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Abstract

This paper provides a general framework for aggregating linear dynamic models by deriving
the aggregate model as the optimal prediction (in the minimum mean-squared error sense) of the
aggregate variable of interest with respect to an aggregate information set generated by current
and past values of available aggregate observations. The approach is applied to a number of
aggregation problems that have been considered in the literature. It is shown how the results in
much of the literature can be readily obtained using the proposed forecasting approach, and a
number of important extensions and generalizations are provided. Our approach does not require
the assumption of independence of the micro distributed lag coefficients from the other micro
coeflicients, and establishes that in general the long-run coefficients obtained from the optimal
aggregate relation are equal to the averages of the long-run coeflicients from the micro relations.
The approach is then applied to life-cycle consumption decision rules under habit formation
and the implications of the heterogeneity in habit formation coeflicients across individuals for
the analysis of aggregate consumption is investigated. Using stochastic simulations it is shown
that the estimates of the habit persistence coeflicient are likely to be biased downward if they
are based on analogue aggregate consumption functions, which could partly explain the excess

smoothness and excess sensitivity puzzles in terms of neglected heterogeneity.
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1 Introduction

The aggregation problem is an inevitable aspect of applied research in economics. It arises primar-
ily because behavioral relations in economics are generally derived as decision rules of individual
economic agents, while many of the relations that applied economists are interested in studying are
subject to aggregation across commodities, households, firms, regions, or time, and often over all
these dimensions. Naturally, the problem is more pervasive in the case of macroeconomic research,
but it also tends to be present in applied microeconomic analysis.!

There are a variety of reactions to the aggregation problem. At one extreme many investigators
have chosen to ignore it altogether, arguing implicitly that empirically the aggregation problem
is of second order importance. At the other extreme to avoid the problem some have opted for
a highly disaggregated general equilibrium approach where the possibility of deriving testable
restrictions on observable time series is extremely limited if not impossible. The focus of this paper
is on a number of intermediate positions between these two extremes. Currently, there are two
basic constructive approaches to the aggregation problem: the “deterministic” approach originally
explored by Gorman (1953), Klein (1953), Theil (1954), Malinvaud (1970), and Muellbauer (1975);
and the “statistical” or “stochastic” approach advanced by Kelejian (1980), Stoker (1984), Lippi
(1988), Lewbel (1994), and Forni and Lippi (1997). 2

The deterministic approach to aggregation is unduly restrictive and requires the aggregate
function to match exactly the sum of the micro functions for all realizations of the disaggregate
variables. The statistical (stochastic) approach is less restrictive and induces relationships between
the population aggregates from the joint probability distribution of the micro variables and the
parameters of the micro equations. While this is clearly an advance over the deterministic approach,
it is nevertheless rather complicated to apply in practice and has not been found to be directly
suitable for econometric analysis. There is also no guarantee that the induced aggregate relation
should always exist or be unique.

With the aim of developing a unified theory of aggregation for econometric analysis, 1 shall
propose an “optimal aggregate forecasting approach”. This approach views aggregation as a fore-
casting problem where the focus of the analysis is on the optimal prediction (with respect to a

particular loss function of interest, here minimum mean-squared error) of the aggregate variables

'For example, in the case of microeconometric studies of household consumption, the issue of commodity aggrega-
tion and the associated index number problem has for long been the subject of intense research. See Gorman (1953) or
Muellbauer (1975). Similar considerations also arise in the microeconometric analysis of households’ labour supply,

firms’ investment and employment decisions, and governments’ expenditure decision.
2A precursor to the statistical approach to the aggregation problem can be found in Houthakker (1955/56) and

Johansen (1972) who consider the problem of aggregation of technologies across production units. For an excellent
review of the aggregation literature see Stoker (1993). The introduction in Barker and Pesaran (1990) could also be

of interest.



conditional on available aggregate information. This approach starts with the probabilistic formu-
lation of the statistical approach, but has the virtue that the aggregate function derived as the
conditional optimal forecast exists under relatively weak assumptions concerning the existence of
conditional expectations of the micro relations and furthermore is unique.? The paper shows that
under the assumption that the disaggregated model is correctly specified, the mean-squared error
of the optimal aggregate forecast is larger than the corresponding mean-squared error of forecast-
ing the aggregate based on the disaggregated model, but smaller than the mean-squared error of
forecasting the aggregate based on an ad hoc aggregate function, such as the macro analogue of the
micro relations.

The optimal aggregate forecasting approach can be applied to a variety of problems. This paper
focuses on aggregation of linear autoregressive distributed lag models in general, and in specific
detail on aggregation of life-cycle decision rules under habit formation. The former problem has
attracted considerable attention in the time series literature. (See, for example, Granger and
Morris (1976), Rose (1977), Granger (1980), Trivedi (1985), Lippi (1988), Lewbel (1994), and
Zaffaroni (2001), and the contributions of Granger and Forni and Lippi in Barker and Pesaran
(1990)). It will be shown how the various results in this literature can be readily obtained using the
approach advanced in this paper.* A number of extensions and generalizations will also be provided.
For example, it is typically assumed that the micro disturbances are independently distributed
across the micro units, and that the micro distributed lag coeflicients are distributed independently
from the other micro coefficients in the disaggregated model. See, for example, Lewbel (1994).
The statistical approach followed by some of the above contributions abstracts from aggregation
errors and thus overlooks their significance for empirical analysis. We relax these assumptions and
derive optimal aggregate functions in a more general setting, paying particular attention to the
aggregation errors that are inevitably involved, and show that the long-run coefficients obtained
from the optimal aggregate equation are in fact equal to the averages of the long-run coefficients
from the micro relations. A correspondence result is also established between the mean lag from
the aggregate function and the average of the mean lags from the micro relations. This equivalence,
however, requires the independence of the long-run effects and the mean lags at the micro level.

In view of the recent interest in habit formation models of consumption, Section 6 presents an
analysis of aggregation of the life-cycle consumption decision rules under habit formation allowing
for possible heterogeneity in the habit formation coefficients across individual consumers. It is
shown that the optimal aggregate consumption function can be markedly different from the analogue

function based on a representative consumer. In particular, unlike the analogue function the optimal

3Tt is clearly possible to derive optimal aggregate functions with respect to non-quadratic loss functions of the

type discussed, for example, in Christoffersen and Diebold (1996) and Granger and Pesaran (2000).
4The optimal aggregate forecasting approach can also be applied to non-linear systems. For an application to

static non-linear models with random coefficients see Garderen, Lee, and Pesaran (2000).



aggregate function in general cannot be represented as a finite-order autoregressive distributed lag
model in consumption and labour income. The quantitative implications of the use of aggregate
consumption data for the estimation of the structural parameters is also explored by means of
stochastic simulations. It is shown that under heterogeneous habit formation the estimates of
the structural parameters based on the analogue function can be very misleading, while the use
of the optimal aggregate function generally leads to estimates that are quite close to their true
values. Monte Carlo simulations suggest that the estimates of habit formation coefficients obtained
from the analogue (representative agent) aggregate consumption function can be seriously biased
downward, providing a possible explanation for the “excess smoothness” and “excess sensitivity”

puzzles encountered in the empirical consumption function literature.

2 A General Framework for Micro (Disaggregate) Behavioral Re-

lationships

Aggregation of behavioral or technical relations across individuals becomes a problem when there
is some form of heterogeneity across individuals’ relations. When individuals are identical in every
respect and the associated micro relations are homogeneous, aggregation will not be a problem.

This is, however, extremely unlikely to be the case in practice. Sources of heterogeneity include:

e input variables (heterogeneous initial endowments)
e micro parameters (heterogeneous coefficients)
e micro functionals (heterogeneous preferences and/or production functions)
Let the micro behavioral relationship be represented as
vit = fi (x4, w3, 0;) , 1=1,2,...,N, t=12,...,T, (2.1)

where y;; denotes the vector of decision variables, x;; is a vector of observable variables, u;; is a

vector of unobservable variables, and @; denotes the vector of unknown parameters.

Example 2.1 When the source of heterogeneity is different inputs (or endowments) across indi-

viduals only, we have
Yit:f(Xit,uit,O), 1=1,2,... ,N, t=1,2,...,T. (2.2)
Such a scenario may arise in the analysis of nonlinear Engel curves,

wi = ag + ay log i + ag (log i) + wy, (2.3)



or in the analysis of (Cobb Douglas) production functions of the form
yir = ALG KL%t (2.4)

For this type of heterogeneity, aggregation clearly will not be a problem when the micro relations

are linear.

Example 2.2 When the input variables as well as the parameters differ across individuals, we

have
yit:f(xit7uit70i)7 i:1727"'7N7 t:1727"'7T' (25)

In the analysis of nonlinear Engel curves, such a scenario arises, for example, if the model is given
by

Wit = Qg; + a1, log Tt + a9 (log ZL’it)2 + Ujt. (26)

Example 2.3 It is also possible that there is heterogeneity in the functional form of the micro

relations, for example a production function of the form
—6; —b; —1/8: u;
yit = (/\,»Lit i+ (1-N) K, ) et (2.7)

In this paper I consider the case where f(-) is the same across individuals, but the input
variables x;; and u;, and/or the parameters 6; differ across individuals. The analysis can also be
easily extended to account for observed and unobserved macro (or aggregate) effects on individual

behavior, namely
yit:f(xit7zt7uitavt70i)7 i:1727"'7N7 t:1727"'7T7 (28)

where z; represents a vector of observed macro effects, and v; represents a vector of unobserved

macro effects.

3 Alternative Notions of Aggregation

3.1 Deterministic Aggregation

This approach, employed for example by Gorman (1953) and Theil (1954), treats all the input
variables and parameters as given and asks whether an aggregate function exists which is identical
to the function that results from the aggregation of the micro relations. Let Y; = N~! Zf\i 1Yit-

Then aggregating (2.1) under f; (-) = f (-) across all ¢, taking x;, u;, and 8; as given, we have

N
Y =N f (%, uat, 605) - (3.9)
i=1



An aggregation problem is said to be present if the aggregate function F (X¢, Uy, 0,) (with X; =
N1 sz\;l xi, Ug = N1 sz\;l u;¢, and where 0, is the vector of parameters of the aggregate
function) differs from N~! Zf\i L (x4, wie, 0;). Perfect aggregation holds if

N
F (X, Up,00) = N7'> O F (xit, 000, 0:) || = 0 (3.10)
i=1

for all x4, u;, and 6;, where ||a — b|| denotes a suitable norm discrepancy measure between a and
b. This requirement turns out to be extremely restrictive and is rarely met in applied economic
analysis, except for linear models with identical coefficients. Condition (3.10) is not satisfied when

f (-) is a nonlinear function of x;; and u;, even if 6; is identical across individuals.

3.2 A Statistical Approach to the Aggregation Problem

The restrictive nature of the deterministic aggregation condition (3.10) arises primarily because it
requires the condition to be satisfied for all realizations of x;;, u;;, and 6;, no matter how remote the
possibility of their occurrence. An alternative and less restrictive approach would be to require that
(3.10) holds “on average”. More precisely, let p,(t) and piy(t) be the means of y;; and x;; across
individuals at a point in time or over a given period of time (depending on whether the variables
are stocks or flows) and define a macro (or aggregate) relation as one that links p, (%) to p(t) at
a point in time ¢. This approach was suggested by Kelejian (1980) and rigorously formalized by
Stoker (1984). It treats x;, u;;, and 8; across individuals as stochastic, having a joint probability
distribution function P (X;t, s, 0;; ¢,) with parameter vector ¢, that could vary over time, but not

across individuals. Then

by ()= 0y (6) = [ £xec.0) P (w03 8 i s d, (3.11)

and
p () = Uy () = /xP(xt,ut,O; éb,) dx; du; dO. (3.12)

Let ¢, = (qﬁlt,(b%)’, where ¢, has the same dimension as x;, for all ¢, and suppose that for a

given ¢y, there is a one-to-one relationship between ¢y, and p, (t). Then

Bor = Ui (rs iy (1)) (3.13)

and

py () = Uy [1, Uit (s, b ()] = F (1 (£) , 1) - (3.14)

The relationship between p, () and g, (¢) is then defined as the exact aggregate equation.



This is clearly an improvement over the deterministic approach, but it is still rather removed
from direct empirical analysis,? and does not adequately focus on the inevitably approximate nature
of econometric analysis. Also, perhaps more importantly, due to its reliance on unconditional means,

this approach is not suitable for the analysis of dynamic systems.

3.3 A Forecasting Approach to the Aggregation Problem

Once again consider the exact aggregation condition (3.10) specified for all x;;, u;, and 6;, but
now require that conditional on the aggregate information set Q; = {Y¢_1, Yi—2, ...; X¢, Xe—1,..- }

the mean of
N

F (Qtv gat) - N_l Z f (X’itv ¢, 01)
i=1

be as small as possible. For expositional simplicity denote the aggregate function F (£, 0:,) by Fy,
and f (x;¢, wit, 0;) by fiz. Also note that the parameters of the aggregate function, 0y,, will typically
include first and higher moments of the joint distribution of (x, u;, ;) across ¢, and could be
time-dependent.

Suppose that [|a — b|| is quadratic, namely ||a — b|| = (a — b)?, where a and b are scalars. Then,

B|F - Y] = B{(F—E(Yi|) ~ (Yo~ E(YdQ)P [ |
= B{[Fi—B(YQ)] |} + E {[Ye — B (Y:[Q0)]" | |
—2E{[Fy — E(Y¢|)] [Yi — E(Y|€2%)] [} (3.15)

and therefore the prediction that minimizes E {(Ft ~Y,)? |Qt} is given by

N
Fi=E(Yi|Q) =N 1) Ef (xi, wir, 0:) ], (3.16)
i=1
which I will refer to as the “optimal aggregator function” (in the mean-squared error sense). The
orthogonal projection used (implicitly or explicitly) by Granger (1980), Liitkepohl (1984), and Lippi
(1988) for aggregation of linear time series is a special case of this optimal aggregator which is more
widely applicable. For an application to aggregation of static non-linear models see Garderen, Lee,
and Pesaran (2000).
This choice of Fy globally minimizes E {(Ft —Y,)? |Qt}, but does not reduce it to zero, which
is what (3.10) requires. We rather have

E [(Ft ~Y,)? |Qt} = Var (Ye|) # 0, (3.17)

unless, of course, F (Y¢|%) = Y.

SFor empirical analysis it is also required that ¢, is time invariant.



It is also possible to define an aggregate prediction function, based on individual prediction of

yit, conditional on information on all the observed disaggregate variables at time ¢. Let

Dyt = {¥it—1,Yit—2, - - - 5 Xit, Xit—1,-- . | (3.18)

denote the information set specific to individual ¢, and as before denote the information common

to all individuals by
Qe={Y: 1, Y o,...; X, X¢1,.-. } (3.19)
Then
U = Dy Uy (3.20)
contains the information on the variables in the i-th equation, and
T, = UM, Uy, (3.21)

all information available in the disaggregate model. Then the aggregate forecast, Y4, based on the

universal information set, ¥, is given by
N
Yia=N""Y" Ef (xit, uit,0:) |T4] (3.22)
i=1

which in most cases simplifies to

N
Yo =N Ef (xit, wir, 0:) | W] - (3.23)
i=1
Then we have
2 2
E[(Yi = Yi)* 10) < B{(Y: — E(Yd)) 1%}, (3.24)
and hence
E(Y:—Yw)? <E(Yi—E(Y:)?, (3.25)

which is basically saying that the optimal predictors Y4 that utilize information on micro variables
on average are expected to do better than the optimal predictors based on the aggregate information

only.



4 Cross-Sectional Aggregation of Static Linear Models

The problem of aggregation of static linear models is straightforward and has been extensively
discussed in the literature.® Here we provide a brief account using the optimal aggregator function

developed in the previous section. Consider the linear micro relation
yit = Bixi +wie,  i=1,2,...,N, t=1,2...,T, (4.26)

with random coefficients 3; (of dimension k x 1) distributed independently of x;; (conditional on

x¢). Then denoting the cross-sectional averages of y;; by Y; = N~! Zﬁl Yit we have

N N
Vi=N1)"Bxi+ N> uy. (4.27)
i=1 i=1

Our approach to deriving an optimal aggregate forecast involves two steps: First, we take condi-
tional expectations of the aggregated relation, in this example given by (4.27), with respect to the
universal information set, ¥; = Uij\;l‘I’it, defined by (3.21), and make use of the assumption that

E(B; | Vi) = E(B;) = B. In the case of the present application this yields
N N
EM|0) = N'Y BB | W)xa+N ') (ux|0)
i=1 =1

N
= ,B/Xt + N_l ZE (u1t|‘I't) .
i=1

In the second step, to obtain the forecast of the aggregates, Y;, with respect to the aggregate
information set, {2y, we now take conditional expectations of the above relation with respect to {24

C W;. This now yields

N
E (Vi) = BXi+ N1 F (ua). (4.28)
i=1

Assuming that E (u;|Q2) = 0 for all ¢ and ¢, the optimal forecast of the aggregate series {Y;} will
be

E (Yi|) = B X4, (4.29)
which can be equivalently written in the form of the following aggregate regression function:
Y =B'X; + e, (4.30)
where

=Y — EY Q). (4.31)

6See, for example, Theil (1954).



By construction E (&¢/Q:) = 0, and noting that X; C Q, we also have E (¢¢|X;) = 0. Therefore,
the least squares regression of Y; on X; will yield a consistent estimator of 3.

In the present case where he x;;’s do not contain lagged values of y;¢, the errors of the aggregate
regression function, (4.30), are serially uncorrelated, but heteroskedastic. To see this note that for

J=1

B (eiet-5100) = B (et (Yiey = B Xy 190) = (Yiy = B Xy B (22]6%) = 0,

(4.32)
and therefore E (e4e¢—;) = 0 for j > 1. Consider now the conditional variance of &;:
Var (%) = E (]|%) = E (Y2|%) — B XX}, (4.33)
where, if the x;’s and uj;’s are independently distributed for all 7,7, it may be shown that
N N
B(Y2I%) = N7 (BumB) + NS uiva i,
i=1 j=1
N N N N
AN N (WU s) + N2 Y oy, (4.34)
i=1 j=1 i=1 j=1

where p; = E (xu|$k), Vg5 = E (515;’|Qt) — BB, Uyij = E (Xitx;t|ﬂt) — pepty, and oy =
FE (uitth|Qt).

5 Aggregation of ARDL Models

Consider the simple autoregressive-distributed lag (ARDL) model
yit:)\iyiytfl —|—ﬁixit+uit, 1=1,2,... ,N, t=1,2,...,T, (535)

and assume that N is large.”

Assumption A.1: (\;, ;) are identically and independently distributed of x;; and wj;, for all
1,7 and t.

Assumption A.2: |)\;| < 1 with probability 1 for all 7, and the micro processes, (5.35), have
been initialized at time ¢ — —oo0.

Assumption A.3: x;’s have finite second-order moments and are distributed independently
of uj for all 4,7, ¢, and s <.

Assumption A.4: micro disturbances, u;, are serially uncorrelated with mean zero and a

finite variance, and admit the following decomposition

wip = @ine + it (5.36)

TA group-specific intercept term can also be included in (5.35).

10



where 7; is the component which is common across all micro units, and &;; is the idiosyncratic
component assumed to be distributed independently across ¢, with a mean zero and a finite variance.

Assumption A.l is standard in the aggregation and panel literature with random coefficients.
The stability conditions, |A\;| < 1, for all 7, can be relaxed at the expense of additional assumptions
on the way the micro processes are initialized. Assumption A.3 is required for consistent estimation
of the parameters of the aggregate equation and can be relaxed. Assumption A.4 is quite general
and allows a considerable degree of dependence across the micro disturbances, u;. Also it does not
require &;; and @;n; to be independently distributed.

To derive the optimal aggregator function, E(Y;[€2:), one possibility would to work with the
autoregressive distributed lag representations, (5.35). But this would involve deriving expectations
such as E(\y;—;|€2) which is complicated by the fact that A; and y;; ; are not independently
distributed. To see this notice that under Assumption A.2, (5.35) may be solved for

oo (o ]
Yit = Pi ZAgﬂ%,pj + Zkiuzgw, i=1,2,..,N, (5.37)
=0 =0

which makes the dependence of y;:—; on A\; and [3; explicit, and suggests that it might be more
appropriate to work directly with the distributed lag representations, (5.37). This is the approach
that we shall follow below:

Aggregating (5.37) across all ¢, we have

oo N oo N
Y; = N71225i)\g$i,t_j —|—N*122)\§ui7t_j, (538)

=0 i=1 §=0 i=1
where as before Y; = N1 Zﬁl yit. Introduce the new information set Yy = {xis, zi¢—1,...} U Qs
which excludes the individual-specific information on lagged values of y;;, and let T; = Uf\i{rit-

Suppose also that NV is large enough so that y; ;_;, 7 = 1,2, .. can not be revealed from the aggregates
Y; 1,Y; 9,.... Now, under Assumptions A.1 and A.4

E (@-Ag | Tt) — B (BN) = aj, (5.39)

BE(N 1) =ENV)=1b;, (5.40)

and
E (Aguw,jm) —E (Ag’ | rt) E (uig |T,).

Taking conditional expectations of both sides of (5.38) with respect to T; we now have

E(Y|Y,) = N‘liiE[(ﬁi/\g) xi,t,jm} +N—1i§:E(Ag'ui,tj|Tt),

§=0 i=1 §=0 i=1
oo N oo N

EYiY) = NSO wi B [(@.Ag') m} +N YN E (Ag' | Tt) B (uig—i|Te) .
§=0 i=1 §=0 i=1

11



Hence, using (5.39) and (5.40) we have

E(Y|Y;) = Z%Xt J+Zb E(U_4|7y), (5.41)

where X; = N1 Zf\; 1T and Uy = N -1 Zf\; 1 wig. This result provides the forecast of the aggregate
series {Y;} conditional on T, that involves disaggregated observations on x,s. To obtain the
aggregate forecast function we need to take expectations of both sides of (5.41) with respect to Q.

Noting that §2; is contained in Y; we now have
E (Yi|Q) = Za]Xt i+ Zb E (Ur—j|%) - (5.42)

The aggregate predictor function, E (Y;|€;), is composed of a predetermined component, Z;’;O a; X¢_j,
and a random component, Y22 b; E' (U;—;|€2). To learn more about the random component, using

(5.36) first note that
Ut =N + Zt7

where

N N
p= N1 Zcpi, and Z; = N1 Zfit.
i=1

i=1
Namely, the aggregate error term, Uy, is itself composed of a common component, 7, and an
aggregate of the idiosyncratic shocks, Z;. Under Assumptions A.3 and A.4, i, and Z; are serially
uncorrelated and independently distributed of x;’s, and hence (noting that Y; is not contained in

Q) we have

Using this result in (5.42) now yields

E (Vi) = ZaJXt ]+Zb Viej, (5.44)

where
V;g_j =F (Ut_]|Qt) =@ E (77t—3|Qt) + E (Zt_]|Qt) , _] = 1, 2, (545)

The optimal aggregate dynamic model corresponding to the micro relations, (5.35), is now given

by

Y: = Zant_j + ij‘/%_j + &g, (546)
=0 =1

12



or

oo

00 0o
Yo=Y a;Xej+¢ > 0iEm—j|) + D 0E (20 4/Q) + e, (5.47)
=0 j=1 j=1

where e; = Y; — E (Y3/€2). By construction ¢; is orthogonal to {X¢, X;—1 .} and {Vi—1, Vi—o,...}.
But, as in the static case, the contemporaneous errors of the aggregate equation, e, are likely to be
heteroskedastic. The above aggregate specification is optimal in the sense that E (Y;|€2;) minimizes

E[Y; — E (Y;|%)]? with respect to the aggregate information set, §2;.%
The terms V;_1,V;—o, ... in addition to being orthogonal to the aggregate disturbances, e, are

in fact serially uncorrelated with zero means and a finite variance. First, it is easily seen that
E(Vij) = E[E (U—|%)] = E(Ui—;) = 0.
Also, for j >0

EWVijVij 1l 1) = Vij 1BE(Vi Q1)
= Vi j a1 E[E(Urj|%) % j1]
= Viej1 E(Ui—j|Q4—j—1).-

But U;_; is a serially uncorrelated process with zero mean. Hence, E(V;_;Vi_j 1|Q—;-1) = 0,
which also implies that E(V;—;Vi—j—1) = 0. Using a similar line of reasoning it is also easily
established that E(V;_;V;_;_s) = 0, for all s > 0. Finally, since by Assumptions A.3 and A.4, ;s
and u;; have finite variances, the random variables V;_1,V;_o,.., being linear functions of x;s and
g, will also have finite variances. Clearly, the same arguments also apply to the components of
Vi—j, namely V;" ; = E (n;;|Q) and V7 ; = E (24 ;|Q¢), namely V;" ; and V{7 ; have zero means,
are serially uncorrelated with finite variances.

The aggregate function, (5.46), holds irrespective of whether the shocks to the underlying micro
relations contain a common component. But the contribution of the idiosyncratic shocks, Z;, to
the aggregate function will depend on the rate at which the distributed lag coefficients, b;, decay
as j — oo. Although, under assumption A.4 Z; 2.0, this does not necessarily mean that the
contribution of the idiosyncratic shocks, given by 3 72, b;FE (Z;—;|$2), will also tend to zero as
N — oo. Heuristically, this is due to the fact that under Assumptions A.3 and A.4 the variance
of V2 ; is of order of Z;i1 b?/N and need not tend to zero if the coefficients, b;, do not decay
sufficiently fast.” An example of such a possibility was first discussed by Granger (1980). We

8Notice that {X¢, Xe—1,...} and {Vi_1, Vi_o, ...} are contained in €.
9See also Zaffaroni (2001) who makes a similar point in relation to the time series properties of the aggregates,

Y:, using a spectral density approach assuming that the common and the idiosyncratic shocks are independently
distributed. Note, however, that our analysis focuses on the time series properties of the aggregate forecasting

function, £ (Y:|Q:), which need not necessarily have the same properties as the aggregates, Y;, themselves.

13



now turn to this and other examples and show how a number of results in the literature can be
obtained from the optimal aggregator function given by (5.46). In the general case where the micro
relations are subject to both common and idiosyncratic shocks the effect of the common shocks on
the aggregate forecast, F (Y;|€2), will dominate as N — oo. Hence for forecasting purposes the

effects of idiosyncratic shocks could be ignored.

5.1 Cross-Sectional Aggregation of AR(1) Processes

This problem has been addressed by Granger (1980). Using a spectral density approach Granger
shows that the aggregate series may have a long-memory component even if the underlying micro
relations are covariance stationary. This result can be readily derived from (5.46). In the case of
the aggregation of pure AR(1) models 3; = 0, and the stochastic process of the aggregate series
will be given by

Y; = ijVij + &, (5.48)
=

where as before b; is the j-th order moment of A, V;_1,V;_o, ... are serially uncorrelated with zero
means and finite variances, distributed independently of €;. In this simple case it is also reasonable
to expect V; and e; to have constant variances, although this assumption is not required for the
analysis of the long-memory properties of the Y; process.

It is clear from (5.48) that the time series properties of Y; will critically depend on the coefficients
b;, and therefore the probability distribution of A. Following Granger (1980) we assume that A has
a Beta distribution of the second type on the range (0,1):

2

fO) = =——-\P11 =X  0<A<]1, 5.49
(N = g =) (5.49)

where p > 0 and ¢ > 0 are the parameters of the Beta distribution.'? It is now easily seen that

y_ Blp+j/2,q)
b =FE(N)=——""=, 5.50
1 =50 =" 5.9 (50
and for large j

bj=(p+7j/2)7% (5.51)

Hence, for ¢ > 1, the sequence {b;} will be absolute summable and the aggregate series, Yz, will not
be long memory. But for values of 0 < ¢ <1, {b;} will not be absolute summable and the aggregate
series will be long memory. As pointed out by Granger (1980) the long-memory property of the
aggregate series only depend on whether 0 < g < 1, and does not depend on p. Also, irrespective
of whether g exceeds unity, an exact finite order autoregressive-moving average representation for

Y; does not seem to exist, unless of course A has a degenerate distribution.

1%See, for example, Johnson, Kotz and Balakrishnan (1995, Ch. 25).
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5.2 Cross-Sectional Aggregation of ARDL Models

Initially we consider the relatively simple case where the coefficients 3; and A; are independently
and identically distributed across i. This case is discussed in Lewbel (1994) where he makes the ad-
ditional assumptions that the distributions of 3; and x;; are uncorrelated and that \; and 3;x;; 4+
are independently distributed.!’ Under these assumptions and adopting the statistical approach
described in Section 3.2, Lewbel derives the following aggregate infinite-order autoregressive spec-

ification
gy () = cipy(t — 5) + Brea(t) + pu(t), (5.52)
j=1

where 1u,(t), pz(t), and pi,(t) are the cross-sectional means of y;, @i, and w, respectively.!?
Assuming the above infinite-order autoregressive representation exists, Lewbel shows that the

coeflicients ¢ satisfy the recursions

s—1
bs =Y brcs r, (5.53)
r=0

with b; = E (M), as before. It is then easily seen that ¢; = by = E()), ca = E(A — b1)? = Var()\),
which establishes that the autoregressive component of the aggregate specification must at least be
of second order; otherwise the distribution of A will be degenerate with all agents having the same
lag coefficient.

Lewbel’s result and a number of its generalizations can be derived from the optimal aggregate
specification given by (5.46). Our approach also provides the conditions that ensure the existence
of Lewbel’s infinite order autoregressive representation. In the simple case considered by Lewbel,
where (3; and ); are assumed to be independently distributed, we have E (ﬁ,)\g ) =FE(B)E ()\g ) =
f3b;, and (5.46) simplifies tol?

Yy = 5ijXt—j +ijV2—j + €, (5.54)
=0 j=1
where as before b; = E (X). To see the relationship between (5.54) and Lewbel’s result, (5.52)
first note that
Yi=B(L)[BXe + Vil + e =V, (5.55)

where B(L) =772, b;L?. Whether it is possible to write (5.55) as an infinite-order autoregressive
specification in Yz, depends on whether B(L) is invertible and this in turn depends on the probability

"The consequences of relaxing some of these assumptions are briefly discussed by Lewbel (1994, Section IV).

12(Cross-sectional mean of y;;, for example, is defined as the limit of % vazl it as N — o0,
13Recall that here we are assuming that there are no common components in the micro shocks, ui:, and hence

v, 2 0.
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distribution of \. It is, for example, clear from our discussion in the previous section that if A has a
Beta distribution of the second type with 0 < ¢ <1, then {b;} will not be absolute summable and
B(L) = Z]oio bij may not be inverted. Therefore, under this distributional assumption Lewbel’s
autoregressive representation may not exist. But if {b;} is absolute summable, B(L) can be inverted

and (5.55) can be written as

Yi=> Vi j+B8Xi+ Y ¢Vij+C(D)e, (5.56)
j=1 j=1

where C(L) = 1 — Z]oil ¢;L7. The coefficients c; are obtainable from the polynomial identity
B(L)C(L) = 1, and it is easily verified that they in fact satisfy the recursive relations (5.53)
derived by Lewbel (1994).

In the more general (and realistic) case where 3; and \; are allowed to be statistically dependent,
the optimal aggregate specification does not simplify to (5.56) and will be given by (5.46). In this
more general setting there seems little gain in re-writing the resultant distributed lag model in the

infinite-order autoregressive form favoured by Lewbel (1994).

5.3 Relationships Between Micro and Macro Parameters

In general, the optimal aggregate specification, (5.46), is still subject to the so-called aggregation
problem, in the sense that not all the parameters of the cross-sectional distribution of the micro
parameters can be recovered from the parameters of these aggregate relations. But some of the
parameters of interest can still be obtained from the lag coefficients a; and b;. A prominent example

is the long-run impacts of x;; on y;:, averaged across the micro units; namely

N
1 Bi
Oy = —
N N;1—/\i’

or the average of individual “mean lags” defined by

N
1 A
TN_N;1—/\,-'

Using (5.46), it is easily seen that

=0 ' =0 ‘

Jj=0

Therefore, for sufficiently large IV, 0 is well approximated by Z?io a;, and the cross-sectional mean
of the micro long-run coefficients can be estimated by the long-run coefficient of the associated
optimal aggregate model. Notice that this result holds even if 3; and A; are not independently

distributed, and irrespective of whether the micro shocks, wu;, contain a common component. The
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coefficient of X} in the aggregate specification can also be used to estimate E([3;), the average impact
effects of x;; on y;z. But to obtain separate estimates of E(3;) and E();) from the aggregate model,
further restrictions are needed. The assumption that §; and A; are independently distributed, as
shown by Lewbel (1994), is sufficient for separate identification of the parameters of the cross-
sectional distributions of 3; and ); from the estimates of the aggregate equation.

The mean lag, 7, can also be recovered from the coeflicients of the aggregate specification if
we assume that the individual-specific long-run coefficients and mean lags, namely (3;/ (1 — ;) and
Ai/ (1 = \;), are identically and independently distributed.'* Under this assumption, the estimate
of the mean lag based on the aggregate specification, (5.46), is given by

. Zgo'io Jja;
¢ Zgo'io a;

Substituting E(3M) for a; in the above expression it is easily seen that

Therefore, under the assumption that 5/ (1 — A) and A/ (1 — \) are independently distributed we
have E(ﬁ) = Ta, and since limy_ o0 T8y = E(ﬁ), then for sufficiently large N, the mean lag of
the aggregate specification, 7,, can be used to estimate the cross-sectional average of the mean-lag
of the micro relations, 7.

Another approach to a resolution of the aggregation problem is to adopt a parametric spec-
ification of the cross-sectional distribution of the micro coefficients, (; and )\;, and then directly
estimate the unknown parameters of the cross-sectional distribution from the aggregate specifica-
tion. As an example, suppose 3; and \; are independently distributed, and A; follows a standard

Beta distribution defined by!®
1

f@p5mp®v4a—Awﬂ 0<A<1, p>0,q>0. (5.57)

Under this set-up, the optimal aggregate equation is given by

o . (0. ] .
B(p+4,9) Blp+4,q)
Yi=p8) —f—Xi—j+ ——— Vi—j + et
;% B(p,q) ~ ;; B(p,q) 7’
The unknown parameters of the distribution of the micro coefficients, 3, p, and ¢, can be computed
by estimating the above distributed lag model by, for example, the maximum likelihood method.

For this purpose it seems reasonable to assume that V; and e; are normally distributed with zero

147t is more likely that this assumption holds than the assumption of independently distributed 3; and \; used in

Lewbel (1994).
15This specification of the Beta distribution is simpler to work with than the Beta distribution of the second type

used earlier to ensure comparability with Granger’s work.
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means and constant variances, o2 and o2, respectively. The problem of the truncation remainder
that arises due to missing observation on X, can be resolved, for example, along the lines suggested
for the estimation of the geometric distributed lag models by Pesaran (1973). The truncation
remainder problem is likely to be more serious in the present application where the weights b; =
B(p+3j,q)/B(p,q) will be declining with j at a much slower rate than in the case of the geometrically
distributed lag models discussed in the literature.

Having estimated p and ¢, the mean and variance of A can then be estimated by

qp

B (p+a)?(p+q+1)

, and Var(\) =

Pty
It can also be shown that the long-run impact of X; on Y; (or equivalently the cross-sectional mean

of the long-run coefficients of the underlying micro equations) is given by (assuming ¢ > 1)

1
lim y = lim —
N—oo N—oo N

N
Bi  Blpt+qg—1)
221—A_ ’

6 Aggregation of Life-Cycle Consumption Decision Rules Under

Habit Formation!®

In the recent life-cycle literature habit formation has been emphasized as a potentially important
factor that may help resolve a number of empirical puzzles. Deaton (1987), among others, argues
that habit formation could help explain “excess smoothness” and “excess sensitivity” of aggregate
consumption expenditures.!” Carroll and Weil (1994) suggest that the reverse causality between
growth and saving often observed in aggregate data could be due to the neglect of habit formation
in consumption behaviour. Fuhrer (2000) maintains that the dynamics of aggregate consumption
decisions as represented by autocovariance functions can be much better understood using a model
with habit formation than using a model with standard time-separable preferences. A problem
common to all these studies using representative agent frameworks is that the coefficient of habit
formation needed to reconcile the model with the data is typically deemed implausibly high. In
this section we consider the aggregate implications of allowing for heterogeneity in habit formation

coefficients across individuals and investigate the extent to which empirical puzzles observed in

161n formulation of the aggregation problem in this section I have benefited from the joint work that I am cur-
rently conducting with Michael Binder on econometric implications of a wide-range of life-cycle models under habit

formation. See Binder and Pesaran (2002).
Excess smoothness refers to the situation where contrary to the prediction of the permanent income hypothesis

changes in aggregate consumption do not vary closely with unanticipated changes in labour income. Excess sensitivity
refers to the situation where changes in aggregate consumption respond to anticipated changes in labour income, whilst
the theory predicts otherwise. For a review of the empirical literature on excess smoothness and excess sensitivity

see, for example, Muellbauer and Lattimore (1995).
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aggregate consumption data are due to the aggregation problem. Using stochastic simulations
we show that the estimates of the habit persistence coefficient are likely to be seriously biased
downward if they are based on analogue aggregate consumption functions, which could partly
explain the excess smoothness and excess sensitivity puzzles in terms of neglected heterogeneity.'®

We consider an economy composed of a large number of consumers, where each consumer
indexed by 4, ¢ = 1,2,...,N, at the beginning of period t is endowed with an initial level of
financial wealth, a; ;1. His/her labour income over the period t —1 to t, y;, is generated according

to the following geometric random walk model

t

logyi = oy + ut + sz + &t (6.58)
s=1

where «; is the time-invariant individual-specific component, p is an economy-wide drift term, v,
is the economy-wide random component, and £;; is the residual random component. The random
components oy, v, and &; are assumed to be mutually independent, ¢ = 1,2,... ,N;t=1,2,...,

and distributed identically as normal variates with zero means and constant variances:
a; ~ iid N (a,(ri) , v ~iid N (0,012)) , and & ~iid N (0,()’?) . (6.59)

This formulation allows labour incomes at the individual and the economy-wide levels to exhibit
geometric growth and at the same time yields a plausible steady state size distribution for labour

incomes.!® Each individual solves the following intertemporal optimization problem:

max F Z&su(ci,t_,_s,ci7t+3_1)|<I>it (6.60)

{Ciyt+3}:io s=0

subject to the period-by-period budget constraints,

iprs = (1 +7)0; t45—1 + Yit+s — Cittss s=0,1,... (6.61)
the transversality condition,

lim (1 4+ 7r) *E(a;t+s|Pit) =0, (6.62)

S§—00
and given initial consumption levels, ¢;;_1, as well as initial wealth levels, a;;_1, for all 7. In
equations (6.60)—(6.62) w; = w(cit,ci—1) represents individuals 4’s current-period utility function

for period ¢, 6 = 1/(1 + p) represents a constant discount factor, r is the constant real rate of

8Tn a different attempt at resolving the excess smoothness and excess sensitivity puzzles, Binder and Pesaran

(2001) argue that social interactions when combined with habit formation can also help.
For a more detailed discussion of the relative merits of the labour income specification (6.58) over the usual

arithmetic formulations employed in the literature see Binder and Pesaran (2000).
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interest, and E(-|®;) denotes the mathematical conditional expectations operator with respect to

the information set available to the individual at time ¢:
@it = {Cit, Cist—1,- - - 3 Yit> Yist—15- - 5 Qit, Qi1 - - - }- (6.63)

Given the focus of our analysis on aggregation of linear models we consider the case where the

current period utility function is quadratic, namely

Wﬁ:34%—xﬁ¢4—qﬁ,o<&<1, (6.64)

where ); is the habit formation coefficient and ¢; is the saturation coefficient. For simplicity we also
assume that p = 7, so that individuals are time-indifferent.?® For each individual the consumption
decision rule for time period ¢ that solves the above intertemporal optimization problem is given
by:

1 . .
Acit = NAci i1 + Biyie + vi exp(oy + 505) [Yi —(1+nmYa|, (6.65)

where Y; is the economy-wide component of labour income,

t

Y; = exp(ut + sz), (6.66)
s=1
o r(l+r—2XN\)
/B’L - (1 + T)Q I (667)

Cr(l+r=X)(1+9)

i = ; 6.68
A+ —9) 009
and g is the rate of growth of labour income
1 2
g=-exp(p+=0;) — 1L (6.69)
Notice that the labour income of individual ¢ can be decomposed as
yit = Yy exp(oi + &ir). (6.70)

Defining economy-wide average labor income as ¥; = (1/N) 2N | 4y, then under (6.59) as N — oo
we have
2
i3

B 2
Y; LYtexp(a—i—%—l—?). (6.71)

20For more details and relevant references to the literature see Binder and Pesaran (2000, 2002).

20



Also, aggregating the budget constraints, (6.61), yields
AtJrs = (].-’-T)AtJrs,l +Y2+S _CtJrS, S = 0,]_,...

where A; = (1/N) Zz 1 @it and Cy = (I/N) Zz 1 Git-

There will be an aggregation problem only when the habit formation coefficients, A;, differ

across individuals. In the case where A\; = X for all ¢ we have:

1 .
Acit = AAC; 11 + Byit + v exp(a; + 505) Y, — (1+7)Yi], (6.72)
_r(l4+r =)

rl+r-N1+g)
(1+7)*(r—g)

, (6.74)

and using (6.71) and noting that % SV exp(a;) <= exp(a + $02) yields the perfect aggregate
model

r(l+r—-N1+g)

ACy = AAC—1 + B + T+720r —g) Yy — (1 +7)Yia], (6.75)
or equivalently
B r(14+r—2X\)
ACy = MAC1 + A+ —g) Y —(1+g)Y:1]. (6.76)

This specification is perfect in the sense that it yields aggregate forecasts of AC; (or Ct) based
only on aggregate time series observations Q; = {C;_1,C; 9, ...; Y, Y1, ...} that have zero mean-
squared errors and are indistinguishable from forecasts of aggregate consumption based on the
individual-specific decision rules, (6.72) (using individual-specific consumption and labour income
data).

Consider now the empirically more interesting case where yhe \;’s are allowed to vary across

the individuals. Since |\;| < 1 for all ¢, then

[ele] ) 1 [ele] . B
Aciy = B ) Myi—j +viexp(as +508) Y N (Yiej = (L+7)¥isjma). (6.77)
=0 =0

Aggregating across ¢, we have

oo N
1 1 .
N 227 M exp(a; + 507) |[Yiej = (L+7)Vimja | - (6.78)
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Assume that the \;’s are iid draws from a distribution with finite moments of all orders defined
on the unit interval, and take conditional expectations of both sides of (6.78) with respect to
Tt - U»filritv Where T’it == {yitvy’i,tflv ... } U {th}/tfl7 } NOW7
1 oo N '
E(ACHT:) = N Z ZE (ﬁi)\ﬂ'rt) Yit—j +

§=0 i=1

1 oo N ) 1 N N
N ZZE <%)\f|Tt) exp(a; + 503) {Yl‘—j -1+ T)thjq}

§=0 i=1

Since E <52A5|Tt) =F <BZ)\5) =a; and F (%A{IL) =F (71/\5) = b;, for all 7, then we have?!

E (AC|Yy) Za]Yt —j ( Zexp o; + 05 ) ij [Y/t_j —(1 —{—r)f/t_j_l} .

=0 (6.79)
But as noted earlier, for N sufficiently large
1 1 2 o
~ D exp(ai + 50F) < exp(a+ %“ +5),

i=1

and in view of (6.71) we have
ACt|Tt Zaj)/:f —7 +Zb Yt 7 1—{—7“)1/1573',1}
Also using (6.67) it is easily seen that

r r
T T T @2 (6:50)

and m; = E(XN) is the j—th order moment of );. Similarly, using (6.68) and (6.80) we have

(1+7r)?

r(l4+r— )\Z)Af]

bj=E (m{) = %aj. (6.81)

Now taking conditional expectations of (6.79) with respect to the aggregate information set
Qt = {Yt7 }/:‘/717 -3 thla Ct727 "'}

E(Act|Qt)

1+
= Z%Yt it gz% Yij = (L +7)Ysja]

1+7r
= < —g> CL0Yt+Z - (14+g9)aj-1]Yi—;

r

*'Recall that + SOV exp(ai) £ exp(a+ i02).
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The optimal aggregate consumption function can therefore be written as

147 —
AC; = <r — g> Zaj [Y%_j — (1 + g)}/t—j—l} + &, (682)
=0

where g; is the aggregation error and by construction satisfies the orthogonality condition
E(é‘t | Qt) =0.

The aggregation errors are serially uncorrelated with zero means; but in general are not homoskedas-
tic. The above optimal aggregate function is directly comparable to the aggregate model, (6.76),
obtained under homogeneous habit formation coefficients. It is easily seen that (6.82) reduces to
(6.76) if A; = A for all 4. Also the aggregation errors, e;’s, vanish if and only if A\; = A. Finally,
unless the habit formation coefficients are homogeneous the optimal aggregate model can not be
written as a finite order ARDL model in AC; and Y; — (1 4+ g)Y;—1.

6.1 Some Monte Carlo Results

The above analysis suggests that in the present example the appropriate econometric specification
for the analysis of aggregate consumption is given by (6.82), which is far more involved than the
micro analogue specification, (6.76) employed in the literature. Using the optimal aggregate specifi-
cation, (6.82), and its micro analogue we now employ stochastic simulation techniques to ascertain
the quantitative importance of the aggregation error and to examine the extent to which neglected
parameter heterogeneity could explain the excess smoothness and excess sensitivity puzzles observed
in the empirical literature.

At the micro level we generated individual income and consumption time series using equations
(6.65) and (6.70). The aggregate component of income, Y;, was generated using (6.66). We consider
two sets of experiments. The first represents calibration to “annual” observations and a second
set provides calibration to “quarterly ” observations. Under both sets we set N = 5,000 and
experimented with different values of 7" = (50,100, 150), and p = ¢ = (0.5,0.8,1.0,1.2,1.50), where
p and g are the parameters of the Beta distribution assumed for the cross-sectional distribution
of A;, the habit formation coefficient. In the case of annual observations we used the parameter
values 2 = 0.20, o2 = 0.01, ag = 0.01, » = 0.04, g = 0.02. For quarterly observations we selected
the parameter values r = (1.04°.25) — 1, g = (1.027.25) — 1, 03 = 0.20, o = 0.001, 0¢ = 0.001.
Recall that the rate of decay of the distributed lag coefficients of the optimal aggregate consumption
function, (6.82), varies inversely with gq. The aggregation bias is likely to be most serious when ¢
is relatively small.

To study the quantitative importance of aggregation for the estimation of the structural param-

eters (1, g, p, and q) we estimated the analogue aggregate model (6.76) and the optimal aggregate
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model (6.82) after deflating both sides of these relations by Y; to achieve stationarity. In partic-
ular, we estimated the following analogue aggregate consumption function by the Ordinary Least

Squares method:

ACt_K . ACt—1+K Yt—1+u
7 0 1 Y, 2 Y, ts
where
. r(l4+r—2X\)
0 I e —
(L+7)(r—g9)
b= A KZ:—T(l%—r—A)(l%—g).
(L+7)(r—g)

The structural parameters are exactly identified from the OLS estimates of kg, k1, and ks.
The optimal aggregate model was estimated, assuming a standard Beta(p,q) distribution for

the habit formation coefficients, A\; (see (5.57)). The computations were carried out iteratively by

minimizing
T t—1 2
AC’t 1 +r _
Qrg.pa) =) {5~ (T — g> > 4G (6.83)
t=2 ]:0
where
Gij = (Yi-;/Ye) — (1 + 9)(Yi—j-1/Y2), (6.84)

with respect to the unknown parameters, r,¢g, p and q. The decay rate of the distributed lag
coefficients, a;, is determined by ¢, and will exhibit long-memory properties for values of ¢ < 1.

However, since

1+7r

r {B(pﬂ',q)_ 1 B(p+j+1,q)}
1+r | Bpq) 1+r  B(p,q

(6.85)

the long-memory properties of E(\) will be somewhat counteracted by those of E(A*1), for small

to moderate values of j. But as j — oo since
E(N) =~ (p+j)

it is then easily seen that

Q

aj

{(p+j)_q ——WP+Jj+ 1)_q}

X
T
N——

[\)
)
+
S,
|
u»Q
S
=
<.
!
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and hence a; has the same asymptotic rate of decay as m; = E(N).22 Therefore, for most values
of j, the overall rate of decay of a; could still be quite rapid even for values of ¢ < 1. This is
readily seen in Figures 1 and 2. The plot of E()\), given in Figure 1, exhibits a very slow rate of
convergence for small values of g, but the same is not true of the plot of a; given in Figure 2. This
suggests that the estimation of the optimal aggregate consumption model may be feasible even for
values of ¢ < 1.

The summary results for “annual” observations are given in Tables 1 and 2, and for the “quar-
terly” observations are given in Tables 3 and 4. Each table gives the mean, the median, standard
error and mean square errors of the estimates across 1,000 replications. Perhaps not surprisingly,
the estimates based on the analogue aggregate model (in Tables 1 and 3) show a substantial degree
of bias, with the bias being most serious in cases where ¢ is relatively small. Even for large values
of ¢, the estimates based on the analogue aggregate model are still rather poor.?®> For example, for
g =p = 1.5and T = 150, the mean of the habit formation coefficient, E()), is estimated to be 0.42
in the case of the annual observations and 0.40 in the case of quarterly observations as compared
to its true value of 0.50.

In contrast, the estimates based on the optimal aggregate model are generally much closer to
their true values. (See Tables 2 and 4.) The match between the estimates and the true values is
particularly good for T" = 150, irrespective of the value of q. Once again, as to be expected, the

quality of the estimates improve as ¢ is increased.

7 Conclusions

This paper proposes an optimal forecasting approach to the analysis of aggregation and argues that
aggregate functions ought to be derived as optimal forecasts with respect to a loss function of inter-
est. In the case of quadratic loss functions routinely used in the econometric literature the optimal
aggregate function is given by the conditional expectations of the aggregate variable of interest
(formed as the average or the weighted average of the underlying micro decision rules) with respect
to the available aggregate information set. This approach is particularly suited to the aggregation
of dynamic models where parameter heterogeneity and dynamics interact in a complicated manner.
This is illustrated by a re-examination of the aggregation of linear autoregressive models as dis-
cussed in the literature by for example Granger (1980), Lippi (1988) and Lewbel (1994). We have
shown how the results in the literature can be derived under more general assumptions and note

that the aggregate function derived by Lewbel following the statistical approach does not fully take

221 am grateful to Paclo Zaffaroni for pointing this out to me.
23Notice that the degree of heterogeneity of the habit formation coefficient under p = ¢, as measured by the variance

of A, is given by Var(A) = and is inversely related to g. Therefore, one would expect that the estimates based

1
4(2¢+1)
on the aggregate analogue model would perform better for larger values of q.
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account of the aggregation errors involved. We have also applied the forecasting approach to the
problem of aggregating life-cycle consumption decision rules subject to habit formation and have
shown that, in general, the optimal aggregate consumption function cannot be represented as a
finite-order autoregressive distributed lag model in income and consumption. Under heterogeneity
the distributed lag coefficients on labour income decay much more slowly than the geometric rate
obtained for the analogue aggregate consumption function. The quantitative importance of this
finding is examined by means of stochastic simulations. It is shown that the estimates of the habit
formation coefficient based on the analogue aggregate model are biased downwards (in some cases
very significantly so), while the same is not true of the estimates based on the optimal aggregate
model. This result is relevant to the excess smoothness and excess sensitivity puzzles recently
discussed in the consumption literature and suggests that the puzzle could partly be due to aggre-
gation errors. However, a satisfactory empirical examination of the quantitative importance of the

aggregation bias in this literature is beyond the scope of the present paper.
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Figure 1:* Trajectories of Distributed Lag Coefficients: m

Figure 2: Trajectories of Distributed Lag Coefficients: a(1+r)/r

! For both Figure 1 and Figure 2 the solid line represents the case where p=q=.5, the dashdotted line the
case where p=g=1, and the dashed line the case where p=g=1.5. The dotted line represents a geometric
decay with coefficient .5.



Table 1: OLS Estimates Based on Analogous “Annual” Linear Aggreagte Model

r g E(N\)
true values 0.04 0.02 0.5
mean 0.1237 0.03053 0.2602
T =50 median 0.1235 0.03053 0.2602
p=q=05 s.d. 0.004788  0.0002734 0.005189
mse 0.08384 0.01053 0.2399
mean 0.0902 0.02793 0.3191
T =50 median 0.0901 0.02793 0.319
p=q=08 s.d. 0.002291  0.0002118 0.005039
mse 0.05025 0.007937  0.181
mean 0.07941 0.02679 0.3448
T =50 median 0.07936 0.02679 0.3447
p=q= s.d. 0.001712  0.000189  0.004875
mse 0.03945 0.006794  0.1552
mean 0.07235 0.02592 0.3645
T =50 median 0.07234 0.02592 0.3644
p=q=12 s.d. 0.001356  0.0001699 0.004555
mse 0.03238 0.005925  0.1356
mean 0.06551 0.02497 0.3862
T =50 median 0.06549 0.02497 0.3861
p=q=15 s.d. 0.001097  0.0001563 0.004367
mse 0.02553 0.004973  0.1139
mean 0.09941 0.02711 0.275
T =100 median 0.09932 0.02711 0.2748
p=q=05 s.d. 0.002848  0.000183  0.004993
mse 0.05948 0.007117  0.2251
mean 0.07498 0.02493 0.3326
T =100 median 0.07493 0.02492 0.3327
p=q=08 s.d. 0.00135 0.000127  0.00478
mse 0.035 0.004928  0.1674
mean 0.06726 0.02408 0.3574
T =100 median 0.06725 0.02408 0.3573
p=q=1 s.d. 0.000998  0.0001074 0.004597
mse 0.02728 0.004077  0.1427
mean 0.06226 0.02347 0.376
T =100 median 0.06226 0.02347 0.3761
p=q=12 s.d. 0.0007761 9.086e-05  0.004295
mse 0.02227 0.003472  0.124
mean 0.05747 0.02284 0.3965
T =100 median 0.05746 0.02285 0.3965
p=q=15 s.d. 0.0006089 7.827e-05  0.004053
mse 0.01748 0.002845  0.1036
mean 0.09576 0.03168 0.3305
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...continued

T =150 median  0.09572 0.03168 0.3304
p=¢g=05 s.d 0.001731  0.0002502 0.005755
mse 0.05578 0.01169 0.1696
mean 0.07549 0.02812 0.3713
T =150 median  0.07547 0.02812 0.3713
p=¢g=08 s.d. 0.001044  0.0001854 0.005111
mse 0.0355 0.00812 0.1288
mean 0.06826 0.0267 0.3896
T =100 median  0.06828 0.0267 0.3897
p=q=1 s.d. 0.0008333 0.0001605 0.004803
mse 0.02828 0.006697  0.1105
mean 0.06338 0.02568 0.4035
T =150 median  0.06338 0.02567 0.4036
p=¢qg=12 sd. 0.0006804 0.0001369 0.004389
mse 0.02339 0.005678  0.09657
mean 0.05855 0.02462 0.4191
T =150 median  0.05855 0.02462 0.4191
p=g=15 s.d. 0.000553  0.0001178 0.004049
mse 0.01856 0.004621  0.08103

Note: The simulation results in Tables 1 and 2 are based on
growth and discount rates calibrated to “annual” observations.

The other parameter values not specified in the body of the
tables are 07, = 0.20, 07 = 0.01, 67 = 0.01. The simulations
are based on 1000 replications.



Table 2: Estimates Based on the “Annual” Optimal Aggregate Model

r g E(V) p q
true values 0.04 0.02 0.5 varies - see panels
mean 0.05712 0.03324 0.4214 0.6359  0.8733
T =50 median 0.05706 0.03318 0.4215 0.6353  0.8721
p=q=0.5 s.d. 0.001236  0.001039  0.0066 0.02418 0.03877
mse 0.01716 0.01328 0.07886  0.138 0.3754
mean 0.05192 0.02888 0.4467 1.018 1.262
T =150 median 0.0519 0.02886 0.4467 1.018 1.261
p=q=0.8 s.d. 0.000906  0.0007394 0.005836 0.03884 0.05532
mse 0.01195 0.008915  0.05363  0.2219  0.4652
mean 0.05001 0.02733 0.4562 1.27 1.514
T =150 median 0.04998 0.02731 0.4561 1.27 1.513
p=gq= s.d. 0.0007791 0.0006283 0.005335 0.05025 0.0676
mse 0.01004 0.007354  0.04412  0.2748  0.5188
mean 0.0487 0.02628 0.4628 1.523 1.768
T =150 median 0.0487 0.02627 0.4631 1.522 1.763
p=q=12 s.d. 0.0006918 0.0005527 0.004911 0.06181 0.08108
mse 0.00873 0.006301  0.03749  0.3284  0.5733
mean 0.04743 0.02527 0.4695 1.901 2.148
T =150 median 0.04743 0.02526 0.4696 1.899 2.146
p=qg=15 s.d. 0.0006128 0.0004853 0.004328 0.08355 0.1036
mse 0.007454  0.005291  0.03078  0.4098  0.6566
mean 0.04455 0.02328 0.477 0.5452  0.5979
T =100 median 0.04454 0.02328 0.4768 0.5447  0.5976
p=q=0.5 s.d 0.0005466 0.0004434 0.006592 0.01678 0.02167
mse 0.004582  0.003315  0.02393  0.04823 0.1003
mean 0.04294 0.02203 0.4866 0.8616  0.9093
T =100 median 0.04294 0.02203 0.4865 0.8615  0.91
p=q=0.8 s.d. 0.0003972 0.0003201 0.005575 0.02563 0.03074
mse 0.002965  0.002055  0.01454  0.06675 0.1136
mean 0.04242 0.02163 0.4896 1.07 1.116
T =100 median 0.04241 0.02162 0.4897 1.07 1.117
p=q=1 s.d. 0.0003401 0.0002744 0.005115 0.03238 0.038
mse 0.00244 0.001652  0.01163  0.07752 0.1223
mean 0.04208 0.02138 0.4915 1.28 1.324
T =100 median 0.04208 0.02137 0.4916 1.278 1.323
p=qg=12 s.d. 0.0002978 0.0002411 0.004673 0.03889 0.04508
mse 0.002106  0.001397  0.009722 0.08873 0.1322
mean 0.04179 0.02116 0.4933 1.592 1.635
T =100 median 0.04178 0.02114 0.4935 1.592 1.633
p=qg=15 s.d. 0.0002623 0.0002128 0.004157 0.05076 0.05693
mse 0.001812  0.001175  0.007855 0.105 0.1466
mean 0.04228 0.0215 0.4919 0.5119  0.5288
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...continued

T =150 median  0.04228 0.0215 0.4918 0.5115  0.5284
p=q=05 s.d. 0.0001222 9.496e-05 0.005387 0.01392 0.01217
mse 0.002281  0.001501  0.009765 0.01828 0.03123
mean 0.04174 0.02111 0.4945 0.8209  0.8392
T =150 median  0.04174 0.02111 0.4945 0.8206  0.8384
p=q=038 s.d. 0.0001054 7.936e-05 0.004824 0.021 0.01913
mse 0.001741  0.001111  0.007332 0.02964 0.04363
mean 0.04156 0.02099 0.4951 1.027 1.048
T =150 median  0.04156 0.02099 0.4952 1.027 1.047
p=q=1 s.d. 0.000101  7.515e-05 0.004535 0.02637 0.02488
mse 0.001565  0.0009879 0.006655 0.03799 0.05364
mean 0.04144 0.0209 0.4956 1.236 1.258
T =150 median  0.04144 0.0209 0.4956 1.235 1.256
p=gq=12 s.d. 9.832e-05 7.273e-05 0.004123 0.03095 0.02935
mse 0.001447  0.0009062 0.006048 0.04714 0.06462
mean 0.04133 0.02082 0.4962 1.546 1.57
T =150 median  0.04133 0.02082 0.4962 1.545 1.568
p=q=15 s.d. 9.63e-05 7.072e-05 0.003786 0.03976 0.0386
mse 0.00133 0.0008264 0.005372 0.06089 0.07979




Table 3: OLS Estimates Based on “Quarterly” Analogous Linear Aggregate
Model

r g E(N\)
true values (1.042%) —1 (1.02%°) -1 0.5
mean 0.0281 0.006725 0.2436
T =50 median 0.02805 0.006723 0.2436
p=q=05 s.d. 0.001048 4.927e-05 0.005053
mse 0.01828 0.001835 0.2564
mean 0.0214 0.006484 0.3056
T =50 median 0.02136 0.006483 0.3056
p=q=08 s.d. 0.0005269 4.227e-05 0.004955
mse 0.01156 0.001594 0.1945
mean 0.01911 0.006334 0.333
T =50 median 0.01909 0.006333 0.3328
p=q=1 s.d. 0.0003992 3.91e-05 0.004816
mse 0.009262 0.001444 0.1671
mean 0.01756 0.006202 0.3539
T =50 median 0.01755 0.006202 0.3538
p=q=12 s.d. 0.0003208 3.693e-05 0.004522
mse 0.007711 0.001312 0.1462
mean 0.01601 0.006041 0.3772
T =50 median 0.01601 0.006041 0.377
p=q=15 s.d. 0.0002635 3.541e-05 0.004365
mse 0.006167 0.001151 0.1229
mean 0.02274 0.005913 0.2569
T =100 median 0.02271 0.005912 0.2568
p=q=05 s.d. 0.0006418 2.41e-05 0.004784
mse 0.0129 0.001023 0.2431
mean 0.01771 0.005711 0.3187
T =100 median 0.01769 0.005711 0.3188
p=q=08 s.d. 0.0003085 1.903e-05 0.004648
mse 0.007859 0.0008212 0.1813
mean 0.01605 0.005614 0.3455
T =100 median 0.01605 0.005614 0.3453
p=q=1 s.d. 0.0002283 1.692e-05 0.004497
mse 0.006203 0.0007235 0.1546
mean 0.01496 0.005536 0.3656
T =100 median 0.01496 0.005537 0.3656
p=q=12 s.d. 0.000178 1.523e-05 0.004231
mse 0.005107 0.0006459 0.1344
mean 0.01389 0.005448 0.3878
T =100 median 0.01389 0.005448 0.3879
p=q=15 s.d. 0.0001402 1.396e-05 0.004014
mse 0.004038 0.0005575 0.1123
continued ...



...continued

mean 0.02396 0.00687 0.28
T =150 median  0.02393 0.006869  0.2799
p=q=05 s.d. 0.0005813 4.245e-05 0.004945
mse 0.01411 0.00198 0.22

mean 0.01877 0.006474  0.3386
T =150 median 0.01876 0.006474 0.3386

p=q¢q=038 s.d. 0.0002982  3.313e-05 0.004705
mse 0.008924  0.001584 0.1615
mean 0.017 0.006279  0.3632

T =150 median  0.017 0.006281  0.3633

p=gqg=1 s.d. 0.0002266 2.943e-05 0.004527

mse 0.007147  0.001389  0.1369

mean 0.0158 0.006124  0.3816
T =150 median  0.0158 0.006124  0.3816
p=q=12 s.d. 0.0001814 2.659e-05 0.004213

mse 0.005946  0.001233  0.1185

mean 0.0146 0.005946  0.4015
T =150 median  0.0146 0.005946  0.4016
p=q=15 s.d. 0.000145  2.382e-05 0.003934

mse 0.004752  0.001056  0.09859

Note: The simulation results in Tables 3 and 4 are based
on growth and discount rates calibrated to “quarterly”
observations. The other parameter values not specified

in the body of the tables are o2 = 0.20, 02 = 0.001,

ag = 0.001. The simulations are based on 1000 replications.



Table 4: Estimates Based on the “Quarterly” Optimal Aggregate Model

r g E(N) P q
true values (1.04%) —1  (1.022%) -1 0.5 varies - see panels
mean 0.01247 0.007012 0.4346 0.593 0.7729
T =50 median 0.01246 0.007001 0.4345 0.5914  0.7698
p=q=0.5 s.d 0.0003447 0.0003001 0.009949 0.0268  0.05482
mse 0.002635 0.002142 0.06619  0.0968  0.2783
mean 0.0118 0.006367 0.4573 0.9492 1.127
T =50 median 0.01179 0.006365 0.4574 0.9496 1.129
p=q=08 s.d. 0.0002481 0.0002079 0.007649 0.04245 0.07016
mse 0.001958 0.001491 0.04337  0.1551 0.3349
mean 0.01157 0.006156 0.4649 1.189 1.369
T =50 median 0.01157 0.006151 0.4648 1.188 1.368
p=gq=1 s.d. 0.0002045 0.0001684 0.006523 0.05239 0.07837
mse 0.001729 0.001277 0.0357 0.1957  0.3772
mean 0.0114 0.006004 0.4703 1.428 1.609
T =50 median 0.0114 0.006002 0.4705 1.426 1.605
p=q=12 s.d. 0.0001812 0.0001472 0.005832 0.06402 0.0909
mse 0.00156 0.001123 0.03024  0.2369  0.4192
mean 0.01123 0.005854 0.4758 1.788 1.97
T =150 median 0.01123 0.00585 0.4758 1.783 1.966
p=q=15 s.d. 0.0001578 0.0001264 0.004953 0.08512 0.1114
mse 0.001388 0.0009719 0.0247 0.2999  0.4833
mean 0.01047 0.005376 0.4824 0.5272  0.5663
T =100 median 0.01046 0.005374 0.4821 0.5263  0.5635
p=q=0.5 s.d. 0.0001874 0.0001655 0.009207 0.01839 0.03168
mse 0.0006407 0.0005126 0.0199 0.03281 0.07347
mean 0.01027 0.00518 0.4913 0.836 0.8661
T =100 median 0.01026 0.005178 0.4914 0.8358  0.865
p=q=0.8 s.d. 0.0001169 0.0001015 0.006655 0.02733 0.03844
mse 0.0004279 0.0003068 0.01097  0.04518 0.07642
mean 0.01021 0.005128 0.4937 1.041 1.068
T =100 median 0.01021 0.005129 0.4937 1.04 1.069
p=gq=1 s.d. 9.559e-05 8.241e-05 0.00581  0.03406 0.04465
mse 0.0003727 0.0002515 0.008597 0.05296 0.08105
mean 0.01018 0.005097 0.4951 1.246 1.271
T =100 median 0.01018 0.005096 0.4952 1.244 1.268
p=q=12 s.d. 8.125e-05 6.976e-05 0.005188 0.04047 0.05097
mse 0.0003392 0.0002179 0.00712  0.0611 0.08715
mean 0.01016 0.005072 0.4965 1.552 1.574
T =100 median 0.01015 0.005069 0.4966 1.552 1.574
p=q=15 s.d. 6.819e-05 5.835e-05 0.004479 0.05207 0.06176
mse 0.0003117 0.0001904 0.005698 0.07342 0.09649
mean 0.01017 0.00512 0.4928 0.5115  0.5266
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T =150 median  0.01017 0.0056119  0.4928 0.5114  0.5264
p=q=05 s.d. 6.696e-05  5.715e-05 0.006454 0.01484 0.01783
mse 0.0003228 0.0002366 0.009702 0.01875 0.03201
mean 0.01016 0.005098  0.4945 0.8219  0.8403
T =150 median  0.01016 0.005096  0.4944 0.8217  0.8402
p=q=038 s.d. 4.743e-05  3.885e-05 0.005309 0.02241 0.02483
mse 0.0003087 0.0002106 0.007657 0.0313  0.04731
mean 0.01015 0.005087  0.4951 1.029 1.049
T =150 median  0.01015 0.005087  0.4952 1.028 1.048
p=q=1 s.d. 4.141e-05  3.305e-05 0.004823 0.02828 0.03049
mse 0.0003021 0.0001995 0.006884 0.04029 0.05785
mean 0.01015 0.005078  0.4956 1.237 1.259
T =150 median  0.01015 0.005078  0.4956 1.236 1.257
p=gq=12 s.d. 3.761e-05  2.949e-05 0.004361 0.03358 0.03585
mse 0.0002946 0.00019 0.006206 0.04986 0.069
mean 0.01014 0.005068  0.4963 1.547 1.571
T =150 median  0.01014 0.005068  0.4962 1.547 1.57
p=q=15 s.d. 3.39e-05 2.599e-05 0.003917 0.04264 0.04463
mse 0.0002849 0.0001794 0.005416 0.06379 0.08371




