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Abstract

Background: It has been reported that pumping a shunt in situ may precipitate a proximal
occlusion, and/or lead to ventricular over-drainage, particularly in the context of small ventricles.
In the laboratory we measured the effect of pumping the pre-chamber of hydrocephalus shunts on
intracranial hypotension.

Materials and methods: A simple physical model of the CSF space in a hydrocephalic patient
was constructed with appropriate compliance, CSF production and circulation. This was used to
test eleven different hydrocephalus shunts. The lowest pressure obtained, the number of pumps
needed to reach this pressure, and the maximum pressure change with a single pump, were
recorded.

Results: All models were able to produce negative pressures ranging from -11.5 mmHg (Orbis-
Sigma valve) to -233.1 mmHg (Sinu-Shunt). The number of pumps required reaching these levels
ranged from 21 (PS Medical LP Reservoir) to 315 (Codman Hakim-Programmable). The maximum
pressure change per pump ranged from 0.39 mmHg (Orbis-Sigma valve) to 23.1 (PS Medical LP
Reservoir).

Conclusion: Patients, carers and professionals should be warned that 'pumping' a shunt's pre-
chamber may cause a large change in intracranial pressure and predispose the patient to ventricular
catheter obstruction or other complications.

Background

It has been reported previously that hydrocephalus shunts
may cause over-drainage, in particular, during changes in
posture. Kajimoto et al [1] postulated that this over-drain-
age was due to increased hydrostatic pressure in the ven-
triculoperitoneal shunt system. This increases the
differential pressure acting across a shunt of relatively low

hydrodynamic resistance [2] and may provoke excessive
drainage, leading to intracranial hypotension.

The pumping of a shunt's pre-chamber has been used to
test shunt patency [3]. However, the specificity and sensi-
tivity of such testing were assessed as not satisfactory. His-
torically, some patients and their families were
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encouraged to pump the shunts periodically to avoid
blockage of the valve or to relieve headaches. However,
such a maneuver may possibly lead to over-drainage.

Low intracranial pressure may result in headache, nausea
and vomiting, diplopia, lethargy, paresis of upwards gaze
and strabismus, dizziness and hearing disturbances. These
symptoms mainly occur when the patient is upright and
active [4]. The orthostatic headache is thought to be the
result of a downward displacement of the brain. When a
person is upright, the brain is kept afloat by the buoyant
action of the CSF in conjunction with the anchoring
effects of the vascular structures in the cranium; if the
buoyant action of the CSF is decreased i.e. when the CSF
volume is decreased, the burden on the vascular structures
increases resulting in traction and distortion [5]. Dien-
cephalic compression of the brain due to downward dis-
location has also been reported to decrease consciousness
[6,7]. As these vascular structures in the cranium are pain-
sensitive [8], orthostatic headache occurs. In terminal
conditions, CSF hypovolaemia may result in subdural
haemorrhage due to the tearing of the bridging veins as
the brain pulls away from the dura [9,10]. However, there
is no clinical report of this happening following shunt

pumping.

CSF drainage through some shunt systems, may be accel-
erated by 'pumping' the shunt pre-chamber. So far,
'‘pumping' has been evaluated quantitatively with results
reported in the form of various conference presentations
[11,12], but not in peer-reviewed journals. We have built
a physical model of CSF circulation and compensation,
'shunted' it and investigated eleven shunts in the labora-
tory, to determine to what extent CSF pressure may be
reduced by repetitive pumping.

Materials and methods

Shunts

We tested eleven types of shunt, either new or previously
evaluated in the UK Shunt Laboratory (none were
explanted from patients). Types, manufacturers and other
details are given in Table 1.

All shunts were differential pressure valves with the excep-
tion of the Orbis-Sigma valve and the Diamond valve,
which work by a principle of stabilizing flow over wide
range of differential pressures.

The Codman Programmable Valve (with Siphon-Guard),
the Medtronic Delta and Strata Valves all had siphon-pre-
venting devices.

Testing model
To model the cerebrospinal fluid (CSF) space, a wide-
necked feeding bottle (270 ml, Boots, UK) was filled with

http://www.cerebrospinalfluidresearch.com/content/4/1/2

de-aerated de-ionised water to mimic CSF (Fig. 1). A latex
membrane (0.14 mm thick, diameter 4 cm) was placed
over the top of the bottle and under the cap. A compliant
system was created by making a 2 cm diameter hole in the
cap. The fluid forced the membrane through the hole and
the size of the hole determined the magnitude of the com-
pliance. The model also included a resistance to CSF rea-
bsorption in the form of a lumbar puncture outflow
needle, giving a resistance to CSF flow of 7.4 mmHg ml-
Imin-!, within the 6-10 mmHg range found in humans
[13,14]. To mimic CSF production, fluid was infused at a
constant rate of 0.3 ml min-!. The shunt to be tested was
attached to the model using 10 cm of low resistance tub-
ing, mimicking a ventricular catheter. An outflow of the
same tubing (80 cm long and 1.2 mm ID) mimicked the
peritoneal catheter.

The in vivo CSF pressure-volume curve has a symmetrical
exponential shape according to Friden [13] (Fig. 2a). The
pressure-volume curve of the model had three approxi-
mately linear zones (Fig. 2b) characterized by a compli-
ance of 0.17 ml mmHg! within the range of negative
pressures, 5.53 ml mmHg! during the plateau and 0.34
ml mmHg! within the range of positive pressures. The
compliance was therefore pressure-independent for pres-
sures below -5 mm Hg, between -5 mmHg and 5 mm Hg,
and above 5 mm Hg. The compliance of the model was
selected to be lower than the values previously reported in
the literature (from 1.83 ml mmHg! in normal children
to 0.97 ml mmHg ! in children with acute hydrocephalus
[15]). The model was designed to mimic the 'worst case’,
i.e. a system with low pressure-volume compensatory
reserve. Greater compliance (0.91 ml mm Hg! at the neg-
ative pressure range) was also tested, with two valves pro-
ducing the minimal (Orbis-Sigma) and maximal (Sinu-
Shunt) intracranial hypotension during pumping, to
check whether compliance may affect the depth of intrac-
ranial hypotension.

Pressure was recorded using a Gaeltec Luer Lock trans-
ducer with an accuracy of pressure measurement better
than +/- 5 mm Hg over the range -250 to 250 mm Hg. A
pressure waveform calibrator was used to simulate the [CP
pulse pressure with amplitude of 1 mmHg and a rate of 90
beats per minute.

Protocol

For all valves, the negative pressure in the model mimick-
ing the intracranial pressure (ICP) at which an asymptote
occurs, was determined by pumping the shunt reservoir
continuously, at a constant rate of 1s'!, until the asymp-
tote was reached (Fig. 3). The PS Medical Lumboperito-
neal shunt had the largest reservoir and could only be
pumped at a rate of 1 stroke per 3s, due to the longer refill
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Table I: Name, manufacturer, sub-type, performance levels, and catalogue numbers of tested shunts.

Name Manufacturer Sub-types tested Performance level Catalogue Number

Hakim-Precision Valve Codman Micro Valve and standard Medium g%—gg%g

Hakim Programmable Codman 3 cmH,0 and 20 cmH,O  82-3110

Hakim Programmable with Siphon-Guard Codman 3 cm H,O and 20 cmH,O  82-3162

Delta Medtronic, USA Performance | 42822

Strata Medtronic, USA Small and regular Performance 0.5 and 2.5 42866

LP reservoir Medtronic, USA 30 mm 44515

Flow Control Medtronic, USA Contoured, standard, burr-hole Medium pressure 1%?%3
42534

Diamond Phoenix, USA Unknown, (only one
type available)

Pedi Gav Miethke, Germany With reservoir 9/24 cmH,0 FV 306T

Orbis-Sigma Integra Neuroscience Implants, France 811201

Sinu-Shunt CSFdynamics, Denmark Unknown, (only one

type available)

time. The negative pressure achieved was measured from
the data recorded in BioSAn for Win95 [16].

The number of pumps taken to reach the asymptote was

measured from the 'switching point' where the model
changed from the high compliance of the plateau of the

Bottle

pressure-volume curve to that of the first slope to the
point where an asymptote was reached (Fig. 3).

The maximum pressure change in a single pump (AP,,../
pump) was measured at the point of the maximum pres-
sure change over time on the recorded curve, i.e. where the

Needle mimicking Routflow

I

Latex diaphragm

""é mn @ %II]

TESTED SHUNT

mn S

‘ IMFUSION PUMEP ‘

Figure |

PULSE
PRE SSURE PRES SIIEE  e—
(GENERATOR TRANSDUCER. COMPUTER.

The laboratory rig used to test the pumping actions of hydrocephalus shunts including model of CSF compensation.
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Cerebrospinal pressure-volume curves. a. Pressure-volume curve plotted using clinical test- with permission from author [13].
b. Pressure-volume curve of the model used for testing in vitro. Three-part approximation of the compliance within the CSF
compartments. The compliance over the first part is 0.17 ml mmHg!, over the plateau 5.53 ml mmHg!, over the final part 0.31
ml mmHg-'. This is computer graph was generated to interpolate measured values.

curve like in Fig. 3 had minimal first derivative. One sam-
ple of each kind of valve was tested. The test was repeated
five times for each valve.

Statistics

The One-Way Analysis of Variance (ANOVA, Tukey test)
was used where the normality test was passed. Where this
was not passed, the Kruskal-Wallis One-Way ANOVA on
Ranks (Dunn's Method) was used.

Results

The lowest pressures obtained at the asymptotes following
continuous pumping of the valve reservoirs revealed a
range of differences between the shunts (Fig. 4). All shunts
were capable of creating negative pressures. The shunt
able to achieve the lowest negative pressure was the Sinu-
Shunt (-233.1 mmHg). The shunt that achieved the least
negative pressure was the Orbis-Sigma valve (-11.5
mmHg). These values are significantly different (P < 0.05
One-way ANOVA on Ranks). The Codman Non-Program-
mable Valve produced a significantly lower pressure when
using the large pumping chamber (regular Codman-

Hakim valve) compared to a smaller pre-chamber (pedi-
atric micro valve) (P < 0.001 One-way ANOVA and
Tukey's test). There was no difference in performance
between configurations of the Strata valve or between the
different flow control models.

As it is not clear how the width of the plateau phase of
compliance in the model compares with that in human
CSF compartments (within the range of negative pres-
sures), the speed at which the asymptotes are reached was
assessed from the time of the 'switching point' between
high and low compliances (Fig. 5). The fastest performing
shunt was the PS Medical Lumboperitoneal valve which
required 21 + 4 pumps to reach the asymptotic negative
pressure from the switching point which was significantly
(P < 0.05 One-way ANOVA on ranks) less than the Cod-
man Programmable Valves at the 2 cmH,O and 0.5
cmH,O opening pressures which required 315 + 66 and
314 + 28 pumps, respectively. The Strata valves showed no
difference between models, nor did the Flow Control
valves. The Codman valves with or without Siphon-
Guards did not perform differently in terms of the

Page 4 of 9

(page number not for citation purposes)



Cerebrospinal Fluid Research 2007, 4:2

_ Start pumping

Pressure 30
[mm Hg]

-10

50

-130

http://www.cerebrospinalfluidresearch.com/content/4/1/2

Figure 3
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Single test of the PS Medical Lumboperitoneal Reservoir using the model of human CSF space. Pumping started at the vertical
bar. Pressure decreased slowly at first on the plateau (Fig. 2b- high-compliance section of the pressure-volume curve) and then
started to accelerate (on the steep, low-compliance section of pressure-volume curve), and then it reached the asymptote.
Arrow indicates the region where pressure changes are greatest per one pump and these values are taken for comparison

between valves (see Fig 6).

number of pumps to reach the asymptote at the high or
low pressure settings, but those with the Siphon-Guard
did require significantly more pumps to reach the asymp-
tote than their counterparts without Siphon-Guards (P <
0.005 at the 2 cm H,O settings and P < 0.02 at 0.3 cm the
H,O settings).

The maximum pressure change in a single pump was also
measured for each valve (Fig. 6). The valve able to create
the largest pressure change was the PS Medical Lum-
boperitoneal valve. This valve was able to reduce pressure
by 23.1 mmHg in a single pump, compared to the Orbis-
Sigma valve, which reduced pressure by a maximum of
0.39 mmHg pump-.

Two models with a higher compliance were built. The
Orbis-Sigma valve and the Sinu-Shunt were retested using
these models. The asymptotes achieved were not signifi-
cantly different on each model with the same shunt. The
time to reach the asymptote was not significantly different
when testing the Orbis-Sigma valve but was significantly
longer in the Sinu-Shunt (P < 0.001 One-way ANOVA
Tukey test).

Discussion

It can always be disputed whether in-vitro testing is clini-
cally relevant. We used a model that increased the volume
of CSF in a system that had a total volume of 270 ml. This
volume is not uncommon in hydrocephalus with gross
ventricular dilatation. The model has a relatively low com-
pliance and the width of the horizontal section of pres-
sure-volume curve was chosen somewhat arbitrarily.
There is little data regarding this width, although some
reports give values around 5 ml [13]. Therefore, we think
that a comparison of valves in terms 'how many pumps
are needed to reach steeper section of P/V curve' or 'how
many pumps are safe’ may be misleading. The most
important message, repeated after other studies [11,12], is
that pumping the chamber of any valve has the potential
to reduce proximal CSF pressure significantly, to the
extent that clinically relevant over-drainage would be pos-
sible.

Patients and families should be advised against pumping,
particularly when the ventricles are small. It is possible for
a physician to test the valve using a single compression:
however such tests are unreliable [3,11,12]. The majority
of shunts were able to produce an intracranial pressure of
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Figure 4

Bar chart showing the pressures for the various valves at which the asymptote was achieved by continuously pumping the res-

ervoirs.

less than -30 to -35 cmH, O (-22 to -26 mmHg). This falls
within the range that can produce orthostatic headaches
[17]. It is at this pressure that the vasodilatation compen-
sation for CSF depletion is no longer sufficient, and thus

the symptoms of CSF hypovolaemia become apparent
[18].

There is a range of differences between the shunts, even
between different models from the same manufacturer. In

terms of the recorded negative pressures, the Orbis-Sigma
was the best performer, and the Sinu-Shunt the worst. The
number of strokes required to reach the asymptotes
showed that the LP Shunt was the fastest, probably due to
its large pumping reservoir. With Codman Programmable
valves, the use of the Siphon-Guard, programmed to a
higher performance level, increased the number of strokes
required to reach the asymptote but did not affect the
position of the asymptote.
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Figure 5

Bar chart showing the number of pumps required for each valve to reach the asymptote.

Testing the two valves on the higher compliance models,
demonstrated the validity of the model in terms of mode-
ling the CSF space and compliance in the hydrocephalic
patient. This was shown in both the worst-case scenario
(low compliance) and in other hydrocephalic situations
since the asymptotes remained unchanged. In patients
with a higher compliance than the model, it may be
expected that they reach the same asymptote but require a
longer period of pumping to get there.

Flow control valves (Orbis-Sigma and Diamond Valve)
minimize the degree of intracranial hypotension during
pumping. The presence or absence of a siphon-control
device has no effect on intracranial hypotension caused by

pumping.

Conclusion
Pumping of shunt pre-chambers may cause gross intracra-
nial hypotension in a relatively short time. The number of
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Figure 6

Bar chart showing the maximum pressure reduction achievable with a single pump on the valve's pumping chamber.

pumps and time needed for producing possibly detrimen-
tally low levels of ICP depends on the shunt type.
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