)IR ’ (232)

where W(R) = W({r1, 1}, .. {rwy, 1}, {xeers L (T, 1), As W(R) is only antisym-
metric with respect to exchange of electrons of the same spin, electrons of different spin

are treated as distinguishable particles.

2.4.2 THE SLATER DETERMINANT

The Slater determinant, as introduced in Sec. [I.2.1] is an antisymmetrized product of one-
electron orbitals. These orbitals determine the nodal surface and must be of good quality.
They are generally obtained from HF or DFT calculations. The Slater determinant as
given by Eq. is decomposed into a product of up-spin and down-spin components since
the wave function only needs to be antisymmetric with respect to exchange of like-spin

electrons,

iel) el | vt e wlieh)
Up(R) = : : : : : (2.33)

#&m(ﬁ) 1/’1TVT(I?VT) %iw(rb Qﬁw(r}w)
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2.4 THE TRIAL WAVE FUNCTION

The up-spin orbitals ¢/ and down-spin orbitals 1)+ are not necessarily the same, although

they may be constructed to be so.

2.4.3 THE JASTROW FACTOR

Standard quantum chemistry methods are obliged to use a large number of Slater deter-
minants to account for both the behaviour of the wave function near particle coalescence
and at large inter-particle separations as it difficult to approximate the cusps in the wave
function as a truncated sum of smooth functions. These cusps keep the local energy finite.
The divergence in the potential energy as charged particles coalesce is cancelled by an
opposite divergence in the kinetic energy induced by the cusps. As such, cusps are a fea-
ture of the exact wave function. Although advances in explicitly-correlated methods are
being made, the difficulty in factorization of the high-dimensional integrals prevents the
widespread use of correlating factors in traditional quantum chemistry methods. Meth-
ods that employ stochastic integration such as VMC and DMC do not suffer from such
problems and are able to use correlating factors.

A Jastrow correlation factor [50] is multiplied to the determinantal part of the wave

function to give a Slater-Jastrow (SJ) wave function
U(R) = /®Up(R), (2.34)

where the Jastrow function J(R) is an explicit function of the inter-particle distances.
Thus, the Jastrow factor allows both long- and short-range dynamical correlation effects
that depend on the positions of the electrons to be included in a compact and efficient
manner. The Jastrow factor is constrained so that the symmetry and boundary properties
of Up(R) are transferred unmodified to ¥(R).

We have developed a Jastrow factor that goes beyond the standard forms used in the
QMC community to better describe electronic correlation. This generic Jastrow factor is

described and results obtained are reported in Chapter

2.4.4 BACKFLOW TRANSFORMATIONS

The Jastrow factor is able to account for some correlation and reduce the VMC energy,
but it is restricted to be everywhere positive so as to maintain fermionic symmetry. There-
fore, the addition of the Jastrow factor cannot alter the nodal surface determined by the
determinantal component of the wave function V. Backflow transformations provide a
means to improving the nodal surface, and thus reduce the uncontrolled nodal error in
DMC.

A Slater-Jastrow-backflow (SJB) wave function takes the form

U(R) = /U (X(R)), (2.35)
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2.4 THE TRIAL WAVE FUNCTION

where X = (x1,X2,...,Xy) and

are the backflow-transformed quasiparticle coordinates at which the orbitals are evaluated.
The correct antisymmetry of the wave function is maintained as antisymmetrization is
performed on the backflow-transformed orbitals and the transformation is constrained to
not introduce cusps. As the backflow-transformed position of each electron is a function
of the position of all the other electrons via the backflow function &;, some correlation is
built into the wave function.

The motivation for backflow transformations is presented in Chapter [, along with
preliminary work on the development of generalized backflow transformations that allow

for greater variational freedom in the wave function.

2.4.5 MULTI-DETERMINANT EXPANSIONS

A multi-determinant expansion is necessary to describe the static correlation in systems
with near-degeneracy, where excited states have sufficiently low energies to be able to mix
with the ground state, or close to the dissociation limit of a molecule. Typically, only a
small number of the determinants, those corresponding to the nearly-degenerate excited
states, are needed to capture this static correlation. The higher excitations generally
describe the dynamical correlation that the Jastrow factor is able to account for more
efficiently. The addition of multi-determinants also modifies the nodal surface and can
improve DMC energies.

Rather than expanding the wave function in the basis of determinants which are eigen-
functions of S, only, it is preferable to work in the basis of spin-adapted linear combina-
tions of determinants belonging to the same orbital configuration, known as configuration
state functions (CSF). The wave function is then an eigenfunction of both 52 and S, and
has fewer optimizable parameters than if a basis of determinants is used.

For a multi-determinant expansion, the determinantal component of the wave function

becomes A
Nesrp Naer
Up(R) = Y ¢ Y diiDj (Ry) Dy (Ry), (2.37)
j=1 k=1

where Ncgr is the number of CSFs, Nget is the number of determinants D in the j* CSF
which has an optimizable weight ¢;. The relative weights of the determinants dj, ; are
fixed to maintain the spin symmetry.

Each excited determinant in a multi-determinant expansion used in QMC typically
differs from the ground-state determinant by one or two orbitals, corresponding to single
and double excitations. This fact can be used to combine multiple determinants to reduce
the size of the expansion and thereby reduce the cost of evaluating the wave function. The

determinants can be combined in many different ways, and so constructing the optimal
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2.5 ERRORS, STATISTICS AND IMPLEMENTATION

contraction is a non-trivial task [51I]. Such contractions have been found to reduce the

number of determinants in the expansion substantially [52].

2.4.6 PAIRING WAVE FUNCTIONS

Rather than constructing a determinantal expansion using single-particle orbitals, pairing
determinants can be constructed using orbitals that are a function of the coordinates of
two particles. One common example of such a pairing wave function is the Bardeen-
Cooper-Schrieffer (BCS) wave function, which is an antisymmetrized product of singlet
pairing orbitals. These pairing orbitals are referred to as geminals, and are particularly
suited to systems where strong electronic correlation is expected. The explicit pairing
of electrons in orbitals introduces correlation in these wave functions, and they are an
alternative to multi-determinant expansions.

In the simplest pairing wave function, the determinantal part can be replaced by an
antisymmetrized product of geminals (AGP) [53]. For an unpolarized system, the AGP
is given by Wagp(R) = det[gb(rj,r?)]. This definition can easily be extended to spin-
polarized systems. The geminals ¢ can be expanded in a basis of single-particle orbitals
¥;(r). Such wave functions have been used successfully in QMC calculations [54] 55].
Pfaffians are another type of antisymmetrized function based on pairing orbitals that can
be used in QMC calculations [56], [57]. Both these antisymmetrized pairing forms can be

used in conjunction with a Jastrow factor and backflow transformations.

2.5 ERRORS, STATISTICS AND IMPLEMENTATION

There are several sources of systematic error in VMC and DMC calculations beyond
the statistical errors that arise due to the Monte Carlo algorithm used in estimating
expectation values.

The only systematic error in a VMC calculation is due to the functional form of the trial
wave function. Of the errors and biases resulting from the DMC algorithm, including the
time-step and population control biases discussed in Sec. [2.3] the nodal error that arises
from the uncontrolled fixed-node approximation is the most severe.

The cost of DMC calculations is found [58] to scale as Z°° as an increasingly smaller
time step must be used to capture the high frequency oscillations of the wave functions in
the core region. All-electron calculations are thus only feasible for systems with Z < 10.
For heavier atoms, pseudopotentials are used to remove the inert core electrons. The local-
ization [59] or semi-localization [60), [61] of non-local pseudopotentials gives rise to further
errors in DMC. Pseudopotentials were not used to obtain any of the results presented in
this thesis.

A bulk solid of infinite size cannot be studied and must be approximated by a finite

system. Typically, a finite simulation cell is used in conjunction with periodic boundary
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conditions to allow reproduction of the infinite system as well as possible. This approx-
imation introduces finite-size errors into both VMC and DMC results. Various electron-
electron potentials and extrapolation schemes have been developed to reduce these errors
[62, 63].

Any quantity calculated in the Monte Carlo framework has associated with it a sta-
tistical error that determines the confidence intervals of the estimate. Obtaining these
error bars is theoretically straightforward. In practice, two problems are encountered: the
individual data points are serially correlated and are frequently not Gaussian-distributed.

These two issues are expounded in the following sections.

2.5.1 SERIAL CORRELATION

Measurements made on configurations too close sequentially in the random walk will be
serially correlated, giving a deceptively low estimate of the variance and thus error. A
simplified situation that demonstrates this is a random walk in which a move is only infre-
quently accepted, say, every T steps. The mean is calculated correctly but the expressions
for the squared error, Egs. [2.10] and [2.28] assume that successive data points are statis-
tically independent and thus underestimate o2 by a factor of 7. Furthermore, sequential
configurations in the walk can be very alike even if moves are accepted frequently and thus
the configurations are correlated. In either case, new information regarding the system is
gathered only from data points that are separated in the random walk by the correlation
time T,or,. While both VMC and DMC are affected by serial correlation, it is particularly
severe in DMC where the time steps must be small to minimize the time-step bias, and
typically over 99% of the steps are accepted.

The correlation time 7., can be estimated in several ways. It can be obtained by
approximating the autocorrelation function [30]. The reblocking algorithm [64] can also
be used to remove serial correlation and is preferable as it can be performed on-the-fly,
reducing memory requirements. Here, the data are divided into blocks containing two
adjacent data points which are averaged to give a block average. The variance of these
block averages is computed. This is done recursively so that the blocks contain 2* elements
after the £*" transformation. Typically the variance increases until 2% > T,... For larger
blocks still, the variance does not vary but the error on the variance increases due to the
reduced number of samples. The onset of the plateau indicates when serial correlation has
been removed and can be used to estimate 7., and the reblocked variance. The reblocked
standard error from a DMC calculation on the Ny molecule is plotted as a function of the
transformation number £ in Fig.[2.3] The plateau region begins approximately at k = 12,

giving a standard error of 0.0007.
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FIGURE 2.3: Reblocking analysis for the DMC calculation on Ny reported in Chapter [4l

2.5.2 NON-GAUSSIAN DISTRIBUTIONS OF ESTIMATES

In QMC it is usually assumed that a sufficient number of data points have been accumu-
lated and that they are distributed such that the central limit theorem (CLT) is valid.
The choice of P = \¥? where \ is the normalization constant results in VMC estimates
that are not Gaussian distributed for many expectation values, including the total energy
and its variance [65], [66]. As a result of the singularities in the local energy arising from
particle coalescence and the divergence in kinetic energy at the nodal surface, the proba-
bility distribution of local energies can be shown to have heavy tails that decay as E~%.
The CLT is only weakly valid for the total energy as the energy distribution is Gaussian
only for an infinite number of samples; thus outliers occur for finite sampling. The CLT
does not apply at all for the variance of the energy, and the random error is not Gaussian
even for an infinite number of samples. Outliers are more than a magnitude more likely
than expected from Gaussian statistics [66]. In practice, reasonably accurate estimates
of the errors in the local energy can be obtained if its distribution is sufficiently narrow.
Singularities in other quantities on the nodal surface lead to similar, and occasionally
even more severe, non-Gaussian behaviour of estimates.

A sampling distribution without a nodal surface can be chosen to eliminate the alge-
braic asymptotic tails in the distribution of local energy and its variance [66]. Without

heavy non-exponential tails, all moments of the distribution of local energy would exist
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and the CLT would be valid. Unbiased estimates that account for finite sampling effects
would then be available. The optimal choice of sampling distribution weights the stan-
dard ¥? distribution by a factor proportional to the deviation of the local energy from the
exact energy [47]. However, this sampling scheme is not practical as the cost of the energy
evaluations at every step outweighs the gain in accuracy. Furthermore, the exact energy
is not known. A much more efficient nodeless distribution can be constructed by taking
a linear combination of the ground-state determinant and an excited state determinant.
By sampling the nodal surface of the underlying probability distribution function, this
distribution converges much more quickly and thus requires only a fraction of the sam-
ples to obtain an estimate to within a given accuracy. Although the benefit of efficient
sampling is likely to fall with system size, other sampling strategies can be developed for
large systems.

The non-Gaussian behaviour has important consequences for the optimization of wave
functions using cost functions based on the variance of the energy or other quantities. In
addition to the inaccurate estimates of the parameters, standard sampling suppresses
the contribution of the nodal surface. This is undesirable as the methods for improving
the nodal surface in VMC such as the inclusion of backflow transformations and multi-
determinant expansions rely on sampling in the region close to the nodal surface for
successful optimization.

The efficient sampling scheme has been shown [47] to improve the statistical properties
of the standard error of VMC estimate as a result of the error in the optimized parameters.
Fewer samples are required to obtain an accurate minimum compared to standard sam-
pling. In addition to improving the accuracy of estimates, the efficient sampling scheme
gives theoretical justification for averaging converged parameter sets to reduce the error

due to optimization [47].

2.5.3 IMPROVING THE EFFICIENCY OF A QMC CALCULATION

The most obvious way in which QMC can be made more efficient is by improving the
trial wave function. This is true for both VMC and DMC, in which the quality of the
wave function determines the variance of the energy. Using more complex wave functions
that take longer to evaluate can often be more efficient overall. The construction of wave
functions with sufficient variational freedom and the development of robust minimization
schemes are crucial to this end.

Serial correlation between the subsequent configurations in the random walk also re-
duces the efficiency of a calculation, as discussed in Sec. [2.5.1] In VMC the trial moves
are chosen from a Gaussian centred on the walker with variance equal to the VMC time

Stepﬂ dr. To ensure efficient sampling, the time step should be chosen such that the rate

9The VMC time step is named as such only in analogy to the DMC formalism. As the VMC method
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at which the walkers diffuse through configuration space is maximized. If a fraction A of
M moves is accepted, the root-mean-square distance diffused by an electron is V' 3M Adr.
Too short a time step will result in excessive serial correlation, while a large proportion of
trial moves will be rejected if the time step is too large. A rule of thumb that works well
in practice is choosing a time step such that 50% of the moves are accepted, i.e., A = 0.5.
Umrigar [67] developed an accelerated Metropolis algorithm uses variable time steps to
evolve the system more rapidly and thus sample configuration space more efficiently. By
proposing moves for electrons that are proportional to its distance from the nucleus, the
shorter length scales of the tightly bound core electrons is distinguished from the longer
length scales of the chemically-active valence electrons. Serial correlation is reduced by
proposing larger moves in the valence region.

Furthermore, evaluating the contribution of a configuration to expectation values be-
ing accumulated can be expensive. Only statistically independent configurations in the
random walk should be considered in computing expectation values to ensure that com-
putational effort is not wasted [68].

Rather than moving all electrons at once to a new proposed configuration and then
performing the accept-reject step, it is much more efficient to apply an accept-reject step
on individual electron moves. A larger time step can be used when electrons are moved
individually as the probability of rejecting N one-electron moves is significantly lower
than the probability of rejecting a configuration move, which tends to one as N — oo for
a given time step. The evaluation of a new determinant when using one-electron moves
can be evaluated in O(N?) operations using the Sherman-Morrison update algorithm [32]
instead of the O(N?) operations needed to evaluate a determinant from scratch. In the
event of a rejected step, only the effort made in moving one electron is wasted. Moving
electrons individually is found to be more efficient even with backflow wave functions
[69, [68] as the correlation length of configurations is shorter.

Quantities being accumulated are usually calculated after a trial move has been ac-

cepted. Instead, by calculating the average of the quantity O as

(0) = 35 ST AOR) + (1 = A)OR)]. (2.39)

(2

information from both accepted and rejected moves is used and hence the variance of O
is reduced [34]. This method is useful in VMC where approximately 50% of the moves
are rejected. It is also useful when evaluating expectation values that low probability
configurations give large contributions to. One example of such a situation is the the
evaluation of the divergent local energy near the nodal surface. It is possible, however,
that the benefit of lower variance is outweighed by the high cost of evaluating O;.

The use of a two-level sampling scheme [70] in VMC further improves efficiency. If

is based on the time-independent Schrédinger equation, it is free from the notion of time.
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the transition probability is symmetric and ergodic, the acceptance probability of a move
from R/ to R is

*(R)
/ o .
AR - R) = mln(l, \IJZ(R’)) . (2.39)
For a wave function of the form ¥ = e/ Wp, this accept-reject step can be replaced by two
sequential accept-reject steps while preserving detailed balance. At the first level, a move

is accepted with probability

: UH(R)
AD<RI — R) = mln(l, W) . (240)
If the move is rejected at this first level, it is rejected completely and the second level

acceptance probability

AR’ = R) = min(LM)

p[2I(R) (2:41)

need not be computed. To be accepted, the move must be accepted at both the first
and second levels. The overall probability of acceptance is then A(R’ — R) = Ap(R’ —
R)A;(R" — R). Whether a proposed move is accepted or rejected is typically determined
by the ratio of the Slater determinants for the two configurations. As the Jastrow factor
does not need to be evaluated for moves rejected at the first level, the computational
effort per proposed move is reduced. Note that this sampling scheme cannot be used in
conjunction with calculating averages using both accepted and rejected steps as the full

acceptance probability is not known.

2.6 OPTIMIZATION

The accuracy of the trial wave function is important in both VMC and DMC calculations.
For a small error A in the normalized trial wave function, it can be shown that the error
in the estimate of the local energy is of O(A?). Tt is thus crucial to improve the analytic
form of the trial wave function in VMC by stochastic optimization of the parameterd™]

Optimization in VMC is difficult due to the statistical noise that accompanies an es-
timate and the presence of non-linear parameters in the wave function. Despite much
progress in the development of algorithms for optimizing trial wave functions, the op-
timization procedure generally consumes the most human and computer time in QMC
calculations. This further motivates the development of robust and efficient algorithms
that converge quickly to the best parameter sets.

The cost function must correspond to a measure of the quality of the wave function.

As the cost function will be evaluated using Monte Carlo integration, it must also have a

OParameters have successfully been optimized by hand in DMC [71} [72].
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small variance. The various stochastic methods that have been developed for optimizing
many-body trial wave functions containing hundreds of parameters broadly fall into two
categories: those that minimize a variance-based quantity and those that minimize the
energy. Variance minimization was used in most QMC calculations until recently for
the reasons discussed below, despite the physical variational principle backing energy
minimization.

Before the variance and energy minimization methods are discussed, the correlated

sampling scheme which is crucial in robust minimization algorithms is introduced.

2.6.1 CORRELATED SAMPLING

Evaluating derivatives of VMC estimates requires evaluating the difference between quan-
tities with statistical error bars. To resolve the small differences in estimates such as
(but not limited to) the variance for slightly different parameter sets, the individual val-
ues must be known to a higher accuracy than the difference; otherwise the difference
will be swamped by noise. Even as the difference A = (O)4 — (O)p — 0, the error
oA = 0124 + O'% - 0.

Correlated sampling uses correlation between quantities to reduce the variance of
the difference, resulting in more accurate estimates of differences. A set of configurations
distributed according to the square of the wave function ¥% is generated. The expectation
value of O for ¥% can be evaluated as the average of the local value for Up, OF =
\IIBIO\I/B, weighted by w% = W% /U2 over the configurations distributed as ¥%,

B [9%4(R)OP dR B [ ¥4 (R)wEOP dR

(O)s = [UL(R)dR ~  [U3(R)wEdR (242)

The correlated sampling estimate of the difference

M M, BB
1 a2 waOp
approaches zero as g — W 4, as does the oa.
The added advantage of correlated sampling is that the same set of configurations can
be used for multiple sets of parameters, reducing the cost of generating configurations. For
large differences in parameter values, that is, when the weights wf deviate significantly

from 1, the correlated sampling estimate is poor.

2.6.2 VARIANCE MINIMIZATION

The zero-variance property of the energy is one important reason why the variance has
been preferred as a cost function over the local energy. The known lower bound of zero

for the variance of the local energy is attained for an exact trial wave function for any
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sampling. The gradient of the variance with respect to wave function parameters is also
exactly zero for an exact wave function. More importantly though, variance minimization
methods have traditionally been found to be much more numerically stable than their
energy-based counterparts [73], [74, [75].

The correlated sampling approach is used to minimize the variance of the local energy
[73]. A set of configurations is generated using the wave function with the initial set of

parameters A. The reweighted variance for the wave function with parameters B is then

2
(05)2 — f\I]?A<R)w§ [ELB(R) - E\%\/{C(Rﬂ dR’ (244)
/9% (R)wE dR
where w8 = 0% /0% and
VMO [V (R)wEdR ‘

Standard minimization techniques are used to obtain the parameter values that minimize
(cB)2. Formally, this is similar to least-squares fitting of the deviations of the energy
estimates from the known lower bound of zero. The existence of a known lower bound
contributes to the success of variance minimization.

Since the reweighted variance attains its minimum of zero for an eigenstate of the
Hamiltonian regardless of the choice of positive weights w, the weights may be set to
unity and the unreweighted variance can be minimized. This is much more robust than
reweighted variance minimization which suffers from a numerical instability arising from
a few configurations (often only one) acquiring large weights and consequently giving a
very small estimate of the variance [74]. The unreweighted variance is not equal to the
true variance for a trial wave function even in the limit of perfect sampling, and so the
minimization is performed iteratively. A fresh set of configurations generated according
to the optimized wave function are used to reoptimize the parameters until they converge
to a self-consistent set. Correlated sampling transforms a problem of minimization in the
presence of noise into one with a smooth variance landscape for which standard gradient-
based minimization methods can be used.

Unreweighted variance minimization can give lower variational energies than reweighted
variance minimization and it can be made particularly efficient for optimizing linear pa-
rameters in the Jastrow function [75]. However, it is rather poor at optimizing nodal
surfaces. The reason for this is that the particle configurations are fixed within an opti-
mization cycle in the correlated sampling scheme, but changing parameters which alter
the nodal surface may move the nodal surface through the fixed configurations. The local
energy diverges when the nodal surface coincides with a configuration, leading to a poor
optimization. Variance-based optimization schemes can be effective in optimizing nodal

surfaces if the values of the local energies and/or the weights of configurations near the
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nodal surface are limited [75].
The related technique of minimizing the mean absolute deviation MAD of the local

energies from the median local energy Fi,q [31],

_ [V(R)|EL(R) — Epea| dR
MAD = [¥2(R)dR )

(2.46)

is also effective at optimizing the nodal surface as outliers in the energy distribution are

not weighted as heavily. The median is also less distorted by outliers than the mean.

2.6.3 ENERGY MINIMIZATION

As the primary quantity of interest in QMC calculation is the ground-state energy for
which an upper bound can be estimated in accordance with the variational principle,
an efficient energy minimization has been much sought after. The energy and variance
minima do not necessarily coincide as the trial wave function generally cannot represent
the exact energy eigenstate. Lower total energies can be achieved by minimizing the VMC
energy itself. Additionally, wave functions optimized to give the lowest energy have been
shown to give better estimates for expectation values other than the energy [76, 77, [78].
A trial wave function that minimizes the energy is also believed to improve the efficiency
of DMC [79].

Applying the optimization procedure used for the variance to minimize the energy is
unstable for several reasons. In contrast to the variance, an eigenstate of the Hamiltonian
does not necessarily give the global minimum of the finite-sampled local energy. This
is because the local energy is unbounded from below and hence different samplings of
configuration space give different energies. Low estimates of energy can be obtained by
selectively sampling configurations with low local energy. Analogously to reweighted vari-
ance minimization, reweighted energy minimization experiences instabilities due to large
fluctuations in the weights with changes in parameters. However, the weights cannot be
modified in the case of the energy. This can be seen by fixing the weights to unity. Un-
reweighted energy minimization is then equivalent to minimizing the local kinetic energy
as the local potential energy is independent of parameters. Altering the weights leads to
instabilities as the positions of the energy minima are altered.

Another approach to minimizing the energy would be to write the wave function as
a linear sum of basis functions 1; and minimize the energy with respect to the coeffi-
cients b;. In matrix notation, this amounts to finding the solution of Hb = ESb using
diagonalization, where H;; = (1;|H|¢;) and S;; = (¢;|1;). This method is ubiquitous in
quantum chemistry. However the noise in the VMC estimates of H and S is generally
large so that very many configurations must be used. Recasting the standard diagonal-
ization procedure as a least-squares fitting problem [80] similar to the procedure used in

variance minimization greatly reduces the number of configurations required.
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Assume that the P + 1 basis functions for P parameters are linearly independent and
span an invariant subspace of H such that the action of H on any 1; is described by a

linear combination of all ¢;. One would have then simply have to solve
P
Hi(R) =) Ei(R) (2.47)
p=0

by diagonalizing £. For systems of interest, the basis functions do not span an invariant
subspace and the solution depends on the choice of configurations. Thus, M configura-
tions, where M > P, are used to solve the overdetermined problem approximately using
a least-squares fit. This method works well in optimizing linear parameters.

To use such a method in VMC to optimize non-linear parameters, the wave function

is expanded as
P o , P
V=t 300 () 00~ S 249

where b, = da, and ¢, = (0¥/0ay), . Keeping only the first-order terms in the expansion
is often insufficient and the resulting algorithm is unstable. Umrigar and coworkers [81],[82]
have developed an energy minimization scheme that is quite robust. In this scheme, the
effects of the first-order approximation are reduced by semi-orthogonalization of the basis
functions. This method is also extremely effective in optimizing parameters in W that
change the nodal surface such as the backflow parameters and CSF coefficients.

While energy minimization is preferred as it gives lower energies than variance min-
imization, these methods are often used together. Energy minimization is unable to
effectively optimize cut-off lengths, which have shallow minima in the energy landscape.
The method also converges more quickly when using a good trial wave function, such as

one initially optimized with variance minimization.
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Chapter 3

STUDIES OF THE FIRST-ROwW ATOMS

3.1 INTRODUCTION

IRST-ROW ATOMS are a natural set of systems to use in learning how to achieve
F chemical accuracy, which is reached when an error of less than 1 kcal/mol ~ 1.6 mHa
per atom ~ 43 meV per atom is achieved. Accurate benchmark data are available for
light atoms, as are results from many different electronic structure techniques. The cost
of all-electron QMC calculations scales with the atomic number [58] Z roughly as Z°9
so that pseudopotentials must be used for heavy atoms, but it is perfectly possible to
perform highly-accurate all-electron calculations for atoms up to at least the ten-electron
neon atom. We apply VMC and DMC to calculate the ground-state energies and other
properties of the atoms Li-Ne and their singly-positively-charged ions. We recover over
98% of the correlation energy for all the atoms and ions studied at the VMC level and over
99% at the DMC level. Chemically-accurate values of the first ionization potentials are
obtained. Total energies, scalar relativistic corrections to the energies, mass-polarization
terms, and one- and two-electron expectation values are evaluated. We also performed

fits to electron and intracule densities.

3.2 TRIAL WAVE FUNCTIONS

Our trial wave functions consist of a multi-determinant expansion which describes static
correlation, a Jastrow factor to capture dynamic correlation, and backflow transformations
to allow further variations in the nodal surface. These all-electron multi-determinant-

Jastrow-backflow wave functions take the form

Ncsr Nget
U(R) = "B N "¢,y " di;DLj(xa, Xn) Dy (X0 X)), (3.1)
Jj=1 k=1
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3.2 TRIAL WAVE FUNCTIONS

where R is the vector of electron positions, J(R;a) is the Jastrow factor, and Df ;(X)
are the Slater determinants whose orbitals are evaluated at the backflow-transformed
coordinates x; = r; + &;(R;b). Ncgr denotes the total number of CSFs and Nget is

the number of determinants in the jth CSF. The vector a denotes the parameters in

the Jastrow factor, b those in the backflow transformation, and ¢ = (cq, ..., Cnege) the
CSF coefficients. As described in Sec. [2.4.5] the coefficients of the determinants d =
(di1,...,dNy, Nege) are fixed to maintain the proper symmetry of the CSF's.

The Slater determinants and CSFs were generated using the atomic MCHF package
ATSP2K [83]. We allowed single and double excitations from the HF ground state up to
orbital configurations with principal quantum number n < 7 and orbital angular momen-
tum quantum number [ < 4. Terms representing excitations from the 1s% core were used
for Li, Li* and Be' to ensure that double-excitations were included. The CSFs with
the largest weights were included in W. Core excitations significantly lowered the MCHF
energy of the Be atom, but they did not improve the VMC energy and were therefore
not included in the QMC calculations. Excitations from the core become less important
for larger Z, and we did not include them for systems with more than three electrons.
The high-energy excited-state configurations in the MCHF expansion mostly describe
electron-electron cusps, which are captured by the Jastrow factor in QMC calculations.
The high-energy MCHF excitations are therefore expected to be much less important in
the QMC calculations than in the MCHF ones. Indeed, including very-high-energy exci-
tations serves only to hinder the optimization procedure described in Sec. and worsen
V. We tested wave functions containing 1, 20 and 50 CSF's for all the atoms, and finally
used 50 CSFs for all atoms and ions except O, O", F and F*, for which we used 100
CSFs. The number of determinants ranged from 171 (Li*) to 4613 (FT).

We used a modified form of the polynomial Jastrow factor proposed by Drummond
et al. [84] consisting of electron-electron, electron-nucleus and electron-electron-nucleus
terms. Each term was written an expansion in powers of r/(r? + «), where r is the inter-
particle separation and « and S are optimizable parameters, with  constrained to be
greater than unity. This basis gave a statistically-significant decrease in the energy for all
the atoms compared to an expansion in powers of » when a SJ wave function was used.
The improvement was less stark for a SJB wave function. The optimal values of a were
found to lie within the range 0.5-17.1 and those of # within the range 1.05-4.67 for the
atoms and ions studied. This modification removes the need for cut-offs at large inter-
particle separations, as the basis functions decay to zero at large r. Based on our tests,
we chose expansion orderd] of 9 for the electron-electron and electron-nucleus parts of the
Jastrow factor and an expansion order of 5 for both the electron-electron and electron-
nucleus terms in the electron-electron-nucleus Jastrow factor, which gave a total of 118

optimizable parameters.

'The expansion order is the number of terms in the expansion, i.e., > ., a;r" is of order n + 1.
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3.3 OPTIMIZATION

The backflow transformation of Lépez Rios et al. [69] was used, with electron-electron
and electron-nucleus functions of expansion order 9 and an electron-electron-nucleus func-
tion of expansion order 4, resulting in a further 142 optimizable parameters.

In both the Jastrow and backflow functions, the parameter values for anti-parallel spin
pairs were allowed to differ from the parameter values for up-spin electron pairs, which
were constrained to be equal to the parameter values for down-spin electron pairs. This
significantly reduced the number of variable parameters without any noticeable loss in
wave function quality. The parallel and anti-parallel-spin cusp conditions were imposed

in the Jastrow factor.

3.3 OPTIMIZATION

Various stochastic methods have been developed for optimizing many-body wave functions
in QMC calculations as described in Sec. 2.6, We found MAD minimization to be superior
to energy minimization for optimizing the cut-off functions, and superior to variance
minimization methods for optimizing parameters which alter the nodal surface. We have
therefore used MAD minimization in the early stages of the optimizations, but the final
optimizations are performed with energy minimization.

We tested optimization of the single-particle orbitals for N, O and F, but found this
to have a negligible effect, in agreement with previous atomic studies [85], 86].

We tested several optimization schemes that could potentially reduce the computa-
tional effort of wave function optimization. The Jastrow factor and backflow transforma-
tion were optimized for a single determinant and then applied to the multi-determinant
expansion of a B wave function containing 50 CSFs. Optimizing the CSF coefficients
while holding the Jastrow factor and backflow parameters fixed improved the wave func-
tion but the final results remained unsatisfactory. This may be expected as the Jastrow
and backflow functions capture dynamical correlation overlapping with that described by
the addition of CSFs. The CSF coefficients in the B wave function were optimized for
one final cycle, as energy minimization of linear coefficients is in general very robust. No
improvement was observed, confirming that energy minimization is able to optimize the
linear and non-linear parameters simultaneously.

As the optimization process is currently the most costly step in human time and
consumes a substantial fraction of the computer time, it is desirable to establish an opti-
mization strategy which is reliable for all of the atoms and ions and may be useful in other
systems. Of the several optimization strategies tried, the following consistently gave the

best results and was used for all of the final results reported here:

1. Set the CSF coefficients to their MCHF values and the Jastrow parameters a to zero.
Note that the Jastrow factor is non-zero as the term enforcing the cusp condition is

still present.
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3.4 RESULTS AND DISCUSSION

2. Generate a set of VMC conﬁgurationﬁ and optimize the Jastrow parameters a
including the Jastrow basis function parameters o and 3, and the CSF coefficients

c using MAD minimization. We refer to this step as an optimization cycle.

3. Run two more optimization cycles using the parameters obtained in the previous

cycle as initial parameters.

4. Optimize the wave function parameters a and c using VMC energy minimization
until converged (usually about 5-8 cycles). The Jastrow basis function parameters

«a and 8 are not reoptimized at this stage.

5. Introduce backflow functions with the parameters b initially set to zero, and opti-
mize all wave function parameters (a, b, c), including o and /3, and the backflow
cut-off parameters, using MAD minimization until converged (usually about 3 cy-

cles).

6. Use VMC energy minimization to optimize wave function parameters (a, b, c) until
converged (usually about 5-8 cycles). The Jastrow basis function parameters and

backflow cut-off parameters are not re-optimized.

We use the fraction of the correlation energy retrieved in a VMC calculation with a
given trial wave function W,

_ Eup — Evuc[Y]

| = 3.2
fCE[ ] EHF_Eexact ’ ( )

as a measure of the quality of ¥. The improvements in the VMC energies of the atoms at
different levels of optimization are shown in Fig. [3.1] The figure clearly shows that VMC
energy minimization recovers a significantly larger proportion of the correlation energy
than MAD minimization. While this strategy has not been tested for any other systems,

we expect it to work well in many cases.

3.4 RESULTS AND DISCUSSION

3.4.1 ATOMIC AND IONIC ENERGIES

The VMC optimizations were performed using 5 x 10 statistically-independent particle
configurations. One measure of wave function quality is its variance, and Table|3.1|reports
the variances of optimized Slater-Jastrow and Slater-Jastrow-backflow wave functions for
both single-determinant and multi-determinant Slater forms. The variance is reduced by

approximately a factor of 2 or more when a multi-determinant expansion is introduced to

2The first set of VMC configurations are drawn from the MCHF wave function.
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S0k - - - ++ 1: MADmin SJ —
B +=+ 22.EminSJ

I L - — 3:MADminSB 1
- — 4: Emin SIB

] ] ] ] ] ] ] ]
LI Be B C N O F Ne
FIGURE 3.1: Percentages of the correlation energy (fcg) retrieved for single-determinant

Slater-Jastrow (SJ) and Slater-Jastrow-backflow (SJB) wave functions using mean abso-
lute deviation minimization (MADmin) and VMC energy minimization (Emin).

75

a Slater-Jastrow-backflow wave function. The improvement is particularly large for Be,
B and C, where the variance drops by factors of approximately 10, 8 and 4, respectively.
This reflects the strong 2s—2p near-degeneracy effects exhibited in these systems and
determinants beyond the HF ground-state configuration must be included to capture the
static correlation. With a few exceptions, the variance decreases as the variational energy
decreases for a given system. The variance of a wave function after MAD minimization

also approaches that after energy minimization as the variational energy decreases.

TABLE 3.1: VMC variances for single-determinant (SD) and multi-determinant (MD)
Slater-Jastrow (SJ) and Slater-Jastrow-backflow (SJB) wave functions. All variances are
in atomic units.

SD-SJ SD-SJB MD-SJ MD-SJB

Li  0.00274(3) 0.00130(1) 0.00193(5) 0.00067(2)
Be 0.0443(2) 0.0524(6)  0.01066(6) 0.00526(4)
B 0.0915(2) 0.1434(8) 0.0326(2)  0.01867(8)
C  0.1941(8) 0.1784(7) 0.0819(5)  0.0473(5)
N 0.340(1)  0.263(1)  0.2198(5)  0.1126(5)
O 0.548(1)  0.4763(9) 0.442(1)  0.353(1)
F 0846(3)  0.619(2)  0.644(3)  0.493(1)
Ne 1.233(3)  0.797(7)  0.623(7)  0.361(2)
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3.4 RESULTS AND DISCUSSION

The DMC calculations were performed with a target population of 2048 DMC walkers
and a minimum of 10° steps and a time step corresponding to the smaller of the two used
in Ref. [85], ranging from 0.00375 a.u. for Li to 0.00070 a.u. for Ne. These calculations [85]
already showed that the errors from these time steps is negligible, and the corresponding
errors in the current calculations should be even smaller as the trial wave functions are
superior [43].

Table gives the VMC and DMC energies and percentages of the correlation energy
retrieved for each of the atoms and ions studied. The reference non-relativistic energies,
assuming a clamped point nucleus, are taken from Refs. [87], [88]. Percentages of the
correlation energy retrieved at the VMC and DMC levels for the neutral atoms in the
present work and those of Ref. [85] are compared in Fig. and data for singly-charged
ions are shown in Fig. 3.3l In both figures, the percentage of the correlation energy

required to achieve chemical accuracy is indicated.

100

97 — DMC
— VMC “ I
i -+ DMC - Brown et al. (2007) T 1
.-+ VMC - Brown et al. (2007) e
o6 — f needed for chem. acc. T B

] ] ] ] ] ] ] ]
LI Be B C N O F Ne
FIGURE 3.2: Percentages of the correlation energy (fcg) retrieved for each atom within
VMC and DMC. Chemical accuracy is achieved for Li-N and Ne at the DMC level.

As the critical approximation made in DMC is the fixed-node approximation, the
quality of the DMC wave function is expected to decrease with an increasing number of
electrons due to the additional complexity of the nodal surface. Using the percentage
of the correlation energy retrieved as a measure of the quality of the wave function, we
observe this trend for both the atoms and ions with some exceptions. According to Hund’s
rules, both N and O have a configuration with a half-filled 2p shell that resembles a
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FIGURE 3.3: Percentages of the correlation energy ( fcg) retrieved for each ion within VMC
and DMC. Chemical accuracy is achieved for Lit—-O" at the DMC level. The values for
F* and Ne™ are within statistical uncertainty of chemical accuracy.

closed-shell atom. The higher symmetry of such electronic configurations allows a greater
number of equivalent determinants to be grouped into a single CSF. For a given number
of CSFs, determinants with higher n and [ values are included and a larger active space
is sampled. This explains the higher quality of the N, O and Ne wave functions. The
reverse argument holds for the O and F* wave functions, which are of lower quality.

There are several differences between the wave functions used in the present study
and those of Ref. [85]. While both calculations relied on the energy minimization scheme
of Refs. [81] R2], the implementation used in the current work is more effective and ro-
bustﬂ For example, Brown et al. [85] were unable to lower the VMC energy of Ne using a
multi-determinant expansion, which was easily achieved in the present study. The present
optimization strategy is significantly different as we use MAD minimization to first op-
timize the non-linear parameters at each stage. Brown et al. [85] used a Jastrow factor
based on an expansion in r, while we have used an expansion in powers of r/(r” +«). We
have also employed a larger number of CSF's.

We have obtained more than 99% of the correlation energy at the DMC level for all

of the atoms and ions, and at the VMC level for all atoms except O and F and all ions

3These changes make the matrices involved in VMC energy energy minimization invariant to the
scaling of parameters and improve the implementation of the level-shifting [89].
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3.4 RESULTS AND DISCUSSION

except F™ and Ne™. This is a substantially higher accuracy than achieved in the all-
electron QMC calculations reported in the literature [85, 00, 54, O1]. For example, the
lowest percentage of the correlation energy achieved for a neutral atom in the present
study at the VMC level is 98.40(6)% for F, whereas the best previous VMC calculation
gave 96.33(6)%, and our lowest percentage in DMC is 99.26(4)% for O compared with the
best previous value of 97.83(8)% [85]. We calculated the virial ratios for the atoms and
ions in both VMC and DMC, finding them to be within one standard error of the exact
value of 2 in each case, with the standard errors lying within the range 0.001-0.02.

We also find that our atomic energies using a single-determinant SJ wave function
are significantly better than those obtained within the framework of the transcorrelated
method. Umezawa et al. [18] and Prasad et al. [92] retrieve between 36% (Ne) and 88-89%
(Li) of the correlation energy while we retrieved between 80.77(8)% (B) and 99.67(4)%
(Li) of the correlation energies for the atoms. The poor quality of their results can be
explained in part by the fact that their Jastrow factor comprises only electron-electron

terms while ours extends to three-body electron-electron-nucleus terms.

3.4.2 TONIZATION POTENTIALS

Although the total atomic energies can be measured as the sum of the ionization energies,
they are not quantities of significant chemical interest. In quantum chemistry one is
normally interested in energy differences for which the cancellation of errors between
calculations is important. We have therefore calculated the first ionization potentials
(IPs) of the atoms Li-Ne as energy differences between the neutral and singly-ionized
states. The errors in the calculated IPs from those computed using values from Ref. [8§]
are shown in Fig. Data from the FCIQMC method [6] with an aug-cc-pVQZ basis
set for Li, Be and Ne and an aug-cc-pV5Z basis for B-F are shown, together with data
from coupled cluster with single and double excitations (CCSD) calculations with a d-
aug-cc-pwCV5Z basis and CCSD-F12-HLC data [93]. Each CCSD-F12-HLC energy is
the sum of the CCSD energy, an F12 energy which corrects for the finite basis set, and a
higher-level correction (HLC) which accounts for the treatment of excitations beyond the
doubles in CCSD. Tt is likely that the CCSD-F12-HLC results [93] are even more accurate
than the data of Ref. [88] that we have used as a reference, as they obtain results in closer
agreement with experiment when corrections for relativistic effects and the finite nuclear
mass are included. However, Klopper et al. [93] did not give values for the total energies
of the atoms, and therefore we have used the data of Ref. [88] to avoid using different
reference data for the total energies and IPs. The differences from using the IP data of
Klopper et al. [93] are small, as can be seen in Fig. . Using this data as the reference
would not significantly affect the comparisons for Li and Be, but it would slightly worsen
the agreement with our results for B, C and Ne and slightly improve it for N, O and F.

The IPs from DMC are within statistical error of chemical accuracy of the reference
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FIGURE 3.4: Errors in the ionization potentials (A = TPy —IP.) for the first-row atoms
obtained at the VMC and DMC levels compared to those from FCIQMC [6], CCSD [93]
and CCSD-F12-HLC [93]. The reference values are taken from Ref. [88]. The shaded

region represents chemical accuracy.

data for all atoms. Our errors are smaller than or equal to those in the CCSD results
with a d-aug-cc-pwCV5Z basis [93] for all atoms, and smaller than those of the FCIQMC
calculations of Booth and Alavi [6] for all atoms except C.

In addition to the data presented in Fig. [3.4] values from DFT calculations using the
B3LYP [94], LSDA [95] and PBE-GGA [95] functionals are included in Fig. [3.5] There is
significant correlation between the results obtained using different functionals.

The mean deviation, mean absolute deviation and maximum deviation of the IPs
from the reference values for these methods and those obtained in DFT using the B3LYP,
LSDA and PBE-GGA density functionals are presented in Table [3.3] The mean abso-
lute deviations of the DFT IPs are between 24 and 30 times larger than for our DMC
calculations.

The FCIQMC approach [6] is exact up to a basis set convergence error and a small
statistical error. They consistently underestimate IPs, perhaps because there are fewer
electron-electron and electron-nucleus cusps in an ion than in the corresponding neutral
atom. As is clear from Fig. [3.4] we similarly underestimate the IPs in all cases except Ne,
but for a different reason, as explained below.

In general, the nodal surface of an ion is easier to describe than that of the correspond-
ing neutral atom. However, for closed-shell atoms such as Ne, the initial restricted HF

atomic nodal surface is superior to that of the open-shell ion. The energy of the neutral
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FIGURE 3.5: Errors in the ionization potentials (A = IP ,.—IP.) for the first-row atoms
obtained at the VMC and DMC levels compared to FCIQMC [6], CCSD [93] and CCSD-
F12-HLC [93], and those from DFT using the B3LYP [94], LSDA [95] and PBE-GGA [95]
functionals. The reference values are taken from Ref. [88]. The shaded region represents
chemical accuracy.

TABLE 3.3: Comparison of the mean deviation A, mean absolute deviation W and maxi-
mum deviation A, of the ionization potentials obtained from several electronic structure
methods. Deviations are from the reference non-relativistic, clamped point nucleus values
of Ref. [88]. Averages were taken over Li-Ne, unless otherwise indicated. All values are
in electron volts.

Z m Amax
VMC ~0.005(2) 0.023(2)  0.076(5)
DMC —0.005(1)  0.012(1)  0.046(2)
FCIQMC? —0.0250(7) 0.0250(7) 0.054(3)
CCSDP —0.0586 0.0585 0.1140
CCSD-F12-HLC® —0.0001 0.0021 0.0054
B3LYP® 0.2925 0.2924 0.5206
LSDA4 0.2657 0.3521 0.5447
PBE¢ 0.1971 0.2892 0.4507
2 Ref. [6].
b Ref. [93].

¢ Averages taken over B-Ne values. Ref. [94].
4 Averages taken over Li-F values. Ref. [95].
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atom is more accurate and consequently the IP is overestimated. For reasons given in
Sec. an overestimation of the IP of N and severe underestimation of the IP of O are
also observed.

To summarise, the additional complexity that arises for larger atoms manifests itself
differently in FCI and DMC. In the former, describing the electron-electron cusps becomes
more challenging and requires a larger expansion in determinants, whereas the nodal

structure of the larger system is more difficult to describe in DMC.

3.4.3 ELECTRON AND ELECTRON-PAIR DENSITIES

The electron densityﬁ is given by

Z f\IIQI\IJQ (|r;] —7“) dR. (3.3)

As a function of only one variable, the density is a much simpler quantity than the wave
function and is useful in the interpretation of chemical properties. Accurate exchange-
correlation functionals for DFT calculations can also be constructed by fitting to electron
densities [96], 97].

A fit-based accumulation method was initially tested to fit the density data directly to
an analytic linear expansion of basis functions. We tested several different basis functions,
including Gaussians, exponentials and Chebyshev polynomials. However, none of these
bases could compactly reproduce the short- and intermediate-distance structure of the
everywhere-positive density while maintaining the asymptotic large-distance behaviour.

We then simply accumulated the spherically-symmetric electron density in narrow bins

and fitted it to an exponential Padé form

==

P (r) =

Ko+ 27 + kar® + ...+ k™ 4 k2
(1+Ar23)exp<—0+ L S i Ul ) (3.4)

L4+ Br2 4.+ 12 2+2 rn-1

Nt

where A, k; and [; are parameters, N is the number of electrons and N, is a nor-

malization factor. This form satisfies the cusp condition at the origin [98], 2 ol =

—2Zp(0) and has the correct asymptotic behaviour at large distances [99]: lim, o p(1) ~

Bexp ( 2V21 7“) where B = £ ?/];LIH — 1. The denominator in the exponential is every-

where positive as all parameters are squared, ensuring the density is well-behaved. The

fitted parameter values for the up-spin and down-spin electron densities are given in the
supplementary information. We note that a method of obtaining more accurate estimates
of densities has been developed [100)].

Electron-pair densities are also of interest. They are important in describing atomic

4The electron density is also referred to as the charge density.
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properties such as Hund’s rules [I0I]. There are relationships between experimentally
measurable scattering cross sections and electron-pair densities [102), [103]. Quantities
such as the Fermi and Coulomb holes which are useful in understanding exchange and
correlation can also be written in terms of a pair density [I04]. Such quantities can
also be used to give better approximations to the DFT functionals. A pair density can
be separated into the intracule density which describes the relative motion of a pair of
electrons, and the extracule density which describes the motion of the centre of mass of
the pair. The moments of the intracule density (r7;) are also significant and are discussed
in Sec. [3.4.4 The spherically-averaged intracule density is defined as

1 [Y2(R)S(|ry| — ) dR
h<r)_§; U2 (R) IR . (3.5)

Sarsa et al. [105] published a VMC study of the intracule densities of the atoms He—
Ne, while more recent atomic QMC studies have explored methods for obtaining more
accurate estimates of intracule densities [106].

We fitted the intracule densities separately for parallel spin pairs and anti-parallel spin

pairs to
N So— 21+ sor? 4 s 2
hﬂitoﬂ) = _F‘>| 7”2 exp (— 22 ; 5 — 2 , (36)
Nn 1—|—t27“ —|—...+tn_27’ +WT
N+ g — 7+ U A oA Uy T U™
hi (1) = N—‘iexp (— 5 o w2 | (3.7)
n 1+wvsrs 4+ ..o v;_or + 551"

where s;, t;, u; and v; are parameters, N;Ll and NpL are the numbers of parallel and
anti-parallel spin pairs, respectively, and Nlﬂ and N2 are normalization factors. Again,
the denominator in the exponential is forced to be positive. These forms satisfy the
intracule cusp condition for the anti-parallel spin pairs [107] 4'(0) = h(0). The higher-
order condition [I08] A®(0) = 2A?(0) must be satisfied for the parallel spin pairs for
which 4/(0) = h(0) = 0. The fitted parameter values for the up-up and down-down parallel
spin and up-down anti-parallel spin pair intracule densities are given in supplementary
information.

We compare our fit to the electron density obtained using a very accurate Hylleraas
wave function [109] for Li* in Fig. . The Hylleraas calculation gave an energy correct
to 12 significant figures. Our fit agrees well with the Hylleraas density.

Large statistical fluctuations in the binned data occurs at short inter-particle distances
which are not frequently sampled. Similar fluctuations occur at very large inter-particle
distances where the density is small and sampling is consequently infrequent. The short-
range fluctuations are clear in the fit to the electron density to He given in Fig.[3.7 These

fluctuations pose a problem in performing linear-least square fits to the fitting form. Using
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FIGURE 3.6: The total charge density of Li* as collected in the binning process and fitted
to the form in Eq. 3.4l The error bars in the binned density are shown in yellow. The
fit agrees very well with the density of Ref. [109], which was obtained from a Hylleraas
calculation.

the zero-variance zero-bias principle of Assaraf and Caffarel [I10] to construct improved
estimators of quantities such as the electron and intracule densities has been shown to
overcome the problem of large variances [100, 106]. Their method does not however give
an analytic form of the densities. We believe that Egs. and are suitable to
fitting densities and expect that combining such fitting forms with binned data obtained

using zero-variance zero-bias estimators should give highly-accurate densities.

3.4.4 (OTHER EXPECTATION VALUES

Scalar relativistic and mass-polarization corrections to the energies of the atoms and ions
were computed using first-order perturbation theory within VMC and DMC [I11]. For
small atoms such as those considered here, first-order perturbation theory gives good ap-
proximations to the exact relativistic corrections. The mass-velocity, one-electron Darwin,
two-electron Darwin, retardation and mass-polarization terms are given in Table 3.4 We
did not calculate spin-dependent relativistic terms such as the spin-orbit and spin-spin
terms which require separation of spin and spatial operators. This can in principle be

done for a typical QMC wave function; Alexander et al. [I12] report VMC results for
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FIGURE 3.7: The total charge density of He as collected in the binning process and fitted
to the form of Eq. 3.4l The error bars in the binned density are shown in yellow. The
density of Ref. [109], obtained from a Hylleraas calculation, is also plotted.

spin-dependent corrections of electronic states of the He atom. As the VMC and DMC
values agree to within one standard error in most cases, we do not give the extrapolated
estimates (2xDMC-VMC) in Table and instead we quote only the DMC values. Our
results for Li, Li*, Be and Be™ are close to those given in Refs. [I13], [114] and [I15],
obtained from Hylleraas calculations, and in Ref. [I16], from exponentially-correlated
Gaussian calculations.

In Table [3.5] we report some one-electron expectation values for the atoms and ions,
while two-electron expectation values are reported in Table [3.6, The moments of the
electron and intracule densities have physical significance [117]; for example, the inter-
electronic moment (ri;1> represents the average Coulomb repulsion between electrons.

Variational calculations using Hylleraas-type wave functions have given very accurate
results for three systems included in our study: the Li atom [118| [119], the Li* ion [120],
and the Be™ ion [121I]. Our results for these systems are in good agreement with the
Hylleraas data. The data available in the literature for systems with more than three
electrons are of much lower accuracy. Our results for (§(r;)) and (r;') agree well with
the Hartree-Fock values of Gélvez and Porras [122] where a comparison can be made,

while our values of (r;?) are larger than theirs. Cohen et al. [123] have reported values
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3.4 RESULTS AND DISCUSSION

TABLE 3.4: Scalar relativistic terms: mass-velocity (MV), electron-nucleus Darwin (D1),
two-electron Darwin (D2), spin-spin contact interaction (SSC), retardation (Ret), and
mass-polarization (MP) energies calculated at the DMC level. Values from the literature
are given for Li, Li*, Be and Be™. All values are in atomic units.

MV D1 D2+SSC Ret MP

Li  —0.00417(1)  0.00346(1)  0.0000914(3) —0.0000232(1) 0.0000239(1)
Be —0.01439(2)  0.01181(2)  0.0002690(5) —0.0000478(1) 0.00002815(9)
B —0.0368(1) 0.0300(1)  0.000598(2)  —0.0000585(7) 0.0000137(3)
C  —0.0790(2) 0.0639(2)  0.001115(8)  —0.000017(2)  —0.0000178(5)
N —0.1504(6) 0.1207(7)  0.00185(4) 0.000147(5)  —0.000069(2)
O  —0.2610(7) 0.2086(7)  0.00299(3) 0.000415(4)  —0.0001278(8)
F o —0.424(1) 0.337(1) 0.00451(5) 0.000935(7)  —0.000195(1)
Ne  —0.655(2) 0.518(2) 0.00646(8) 0.00186(1) —0.000303(1)
Lit  —0.00411(1)  0.00341(1)  0.0000895(2) —0.00002291(9)  0.00002298(8)
Bet —0.01426(2)  0.01171(2)  0.0002649(3) —0.0000485(1) 0.00002756(7)
B+  —0.0377(3) 0.0307(3)  0.000597(2)  —0.0000802(6) 0.0000305(3)
C*t  —0.0796(3) 0.0643(3)  0.001115(5)  —0.000056(1)  —0.0000003(4)
N+ —0.1506(5) 0.1208(5)  0.00190(1) 0.000071(2)  —0.0000494(6)
O+  —0.263(2) 0.210(2) 0.00299(2) 0.000388(4)  —0.0001143(8)
F+  —0.425(2) 0.337(2) 0.0044(1) 0.00091(5) —0.000183(3)
Net —0.658(2) 0.519(2) 0.00636(8) 0.001719(9)  —0.000287(1)

Li  —0.00418308*  0.00347364* 0.0000911359* —0.0000232018*  0.0000236819"
Lit  —0.00413427¢  0.00343889° 0.000089292¢ —0.000022791¢ 0.00002259816°
Be  —0.01441539%  0.011834014¢ 0.00026855779 —0.0000474909¢  0.00002781214
Bet —0.01428821244 0.0117457249 0.00026441464 —0.00004845370¢  0.00002737044

a Ref. [113].

> Ref. [114].

¢ Ref. [115].

4 Ref. [116].

of (r?) for some atoms, including Be, B and C, calculated within unrestricted HF theory
and correlated theories such as FCI. Electron correlation is expected to reduce the size
of atoms as measured by (r?). In HF, where correlation is absent, anti-parallel spin
electrons can be located close to each other and act to screen electrons from the nucleus.
In a correlated system, the electrons position themselves to minimize electron-electron
repulsion and maximize nuclear attraction, pulling them closer to the nucleus. The effect
of correlation on the electron density decreases with increasing Z as the nuclear attraction
dominates the electron-electron repulsion.

Our value of (r?) for Be reported in Table is slightly larger than the FCI values of
16.27, while our values for B and C are slightly smaller than the FCI values of 15.54 (B)
and 13.84 (C) [123]. In almost all cases the values of the one-electron expectation values
(summed over the electrons) are larger for the neutral atoms than for the corresponding
ions, as one would expect. However, the expectation values of (6(r;)) and (r;?), which

are the most strongly weighted towards the region close to the nucleus, are larger for the
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3.5 CONCLUSIONS

TABLE 3.5: One-electron expectation values: electron moments (r") for —2 < n < 3 and
electron density at the coalescence point (4(r;)), summed over all electrons i. All values

are in atomic units.

(0(r:)) (r%) (rh) (ra) (r?) (r?)

T 13.79(5) 30.25(1) 5.7103(4) 4.0842(3) 18300(2)  92.10(1)
Be  35.30(6) 57.59(3) 8.4275(2) 5.9794(1)  16.2986(4)  57.078(2)
B 71.7(3)  93.51(9) 11.3993(7) 6.7446(3)  15.5322(9)  46.011(4)
C  1272(4) 138.8(1) 14.7065(8) 7.1230(3) 13.7401(7)  33.940(3)
N 206(1)  193.0(1) 18.3491(9) 7.3612(2) 12.1750(5)  25.740(2)
O  312(1)  257.1(2) 22.271(1) 7.6364(2) 11.3283(5)  21.756(2)
F 448(2)  330.8(2) 26.537(1) 7.8166(2) 10.4132(4)  18.003(1)
Ne 619(2)  414.3(3) 31.134(1) 7.9298(2)  9.5220(4)  14.8372(9)
Lit  13.60(4) 29.81(4) 5.3770(4) 1.14539(7) 0.89252(7) 0.8830(1)
Bet  35.01(5) 56.97(2) 7.9760(2) 3.10220(6) 6.5122(2)  18.7046(8)
Bt 73.5(8)  93.94(9) 10.9332(7) 4.1791(2)  7.6318(5) 17.736(2)
C*t 128.1(6) 138.9(1) 14.1589(8) 4.9235(2)  7.9284(4)  16.072(1)
N+ 206.3(9) 193.2(2) 17.727(1) 5.4338(2)  7.7161(4)  13.742(1)
Ot  314(3)  257.1(2) 21.618(1) 5.8097(2)  7.3423(3)  11.6156(8)
F+  447(3)  331.3(2) 25.811(1) 6.1624(2)  7.1305(3)  10.3950(7)
Net 621(2)  414.9(3) 30.323(1) 6.4236(2)  6.7976(3)  9.0808(5)

ion than for the neutral atom for B/B*, and very similar for C/C*—Ne/Ne*. The larger
error bars and lower quality of the wave functions make it more difficult to draw firm

conclusions for C/C*-Ne/Ne™.

3.5 (CONCLUSIONS

We have calculated energies for the first-row atoms with significantly more accuracy than
previous DMC studies. Our DMC energies for the atoms heavier than Li and ions heavier
than Be™ are the lowest so far reported from a variational method. Our DMC IPs are
also superior to very recent FCIQMC results [6]. Our IPs are, however, substantially less
accurate than the CCSD-F12-HLC data of Klopper et al. [93]. Our DMC IPs are consid-
erably better than the CCSD values, but the addition of the F12 and HLC corrections
leads to errors which are roughly an order of magnitude smaller than those in our DMC
calculations. The DMC calculations have the feature that the results are obtained from a
single calculation while the cost of calculating the F12 and HLC corrections in the CCSD
scheme will increase very rapidly with the number of electrons.

It would be extremely useful if post hoc corrections could be developed for QMC
methods. One method which has shown some success in VMC is to plot the total energy
versus the variance of the local energy using a set of trial wave functions of different
qualities [124]. Such a plot normally shows an approximately linear variation so that an

extrapolation to zero variance can be performed. The linear variation can be derived by
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3.5 CONCLUSIONS

assuming that the set of wave functions differ by a term of the form e®(R), where € is a
parameter and ®(R) is an (unknown) wave function, but there is no guarantee that this
assumption is valid. Perhaps a reliable post hoc correction scheme can be developed for
DMC calculations.

For the most difficult case of the O atom we obtained an error in the energy of 0.74(4)%
compared to the error of 2.17(8)% obtained by Brown et al. in 2007 [85]. There is every
prospect of making substantial further improvements to the VMC and DMC results. Two
obvious ways in which this can be achieved is by improving the optimization methods used
and by using better wave function forms.

The stochastic optimization techniques used to obtain the optimal values of the wave
function parameters have improved greatly in recent years, mainly due to the work of
Umrigar and collaborators [81], [82]. The development of VMC sampling strategies which
allow more reliable and efficient optimization of wave functions is extremely promising
[41].

There have been also major improvements in the available wave function forms [69} 56,
57, [55], and many more such developments can be expected in the coming years. The cost
of the QMC calculations reported here increases rapidly with system size because of the
use of a multi-determinant expansion. However, we expect that the computational cost
could be substantially reduced by using a more efficient representation such as geminal or
Pfaffian wave functions. Another idea would be reduce the size of the multi-determinant
expansion by more careful selection of the determinants. As the Jastrow factor primarily
captures dynamic correlation, it replicates the efforts of a large multi-determinant expan-
sion to some extent. There is no reason to assume that the same set of N determinants are
the most important, i.e., have the largest weights, both in the absence and in the presence
of a Jastrow factor. It is, however, expected that the weights of higher-excitation determi-
nants decay more rapidly than those of lower energy determinants when a Jastrow factor
is introduced. It would be beneficial for QMC calculations if a systematic way to select
the determinants could be developed that accounts for static correlation and gives useful
freedom in the nodal surface. For example, one could start with a large expansion of
300 CSFs that include up to quadruple excitafcion&ﬂ7 and eliminate those with very small
coefficients after an initial optimization alongside the Jastrow parameters (and backflow

parameters, if included).

SMCHF calculations show that determinants with triple and quadruple excitations only feature in
multi-determinant expansions with over 200 CSF's for an oxygen atom.
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Chapter 4

A GENERIC JASTROW CORRELATION
FACTOR

4.1 INTRODUCTION

SLATER DETERMINANT is the simplest fermionic wave function. Its antisymmetric
form describes exchange but not correlation. The most fruitful method of going
beyond the Slater determinant is to multiply the Slater determinant by a Jastrow factor,
which leads to the Slater-Jastrow wave function. The Jastrow factor is normally chosen
to depend on the inter-particle separations, which introduces correlation into the wave
function. The introduction of a Jastrow factor often leads to the recovery of 80% or more
of the correlation energy of electronic systems.

The Jastrow factor is chosen to be everywhere positive and symmetric with respect to
the exchange of identical particles in order to maintain the nodal surface defined by the
rest of the wave function. It must also have a simple and physically-motivated form and
be easy to evaluate. One of the features of the Jastrow factor is that it can conveniently
be used to enforce the Kato cusp conditions [125] which determine the behaviour of the
wave function when two charged particles approach one another. Enforcing the Kato cusp
conditions does not necessarily improve the variational energy, but the reduction in the
variance of the local energy is often very important.

DMC can be viewed as VMC with a perfect Jastrow factor, but improving the Jastrow
factor can improve DMC calculations in several ways. Improving the trial wave function
reduces the time-step errors and (normally very small) population-control errors [43] that
the DMC algorithm is subject to. Using highly accurate trial wave functions helps in
achieving more accurate results when evaluating expectation values of operators which do
not commute with the Hamiltonian in DMC. Similar considerations apply when using non-
local pseudopotentials, which involves making some approximations that are ameliorated
by improving the trial wave function [59, [61]. As the fundamental limitation on the

accuracy of DMC is the quality of the nodal surface, it is desirable to use trial wave
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4.2 CONSTRUCTION OF A GENERIC JASTROW FACTOR

functions with optimizable nodal surfaces as afforded, for example, by multi-determinant
wave functions and backflow transformations. A good Jastrow factor can account for
the bulk of the dynamical correlation energy, which allows the optimization of parameters
which affect the nodal surface to achieve a better nodal surface. The improved form of the
wave function is also reflected in the lower variance and hence statistical error bars. The
efficiency gain from using a more complex Jastrow factor in DMC is therefore a balance
between the increase in cost of evaluating the wave function and the savings from more
efficient sampling of configuration space afforded by larger time steps.

Here we introduce a highly flexible form of Jastrow factor which allows for the intro-
duction of a variety of terms involving different numbers of particles. This allows one
to quickly implement different functional forms and explore the importance of different
correlations in any physical system we study.

Jastrow factors correlating several electrons have been used in earlier calculations,
such as those of Refs. [126, 124, [127]. We study the effects of various three-body Jastrow
terms and introduce a four-body van der Waals-like term. We also construct anisotropic
Jastrow factors that can capture the natural symmetries of a system. We have successfully
applied this generic Jastrow factor to a variety of systems, and we report results for the
one- and two-dimensional homogeneous electron gases, the Be, B, and O atoms, and the
BeH, H,0O, Ny, and Hy molecules.

We briefly describe the form of the new Jastrow factor in Sec. 4.2 The development
of the new Jastrow factor described in Sec. and its implementation in CASINO was
performed by Pablo Lépez Rios. I tested the code, reported bugs and produced the results
presented in Sec. with this new Jastrow factor.

4.2 (CONSTRUCTION OF A GENERIC JASTROW FACTOR

QMC methods can be applied to systems which can be generically described as an ensem-
ble of N quantum particles and M sources of external potential. For simplicity, we refer
to quantum particles as electrons and to external potentials as nuclei in the rest of this
chapter. Our Jastrow factor can be easily extended to other types of quantum particles
and external potentials.

Typically J(R) is constructed as a sum of terms, e.g.,

J(R) = Joee(R) + Jeen(R) + Jocen(R) + . . ., (4.1)

” o«

where “e—e” stands for “electron-electron,” “e-n” for “electron—nucleus,” etc. Each of
these terms involves different numbers of electrons n and nuclei m. We shall refer to n
and m as the electronic and nuclear ranks of a term, respectively, which are constrained

to satisfy n +m > 2, n > 1, and m > 0. We have designed a generic Jastrow term
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4.2 CONSTRUCTION OF A GENERIC JASTROW FACTOR

of selectable ranks, J,,(R), such that the total Jastrow factor is constructed as the
exponential of a sum of one or more terms of the desired ranksﬂ.

The function J,,,(R) is a sum over all sets of n electrons and m nuclei in the system
of a parametrized function of the e-e and e—n relative position vectors within each such
set. While alternatives exist, a natural way of parametrizing this function for arbitrary
values of n and m (implying an arbitrary number of variables in the function) is to expand
it in products of functions of the individual e—e and e—n vectors. Thus, we construct our
Jastrow factor using these pairwise objects as building blocks.

We name the e—e functions used in the expansion ®f'(r), where r is the relevant e—e
relative position vector, v is the index of the function within a chosen basis of functions,
and P is the e—e dependency index, which allows the use of different optimizable param-
eters, if present, for parallel- and anti-parallel-spin electron pairs, for example. Similarly,
the e-n basis functions are @5 (r), where r is the relevant e—n relative position vector, p is
the index of the function within the chosen basis set, and S is the e-n dependency index of
the basis set, which allows the use of different parameters for up- and down-spin electrons
around a given nucleus, or for different atoms, for example. In the case of non-electronic
systems, e—e and e—n dependency indices are used to distinguish between particle types
and spins.

We introduce a compact notation for defining J,, ,,(R). We represent the n electronic
indices by the integer vector i = (i1, 4s, ..., 4,), each of whose components takes a distinct
value between 1 and N, and the m nuclear indices by the integer vector I = (Iy, Iy, ..., I,),
each of whose components takes a distinct value between 1 and M. For each term in the
Jastrow factor we define the e—e and e—n dependency matrices P and S of respective sizes
N x N and N x M containing the dependency indices F;; and S;; for each e-e and en
pair. The components of P and S can be made equal depending on the symmetries of
the system, including particle distinguishability and geometrical symmetries which make
different nuclei equivalent.

It is convenient to use matrices to represent the basis functions involved in the Jas-
trow factor term. For e—e basis functions, each row and column of the n x n matrix ¢

corresponds to an electron,

P Py
0 L7 (riyiy) o Ol (Tiga,)
Piji Piai
b w::;:(rml) o @ufsfiffrw , (4.2)
P P
@Villlil: (rln'll) ®V7:Z227;L: (anzZ) T 0

Both P(i), the n x n matrix formed by the e—e dependency indices, and the n X n matrix

of e—e expansion indices v are defined to be symmetric, and this fact has been used in Eq.

n this notation, Je—e = J2.0, Joen = J1.1, Jo—e—n = Jo 1, etc.
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4.2 CONSTRUCTION OF A GENERIC JASTROW FACTOR

(4.2). Noting that r; = —r;;, and restricting the e-e functions to be either symmetric
or antisymmetric about the origin, one finds that ® is symmetric, antisymmetric, or
asymmetric depending on whether the functions in the basis set are all symmetric, all
antisymmetric, or both types are present, respectively.

For e—n basis functions each row of the n x m matrix © corresponds to an electron

and each column to a nucleus,

Si SirIm
@mig (rilh) T @:"“iiﬁm <ri1]’")
Sys : :
6,@11) = 1 : ’ 4

S, S,
@#222 (r'LnIl) e @/—L;ZZZ (r’LnIm)

We refer to the n x m matrix of e-n dependency indices as S(i,I), and the n x m matrix
of e-n expansion indices as p.
We write J, ,,, as a sum of contributions from each group of n electrons and m nuclei

in the system,
1 ) il
Jn,m = m Ei EI Jn,m(l I E E Jnm 1 I (44)

where summations with vector indices represent sums in which every component of the
vector is a summation index, and “s.v.” (for “sorted vector”) indicates that the sum is
restricted to vectors whose components are sorted, e.g., i1 < iy < ... < 1,, which avoids

redundant contributiong’l The contribution from the n-electron and m-nucleus group

{i, I} is
T (i, 1) = ZZ)\P( 11>Hc1>P ) [[ed6 D, (4.5)

where A\ are the linear parameters, summations with matrix indices represent sums in
which every component of the matrix is a summation index, || acting on matrices implies
the product of all of their components, and “u.t.” means that the relevant operation is
restricted to the upper-triangular portion of the e—e matrices involved, excluding the

diagonal.

4.2.1 INDEXING OF BASIS FUNCTIONS

The components of v and p are the e-e and e-n expansion indices. We define the expansion
indices so that they can each take any value between 1 and the e—e expansion order p, and

between 1 and the e-n expansion order ¢, respectively. We factorize an optional cut-off

2For example, Zgéj fi,j contains N (N —1) terms, but if f; ; = f;,, this operation can be simplified to

Zf\;j fi,j» which contains N(N — 1)/2 terms. In general, the sum of an object which is symmetric with
respect to the interchange of any of its n indices, where these indices take non-repeated values, can be
rewritten as a sum over sorted sets of indices involving n! times fewer terms than the original sum.

60



4.2 CONSTRUCTION OF A GENERIC JASTROW FACTOR

function into ®}’ and ©%, so that

@, (r) = f'(r)¢, (r) (4.6)

for v > 0, and
05 (r) = ¢°(r)6; (r) (4.7)

for u > 0, where f¥ and ¢g° are the e-e and e—n cut-off functions and ¢f and 95 are
functions from a suitable basis set. This factorization allows an efficient implementation
of localized Jastrow factor terms.

Additionally, we allow expansion indices to take a value of zero with the special mean-
ing that ®{’(r) = ©5(r) = 1 for all P, S, and r. Note that these zeroth-order functions do
not contain cut-off functions. This allows us to construct terms with specialized functional

forms, such as those involving dot products of vectorial quantities.

4.2.2 (CONSTRAINTS

Constraints on the parameters can be expressed in the form of a system of equations
involving the linear parameters and the basis function parameters. We restrict our analysis
to linear constraints on the linear parameters, and constraints that can be imposed on
the non-linear parameters contained in a basis function independently from the linear
parameters and from non-linear parameters in other basis functions.

Linear constraints on the linear parameters can be imposed using Gaussian elimina-
tion, as described in Ref. [84]. The matrix of coefficients may depend on the non-linear
parameters in the basis functions, if present, and the linear system is usually underde-
termined, resulting in a subset of the parameters being determined by the values of the

remaining parameters, which can be optimized directly.

4.2.2.1 SYMMETRY CONSTRAINTS

Equation imposes the condition that J,,,(i,I) must not depend on the specific
ordering of the electrons and nuclei listed in i and I. The linear parameters of the
Jastrow factor must exhibit a symmetry that implies that a parameter with a given
set of superindices {P(i),S(i,I)} is determined by another parameter with a permuted set
of superindices {P'(i),S'(i,I)}. This redundancy is removed by considering only one of
the possible permutations of {P(i),S(i,I)}, or the signature. These symmetry constraints
amount to equalities between pairs of parameters and must always be imposed, otherwise

the trial wave function is unphysical and calculations give erroneous results.
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4.2 CONSTRUCTION OF A GENERIC JASTROW FACTOR

4.2.2.2 (CONSTRAINTS AT E-E AND E-N COALESCENCE POINTS

The Coulomb potential energy diverges when the positions of two electrons or an electron
and a nucleus coincide. However, the local energy of an eigenstate of the Hamiltonian,
including the exact ground-state wave function, is finite and constant throughout config-
uration space. Divergences in the local energy are therefore not a feature of the exact
wave function and can lead to poor statistics in QMC calculations; hence it is impor-
tant to avoid them. The kinetic energy must diverge to cancel out the potential energy
and keep the local energy finite, which is achieved by demanding that the wave function
obeys the Kato cusp conditions [125]. For any two charged particles ¢ and j in a two- or

three-dimensional system interacting via the Couloumb potential, these are

1 9 2qiq; i
— = Dury 4.8
<\If 87"@') d+1 ’ ( )
Tij_>0

where ¥ denotes the spherical average of W, ¢ represents charge, p;; = m;m;/(m;+m;) is

the reduced mass, m represents mass, d is the dimensionality, and the positive sign in the
denominator is for indistinguishable particles and the negative sign is for distinguishable
particles. Fixed nuclei are regarded as having an infinite mass.

As typical forms of ¥ explicitly depend only on e—n distances, it is common practice
to impose the e—n cusp conditions on Wy, and the e—e cusp conditions on the Jastrow
factor. Our implementation allows the option of applying both types of cusp conditions
to the Jastrow factor, which gives flexibility in the choice of ¥p and its properties. In
particular, we impose the cusp conditions on a single Jastrow factor term, and constrain
all other terms in the Jastrow factor so that their contribution to the local kinetic energy
is finite at e—e and e—n coalescence points. For non-divergent interaction potentials, such
as most pseudopotentials, we simply require that the kinetic energy remains finite at
coalescence points. Our implementation is also capable of not applying any constraints
at e-e and e-n coalescence points since this is advantageous in some cases [128, 129], as
discussed in Sec. [£.4.3.5]

Imposing that the kinetic energy be finite at coalescence points is non-trivial if the
Jastrow factor contains anisotropic functions. As two particles coalesce, V.J and V2J

must remain finite, and this gives rise to further constraints that must be satisfied.

4.2.2.3 OTHER CONSTRAINTS

It is possible to construct terms containing dot products by using appropriate constraints.
For example, consider the basis functions ©(r) = z, O(r) = y, and O3(r) = 2. In an
e-n-n term we can restrict the indices so that u takes only the values (1 1), (2 2), (3 3),
so that the contribution of electron ¢ and nuclei I and J is r;; - r;;, provided we also apply

a linear constraint that equates the three non-zero linear coefficients.
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It is also possible to introduce Boys-Handy-style indexing [13], where the sum of all

e—e and e—n indices is restricted to be less than or equal to some fixed integer .

4.3 BASIS FUNCTIONS AND TERMS

We employ a condensed notation to refer to Jastrow terms that use certain basis functions,
cut-off functions and constraints. Each term is represented by a single capital letter, with
n and m as subindices. Any other relevant information is given as a superindex. Table
summarizes the notation for the terms we have introduced.

Possibly the simplest basis set is the natural powers,
N, (r) =71 (4.9)

as used in the DTN Jastrow factor for the localized u, y, and f terms [84]. These functions
need to be cut off at some radius L, for which purpose the DTN Jastrow factor uses the

polynomial cut-off function
D(r) = (r — L)YO(L —r), (4.10)

where L is an optimizable parameter, C' is a positive integer, and O(r) is the Heaviside

step function. We also use a slightly different version of this cut-off function,
P(r) = (1—7r/L)°O(L —7), (4.11)

which should be numerically superior to D(r).

For simple Jastrow terms we use the natural power basis functions N, and the poly-
nomial cut-off functions P or D. We refer to these terms as Ny ;. Nag, N1 1, and Ny
are the equivalent of the DTN u, x, and f terms, respectively. In the Ny; term, and in
any term where more than one electron and one or more nuclei are involved, we choose
not to apply e—e cut-off functions, relying instead on the e-n cut-offs to fulfill this role.
Additional N,, ,,, terms used here that were not part of the DTN Jastrow factor are Ny o,
N3, N13, Nao, N3q, and Nyg. In N, ,,, we typically use a truncation order in the cut-off
function of C' = 3 to ensures that the local energy is continuous.

A particular variant of P(r) is the anisotropic cut-off function

()

d -1
Ar) =1 —r/D)°eL - ] {r'“ﬁ} : (4.12)
( B

r

where L is an optimizable parameter, C' is a positive integer, d is the dimensionality of the

system, Ug are unit vectors along d orthogonal directions, ¢; are real-valued constants, and

63



4.3 BASIS FUNCTIONS AND TERMS
pg) are integer exponents, which are constrained so that Zg pg) is the same for all values
of i. This cut-off function is simply the product of an isotropic cut-off function and a
spherical harmonic. For example, with ¢; = 3, ¢c; = —1, p¥ = (21 1), and p® = (0 3 1),

and the vectors pointing along the Cartesian axes, we obtain

2 _ .2

A(r) = (1 — r/L)°O(L — 1) {mr—f)ﬂ , (4.13)
which is proportional to a real spherical harmonic with [ = 4. The advantage of describing
anisotropy in the cut-off function rather than in the basis functions is that the common
spherical harmonic can be factorized out of the sum over expansion indices, which reduces
the computational cost. We allow different orientations to be used for different e—e or e-n
dependency indices, which is useful to adapt the functional form to, e.g., the geometry of
a molecule.

We use Afll}n to refer to the anisotropic variant of IV, ,,,. This term consists of natural
power basis functions N, and the anisotropic cut-off function A, and “s.h.” is a placeholder
for the description of the spherical harmonic. For example, for the highly anisotropic Ny
molecule we use terms such as Af ;, AiZu A3, and A;i.

An alternative to the natural-power basis in finite systems is a basis of powers of

fractions which tend to a constant as r — 0o, and therefore do not need to be cut off. We

define the basis o
r
F,(r) = , 4.14
w=(s) (1.14)

where a and b are real-valued optimizable parameters. Similar basis sets with b = 1
have been used in the literature, often in conjunction with Boys-Handy-style indexing
[13, 130, 1311, [128], and this basis was used in Chapter [3| with an early implementation of
the Jastrow factor presented here.

The F, basis functions are used in terms F,, ,,, or Fﬁfnl when we force b = 1 in the

basis functions. In some systems it is useful to apply Boys-Handy-style indexing to Ffﬁnl,
and we refer to the resulting term as B,, ,.
In extended systems it is important to use a basis that is consistent with the geometry

of the simulation cell and has the periodicity of the system, such as a cosine basis,

Cy(r) = Z cos (G -r), (4.15)

Gev-th star

where the G vectors are arranged in stars defined by the cell geometry.

Terms denoted by C,,,, use of the cosine basis functions C,. We choose expansion
orders so that at least as many G vectors as electrons in each spin channel are included
in the expansion. These terms capture correlation in the corners of the simulation cell

beyond the cut-off radius of N, ,, terms. They are also important in describing strongly
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4.3 BASIS FUNCTIONS AND TERMS

anisotropic materials. However, the long-range nature of these terms makes them more
computationally expensive to evaluate.

Uy and C; correspond to the DTN p and ¢ terms, respectively. While these terms
are computationally expensive to evaluate as they are not cut off at any distance, they
are also important in describing strongly anisotropic materials.

A suitable basis set for building specialized terms containing dot products is

\% (I.) — rint[(u—l)/d] r- 1Almod(u—l,d)ﬂ
T

, (4.16)

where d is the dimensionality of the system and Gz are the d unit vectors parallel to the
Cartesian axes. A term constructed using these functions with appropriate constraints
would consist of dot products between two vectors multiplied by a natural-power expan-
sion in their moduli.

To test the flexibility of our implementation we have designed an e-en-n Jastrow
term for describing the correlations associated with van der Waals interactions, which
we call Vo5, This term is capable of distinguishing between configurations where the
electron-nucleus relative position vectors r;; and r;; are parallel from those where they
are anti-parallel. Introducing a dot product achieves this effect, and V4 5 has the following

functional form,

1 N M p q
VY2,2 = §ZZP(TU)P(TJ'J)Z Z /\ViniIHiJ

£ I#J Vig MilsHgJ
X Ny, (7i5) Ny (rir) Ny, 5 (r0)vir - 157 (4.17)

We require basis functions to be scalars in our Jastrow factor, so the dot product is
separated into its components. Hence, we construct the V59 term using V, for the en
basis with P as the e-n cut-off functions, and N, for the e—e basis. We allow e-n indices

to be zero.

TABLE 4.1: Notation for Jastrow terms correlating n electrons and m nuclei using different
basis functions.

Name Basis set Cut-off function Special constraints

N,.m  Natural powers Polynomial None

Fom  Powers of r/(r® + a) None None

B,  Powers of r/(r + a) None Boys-Handy-style indexing
Af,;}}ﬁ Natural powers Anisotropic polynomial None

Chm  Cosines None None

Vom  Natural powers times unit vectors Polynomial Dot product
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4.4 RESULTS

We have used a variety of methods to optimize our Jastrow factors, namely variance
minimization, minimization of the mean absolute deviation of the local energy with respect
to the median energy, and linear least-squares VMC energy minimization [81, 82]. All of
our final wave functions are energy-minimized except where otherwise stated. Starting
with the Hartree-Fock wave function, we progressively introduce Jastrow terms and re-
optimize all of the parameters simultaneously. Optimizing the Jastrow factor term-by-
term is unnecessary in practical applications, but here it allows us to understand the
importance of the different terms. We refer to the total number of optimizable parameters
in the wave function as N,,.

To measure the quality of the trial wave function ¥, we again use the fraction of the
correlation energy retrieved in a VMC calculation with a given trial wave function W,

_ Eur — Eymc[Y]

V| = . 4.18
fCE[ ] EHF - Eexact ( )

We refer to the difference between the DMC and HF energies as the DMC correlation
energy, Enr — Epyc[¥]. The fraction of the DMC correlation energy retrieved in VMC,

Eur — Evyc[Y]

fDCE[‘I’] = Eur — Epyc [@]7

(4.19)

measures the quality of the Jastrow factor, since a perfect Jastrow factor would make
the VMC and DMC energies coincidd’] We define the fraction of the remaining DMC

correlation energy recovered by a wave function ¥y with respect to another ¥, as

Evac|[Vi] — Evmc|Ys)
Evac|[¥1] — Epyc|Ps)

(4.20)

As VMC variance tends to its lower bound of zero as ¥ tends to an eigenstate of
the Hamiltonian, the variance is also a measure of the overall quality of the trial wave

function.

4.4.1 HOMOGENEOUS ELECTRONS GASES
4.4.1.1 ONE-DIMENSIONAL HOMOGENEOUS ELECTRON GAS

We have studied a 1D homogeneous electron gas (HEG) of density parameter r; = 5 a.u.
consisting of 19 electrons subject to periodic boundary conditions using a single Slater
determinant of plane-wave orbitals. The ground-state energy of an infinitely thin 1D HEG

in which electrons interact by the Coulomb potential is independent of the magnetic state,

3In general, attaining the DMC limit in VMC would require non-analyticities in the Jastrow factor.
Nonetheless this theoretical limit is useful for assessing the performance of a Jastrow factor.
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and hence we have chosen all the electrons to have the same spin. This system is unusual
in that the nodal surface of the trial function is exact, and therefore DMC gives the exact
ground-state energy, which we have estimated to be —0.2040834(3) a.u. per electron.
Excellent results were reported for this system in Refs. [133] [134] using wave functions
with e—e backflow transformations [124] [69] which preserve the (exact) nodal surface of the
Slater determinant. Our VMC results for different Jastrow factors are given in Table [£.2]

TABLE 4.2: Energies (F) and VMC variances (V) of the 1D HEG at r; = 5 a.u. using
different Jastrow factors. The use of backflow is indicated by “(BF)”.

N, FE (a.u. per electron) V (a.u.) foce (%)

HF —0.191653064 0

Na 9 —0.204076(1) 0.0000654(7)  99.941(8)
Nao+Ca 18 —0.2040824(7) 0.0000168(3)  99.992(6)
Ny o+Ca0+Nso 45  —0.2040831(2) 0.00000171(3)  99.998(3)
Ny o+Cho+Csyg 52 —0.2040832(6) 0.0000127(3)  99.998(5)
Nao+Chg+N30+Cs 79 —0.2040833(2) 0.00000105(3)  99.999(3)
Ny (BF) 18 —0.2040816(5) 0.00000809(6)  99.986(5)
Ny o+Csy (BF) 27 —0.2040833(2) 0.00000104(3)  99.999(3)
Ny g+Ch0+Nso (BF) 54 —0.2040832(1) 0.00000055(2)  99.998(3)
Ny +Cy0+Cs (BF) 61 —0.20408310(7) 0.00000020(1)  99.998(3)
Ny o+Cy+Nsg+Cso (BF) 88 —0.20408310(7) 0.00000020(1)  99.998(3)
DMC —0.2040834(3) 100.000(4)

TABLE 4.3: e—e expansion orders (p) used for the different Jastrow terms in the 1D HEG.

Noog Nzo Cao Cip
p 9 5 10 5

We have investigated the improvement in VMC results when various terms are added
to an e—e Jastrow factor J = Ny o+ Cs, both with and without backflow transformations.
In the absence of backflow, we find that including N3, Cs, or N3 4 Cs improves the
VMC energy, while the subsequent addition of U, yields no further gain. We observe
a ten-fold reduction in the variance upon addition of N3 to J = Nag + Ca9. The Cs
term does not duplicate the N3, term, and they combine to give a further reduction in
variance.

VMC gives an almost exact energy with backflow and J = Ny + Cs, and therefore
no further reduction is possible by including more Jastrow terms. However, the addition
of N3y + Csq reduces the VMC variance by a factor of five, giving a variance that is an
order of magnitude smaller than that reported in Ref. [133] for a similar calculation.

The energy of a SJ wave function with a J = Ny ¢+C5 0+ N3¢ containing 45 optimizable

parameters is within error bars of the exact (DMC) energy, while a SJB wave function
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with only J = Ny + Cs and a total of 27 optimizable parameters is required to achieve
this. Backflow transformations introduce the variational freedom more compactly than
the N3 term.

4.4.1.2 TwWO-DIMENSIONAL HOMOGENEOUS ELECTRON GAS

We have studied a paramagnetic 2D HEG with 42 electrons per simulation cell at r, =
35 a.u., which lies close to the ferromagnetic Wigner crystallization density predicted by
Drummond and Needs [72]. Kwon et al. [124] found that three-electron correlations are
important at low densities, and that the effect of a three-electron Jastrow factor on the
VMC energy is comparable to that of backflow. At higher densities, the effects of velocity-
dependent backflow transformations become more dominant. This makes low densities
appealing for testing higher-rank Jastrow terms. The VMC energy and variance obtained
using different Jastrow factors with and without backflow is plotted in Fig. and the
results are given in Table [4.2]

The addition of an N3, term to J = Naj recovers 81% of the remaining DMC cor-
relation energy without backflow and 49% with backflow. The Cy term further reduces
both the VMC energy and variance. The use of a C5 o term recovers 10% of the remaining
DMC correlation energy when added to J = Ny g+ Cy, but it was not used further since
the lack of a cut-off function makes calculations with C's o too costly for the little benefit
it provides.

We have also performed DMC calculations using two different Jastrow factors in the
presence of backflow in order to quantify the indirect effect of the quality of the Jastrow
factor on the quality of the nodes of the wave function. We obtain a DMC energy of
—0.0277072(1) a.u. per electron for J = Ny, and a lower energy of —0.0277087(1) a.u.
per electron for J = Ny g+ N3+ Cap. This supports the idea that a better Jastrow factor
allows the backflow transformation to shift its focus from the “bulk” of the wave function

to its nodes, thus improving the DMC energy.

4.4.2 BE, B AND O ATOMS

While excellent descriptions of these atoms can be obtained within VMC and DMC using
multi-determinant wave functions with backflow correlations [132]85], we have used single-
determinant wave functions since we are only interested in the effects of the Jastrow factor.
The decrease in quality of the Jastrow factor for heavier atoms can be attributed to the
increase in inhomogeneity as Z increases. The higher-order terms are expected to therefore
give improve the wave function. We have studied the ground states of the Be, B, and
O atoms, corresponding to 'S, 2P, and 3P electronic configurations, respectively. The
ATSP2K code [83] was used to generate numerical single-electron HF orbitals tabulated

on a radial grid. We have investigated the use of Jastrow factors with up to four-body
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FIGURE 4.1: VMC energies against the VMC variance for the 2D HEG at r, = 35 a.u.
using different Jastrow factors, along with the DMC energies for reference. The error bars
are smaller than the size of the symbols, and “(BF)” indicates the use of backflow.

TABLE 4.5: e—e expansion orders (p) used for the different Jastrow terms in the 2D HEG.

Noog Nzog Cao Csp
P 9 4 5 3
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terms, but we have not used backflow for these systems. The energies of Chakravorty et

al. [88] have been used as “exact” reference values. Our VMC results for Be, B and O are
given in Table

TABLE 4.6: Energies (F) and VMC variances (V') for the Be, B and O atoms using
different Jastrow factors.

N, FE (a.u.) Vi(au)  fee(%)  foce(%)

Be atom
HF —14.573023 0 0
FootFia+Fy 103 —14.65062(7) 0.0445(5)  82.26(7)  92.22(9)
Foot+Fii+For+Fso 160 —14.6512(1)  0.0470(3) 82.9(1)  92.9(1)
Foot+Fii+Fo+Fsy 170 —14.6522(1)  0.051(1)  83.9(1)  94.0(1)
VMC from Ref. [85] —14.6311(1) 61.6(1)  69.0(1)
VMC from Ref. [I35] —14.64972(5) 81.30(5)  91.15(7)
DMC —14.65717(4) 89.20(4) 100.00(7)
Exact from Ref. [SS] —14.66736 100

B atom
HF —24.529061 0 0
FaotFi+Fo, 103 —24.6299(1)  0.093(1)  80.77(8)  90.9(1)
FootFia+Fo +Fs, 185 —24.6302(1)  0.0960(5)  81.01(8) 91.1(1)
FrotFia+Foi+Fyy 195 —24.6300(2)  0.0973(6) 81.6(2)  91.8(2)
VMC from Ref. [85] —24.6056(2) 61.3(2)  69.0(2)
VMC from Ref. [135] —24.62936(5) 80.34(4)  90.39(7)
DMC —24.64002(6) 88.87(5) 100.00(8)
Exact from Ref. [8§] —24.65391 100

O atom
HF —74.809398 0 0
FyotFii+Fas 103 —75.0341(2)  0.550(2)  87.13(8)  92.97(9)
FootFia+Fo +Fso 185 —75.0368(4) 0.577(2)  88.2(2)  94.1(2)
FootFia+Foa+F;y 195 —75.0381(3)  0.498(2)  88.7(1)  94.6(1)
VMC from Ref. [85] —75.0233(3) 82.9(1)  88.5(1)
VMC from Ref. [135] —75.0352(1) 87.55(4)  93.42(6)
DMC —75.0511(1) 93.72(4) 100.00(6)
Exact from Ref. [8§] —75.0673 100

TABLE 4.7: e—e and e—n expansion orders (p and ¢, respectively) used for the different
Jastrow factor terms in the Be, B, and O atoms.

Fyy Fin Iy F3y
p 9 — 5 3
q - 9 5 3

We obtain lower single-determinant VMC energies for the Be, B, and O atoms with J =
Fy0+F1 1+ Fy, than reported in Refs. [85], [135]. We obtain further small improvements in

the VMC energies by including either F5, or F3; Jastrow terms, but their combination,
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Fs50 + F34, is not found to be advantageous over using the terms individually. This
indicates that F3, and Fjs;, the latter of which provides a slightly lower VMC energy
than the former, have nearly the same effect in these atoms. These three-electron terms
should be particularly useful in describing correlations involving electrons in the atomic
core region. We expect F3; to be more useful than Fj, in molecules and solids because it
should be able to adapt to the different length scales in these systems, whereas F3 offers
a homogeneous description of three-electron correlations. We have investigated the effect
of adding a F}; term in Be and O, but it does not reduce the VMC energy or variance
when added to J = Fyo + F1 1 + Fo1 + Fy ;5.

Our best VMC energies of —14.6522(1) a.u., —24.6309(2) a.u., and —75.0381(3) a.u.
for Be, B and O respectively correspond to fractions of the DMC correlation energy of
94.0(1)%, 91.8(1)%, and 94.6(1)%.

4.4.3 BEeH, Ny, HoO AND Hy MOLECULES

The BeH, Ny and HyO molecules are strongly inhomogeneous and anisotropic systems.
We have used basis sets of moderate quality for the single-electron orbitals of BeH and
Ny in order to investigate the extent to which the Jastrow factor can compensate for the
deficiencies of the basis sets, especially via one-electron terms Ny ,,,. For HyO and the H,
triplet we have used very good basis sets. We have also tested anisotropic Jastrow factors

in Ny, and a van der Waals-like Jastrow factor for Hs.

4.4.3.1 BEH MOLECULE

We have studied the all-electron BeH molecule in the 2X* ground state configuration
at a bond length of 2.535 a.u. [I36]. We have used a single-determinant wave function
containing Slater-type orbitals generated with the ADF package [137], with which we
obtain a reference DMC energy of —15.24603(4) a.u. Our results are given in Table

The addition of Ny5 to J = Nag + Nig + Naoj recovers 11% of the remaining DMC
correlation energy. We find no significant gain from adding either an Ny 5 term or an N3
term to J = Nao + Nij + Nag + Ny, possibly due to the large number of parameters
that needed to be optimized.

4.4.3.2 Ny MOLECULE

We have studied the 12; ground state of the Ny molecule at the experimental bond length
of 2.074 a.u. [136] HF orbitals were generated in a Slater-type basis using the ADF package
[137]. Our VMC results for different Jastrow factors are given in Table along with
relevant reference energies.

Adding an N5 term to J = Nyg + Ny 1 + Ny recovers 33% of the remaining DMC

correlation energy and leads to a significant reduction in the VMC variance. The sub-
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TABLE 4.9: e—e and e—n expansion orders (p and ¢, respectively) used for the different
Jastrow factor terms in the BeH molecule.

Noog Nig Nip Nay
p 9 - - 4
q — 9 4 4

sequent addition of Nyo provides a reduction in the VMC energy of 13% of the re-
maining DMC correlation energy. We have tested adding N3, N3i, and Nyp terms
to J = Nog+ Ni1+ Noj+ Nao, but neither of these yield any improvements in the VMC
energy.

The anisotropy of this system is expected to be captured by terms containing e—n
functions that treat the bond as a special direction. We have aligned the z-axis of our
reference frame along the N-N bond in our calculations, and A7, is then the simplest
explicitly anisotropic term that reflects the geometry of the system. The A7, and Af
terms must be zero by symmetry and we have therefore not used them. There are five
spherical harmonics with [ = 2, which are respectively proportional to xy, xz, yz, x> — 2,
and —z? — y? 4 222, We find that only the last one of these, which we refer to as 22, has
a significant effect on the VMC energy.

The VMC energy with J = Nog+ N11 + Nay + Ajl is within statistical uncertainty
of that with J = Ny + Ny 1 + Naj + Ny, but the former Jastrow factor contains about
a third fewer parameters than the latter. The combination of the Nj, and A7 terms
into J = Nog+ Nyj + Nag + Nio+ Ai1 does not improve the VMC energy compared
with the other two Jastrow factors. These results suggest that the terms Ny, and Af
play similar roles in the wave function, which we find reasonable since NN; o, although
constructed from isotropic basis functions, contains the right variables to capture the
symmetry of the molecule in much the same way as Af; does. We have plotted the A7,
term for J = Nog+ Ny 1+ Noy —|—Ail and the Ny o term for J = Nyg+Nj1+Nai+Njgin
Fig. where the similarity between the terms can be seen. The value of the N; o term
is roughly the same as that of Af, offset by a positive amount, and this shift is likely to
be compensated for by the other Jastrow factor terms. Both terms increase the value of
the wave function in the outer region of the molecule with respect to that in the bond
region.

We have added different combinations of anisotropic terms to J = Ny + Ny 3 + Naj.
The e-e-n A3, term retrieves less correlation energy than the en A7, term. The Af,
term does not improve the Njo+N;;+N;o Jastrow factor and it was not considered
further. Combining terms with spherical harmonics of [ = 1 and [ = 2 improves the VMC
energy significantly with respect to using [ = 1 only. The anisotropic Jastrow factor
J = Noo+ Nig+ Noy+ A7 | + Aijzl + A5, + A;i, which contains up to e-e-n correlations
and has 191 optimizable parameters, recovers 93.3(1)% of the DMC correlation energy.
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0.2 B/ (@) (b) 0.4
0.
0.2 04

FIGURE 4.2: Plots of the (a) A7, term and (b) Ny term for Ny as a function of the
position of an electron in a 12 a.u. x 12 a.u. plane containing the nuclei, indicated by
black circles.

This proportion is greater than the 93.0(1)% retrieved by our best isotropic Jastrow factor
J = Noog+ Ni1+ Najg+ Nig+ Nag + N, which includes more costly e-e-n-—n and e
e—e correlations and contains 260 optimizable parameters. We conclude that anisotropic
functions are an important tool in the construction of compact Jastrow factors for strongly
anisotropic systems.

Toulouse and Umrigar obtained 90% of the DMC correlation energy with a single-
determinant wave function [I35], and with our best Jastrow factor we retrieve 93% of
the DMC correlation energy. We have also optimized a single-determinant backflow wave
function with our best Jastrow factor and we obtain a VMC energy of —109.4820(6) a.u.
(89% of the correlation energy), which is of similar accuracy to the multi-determinant
VMC energy of —109.4851(3) a.u. (89.6% of the correlation energy) obtained by Toulouse

and Umrigar.

TABLE 4.11: e—e and e—n expansion orders (p and ¢, respectively) used for the different
Jastrow factor terms in the Ny molecule.

Noog Nig Nizg Noi Nsg Nao Ai}i AZ?
p 9 — - 4 5 5 - 4
q - 9 7 4 — 3 9 4

4.4.3.3 H;O MOLECULE

Single-particle spin-unrestricted HF orbitals for the 'A; ground state of HoO were gen-
erated using the CRYSTAL Gaussian basis set code [I41]. The basis set for O contains
14 s-, 9 p-, and 4 d-functions, and that for H contains 8 s-, 4 p-, and 3 d-functions.
Electron-nucleus cusps have been added using the scheme of Ma et al. [142]. We have

simulated a water molecule with a bond length of rog = 1.8088 a.u. and a bond angle
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of Zyon = 104.52° [143]. Our VMC results for different Jastrow factors are given in
Table along with relevant reference energies.

Adding an N o term to J = Nyo + Ny 1 + Naj gives only a very small improvement
for HyO, compared with the more substantial improvements obtained with this term for
BeH and Nj. The N; term acts as a correction to the single-electron orbitals, and we
believe that it is unimportant in this case because we have used very accurate HF orbitals,
whereas the single-electron orbitals used for BeH and Ny are considerably less accurate.
We find additional small improvements to the energy of HoO from adding N3, and Nj;
terms to J = Nog + Nyiq + Naj.

Clark et al. obtained 92% of the DMC correlation energy with a single-determinant
wave function in Ref. [144], and with our best Jastrow factor we recover 95.5% of the

DMC correlation energy.

TABLE 4.12: Energies (F) and VMC variances (V') for the H,O molecule using different
Jastrow factors. We have used a bond length of rog = 1.8088 a.u. and a bond angle of
Zyon = 104.52° [143).

N, E(au) V(auw) for (%) foce (%)

HF limit from Ref. [13§] —76.0672 0 0

UHF (CRYSTAL) —76.0667 —0.1348  —0.1407
N 18 —76.1640(6) 3.603(7) 26.1(2)  27.2(2)
Noo+Nis 36 —76.3368(3) 3.066(3) 72.71(8)  75.86(9)
Nao+Npi+Nps 04 —76.3373(3) 3.051(6) 72.84(8)  76.00(9)
Nao+Np1+Noy 266 —76.4030(2) 0.87(1)  90.56(5)  94.49(6)
Nao+Np1+Noy+ Ny 325 —76.4035(2) 0.812(4) 90.70(5)  94.63(6)
Noot Ny 14 Noy + Ny ot Nyy 410 —76.4053(2) 0.829(5) 91.18(5)  95.13(6)
Noo+Ni1+Noi+Nio+Ns; 741 —76.4068(2) 0.794(6)  91.59(5)  95.55(6)
VMC from Ref. [143] —76.3773(2) 83.63(5)  87.25(6)
VMC from Ref. [145] —76.3803(4) 84.4(1)  88.1(1)
VMC from Ref. [144] —76.3938(4) 88.1(1)  91.9(1)
DMC —76.4226(1) 95.85(3)  100.00(4)
Exact from Ref. [143] —76.438 100

TABLE 4.13: e—e and e—n expansion orders (p and ¢, respectively) used for the different
Jastrow factor terms in the HyO molecule.

Nog Nig Nig Noi Nsg Niy

» 9 - - 5 5 3
g - 9 7 5 - 3

4.4.3.4 H, SINGLET

We studied the 12; singlet spin ground state at the equilibrium bond length rgy =
1.4011 a.u. [I36] using cusp-corrected [142] HF orbitals. These orbitals were generated
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by optimizing the coefficients and exponents of 13 s-, 6 p- and 4 d-functions using the
CRYSTAL Gaussian basis set code [I141]. Our results are presented in Table [4.14]

HF

N2,0+N1,1+ N2,1+N1,2+N2,2

T | L L 31 3 3133l L L 3 3 s aal L L
10° 10 10™

VMC variance (a.u.)

FIGURE 4.3: Difference between the VMC and exact energy against the VMC variance
for the Hy singlet spin ground state using different Jastrow factors.

The Ny term was able to recover a larger proportion of correlation energy in VMC for
the Hj singlet state than was possible for other systems. When the N, ; term is included,
the wave function was able to recover over 95% of the correlation energy. This reflects
the simple electronic structure of the system.

Upon addition of the Ny; term to J = Ny + Ny 1, the Ny term e—e cut-off increases
from 6.3 a.u. to 7.3 a.u. while the Ny ; e n cut-off increase from 5.1 a.u. to 5.8 a.u. The
N5 1 en cut-off optimizes to 4.0 a.u. These changes in cut-off values demonstrate that the
Ny 1 term is necessary to differentiate length scales even in systems as homogeneous as Hj.
The additional variational freedom provided by the N ; term yields a chemically-accurate
ground-state energy for the singlet state of H,.

The addition of the N; 5 term to either J = Nyg+ Nyq or J = Nag+ Nyq + Naj does
not lead to a significant decrease in energy but the variance is reduced in the latter case.
We conclude that deficiencies in the basis set are largely ameliorated by the homogeneous
Nj; term.

The Jastrow factor Ny g+ Nj 1+ No1+ Nio+ Noo contains all possible terms that can
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4.4 RESULTS

be constructed for this system and gives a VMC energy within error bars of the DMC
energy, which is exact for this system. We conclude that our terms are well-parametrized
and account for all the variational freedom needed for a Jastrow factor for the Hy singlet

state.

TABLE 4.15: e—e and e—n expansion orders (p and ¢, respectively) used for the different
Jastrow factor terms in the Hy singlet.

Noo Nig Nig Nogo Nop

» 9 - - 5 4
g - 9 6 5 3

4.4.3.5 Hy TRIPLET

The energy of the first triplet spin excited state (*3;) of Hy has a very shallow minimum
corresponding to a large bond length of nearly 8 a.u. Although the exchange interaction
falls exponentially with increasing inter-nuclear separation, Kolos and Wolniewicz found
that it contributed significantly to the energy even at the large distance of 10 a.u. [147].
The strong interplay between the attractive dispersion forces and the repulsive exchange
interaction requires that both be accounted for to afford an accurate description of the
triplet state. This makes the system appealing for studying the construction of four-body
Jastrow factor terms to describe van der Waals-like interactions.

We used numerical HF orbitals tabulated on an elliptical grid obtained from the 2DHF
package [148] that were kindly generated by John Trail. HF theory predicts no binding
for the triplet state at any separation, and therefore any binding that occurs in VMC can
be attributed to the Jastrow factor. Unlike the singlet state, the nodal surface of this
state is not determined by symmetry and therefore DMC does not give the exact energy.

We have studied the Hy molecule in the triplet spin state at the inter-nuclear distance of
7.8358 a.u. This separation and the corresponding reference energy of —1.0000208957 a.u.
were found by fitting a quadratic function to the data of Staszewska and Wolniewicz [149].
In a preliminary study, we studied the molecule at a variety of other inter-nuclear dis-
tances in addition to the equilibrium distance, including the singlet spin state equilibrium
distance 1.401 a.u., 2.0 a.u., 4.0 a.u. and 6.0 a.u.

Equilibrium inter-nuclear distance

Previous QMC calculations on Hy at different inter-atomic distances have used Jastrow
factors with up to four-body correlations where the cusp conditions were not enforced
[127, 128], instead relying on the variance minimization method to find parameter values
that approximately satisfy the cusp conditions. This was found to be advantageous for

this system because the additional variational freedom yielded a better description in
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VMC than when the cusp conditions were obeyed exactly [129]. The violation of the
cusp conditions is potentially catastrophic in DMC calculations, but these studies have
restricted the use of such terms to VMC.

We have optlmlzed Jastrow factors consisting of the single e-e-n-n terms V5, 2” 5%
and By s (see Table at several expansion orders, where no constraints are enforced
at e—e or e-n coalescence points. We have used variance minimization for these Jastrow
factors as we found that it produces better results than energy minimization. The results
for the single-term Jastrow factors are given in Table[4.16] We have also optimized Jastrow
factors consisting of different sums of terms which satisfy the cusp conditions using energy

minimization. The results are given in Table and are shown graphically in Fig.

and VMC variances (V') for Hy in the triplet spin state at

TABLE 4.16: Energies (FE)
= 7.8358 a.u. using different cusp-violating single-term Jastrow

a bond length of ryy

factors.

p q¢ N, E (a.u.) V (a.u.) fee (%) foce (%)

HF limit —0.9999828277 0 0

Vi 0 4 11 -1.0000045(4) 0.0000205(1)  57(1) 57(1)
3 3 19 —1.0000100(3) 0.0000153(2)  71.4(8)  T7L.7(8)
4 3 25 —1.0000130(3) 0.000013(2) 79.3(8) 79.6(8)
0 7 29 —1.0000090(3) 0.0000152(1) 68.8(8) 69.1(8)
3 4 31 —1.0000139(3) 0.0000115(1)  SL.6(8)  82.0(8)
4 4 41 —1.0000154(2) 0.0000083(1)  85.6(5)  86.0(6)
3 5 46 —1.0000157(2)  0.00000789(6)  86.4(5)  86.8(6)
4 5 61 —1.0000166(2) 0.0000066(1)  88.7(5)  89.2(6)
6 5 91 —1.0000175(2) 0.0000060(2) 91.1(5) 91.5(6)
5 6 106 —1.0000178(2)  0.000008(1) 91.9(5)  92.3(6)

Bas 4 4 10 —1.0000086(3) 0.00001317(2)  67.7(8)  68.0(8)
5 5 21 —1.0000179(1)  0.00000347(1) 92.1(3) 92.6(4)
6 6 43 —1.00001966(8) 0.000001215(8) 96.8(2)  97.2(3)
7 7 79 —1.00002012(6) 0.00000067(1) 98.0(2) 98.4(3)
8 8 139 —1.00002028(5) 0.000000360(8) 98.4(1)  98.9(3)
0 9 220 —1.00002039(4) 0.000000268(7) 98.7(1)  99.2(3)
10 10 364 —1.00002045(3) 0.00000021(1)  98.83(8)  99.3(3)

Fl5! 2 2 15 —1.0000176(2) 0.00000490(3)  91.3(5)  91.8(6)
3 3 82 —1.00001986(6) 0.000000718(7) 97.3(2)  97.8(3)
4 4 305 —1.00002037(3) 0.000000269(5) 98.62(8)  99.1(3)

DMC —1.0000207(1) 09.5(3)  100.0(4)

Exact?® —1.0000208957 100

@ Exact energy obtained by fitting to the data of Ref. [149].

We have performed the DMC calculations using our best Bj 5 Jastrow factor and obtain
a reference DMC energy of —1.0000207(1) a.u. We have not encountered any statistical
problems in the DMC calculations with this cusp-violating wave function. Such issues can

occur when the local energy has a negative divergence in a region of configuration space
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FIGURE 4.4: Difference between the VMC and exact energy against the number of wave
function parameters for the Hy triplet ground state using different Jastrow factors. Only
the multi-term Jastrow factor enforces the cusp conditions. The error bars are smaller
than the size of the symbol where not shown. All of the wave functions used here predict
binding.
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TABLE 4.17: Energies (£) and VMC variances (V') for Hy in the triplet spin state at a
bond length of rgy = 7.8358 a.u. using different multi-term Jastrow factors.

N, E (a.u.) V (a.u.) fce (%) foce (%)
HF limit —0.9999828277 0 0
Nag 9 —0.9999994(4)  0.00001932(1)  44(1)  44(1)
NootVas 25 —1.0000175(2)  0.000005434(7) 91.1(5) 91.5(6)
Noot N1, 18 —1.0000106(3)  0.00001074(1)  73.0(8)  73.3(8)
Noot N1 14V 34 —1.0000180(2)  0.00000538(1)  92.4(5) 92.8(6)
Noo+ N1 14N 2 34 —1.0000133(2)  0.00000969(1)  80.0(5)  80.4(6)
Noot N1 14Ny 24 Vs 50 —1.0000180(2)  0.000005250(7) 92.4(5)  92.8(6)
Noo+-Ni1+Noy 45 —1.0000177(2)  0.00000476(1)  91.6(5) 92.1(6)
Na.o+ N1+ Noi+Vas 61 —1.0000192(1)  0.000003035(9)  95.5(3)  96.0(4)
Noro+ N1 14+ No 14Ny o 61 —1.0000186(1) 0.00000351(1)  94.0(3)  94.4(4)
Noot NiitNo1+ N1 otVas 77 —1.0000195(1)  0.000002108(6)  96.3(3)  96.8(4)
DMC —1.0000207(1) 99.5(3)  100.0(4)
Exact® —1.0000208957 100

@ Exact energy obtained by fitting to the data of Ref. [149].

with a significant probability of being sampled. We have verified that our wave function
causes a negative divergence in the local energy when an electron coalesces with a nucleus,
leading us to conclude that the region of influence of this divergence is sufficiently small
that statistical problems do not arise in practice.

The FQI’2 and Bj o terms only differ in that the latter uses Boys-Handy-style indexing,
which yields slightly lower VMC energies than standard indexing in most cases for a fixed
number of parameters. Our best Fijl and By, Jastrow factors retrieve 99% of the DMC
correlation energy in VMC.

The V55 term is designed to describe van der Waals correlations, and contains e-e
functions which introduce other correlations. Our best Va5 term recovers 92% of the
DMC correlation energy, offering a good description of the system without reaching the
accuracy of the more generic Fy3' and By terms.

A V545 term without e—e functions consists of contributions proportional to r;; - r;y,
where the prefactors depend explicitly on r;; and 7;;, and implicitly on r7;. This func-
tional form is that of a dipole-dipole interactions. Our best such Va5 term retrieves 69%
of the DMC correlation energy, which amounts to 0.0000262(3) a.u., and we regard this
as a measure of the pure van der Waals correlation energy of this system.

The multi-term Jastrow factors contain the usual Ny o, Ny 1, N7 2, and N terms, and
for each combination of these we have added a V55 term without e—e functions obeying
the cusp conditions to study its effect. J = Ny retrieves 44% of the DMC correlation
energy, and adding the V55 term retrieves 85% of the remaining DMC correlation energy.
The effectiveness of V5 5 progressively drops as more terms are added, and it retrieves 43%
of the remaining DMC correlation energy when added to J = Ny + Nij + Nojy + Nio.
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In all cases, Va9 is found to lower the VMC energy by a larger amount than any of the
Ny,.m terms.

Our best multi-term cusp-enforcing Jastrow factor retrieves 97% of the DMC correla-
tion energy with 77 wave-function parameters, comparable with the 98% retrieved with
the cusp-violating FQZ’EI and Bs o terms with a similar number of parameters. For larger
systems where van der Waals interactions are important, we expect the violation of cusp
conditions to cause statistical problems, and the V59 term would become an effective way

of improving the description of the system in a multi-term Jastrow factor.

TABLE 4.18: e—e and e—n expansion orders (p and ¢, respectively) used for the differ-
ent Jastrow factor terms in the multi-term Jastrow factors for the Hy triplet state at
7.8358 a.u.

Noo Nig Nig Nax Voo
p 9 - - 4 0
q - 9 6 4 18

Various inter-nuclear distances

In our first study of the Hy triplet state, we optimized the Jastrow factors term-by-term
in two different sequences. In one set of optimizations, we started with the Ny, term
and subsequently added the N;; term, three-body terms and finally the V5o term. In
the second set, we began with the V55 term and then proceeded to add the Nyo, Ny
and three-body terms. We observe small differences in the energy obtained using the two
optimization sequences. Starting with the V5o term gives lower energies for d = 6 a.u.
and 7.836 a.u. while starting with N, is preferable at shorter inter-nuclear distances. We
consider this to be reasonable as the Ny term becomes less important at larger distances
while van der Waals contributions described by V59 term become more important. The
percentage of the correlation energy recovered by each Jastrow factor for each distance is
given in Table [4.19] The reference energies for all distances are obtained from the data
of Ref. [149).

We first considered V5 5 terms without an expansion in e—e distances. This resulted in
poorer quality wave functions, and all further investigations included a small expansion in
e—e distances. As the addition of N5 to J = Vo 9+ N g+ Ny 1+No1+N; 2 at d = 7.836 a.u.
did not lead to further improvement, the N, 5 was not included in any other calculations.

A Slater determinant comprising Gaussian orbitals was also tested. However, the
variances of the energy were a factor of 25-100 times larger than those obtained with
numerical orbitals. Furthermore binding was not observed for any combination of terms.
This is likely due to the decay of the orbitals at large distance as e~ instead of the
correct exponential decay. This leads to substantial noise in the large-distance regions

resulting in poor optimization of the Jastrow parameters.
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TABLE 4.19: Correlation energy retrieved (%) for the Hy triplet at various inter-nuclear
distances d (a.u.) using different Jastrow factors.

d= 1.401 2.0 40 60  7.836
Nao 56.6(1) 53.9(1) 43.2(3) 40.8(6) 43(1)
Noo+Ni 85.86(7) 76.0(1) 66.3(2) 66.2(5) 75(1)
Noo+Ni1+Ny s 90.55(5) 86.02(7) 76.4(2) 73.7(5) 80.6(8)
Nao+Ny1+Na, 91.95(5) 84.07(7) 86.6(1) 92.2(3) 94.2(5)
Ny o+N114No 1 +Ni 5 95.56(3) 92.28(5) 90.8(1)  94.2(2) 96.9(3)
Noo+Nii+Naoi+Nio+Vas 97.04(2) 95.25(5) 95.58(9) 97.1(2) 96.1(3)
Vo 50.3(1)  59.1(1)  66.7(2)  7L7(5) 73(1)
Vaat+Nayg 81.85(7) 82.3(1) 90.7(1)  92.0(3) 91.6(5)
Voot Noo+Ni 91.01(5) 86.74(7) 90.7(1)  92.4(3) 91.3(5)
Voot Noo+Nyi+Ni 5 95.60(3) 92.33(7) 91.1(1)  93.8(2) 92.4(5)
Vaot Nog+Ni 14Ny 95.53(3) 92.96(5) 94.5(1) 97.1(2) 96.1(3)
Voot Nogt N1+ Nag+Nyo 97.04(2) 95.20(5) 95.0(1)  97.9(1) 97.1(3)
DMC 98.56(3) 99.29(5) 99.3(1)  99.8(2) 99.9(4)

The cusp conditions are not satisfied by a Jastrow factor consisting of only the V5,
term. The addition of the Nj( term, which satisfies the cusp conditions, reduces the
variance by a factor of 3-5 for all inter-atomic distances.

The N; 5 term is found to give a non-negligible improvement at all distances, particu-
larly at intermediate distances for J = Ny ¢+Ni ;14N 2. In the presence of the V55 term,
both the N;; and V; » terms have a greater impact at d = 1.401 a.u. and 2 a.u. than at
larger distances. The effect of the V5 5 term on the charge density is small enough that the
Ny and Nj o basis-set correction terms together retrieve only 0.4-14% more correlation
energy. On the other hand, these terms allow J = Njo+Ny1+N;o to recover 33-37%
more correlation energy than J = Ny .

We recover over 95% of the correlation energy at VMC level for all distances. Datta
et al. [150] are able to recover 99.951(2)% of the correlation energy at VMC level for a
separation of d = 2 a.u. using a highly-accurate exponential Hylleraas-type form. Our
equilibrium distance DMC energy is well within an error bar of the exact energy. It
appears that the quality of the HF nodal surface improves with increasing inter-nuclear
distance.

For a small system such as the Hy molecule, visualizing the Jastrow factor gives insight
into its evolution as higher-order terms are added. We have plotted the contribution of an
electron to the Jastrow function as it is scanned across the plane of the molecule for various
Jastrow factors. The nuclei, which we label A and B are separated by the equilibrium
bond length of 7.836 a.u. and the second electron is fixed at a distance 1.958 a.u. from
nucleus A perpendicular to the bond. The Jastrow factor augments the Slater determinant
contribution to the wave function in the blue regions and diminishes it in the red regions.

In all cases, the Jastrow functions decay to zero as the electron is moved far from the
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molecule and the correct asymptotic behaviour of the one-electron orbitals is retained.

In Fig. [4.5] we plot the Jastrow factor as each term is sequentially added, giving
the final J = Ny o+Ny1+No1+Nj o+ Voo Jastrow factor. The sequential construction of
J = Vo 2+Noo+Ni1+Ny1+N; o is depicted in Fig. 4.6

(a) (b) (c) I 0.1

0.1
(d) (e) (f)
- - - 0.2
<03

FIGURE 4.5: Plots of the (a) NQ’O, (b) ]\72704—]\71’17 (C) N270—|—N1’1+N2,1, (d) N2,0+N171+N172,
(€) Noo+N11+No1+Nia, (f) Noo+Ni1+No1+Nyo+Vas Jastrow functions. The nuclei
are indicated by black circles and the fixed electron is indicated by a cross.

The isotropic Ny term reduces the probability of finding the two electrons close
together, as can be seen in Figs. [4.5(a) and [4.6[b). The addition of the Ny, term pulls
the charge density away from the region of the fixed electron into the region near nucleus
B in Fig. 4.5(b). By increasing the value of the wave function on the opposite side of
nucleus A from the fixed electron, the Ny; term makes the system more ionic. This
behaviour is observed for inter-nuclear distances of 4 a.u. and 6 a.u. as well as for J =
Vao+Noo+Ni1+Na1+Np 2, as seen in Fig. [4.6(d). The V5o term does not contribute
significantly when optimized last (Fig. |4.5(f)), as discussed below.

We also studied the contributions of each term to the final Jastrow factor for each
optimization sequence. Plots of the term-wise contributions are given in Fig. [£.7 We see
that while the magnitude of the contribution of the Ny, N; 1, No 1 and V) o terms varies,
their qualitative shapes remain the same. However, the V35 term (Fig. 4.7|(e)) varies enor-
mously when optimized first compared to when optimized last, resulting in qualitatively
very different total Jastrow factors (Fig. [4.7(f)). The V5 9+N3o+Nyi1+No1+N 2 Jastrow
factor is dominated by the V59 term while the Ny o+ Ny 14+Na1+Njo+Vs o Jastrow factor

is unaffected by its presence. The difference in magnitude and structure of the V55 term
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(a) ) © I 0

-1 -0.1

<-0.3

FIGURE 4.6: Plots of the (a) ‘/272, (b) ‘/272+N270, (C) ‘/2,2+N270+N171,
(d) Voot Noo+Ni1+Noq, (€) VaotNog+Nii+Nio, (f) VaootNog+Ni1+No1+Nio Jas-
trow functions. The nuclei are indicated by black circles and the fixed electron is indicated
by a cross.

is highlighted in Fig. We believe that the importance of the sequence in which terms
are optimized is a result of the well-known difficulty that VMC energy optimization has
in optimizing cut-off lengthd’ During term-by-term optimization of Jastrow factors, we
recommend optimizing important terms first (i.e., those that recover a larger fraction of

the correlation energy), and subsequently adding less important terms.

TABLE 4.20: e—e and e—n expansion orders (p and ¢, respectively) used for the different
Jastrow factor terms in the multi-term Jastrow factors for the Hy molecule at various
distances.

Nog Nig Nig Nogo Voo
P 9 — — 5 3
q - 9 6 5 18

4.4.4 DISCUSSION OF MOLECULAR RESULTS

In Fig. 4.9 we have plotted the fraction of the DMC correlation energy retrieved by
different Jastrow factor terms for BeH, Ny, H,O, and the H, singlet and triplet states.

4Shortly after this study was complete, a bug in the energy minimization routine resulting in a less
than optimal minimization was found and fixed. It is possible that this dependence on optimization
sequence is now weaker or even non-existent.
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003 r 2 X 10—4
0 | o +
. )
—0.03 | , ’
~0.06 i : i —2% 1074

FIGURE 4.8: Plots of the V55 term when optimized in the (a) V24 Nog+Ni1+Na1+N 2
sequence and the (b) Nao+Ny1+Ny1+Njo+Va s sequence. The nuclei are indicated by
black circles and the fixed electron is indicated by a cross.

Our purpose is to visualize the importance of different terms in different systems, and to
this end we do not include anisotropic or cusp-violating terms.

The Ny term represents the simplest description of electronic correlations and typi-
cally retrieves 20-25% of the DMC correlation energy. This e—e term distorts the charge
density of the HF wave function, and the N;; term repairs this, typically retrieving
an additional 45-50% of the DMC correlation energy. In the case of the more diffuse H,
molecule the Ny and N; ; terms have a different relative importance. The J = Ny o+ Ny
factor recovers about 95% of the DMC correlation energy for the Hy singlet and 70-75%
of the DMC correlation energy in the other four molecules.

Like N; 1, N9 acts as a correction to the single-electron orbitals. This term provides
no significant benefit in HyO, where we have used high-quality orbitals, but it recovers
7% of the DMC correlation energy for the Hy triplet. A visual comparison of the N;; and
Nj 9 terms for the Hj triplet is given in Fig. . It is clear that the NV; o term is largely
acting in the bond region of the molecule, where there is overlap of the isotropic Nj;
terms centred at the two nuclei. Introduction of the N; o term allows N;; to be better
optimized further away from the bond.

Clearly, the behaviour of the N;; correction in the bond direction needs to be distin-
guished. This has been done in two ways in this work. Firstly, introducing a N 5 term
recovers 4% more correlation energy for Ny, making it the most important isotropic term
beyond the N, Ny and N terms. The Ny o term recovers between 4.5-10% of the H
triplet correlation energy at various distances. Secondly, anisotropic cut-offs were used
to build in an explicit angular dependence to differentiate the bond direction in the Ny
molecule. Using up to [ = 2 spherical harmonics, an additional 5.4% of the correlation
energy was recovered.

The effect of N; 5 in Ny is noteworthy in that the energy reduction obtained by adding

this term to J = Ny + Ny is about a factor of four times smaller than when added to
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FIGURE 4.9: Fraction of the DMC correlation energy retrieved by different Jastrow factor
terms for the BeH, Ny, HyO, H, singlet and Hs triplet molecules at their equilibrium

geometries.
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FIGURE 4.10: Plots of the (a) Ny and (b) Ny o terms. The nuclei are indicated by black

circles.
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the more accurate J = Nog + N1 + Nop. One would expect a term to retrieve more
correlation energy when added to a smaller Jastrow factor, and this is the case for V; o
in the other molecules. We think that the distortion in the charge density caused by N3
in Ny is such that the single-electron correction effected by N; o becomes more useful in
its presence.

The Ny; term added to J = Ny + Ny 3 + Ny captures an additional 15-20% of the
DMC correlation energy for BeH, H,O and Ny. This demonstrates the importance of the
Ny 1 term in systems with different length scales. The variation of the importance of the
Ny 1 term with distance is made clear by the Hy triplet. At the short bond length of
1.401 a.u., the 21 term recovers about 6% of the correlation energy and this progressively
increases to about 26% at a bond length of 6 a.u.

Higher-order terms added to J = Nyg + Ni1 4+ Naj + Npg yield significant gains
in relative terms, with e-e-n-—n terms retrieving 13% and 43% of the remaining DMC
correlation energy remaining for Ny and the Hy triplet, respectively, and the e-e-e-n

term recovering 17% of the remaining DMC correlation energy for HyO.

4.4.5 SUMMARY OF RESULTS

Table gives a comparison of the best single-determinant non-backflow VMC energies

we have found in the literature with those obtained in this work.

4.5 (CONCLUSIONS

We have described a generalized Jastrow factor allowing terms that explicitly correlate
the motions of n electrons with m static nuclei. These terms can be parametrized using
various basis sets, including terms that involve dot products of inter-particle position
vectors. We have also introduced anisotropic cut-off functions. The formalism may be
applied to systems with particle types and external potentials other than electrons and
Coulomb potentials.

Optimization of the wave function is one of the most human- and computer-time
consuming tasks in performing QMC calculations. We have performed term-by-term
optimizations to understand how different terms in the Jastrow factor contribute to the
electronic description of a system, and we hope that our analysis will serve as a guideline
for constructing Jastrow factors for other systems.

We have tested these terms on HEGs, atoms, and molecules. The variational freedom
from the higher-order terms generally improves the quality of the wave function. It has
been argued that higher-order terms can be neglected [131], 126] as the Pauli exclusion
principle does not allow for more than two electrons to be close. Huang et al. [120]

suggest that it would be more economical to improve the wave function by including a
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multi-determinant wave function than by using higher-order Jastrow terms, specifically a
e—e—e—n term. This is often correct but we have concentrated on using a single determinant
as our primary goal was to study the Jastrow factor. Of course, our Jastrow factor can
be used with other wave function forms. It would be interesting to study whether the
hypothesis of Huang et al. extends to terms other than the N3, term.

We have demonstrated the construction and application of an e-e-n-—n Jastrow factor
term designed to describe van der Waals interactions between atoms. This term retrieves
a large fraction of the van der Waals correlation energy in tests on the triplet state of Hy
at the proton separation of minimum total energy.

We have found evidence for the importance of three-electron Jastrow terms in the low-
density 1D and 2D HEGs. Improving the Jastrow factor for single-determinant backflow
wave functions also leads to improvements in the DMC energy of the 2D HEG. This
demonstrates the indirect effect that improving the Jastrow factor can have on improving
the nodal surface, as reported in Ref. [124].

We have made efforts to obtain accurate single-determinant VMC energies for most of
the systems studied, but for BeH and Ny we deliberately used inferior one-electron basis
sets to see whether we could compensate for this with one-electron Jastrow terms. We
find that this goal can be achieved by including an NV; o Jastrow term or anisotropic e-n
terms, along with the usual N ; term.

In strongly inhomogeneous systems, the N, 5 term is shown to be important in describ-
ing the bond region, allowing the N;; term to correct the basis set far from the bond.
It is conceivable that more compact representations can be constructed by considering
bond-centred terms. This idea is motivated by the bond-centred orbitals developed by

the quantum chemistry community, and would be an interesting basis for future work.
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Chapter 5

ORBITAL-DEPENDENT BACKFLOW
TRANSFORMATIONS

5.1 INTRODUCTION

UNDAMENTALLY, the DMC method is limited by the fixed-node approximation that
must be made to overcome the fermion sign problem. Consequently, the DMC en-
ergy is limited by the accuracy of the nodal surface of the trial wave function. The
Jastrow factor is everywhere positive and cannot modify the nodes. Improving nodes
therefore relies on improving the orbital component of the wave function, such as af-
forded by a multi-determinant expansion or pairing wave functions. Evaluating orbitals
at backflow-transformed quasiparticle coordinates can also achieve this. These backflow
transformations are the topic of this chapter.

Backflow transformations can be motivated as improvements to the one-electron or-
bitals used in a wave function consisting of a single Slater determinant. One-electron
orbitals do not allow for a description of correlation, but such a wave function is able to
describe exchange exactly as a result of the built-in antisymmetry. To account for the
anti-parallel spin correlation hole, Wigner and Seitz [151] used a wave function where the
up-spin electron orbitals depended parametrically on the positions of the down-spin elec-
trons. The form of the wave function used by Wigner and Seitz is related to the backflow
wave function introduced by Feynman [152] and Feynman and Cohen [153]. Feynman and
Cohen extended classical backflow, which is related the flow of an incompressible fluid
around an impurity, to excitations in pure liquid helium and the *He system with 3He
impurities. For these systems, backflow achieves a flow pattern that conserves the local
current and increases the effective impurity mass.

The Slater wave function written as a product of up- and down-spin determinants
lacks direct spin coupling as the probability of finding the up-spin electrons in a given
configuration is independent of the position of the down-spin electrons and vice versa.

The form of backflow transformations used in QMC calculations remedies this deficiency.
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The orbitals comprising the Slater determinant

Pi(x1)  i(x2) - i(xw)

wp(x(R)) = | P Ee) e 5.1)

Yn(x1) Pn(x2) - Yn(xn)

are evaluated at the backflow-transformed quasiparticle coordinates x; which are a func-

tion of the positions of all electrons,

The contribution to the displacement from anti-parallel spin electrons is found to be
larger [69]. Vitiello et al. [I54] compared the effect of backflow transformations to that of
a spin-dependent Jastrow factor. They found that both give similar results, demonstrating
a possible equivalence between backflow and spin-dependent correlations.

For homogeneous systems such as electron gases, the backflow function &;(R) is taken
to be a function of inter-electron separations. The presence of nuclei introduces inho-
mogeneity into the system which to some extent is included via electron-nucleus terms.
Higher-order electron-electron-nucleus terms are also found to be particularly important
for inhomogeneous systems [69]. The inhomogeneous backflow function developed by
Lépez Rios et al. [69] is

E(R) =Y nlry)ry + Y _ plrin)ra

J#i I

+ Z Z |:<I)I<7'ij7 Ti[,?"j[)rij + @I<7’i]’, 7“1'[,7"]'[)1'1'[} ,

Jj#F

where 7 is the e-e term, y is the e n term and ®/ and ©7 are e e n terms.

Backflow transformations are useful in DMC calculations because they can improve the
nodal surface. However, this improvement comes at a price. As the backflow-transformed
position of each electron is a function of the position of all the other electrons, changing
the coordinate of one electron changes the transformed coordinates of all electrons. Each
orbital must then be evaluated for each electron configuration. This significantly increases
the cost of QMC calculations which then scale as O(N*) rather than as O(N?). In practice,
the added cost of including backflow transformations is lower since only particles within
a cut-off distance contribute.

Backflow has also been argued to represent momentum-dependent correlation [I55].
Hence it is natural to consider backflow transformations specific to orbitals representing

different momentum states. This motivates the development of new backflow transfo-
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mations presented here, which are able to accommodate different parametrizations of

the backflow function for distinct orbitals.

dependent backflow transformations is then

The Slater determinant with these orbital-

i(xt)  Yi(x) Ui(xy)
boix(ry) | PO VD) o wh) | .
VR (x7) YR (x3) VR (x%)
where the indices ¢, u and v represent backflow parameter set indices and
x; =r; +§'(R). (5.5)

For t = u = ... = v = 1, we recover orbital-independent backflow. This work is still
in progress and the benefits of these orbital-dependent backflow transformations in im-
proving the wave function are yet to be assessed. In the following sections, the required

modifications to the algorithms and the rise of additional variational freedom is discussed.

5.2 IMPLEMENTATION

The main changes that need to be made to the existing structure of CASINO to sup-
port orbital-dependent backflow transformations relate to the way in which orbitals are
indexed, evaluated and used. These changes in orbital management also affect the evalu-

ation of the kinetic energy.

5.2.1 MANAGEMENT OF ORBITALS

Firstly, a list of unique orbitals is constructed. An orbital map is used to map rows
of different determinants to the appropriate orbital index. Rather than updating one
entire column of a Slater matrix whenever an electron is moved, the orbital index and
map structure allow sections of a column to be updated. This is necessary for orbital-
dependent backflow as discussed below.

The orbitals must then be classified into groups that have the same backflow trans-
formations. Generally, they can be classified by a number of quantities. For example,
plane-wave orbitals can be characterized by their k-vector and band, or by their eigen-
value. Atomic orbitals can be labelled by their principal quantum number n, angular
momentum quantum number [ and magnetic quantum number m. For each type of basis
set, we have constructed a list of quantities that can be used to characterize the orbitals.
Each unique orbital is then labelled by its characteristics. The user specifies which of these

characteristics is to be used to distinguish orbitals for the purpose of orbital-dependent
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backflow transformations. Orbitals sharing a characteristic value form a group and all
such orbitals are assigned the same transformation index n, allowing the application of
different backflow transformations £'(R) to different groups of orbitals.

The orbital map and transformation index data are used to construct an orbital mask,
which indicates whether a given orbital belongs to the given transformation groupE]. How-
ever, using an orbital mask requires looping over all orbitals to identify those belonging
to a group. This operation is computationally inefficient in the cases where only a few
orbitals belong to a given group. It can be more efficient to construct orbital ranges for
each transformation that store the first and last indices of a sequence of orbitals belonging
to the same group.

The construction of the Slater matrix is modified by the existence of orbital-dependent

K,

quasiparticle coordinates. An element of the Slater matrix is denoted by wfj’" =" (x]),
where 1" represents a one-electron orbital with transformation index n in the {** row of
the s determinant and the quasiparticle coordinate is evaluated using the n'" backflow
transformation. Instead of evaluating all orbitals at each of the n sets of quasiparticle
coordinates, it is more efficient to loop over the transformation index n and evaluate all the
corresponding orbitals ¢ with transformation index n, regardless of the determinants in
which they appear, at the appropriate backflow-transformed electron coordinates x™. The
orbital map is then used to update the Slater matrices appropriately for all determinants
with the new orbital values.

These modifications are useful not only in the implementation of orbital-dependent
backflow transformations but also for non-backflow calculations. They serve to simplify
evaluation routines significantly and unify the underlying structure of wave function eval-
uation. A speed-up has been observed in the evaluation of certain wave function types,
e.g., by avoiding repeated evaluation of orbitals for different determinants. Additionally,
they lay the foundations for the integration of other more complex types of wave functions

such as geminals and pfaffians into the CASINO code.

5.2.2 KINETIC ENERGY EVALUATION

The total kinetic energy of a system is the sum of the kinetic energy of all the electrons,

_ N - N _1 B 2
K=Y K=Y SV (5.6)

7

For several reasons, the kinetic energy of each electron is evaluated as

K; = 2T; — |Fy)?, (5.7)

'Here we are only interested in grouping orbitals based on their transformation index. Orbitals are
also grouped by spin, and the grouping can easily be extended to other characteristics.
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5.2 IMPLEMENTATION

where ,
1 V20, v, Up
T = —-2n|¥| = — U 2 .
=V o (SR v (5.5)
and 1 1 (V0
F,=————V;In|¥| = —— [ =P +viJ). 5.9
\/§ v \/5( Up (5.9)

Firstly, (K;) = (|F;|>) = (T;) in VMC. Violation of this condition is indicative of prob-
lems in a VMC calculation such as a bug in the code. Secondly, the contribution of the
determinantal part of the wave function V¥p is separated from the contribution of the
Jastrow factor, allowing modularization of the code. In what follows, we are only inter-
ested in calculating the derivatives of Wp as the Jastrow factor is unaffected by backflow
transformations.

The basic quantities required for calculating the contribution of the determinantal
part of wave function to the local energy are M = V&In |¥p| and N; = V?In |¥p| which
respectively appear in 7; and F;. In the derivations below, Greek letters o, g and =
represent Cartesian component indices, n and m are transformation indices, [ and ¢ are
orbital indices and 7, 7 and p are electron indices.

The determinantal component of a multi-determinant-backflow wave functionf] is

S
\I/D = chHDk’J, (510)
k o

where the k" determinant is written as a product of determinants Dy, of sets of distin-

guishable particles with index o. Then,

M = Vi In [Up| = o= chHDngv D (5.11)

k

T

and
V20,

NZ-:V?I Up| = —
;In [Up| v,

= —|M;|* +

‘ 2 2
(v’%) 4+ YVilp (5.12)

¥p Yp

where

2
I S ) Z(ZV D’”) (T FX | 6y
k o T T

Once again, care must be taken in the evaluation of V¢ D, and VZD, as the quasipar-
ticle positions at which the orbitals are evaluated depend on the backflow transformation

index of the orbital. Note that the determinant index k£ and particle group index o have

2The corresponding expressions for other types of wave functions such as geminals and pfaffians will
be different.
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5.3 VARIATIONAL FREEDOM

been absorbed into a single index « below. This index explicitly indicates the dependence
of the Slater matrix elements on the determinant. Rather than summing over all orbitals
[, we sum over all transformations and restrict the sum over orbitals to those that belong
to the given transformation group, i.e., >3, = > > . .

In this notation, V¢D,. and V2D, are given by

o™ H ™
ViD, = Z Z ST G (5.14)
ZEm p $j !
and
o™ 9’
2D = lj J
Vz K Z 87’ Z awnm ; axgnﬂ aria
B Z Zaz/;lj’ o?a’
N ;™ o™ 9(ro)?
lem g xj o (TZ )
oy 70 9
+ Z Zawmﬁax = Z ar o
lEm
8213’.C awl’? wnn 823 m,S3 ax Y
lénm qenm By j j
i p
where
9’D,, 1 oD, 0D, 0D,. 0D,

AoRARR — T RO O R R o R | 516
QU 0" Dy | QU™ 00" U™ Oy Y

5.3 VARIATIONAL FREEDOM

In addition to the variational freedom introduced by allowing different backflow parameter
sets for different orbitals, we also have further freedom in the choice of orbitals in the
Slater matrix when using orbital-dependent backflow transformations. This freedom arises
because the Slater determinant is no longer invariant under linear transformation of the
1 orbital basis.

This freedom in the choice of linear combinations of orbitals is not present for wave

functions using the traditional orbital-independent backflow transformations. Consider
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the Slater determinant

Y1(x1)

Uy (X2)

(> (Xl) (> (Xz)

2/JN(X1) ?/JN(XQ)

5.3 VARIATIONAL FREEDOM

Uy (XN)
2/JQ(XN)

Yy (xy)

We can combine 1), with some proportion ¢, of ¥y to give a new determinant

Vy(x1)
YN (Xl)

[1 + ot (x1)
(125 (Xl)

YN (Xl)

1 (x1) + cotha(x1) 1 (X2) + cotha(x2)

Vo (x2)

(N (Xz)

[Y1 4 caha](x2)
() (XQ)

YN (Xz)

Y1(xXn) + cotha(xn)
o (xn)

Yy (xy)

[11 + catha) (xn)
o(xn)

Uy (xyN)

It is easy to show that D = Dy using the properties of determinants.

(5.17)

(5.18)

(5.19)

The determinant is not, however, necessarily invariant when linear combinations of

orbitals are used with orbital-dependent backflow. Consider

Ui (x1) PR(x5)

R (xR)

(5.20)

Again, we can combine 1, with some proportion ¢, of 15 to construct a new determinant

Ui (x1) + 3 (x7)
¥ (x7)

YR (x7)

Y1 (x3) + 23 (x5)
5 (x3)

YR (x3)

Y1 (X)) + el (XY)
Vs (xy)

R (x3)

(5.21)

Unless t = u, the linear combination 1! (x})+cotpy (x¥) is a function of two quasiparticle co-

ordinates. We have the freedom to construct a new determinant D’ of single-quasiparticle
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orbitals by assigning the orbital ¢! + ¢y a new transformation index s:

[+ caug) () [h + ot 06) - [+ et (o)
p_| v e e ) 5.22)
Uh(xi) L R )

We can thus optimize the orbitals that comprise the Slater matrix in addition to the
backflow functions for each of these orbitals. Generalizing to an arbitrary combination of

orbitals, we can write

1 e CIN i(xtl) Y7 (x5) U (Xﬁv)
ool 1 | e ve) - v 52
CN1 CN2 - *- 1 YR (X1) PR(x5) o PR(xR)

where ¢;; determines the amplitude of 1; in the j™ transformed orbital. Each of the c;;
can be optimized from its initial value of 0 subject to the constraint that the resulting
orbitals are linearly independent. This is equivalent to demanding that the matrix of

coefficients be non-singular:

1 Ci2 -+ CIN

C 1 .« o o C

. M 2o, (5.24)
cN1 Cnz v 1

This condition is checked during optimization and parameter sets that do not satisfy it

are rejected.

5.4 SYSTEMS OF INTEREST

These modifications are expected to be valuable in studying systems with one-electrons
orbitals of very different characters. The 3D HEG is one such system. At high densities,
backflow effects are known to become more important [I56]. The uniform zero-energy
k = 0 state differs significantly from the oscillating high-energy states. Given this variation
in orbital character, we expect the optimal backflow transformations for each orbital to
vary as well.

Systems such as TiOy might also benefit from the use of orbital-dependent transfor-
mations. The localized d-orbital character of the valence Ti electrons is very different

from the more diffuse character of the valence p-electron orbitals in O.
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5.5 SUMMARY

5.5 SUMMARY

Orbital-dependent backflow transformations are expected to be more suitable for obtain-
ing an accurate trial wave function than the system-averaged transformations currently
used. Primarily, they will further improve the nodal surface of the wave function and
thus bring DMC energies closer to the exact energies. It would be interesting to see if a
less complex parametrization of the backflow terms, namely a smaller polynomial expan-
sion, would suffice when using orbital-dependent backflow transformations. This would
help limit the cost of including these transformations and allow for better optimization.
While the benefits of using other basis functions and higher-order terms are expected to

be small, they will be investigated in further work.
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Chapter 6

CONCLUSIONS

T YHE FOCUS OF THIS THESIS is the use of improved wave functions to perform highly-

1 accurate QMC calculations of finite and extended systems.

QMC calculations of the first-row atoms Li—Ne and their singly-positively-charged
ions are reported. Multi-determinant-Jastrow-backflow trial wave functions recovered
more than 98% of the correlation energy at the VMC level and more than 99% of the
correlation energy at the DMC level for both the atoms and ions. We obtained the first
ionization potentials to chemical accuracy for all atoms. Scalar relativistic corrections to
the energies, mass-polarization terms, and one- and two-electron expectation values are
reported. Fits to the electron and intracule densities are also performed.

A flexible framework for constructing Jastrow factors which allows for the introduc-
tion of terms involving arbitrary numbers of particles is described. Jastrow factors in-
cluding various three- and four-body terms, a four-body van der Waals-like term, and
anisotropic terms are constructed. They are used in QMC calculations of the one- and
two-dimensional homogeneous electron gases, the Be, B, and O atoms, the BeH, H,O
and Ny molecules, and the singlet and triplet states of the Hy molecule. Our optimized
Jastrow factors retrieve more than 90% of the DMC correlation energy in VMC for each
system studied.

Orbital-dependent backflow transformations are motivated. Their implementation in
the cAsINO QMC code is described. We expect orbital-dependent backflow transforma-
tions to play an important role in improving the nodal surface in systems with large
variations in orbital character. Finally, some systems are suggested as candidates for

testing these transformations.
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SUPPLEMENTARY INFORMATION



Electron- and intracule-density fitting

parameters

The parameters for the least-linear square fits to the binned electron and intracule den-
sities as described in Sec. are given here. The number of parameters in each case
was chosen to minimize y? while giving a sensible density gradient as » — 0. The errors
in the normalization constants for the charge and intracule density fits are of O(1073) or

smaller, except for the intracule densities for B and C, where they are of O(1072).
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