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Summary

This thesis describes electrical measurements performed on low dimensional p-

type devices, fabricated from GaAs/AlGaAs heterostructures. The Coulomb

interaction between holes is similar to that between electrons. However, the

kinetic energy is suppressed, which makes interaction effects particularly im-

portant. Holes may also be used to study band structure effects which arise

from spin-orbit coupling in the valence band. The effects of Coulomb interac-

tions in low dimensional electron systems are currently being studied exten-

sively. Experiments presented in this thesis indicate the possible importance of

Coulomb exchange interactions in both one and two dimensional hole systems

(1DHSs,2DHSs).

Tilted magnetic field studies of 2DHSs in the quantum Hall regime indicate

that Landau levels at even filling factors, ν, will not cross. For high ν, this is

attributed to a spin-orbit mixing effect which arises from the low symmetry of

the system. At lower ν, activation-energy measurements verify that the energy

gaps decrease and then increase as the field is tilted. However, the energy gap

versus field dependences do not exhibit the curvature that might be expected

from a perturbative anticrossing. It is speculated that the origin of this effect

is a phase transition driven by the exchange interaction. Balanced arguments

contrasting the relative strengths of the mixing and interactions theories are

provided.

The second part of this thesis describes a new method for the fabrication of

ballistic 1DHSs, which exhibit clear conductance quantization. The quantiza-

tion changes from even to odd multiples of e2/h as a function of the magnetic

field in the plane of the heterostructure, as ‘spin splitting’ causes the 1D sub-

bands to cross. Measurements of the 1D subband energy spacings are used

together with the magnetic fields at which the crossings occur to calculate the

in-plane g factors of the 1D subbands. These are found to increase as the

number of occupied 1D subbands decreases. This enhancement of the g fac-

tor is attributed to exchange interactions; possible mixing explanations are

also discussed. At higher magnetic fields, the pattern of quantization features

shows that the subbands have crossed many times, and that the 1DHS can be

strongly magnetized.
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Chapter 1

Introduction to

low-dimensional hole systems

1.1 Introduction

The properties of interacting fermions confined to less than three dimensions

have been studied intensively for over two decades. Through advances in both

fabrication techniques and physical understanding, this branch of condensed

matter physics continues to present interesting problems which require novel

solutions. This thesis describes electrical measurements performed on two

and one dimensional hole systems (2DHSs,1DHSs), which are made from p-

type semiconductors, at very low temperatures and high magnetic fields. This

chapter details some of the important processes involved in the fabrication of

the two-dimensional hole system and the peculiarities of the particular types

of sample used. In addition, it describes some of the essential physics of one

and two dimensional systems (1DSs,2DSs) from a simplified ‘parabolic band’

point of view. Later chapters present a more rigorous treatment of the low-

dimensional hole system, and also the specific details of theory relevant to the

measurements which form the backbone of this thesis.

1.2 The fabrication of 2DHSs

1.2.1 Molecular beam epitaxy

Molecular beam epitaxy (MBE) enables the fabrication of very high quality

layered semiconductor structures. For a detailed exposition see reference [1].

The starting point for growth is a very clean, either doped or undoped, crys-

tal of GaAs mounted on a heated substrate holder in an ultra-high vacuum

chamber. The particular facet of the crystal can strongly influence the nec-

1



Introduction Chapter: 1

essary growth conditions, type of dopant atom and also the final properties

of the holes in the structure. The highest quality 2DHSs to date have been

grown on the {311}A planes of GaAs, and were doped with silicon (see also

Section 1.2.2). All of the wafers studied in this thesis were grown by Dr

M. Y. Simmons.

Figure 1.1: Schematic diagrams of: (a) an MBE chamber, in which very high quality

GaAs/AlGaAs heterostructures may be grown with monolayer accuracy; (b) a typical

device structure.

The growth is achieved by the exposure of the substrate to thermal fluxes

of arsenic, gallium and aluminium (see Fig. 1.1(a)). The rate is carefully

controlled so that a monolayer of either GaAs or AlxGa1−xAs is deposited

approximately once every second. The symbol x represents the fraction of

Ga sites occupied by As atoms in the crystal structure. It will be dropped

from here on, except when explicitly referred to. Layers of different materials

are deposited by changing the proportions of the fluxes at different stages of

the growth. A typical single-interface structure is represented schematically

in Fig. 1.1(b).

The formation of a 2DHS occurs at the interface between the two semicon-

ductors; this process is described in Section 1.2.3. An important feature of the

structure is the spacer layer of undoped AlGaAs which separates the 2DHS

from the doped region, thereby reducing the amplitude of the random poten-

tial experienced by the holes due to the ionized dopants. The incorporation

of a spacer layer in this manner is known as modulation doping [1].

2



Chapter: 1 Introduction

1.2.2 Properties of {311} surfaces

It is found that silicon can act as an n- or a p-type dopant in GaAs, depending

on the orientation and chemical composition of the crystallographic surface

upon which it is deposited [2]. The cleaving of a GaAs crystal to expose a pair

of (311) planes necessarily leaves one surface with the single dangling bonds

belonging to gallium atoms and the double dangling bonds to the arsenic

atoms; on the other surface, the arsenic atoms have the single dangling bonds.

As depicted in Fig. 1.2, these two surfaces are labelled A and B respectively.

The silicon dopant is incorporated on the single bond site during growth; for

the A surface Si has one electron too few whereas for the B surface it has one

electron too many. Thus a (311)A surface is p-doped by silicon.

Figure 1.2: The (311)A and (311)B surfaces, in which the single dangling bonds

belong to either Ga or As atoms respectively.

Corrugations are another important feature of the {311} planes. They

are believed to form during growth by surface reconstruction, which favours a

lower energy array of steps over the higher energy flat surface. The resulting

corrugations are aligned to the [233] direction, and have a periodicity and

height of 32 Å and 10 Å respectively [3].

1.2.3 Spatial band structure

The band gap of GaAs is direct, and below a temperature of 4 K has a value

of 1.52 eV [4, 5]. Although the band gap of AlAs is indirect, the band gap of

AlxGa1−xAs remains direct for x less than approximately 0.4. In the latter

regime, the AlGaAs band gap varies as 1.52 + 1.26x eV [6]. The aluminium

concentrations of the wafers studied in this thesis were measured after growth,

using a photo-voltage spectrometer, to have 0.30 < x < 0.36.

3
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The sum of the valence and conduction band offsets at the GaAs/AlGaAs

interfaces of such a wafer is therefore approximately 0.4 eV. Using the 2:1 pre-

scription [6], the valence band offset is estimated to be approximately 0.14 eV.

The forward-bias voltages of NiCr/Au Schottky contacts measured as part of

this work were found to vary between 0.38 V and 0.8 V, and must be similar

to the Schottky barrier height.

Figures 1.3(a) and (b) plot the energy of the valence band edge versus

distance from the surface of the wafer, for a shallow single-interface wafer

and a deeper approximately symmetrically-doped quantum well wafer. The

Schottky barrier height and the valence band offset have been assumed to be

0.8 eV and 0.14 eV respectively.

Figure 1.3: Schematic graphs plotting the energy of an electron at the valence band

edge, as a function of distance from the surface of the wafer. (a) shows the band

structure for a wafer similar to that depicted in Fig. 1.1(b), whilst (b) is for a wafer

such as T240 (see the text).

4



Chapter: 1 Introduction

The band structure of Fig. 1.3(a) can be understood using Poisson’s equa-

tion, −∇2Φ = ρ/ǫ, which relates the curvature of the electrostatic potential

Φ to the local charge density ρ. The permittivity of the medium, ǫ, depends

on the stoichiometry of the material and its temperature, and takes a value

of approximately 12.7ǫ0 in GaAs [7] at temperatures below 4 K. ǫ0 is the per-

mittivity of free space; this and other physical constants used in this thesis

are defined in Appendix A. In the p-doped regions of the AlGaAs, the accep-

tors are assumed to be fully ionized and the potential is therefore parabolic.

Gauss’s law shows that ∇Φ is continuous from this doped region into the un-

doped AlGaAs barriers, and also across the GaAs/AlGaAs interface. At this

hetero-interface, the band edge is discontinuous and falls below the chemical

potential. The strong electric field due to the ionized dopants causes band

bending which confines holes to the hetero-interface.

Although some transport measurements were made of such single-interface

heterostructures (see Section 6.3.1), the experiments presented in Chapters 2

to 8 were performed on wafers in which the 2DHS was confined to an approxi-

mately symmetric quantum well of width 200 Å. The band structure of one of

these deeper wafers, T240, is depicted in Fig. 1.3(b). Another wafer studied

was T335n+, which had a similar spatial band structure, but was grown on a

conducting n+ substrate. More details of these wafers are provided in Chap-

ters 2 and 4, and also in Appendix B which contains the growth structures.

1.2.4 Processing of samples

The study of the electrical properties of the 2DHSs requires a number of extra

processing steps to taken. These include the fabrication of ohmic contacts

to the 2DHS, which lies below the surface of the wafer, and the deposition

of Schottky contacts to enable a variation of carrier concentration. In this

work, such ‘chips’ or ‘devices’ were fabricated using optical (and electron-

beam) lithography to define selected regions of the 2DHS into ‘Hall bars’ with

annealed AuBe ohmic contacts, and NiCr/Au Schottky contacts (or ‘gates’).

A detailed description of these processes is provided in Appendix C.

1.3 Confined fermions, and length scales

The confinement of holes to a very narrow region of the semiconductor dras-

tically alters their properties. Associated with the physical properties of the

system are characteristic lengths, and energies and times, which determine

the relevant physical processes. Because of the complexity of the experimen-

tal system, there are many such scales and consequently many regimes of

behaviour.
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Introduction Chapter: 1

The most important length scales are the dimensions of the hole system,

λx, λy and λz. The z direction is taken to be normal to the plane of the 2DHS.

In wafers T240 and T335n+, λz is less than 200 Å. In contrast, λx and λy are

defined by the dimensions of the Hall bar (see Appendix C for more details),

which are typically 80× 800 µm.

1.3.1 The 2D density of states at zero magnetic field

The energy spectrum of the holes is quantized in 2D and takes the form

E = Ej +
~

2k2
||

2m∗
, (1.1)

where Ej represents the z confinement energy and takes a series of values

dependent on the confinement potential, k|| is the in-plane wavevector and

m∗ is an idealized hole effective mass. The hole energy has been taken to be

positive. A more realistic description of the 2D dispersion relations is presented

in Chapter 2; nevertheless, for some purposes the parabolic approximation

with an effective mass of 0.2m0 < m∗ < 0.4m0 (where m0 represents the mass

of the electron in free space) is useful.

Figure 1.4: The density of states of a system of simple fermions confined strongly

in one direction increases in steps. The shaded region represents the occupied states

at low temperature; these particles cannot access the higher 2D subbands and their

motion in the confinement direction is ‘frozen’.

An idealized density of states D(E) is plotted in Fig. 1.4, and takes the

constant value

D(E)dE =
d2k

4π2
=
m∗

π~2
dE (1.2)

for each 2D subband, per unit area. In this thesis, the 2D carrier concentra-

tions n are sufficiently low (n < 1.8 × 1015 m−2) that only one 2D subband

6
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is ever occupied at low temperatures. Figure 1.4 also marks the Fermi energy

EF and the chemical potential µ. The flow of a current is a non-equilibrium

process, and occurs by the occupation of a non-equilibrium distribution of k

states. If the temperature T is sufficiently small, kBT ≪ (Ej − Ej+1), the

holes move in the xy plane only, because of the insurmountable energy gap to

excitation in the z direction. Every hole in the system thus has the same z

component wavefunction.

1.3.2 Scattering at zero magnetic field

Other important length scales are related to scattering. Plane waves are eigen-

states of the kinetic energy operator. They are not eigenstates of the full

Hamiltonian however, and in the case of weak interactions the effect of the ex-

tra terms in perturbation theory is to cause transitions (or scattering) between

the zeroth-order states. Theoretically, scattering is often parameterized by the

mean time τ between scattering events. Because the hole system is degener-

ate, EF ≫ kBT , the scattering processes are strongly affected by phase-space

considerations and can only occur at or within kBT of the Fermi energy. The

scattering time τ may therefore be converted to a scattering length by l = vF τ ,

where vF is the Fermi velocity. The scattering mechanisms may be classified

as either elastic, in which case the hole has its direction changed but not its

energy, or inelastic in which case both the energy and direction are altered.

Elastic scattering Elastic scattering mechanisms include remote-ionized

impurity scattering from the acceptors, roughness scattering at GaAs/AlGaAs

interfaces, alloy scattering due to inhomogeneities in the semiconductor stoi-

chiometry, and scattering from background impurities. The wafers used in this

work had been optimized in the MBE growth stage to limit these deleterious

effects [8].

Because the energy of the hole is unaltered, the phase of the scattered wave

has a well defined relationship with that of the incident wave. The scattering

process is therefore phase coherent. The elastic scattering time, τe, is defined

to be the mean time between elastic scattering events. Another important

quantity is the large-angle scattering time τ̂e. This scattering time is related

to the electrical transport properties of the 2DHS, which are discussed in

Section 1.4, through the mobility µtr = eτ̂e/m
∗.

The mobility of 2DHSs confined to asymmetric heterostructures is strongly

anisotropic. Transport in the [233] (fast) direction is found to have the highest

mobility; the lowest mobility (or slow) direction is orthogonal to this [9, 10].

In contrast, wafer T240 was found to exhibit a mobility anisotropy of less

than 8%. In such symmetric quantum wells, the hole wavefunctions suffer less

7
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overlap with the GaAs/AlGaAs interfaces than in single-interface heterostruc-

tures. The lack of strong mobility anisotropy therefore agrees with the sug-

gestion [11, 12] that it arises from anisotropic interface-roughness scattering

due to irregularities in the corrugations (discussed in Section 1.2.2).

In wafer T240, which had a mobility of approximately 130 m2V−1s−1 at

temperatures below 1 K, the associated transport length (ltr) is estimated to

be (9± 0.07) µm using

ltr =
~

e
µtrkF . (1.3)

It therefore usually exceeds the spacing between the dopants (which are the

primary source of impurities). At low temperatures, both the transport and

elastic scattering lengths are independent of temperature, and saturate at

finite values related to the impurity spacings.

Inelastic scattering Inelastic scattering processes change the energy and

therefore the phase of the hole. Typical examples include hole-phonon in-

teractions and hole-hole interactions. All of the measurements in this thesis

were performed below 1.2 K. Very few phonons are excited in the crystal in

this regime, so the hole-phonon interaction is neglected here; the dominant

process in limiting the phase coherence of the single-particle hole wavefunc-

tion is hole-hole scattering. The scattering time for this process in a clean

2D metal varies as EF /(kBT )2, which reflects the phase space available for

scattering of the two holes. The distance travelled with a constant phase is

approximately lφ ∝ vF /(kBT )2. In diffusive systems, for which lφ > ltr, the

phase-coherence length is redefined to be lφ =
√

Dτφ, where D is the 2D dif-

fusion coefficient. Many sophisticated calculations have been performed on

electron systems, which modify the phase-space results by factors which are

logarithmic in temperature, and also show that in very disordered systems the

inelastic scattering time is roughly linearly dependent on temperature. See for

example reference [13]. Phase-coherent transport has been observed in exper-

iments in which 2DHSs are subjected to a strong magnetic field, and indicate

a lower bound on lφ of 2 µm [14].

Other scattering times The spin and the electrostatic potential Φ are cou-

pled by the spin-orbit interaction, which is particularly strong in hole systems

(see Chapter 2). This allows a scattering event to change the average angular

momentum components of a hole. This represents the fact that spin is not

a good quantum number in the presence of the spin-orbit interaction, and is

characterized by the spin-orbit scattering time τso.

8
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1.4 Electrical transport

1.4.1 Regimes

Modern lithographic techniques enable the fabrication of devices which are

smaller than the transport scattering length ltr and also the phase coherence

length lφ. A number of transport regimes may be identified, and are discussed

in detail in reference [15]. Firstly, there is the diffusive transport regime in

which λx, λy ≫ ltr. At high temperatures, the dynamics of this regime are

semi-classical. However, at sufficiently low temperatures, the condition lφ ≫
ltr can be fulfilled and quantum interference effects such as weak localization

become important. It is worth noting that in very high mobility 2DHSs, this

latter condition is not met due to the correspondingly high transport scattering

length.

In the other extreme, ltr ≫ (λx, λy), the holes’ motion is ballistic and there

is no scattering. Often, lφ > (λx, λy), in which case quantum mechanical effects

become very important.

1.4.2 Semi-classical electrical properties

The electrical properties of GaAs/AlGaAs heterostructures are surprisingly

well described using the (classical) Drude theory of metals, which has strong

parallels with the kinetic theory of gases. A quantum theory such as the

Sommerfeld theory of metals, or the Boltzmann (transport) equation [16],

properly accounts for the fermionic nature of electrons (or holes). It is stressed

here that both the 2DHS and 2DES are highly degenerate below 4 K, and are

more similar to very low density two-dimensional metals than to typical bulk

semiconductors.

Zero magnetic field The most useful result at zero magnetic field is the

expression for the conductivity tensor, which relates current density j to elec-

tric field E: j = σE. In the simplest theory the conductivity tensor is replaced

by an isotropic conductivity σ,

σ = neµtr, (1.4)

µtr =
eτ̂e
m∗

,

although Chapter 2 shows that many of these assumptions are inappropriate

for 2DHSs. The mobility µtr, which is often used as a measure of the quality of

the 2DHS, reflects this scattering time and is the constant of proportionality

between the applied field and the drift velocity of the holes.
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Non-zero magnetic field The dynamics of particles in truly two dimen-

sional systems are affected only by the component of magnetic field perpendic-

ular to the plane of confinement, B⊥. Physical effects are described in more

detail in later sections, which show that for sufficiently high fields classical

theories totally fail to explain observations. Furthermore, it turns out that

in some regimes non-interacting quantum theories are also insufficient. In the

semi-classical approach the effects of the field are determined by considering

the Lorentz force on a moving particle, which is

F = q(E + v ×B) (1.5)

where v represents the particle’s velocity and q its charge (with |q| = |e|).
E and B are the electric and magnetic fields. A classical free particle moves

in circles with cyclotron frequency ωC = eB⊥/m
∗, and a cyclotron radius

rC = m∗vF /eB⊥. These quantities are discussed in a quantum context (Sec-

tion 1.5.1) later. In a finite sample, the Lorentz force causes charge to build up

at its edges. The resulting transverse electric field balances the second term

of equation 1.5 and can be detected as a Hall voltage. These ideas are neatly

summarized by the relation j = σE:

(

jx
jy

)

=
σ

1 + (ωC τ̂e)2

(

1 −ωC τ̂e
ωCτ 1

)(

Ex

Ey

)

. (1.6)

The diagonal elements of the σ are referred to as σxx and the off-diagonal ones

are called σxy. The particularly useful resistivity tensor ρ = σ−1 may also be

defined.

1.4.3 Quantum transport: the Landauer-Buttiker formalism

The theory of transport at low temperatures in the limit lφ ≫ λ has been

developed by Landauer [17] and extended by Buttiker [18]. Although the

latter condition does not hold at zero magnetic field in typical 2DHSs, the

concepts provide a natural explanation of the integer quantum Hall effect. It

is therefore worth spending some time explaining the theory, which strictly

applies to non-interacting fermions only.

The model system to be treated is depicted in Fig. 1.5, and consists of a

2D region which is smaller than the phase coherence length of the system. The

2D region is contacted by ‘perfect’ leads which connect to ideal sources and

sinks of particles. No scattering occurs in the leads; thus all particles incident

upon them are transmitted into the reservoirs and all particles emitted from

the reservoirs progress into the sample. The ith reservoir has a well-defined,

constant, chemical potential µi which is unaffected by any flow of charge. The

10
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perfect leads may be of any dimensionality. However, initially it is assumed

that they are truly 1D and that the reservoirs are connected to the system by

a single 1D quantum channel (or ‘mode’); the results will be extended to leads

with more quantum channels (the quasi-2D limit) later.

Figure 1.5: A schematic diagram showing an ideal 2D system in which elastic scat-

tering only occurs, connected to ideal reservoirs by ideal leads.

For convenience, the lowest chemical potential µ0 is set to zero. No

transport occurs due to particles below this chemical potential because in all

leads the number of positive- and negative-going k states are filled. Defining

∆µi = µi − µ0, the current injected by the ith reservoir into its lead is

I+
i ≈ evi

−→
D(µ)∆µi (1.7)

where vi is the group velocity at the chemical potential and
−→
D is the 1D density

of states for particles with positive wavevectors. The group velocity is defined

to be (1/~)dE/dk. In 1D, the density of states is
−→
D(E) = (1/2π)dk/dE, which

cancels the group velocity to give

I+
i =

e

h
∆µi. (1.8)

The probability that a particle injected from the ith lead is scattered back

into that lead is defined to be Rii. Similarly, Tij represents the chance that a

particle injected by the jth lead enters lead i. Thus the current into the ith

lead may be written as I−i

I−i =
e

h



Rii∆µi +
∑

j 6=i

Tij∆µj



 . (1.9)

11
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Hence the net current flowing out of the ith reservoir is

Ii = I+
i − I−i =

e

h



(1−Rii)∆µi −
∑

j 6=i

Tij∆µj



 . (1.10)

By interpreting the chemical potential differences as voltages, the vari-

ous conductances of the system may be calculated. This derivation holds for

arbitrary magnetic field strength, because the cancellation of the density of

states by the group velocity occurs at all field strengths. This phenomeno-

logical derivation closely follows that of Buttiker [18], and has been verified

by Baranger and Stone using first-order perturbation theory in an arbitrary

magnetic field [19].

Extra 1D subbands may be introduced into the leads using a generalized

scattering probability Tij,kl where the second pair of subscripts means that the

particle is injected by the lth subband of lead j and is scattered into the kth

subband of lead i. The coefficient Rii,kl is defined similarly.

Assuming that all channels are fed up to the same potential by their re-

spective reservoirs, equation 1.10 generalizes to:

Ii =
e

h



(Q−Rii)∆µi −
∑

j 6=i

Tij∆µj



 (1.11)

where Rii =
∑

klRii,kl, Tij =
∑

kl Tij,kl and Q is an integer counting the

number of conducting 1D channels in the lead [18]. This equation is equally

applicable in an arbitrary strength magnetic field.

1.5 The quantum Hall effects

1.5.1 Application of a perpendicular magnetic field

The single-particle Hamiltonian in a perpendicular magnetic field may be writ-

ten as

H =
(p + qA)2

2m∗
+ qΦ (1.12)

where A is the vector potential with B = ∇ × A [20]. Two useful gauges

are the symmetric gauge A = (−yB⊥/2, xB⊥/2, 0) and the Landau gauge

A = (0, xB⊥, 0), both of which provide B = B⊥ẑ. The energy spectrum of the

particles, which is continuous at zero magnetic field, is quantized into harmonic

oscillator energy levels known as Landau levels EN = ~ωC(N + 1/2) with

ωC = eB⊥/m
∗ [20]. N is an integer (≥ 0) known as the harmonic oscillator,
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or Landau level, quantum number. Each Landau level has a degeneracy of

eB⊥/h. A detailed description of the Landau level ‘fans’ of the valence band

is given in Section 2.4. The important physics of the quantum Hall effects is

most easily elucidated assuming electron-like parabolic bands.

The introduction of spin into the system doubles the number of energy

levels. In the simplest of cases, the magnetic field affects the energy of the

Landau levels through the inclusion of the Zeeman term gµBB.̂s, where g is

the g factor of the particles, µB is the Bohr magneton and ŝ is the spin angular-

momentum operator. A particular level is labelled |N, s〉 where s represents

the spin-projection quantum number. The filling factor ν of the many-particle

system is the number of filled spin-resolved Landau levels. When ν is an

integer, the number of particles in the system exactly fits into ν spin-resolved

Landau levels and there is an energy gap at the chemical potential.

Length scales and scattering for B⊥ > 0 At low magnetic fields, there

are many occupied Landau levels in a many-particle system. The relevant

length scale is the cyclotron radius rC = m∗vF /eB⊥, which is the radius of

the circular motion of the particles at the Fermi level. In the quantum limit,

which occurs at high magnetic fields, the degeneracy of each Landau level

increases until all of the particles occupy the lowest Landau level. A particle

is localized about its guiding centre over a distance of 2lB , where

lB =
√

~/eB⊥ (1.13)

is the magnetic length.

In the absence of scattering, the density of states of a 2DS subject to a

strong perpendicular magnetic field may be written as a sum of delta functions

D(E) =
∑

N

eB⊥

h
δ(E − (~ωc(N +

1

2
))) (1.14)

where spin has been ignored for simplicity. As in the zero magnetic field

case, the effect of scattering is to limit the lifetime of the particles. The finite

lifetime may be related to a broadening of the density of states, by an energy Γ,

using the uncertainty principle. The experimental observation of the discrete

nature of the density of states requires not only that kBT ≪ ~ωC but also that

Γ < ~ωC . In the Born approximation, which holds for short-range scattering,

Γ is a function of magnetic field, varying as
√
B⊥ [21].

1.5.2 The integer quantum Hall effect

The discovery of the integer quantum Hall effect (IQHE) in silicon inversion

layers in 1980 [22] has led to a whole new field of solid state physics. Its
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observation three years later in a 2DHS [23] verified the universality of the

effect. The experiment is performed by applying a strong magnetic field (B⊥)

perpendicular to the plane of the 2DS, at low temperatures. The primary

observations are the very accurate quantization of the Hall resistivity ρxy, to

values of h/(ie2) where i is an integer, and the simultaneous vanishing of the

diagonal resistivity ρxx at integral filling factors. Fig. 1.6 shows data obtained

from the T240 2DHS at 290 mK. The features are periodic in 1/B, and reflect

Figure 1.6: ρxx and ρxy versus perpendicular magnetic field in the high mobility

T240 2DHS. Low integer filling factors are marked on the diagram by the arrows.

Some fractional quantum Hall effect states are visible in the vicinity of ν = 3/2.

the quantization of the hole energy spectrum into Landau levels.

A crucial part of the explanation of the IQHE is the idea of localized and

delocalized states, which arise when disorder is considered. The quantized

density of states is represented in Fig. 1.7. Because the system contains a

fixed number of particles and the degeneracy of the levels is proportional to

B⊥, the chemical potential is swept by the field through the peaks and troughs

of the density of states.

The states in the minima of the DOS are localized by the disorder potential

when the corresponding localization length ξ is less than the size of the sample.

As the chemical potential moves towards the peaks in the DOS, the localization
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Figure 1.7: The quantized density of states of a disordered sample subject to a

strong magnetic field B⊥, showing localized and extended states separated by the

dotted lines.

length increases until it exceeds the sample size, at which point the states are

delocalized over the whole system [24, 25].

1.5.3 Edge and Bulk transport

In the delocalized regime, the transport occurs in the bulk of the sample and

is dissipative: the Hall voltage varies with magnetic field as might be expected

from classical considerations, and ρxx and σxx are non-zero. In contrast, near

to integer ν, no transport can occur in the bulk because the holes are local-

ized. It is here that transport at the edge of the sample becomes important.

Figure 1.8(a) shows that in a sample with smooth edges, the Landau level en-

ergies are shifted adiabatically by the electrostatic potential near to the edge

of the sample, and penetrate the chemical potential at some point near to the

edge.

These ‘edge states’ are quasi-1D and have a very large coherence length. In

this simplistic picture, the edge states are very narrow; a more sophisticated

theory shows that in fact they form compressible and incompressible strips of

non-zero width at the edge of the sample [26]. The classical analogue of these

states are skipping orbits along the edge of the sample. Edge channels have

been observed directly in the vicinity of a shallow edge of a 2DES [27].

The conductance of the system may be deduced using the Landauer-

Buttiker approach introduced earlier. Referring to Fig. 1.8(b), we assume

that ohmic contacts 0 and 3 are the current source and sink respectively, and
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Figure 1.8: (a) The formation of edge states at the chemical potential of a finite

sample. (b) Transport due to edge states, which occurs when contacts feed the edge

channels to different levels. On a particular edge, the current flows in one direction

only.

that the other contacts act as voltage probes. There is no scattering between

the two sides of the sample, because they are separated by a large distance.

Hence, the current admitted by contact 1 must be the same as the current

emitted by contact 0 on that side of the Hall bar. Contact 1 draws no net cur-

rent so it must emit the same current as and have an equal chemical potential

to contact 0: µ1 = µ0. Similarly, µ2 = µ1. The voltage measured between con-

tacts 1 and 2, (µ2 − µ1)/e is therefore zero and ρxx = 0. The dissipation-free

current flow arises from the absence of back-scattering, which in turn is due

to the magnetic field which physically separates the opposite-direction current

paths. The net current flowing in the system is

i
e

h
µ0 − i

e

h
µ3 (1.15)

where i is an integer counting the number of edge states. The transverse

voltage is given by V24 = (µ2 − µ4)/e = (µ0 − µ3)/e. Thus the Hall resistivity

is

ρxy = V24/I03 =
h

ie2
, (1.16)

which explains the quantization in the integer quantum Hall effect.
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1.5.4 The fractional quantum Hall effect

It was discovered in 1982 that for ν < 1 in 2DESs, the Hall resistance is also

quantized according to

ρxy =
h

fe2
(1.17)

f =
p

q
(1.18)

with p < q and both integral [28]. The same effect was soon observed thereafter

in 2DHSs [29], and has been studied since in some detail [30]. A natural way

to generate the allowed integers was proposed in the context of a global phase

diagram of the quantum Hall effects, and relates the integral and fractional

versions through a set of ‘similarity’ transformations [31]:

ν → ν + 1 (1.19)

ν → 1− ν
1

ν
→ 2 +

1

ν
.

The final transformation is a consequence of the celebrated ‘Composite Fermion’

theory [32]. In samples of sufficiently high mobility, fractional quantization for

ν > 1 may be observed, as in Fig. 1.6 where there are fractional states around

ν = 3/2. In contrast to the integer quantum Hall effect, the energy gaps in

the fractional states have a many-body origin.

1.6 One-dimensional systems

Systems exhibit quasi-1D behaviour when, in addition to their confinement to

two dimensions, they are confined strongly in a second direction. This was first

achieved using surface patterning of 2DHSs on a sub-micron length scale, using

electron beam lithography and Schottky gating [33, 34], and remains the most

flexible technique for 1D confinement (see Appendix C). Recent developments

include the use of self-organised growth to fabricate V-groove wires, which

are extremely narrow and therefore provide very large confinement energies,

and the technique of cleaved-edge over-growth which produces long, impurity

free, one dimensional systems [35] of exceptionally large subband spacing. In

this section, conductance quantization in ballistic systems is introduced. The

experimental realization and investigation of the ideas presented here, with

regard to hole systems, are detailed in Chapters 6 to 8.
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1.6.1 Ballistic Quantization

The transport properties of quasi-1D systems are easily treated using the

Landauer-Buttiker formalism. It turns out that the cancellation of the 1D

density of states by the group velocity quantizes the two-terminal conduc-

tance G. Consider the system shown schematically in Fig. 1.9, which shows

Figure 1.9: A two-terminal measurement of the conductance of a quasi-1D wire.

a two-terminal measurement of the conductance of a 1D wire defined in some

way in a 2D system. Immediately setting µ0 = 0 and µ1 = eV where V

represents an applied voltage, we can simplify equation 1.11 to give:

I1 = −I0 =
e2

h
V

(

(Q−
∑

kl

R11,kl)

)

=
e2

h
V
∑

kl

Tkl (1.20)

G =
∂I

∂V
=
e2

h

∑

kl

Tkl (1.21)

where the subscripts i and j have been dropped.

In a system satisfying Tkl = δklTl (no inter-subband scattering), G may be

written as

G = 2
e2

h

∑

l

Tl (1.22)

where the factor of two has been introduced to account for spin. Thus the

conductance of the system (in this set of approximations) is determined by

the transmission of particles through the 1D region of the system depicted in

Fig. 1.9. Provided that the transmission coefficients take the values one or

zero only, the conductance is quantized in multiples of 2e2/h. Conductance
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quantization was first observed in 1988, in narrow quasi-one dimensional con-

strictions created in a 2DES [36, 37]. Ten years since, the study of holes in

small structures is still particularly under developed, because of fabrication

and measurement difficulties (see Chapter 6). Experiments to date include

the observation of magnetic focussing of ballistic holes in 2DHSs [38], which

were used to probe the anisotropies of the 2D Fermi contour [38, 39]. The

quantization of conductance in 1DHSs was first observed by Zailer et al. [14].

1.7 Scope and context of this thesis

This thesis describes electrical measurements performed on one- and two-

dimensional hole systems at temperatures below 300 mK, both at zero and

strong magnetic fields. The common thread is the possible observation of

effects due to Coulomb interactions.

In spite of the lower kinetic energy of a hole system in comparison with a

similar electron system (see Chapter 2), which should enhance the importance

of the Coulomb interactions, the only transport observations which can be

attributed with certainty to interactions between holes are those of the frac-

tional quantum Hall effect in 2DHSs. Other than the extensive studies of that

effect, which have been in progress for fifteen years, there are few experimental

or theoretical works on the transport properties of interacting holes. These

are described in more detail in Section 3.5; and virtually all have concerned

correlation effects between holes. In contrast, this thesis provides evidence for

the importance of the effects of exchange interaction.

The thesis is organised as follows. Chapter 2 describes the complicated

valence band of the 2DHS in zero and perpendicular magnetic fields, in terms

of the theoretical and experimental studies to date. It includes new data

demonstrating the importance of the reflection symmetry of the confinement

potential of the 2DHS. Because this thesis describes interaction effects, a short

chapter follows in which the exchange interaction is described and in which

the theory of an exchange-induced phase transition in the 2DS is detailed.

Chapter 4 describes an extensive series of tilted-field measurements which

show that hole Landau levels do not necessarily cross. Furthermore, new

activation-energy measurements of the energy gaps at ν = 4 are presented

which show that the energy gap versus B relation has a particularly abrupt

turning point. In contrast, at the odd filling factor ν = 5 the energy gap versus

B relation exhibits curvature over large range of magnetic field.

The following chapter presents some interpretations of the tilted field data,

in the context of valence band mixing and also an exchange-driven first-order

phase transition. It is speculated that the latter effect may explain the sharp-
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ness of the turning point at ν = 4. There is scant evidence in the literature

for such a phase transition in any material system, despite its prediction many

years ago.

The thesis then turns to one-dimensional hole systems, with a description

in Chapter 6 of the development of a technique for their fabrication. Mea-

surements of conductance quantization in 1DHSs are presented. The superior

device stability enables the first detailed experiments on the properties of

these 1DHSs. In particular, the first measurements of the 1D subband energy

spacings of a 1DHS are presented.

Chapter 7 describes the effect of a parallel magnetic field (applied in the

plane of confinement) on the quantization of the 1DHS, and shows evidence

for the crossing of the 1D subbands. From the magnetic fields of the crossing

points, and the subband energy spacings, parallel g factors of the 1D subbands

are deduced. They are found to increase by approximately a factor of two as

the number of occupied subbands decreases. It is argued that this effect could

be due to one-dimensional exchange interactions, although possible mixing

explanations are also discussed.

The final chapter of experimental work presents strong evidence for the

multiple crossing of 1D subbands. From the pattern of conductance features at

high parallel fields, it is shown that the 1D subbands have crossed many times

and that the system is very strongly polarized. This regime is not accessible

to electron systems because of the larger 1D subband energy spacings of the

1DES.

A ‘Conclusions and Further Work’ chapter and some appendices, mainly

concerning clean-room processing and measurement techniques, complete this

thesis.
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Chapter 2

Subbands of the

two-dimensional hole system

2.1 Introduction

This chapter presents a mainly theoretical discussion of the single-particle

band structure of GaAs based devices, concentrating on general results for the

valence band. The properties of the holes in three and two dimensions are de-

scribed in the context of the Luttinger Hamiltonian; the results of calculations

(by others) for some devices are included. The formation of Landau levels in

a perpendicular magnetic field is also covered. Finally, some new experimen-

tal results which demonstrate the sensitivity of the 2DHS to perpendicular

electric fields are presented.

2.2 Bulk (3D) GaAs

2.2.1 3D energy bands

GaAs is a zinc-blende semiconductor crystal with a direct band gap of 1.52 eV

at liquid-helium temperatures. Symmetries of the Hamiltonian include trans-

lational and time reversal invariance, and the symmetries of the crystal point

group Td [40]. For a description of the symmetry operations of Td, see refer-

ence [41]. Whilst the Hamiltonian retains these symmetries, certain essential

degeneracies cannot be lifted whatever the strength of the crystal potential.

Surprisingly, the nearly-free electron model is a very good starting point

for a discussion of the properties of the bands [42, 43], although it cannot

determine the actual ordering of the states even at the centre of the Brillouin

zone (the Γ point). It is found that at the Γ point, the Bloch functions of the

valence band edge have the same symmetries under the operations of the group
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Td as p orbitals and are therefore six-fold degenerate. Similarly, the conduction

band edge is s-like with a two-fold degeneracy. The inclusion of the spin-orbit

interaction lifts the degeneracy of the Γ point into a four-fold degeneracy

with the symmetries of a total angular-momentum quantum number J = 3/2

atomic state, and a J = 1/2-like doublet. In the language of group theory, the

J = 3/2-like states transform as the Γ8 irreducible representation of the group

Td, whilst the J = 1/2-like doublet transforms as Γ7 [40]. Figure 2.1(a) shows

the results of pseudopotential calculations [44] for the band structure in the

whole of the Brillouin zone. Figure 2.1(b) shows experimental data obtained

in optical experiments [45]. Each k branch is, within the experimental error,

two-fold degenerate (see the next section). The letters on the horizontal axis

represent the reduced wavevectors of the special, high symmetry, points of the

Brillouin zone, which are Γ at the zone centre and X,U,K,L at the boundary.

The physics of holes is determined in part by the properties of the valence

band edge, which is defined to be at E = 0. The figure shows the lifting of the

four-fold degeneracy of the Γ point as k increases, into the so-called light- and

heavy-hole dispersions. Displaced at an energy of 341 meV below the band

edge are the Γ7 split-off holes. The different curvatures, and their dependence

on direction in the crystal, are discussed using a perturbation theory in the

next section.

2.2.2 The Luttinger Hamiltonian

To a reasonable approximation, the conduction (Γ6) and split-off (Γ7) bands

may be ignored in a perturbation theory. Using group-theoretical arguments

and restricting himself to the Γ8 sub-space, Luttinger discovered a general k.p

Hamiltonian correct to second order in the components of k for crystals of the

diamond structure, subject to arbitrary strength spin-orbit interaction [46].

This may be written as

H = β1

∑

α

k2
α + β2

∑

α

k2
αJ

2
α + β3({kx, ky}{Jx, Jy}+ (2.1)

{ky, kz}{Jy , Jz}+ {kz , kx}{Jz , Jx})

where the brackets {} denote the anticommutator. The Jα are 4 × 4 angu-

lar momentum matrices representing J = 3/2; the Hamiltonian is equivalent

to the 4 × 4 secular equation which is arrived at in a (second order) treat-

ment of the problem in degenerate perturbation theory. The zeroth-order

basis is composed of four states |J,MJ 〉 formed by the superposition of p-like

band-edge Bloch functions. The number MJ is equivalent to the eigenvalue

of the Jz operator in cylindrically symmetric systems, and may take the val-

ues 3/2, 1/2,−1/2,−3/2. The Hamiltonian has been expressed in terms of a
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Figure 2.1: Band structure of GaAs from theory (a) and experiments (b) showing the

complexity of the valence band edge (which occurs at the centre of the Brillouin zone).

The horizontal axes represent wavevector, in the direction of the high-symmetry points

Γ,X,L,U and K of the Brillouin zone.

complete set of matrices constructed from the identity matrix and the angu-

lar momentum matrices, and is invariant to the symmetry operations of the

crystal point group.

The eigenvalues of the matrix form two anisotropic bands, with different

curvatures, which describe the dispersion of the heavy and light holes (HH,LH)

near to the Γ point, visible in Fig. 2.1. At each particular k value in either

of these bands, there are two solutions corresponding to an effective spin de-

generacy, which arise because the Luttinger Hamiltonian is symmetric with

respect to space inversion [43]. However, the group Td of GaAs does not con-

tain this operation and this two-fold degeneracy should be lifted at non-zero
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k. This may be achieved by adding terms linear in k to the Luttinger Hamil-

tonian [40, 47]. However, this splitting is estimated to be very small for the

wavevector range of interest and is usually neglected.

The Hamiltonian (2.1) may be expressed as a single matrix. It is conven-

tional to replace the βi by the Luttinger parameters γ1, γ2, γ3 according to

β1 = γ1 +5γ2/2, β2 = −γ2, β3 = −2γ3. See Appendix E for the values of these

parameters and an example of the matrix.

The energy bands described by the Luttinger Hamiltonian are anisotropic,

as required by the more sophisticated theory and also high resolution experi-

ments [48]. However, the Hamiltonian may be re-expressed to emphasize the

terms which, besides having cubic symmetry, also are spherically symmetric

[49, 50]. It turns out that the spherically asymmetric terms are quite small,

and proportional to γ3 − γ2. Therefore two further approximation schemes

may be employed. Firstly, there is the spherical approximation, which ne-

glects all of the terms without spherical symmetry. The bands so calculated

are isotropic. In the axial approximation, one of the terms neglected in the

spherical approximation, which has cylindrical symmetry, is now included. In

this way, anisotropy in the (100) plane may be neglected [51].

In either of these two approximations, the eigenvectors of the Luttinger

Hamiltonian retain their MJ symmetries for non-zero k provided that the z

direction is chosen to lie along the direction of travel through the crystal. The

HH dispersion is then MJ = ±3/2; the LH has MJ = ±1/2.

2.3 Confinement to two dimensions

The two-dimensional samples studied in this work were mostly confined to

symmetrically-doped GaAs quantum wells sandwiched between undoped bar-

riers of Ga0.67Al0.33As. The band structure of the 2DHS has been studied

extensively, both theoretically and experimentally. Early theoretical papers

[47, 52] dealt with single-interface heterostructures; these differ from sym-

metric quantum wells because the holes are subject to a strong electric field

perpendicular to the interface. More recent calculations [53, 54, 55, 56] have

been performed in a larger subspace of band-edge states (e.g. Γ6,Γ7,Γ8), and

for wells grown in a variety of crystal orientations.

2.3.1 Symmetry effects

Confining the holes to motion in two dimensions reduces the symmetry of the

Hamiltonian and lifts the four-fold LH-HH degeneracy of the Γ point. The

lifting of this degeneracy may be seen to occur because of the different masses

of the 3D LH and HH bands. When confined, they have different zero-point
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energies and subband spacings; each forms a ladder of 2D subbands, the lowest

energy of which is a HH subband. They are labelled HH1, HH2, .., HHi (or

LHi) in order of increasing hole energy.

The point group of the two-dimensional crystal now depends on the plane

of the interface. If this is the highly symmetric (100) plane, then in the case

of diamond the group is reduced from Oh to D4h for an inversion-symmetric

quantum well and C4ν for an asymmetric one. In the case of zinc blende,

the symmetry is reduced from Td to D2d or C2ν . However, if the plane of

the interface has high index, then most of the symmetries are lost. In the

case of the diamond structure, the group is ultimately reduced to Ci for the

symmetric well (and C1 for an asymmetric well); for zinc blende there remains

only the identity operation and the group is C1 [55].

The potential remains periodic for translations parallel to the plane of

the interface. Therefore the in-plane wavevector k|| is a good quantum num-

ber. The momentum k⊥ however is not, and the motion in the z direction is

quantized (as discussed for the simple case of parabolic bands in Chapter 1).

At k|| = 0, the MJ = ±3/2 and MJ = ±1/2 symmetry of the HH and LH

2D subbands is retained exactly for (100) and (111) heterostructures, where

the z axis is taken to be perpendicular to the growth plane. For samples grown

on lower symmetry planes, this decoupling of the LH and HH subbands does

not occur, except in the axial approximation, and there is mixing between the

states. They are now labelled according to their dominant spinor component.

In practice, the k|| = 0 mixing is rather small and the labelling of the subbands

as heavy or light hole is meaningful. In all approximations, mixing between

LH and HH states occurs when k|| is greater then zero. This is because the

choice of a non-zero parallel wavevector reduces the symmetry of the system

further.

2.3.2 Results of calculations

The wavefunctions and eigenstates of the Hamiltonian of a heterostructure

are found using the envelope-function approximation, the details of which are

described in reference [57]. Results are obtained by modifying the Luttinger

Hamiltonian as follows:

H → H + qΦ(z)I (2.2)

kz → −i
∂

∂z
(2.3)

where Φ(z) represents the confinement potential and I is the identity matrix.

In the 4 × 4 case, a set of four coupled differential equations is obtained for

each value of k||. These equations are supplemented by boundary conditions.
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If the Bloch functions in the two materials are taken to be equal, then these

are expressed only in terms of the envelope functions. They are: (i) continuity

of the envelope function; (ii) conservation of current through the interfaces

[57].

Figure 2.2: HH and LH subbands for 200 Å symmetric quantum wells in the

GaAs/AlGaAs material system: (a) Plane of confinement (311); (b) Plane of con-

finement (100). [Courtesy of Roland Winkler].

Figure 2.2 shows the results of calculations performed in the envelope func-

tion approximation in the 8 × 8 subspace of the Γ6,Γ7,Γ8 representations,

by Roland Winkler. The details of the calculations are contained in refer-

ence [55]; they were calculated in this case using a self-consistently determined

inversion-symmetric confinement potential assuming a hole carrier concentra-

tion of 1.8× 1015 m−2, to model T240. For comparison, the calculations were

performed with the [311] and [100] directions normal to the plane of confine-

ment, shown in Figs. 2.2(a) and (b) respectively. The vertical dotted lines

correspond to the Fermi wavevector of wafer T240, assuming that the Fermi

contour is circular. Each subband is two-fold degenerate.

The strong non-parabolicity of the HH and LH subbands is a consequence

of their differing curvatures, which causes them to approach one another and

then anticross strongly. Hence, the origin of 2D non-parabolicity differs from

that in 3D, where the effect is quite subtle. For wavevectors accessible to

this experiment, the Fermi contour is close to isotropic [55]. In fact, both the

anisotropy and anticrossing of these subbands have been mapped out directly
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for (100)- and (311)-oriented quantum wells using hot-electron luminescence

[58] and resonant magneto-tunnelling [59, 60]. They confirm the expectation

that for k ≤ 0.01 Å−1 the HH1 band may be considered to be isotropic.

In symmetrically-doped quantum well samples, it may be expected that

the confinement potential of the particles is symmetric. Hence, the net electric

field across the 2DHS is zero. In asymmetrically doped samples, there can be

a strong electric field perpendicular to the interface. This lack of inversion

symmetry lifts the ‘spin’ degeneracy of each subband for k|| > 0. At k|| = 0,

the two-fold degeneracy must remain because of time-reversal symmetry [43].

2.4 Non-zero magnetic field

The application of a magnetic field perpendicular to the interface causes the

formation of Landau levels. As anticipated from the anisotropic and non-

parabolic properties of the zero-field band structure, the energies of the Lan-

dau levels are found to be strongly non-linear functions of B⊥. A theoretical

treatment of the problem was first formulated by Ekenberg and Altarelli [51]

in the axial approximation.

The kx and ky are replaced by the Landau raising and lowering operators

a† =

√

~

2eB
(kx + iky), a =

√

~

2eB
(kx − iky), (2.4)

see for example reference [56]. In the presence of a magnetic field, the Luttinger

Hamiltonian also gains diagonal terms
∑

α=x,y,z 2µB(κBαJα + qLBαJ
3
α) [46].

It is found experimentally that the Zeeman-like κ term dominates the qL
term, which is therefore usually neglected [61]. A suitable ansatz for the

four-component wavefunction is now








c1(z)φm−1

c2(z)φm

c3(z)φm+1

c4(z)φm+2









where the φm are the usual harmonic oscillator functions. In the axial ap-

proximation, the φm may be eliminated to leave a set of coupled differential

equations for the ci(z). A different set is obtained for each choice of m. If

m ≥ 1 then there are four coupled differential equations (and four Landau

levels are obtained for that particular value of m). If m ≤ 0 then some of

the coefficients ci(z) must be set to zero, because (for example) there is no

function φ−1, and fewer Landau levels are found.

The calculations of Cole et al. are reproduced in Fig. 2.3, for a 150 Å asym-

metric (311)A quantum well [62]. The integers labelling each level indicate
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Figure 2.3: HH1 and HH2 Landau levels of a 150 Å (311) asymmetrically-doped

quantum well (From Cole et al.)

which value of m led to the solution. The levels are separated into two groups,

which originate from the HH1 and HH2 subbands of the system at B = 0.

The HH2 dispersion at low fields has the opposite sign to that of HH1; this is

a manifestation of the electron-like dispersion of the HH2 subband at zero B.

The strong anticrossing behaviour occurs between Landau levels of the same

index but from the different subbands. Note that in the axial approximation,

crossing between Landau levels originating from the same B = 0 subband is

allowed.

The relaxation of the axial approximation has been studied by Bangert

et al. [63]. An important refinement is that, for (100) systems in the 4 × 4

approximation, Landau levels from the same B = 0 subband with equal (m

modulo 4) do not cross. For the lower symmetry (311) planes, it is found that

levels with the same index (m modulo 3) also anticross [62]. It should be noted

that most of the data presented in later chapters of this thesis are obtained

for B⊥ < 2 T. Inspection of Fig. 2.3 shows that in this regime, the Landau

level dispersion is rather linear. However, it should be borne in mind that the

samples studied in this work were about 33% wider, which would decrease the

energy separation of the 2D subbands at zero magnetic field and move the

complicated anticrossing part of the diagram to lower B⊥.
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2.5 Confinement symmetry

The significance of the symmetry of the confinement potential of the 2DHS

on its low-field Shubnikov-de Haas oscillations is well known; it was addressed

in the first paper reporting the quantum Hall effect in holes [23], and was

investigated further soon afterward [64]. Measurements of different samples

with approximately symmetric or strongly asymmetric in-grown confinement

potentials yield very different low-field ρxx oscillations. In the asymmetric

case, an apparent ‘beating’ effect is observed whereas in inversion-symmetric

samples the Shubnikov-de Haas oscillation amplitudes increase monotonically

with B⊥ [64]. The new feature of the results to be presented here is that these

symmetry effects may be observed in the same sample, on just one cooldown.

2.5.1 Experimental details

This experimental section describes electrical transport measurements of a

2DHS in the T335n+ wafer, subject to a purely perpendicular magnetic field

in a 3He cryostat at 0.29 K. Experimental techniques are summarized in Ap-

pendix D. The Hall bar studied was oriented in the [233] crystallographic

direction.

Figure 2.4: (a) Schematic diagram of a front and back gated 2DHS labelled with the

distances and voltages discussed in the text. (b) Three confinement potentials, with

wavefunctions plotted as the dotted lines, showing the symmetric and asymmetric

regimes accessible in a sample with front and back gates.
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Wafer T335n+ was grown on a (311)A n+ substrate which can be used

as a back gate [65]. In contrast to front gates, which are fabricated by the

evaporation of a Schottky contact on to the top surface of a chip thereby

covering the Hall bar (see Appendix C), the back gate is situated underneath

the 2DHS. By applying voltages to front and back gates (Vfg, Vbg respectively),

it is possible to vary the electric field across the 2DHS whilst keeping the hole

concentration constant (see Fig. 2.4(a)). In such a sample, it is therefore

possible in principle to change the confinement potential of the 2DHS from

asymmetric, through to symmetric (with respect to inversion), and then to

asymmetric again (Fig. 2.4(b)).

The back gate was found to have a range of −0.7 < Vbg/V < 0.5 with sub-

picoamp leakage currents, and was situated approximately 2.7 µm below the

2DHS. In contrast, the front gate was separated from the carriers by 0.34 µm.

Simple capacitive arguments using these values show that a change in front-

gate voltage δVfg requires a change −δVbg = (d2/d1)Vfg = 8.0 × δVfg, to keep

n constant. In fact, the experimental factor was measured to be (8.8 ± 0.1).

This discrepancy cannot be explained by the differing dielectric constants of

the materials above and below the 2DHS. Errors of this kind are also observed

in front and back gated 2DESs [66], and may arise from redistributions of

charge in the doped regions of the device.

2.5.2 Results

Figure 2.5(a) shows ρxx as a function of B⊥ for a range of front and back gate

voltages. Each trace has been offset by an amount proportional to the electric

field (due to the gates) across the 2DHS. The minima of each sweep are well

aligned at high magnetic fields, indicating that the carrier concentration was

constant. The lowest trace, corresponding to Vfg = −0.232 V, Vbg = −0.7 V,

exhibits smooth electron-like Shubnikov-de Haas oscillations indicating that

the confinement potential was close to symmetric. However, the highest trace

(corresponding to Vfg = −0.368 V, Vbg = 0.5 V), exhibits the beating (with

a node at approximately 0.8 T) usually associated with an asymmetric con-

finement potential. In contrast to the lowest trace, the hole wavefunction is

pressed against the top interface of the quantum well. The difference in the

electric fields between the two extremes is approximately 4 kVcm−1.

The periodicity of the oscillations (in 1/B⊥) may be investigated by invert-

ing the B⊥ axis, and taking the Fourier transform of the data. Figure 2.5(b)

shows the padded fast Fourier transforms (FFT) of the data, with each trace

offset by an amount proportional to the total electric field due to the gates.

The data were tapered before applying the FFT routine to limit ‘ringing’

effects which arise from the finite range in 1/B⊥ of the data.
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Figure 2.5: (a) ρxx versus B⊥ measured for a variety of gate-voltage combinations

at fixed carrier concentration. The sweeps have been offset vertically by an amount

proportional to the electric field induced by the gates across the 2DHS. (b) Fast

Fourier Transforms (FFTs) of the data in (a).

The traces show two distinct peaks, marked by the dotted lines. The

higher-frequency peak (peak 2) reflects the 1/B⊥ periodicity of clearly resolved

spin-split Landau levels, and agrees with the carrier concentration measured

from the Hall voltage to be (1.98 ± 0.04) × 1015 m−2. It necessarily contains

contributions from the anharmonicity of the Shubnikov-de Haas oscillations.

The dotted line at lower frequency was positioned at exactly half the higher

frequency; its alignment with peak 1 in the data demonstrates that peak 1

is associated with the spin-unresolved Landau levels which are observed at

low magnetic fields. As the back-gate voltage becomes more positive, peak

1 evolves into a pair of clearly resolved peaks (1a and 1b) centred about the

frequency of the dotted line.

It is clear that the beating and corresponding splitting of peak 1 observed
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in Fig. 2.5 are directly related to the symmetry properties of the confinement

potential. In order to determine a pair of gate voltages for which the latter

is perfectly symmetric, it is necessary to observe the splitting of peak 1 for

both positive and negative electric fields. However, this was not possible at

the carrier concentration of the data in Fig. 2.5 because of the limited range

in back-gate voltage.

Measurements which show hints of such a splitting, for the same device at

slightly lower carrier concentration, are presented in Figs. 2.6(a) and (b). The

Figure 2.6: Data presented for the same sample, but at a lower carrier concentration

than in Fig. 2.5. The Fourier transform traces in (b) indicate a splitting of peak 1

at both large negative and large positive back-gate voltages. The grey box highlights

the gate voltages for which the confinement potential is close to symmetric (see text).

average front-gate voltage in these measurements is less negative than in those

of Fig. 2.5, which means that the wavefunction of the 2DHS is less attracted

to the top hetero-interface. Therefore, the wavefunction is likely to be nearer

to symmetric in this case, enhancing the chance that a doublet feature may
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be observed at both positive and negative back-gate voltages.

Again, the Fourier transform traces show two distinct peaks, marked by

the dotted lines. As before, the line marking the lower-frequency peak (peak

1) was positioned at exactly half the frequency of the higher-frequency peak.

The topmost trace again exhibits the doublet structure of the higher traces of

Fig. 2.5, labelled 1a and 1b, although in this case it is less well resolved. At

the other extreme of the gate-voltage range, and in contrast to Fig. 2.5, peak

1 is split into two peaks again.

2.5.3 Discussion

The explanation of all of these observations lies in the complicated Landau fan

diagram of the 2DHS (see Fig. 2.3) [63], and its sensitivity to the symmetry of

the confinement potential. As B⊥ is increased, ρxx oscillates as the chemical

potential coincides with the different Landau levels. A node of the beating

occurs when the chemical potential passes through two Landau levels simulta-

neously, which happens when these levels are crossing. The hole Landau fan

diagram is characterized by such crossings; and it seems reasonable that by

changing the confinement potential, the chemical potential can be tuned to a

crossing-point.

A more intuitive explanation relates the splitting of peak 1 to the effect of

the symmetry of the confinement potential on the band structure at B⊥ = 0

[23, 64]. At zero magnetic field, the two-fold degeneracy of the energy disper-

sions for k|| > 0 occurs only if the Hamiltonian has inversion symmetry [43]. If

the confinement potential lacks this symmetry, then the degeneracy is lifted.

However, at k|| = 0 there must remain a two-fold degeneracy because of time-

reversal symmetry. Thus, in the asymmetric case the HH1 subband effectively

splits into a pair of non-degenerate subbands with different curvatures. This

is depicted in Fig. 2.7.

Figure 2.7: A schematic diagram of the variation of the 2D HH1 subband as a

function of the electric field across the 2DHS.

33



Subbands of the 2DHS Chapter: 2

In this picture, the application of a perpendicular magnetic field causes

the heavier and lighter branches of the HH1 subband to develop into sets of

unevenly spaced Landau levels [64]; the beating is caused by the crossing of

these Landau levels at low fields, which occurs as the two ladders evolve at

different rates as a function of B⊥.

Referring to Fig. 2.4(a), which shows the voltages applied schematically,

the magnitude of the electric field E across the 2DHS may be seen to be:

|E| =
∣

∣

∣

∣

−δVfg + δVbg

d1 + d2

∣

∣

∣

∣

. (2.5)

It has been assumed that the E = 0 occurs at some non-zero pair of gate

voltages. At constant carrier concentration, this equation reduces to |E| =

|Vfg/d1| = |Vbg/d2|.
The peaks 1a and 1b of Figs. 2.5 and 2.6 reflect two carrier concentrations,

corresponding to the differing occupations of the lighter and heavier HH1

subband (n1 and n2 respectively). When the electric field is sufficiently strong,

this splitting is resolved in the Fourier transform (see Fig. 2.7). As E is reduced

towards zero by varying the gate voltages, the 1a and 1b peaks merge.

Figure 2.8 plots the splitting of the well-resolved peaks of Fig. 2.5, versus

electric field across the quantum well. The figure was constructed by measur-

ing the frequency splitting of peaks 1a and 1b in Fig. 2.5(b). This frequency

∆f was converted to a carrier concentration using ∆n = n1−n2 = ∆f × e/h.
There is an uncertainty of approximately 10% in the electric field values,

because of the differing dielectric constants of the material above and below

the 2DHS. Although this splitting is related to the lifting of the degeneracy

of the HH1 subband by |E| [64], it is not possible to convert it into an energy

difference without knowledge of the Fermi energy.

The splitting of peak 1 at very negative back-gate voltages in Fig. 2.6(b)

could be taken as evidence that the sign of the average electric field across

the 2DHS had changed, in which case one of the sweeps at intermediate gate

voltages must have been measured for a symmetric confinement potential. The

approximate region of symmetric confinement is highlighted in Fig 2.6(b) using

the grey box. Features of the data which cast doubt on this interpretation

include trends that do not reverse as the symmetric point is passed. More

experiments, on samples with greater back-gate voltage ranges, will be required

to clarify these observations.

The recent work of Muraki et al. [67] describes results similar to the ones

presented here. However, they did not observe a splitting of peak 1 at both

negative and positive back-gate voltages.
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Figure 2.8: Plot of the fractional difference in carrier concentrations of the heavier

and lighter branches of the HH1 2D subband, as a function of the changes in electric

field induced by the front and back gates. The data points were measured as peak

positions 1a and 1b in Fig. 2.5(b)

2.6 Summary

This chapter has described the band structure of the valence band of GaAs,

discussing its anisotropy and non-parabolicity in the context of the Luttinger

Hamiltonian. The confinement of the holes to two dimensions has been shown

to increase the non-parabolicity strongly, due to the anticrossing of adjacent

LH or HH 2D subbands. It has been argued that the Fermi wavevector of the

samples studied in this thesis are sufficiently small that the Fermi contour may

be taken to be close to circular. Calculations performed by Roland Winkler

support this idea, and show that the bands deviate significantly from parabolic

at the Fermi energy.

The description of the band structure then moved on to the formation of

Landau levels in a magnetic field. The labelling scheme of these levels was

discussed, as well as their anticrossing properties.

Finally, new experimental data showing the effect of symmetry on the low-
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field magnetoresistance were presented. Through the simultaneous use of a

front and back gate, to vary the symmetry of the confinement potential at

constant carrier concentration, direct evidence of the splitting of subbands at

non-zero wavevector was demonstrated.

36



Chapter 3

Interacting fermions

3.1 Introduction

Much of this thesis is concerned with the effects of Coulomb interactions on

transport measurements in the 2DHS. A theory of interactions between par-

ticles occupying non-parabolic, anisotropic and strongly mixed bands in two

dimensions is non-existent. A pragmatic approach is to treat holes as heavy

fermions; at zero magnetic field, these are considered to occupy a simple two-

fold degenerate parabolic band. The theoretical results obtained for electrons

confined to two dimensions may then be applied to the hole system.

In this chapter, the properties of such particles are described, mainly in

the Hartree-Fock approximation (HFA), from zero to high magnetic field. A

simple formalism for exchange interactions at integral filling factors is intro-

duced which is then used to describe a first-order phase transition which has

been predicted to occur in the 2DS. A discussion of experimental results in

Chapter 5 will utilize many of the concepts introduced here.

The penultimate section of this chapter contains a concise review of the

literature concerning interaction effects in hole systems.

3.2 The Hartree-Fock approximation

The M -particle wavefunction Ψ of a system of indistinguishable fermions must

be antisymmetric with respect to the interchange of any two particles. The

single-particle Schrödinger equation is assumed to generate a set of wavefunc-

tions ψi of energy λi. Starting with the non-interacting case, the many-particle

wavefunction may be written as the (Slater) determinant of an M ×M matrix
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of the single-particle wavefunctions:

Ψ =

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(r1, s1) ψ1(r2, s2) · ψ1(rM , sM )

ψ2(r1, s1) ψ2(r2, s2) · ψ2(rM , sM )

· · · ·
ψM (r1, s1) ψM (r2, s2) · ψM (rM , sM )

∣

∣

∣

∣

∣

∣

∣

∣

(3.1)

where ri represents the position of the ith particle, and si represents its spin.

A property of this wavefunction is that Ψ vanishes as any two particles of

the same spin approach. However, the separation of particles of different

spin is subject to no constraints. Hence, particles of the same spin are on

average further apart than particles of opposite spin. The Coulomb energy

of interaction of a pair of same-spin fermions is therefore lower than that of

opposite-spin fermions. This is the origin of the exchange interaction, which

favours aligned spins.

The Hartree-Fock equations are obtained by minimizing the total energy

with respect to the ψi [68]:

− ~
2

2m0
∇2ψi(r) + U ion(r)ψi(r) + U int(r)ψi(r)− (3.2)

∑

j

∫

dr
′ e2

4πǫ|r′ − r|ψ
∗
j (r

′)ψi(r)δsisj
= λiψi(r)

where U ion represents the attractive Coulomb interaction between the particles

and the lattice, and U int the direct, repulsive, Coulomb interaction between

the particles. In general this equation is intractable, because of the integral

term.

In the case of free particles, which arises when the ionic charge is replaced

by a smooth background of charge, plane-wave solutions are found to form

an exact solution of equation 3.2. The uniform background is matched by

a uniform distribution of free particles (of opposite charge), causing charge

neutrality and the cancellation of the U ion and U int terms [68].

This leaves only the ‘exchange’ integral to be evaluated. This is achieved in

momentum space; the solution depends on the dimensionality of the system,

through the form of the Fourier transform of the Coulomb interaction. It is

conventional to express Hartree-Fock energies in units of the effective Rydberg

Ry∗ =
m∗e4

2(4πǫ)2~2
. (3.3)

In three and two dimensions, the total energies per particle are found to be
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[69, 70]:

E3D
HF /Ry∗ =

2.21

r2S
− 0.916

rS
, (3.4)

E2D
HF /Ry∗ =

1

r2S
− 1.2

rS
, (3.5)

where rS is the average inter-particle spacing in units of the effective Bohr ra-

dius, a∗0 = 4πǫ~2/m∗e2. In 2D, rS = 1/(a∗0
√
πn). The first term represents the

kinetic energy, and is inversely proportional to the effective mass of the system.

The second term is the energy saving due to exchange, and is independent of

the effective mass (when expressed in SI units). These equations show that

the relative importance of interactions increases as rS increases (correspond-

ing to lower carrier density), as the effective mass increases (which quenches

the kinetic energy) and as the dimensionality is reduced. For a 2DES with

n = 1 × 1015 m−2 and m∗ = 0.067m0, rS = 1.8. The effective mass of the

hole in a 2DHS is not well defined, because of the non-parabolicity of the 2D

subbands. An approximate effective mass can be estimated from Fig. 2.2 by

expressing the Fermi energy as ~
2k2

F /2m
∗. This provides m∗ ≈ 0.25m0, which

is rather lower than the values estimated for single-interface heterostructures

[64, 9, 71] but is in rough agreement with cyclotron resonance measurements

of asymmetric quantum wells [62]. Using this value for the hole effective mass

gives rS ≈ 7 for the 2DHS. In spite of the obvious crudity of the approxima-

tion, this demonstrates that interactions should be expected to be particularly

important in the 2DHS.

Because EHF is determined by a variational procedure, it must exceed (or

be equal to) the true ground-state energy. The difference is termed the cor-

relation energy; whilst the exchange energy arises from a correlation between

particles of the same spin (leading to a lowering of their Coulomb energy),

the correlation energy arises from the fact that particles of opposite spin also

avoid each other (through Coulomb repulsion).

In the limit of very large rS , the 2D system is thought to crystallize into a

Wigner solid, in which the particles fall onto a triangular lattice. This occurs

when the kinetic energy becomes so small that the zero-point kinetic energy

ceases to free the particle from the effective confinement potential due to the

surrounding electrons and the (smooth) background of dopant charge [16].

Screening at B = 0 Screening is a redistribution of charge, in response to

an electric field, which acts to lower the energy of the system. At zero magnetic

field the Coulomb interaction in 3D electron systems is reduced by screening

to a decaying exponential, in the Thomas-Fermi approximation [68]. However,
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in the 2D Thomas-Fermi approximation, the screened potential takes the form

[21]

U(r) ∝ a∗0
2

r3
. (3.6)

Although this is much reduced from its unscreened value, it remains long-

ranged and demonstrates that screening strength is diminished significantly

by a reduction in dimensionality.

3.3 Strong magnetic field

The measurements to be presented in Chapters 4 and 5 were performed in

the quantum Hall regime, in which the density of states is strongly quantized.

It is therefore appropriate to introduce a formalism for treating the exchange

interaction at integral filling factors. In most of the remainder of this chapter,

it will be assumed that the 2DS has zero thickness (i.e. it is ideal), that the

density of states is well described by a sum of delta functions, and that the

sample temperature is zero.

In a strong perpendicular magnetic field B⊥, the length scale which char-

acterizes inter-particle interactions is the magnetic length lB , which is defined

to be

lB =

√

~

eB⊥
. (3.7)

The corresponding scale of the Coulomb energy per particle, and the exchange

interaction EX in particular, is

EX =
1

4πǫ

e2

lB
. (3.8)

The particles now occupy the lowest energy Landau levels of the system,

which are labelled by the two quantum numbers N and s. N is an integer

denoting the harmonic-oscillator quantum number of the single-particle wave-

function (see Section 1.5.1), whilst s represents the spin of the Landau level.

The non-interacting energy of a particle takes the form

E = ~ωC(N +
1

2
) + gµBB.̂s. (3.9)

Consider the interaction between a single particle occupying the Landau

level with N = i, and all of the particles in the full Landau level with N = j.

The exchange interaction reduces the energy of the particle by an amount
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Aij if the spins of the two Landau levels are the same. In the Hartree-Fock

approximation in the quantum limit (EX ≪ ~ωC), these ‘exchange coefficients’

may be calculated to be [72]:

Aij =
1

4πǫ

e2

lB

j!

i!

∫ ∞

0

√
2 exp(−k2)(k2)i−j [Li−j

i (k2)]2dk (3.10)

where Lα
i is an associated Laguerre polynomial [73] and i ≥ j. The exchange

self-energy of a particle in Landau level N is therefore a sum of its exchange

interactions with all occupied same-spin Landau levels. The total energy of

the particle may be expressed as

ENs = ~ωC(N +
1

2
) + gµBB.̂s−

∑

i

ANiρ
s
i , (3.11)

where ρs
i represents the fractional filling of the ith Landau level with spin s.

3.3.1 Single-particle excitations

An example of an excitation of a system at integer filling factor is the promo-

tion of a particle from the highest (fully) occupied Landau level to the nearest

unoccupied one; this is depicted schematically in Fig. 3.1(a). The system may

now be described in terms of a ‘magnetoexciton’ composed of a quasiparticle

in Landau level N + 1 and a quasihole (of opposite sign) in Landau level N

[74].

The energy of these two quasiparticles is defined to be the excitation en-

ergy ∆ν , where ν represents the filling factor of the ground state. To the

interaction part of this, there are three contributions [74]: (i) the Coulomb

energy due to the attraction between them; (ii) the exchange energy of the

particle minus the exchange energy of the hole; (iii) an exchange term arising

from the overlap of the particle and hole wavefunctions. Thus ∆ν depends

on the spatial separation of the particle and hole. In the Landau gauge, one

component of the wavevector k is a good quantum number; the magnitude

of k is related to the displacement of the guiding centre from the origin. If

the excited particle has a wavevector k then the (single particle) wavefunction

of the hole has wavevector −k; the particles are therefore displaced from one

another. Thus the k value of the excitation is proportional to the separation

of the particles, so ∆ν is a function of the wavevector of the magnetoexciton.

The exchange contribution to the dispersion relation ∆ν(k) of the mag-

netoexciton for the excitation at ν = 2 is reproduced in Fig. 3.1(b) from

reference [74]. Terms (i) and (iii) vanish as k tends to infinity, because the

particle and hole do not interact in this limit. Thus, the asymptotic value of

the dispersion relation is determined by the difference in exchange energies of
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Figure 3.1: (a) An example of a single-particle excitation at ν = 2. The quasiparticle

and quasihole created interact, unless they are infinitely separated. (b) Schematic

reproduction of the interactions contribution to the single-particle excitation energy

at ν = 2. At large k values, the excitation energy is enhanced by the difference in

self-energies of the excited particle in the two levels.

the particle in the two Landau levels; this is the limit probed by most trans-

port measurements at integral filling factor. At odd filling factors ν = 2N +1,

the single-particle excitation energy is given by

∆2N+1 = gµBB +ANN (3.12)

and at even filling factors ν = 2N + 2 it is

∆2N+2 = (~ωC − gµBB) +
∑

i≤N

ANi −
∑

i≤N

A(N+1)i,

= (~ωC − gµBB) +A(N+1)N . (3.13)

The latter step results from the orthogonality properties of the associated

Laguerre polynomials in two dimensions.

At both even and odd integral filling factors, the energy gap to single-

particle excitations has been increased above the non-interacting values by

the exchange interaction. At odd filling factors, this is the famous exchange

enhancement of the g factor [75, 72].

Screening in a field In the quantum limit, in the absence of disorder and at

very low temperatures, screening at integer filling factors is strongly inhibited

because of the energy gaps at the chemical potential, which prevent charge
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redistribution in the plane. However, the quantum limit is reached only at very

high magnetic fields and in many practical examples of 2D electron and hole

systems, EX ≥ ~ωC . This leads to mixing of the Landau levels, which permits

screening because the Landau levels are then essentially partially occupied

[76]. Thus, Landau level mixing reduces the values of the exchange coefficients.

Interactions are also softened by disorder, which broadens the density of states

of the Landau levels, thereby introducing gapless excitations.

3.4 Spin-polarization instability

In the simplest Hartree-Fock approximation, the ground state of a system ofM

fermions in a strong magnetic field may be specified using a set of occupation

numbers for each Landau level. The incorporation of the exchange interaction

can cause the particular lowest energy set of occupation numbers to be different

from the intuitively obvious non-interacting set.

To investigate this, we consider the total energy per particle of a system

at integral filling factor ν = 2N + 2, depicted in Fig. 3.2. Using the notation

developed earlier, it may be written as

E =





∑

i,s

(~ωC(i+
1

2
) + gµBB.̂s)ρs

i −
1

2

∑

i,j,s

Aijρ
s
iρ

s
j



 /ν. (3.14)

At zero temperature, the ground state of the system may be determined by

minimizing this quantity.

In the absence of interactions the {Aij} = 0 and the lowest energy state is

clearly given by ρ±i = 1 for i ≤ N , and ρ±i = 0 for i > N . For sufficiently weak

interaction energies, this remains the ground state (see Fig. 3.2(a)). Because

the initial state is of even filling factor, its spin-polarization (or magnetization)

is zero.

Figure 3.2(b) depicts the transfer of all of the particles in the highest

occupied Landau level to the nearest unoccupied one, which has opposite spin.

This process increases the magnetization of the system; it is conventional to

describe the unmagnetized state as paramagnetic, and the magnetized state

as ferromagnetic. The transfer of particles increases the number of same-

spin fermions in the system, and might be expected to lower the interaction

energy. For the cases ν = 2 and ν = 4, the differences in total interaction

energy between the paramagnetic and ferromagnetic states are:

∆P,F =

(

A00

2
− (

A11

2
+A10)

)

/ν (3.15)
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and

∆P,F =

(

A11

2
+A10 − (

A22

2
+A20 +A21)

)

/ν (3.16)

respectively. If the {Aij} are calculated in the extreme quantum limit, then

Figure 3.2: Filled and empty Landau levels at even filling factor. (a) The para-

magnetic state in which the spin-polarization (or magnetization) is zero. (b) The

ferromagnetic state, which has non-zero magnetization.

in both cases the total interaction energy of the system does become more

negative.

The transfer of particles to the higher Landau level costs ~ωC − gµBB of

non-interacting energy per particle. In real systems this energy usually out-

weighs the saving that would be made in interaction energy, and the transfer

is not favoured.

However, the tilted-field measurement (see Section 4.2.1) allows the exper-

imental variation of the quantity ~ωC − gµBB at fixed filling factor. Thus,

there can arise a situation in a 2D system in which

∆P,F + ~ωC − gµBB = 0. (3.17)

At this point, the total energies of the unmagnetized and magnetized ground

states are equal. Any further tilting favours the magnetized state.

The change in magnetization of the system occurs discontinuously, and

therefore may be described as a first-order paramagnetic-ferromagnetic phase

transition. This effect was first discussed by Giuliani and Quinn [77, 78, 79] in

the context of the 2DES. These papers consider more general ground states, in

which the limit ∆ν(k)→ ∆ν(∞) is not assumed initially. Thus, transitions to

spin-density wave (SDW) states are also allowed. However, they find that the

first-order phase-transition pre-empts the SDW state in single-valley materials.
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3.4.1 Measured energy gap

The energy gap measured in an experiment by activation-energy techniques

(see Section 4.2.1) does not provide direct information about the total energy

of the system. Instead, it provides an estimate of the single-particle excitation

gap.

Referring to Fig. 3.3(a), and specializing to the ν = 2 case, we see that

before the transition the single-particle excitation energy is

∆2 = ~ωC − gµBB +A10 (3.18)

from equation 3.13. At the transition point, ~ωC − gµBB + ∆P,F = 0. Sub-

stituting this into equation 3.18 gives

∆C = 2A10 +
A11

2
− A00

2
. (3.19)

Thus, the theory predicts that the measured energy gap at the transition point

is greater than zero.

Figure 3.3: Model system at ν = 2 showing single-particle excitations in the param-

agnetic (a) and ferromagnetic (b) phases.

As a check, the energy gap may be calculated on the ferromagnetic side of

the transition. In this case, referring to Fig. 3.3(b), the single-particle energy

gap is given by

∆C = gµBB − ~ωC +A11 +A10 =
A00 +A11

2
. (3.20)

Substitution of the values obtained for the Aij shows that expressions 3.19 and

3.20 are the same. At ν = 4, the single-particle energy gap takes the value

(A11 +A22)/2.
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Therefore the simplest incorporation of the exchange interaction into a

tilted-field experiment makes the following predictions: (i) at a certain critical

value of ~ωC − gµBB, a magnetization instability occurs in which the system

lowers its ground-state energy by transferring the particles from the highest

occupied Landau level to the nearest unoccupied one (which has opposite

spin); (ii) the energy gap, ∆C , at which this occurs is more than zero; (iii) the

measured energy gap is continuous, but its derivative (with respect to B) is

not.

Non-zero temperature, and disorder In the non-interacting case at zero

temperature, the change of phase occurs abruptly when ~ωC = gµBB and the

magnetization changes discontinuously. However, it is clear that an infinites-

imal increase in the temperature removes the discontinuity in the magnetiza-

tion. Therefore, the phase-transition is not first-order at realistic temperatures

in a non-interacting system.

At temperatures sufficiently high that the Landau levels above the chemical

potential become significantly occupied, exchange effects begin to be quenched.

However, for non-zero temperatures below a certain critical temperature, the

magnetization may still be expected to exhibit discontinuities at the change

of phase. Thus, the phase-transition can remain first order in an interacting

system at realistic temperatures. The change of order of the phase-transition

occurs for kBT ≈ EX .

The effect of disorder, and the extra screening that it introduces, have been

investigated in reference [80], which shows that for small amounts of disorder,

the phase-transition remains first-order.

3.5 Interacting holes

The theory of interactions between holes is complicated by the properties of the

non-interacting valence band described in Chapter 2. There exists no theory

which incorporates both the full Coulomb interaction and the anisotropy and

non-parabolicity of the valence band, even in three dimensions.

In three-dimensional systems, the first theory treating hole-hole interac-

tions was published by Combescot et al. [81]; this paper described the ground

state of an electron-hole plasma, created by optical pumping, in Ge. It con-

tains a derivation of the Hartree-Fock energy of the 3D isotropic hole system,

resulting in an exchange energy per hole of

EX = −ξ(w)
0.916

rS
, (3.21)
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where w represents the ratio between the LH and HH Fermi wavevectors.

The function ξ(w) varies monotonically between the limits ξ(0) = 0.71 and

ξ(1) = 0.79 [81]. Comparison of equation 3.21 with the exchange part of the

3D electronic result (equation 3.4) shows that the electron and hole results

differ by the factor ξ(w), which is of order unity. The difference arises because

the angular momentum of the valence band (which is a good quantum number

in the spherical approximation) has J = 3/2, rather than J = 1/2 as in the

case of electrons, making the exclusion principle less effective. Even in the

limit of zero LH mass, w = 0, the electron result is not obtained because the

Coulomb interaction couples light and heavy holes [82].

Other results of importance include calculations of band-gap renormaliza-

tion in both the bulk [83] and in quantum wells [84]; these are of importance

in optical experiments.

A recent paper [85], concerning the 2DHS formed in p-type inversion and

accumulation layers in Si, presents density-functional calculations of the hole

band structure, and also a useful review of the theory to date on the subject

of the 3DHS. A sister-paper [86] presents density-functional calculations of

the Landau levels of the 2DHS. It represents the only theoretical treatment

of the problem of inter-hole interactions in a strong magnetic field. However,

the exchange-correlation potential is calculated at zero magnetic field. This

work does not treat the problem of single-particle excitations from full Landau

levels, and is therefore rather difficult to apply to our work.

A further calculation of the effects of exchange and correlation on the zero-

field band structure of the 2DHS in the GaAs/AlGaAs material system may

be found in reference [82].

Early experimental observations of interaction effects involving the valence

band include band-gap renormalization, which is observed in doped quantum

wells [87]. Other experimental observations of many-body effects are listed

below.

Although exchange is the simplest interaction effect, and in spite of its

direct relevance to the excitations of the system, there have been few experi-

mental observations or studies of its effects in low-dimensional hole systems.

The Zeeman splitting of the exciton spectrum, probed optically in unoccu-

pied quantum wells, contains a contribution due to the exchange interaction

between the overlapping electron and hole wavefunctions [88]. Traynor et al.

[89] suggest that discrepancies observed between an 8× 8 k.p calculation and

their experimental results for wide quantum wells are due to extra mixing of

LH and HH states by the Coulomb interaction.

In transport experiments, Coleridge et al. [90] claim to observe enhanced

excitation gaps at even and odd filling factors, in the 2DHS formed at the
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Si/SiGe interface. A recent paper by Kemerink et al. [91] presents a compar-

ison of the Shubnikov-de Haas oscillations of a narrow quantum well, in the

GaAs/AlGaAs material system, with non-interacting k.p calculations. It was

shown that non-interacting calculations of the Landau levels using the 4 × 4

Luttinger Hamiltonian could not account for the temperature dependence of

ρxx oscillations (with B⊥), and that the discrepancies could be attributed to

an exchange enhancement of these energy gaps (see Section 3.3.1). A more

direct transport observation of the exchange interaction at B = 0 is reported

in reference [92], which describes compressibility measurements in a bilayer

hole system.

The most striking experimental manifestation of hole-hole interactions in

the 2DHS is certainly the fractional quantum Hall effect, which was described

in Chapter 1, and originates from correlations.

Measurements [62, 93] of anomalous temperature shifts of the cyclotron

resonance frequencies in the 2DHS, at high magnetic fields, have been at-

tributed to Coulomb-coupled single-particle inter Landau level transitions, of

the type first described by Cooper and Chalker [94].

The Wigner crystal phase of the 2DS is a correlation effect which is thought

to occur at unattainable values of rS in the 2DHS at B = 0. However, the

application of a strong perpendicular magnetic field can induce its formation

in high-quality systems. A possible observation of this effect has been reported

in reference [95], where an insulating phase is observed in the range 1/3 < ν <

2/5. A magnetically-induced Wigner crystal may also have been detected in

photo-luminescence experiments in low-disorder 2DHSs [96].

Other possible effects arising from interactions between holes include the

observation of insulating phases in the vicinity of ν = 1.5, in the SiGe based

2DHS (see for example reference [97]), and the observation of a insulator-

conductor phase transition as the carrier concentration of the 2DHS is reduced

[98].
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Chapter 4

Tilted magnetic field studies:

experiment

4.1 Introduction

This chapter presents the results of a series of experiments performed on single

2DHSs confined to symmetrically-doped quantum wells, in tilted magnetic

fields. The energy gaps of the 2DHS at fixed even and odd filling factors have

been measured as a function of the angle of tilt, using the activation-energy

method. These are found to increase and decrease in accordance with a simple

picture of Landau levels of well defined spin, despite the complexities of the

valence band structure.

However, in disagreement with the simplest of these pictures, the Landau

levels do not cross. Instead, turning points are observed before the energy gap

reaches zero. In the case of filling factor ν = 4, it is observed that within the

experimental error the energy gap ∆4 (measured using an activation technique)

is an approximately linear function of B right up to the turning point. The

significance of this result, and a discussion of the physics of the system, are

delayed until Chapter 5.

4.2 Tilted magnetic field

4.2.1 Basic concepts

This section begins with a description of the properties of a simple two-

dimensional system with electron-like bands. The properties of the 2DHS

in a tilted magnetic field are discussed fully in the next chapter.

The density of states of a zero-thickness 2DS of non-interacting free fermions

subject to a strong, arbitrarily oriented, magnetic field forms a set of Landau
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levels whose separation is determined by B⊥, the component of B perpen-

dicular to the plane. However, the spin degree of freedom couples to the

total magnetic field. The generic energy gap ∆ at the chemical potential of a

non-interacting system may be written as

∆ = ~
eB⊥

m∗
− gµBB (4.1)

at even filling factors. B⊥ and B may be varied independently by changing

the parallel component of B; experimentally, this may be realized by tilting

the sample with respect to the axis of the solenoid (see Fig. 4.1).

Figure 4.1: The effect of tilting the sample with respect to B, whilst keeping B⊥

constant at either even or odd filling factor. Landau levels are represented by solid

lines. Their ‘spin’ is depicted using arrows. Centre: Schematic diagram indicating

the orientation of the sample with respect to B. A more realistic diagram for a 2DHS

is provided in Fig. 5.1

Real systems are only quasi-two-dimensional. In the case of symmetric con-

finement, their thickness is best characterized by the half-width of the wave-

function, λ′z, in the confinement direction. The physics of the system remains

two dimensional in the limit that the magnetic length lB ≫ λ′z, whilst the

three dimensional limit is reached when lB ≪ λ′z. While the two-dimensional

limit is maintained, properties of the 2DS such as the disorder broadening of

Landau levels and the Coulomb interaction between particles, are independent

of the parallel magnetic field.
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The measurement of energy gaps in the quantum Hall regime using tem-

perature dependences is commonplace in the literature; see Nicholas et al.

[99], Usher et al. [100] and Schmeller et al. [101]. The so-called Arrhenius (or

activation-energy) technique, in which the diagonal conductivity σxx of a 2DS

is assumed to be activated according to the equation

σxx = σ0 exp

( −∆

2kBT

)

, (4.2)

is based on the idea that σxx is determined by the number of particles excited

by the temperature into the nearest unoccupied Landau level. The prefactor σ0

represents a minimum metallic conductivity, which is only weakly dependent

on temperature. Early uses of this method include references [102] and [103].

Equation 4.2 requires that the density of states is composed of a series of

delta function Landau levels and that kBT ≪ ∆. Relaxation of either of these

requirements changes equation 4.2. The consequences on the shape of lnσxx

versus 1/T plots are discussed in section 4.3.3.

σxx can be measured directly using the Corbino disc geometry. However,

Hall bars are experimentally more convenient because they offer a choice of

ohmic contacts and allow both ρxx and ρxy to be measured; they were therefore

utilized here. Experimental data may be converted from ρxx to σxx using the

following relationship (see Section 1.4.2):

σxx =
ρxx

ρ2
xx + ρ2

xy

. (4.3)

4.2.2 Previous work

The ability to affect the spin and space degrees of freedom independently was

first exploited by Fang and Stiles [104] to probe the g factors of the electron in

silicon inversion layers. Of the many experiments since, one the most complete

in the GaAs/AlGaAs system has been by Nicholas et al., which demonstrated

the effect of the exchange interaction on the energy gaps at odd filling factors

in the 2DES. However, tilted magnetic field studies in the 2DHS are rarer.

Experiments to date include reference [105], which presented two traces of the

ρxx oscillations at non-zero tilt angles. The aim of that experiment was to

investigate the spin splitting of the Shubnikov-de Haas oscillations in their

beating regime (see Chapter 2), and showed the apparent independence of

the traces to the parallel magnetic field. This was interpreted theoretically

in terms of the decoupling of light and heavy hole states in the narrow well

[106]. Other work published has been on the effect of a tilted field on the

fractional quantum Hall effect of the GaAs/AlGaAs 2DHS [9, 30, 107], and a

series of papers on the SiGe 2DHS [108, 90, 97]. A brief paper [109] presented a
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comparison of theory and experiment for the effect of a parallel magnetic field

on the Landau levels of a GaAs/AlGaAs 2DHS. Relevant papers are discussed

in the context of this work in the next chapter.

4.3 Experimental details

4.3.1 Samples

Sample chips of wafers T240 and T335n+ were studied. Some of their prop-

erties are reproduced in table 4.3.1. They were surface processed (see Ap-

pendix C)into Hall bars; neither was front gated, but T335n+ was grown on

an n+ substrate. The data obtained in the lengthy temperature-dependence

Wafer n µtr Well width

/ 1015 m−2 / m2/Vs / Å

T240 1.8±0.02 130±10 200

T335n+ 1.3±0.02 56±2 200

experiments came from samples which were oriented with the current flowing

in the [011] direction (T240) or [233] direction (T335n+); the axis of rotation

was parallel to the current. The holes were confined to 200 Å quantum wells,

giving a characteristic half-width of the wavefunction of approximately 80 Å.

The magnetic length at the maximum available field of 12 T is 74 Å. Thus, at

the highest fields, diamagnetic effects might be expected to become important.

However, the 3D limit is certainly not reached.

4.3.2 Apparatus and measurement

Measurements were performed in a 3He cryostat with a base temperature

of approximately 270 mK. The temperature was controlled using an Oxford

Instruments ITC4 temperature controller. The temperature was measured at

zero magnetic field using a calibrated Ge thermometer; care was taken to avoid

self heating by the excitation current. However, most of the measurements

presented below were performed at non-zero magnetic fields, where the strong

magnetoresistance of Ge prevents the use of such thermometers. In this case,

the sample temperature was measured using a carbon 470 Ω ‘Speer’ resistor

calibrated at B = 0 to the Ge thermometer. The relationship between the

ITC4’s calibration of the Speer and the Ge thermometer was found to be close

to linear, between 0.3 K and 0.75 K (there were slight oscillatory deviations

from linearity).
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The magnetoresistance of the 470 Ω Speer resistor is small, but not neg-

ligible. It has been investigated thoroughly for magnetic fields up to 14 T in

reference [110], and leads to total errors of less than 7% below temperatures

of 1.5 K. The base temperature of the cryostat was found to be independent

of time, twelve or more hours after the condensation of the 3He. This en-

abled the B dependence of the Speer thermometer at base temperature to be

determined accurately (eddy-current heating was avoided using low magnet

sweep rates). The error measured at base temperature is plotted as a func-

tion of B in Fig. 4.2 as the two lines without symbols (marked 0.3 K). The

other lines (with symbols) represent the B-dependent errors at higher temper-

atures, quoted from the literature [110]. T0 has been defined to be the actual

temperature of the thermometer, and T is the temperature deduced from its

resistance using the zero-field calibration.

Figure 4.2: Percentage error in temperature (T0 − T )/T0 versus magnetic field.

Symbols represent typical values for a 470 Ω Speer resistor, quoted in the literature

at 0.5, 0.7 and 1.0 K. The two curves are data taken at 0.3 K. The arrows represent

the ranges of temperatures used in section 4.5.1

The in situ rotation of the sample was achieved manually using a sample

holder built by Oxford Instruments with a ‘Swedish rotator’ drive mechanism,

providing a high degree of reproducibility, and very little hysteresis. The angle

of tilt, as determined from the periodicity of the ρxx oscillations, was linearly

related to the number of turns of the screw and agreed closely with the angle

deduced from the linear portion of the Hall voltage. This demonstrates that
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the assumptions concerning the two-dimensionality of the sample are justified.

The activation technique for the determination of the energy gap at the

chemical potential requires the accurate measurement of small resistances.

This is obviously facilitated by the use of high excitation currents. However,

it is important to prevent Joule heating of the hole system. Below excitation

currents of 38 nA, no change in the visibility of the magnetoresistance oscil-

lations at low or high fields could be detected at base temperature (although

the signal-to-noise ratio decreased). Above 38 nA, heating effects became

apparent. In this work, constant currents of either 37.5 nA or 30 nA were

employed.

Of crucial importance in the activation method is the elimination of offset

voltages. There are at least two causes: (i) intrinsic offset on the output of the

lock-in amplifier (LIA) when the inputs are shorted together; (ii) noise, which

necessitates an increase in the dynamic reserve of the LIA and introduces an

extra offset (see Appendix D). Both of these causes depend on the specific

settings of the LIA; the former may be eliminated by measuring the offset

regularly throughout the course of the experiment. The latter, however, is

particularly difficult to control. The method employed in this work was to

simplify the measurement circuit to just one LIA, measuring the diagonal

resistance Rxx.

It is necessary to ensure that the LIA remains in phase throughout the

temperature range. Bad ohmic contacts can change the phase of the measured

signal as their resistance changes with temperature (the measuring circuit

provides a stray capacitance). Such effects were minimized for these samples

by carefully assessing the qualities of the available ohmic contacts.

Activation data obtained in one experiment are presented in Fig. 4.3. They

show that, with appropriate care, linear plots of lnσxx versus 1/T may be

obtained. A detailed examination of the figure shows a slight kink in the

line at 1/T = 2 K−1: this is due to the oscillatory deviation of the ITC4

Speer calibration from the true temperature. It is very difficult to eliminate,

but does not cause a significant error. Slight time-dependent variations in

the LIA offset, and the possibility of phase problems, made measurements of

Rxx < 2.5 Ω unreliable: for the purposes of data analysis, measurements below

this threshold were discarded.

4.3.3 Deviations from ideal activation

It is convenient to consider first a model system in which there are 2N mi-

crostates, labelled by 1 ≤ i ≤ 2N . N of these states are assumed to be

degenerate with single-particle energies −∆/2, whilst the other N states are

also degenerate but with energies of ∆/2. Thus, the two levels represent
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Figure 4.3: Plot of lnσxx versus 1/T from experiment. The data are close to linear

over the whole temperature range.

highly degenerate Landau levels. There are assumed to be M indistinguish-

able fermions in this system (clearly with M < 2N ). The probability that a

particular single-particle state i is occupied is given by the Fermi-Dirac distri-

bution

f(E) =
1

1 + eβ(E−µ)
(4.4)

where β = 1/kBT and µ is the chemical potential. By conserving particle

number, an implicit equation for µ is determined

M =
N

1 + eβ(∆/2−µ)
+

N
1 + eβ(−∆/2−µ)

. (4.5)

Therefore, in principle, the chemical potential is a function of temperature.

However at integral filling factor (M = N ) it is trivial to show that µ = 0 (i.e.

mid-gap) for all temperatures. The diagonal conductivity is then assumed

to be proportional to the occupation of the higher state, and the following

equation is obtained:

σxx ∝
1

1 + e∆/2kBT
. (4.6)
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In the low temperature limit, equation 4.2 is regained, and an activation plot

will yield a straight line. However, at high temperatures, the activation plot

becomes sub-linear because of the constant term in the denominator of equa-

tion 4.6. A suggestive flattening off may be observed at low 1/T in the ex-

perimental data presented in Fig. 4.7. However, the curvature observed there

proved to be too strong to fit to the above theory. A plausible mechanism

for the experimental flattening off is a change in the effective mobility of the

particles involved in the conduction. At sufficiently high temperatures, this

mobility may be expected to drop, thereby introducing a temperature depen-

dent pre-factor into equation 4.6.

Incorporating scattering effectively lifts the degeneracy in each Landau

level. The density of states D(E) is then introduced to facilitate the counting

of the states. The density of states for a real system of Landau levels is

discussed in Chapter 1. It is assumed here that the delocalized states occupy

a region of total width Γ in energy. Thus D(E) is implicitly assumed to

represent the transport density of states. Functional forms which incorporate

the physics of a mobility edge include the top-hat function or the Gaussian

distribution. It is convenient to define D(E) = d+(E) + d−(E) where d+ and

d− represent the suitable approximations for the densities of states of the two

separate Landau levels. Explicitly,

d±(E) =

{ N/Γ for (±∆/2− Γ/2) < E < (±∆/2 + Γ/2)

0 elsewhere,

or

d±(E) = N 2

Γ
√

2π
exp

(

−2(E ±∆/2)2

Γ2

)

. (4.7)

Again, at integer filling factor, the chemical potential remains at the centre

of the energy gap. Fig. 4.4 shows a numerical calculation of the diagonal

conductivity for the Gaussian density of states, where the gap between the

peaks in the density of states (∆) has been taken to be 5 K, for three different

disorder widths Γ = 0.5, 1 and 1.5 K. At the lowest temperatures, the disorder

causes a flattening off of the data. The slope of the linear portion of each graph

corresponds to an apparent energy gap of ∆ = ∆− Γ: this demonstrates the

important result that the Arrhenius method gives an energy gap affected by

disorder. A alternative technique for the direct determination of the energy

gaps between peaks in the density of states is that of Lifshitz and Kosevich

[111]; it was not utilized in this work because the exchange effects under

investigation are quenched at the high temperatures used in this method.

At the lowest temperatures, the conductivity drops to very small values;

the transport is thought to be dominated by hopping [112, 113] in the localized
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Figure 4.4: Numerically calculated examples of an activation plot, displaying non-

linear behaviour, due to the Fermionic nature of the quasiparticles at high T and

disorder broadening of the Landau level density of states at low T . The solid line

represents lnσxx calculated with a Gaussian density of states. ∆ is 5 K, and Γ takes

the values 0.5,1.0, and 1.5 K.

tails of the density of states, rather than by the excitation of carriers into the

delocalized states near to the centre of the Landau level. The activation plots

then show strong non-linearity at high values of 1/T , as σxx exceeds the value

expected from normal activation. Again, the data would be expected to flatten

off. Thus, the effect would look similar to the non-linearity due to large Landau

level width although its origin is clearly different. Useful discussions of these

effects may be found in references [100] and [107].

Temperature-dependent energy gaps From Section 3.3, the gap to single-

particle excitations at, for example, ν = 5 may be written as

∆5 = S +A22(ρ
+
2 − ρ−2 ), (4.8)

where S represents a single-particle ‘spin’ gap such as gµBB, A22 is the intra-

Landau-level exchange energy per particle, the + and − represent the spin

of the Landau level, and ρ its fractional occupation. At low temperatures,

the gap takes the value S + A22 but at high temperatures it is simply S

since ρ+ ≈ ρ−. The transitionary behaviour between the two regimes may
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be determined by solving equation 4.8 for ∆ (ρ is a function of ∆ also). The

Figure 4.5: Calculated activation plot for an exchange enhanced gap. The dashed

line shows the linear portion of the data.

results of such a calculation, for S = 1 and A22 = 4 are plotted as an activation

plot in Fig. 4.5, with the inset showing the solution ∆ versus 1/T . The Landau

levels were assumed to have a delta function density of states. The deviation

from straight-line behaviour at high temperature occurs as the energy gap

drops. The values of S and A22 were chosen to provide a stringent check

of possible errors in the activation plot analysis. The calculation shows that

for the temperatures over which the experimental data were fitted, there are

no systematic effects due to the quenching of a possible exchange energy.

None of the experimental traces was found to exhibit an up-turn at low 1/T .

This observation is not interpreted as evidence against the presence of sizeable

exchange contributions to the energy gaps, because it is possible that the effect

is masked by the drop in mobility at high temperatures.

4.4 Data for ν = 6

In a sample for which gµBB < ~ωC , the energy gaps at even filling factor

decrease and the energy gaps at odd filling factor increase simultaneously (see

Fig. 4.1), as the tilt angle is increased.
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At sufficiently low temperature, the energy gap leads to an apparent zero

in the diagonal resistivity ρxx which occurs because the chemical potential lies

in the localized states in the disorder tails of the density of states. As the gap

gets smaller, due to the tilting, the minimum value should lift off zero in an

activated fashion. The oscillation should disappear entirely when the Landau

levels cross. This is root of the ‘coincidence’ techniques used for the deduction

of the g factor [99].

Figure 4.6: (a) The ν = 6 oscillation in Rxx as a function of the total magnetic

field B, for increasing tilt angles. The visibility of the oscillation decreases for fields

up to 5.25 T (solid line), and then increases. (b) Measurements of ρxy indicate that

the quantum Hall state survives over this range of angles. The angles vary between

θ = 74◦ and θ = 79◦.

The data presented in Fig. 4.6(a) show the oscillation at 280 mK for ν = 6

in a chip of wafer T240. The resistance of the oscillation minimum increases

as the feature becomes less visible. This corresponds to the approach of a pair

of Landau levels as B increases. However, there remains a clear oscillation

for all angles displayed because for B > 5.25 T the trend is reversed, and the

oscillation increases in visibility. Hence for B > 5.25 T the gap appears to

increase despite never having reached zero. It remains possible that, with a

finer grid of angles, a crossing point could have been found. In fact, an extra
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four such angles on either side of the thick line in Fig. 4.6 were examined, but

were omitted for clarity. They did not indicate a sudden collapse of the energy

gap. For all of these angles, there remains a quantized plateau (to accuracy

±3%) in the Hall resistivity ρxy (Fig. 4.6(b)).

The physics behind the failure of these Landau levels to cross is in principle

very complex, not least because of the complexities of the valence band in III-V

semiconductors. The possible processes involved are presented in Chapters 5

and 3, and include Landau level anticrossing and an exchange-driven phase

transition. Important information is contained in the variation of the energy

gap with magnetic field. However, the energy gaps at this filling factor are

small compared with the measurement temperature and are therefore difficult

to measure by the activation technique.

Similar behaviour was also observed at ν = 8, although the minimum value

of the energy gap was even smaller than for the ν = 6 case. In the remainder

of this thesis, the technique described above for determining the turning point

of the energy gaps will be referred to as the ‘visibility’ method.

4.5 Behaviour at ν = 4

Filling factor ν = 4 is more convenient to study over the available temperature

range. Because it occurs at higher perpendicular magnetic field, the energy

gaps are suitable for measurement using the activation method. The visibility

of the ν = 4 oscillation exhibited a minimum turning point at (9.10± 0.06) T,

which corresponds to a tilt angle of θ = (78.0± 0.1)◦. Activation data, which

were obtained over 5.5 squares in this case, were converted from ρxx to σxx

using relation 4.3. A sample of the data is plotted as lnσxx versus 1/T in

Fig. 4.7(a) for a variety of angles up to the turning point.

The data have been linearly fitted over the range −18.3 < σxx < −15.3;

the lower limit is set by the lowest measurable resistance (which is taken to

be 2.5 Ω) whilst the higher one corresponds to the resistance at which some

of the activation plots start to show curvature.

It is clear that the energy gaps, ∆4, decrease as the tilt angle increases.

The most steep plot corresponds to a total energy gap of (9.0 ± 0.1) K; the

plot with the lowest gradient gives ∆4 = (3.7± 0.1) K. These errors represent

the random error associated with the extraction of the energy gaps from the

activation plots; the absolute values of ∆ν are also subject to systematic errors,

which are discussed later. The intersection of all of the straight lines with the

y axis occurs at approximately the same value: lnσ0 = (−9.0±0.1). This fact

is also commented on in the forthcoming errors discussion.

Data obtained at magnetic fields higher than 9.10 T are plotted in Fig. 4.7(b),

60



Chapter: 4 Tilted magnetic field: experiment

Figure 4.7: (a) Plots of lnσxx versus 1/T at ν = 4 in a sample of T240, for a variety

of tilt angles. The most steep line corresponds to perpendicular orientation of the

sample. As the θ increases, the gradients (and energy gaps) decrease. The lowest-

gradient line occurs at 9.10 T, (78.0◦) and is a turning point. (b) As θ increases

further, the energy gaps rise.

with increasing gradients as the tilt angle increases. An important difference

is that the y-intercept is systematically lower than before the turning point: it

is found to be lnσ0 = (−9.5± 0.1). The importance of the actual value of the

intercept has been the subject of some discussion, especially in the fractional

quantum Hall effect regime in both electron and hole systems [114, 100, 107].

A sample from wafer T335n+, which has a lower carrier density of (1.3 ±
0.02)×1015 m−2, was also studied; the data for ν = 4 are presented in Fig. 4.8.

The turning point was located at (11.4±0.1) T, θ = (83.1±0.2)◦ , as determined

using the ‘visibility’ technique. The energy gap there was too small to be

measured using the activation technique.

4.5.1 Energy Gaps

The energy gaps determined from the activation data are plotted in Fig. 4.9,

for samples T240 and T335n+. Included in the T335n+ data is a dotted line

at 11.4 T which indicates the turning point of the graph, as determined from
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Figure 4.8: Activation plots for sample T335n+. The gradients of the best-fit lines

decreases as the tilt angle increases.

visibility data obtained at base temperature. At ν = 4, both samples exhibit

turning points at non-zero energy gaps and the dependence up to the turning

point is close to linear. In fact, the curvature appears to be slightly negative

in both cases. In the picture of simple, electron-like Landau levels presented

in Fig. 4.1, no curvature is expected because the levels have been assumed not

to interact as they approach. The possibility that the Landau levels anticross,

which might be expected from a model incorporating the full complexities of

the valence band, should introduce some positive curvature in the vicinity of

the turning point. However, this is not observed and the turning point remains

sharp. The possibility that this is a systematic error is discussed below; other

possibilities are discussed in detail in Chapter 5.

Examination of Fig. 4.2 indicates that the temperature error is a function

of both T and B. In the course of the experiment, the data were taken at

different magnetic fields and over different temperature ranges. The possibility

that systematic error has masked curvature in the diagram must therefore be

addressed.

The most important point to be made is that the activation plots were close
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Figure 4.9: Energy gaps measured at ν = 4 for sample: (a) T240; (b) T335n+.

The dotted line indicates the turning point of the T335n+ data. Random error bars

determined from the fits are included; the size of the error bars reflects the number

of points fitted. It should be noted, however, that the primary source of error is

systematic.

to linear. The fact that the straight-line fits shared a common intercept (see

Section 4.5) indicates that each data set was fitted over its simply-activated

range (and not in the high T regime in which the activation plots flatten off).

The ranges of temperature over which the activation plots were fitted are

indicated by the double-headed arrows in Fig. 4.2. An estimate of the variation

in error may be obtained by choosing the error at the centres of the arrows.

This gives a suggested temperature error that varies between -1% and -5% at

the turning point. The sign of the error means that the measured temperature

was too high. This leads to a small (≈ 0.2 K) over estimation of the energy
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gaps in the vicinity of the turning point plotted in Fig. 4.9. Therefore the

slight negative curvature cannot be explained by thermometry errors.

It remains to discuss the possible effects of disorder. The experimental

data presented in Figs. 4.7 and 4.8 do not exhibit the strong saturation at

low temperature that is a signature of significant disorder (see Fig. 4.4). This

suggests that the full-width of the energy broadening of transport density of

states is less than 1 K (see Fig. 4.4). It proved to be impossible in numerical

simulations to reproduce, with this disorder width, the negative curvature

observed in the experimental data.

4.5.2 Dependence on orientation

Investigation showed that the relative orientations of the current direction, the

in-plane component of B and the [011] and [233] axes of the crystal made no

significant difference to the results. It was found, in samples of both T240 and

T335n+, that the non-zero minimum energy gaps, the magnetic fields at which

the minima occurred, and the gradients of the gaps as a function of B, did

not depend on either the orientation of the current with respect to the axis of

tilt or the crystal axes. This demonstrates the generality of the observations;

the detailed experiments on T335n+ and T240 which are presented here were

restricted to B|| parallel to I. However, in T335n+ I was aligned in the [233]

direction whereas in T240 it was aligned to [011].

4.6 Energy gaps at odd filling factors

The variation in energy gap at odd filling factors was also studied, using the

same techniques. As expected, the variation of the resistance of the ν = 7, 5, 3

oscillation minima showed that ∆5 and ∆3 increased at low tilt angles. The

data for ∆5 exhibited a turning point, but the ν = 3 data did not.

The energy gap data presented in Fig. 4.10 were obtained using activation

techniques for sample T240. It was not possible to measure ∆5 for sample

T335n+ using the activation technique because the energy gaps were not suf-

ficiently large. The ∆5 versus B relationship exhibits a turning point at 5.75 T.

In contrast to the behaviour at ν = 4, there appears to be curvature in the

vicinity of the turning point. Again, this observation is independent of the es-

timated systematic errors in the measurement. At ν = 3, there is again clear

curvature; however, in the available field range it is not possible to identify

a turning point. Away from the 5.75 T, the ∆5 data are consistent with the

straight lines imposed on the data points. The gradients of these lines have

been chosen to be the same as the gradients fitted to the ν = 4 data.
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Figure 4.10: Energy gaps measured at (a) ν = 5 and (b) ν = 3 for sample T240.

4.7 Summary

This chapter has presented the results of tilted-field experiments performed

on two-dimensional hole systems confined to 200 Å symmetric quantum wells.

The measurements have been performed using the activation-energy technique

to determine the energy gaps at fixed even and odd filling factors. The as-

sumptions of the techniques and the consequences of relaxing them have been

examined in some detail. Systematic errors due to thermometry in a magnetic

field have also been discussed.

At low angles it has been found that ∆i increases for odd i, and decreases

for even i. Eventually, the even and odd gaps exhibit turning points at suffi-

ciently high tilt angles. This is expected in a simple non-interacting picture,

outlined previously, in which Landau levels cross when the cyclotron energy

equals the Zeeman energy. However, two observations indicate that the physics

requires a more complicated description: (i) the turning points at even filling
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factors occur at non-zero energy gaps; (ii) ∆4 is a linear function of B up to

its minimum value. Also, the variation of ∆5 is not well described by the sim-

ple electron-like description of the Landau levels, depicted in Fig. 4.1. These

observations are addressed in Chapter 5, which contains a discussion of the

data incorporating both the complexities of the valence band and also the role

of interactions between the holes.
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Chapter 5

Tilted magnetic field studies:

discussion

5.1 Introduction

Tilted-field measurements presented in Chapter 4 showed that at ν = 4, the

energy gap to single-particle excitations decreased, and then increased with

its turning point at non-zero gap. Explanations of this and other observations

are considered here, in the context of Landau level coupling due to the low

symmetry of the system, exchange interactions in the 2DHS and the possibility

that the exchange interactions cause a phase transition between an unpolarized

and a polarized ground state at even filling factors.

5.2 Properties of hole Landau levels

5.2.1 g factors of electron systems

The g factor of the electron, ge, which describes the energy of interaction of its

spin magnetic moment with a magnetic field, is renormalized by interactions

with the crystal structure. It turns out that it remains isotropic in 3D GaAs,

with ge = (−0.44 ± 0.005) [4]. In a heterostructure, the electron g factor is

altered again because the bulk g factor of the electron in AlGaAs has the

opposite sign to that of GaAs, and the net g factor is determined in part by

the penetration of the electron wavefunction into the barriers. In wide wells,

this is small and a typical value is ge = −0.40 for a 200 Å quantum well. For

narrow wells, the electron spends a large proportion of its time in the barrier;

therefore ge is positive. The cross-over from negative to positive electronic g

factor occurs at symmetric well widths of approximately 50 Å[115] (for barriers

of Al1−xGaxAs with x = 0.36).
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5.2.2 g factors of the 2DHS

The Zeeman-like coupling of a magnetic field to the magnetic moment of the

hole (which contains orbital contributions) in 3D GaAs is usually written as
∑

α=x,y,z 2µB(κBαJα + qLBαJ
3
α) [46]. The Luttinger parameter κ for GaAs

is 1.2 ± 0.05 [4]. The confinement of the holes to two dimensions splits the

LH-HH degeneracy at k|| = 0, and the lowest energy 2D subband is HH1. At

k|| = 0, the light and heavy holes are completely decoupled for (100) and (111)

planes, and close to decoupled for lower symmetry planes such as (311) (see

Section 2.3).

The effect of a non-quantizing magnetic field on the two-fold degenerate

HH1 states at k|| = 0 may be investigated using degenerate first-order pertur-

bation theory. Labelling the two degenerate states as |a〉 and |b〉, the energy

corrections to the states by a perturbation H ′ = BiJi (where i represents

x, y, z) are given by the solutions of:

∣

∣

∣

∣

H ′
aa − ǫ H ′

ab

H ′
ba H ′

bb − ǫ

∣

∣

∣

∣

= 0, (5.1)

where H ′
ab = Bi〈a|Ji|b〉, etc. [20]. The kets |a〉 = |3/2,+3/2〉 and |b〉 =

|3/2,−3/2〉 have been labelled according to their angular momentum compo-

nents in the z direction. It is noted here that the angular momentum operators

do not truly commute with the real Hamiltonian (see Chapter 2).

If i = z the off-diagonal elements of equation 5.1 vanish but the diagonal

ones do not. Two distinct energy corrections are found and ‘spin splitting’ is

predicted. On the other hand, if i = x or y then all of the elements vanish

and to first order the two-fold degeneracy is not lifted.

Thus, the HH g factor is zero for fields applied parallel to the plane of con-

finement, but non-zero for fields applied perpendicular to it. This anisotropy

is a direct consequence of the energy separation of the light and heavy holes;

these mix as k|| increases from zero and the 2D parallel HH g factor, g||,

increases.

As for the electron g factor, the perpendicular HH g factor, g⊥, varies

strongly with quantum-well width. It has been measured indirectly from ex-

citonic g factors to be positive for large well widths, with a value of approx-

imately g⊥ = 1.0 ± 0.1 for a well of width 200 Å. It decreases as the width

decreases, and passes through zero at 80 Å [115]. g|| has been measured to

be very close to zero using optically detected magneto-resonance in type II

GaAs/AlAs superlattices [61]. The measurements of g factors in this thesis

determine only their magnitude and not their sign.
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5.2.3 Tilted fields and hole g factors

Martin et al. [106] showed that the spin splitting of the Landau levels of very

strongly confined 2DHSs is caused by B⊥ only (not the total magnetic field as

in an electron system), thus explaining the earlier tilted-field observations of

Iye et al. [105]. The authors of reference [106] provided explicit expressions

for the Zeeman energies of pure HH and pure LH Landau levels in arbitrarily

oriented magnetic fields:

EZ = 6κµBB⊥ HH

EZ = 2κµB

√

B2
⊥ + 4B2

|| LH.
(5.2)

These expressions can also be obtained from equation 5.1; the HH result means

that g|| = 0. The decoupling of the LH and HH Landau levels occurs when

the separation of the 2D subbands is very large, and is therefore relevant to

very narrow wells and also material systems subject to strong uniaxial strain

such as SiGe. Indeed, measurements in Si/SiGe heterostructures have been

reported to show little or no variation of quantum Hall effect energy gaps with

B for B⊥ fixed, because the parallel HH g factor in those systems is very

small [116, 90, 97]. Martin et al. also provide diamagnetic corrections to the

energies of the Landau levels, some of which affect the | + 3/2〉 and | − 3/2〉
states differently.

The case of intermediate mixing between the HH and LH states, which

might be expected in typical GaAs/AlGaAs samples, has not been studied

extensively. Calculations of the band structure of the 2DHS in a tilted mag-

netic field have been published by Heuring et al. [117, 109], in work that

also presented some crude experimental results. A tilted-field measurement of

the anisotropy of the HH g factor was published by Dorozhkin [118], for the

Si-MOSFET system. The theoretical analysis was similar to that given above

for the zero-field case.

5.2.4 Justification for the tilted-field analysis

In the absence of an intuitive or complete theory of hole Landau levels in a

tilted magnetic field, the data are interpreted in this thesis using the approach

described in this section. Figure 5.1(a) shows schematically the E versus B⊥

relation for the valence band. The Landau levels exhibit some non-linearity

due to mixing effects. The levels have been labelled in accordance with the

discussion in Section 2.4 of Chapter 2, and are marked with + or − to show

the dominant spinor component of the envelope function. As can be seen, at

low magnetic fields the Landau levels form an alternating ladder of + and −
states.
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Figure 5.1: (a) The hole Landau level dispersion in a perpendicular magnetic field.

The integers (m) are described in Section 2.4. (b) Tilting the sample, keeping B⊥

constant. The labels N denote the harmonic oscillator labels of the Landau levels.

The tilted field experiment begins at zero angle of tilt. As B⊥ is increased

from zero to that of the required filling factor, the valence-band Landau-level

structure evolves as depicted in Figs. 2.3 and 5.1(a). It is not well described by

any single effective mass or perpendicular g factor. The angular momentum

component of each Landau level is a certain mixture of the |J,MJ 〉 states, and

in principle depends strongly on B⊥; it is therefore different for each filling

factor.

The experiment proceeds by tilting the field, for fixed B⊥, thereby in-

troducing a parallel component B||. To a first approximation, the effect of

increasing B can be estimated using the perturbative approach outlined in

Section 5.2.2. The Landau levels undergo changes in energy according to their

zeroth-order spin mixtures, which are determined by B⊥. If the particular

Landau level has no LH components, then it is unaffected by B||; this ‘de-

coupled’ limit is approached in a SiGe 2DHS. If the level has a small LH

component then its energy varies according to a strongly anisotropic 2D g

factor; the other limit is that of strong mixing, in which case g|| ≈ g⊥ and the

g factor is roughly isotropic.

As B|| increases further, the particular admixture of LH and HH states

forming the Landau levels should change. This should alter the g factors of

the levels. It is argued in the next section that such mixing does not appear

to occur, or that it does not affect the g factors of the Landau levels.
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5.2.5 Anisotropy of the g factor

Figure 5.2 reproduces Fig. 4.9, and shows the ∆4 data obtained from samples

T240 and T335n+, over a range of tilt angles. The horizontal axis is the total

magnetic field B. The variation of ∆4 appears to be a linear function of B,

which implies that the 2D HH g factor is isotropic (i.e. electron-like) with

g|| = g⊥ = g. Values for g of 0.95± 0.05 appear to fit both T240 and T335n+

rather well (straight lines in Fig. 5.2), although beyond 7 T, both sets of data

systematically fall below the line. The linearity of the ∆4 dependences implies

Figure 5.2: Reproduction of data obtained from T240 (empty squares) and T335n+

(solid triangles) for ν = 4, including energy gaps (in K) to be used in later sections.

that the angular momentum admixtures of the Landau levels in the vicinity

of the chemical potential are not changed significantly by the introduction of

a strong B|| component.

Given then that the properties of the Landau levels are mainly determined

by B⊥, it is valid to investigate the anisotropy of their g factors. An expression

for the total Zeeman energy EZ of a 2DHS with mixed LH and HH character
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is not available; a pragmatic approach is to use the expression

EZ = µB

√

g2
⊥B

2
⊥ + g2

||B
2
||, (5.3)

which has been applied in the analysis of tilted field measurements of a 2DHS

before [119]. Comparison with equations 5.2 (which do not apply in the case

of mixed hole character) shows that it is certain to be a simplification.

The data presented in Fig. 5.2 may be fitted to the form C − EZ where

C is equivalent to a cyclotron splitting. It is found that fitting with three

free parameters produces relatively good fits for a range of fitting parameters.

The results for the g factors at ν = 4 for the two samples investigated are

summarized in table 5.2.5. Linear and anisotropic fits were performed for

data points in the ranges B < 9.1 T and B < 8.1 T. The table shows that

Fit C / K g|| g⊥
T240 Linear (B < 9.1 T) 10.3 ± 0.2 1.0± 0.05 1.0± 0.05

T240 Linear (B < 8.1 T) 10.1 ± 0.2 0.95 ± 0.05 0.95 ± 0.05

T240 Anis. (B < 9.1 T) 11.8 ± 2.0 1.1± 0.10 1.51± 0.6

T240 Anis. (B < 8.1 T) 9.8± 0.4 0.9± 0.07 0.63 ± 0.25

T335n+ Linear (B < 9.1 T) 9.6± 0.2 0.98 ± 0.05 0.98 ± 0.05

T335n+ Linear (B < 8.1 T) 9.4± 0.2 0.88 ± 0.05 0.88 ± 0.05

T335n+ Anis. (B < 9.1 T) 10.6 ± 0.6 1.1± 0.08 2.3± 0.75

T335n+ Anis. (B < 8.1 T) 9.6± 1.0 0.94 ± 0.07 1.21± 0.5

Table 5.1: Anisotropic g factors measured at ν = 4 for samples T240 and T335n+.

when all the data points up to the turning point are included in the anisotropic

fits, g⊥ > g||. The particular values for g⊥ are subject to a relatively large

error because of the insensitivity of the fitting function in the regime B|| > B⊥.

Also, the values for g⊥ exceed those quoted in the literature [115]; this could be

because our experiment probes different Landau levels to optical experiments.

However, the fits to the data points at fields less than 8.1 T reduce the apparent

anisotropy.

Because of the large values for g||, the possible g factor anisotropy is small

and cannot be determined clearly by this experiment. For the remainder

of this chapter, the 2D HH g factor will be assumed to be isotropic with

g = 0.95± 0.05, except during error considerations.

Fig. 5.4 reproduces data for ∆5 versus B first presented in Fig. 4.10. It

is difficult to define a slope for ∆5, because of the apparent curvature of the

data. However, lines of slope ±0.95µB imposed on the data in Fig. 5.4 are also

consistent with it, and strengthen our assumption of an isotropic g factor.
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5.3 Anticrossing of Landau levels

In a purely perpendicular magnetic field, anticrossing is predicted to occur

between hole Landau levels with index m differing by both 4 and 3, when the

axial approximation is dropped (see Section 2.4). The introduction of an in-

plane magnetic field removes the axial symmetry altogether; extra couplings

are to be expected even when the crystal Hamiltonian is approximated to be

axially symmetric. In this section, the possibility that such anticrossings can

explain the data is examined.

Arguments are presented which show that some, but not all, of the features

of the ∆4 and ∆5 may be explained using anticrossing ideas. The observations

of non-vanishing quantum Hall effect states as a function of tilt angle, at ν = 6

(Fig. 4.6) and ν = 8, are probably such anticrossing effects.

5.3.1 Previous work

There exists in the literature a number of papers describing optical measure-

ments of the valence band in a strong perpendicular magnetic field. Hirakawa

et al. [120], who present cyclotron resonance data, argue that anomalies in the

line splitting indicate the crossing or anticrossing of Landau levels originating

from the zero-field HH1 and LH1 subbands (see also reference [121]).

This interpretation is strengthened by a subsequent paper [122], which

presents a rather complete experimental study of the cyclotron resonance in

the single-interface (i.e. very asymmetric) (311)-oriented 2DHS. It provides

clear evidence of the anticrossing between Landau levels originating from dif-

ferent 2D subbands (in the axial approximation, this crossing is allowed). The

size of the minimum energy gap is found to vary linearly with carrier density.

The cyclotron resonance measurements of Cole et al. [62] indicate more

directly the crossing between the two lowest HH Landau levels (indices 1 and

−2) as a function of B⊥. They argue that for (311) samples, this becomes

an anticrossing when the axial approximation is relaxed. However, they were

unable to distinguish clearly the extent of mixing because the sample temper-

ature was rather high compared with the energy gap.

These optical measurements were performed for B⊥ > 6 T, mostly cor-

responding to ν < 1. In contrast, the measurements described in this thesis

were performed for B⊥ < 2 T, and the observation of possible anticrossings

was achieved by tilting the sample.

To the author’s knowledge, there have been no measurements of the anti-

crossing of hole Landau levels in a tilted magnetic field in any two dimensional

system. The only published calculations of the Landau level structure of the

2DHS in a tilted magnetic field are by Heuring et al. [117, 109]. They concern
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an asymmetric single-interface heterostructure of rather high carrier density,

and are compared with our experimental data in more detail in a later section.

5.3.2 Model

The expected behaviour of the energy gaps at even and odd filling factors is

plotted in Fig. 5.3. The diagram has been constructed using the experimental

fact that the turning point of the ∆4 data, which occurs at BTP = (9.10 ±
0.06) T in sample T240, has an energy ∆TP = (3.7 ± 0.1) K. Thus, the

intersection of the m = 3 and m = −1 Landau levels of Fig. 5.1 has been

replaced by an ‘anticrossing’ in Fig. 5.3.

In contrast to the electron case (Fig. 4.1), in which ∆odd rises to a max-

imal point and then starts to fall immediately, the ∆odd dependence is seen

(Fig. 5.3(a)) to level off. This occurs at odd filling factors because of the ir-

regular spacing of the Landau levels, which makes levels below the chemical

potential cross at a different B to the levels above the chemical potential. In

the regime between these two crossings, the energy gap remains constant at a

value that might be interpreted as a cyclotron gap.

The model fits approximately the data obtained at ν = 5, plotted in

Fig. 5.4, for sample T240. Thus the flattened portion of the ∆5 dispersion

may be interpreted not as an anticrossing of the approaching Landau levels

but instead as a saturation of the gap because of the irregular spacing of the

hole Landau levels. On the other hand, the curve traced by the ∆5 does ex-

hibit curvature at all magnetic fields; this is not accounted for by Fig. 5.3(a).

5.3.3 Quantitative Tests

For convenience, the notation used in this section is clarified here. The en-

ergy gap measured at the chemical potential, by an activation measurement,

is defined to be ∆ν where ν is an integer denoting the filling factor of the

system. It is convenient to define ∆i,j to be the energy gap between the hole

Landau levels with indices m = i and m = j. This energy gap can exist (in

a non-interacting picture) for Landau levels below the chemical potential. In

this section, it is assumed that the minimum energy gap of the ∆4 versus B

dependence, ∆TP , is entirely due to an anticrossing of the Landau levels.

At B|| = 0, the energy gaps at integer filling factor have been measured

using activation techniques to be ∆4 = (9.0 ± 0.1) K, ∆5 = (5.1 ± 0.1) K

and ∆6 = (4.2 ± 0.1) K for T240. For T335n+, ∆4 = (8.5 ± 0.1) K, ∆5 >

(2.2± 0.1) K and ∆6 = (4.4 ± 0.1) K.

These figures are not consistent with a single effective mass or value of
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Figure 5.3: (a) Non-interacting Landau levels of a hole system, with energy gap at

ν = 5 inset. The chemical potential is shown as the thick line. The Landau levels

with index m = 3 and m = −1 have been assumed to anticross. The indices are

explained in section 2.4. (b) Same as (a) except at ν = 4.

g⊥. For example, the ∆4 and ∆6 of each wafer differ by factor of two despite

the fact that B⊥ increases by only a factor of 1.5 between the two filling

factors. Furthermore, the values of these energy gaps are very similar in the

two samples, despite the differing carrier densities. These observations are

not surprising given the complexity of the hole Landau level structure as a

function of B⊥ (see Fig. 2.3 for B⊥ < 2 T).

We turn now to the tilted field behaviour. The magnetic field B2 in Fig. 5.3,

which is obtained from the ∆5 data (Fig. 5.4), corresponds to the anticrossing

of the occupied m = 3 and m = −1 Landau levels. These are the Landau

levels which are probed directly at ν = 4. B2 has the value (8.2 ± 0.2) T.

The energy gap between the m = 3 and m = −1 levels, ∆−1,3, changes by an

amount ∆̃ as the magnetic field varies from B = B2 to B = B⊥. ∆̃ may be

calculated to be a Zeeman energy gµB(B2 −B⊥) = (4.3 ± 0.2) K.

It has been assumed that the ∆−1,3 versus B dependence is very similar

to that of ∆4 versus B, despite the fact that the former anticrossing occurs

below the chemical potential but the latter occurs at the chemical potential.

This assumption does not hold if inter-particle interactions are considered to
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Figure 5.4: Data reproduced from Fig. 4.10, including various fitting lines discussed

in the text. The extrapolation to ∆ = 0 is shown in the inset, and is rather dependent

on the last two points.

be important, and is discussed in Section 5.4.

The actual value of ∆−1,3 at B|| = 0 may then be calculated to be the

sum of ∆̃ and the size of the anticrossing gap. Using the value of ∆TP =

(3.7 ± 0.1) K, a total energy gap of ∆−1,3 = (8 ± 0.3) K at B|| = 0 for ν = 5

is obtained. This number is probably an overestimate, because ∆TP is likely

to be an increasing function of B⊥.

From the ∆4 data of Fig. 5.2, it is known that ∆−1,3 is (9.0 ± 0.1) K

at ν = 4, with B|| = 0, for an increase in B⊥ of 25%. Furthermore, the

anticrossing field increases from B2 = (8.2± 0.2) T to BTP = (9.10± 0.06) T.

All of these numbers seem plausible, and the anticrossing theory (which is

non-interacting) appears to account for the variation of the energy gaps and

magnetic fields as B⊥ increases from ν = 5 to ν = 4.
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5.3.4 Comparison with Heuring et al. at ν = 4

Figure 5.5(a) shows the energy difference between the Landau levels corre-

sponding to ν = 4, from a non-interacting calculation described in references

[109] and [117], versus total magnetic field. The sample modelled in these

calculations was a (100)-oriented single-interface 2DHS in the GaAs/AlGaAs

material system, with a carrier concentration of approximately 2.4×1015 m−2.

B⊥ was held constant at 5.2 T, which corresponded to ν = 2.

The anticrossing observed is characterized by positive curvature in the

vicinity of the turning point, and also by the different g factor after the lev-

els have anticrossed. The energy gap at the turning point is approximately

2.8 K, which is similar to the experimental gap observed in samples T240

and T335n+ (Fig. 5.2). The sample considered in the calculation and those

measured in this work differ significantly. The calculation’s sample had higher

carrier concentration, stronger confinement-potential asymmetry, and higher

growth-plane symmetry. Nevertheless, the calculation shows that the order of

magnitude of ∆TP may be explained in the anticrossing picture. Furthermore,

the differing gradients on either side of the turning point are also mirrored in

the experimental data. The calculation does seem to capture some features of

the data.

Figure 5.5: (a) The energy difference between the Landau levels on either side of

the chemical potential at ν = 4, extracted from the calculation of Heuring et al.

The magnetic field of the turning point is marked by the vertical line. (b) Processed

‘visibility’ data showing the sharpness of the turning point in the T240 data: see text.
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There are some important differences between the data and the calculation.

Figure 5.2 shows that the experimental data exhibit slight negative curvature

near to the turning point whereas the calculation shows rather clear positive

curvature in that region.

Further evidence indicating the apparent sharpness of the turning point

of the experimental data is presented in Fig. 5.5(b). Because ∆4 for T240

was sufficiently large for all tilt angles, the resistance of the ν = 4 oscillation

minimum at base temperature remained rather low. This resistance should

therefore have varied in an activated manner according to equation 4.2, which

may be rearranged to give ∆ = C−2kBT ln ρxx. Figure 5.5(b) plots the quan-

tity 2kBT ln ρxx versus B in the vicinity of BTP , for the T240 ν = 4 oscillation

minimum at (constant) base temperature. The data are of much higher reso-

lution than those presented in Fig. 5.2; they show that the energy gap exhibits

an abrupt turning point even in the highest resolution data obtained. This

should be compared with the anticrossing of Fig. 5.5(a), which exhibits a very

smoothly varying energy gap when examined at this resolution.

Another difference between the calculation of Heuring et al. and the data

is apparent. The extrapolation of the low-field linear portion of the calculation

to higher B (shown by the sloping line in Fig. 5.5) crosses the ∆ = 0 axis near

to the turning point. In contrast, Fig. 5.2 shows that the extrapolations of

the experimental points cross the axis at fields of approximately 16 T, which

are significantly higher than the turning points of the data. This observation

is independent of possible systematic errors which cause the underestimation

of small energy gaps.

The differences between the extrapolations of the experimental data and

the calculation of Heuring et al. may originate from the differences in the two

sample specifications. However, the linearity of the ∆4 versus B lines right up

to their turning points (with some possible negative curvature) suggests that

processes other than just mixing and anticrossing may be involved.

5.4 Spin-polarization instability?

5.4.1 Introduction

The magnetization of the 2DHS is determined by summing the individual

angular momenta of the holes. It therefore depends on the ‘spin’ nature of

the occupied Landau levels. The experimental data for ν = 4 suggest that at

B = (9.10±0.06) T in T240, and B = (11.4±0.1) T in T335n+, the uppermost

Landau level is depopulated and replaced by one of different spin character.

Thus, the magnetization of the 2DHS changes; if the spin assignments of the

levels in Fig. 5.1 accurately describe the samples, then the system goes from
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a paramagnetic phase (small magnetization) to a ferromagnetic phase (large

magnetization) at the turning points.

This change of phase may occur continuously, by the mixing of the ap-

proaching Landau levels. This ‘anticrossing’ possibility has been discussed

in Section 5.3; despite some successes it fails to account for the sharpness of

the turning points observed in the experiment. Alternatively, the change of

phase may occur abruptly. Such a first-order phase transition occurs because

the interaction energy of the ferromagnetic phase is lower than that of the

paramagnetic phase, and was discussed in detail for the case of electron-like

fermions in Chapter 3. For convenience, some of the important points are

repeated below.

Figures 4.1(a) and (b) (in Section 4.2.1) show the dependence of non-

interacting electron-like Landau levels on the total magnetic field B for a

system at constant even and odd filling factors respectively. At odd filling

factors, the two Landau levels that approach each other are empty whereas at

even filling factors one is unoccupied but the other is full. In the latter case,

the system has the opportunity to lower its energy of interaction by promot-

ing all of the particles in the highest occupied Landau level into the nearest

unoccupied Landau level of opposite spin. This process dramatically lowers

the Coulomb interaction energy of the system, by the exchange mechanism,

because it increases the total number of particles of the same spin. The non-

interacting energy cost of this transfer may be tuned using the Zeeman energy

until it is outweighed by the reduction in the total interaction energy. The sys-

tem then undergoes a first-order paramagnetic-ferromagnetic phase transition

before the energy gap to single-particle excitations reaches zero.

5.4.2 Previous work

Although the theory of this phase transition is fairly well developed (see [80]

and references therein), there has to date been no clear observation of the effect

in any material system. One reason for this is that disorder, which has been

shown to inhibit the transition [80], confines the search to small even filling

factors. The low g factor and effective mass of electrons in an GaAs/AlGaAs

heterostructure, which represent the cleanest experimental system currently

available, require very large tilt angles (from perpendicular) and therefore

prohibitively high magnetic fields. The high effective mass and g factor of

holes in GaAs eliminate this problem whilst retaining a low level of disorder.

Electrons in the InGaAs/InP system have a particularly large g factor,

which, in samples of reasonable carrier concentration, allows Landau levels

to cross at accessible magnetic fields. Koch et al. [123] have observed that

the ν = 2 ρxx minimum does not disappear as a function of tilt, in samples
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of sufficiently high mobility. This observation is similar to our observations

at even filling factors in the 2DHS. Koch et al. argue that this indicates

the occurrence of the phase transition. The authors state that they were

unable to measure the energy gaps at the ‘transition’ point. An examination

of their data at 200 mK and 500 mK (Fig. 4 of reference [123]) shows that ρxx

increases by a factor of 2.5, corresponding to an energy gap of approximately

0.6 K. In the opinion of the author of this thesis, the gap is too small to be

attributed (without further evidence) to exchange interactions; it could well

be due to an ordinary anticrossing of the Landau levels of the system. The

latter possibility was not discussed by Koch et al. They go on to show that

usual crossings are observed in samples of lower mobility, and argue that there

is a mobility threshold for the transition at 9.8 m2V−1s−1. Obviously, very

small anticrossing energy gaps would also cease to be observed in low mobility

samples.

A more recent paper, by Coleridge et al.[90] also claims the observation of

the phase transition in the SiGe material system. Measurements are presented

which indicate that, as a function of perpendicular field, the Landau levels

cross between ν = 2 and ν = 3, because of a large value of g⊥. It is argued that

anomalous features in the ρxx versus B⊥ data are associated with the phase

transition. This evidence is rather indirect, and no mechanism explaining the

anomalous features in terms of the transition is given.

For completeness, attention is drawn to the angle dependence of fractional

quantum Hall effect states. In the 2DES, it is found that the energy gap at

ν = 8/5 decreases with increasing B, and then increases again before reaching

zero [124]. It is argued that the turning point corresponds to a change in the

polarization of the system. Measurements in the vicinity of ν = 3/2 indicate

the presence of composite fermions with spin [125], lending support to this

idea. Measurements of the ν = 4/3 state in the 2DHS show that it also has

an energy-gap dependence on the tilt angle [30]; measurements performed in

a perpendicular magnetic field as a function of carrier density show weakening

of the depth of the minimum, followed by its complete disappearance and then

re-emergence [126].

5.4.3 Assumptions of the theory

The Hartree-Fock theory of the exchange interaction, described in Chapter 3,

is calculated in the extreme quantum limit. This means that the condition

~ωC ≫ e2/4πǫlB holds. Because ωC varies as B⊥ and lB as 1/
√
B, this

condition is met only at very high perpendicular magnetic fields.

Owing to the high effective mass, the extreme quantum limit cannot be

reached in these hole systems for ν ≥ 1. In fact, the Coulomb energy of the
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system appears to exceed its kinetic energy by a factor of seven even at ν = 1

for T240, using the effective mass extracted from Fig. 2.2. One consequence

of the large exchange energy is mixing of the Landau levels. This then allows

effective screening at integer filling factor, which might be expected to reduce

the exchange energy. In the literature, mixing has been invoked repeatedly as

a cause of rather small observed exchange energies in electron systems, where

discrepancies of a factor of about two or more are commonplace [99].

The assumption of zero thickness also needs to be relaxed. The non-zero

width of the layer allows particles to avoid one another more effectively; the

effect is to reduce further the exchange energies from their screened values.

In order to estimate the reduction of the exchange interaction energy due to

these effects, we compare the thickness of the wavefunction, which is about

200 Å, to the magnetic length at 1.9 T (ν = 4 for T240), which is 190 Å. The

separation of the particles increases from 190 Å to
√

1902 + 2002 = 280 Å,

which is a factor of 1.5. Thus the Coulomb energy will be reduced by a similar

factor.

The mechanisms described so far have been of equal importance to both

electron and hole systems. However, the differences in exchange interaction in

hole systems extend beyond arguments concerning effective mass and kinetic

energy (as described in Section 3.5).

The lack of an appropriate theoretical framework makes the discussion of

the results rather difficult. A pragmatic approach will be taken henceforth,

in which the hole system will be assumed to be similar to a heavy-electron

system at zero B. At higher B the interactions between holes in Landau levels

of mixed spin character will be assumed to be described by a Hartree-Fock-like

equation (see equations 3.11 to 3.13). The coefficients Aij (see below) will be

‘measured’ from experiment.

5.4.4 Qualitative extension for the 2DHS

The predictions of the first-order phase-transition theory were calculated in

Chapter 3, for electron-like Landau levels, and are repeated below. The reader

is reminded that coefficients Aij represent the exchange energy of interaction

between a particle in Landau level i with all of the particles in Landau level

j of the same spin, where the i and j are harmonic oscillator labels. Hole

Landau levels are conventionally labelled with the index m, which is an integer

defining the set of coupled differential equations from which the Landau level

was calculated. However, in the axial approximation, the particular solution

labelled m may also be labelled according to its harmonic oscillator function.

For the values of B⊥ used in this thesis, the Landau levels have harmonic

oscillator labels N = 0, 0, 1, 1, 2, 2, ... in order of increasing energy, just as in
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the electron case (see Fig. 5.1). Thus the conventions for the Aij are retained.

The important predictions of the theory outlined in Section 3.4, and de-

picted in Fig. 5.6, are that: (i) the transition occurs at some magnetic field

BC which does not necessarily equal the non-interacting crossing point; (ii)

the single-particle excitation gap ∆C is non-zero at this magnetic field.

Figure 5.6: Schematic diagram showing the expected properties of the phase transi-

tion described in Section 3.4. The dashed line shows the non-interacting energy gap;

the dotted line shows a non-interacting anticrossing.

In the simple electron theory for an ideal 2DS, the phase transition occurs

at a lower magnetic field than that defined by gµBB = ~ωC , and with a

single-particle excitation gap ∆C = (A11 +A22)/2.

The energy of excitation at odd filling factor ν = 2N + 1 may be written

as ∆2N+1 = gµBB + ANN (lB), following equation 3.12. In a tilted field ex-

periment at constant filling factor, B⊥ is held constant. Hence the exchange

energy remains constant and ∆2N+1 traces a straight line starting at the min-

imum total magnetic field B = B⊥, with a positive gradient of gµB . For

simple electron-like bands, the value of ANN (which represents the exchange

enhancement of the g factor) can therefore be obtained by extrapolating the

data to B = 0.

From Fig. 5.4, the value of A22 may be determined by extrapolation to

be (4.0 ± 0.1) K, for sample T240. In this simple electron-like analysis, the

exchange energy per particle of the system has been measured at ν = 5. The

apparent consistency of the 2D g factors at ν = 4 and ν = 5 suggests that

the spin compositions of the levels are similar. This means that it is valid to

estimate the A22 exchange energy at ν = 4 by scaling the ν = 5 result by the

magnetic length. The steep gradient and scatter of the ∆3 data (Fig. 4.10(b))

prevent a similar extrapolation for the A11 coefficient.
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The measured quantity ∆TP = (3.7±0.1) K at ν = 4 appears to be roughly

consistent with the value of ∆C calculated from the value of A22 estimated

from the data: (4.0±0.1)×
√

5/4 = (4.4±0.12) K, assuming that A11 ≈ A22. In

the simple electron-like theory, A11 and A22 differ by just 17%, which partially

justifies the approximation (A11 +A22)/2 ≈ A11.

Continuing this analysis it is possible to show, using equation 3.17, that

the exchange-driven phase transition occurs approximately 2 T before the

non-interacting Landau levels would have crossed.

5.4.5 Discussion

It has been argued that the concept of exchange should be incorporated into

the understanding of the energy gaps at both even and odd filling factors. That

the exchange energy then drives a rearrangement of the levels, as a function

of tilt-angle and total magnetic field, seems natural. It is therefore possible

that the lack of positive curvature in the ∆4 versus B dependences of T240

and T335n+ occurs because the levels have not yet approached sufficiently to

mix strongly. The first-order phase transition pre-empts this mixing, so the

turning point is rather sharp.

The value of A22 has been determined by extrapolation. This procedure

implicitly assumes that the g factor is isotropic and independent of both B⊥

and B||. The simplistic analysis of the data for the tilted field regime, B > B⊥,

is partially defensible because of the linear ∆4 versus B relationships in two

samples. However, it is not realistic to assume that the Landau level structure

as a function of B⊥ is well described in terms of simple g factors and effective

masses (see Section 5.3.3). Hence, the value of A22 has entirely neglected the

non-linearities of the hole Landau level splittings as a function of B⊥. The

error caused by this assumption is difficult to estimate, and could result in

either an overestimation or an underestimation of the exchange energy.

Figure 5.3(a) shows that at the turning-point for ∆−1,3, marked by B2,

∆−1,3 is greater than zero. This energy gap was included in that diagram

because, in that discussion, ∆TP was assumed to be due to a non-interacting

anticrossing effect which could also occur below the chemical potential.

In the simplest interactions theory, ∆TP is equal to ∆C , and ∆−1,3 must

equal zero at B2 (assuming there is no anticrossing): there is no interaction-

driven phase transition between two occupied Landau levels.

In Fig. 5.3(a), the magnetic field B2 represents the crossing point of the

m = 3 and m = −1 Landau levels at ν = 5, and occurs at (8.2 ± 0.2) T. The

change in B⊥ between ν = 4 and ν = 5 should increase this non-interacting

crossing field to some new field B′
2. In the phase-transition theory, BTP =

BC < B′
2 (see Fig. 5.6). It was estimated in the previous section that B′

2 −
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BC ≈ 2 T. Thus, the phase-transition theory predicts that B′
2 ≈ 11 T.

To test this prediction, we refer to the measured value of B2 = (8.2±0.2) T.

If a simple phase transition does occur, it is required that the B2 increases

by a factor of 1.35 to 11 T due to an increase in B⊥ by a factor of only

1.25. Although this could not happen in an electron-like system, because of

the linearity of the electron Landau fan diagram, it is possible in the hole

system. This test therefore does not distinguish between the anticrossing and

phase-transition theories.

It is appropriate now to consider the results of Kemerink et al. [91] in

more detail. The latter paper was published independently of, and after, the

publications resulting from this thesis. The samples studied in that work were

(100) asymmetrically-doped GaAs/AlGaAs quantum wells of width 90 Å. The

carrier concentration was 9.55× 1015 m−2, which is very high; the mobility of

their samples was omitted from the paper but may be expected to have been

rather low. They performed k.p calculations beyond the axial approximation,

and found that the ρxx versus B⊥ data could not be fitted for any choice of

disorder broadening.

However, by introducing simplistic exchange effects at odd filling factors

only (which corresponds to selecting Aij = 0 if i 6= j), they were able to re-

produce their experimental data. They determined the value of the exchange

energy to be approximately 4×
√
B KT−1/2. Scaling this value for our carrier

concentration gives an exchange coefficient A22 ≈ 2.4 K, which is in approxi-

mate agreement with our estimate of (3.7 ± 0.1) K.

Kemerink et al. end their paper by stating that the rearrangement of

Landau levels, as a function of B⊥, due to exchange interactions is essential

for a proper description of the 2DHS.

The role of disorder has been neglected so far. It is argued in Chapter 3 that

disorder affects the phase-transition if the disorder tails of the Landau levels

start to overlap. The effect is to rapidly quench the exchange contribution

to the single-particle excitation gap, thereby causing negative curvature in

the vicinity of the turning point. From the estimates of the disorder width

of the Landau levels presented in Section 4.3.3, it is clear that disorder is

unlikely to affect the existence of a transition. It is tempting to attribute the

negative curvature of the data in Fig. 5.2 in the vicinity of BTP to the disorder.

However, the data exhibit only a small deviation from linearity, which could

originate from systematic effects in the activation plots (see Section 4.3.3).

5.4.6 Comparison of T335n+ and T240

Sample T335n+ was chosen for study because of its lower carrier concentration

(1.3 × 1015 m−2 in comparison with 1.8 × 1015 m−2). It was hoped that
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the changes in ∆TP and BTP would make it possible to distinguish between

possible physical mechanisms.

In fact, it was found that the energy gaps at ν = 4 were very similar in

size but that the gaps at ν = 5 were much smaller. This is contrary to what

would be expected for the electron system, where the cyclotron energy (at

fixed filling factor) would be reduced by the ratio of the densities, but is not

surprising given the complex hole Landau level structure.

At fixed filling factor, any linear function of the exchange energy varies as√
n. Hence, the size of the exchange gap ∆C can be expected to be smaller by a

factor of
√

1.8/1.3. Thus, the first-order phase-transition theory predicts that

the ∆C of T335n+ should be approximately (3 ± 0.1) K. By extrapolating

the data in Fig. 5.2 to the turning point the gap may be estimated to be

∆TP ≈ (2.25 ± 0.5) K. The trend is therefore in the right direction but the

measured value is a little too small. The discrepancy might be explained by

the differences between the disorder widths of the Landau levels, which are

greater in the case of T335n+ due to that wafer’s significantly lower mobility.

5.5 Mixing and exchange

The previous sections have presented discussions in opposite limits of the same

problem. A complete explanation of the data is certain to incorporate both an-

ticrossing and interaction elements. This experiment takes the sample between

a paramagnetic and a ferromagnetic phase. Although the exchange interac-

tion is complex in the valence band, it must exist and therefore favour the

ferromagnetic state. Indeed, unscreened Coulomb interactions are the largest

energy scale in this problem.

The exchange contribution to the single-particle excitation gaps of the sys-

tem requires there to be a distinction between the Landau levels involved. In

the regime of strong mixing, the ‘spin’ character of the approaching Landau

levels is blurred. Therefore, it seems plausible that the exchange contribu-

tion, which is at full strength when the Landau levels are well separated, is

quenched as the Landau levels approach. Thus, as the energy gap decreases,

the exchange contribution to it decreases also. This process could offset the

positive curvature which would have indicated anticrossing, thereby sharpen-

ing the ∆ versus B dependence in the vicinity of BTP . Indeed, if the mixing is

sufficiently strong, the first-order phase-transition may not occur [127]. This

effect is depicted schematically in Fig. 5.7.
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Figure 5.7: Schematic diagram showing how mixing could quench the exchange

enhancement of an energy gap, and offset positive curvature due to anticrossing. The

measured energy gap is plotted using a solid line in (a). The dotted line shows the

non-interacting energy gap between the anticrossing Landau levels, the energies of

which are plotted in (b).

5.6 Conclusions

The discussion of the possible explanations of the observations at ν = 4 in

samples T240 and T335n+ has centred on attempting to distinguish between

a ‘perturbative’ mechanism in which the approaching Landau levels anticross,

and a first-order phase transition of the type described in Chapter 3 in which

exchange interactions drive a discontinuous change in the magnetization of the

system.

The non-interacting hole picture can explain some of the features of the

data. The failure of the Landau levels to cross at even filling factors is to be

expected because of the low symmetry of the system. This certainly explains

the observations at filling factors ν = 6 and ν = 8, where the Shubnikov-de

Haas oscillations indicate non-zero energy gaps for all tilt angles. This picture

explains the difference in the shapes of the ∆ versus B curves at ν = 4 and

ν = 5 to be due to the fact that at ν = 5, the Landau levels above and below

the chemical potential cross at different angles. However, the non-interacting

hole model fails to explain the sharpness of the ∆4 turning point.

In contrast, the interactions mechanism accounts for the sharp turning

point at ν = 4 quite naturally in terms of a first-order phase transition which

pre-empts an anticrossing. The concept that the energy gaps at integral filling

factors are enhanced by exchange interactions is a standard part of the un-

derstanding of electron systems. However, there are very few measurements
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demonstrating its importance in hole systems, despite the fact that exchange

is a fundamental property of many-particle fermionic systems. Simple consid-

erations indicate that the Coulomb interaction is the dominant energy scale

of the system.

In the presence of an exchange energy, it is natural that the system will

undergo a rearrangement of its Landau levels at some critical angle of tilt.

This is because the exchange energies of the paramagnetic and ferromagnetic

states are very different. Convincing experimental observations of such a phase

transition have not been reported previously. We have argued that, in our

samples at ν = 4, this process may occur before the Landau levels start

to anticross strongly and therefore appears as a lack of curvature in the ∆4

versus B data. The energy gap at the ‘transition’ point is consistent with

the exchange energy crudely estimated from ν = 5 data, and also with values

published in a very recent paper by another group. This picture can also

account for trends observed between two samples of differing carrier density.

At present, it is impossible to rule out a single-particle explanation of the

data. The final answer will require further experiments and new calculations;

ultimately, the explanation will no doubt incorporate elements of both argu-

ments.
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Chapter 6

One-dimensional hole systems

6.1 Introduction

6.1.1 Previous Work

Schottky gates were first used for the imposition of a potential varying on the

length scale of the Fermi wavelength over ten years ago [33]. The subsequent

discovery of the quantization of conductance in short quasi-1D electron sys-

tems [36, 37] stimulated extensive research into the properties of electrons in

small structures [15]. However, the study of the quantum transport properties

of low-dimensional hole systems has barely begun. Work on the latter subject

in the GaAs/AlGaAs system is mostly restricted to that of Zailer [71, 14],

which reported a number of new experimental observations. The first ob-

servation of conductance quantization in the 1DHS, over five years after its

discovery in the 1DES, demonstrated the quantum ballistic properties of holes.

The structures measured were plagued by intrinsic noise, which prevented any-

thing but the simplest of experimental investigations of their properties. Very

clear Aharanov-Bohm oscillations were observed at high magnetic fields in

anti-dot structures, demonstrating clearly the phase-coherent nature of the

hole transport.

The tunnelling of holes in small Si-based structures [128], and a number

of papers describing the transport properties of hole systems containing very

small self-organized dots [129, 130] offering large confinement energies, have

also been published.

Other experiments, which demonstrate the classical ballistic transport of

holes in small structures, have also been reported. Of these, the most signifi-

cant are the magnetic focussing experiments of Heremans et al. [38, 39, 11].

The reason for the lack of progress in the study of the transport properties

of holes confined to less than two dimensions is twofold. Firstly, the high
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hole effective mass reduces characteristic quantum confinement energies thus

necessitating lower disorder and measurement temperatures. Secondly, the

fabrication technology was significantly less developed.

For completeness, we mention optical measurements of long quantum wires

which reveal strongly anisotropic behaviour when the light is linearly polarized

with the electric field parallel or perpendicular to the wire axis (see for example

reference [131]). Such effects are attributed to a combination of the 1D quanti-

zation of the electronic states and valence band mixing effects [132, 133, 134].

6.1.2 Contents of this chapter

This chapter begins with a description of the properties of ‘ideal’ one-dimensional

systems. It goes on to describe a method for the fabrication of one-dimensional

hole systems. After a description of the basic properties of these devices, DC

source-drain bias measurements are presented which enable the determination

of the energy spacings between the 1D subband edges of a constriction. This

result will be used in later chapters, and represents the first measurement of

the subband spacings of a 1DHS. In addition, data analysis techniques are

introduced which will be used throughout the remainder of this thesis. A dis-

cussion of the differences between the 1DES and 1DHS, in the context of k.p

theory and interactions, is deferred until Chapter 7.

6.2 Ideal split-gate devices

6.2.1 Formation of a constriction

In this section, the electrostatic properties of ideal split-gate devices are briefly

described. The 1DS is created by the application of a voltage, Vg, to litho-

graphically defined split gates, which remove charge capacitively from the 2D

regions in their vicinity. This is depicted schematically in Fig. 6.1(a).

The potential energy, qΦ, of particles in the two-dimensional plane forms a

smooth surface exhibiting a saddle-point in the vicinity of the constriction, as

depicted in Fig. 6.1(b). The lateral confinement, which quantizes the planar

motion of the particle into 1D subbands, is provided in the x direction; and

current flow occurs in the y direction. Where the confinement is weak, the

energy spacing between 1D subbands is very small and many are occupied for a

particular chemical potential. In contrast, at the saddle-point, the confinement

is strong; the energy spacing between the 1D subbands is increased and very

few are occupied. They are marked in the Fig. 6.1(b) by the dotted lines.
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Figure 6.1: (a) A schematic diagram of the split-gate technique for the definition of

short 1D constrictions on 2D layers. Metal (dark) is deposited on the surface of a

chip. By the application of a voltage with respect to ohmic contacts connected to the

2D layer, particles are excluded from regions beneath the metal and a constriction is

formed. (b) Diagram showing the potential energy as a function of position in the

plane, near to the constriction. The dotted lines represent the energies of 1D subbands

formed by the lateral confinement. The dashed line is the chemical potential.

6.2.2 A high-quality electron system

Figure 6.2 is a plot of the conductance G versus Vg for a very high quality elec-

tron split gate. The conductance was measured by the application of a small

oscillating voltage V between the ohmic contacts, and by detecting the result-

ing current using low-frequency lock-in amplifier techniques: see Appendix D.

The curve features three distinct regions. In the first, at low gate voltage,

G is roughly constant. At -0.8V there is a sharp drop in conductance which

is termed ‘definition’ and corresponds to the total depletion of the carriers

from beneath the gate metal. The following gentle decrease in conductance is

described as ‘pinching off’, and occurs as the width and number of electrons

of the constriction are reduced. The conductance is quantized in even integral

multiples of e2/h (see the inset to Fig. 6.2).

6.2.3 Conductance quantization

The conductance quantization may be explained by consideration of the pro-

cesses occurring as the constriction is pinched off. It is therefore necessary to

introduce some more notation. The density of states at the saddle-point is
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Figure 6.2: G versus Vg, at B = 0 and T < 80 mK, for a very high quality elec-

tron split-gate device [courtesy of K. J. Thomas]. The curve shows characteristic

‘definition’ and ‘pinch off’. There are plateaux in the pinch-off region (inset).

depicted in Fig. 6.3. It is characterized by cusps, which occur at the edges of

each 1D subband and arise from the form of the density of states of one 1D

subband, d(E):

d(E) =
1

π

∂k

∂E
=

1

h

√

m∗

2E
(6.1)

which diverges at E = 0. The total density of states, D(E), is a sum over 1D

subbands. The energies of the subband edges have been labelled Ei.

In Section 1.6.1, it was shown that the conductance, G, of the device is

determined by the one-dimensional modes which are transmitted between the

source and drain ohmic contacts:

G =
e2

h

∑

kl

Tkl (6.2)

where Tkl represents the probability that a particle emitted by the source in

the kth mode is transmitted into the lth mode of the drain, at the chemical

potential.

The simplest way to explain the quantization of Fig. 6.2 begins with the

assumption that there is no inter-subband scattering; see also references [135]

and [15]. Then, Tkl = Tklδkl = Tl. In the ideal case, Tl = 1 for El < µ and
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Figure 6.3: The density of states of a quasi-1D system.

Tl = 0 for El > µ. Then, the conductance simply ‘counts’ the number of 1D

subband edges below the chemical potential; it is therefore quantized in some

integer multiple of e2/h. As the device is pinched off, the energy spacings

between the 1D subbands increase as the confinement increases. Thus, the

ladder of 1D subbands moves with respect to the chemical potential. For a

range of Vg, the same number of 1D subbands remain occupied, and despite the

fact that the number of particles in each subband decreases, G is unchanged.

Hence, a plateau is observed in theG versus Vg data. Eventually, a 1D subband

edge passes through the chemical potential, and the conductance very quickly

becomes quantized at a new, lower, multiple of e2/h.

Figure 6.2 exhibits quantization in even integral multiples of e2/h because

of the spin-degeneracy of the electron system.

6.2.4 Limits on observation of quantization

The simplistic analysis presented above was based on a model in which 1D

modes connected perfectly to the two reservoirs between which the current

flowed (see Section 1.6.1). It provides two criteria that a real device must

satisfy in order that its conductance be quantized.

The first is that the sample temperature is sufficiently low that the Fermi-

Dirac distribution does not ‘smear’ the plateaux out. The characteristic width

of the ‘smearing’ of the Fermi-Dirac distribution is approximately 4kBT ; it is

therefore required that the energy gap between 1D subbands at the chemical

potential, ∆1D
i , exceeds 4kBT .

Secondly, it is required that there be no back-scattering of particles in

modes below the chemical potential. The presence of impurities in the vicinity

93



One-dimensional hole systems Chapter: 6

of the constriction can cause back-scattering, which destroys the quantization.

The average distance travelled by a particle before it suffers a back-scattering

event has been defined to be the transport length, ltr (see Section 1.3.2).

Hence, it is required that ltr is much greater than the length of the 1D con-

striction. In this regime, the trajectory of the particle through the constriction

is essentially ballistic; for this reason, conductance quantization in short 1DSs

is often described as ‘ballistic quantization’.

In a real device, the ‘contacts’ to the 1DS are those parts of the 2DHS

more than lφ from the constriction; and the nature of the coupling between the

device and the ‘contacts’ is not necessarily ideal. These points are discussed in

detail in reference [135]. In the case of an abrupt join between the 2D and 1D

regions, quantum-mechanical reflection effects can result in so called ‘length

resonances’ which introduce structure to the plateaux. These turn out to be

more important in long devices. In short abrupt devices, plateaux acquire a

non-zero slope.

The other case concerns an adiabatic widening of the 1D region into the

2D region. In this case, there are no reflection effects because the 2D and

1D regions are ‘impedance matched’, and the plateaux are well quantized

provided that the entrance and exit to the constriction are much wider than

its narrowest point.

6.3 Fabrication of 1DHSs

All of the one-dimensional hole devices to be described in this thesis were

fabricated by the surface processing of 2DHSs, grown using MBE by Dr M.

Y. Simmons on the (311)A facets of semi-insulating GaAs wafers. The surface

processing was carried out using standard optical and electron lithographic

techniques which are included for completeness in Appendix C.

6.3.1 Gating problems in hole systems

Figure 1.3(a), in Chapter 1, depicts schematically the spatial band structure

of the shallow wafers used in the preliminary gating studies performed as

part of this work. Important features include the shallow depth of the 2DHS

(≈ 800 Å), which is confined to an asymmetric single-interface heterostructure,

and the high silicon doping concentration of 1.2 × 1018 m−3.

Figure 6.4(a) shows that one such wafer (T136) could be pinched off by

increasing the voltage on optically-defined side gates, despite the 40 µm sepa-

ration of the gate fingers. This effect, which has been termed ‘lateral depletion’

has been observed before [71]. The conductance of a similar electron system

would show little or no variation over this gate-voltage range. Figure 6.4(b)
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Figure 6.4: (a) The conductance of nine squares of 2DHS (T136) could be reduced

to zero by the application of quite modest side-gate voltages. This effect is termed

‘lateral depletion’ and is a particular problem in small-structure fabrication. Similar

behaviour is not observed in typical 2DESs. (b) The time response of G following a

step increase in the voltage on a full gate, indicating charging effects.

shows the transient reponse of the system to a step increase of the voltage on

2D front gates. Such front gates differ from split gates because they entirely

cover many squares of the 2DHS, and are therefore essentially macroscopic.

The conductance is seen to drop sharply for positive steps in the gate voltage

and then to decay approximately exponentially to a less pinched-off value. If

the front-gates of such a system are swept, G is found to vary hysteretically.

The problems of hysteresis and lateral depletion were observed in mea-

surements of all of the ‘shallow’ wafers (T116, T136, T119, T97, A676) used

for these studies. They are examples of the effects of the transfer of charge

from the 2DHS, or front gate, to states either at the interfaces or in the semi-

conductor itself. The lateral depletion is particularly undesirable, because the

large connecting gate pads would tend to pinch off the constriction before the

fine features were defined, thus prohibiting the formation of a narrow channel.

At important stages in the processing of the chips, such as immediately

before the evaporation of metals, it is standard clean-room practice to wash

them in an aqueous HCl solution for ten or more seconds (see Appendix C).

HCl is believed to strip the oxide which forms on the surfaces of the samples,

and thereby to remove ‘dirt’ which may have adhered to the oxide. To inves-

tigate whether a different cleaning process would solve the problems of lateral
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depletion and hysteresis, a comparison was made of the properties of chips of

T136 subjected to cleaning by NH3 or HCl solutions, or simply water. At a

temperature of 4.3 K, no differences were observed between the samples.

The first ever 1DHSs to exhibit ballistic quantization [71, 14] were fabri-

cated on a similar wafer (T97), with a carrier concentration and mobility of

approximately 2 × 1015 m−2 and 50 m2V−1s−1 respectively. The 2DHS was

contacted using annealed InZn ohmic contacts. The 1D channel was defined

using an etching technique, whilst pinch off was achieved using NiCr/Au split

gates. These were evaporated onto the chip following an acid etch, which was

performed after the development of the resist [71]. The etch, which was used

to limit lateral depletion effects, removes much of the flexibility of Schottky

gating, because it leaves regions of the device depleted at Vg = 0. Furthermore,

devices fabricated in this way suffered from serious intrinsic noise problems;

only three 1D plateaux were observed after the averaging of fifty data sets,

and experiments on the properties of the split gates proved to be impossible.

6.3.2 A new method for the fabrication of 1DHSs

Many problems were encountered during the attempts to fabricate a working

1DHS. Over 150 split gates were tested at temperatures of 4 K or below. The

majority of these were patterned on the shallow, high dopant concentration

single-interface wafers. Although designs using combinations of etching and

gating were fabricated, those tested at ‘millikelvin’ temperatures did not ex-

hibit ballistic quantization. The primary reason for this failure is thought to

have been the lateral depletion effect, which prevents the formation of a nar-

row constriction. Secondary reasons may have included relatively small gate

leakages of around 1 nA at pinch off. It is remarked that, in contrast to the

work of Zailer (which used InZn ohmic contacts), AuBe ohmic contacts were

employed in all of the studies presented here.

Success followed the change from these shallow, highly doped wafers, to

T240. This exceptional wafer, whose properties are discussed in Chapter 1,

differs by: (i) having lower dopant concentrations; (ii) a commensurately larger

doped region, and therefore a deeper 2DHS; (iii) close to symmetric confine-

ment; (iv) a very high mobility.

The lateral depletion problem of the shallow wafers was found to be much

reduced in wafer T240. It seems likely that the observation of conductance

quantization in devices made from this wafer is related to this improvement.

It is tempting then to attribute the lateral depletion effect to low tempera-

ture charge mobility in the doped regions of the semiconductor, because such

processes should be inhibited by an increase in the mean inter-dopant spacing.

The particular samples (or chips) measured in the course of this work were
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labelled J1 to J12. On a typical chip, as many as six split-gate structures (or

devices) can be fabricated. The study of split gates on T240 began with a

measurement of the lateral depletion from optical side gates. Then, a series

of split gates were patterned onto chips J5 and J6 (see Fig. 6.5). Those on J6

were of standard geometry, with lengths of 0.4 µm and widths in the range

0.9 → 0.5 µm. They were measured at 300 mK, and were not found to be

ballistic. More importantly, they were also found to be particularly unstable:

if Vg was increased so that G decreased to 350 µS, the whole channel was

found to pinch off in approximately 200 seconds.

Figure 6.5: Gate-pattern designs for a series of split gates on chips of T240. Metal

is shaded.

In contrast, the J5 devices incorporated an extra sub-micron gate oriented

along the channel. The purpose of this ‘mid-line’ was to provide more control

of the constriction potential; in particular it was thought that it might have

limited the instability that had been observed in earlier devices. Devices on

J5 were tested at 4 K and below, and were indeed found to have improved

stability properties. Figure 6.6(a) shows the stability of G for incremented Vg,

obtained at 70 mK. Figure 6.6(b) shows a typical pinch-off curve, in which

two quasi-plateaux are visible at low conductances. However, it proved to be

difficult to show that they were of ballistic origin.

Given the partial success of this technique, it was decided to extend the

mid-line to divide the two sides of the Hall bar completely. The resulting

chips exhibited smoother pinch-off characteristics. An SEM micrograph of
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Figure 6.6: (a) Stability and (b) pinch-off curves for a split-gate device on chip J5.

The mid line was set to -0.37 V, and the temperature of the device was 70 mK. Note

the two ‘plateaux’ at approximately 1.8 V, with conductances of about 100 µS and

50 µS. (The discontinuity at 1.2 V is due to a change of the sweep rate of Vg.)

Figure 6.7: (a) J9 and (b) J10 working split-gates. Metal is lightly shaded. The Hall

bars run from left to right, and were oriented in the [233] crystallographic direction

in each case.

one working design (J9) is presented in Fig. 6.7(a). It was defined between

two offset squares of gate metal, which have been shown to produce large 1D-

subband energy spacings in the 1DES [136]. Another pair of squares were inset

to form a ‘bowtie’-shaped mid-line. Finally, a layer of cross-linked PMMA was

deposited on top of the active area of each device.
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Devices J10 and J11 were patterned more conventionally, as indicated in

Fig. 6.5; an SEM micrograph of a working device from chip J10 is presented

in Fig. 6.7(b).

Although the chips J9 and J10 contained more than one device, it happened

that in both cases one of the devices displayed superior properties to the others

on the chip. Results presented henceforth will come from the best devices in

each case, and which will be referred to as J9 or J10.

The crystallographic orientations of the devices are indicated in Fig. 6.5.

Although the Hall bars were oriented along the [233] direction in both cases,

the current through the 1D region of device J9 flowed at 45◦ to this direction.

Measurements at temperatures below 70 mK are presented in Fig. 6.8,

for devices J9 and J10. All of the 1DHS conductance measurements to be

presented in this thesis were performed in the constant-voltage configuration,

with excitation voltages of less than 10 µV; see Appendix D for more de-

tails. Unless otherwise stated, the data were obtained at temperatures below

100 mK.

The data exhibit numerous plateaux at low conductances, which proved

to be robust to thermal cycling. It was found that the best ‘plateaux’ were

obtained for the most negative possible mid-line voltages. The thresholds for

forward bias of the mid-lines of the devices studied as part of this work varied

between -0.42 V and -0.5 V, and depended on the particular cooldown. The

mid-line voltages were set to -0.4 V in all of the measurements to be described

in the remainder of this thesis.

6.4 Basic properties

6.4.1 Plateau quantization

Representative data in the region of interest, from devices J9 and J10, are

plotted in Fig. 6.9(a). The conductance axis has been divided by e2/h, and

horizontal lines representing quantized conductance values have been provided

as guides to the eye. It is immediately apparent that the plateaux do not take

correctly quantized values. Part of the reason for this is that the data plotted

are the two-terminal conductances of the whole device, and include the series

resistances of the wires connecting the sample to the measurement apparatus,

and the annealed ohmic contacts. These were not considered in the simple

model used earlier to explain the occurrence of conductance quantization.

The resistances of the wires and ohmic contacts may be eliminated ex-

perimentally using four-terminal measurement techniques (see Appendix D)

in which different contacts are used for voltage probes and current sources

and sinks. However, in order that such voltage probes measure an equilibrium
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Figure 6.8: Three traces from training sweeps of devices J9 and J10, for T < 70 mK.

The conductances at Vg = 0 are different because of different ohmic contact resistances

(J10 data are lower). The mid-line voltage is -0.4 V.

quantity, it is necessary that they are situated more than a few transport mean

free paths from the constriction. Thus, there will always be some additional

contribution to the resistance of the actual constriction. In a high mobility

device, this ‘extra’ resistance is small. Nevertheless, it limits the quantization

accuracy to around 1% [15]. This is far poorer than the accuracy achieved in

the quantum Hall effect, where values accurate to 1 in 107 may be measured

in large Hall bars [25].

In a typical electron sample, it is found that the plateaux may be fitted to

quantized values by the elimination of a series resistance with values close to

the measured two-terminal resistance at Vg = 0 [137]. However, it is impossible

to ‘correct’ the plateaux observed in the 1DHSs measured here by the choice

of any constant series resistance.

6.4.2 Series-resistance corrections: discussion

As discussed above, measured plateau conductances may deviate from the

expected conductance because of contact resistances. For the purposes of this

discussion, we define R0 to denote a constant contact resistance arising from

the connections to the 1D constriction. It can include contributions from the

wires and ohmic contacts, the 2DHS and also the coupling between the 2D

100



Chapter: 6 One-dimensional hole systems

Figure 6.9: (a) G versus Vg for J9 and J10, showing plateaux. (b) The plateaux

can be forced to line up, using a contact-resistance correction which increases as the

device is pinched off. (Device J9)

and 1D regions.

As mentioned earlier, R0 can never be fully eliminated or measured, even

by a four-terminal measurement. Furthermore, the latter confers no significant

advantage over two-terminal measurements, provided that R0 is small.

A second reason for lack of quantization could be that the true conductance

of the constriction is not quantized in multiples of e2/h. It has been suggested

[138] that inter-particle interactions in an infinitely long 1DS (known as a

Luttinger liquid) could cause a renormalization of the quantum of conductance

e2/h→ Ke2/h. (6.3)

K is a constant with a value less than one for repulsive interactions, and one

in the absence of interactions.

A circuit calibration error would also ‘renormalize’ the conductance in this

way. However, the circuits employed in this work were calibrated to around

1% accuracy using a calibrated 10 kΩ resistor. The sizes of the quantization

discrepancies eliminate this mechanism, which is therefore discounted from

this point on.

101



One-dimensional hole systems Chapter: 6

Thirdly, it is conceivable that as Vg is increased towards pinch off, the

series resistance to the constriction increases i.e. R = R0 + r(Vg). This effect

could occur because the coupling between the 2D and 1D regions changes with

Vg.

To investigate these possibilities, it is useful to eliminate the effect of the

constant series resistance R0. In Fig. 6.10, the dimensionless ‘conductance’

Fi =
1

i

G

e2/h
× 1

1−R0 ·G
(6.4)

is plotted against i (where i counts the number of spin-resolved 1D subband

edges below the chemical potential). Equation 6.4 was derived by considering

the ‘measured’ conductance G of a resistor R0 in series with a 1DS. Consider

the case in which the plateaux are ‘renormalized’ by a constant factor K,

because of some hypothetical physical process. The dimensionless conductance

F simply equals K, provided the constant R0 is known.

In Fig. 6.10, it has been assumed that R0 is the resistance at Vg = 0, which

in these samples was around 1 kΩ. Data presented come from three samples.

In each case, F decreases as i is decreased and the peak value is less than one.

Because it is unphysical to select a value of R0 which is less than the ohmic

Figure 6.10: Dimensionless conductance F versus plateau index i for all measured

cooldowns of three samples. See the text.

contact resistance, it proves to be impossible to force the data points to lie
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on a horizontal line. If the highest index points are made to take Fi = 1, the

slope on the data increases.

The figure shows that either R0 orK varies with Vg. It is currently believed

that the 1D conductance quantization is not renormalized by interactions in

systems with non-interacting contacts [139, 140]. The qualitative reason for

this is the conservation of momentum in the wire.

It therefore appears that the simplest explanation of the variation of F

with i is a Vg-dependent series resistance. The variation in the resistance

might be expected to occur due to changes in the coupling between the 2D

and 1D states.

6.4.3 Instability

All of the devices measured in this work exhibited some degree of irrepro-

ducibility. A typical set of four sweeps measured in succession are plotted in

Fig. 6.11. Crucially, each sweep exhibits features at the same conductances,

although the gate voltage at which they occur varies randomly by approxi-

mately 50 mV. Furthermore, it was found that if the split-gate voltage was

increased and then held constant at a conductance of less than 150 µS, then

the device would pinch off against time. See also Fig. 6.4.

Figure 6.11: Four sweeps demonstrating device instability, showing that features in

conductance are robust.

These properties were observed on different cryostats and experimental

set-ups. These observations are largely independent of temperature, and can
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be observed at 4 K (although there is no ballistic quantization). The possi-

bility that they were caused by a trivial error in the experimental set-up was

eliminated by the measurement of similar electron systems, which were found

to behave normally. The possibility that the effect was in some way due to

hyper-sensitivity to noise of mesoscopic hole systems is unlikely: no change

in the effect was measured in constant-voltage or constant-current circuits

deliberately designed to either minimize or maximize the noise.

One possible mechanism for this apparent ‘Vg noise’ utilizes the observation

of lateral depletion. Lateral depletion occurs because of the flow of charge from

gates to states either at the surface or interfaces of the sample, or to states in

the bulk of the semiconductor. Strong evidence that the surface is not central

to the lateral depletion problem was obtained in the course of the fabrication

of the many split gates which led ultimately to the working designs outlined

above. The band structures of the two types of wafer studied are presented in

Fig. 1.3.

Despite the similarities between the surfaces, the shallow highly-doped

samples (e.g. T136) exhibited far worse lateral depletion and no measurable

time-dependent instabilities, whereas the samples with lower dopant concen-

trations (which also incorporated larger spacers) were unstable but suffered

limited lateral depletion (e.g. T240).

One plausible explanation of these observations is that charge transport

occurs between dopant sites in the bulk-doped regions, with a time constant

that varies with inter-dopant separation. Thus, in the case of the stable sam-

ples, the lateral depletion would have occurred on a much shorter time-scale,

and the device would have stabilized in its useless state ‘instantly’. In the sam-

ples with dopants on average two times further apart, the screening effect of

charge mobility in the bulk should be limited for measurements performed in a

time less than the characteristic charging time and the lateral depletion effect

would be inhibited. The motion of charge near to the constriction changes the

local potential and introduce the observed instability.

6.4.4 Numerical averaging and greyscales

The quality of plateaux was found to decrease during experiments in which

split gates were continuously swept from zero volts to pinch off. It was found

that by sweeping the mid-line from -0.4 V → 0 V → -0.4 V after every eighth

sweep of the split gates, the device retained its properties and lengthy exper-

iments became reproducible.

A typical experiment involves the measurement of G versus Vg, as a func-

tion of a third variable X, which might be e.g. a magnetic field or DC source-

drain bias. The data were often best represented as a greyscale of X versus G,
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with a z axis of −∂Vg/∂G. Note that this method eliminates direct informa-

tion about Vg; in high quality electron devices, greyscales are usually plotted as

X versus Vg. This is preferable because of the capacitive link between Vg and

energy. However, it was found that the instabilities of the devices precluded

this possibility.

First, the data were corrected for series resistance as outlined above. This

correction was determined from the data at X = 0 only. The Vg axis was

then divided into equal length segments using a beta-spline algorithm. The

numerical differential of the data was taken by counting these points into bins

of length δG on the G axis and multiplying this number by −δVg/δG. This

gives ∂Vg/∂G directly. The mean of a number of sweeps was calculated by

summation of these histograms.

6.4.5 Temperature dependence

Figure 6.12: ∂Vg/∂G versus G (uncorrected). Data obtained from device J9, at four

different temperatures. Plateaux are indicated by the minima.

Figure 6.12 plots ∂Vg/∂G versus G measured between temperatures of

60 mK and 400 mK. The minima represent plateaux in the G versus Vg traces.

At 60 mK, five plateaux are detected. The increasing temperature smears the

plateaux, with those of highest conductance the most strongly affected. At
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400 mK, the plateaux at 235 µS and 280 µS have almost disappeared. This

indicates that the energy spacing between those subbands is approximately

4× 0.3 = 1.2 K.

6.4.6 Reflection of edge states

The application of a magnetic field perpendicular to the plane of the 2DHS

(B⊥) strongly affects the states both in the constriction and in the 2D regions.

B⊥ can be shown to cause a transition from electrostatic quantization to mag-

netic (i.e. quantum Hall effect) quantization [15]. The regimes of behaviour

may be classified according to the energy scales of these two effects. The en-

ergy associated with the magnetic field may be approximated by ~ωC , whilst

the 1D subband spacing due to the electrostatic confinement is described by

~ωx. The latter energy scale originates from the assumption that the lateral-

confinement potential at the saddle-point (Fig. 6.1(b)) is parabolic, with cur-

vature ωx. This assumption is appropriate when screening is ineffective, which

occurs when the constriction is occupied by few particles.

At low B⊥, ωc ≪ ωx, the electrostatic confinement dominates the constric-

tion: the spacing of the levels is changed only weakly from the B⊥ = 0 values.

The spacing of the levels starts to increase more quickly when ωc ≈ ωx; a

transport consequence of this is improved plateau flatness, as tunnelling and

back-scattering are inhibited [15]. At high fields, ωc ≫ ωx, the electrostatic

confinement is irrelevant; the sample is in the quantum Hall regime and trans-

port occurs via the transmission and reflection of edge states (see Section 1.5).

Data from J9 corrected with a constant series resistance R0 are plotted in

Fig. 6.13(a). B⊥ has been increased in increments of 0.1 T. As B⊥ increases,

the higher conductance plateaux appear to be unaffected until fields of between

0.2 T and 0.3 T. For the plateaux at lower conductance, this occurs at approx-

imately 0.4 T. Furthermore, plateaux emerge at approximately odd integral

multiples of e2/h, due to spin-splitting of the 1D subbands. This evolution of

the conductance quantization suggests that the assignment of even indices to

the plateaux at zero field is justified; each zero-field plateau is strengthened

by B⊥ and new plateaux emerge both above and below it with odd indices.

This demonstrates a one-to-one correspondence between even filling factors

and the electric quantization at B = 0.

Inspection of Fig. 6.13(a) shows that although the plateaux are poorly

quantized at B = 0, the quantization accuracy improves as B⊥ increases. The

question of whether the plateaux really are affected strongly by a variable se-

ries resistance, or whether for some fundamental reason they do not take the

normal quantization, is very difficult to answer. It is possible that some inter-
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Figure 6.13: G versus Vg for B⊥ incremented in 0.1 T steps. Traces have been

sequentially offset in Vg for clarity. (a) G has been corrected for a constant series

resistance. Spin-splitting and the transition to reflected edge-states occurs at about

0.3 T. (b) The same data, using a variable series-resistance correction.

esting ‘interactions’ process is being inhibited by B⊥, and that the data show

a cross-over from renormalized plateaux to properly quantized quantum Hall

plateaux. On the other hand, it could be argued that whatever process causes

lateral depletion is being inhibited by the magnetic field. For example, the na-

ture of the coupling between 2D and 1D states is certain to be affected by B⊥.

Figure 6.13(b) shows data corrected using a Vg-dependent series resistance.

6.5 DC source-drain bias

The use of a DC source-drain bias to measure the 1D subband energy spac-

ings of split-gate structures is well established [141, 142, 143]. For a detailed

description of the theory, see reference [144]. To date, no such measurements

on hole systems have been reported in the literature due to the difficulty of

fabrication of devices of sufficiently high quality. In this section, such mea-

surements are presented and their consequences are discussed. They provide

part of the information necessary for the measurement of the 1D parallel g

factors of a 1DHS, which is described in Chapter 7.
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6.5.1 Theory

The current-voltage relationship of a split-gate system is highly non-linear

because of the quantized nature of the density of states. We consider a cur-

rent I, which flows through the constriction due to a source-drain voltage V .

The latter is composed of a constant ‘DC bias’ part, V sd, and an oscillating

component δV . Hence

I = I(V ) = I(V sd + δV ) = I(V sd) + δV
∂I

∂V
(6.5)

to first order. δV = V0 cosωt is the signal detected by the LIA, which effec-

tively multiplies the signal with the reference and computes the time average

(see Appendix D). Representing the signal detected by the LIA as V we find:

V = 〈I(V sd) cosωt〉+ 〈δV cosωt
∂I

∂V
〉 (6.6)

which gives

V = 〈V0
∂I

∂V
cos2 ωt〉 (6.7)

thus demonstrating that the detected signal is proportional to the differential

conductance G (both at zero and non-zero DC bias).

The flow of current due to V sd is a non-equilibrium process which occurs

because of differences in the electrochemical potentials of the source and drain

ohmic contacts, which are µ1 and µ0 respectively. A suitable model system

is depicted in Fig. 6.14. The whole of the applied voltage is assumed to be

dropped across the constriction. For convenience the current is assumed to

flow from left to right, as depicted in Fig. 1.9.

The Landauer-Buttiker formalism described in Chapter 1 indicates that

each occupied transmitted subband contributes a current e∆µ/h to the current

flow. In the derivation of conductance quantization, it was implicitly assumed

that the same number of modes were available to the two ohmic contacts.

However, this assumption is dropped here, and it is therefore necessary to

replace the transmission coefficients Tj by
−→
Tj and

←−
Tj . The net current is then

found to be

I =
2e

h

∑

j

(
−→
Tj∆µ1 −

←−
Tj∆µ0), (6.8)

where the factor of two arises from spin-degeneracy at zero B. For the pur-

poses of this discussion
−→
Tj and

←−
Tj therefore count occupied spin-degenerate

1D subbands.
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Figure 6.14: A model 1D system in which an applied DC source-drain bias, eV sd,

separates the left- and right-going chemical potentials. Two regimes [(a) and (b)] are

depicted, in which the number of occupied (spin degenerate) subbands for motion in

both directions are equal, or differ by one.

The relationship between the electrochemical potentials and the applied

voltage is usually described using the parameter β, where µ1 = µeqbm + eV β

and µ0 = µeqbm − eV (1 − β) [145, 144]. Thus the measured quantity ∂I/∂V

is found to be:

∂I

∂V
=

2e2

h

∑

j

(
−→
Tjβ +

←−
Tj(1− β)). (6.9)

It is usually assumed that V sd is dropped symmetrically, in which case

β = 1/2 [142]. In the ‘equilibrium’ limit, which is depicted in Fig. 6.14(a),−→
Tj =

←−
Tj and the familiar ballistic quantization result is recovered. However, for

larger values of eV sd (Fig. 6.14(b)), the number of occupied left- and right-

going channels differs by one and, according to equation 6.9, the plateaux

occur at odd integer multiples of e2/h. The appearance of odd plateaux in

the absence of a magnetic field can be related to the coincidence of eV sd with

the subband spacing at the Fermi level. The use of DC-bias experiments

to determine directly the energy separations of 1D subband edges was first

suggested in reference [146]. It should be noted that the appearance of odd-

quantized plateaux was predicted in reference [145]; it turns out that this

is a property of adiabatic constrictions only and is not expected in abrupt

constrictions [144].
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6.5.2 Measurement

The source-drain voltage was applied with the circuit in a constant-voltage

configuration. The symmetry of the circuit with respect to DC bias was en-

sured by referencing Vg to half of the applied V sd [137]. A schematic circuit

diagram is presented in Appendix D, which includes a more detailed account

of equipment wiring.

The usual quantities plotted for high quality data are the transconductance

∂G/∂Vg versus Vg for fixed V sd. However, the device instability encountered

in this work, and the particularly short plateau length made this approach

unfeasible. Instead, data were plotted as a greyscale, with horizontal and ver-

tical axes of V sd and G respectively. The shade of grey was determined by

|∂Vg/∂G|. A loss of information occurs because of the (unavoidable) elimina-

tion of the Vg axis.

Typically, data were taken over a 36 hour period incorporating as much

averaging as possible, sweeping from large negative DC biases to large positive

ones, or vice-versa. The taking of data with both signs of V sd aided analysis

by providing the eye with an axis of symmetry, and served as an important

test for the reproducibility of faint features. A typical data set is plotted

in Fig. 6.15, where plateaux are represented by the colour black and risers

appear white. The contrast has been increased to highlight the black features

of interest.

At V sd = 0, there is a set of plateaux at poorly quantized conductances,

because no account has been taken of the Vg-dependent series resistance. As

|V sd| is increased, the plateaux disappear abruptly at approximately 50 µV and

are replaced by fainter dark features which appear at conductances approxi-

mately mid-way between the ‘even’ quantized plateaux observed at V sd = 0.

As |V sd| increases further, these dark features drift to higher conductances

and then vanish; no new structure is visible. The lack of perfect symmetry

in the figure must arise from broken symmetries in the device. The obvious

causes include differing source and drain ohmic-contact resistances, and the

asymmetry in the lithographic gating pattern. Furthermore, the potential in

and around the constriction is also affected by impurity configurations (which

suffer no symmetry constraints).

6.5.3 Data analysis

The formalism for the interpretation of the source-drain bias data presented in

Fig. 6.15 is now introduced. A typical experiment involves the measurement

of G versus Vg for sequentially incremented V sd. It should be noted that the

confining potential is different at every different value of Vg. In principle, the
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Figure 6.15: Differential conductance G versus total applied source-drain bias V sd,

for device J9. The applied DC bias has been corrected for the constant contact

resistance of the leads and ohmic contacts. Black regions represent ‘plateaux’.

same is true of of V sd. However, it is assumed that the applied source-drain

bias does not alter the electrostatics of the system.

At V sd = 0, it is assumed that there exists a set of two-fold degenerate

1D subbands occupied up to the chemical potential at each gate voltage. As

Vg increases, the Fermi energy decreases and the changes in the confinement

potential affect the energy separations of the 1D subband edges.

A measurement of energy spacings of the 1D subband edges is obtained

by the introduction of the source-drain bias, which separates the two chemical

potentials by an energy eV sd. These are swept through the range of confining

potentials by pinching off the constriction; their simultaneous coincidence with

the 1D subband edges at a particular Vg can be detected and hence yields their

energy separation.

Equation 6.9 relates the differential conductance to the transmission coef-

ficients of left- and right-going 1D subbands. The transmission coefficient of a

generic 1D subband is unity if the electrochemical potential lies well above it

and is zero if it lies well below. At intermediate chemical potentials, quantum

mechanical (tunnelling) effects which depend on the nature of the confinement
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Figure 6.16: As Vg increases, µ decreases and the 1D subband spacing goes up. The

applied source-drain bias V sd required to obtain the most steep riser [(a),(c)], or the

most flat plateau (b) gives the energy spacings between the 1D levels.

become important. The range of Vg over which the total transmission coeffi-

cient takes these constant values determines the plateaux length and visibility.

A ‘riser’ corresponds to the range in Vg over which the transmission coefficient

is varying strongly.

In the forthcoming analysis, these special values of the conductance are

related to the relative positions of the left- and right-going chemical potentials,

as depicted in Fig. 6.16. It has been assumed that the simultaneous coincidence

of both µ1 and µ0 with the 1D subband edges leads to the most-steep riser (and

therefore a light point in the greyscale). Figure 6.16(a) shows that the quantity

µ1 − µ0 = eV sd is equal to the energy spacing between the 1D subbands,

denoted ∆1D
i . The index i, which in this case is even, denotes the (ideal)

quantized conductance at V sd = 0 in multiples of e2/h. Similarly, the dark

points (plateaux) have been assumed to occur when µ1 and µ0 are positioned

mid-way between different 1D subband edges (Fig. 6.16(b)). In this case, ∆1D
i

also represents the energy spacing of the 1D subband edges at this increased

value of Vg, and i is odd.
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Figure 6.17: (a) Differential conductance G versus DC bias V sd, for a constant series

resistance correction of 1030 Ω. (b) Same as (a) but with the variable resistance

correction.
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6.5.4 1D subband energy spacing

Figure 6.17(a) shows the data from Fig. 6.15, corrected for a constant series

resistance R = R0 = 1030 Ω, which approximately quantizes all but the lowest-

index plateau, whilst Fig. 6.17(b) gives the correction for the case in which R is

a function used to fit the plateaux to their correct values. In comparison with

Fig. 6.15, a lower contrast has been selected to provide more information.

In (a), the most light and most dark points are marked with crosses. The

biases V sd
i of these points are plotted as the 1D subband spacings ∆1D

i =

eV sd
i against plateau index i in Fig. 6.18, using empty triangles. The other

points (squares and filled triangles) in the diagram are the 1D subband energy

spacings deduced from Figs. 6.15 and 6.17(b); they show the 1D subband

energy spacings obtained using the other possible methods for the correction of

the series resistance. Different subband energy spacings are measured because

different amounts of the applied bias are dropped across the 1DS. The sizes

Figure 6.18: Energy separations of the edges of the 1D subbands plotted against

index i, which indicates the conductance (in units of e2/h) at which the measured

gap is appropriate.

of the high-index energy gaps are in rough agreement with those estimated

from the temperatures at which the plateaux are smeared (see Section 6.4.5).

∆1D
i is found to increase strongly as the number of occupied 1D subbands

decreases, which agrees with the temperature-dependence data. Furthermore,

an increase is observed whatever the nature of the series resistance correction.

For completeness, comparison is made with results obtained from 1DESs

fabricated from wafers of similar depth and carrier concentration. In these
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very high quality devices, the 1D subband energy spacings near to pinch-off

are found to approach 3.5 meV [137], which is an order of magnitude higher

than the results obtained here. The reason for this difference is likely to be a

combination of the greater effective mass of the particles in the 2DHS, and also

the weaker confinement which occurs because of the lateral depletion effect.

Between conductances of 10e2/h and 2e2/h the energy spacing is found to

increase by a factor as high as two, in approximate agreement with the factor

observed in this 1DHS.

Figure 6.18 represents the principal result of this chapter. It will be used

in conjunction with magnetic field data obtained on the same cooldown to

deduce 1D g factors of each subband. This topic forms the subject of the next

chapter.

6.6 Summary and conclusions

This chapter began with a brief survey of the basic properties of 1DSs fabri-

cated using split-gate technology. Then, a detailed account was provided of

the problems encountered during the fabrication of the ballistic 1DHSs, and

their novel solutions. Data were presented which demonstrated the properties

of these constrictions at B = 0, including the best conductance quantization

observed to date in the 1DHS. The plateaux were found to be only approxi-

mately quantized in even multiples of e2/h. It was argued that this is most

likely to have been due to the nature of the coupling between the 2D and 1D

regions of the devices, resulting in a Vg-dependent series resistance. The evolu-

tion of the plateaux into spin-resolved reflected edge states by the application

of a perpendicular magnetic field demonstrated that the plateaux observed at

B = 0 are due to spin-degenerate ballistic quantization. Some of the greyscale

and data-averaging techniques need to overcome sample instabilities were also

described.

The most important data presented in this chapter concerned the first

study of the effect of a DC source-drain bias on the 1DHS. The plateau quan-

tization of device J9 was observed to change from even to roughly odd multi-

ples of e2/h, as a function of V sd. This indicates that the entrance and exit

of the constriction are close to adiabatic. From these observations, the 1D

subband energy spacings were obtained using a method adapted from previ-

ous techniques used in higher quality 1DESs. It was found to increase from

approximately 0.1 meV to 0.25 meV as the sample was pinched-off, which is in

rough agreement with temperature-dependence data presented earlier in the

chapter. These results are of crucial importance to Chapter 7.
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Chapter 7

Parallel magnetic field studies

of one-dimensional hole

systems

7.1 Introduction

This chapter presents the results of experiments performed in a low paral-

lel magnetic field on the 1DHSs described in Chapter 6. Following a simple

description of the data, which show evidence for the crossing of the 1D sub-

bands, a more careful consideration of the relevant processes is used to deduce

the magnitude of the parallel g factors of the 1D subbands of the hole sys-

tem. These are found to increase as the number of occupied subbands in the

channel is reduced. The possible mechanisms, which include both mixing and

interactions, are discussed in the last part of the chapter.

7.2 Application of a parallel B field

Three 1DHS devices (J9, J10 and J11) were studied in a magnetic field B||

applied in the plane of the 2DHS, with the current flow (through the constric-

tion) aligned perpendicular to the magnetic field (see Fig. 7.1). Data obtained

are presented in Figs. 7.2(a) and (b) for devices J9 and J10 respectively. In

each case, the magnetic field was oriented closer than 1◦ to the plane, so that

at B = 4 T the perpendicular component of the field, B⊥, was less than

0.1 T. The greyscales have been constructed as described in Chapter 6; black

regions represent plateaux in the G vs Vg traces. At B = 0, plateaux are

observed at even integer multiples of e2/h. As the magnetic field is increased,

the conductance changes from even integer to all integer and then to odd
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Figure 7.1: Schematic diagrams of the various devices, showing the orientations

of the 1D constrictions studied with respect to the applied magnetic fields and the

crystal axes.

integer quantization, between magnetic fields of 1 and 2 T. This changeover

occurs at slightly lower fields when there are many occupied 1D subbands. At

even higher fields, beyond approximately 4 T, the odd quantization becomes

weaker. This high field regime is the subject of Chapter 8.

To elucidate the basic physics, it is assumed initially that: (i) the 1D

subband edges in the constriction are two-fold degenerate at B = 0; (ii) the

subbands have well defined spin; (iii) the g factors of all the subbands are

the same, and are non-zero; (iv) diamagnetic effects are unimportant. These

assumptions are relaxed, or justified, in later sections of this chapter.

The effect of B|| is depicted schematically in Fig. 7.3, in which solid and

dotted lines represent 1D subband edges of opposite spin. When gµBB|| =

∆1D, the subbands cross for the first time.

The data in Fig. 7.2 may be explained using the idea of the crossing 1D

subbands depicted in Fig. 7.3. When the chemical potential lies between 1D

subband edges, the conductance is quantized at a value i × e2/h where i is

an integer which counts the number of spin-resolved 1D subband edges below

the chemical potential. As Vg is decreased from the pinch-off voltage, the

Fermi energy increases as carriers are introduced into the system. At zero

magnetic field, the first two (opposite-spin) subbands are populated simulta-

neously; therefore G increases to 2e2/h and further increases occur in pairs

of degenerate subbands so that the conductance is quantized in even integral
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Figure 7.2: (a) Sample J9, showing a change in quantization (black) from even to

odd as B|| increases. (b) Similar behaviour at low field in sample J10.

multiples of e2/h. When the spin degeneracy of the subbands is lifted at low

B||, all of the levels are resolved and the 1D subbands are populated sepa-

rately; hence G takes all integer multiples of e2/h. At the magnetic field of

the crossings, an increase in the Fermi energy populates just one 1D subband

edge, but further subbands are populated in pairs because of the accidental

degeneracy introduced by the parallel magnetic field. In this regime, which

is shaded in Fig. 7.3, the conductance takes values 1e2/h, 3e2/h, 5e2/h, giving

the odd quantization observed in Fig. 7.2. As the magnetic field increases fur-

ther the energy gaps at odd filling factor decrease, resulting in the weakening

and eventual disappearance of the odd quantization.
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Figure 7.3: The Zeeman effect in 1D, due to a parallel magnetic field. The 1D

subband edges of opposite ‘spin’ are represented using the solid and dashed lines.

The regime in which odd quantization is expected is shaded.

7.3 Parallel g factors of the 1DHS

This section presents a deduction of the parallel g factors of the 1DHS from the

measured energy spacings of the 1D subband edges and the magnetic fields

at which the edges cross. Implicit in the calculations are the assumptions

that the 1D subband edges are two-fold degenerate at zero magnetic field, and

that the magnetic field affects the energies of the subbands linearly. These

assumptions are discussed in detail in Section 7.4.

The parallel g factors of the 1DHS are determined from the data using

two related methods. In the first technique (method 1), we utilize the set

of parallel magnetic fields {B1D
i } at which the plateaux at i × e2/h are most

clearly resolved (i odd), or at which the risers between odd plateaux are most

steep (i even). The subband energy spacings at the chemical potential, ∆1D
i ,

are then used to calculate the 1D parallel g factors at the chemical potential,

g1D
i =

∆1D
i

µBB
1D
i

. (7.1)

The values of B1D
i for J9 are marked with crosses in Fig. 7.2(a), and are

assumed to correspond to the point at which the 1D subbands in the vicinity

of the chemical potential cross.

The second technique (method 2) uses a lower magnetic field regime. The

quantization of the conductance of the plateaux changes from even to odd

between fields of 1 T and 2 T. This transitionary region is marked by the

white dashed line in Fig. 7.2(a). This line has been determined by fitting

120



Chapter: 7 Parallel magnetic field studies of 1DHSs

Figure 7.4: Parallel g factors of the 1D subbands of device J9, obtained at 70mK

using method 1 for the extraction of {B1D
i
}, with the three different analyses of the

1D subband energy spacing (see Chapter 6).

a polynomial to the fields at which the dark and light features are of equal

visibility. These points exist at i + 1/2. By interpolating to integer indices,

and assuming that the levels are equally spaced at this point, new values of

B1D
i /2 are obtained. In conjunction with the ∆1D

i extracted from the DC

source-drain bias measurements, an alternative set {g1D
i } may be calculated.

Figure 7.4 plots g factors for device J9 on one cooldown, determined using

method 1 discussed above. The three curves correspond to the three methods

of series-resistance correction in the measurement of ∆1D
i (see Section 6.5.4).

The error bars plotted in Figs. 7.4 and 7.5 are determined from the errors in

the estimation of B1D
i and ∆1D

i . These error bars are about 30%, and are

insufficient to change the observed trends. It is more difficult to account for

systematic errors. The most obvious one, which occurs in the determination

of the actual DC bias across the constriction, has been shown to be of little

qualitative importance because the three sets of points in Fig. 7.4 exhibit

the same trend. Filled symbols in Fig. 7.5 show g factors obtained using

method 1 for devices J9 (from Fig. 7.4) and J11. Empty symbols represent

data obtained by method 2, for device J9 on two different cooldowns and for
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device J11. The arrows show lower bounds obtained from device J10, which

was destroyed before DC-bias measurements had been completed.

Figure 7.5: Parallel g factors obtained from various devices and cooldowns, using

methods 1 and 2. The variable series-resistance correction has been employed.

The two methods of extraction of theB-data, and the three methods for the

determination of the DC bias across the constriction, yield roughly consistent

results: as the number of occupied 1D subbands is decreased by an increase

in the side-gate voltage, the 1D parallel hole g factor increases, by a factor of

approximately two over the experimentally accessible range.

7.3.1 Orientation errors

The orientation of the sample, which was varnished to the cold finger of a

dilution refrigerator insert, differed from parallel by an angle of 0.7◦ (in the

case of J9, cooldown 1). This was determined from the Hall voltage, which

depends only on B⊥ in a 2DS. At the Γ point of the Brillouin zone of a 2DHS,

g|| is predicted to be zero as discussed in Section 5.2.2. The possibility that

the observations are strongly affected by g⊥, which in the strongly anisotropic

regime is large, is considered now (see also Section 5.2.5).

The experimental proof that the 1D subband crossings observed are not

due to the ‘stray’ component of the magnetic field, B⊥, lies in a comparison of
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the reflected edge-state data (shown in Fig. 6.13) with the parallel-field data of

Fig. 7.2. In the former case, B⊥ did not cause spin splitting for fields less than

0.2 T. Furthermore, the quantization of G evolved from even-index plateaux to

all-index plateaux; purely odd quantization was not observed. In the parallel-

field data, B⊥ never exceeds 0.1 T and a transition to odd quantization is

observed. It is therefore clear that the observed behaviour is due to B||.

7.4 Assumptions of the analysis

In addition to the Zeeman effect, the application of a magnetic field affects

the levels diamagnetically, and at high fields there are self-consistent effects

which arise from the long-range nature of the 1D density of states. These, and

other, assumptions are discussed in this section.

7.4.1 Degeneracy at zero field

An important assumption of the analysis was that, at zero magnetic field, the

1D subbands of the hole system were two-fold degenerate. As described in

Chapter 2, the two-fold degeneracy at a particular value of k|| (at B = 0)

arises from the invariance of the Hamiltonian to the space-inversion operation

(r→ −r) [43]. If the crystal- and lateral-confinement potentials are inversion

symmetric, then the 1D subbands must retain this two-fold degeneracy.

The T240 quantum well is close to symmetrically doped, and to a good

approximation it may be assumed that the HH1 2D subband is two-fold de-

generate at the 2D Fermi wavevector of the system. Furthermore, the 1DHS is

created by the application of a voltage Vg to symmetrically patterned split-gate

metal. Thus the lateral confinement potential is also inversion symmetric.

However, the large voltage Vg applied to the split gates is certain to break

the inversion symmetry of the 2DHS directly beneath them. This is because

the component of electric field perpendicular to the plane, Ez, far exceeds the

voltages required to produce beating in the Shubnikov-de Haas oscillations

(see Section 2.5). Although the 1DHS is defined between the split-gates (and

not beneath them), it is possible that the stray component of Ez could cause

measurable zero-field spin splitting in the split-gate devices.

Surprisingly however, the data presented in Figs. 6.9 and 6.13 indicate

clearly that the plateaux do correspond to two-fold degenerate 1D subbands,

because the number of plateaux is doubled by the application of B⊥.

The observation of plateaux at conductances of 10e2/h and 8e2/h, but not

at 9e2/h (at B = 0), implies that energy gaps of approximately (∆1D
8 +∆1D

10 )/2

are detectable in this measurement. The measurements of these subband spac-

ings presented in Chapter 6 imply therefore that the resolution of the experi-
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ment is better than 50 µeV. This energy could be taken as an upper bound for

any lifting of the degeneracy of the 1D subband edges at zero magnetic field.

However, as the 1D subband energy spacing increases towards pinch off, the

plateau quality does not improve commensurately. This could mean that the

‘resolution’ of the measurements decreases as Vg increases, possibly because

of the drop in device stability.

7.4.2 Self-consistent behaviour

The density of states of a single 1D subband varies as E−1/2 from the subband

edge. Therefore the occupation of a 1D subband is limitless. Even when the

chemical potential is located between 1D subband edges, and G is quantized,

a small change in the positions of the subbands relative to µ will alter the

number of carriers in the constriction. This should be contrasted with the

quantum Hall effect in which, at integer filling factor, a small change in the

positions of the Landau levels does not require a significant change in the 2D

carrier concentration. This reflects the finite occupancy of each Landau level.

The parallel 1D g factors of the 1DHS were deduced by the application

of a magnetic field, which was assumed to have moved the subband edges

relative to the chemical potential. As argued above, this would have altered

the number of carriers in the constriction, and could therefore have cost a

large amount of electrostatic energy.

In fact, Hartree calculations for the 1DES [147] show that the system

changes its self-consistent confinement potential by moving the electrostatic

potential Φ0 in Fig. 7.6(a) to keep the carrier concentration roughly constant.

The energy difference µ− qΦ0 is plotted (using dotted lines) as a function of

B|| for fixed carriers per unit length in Fig. 7.6(b). It exhibits cusps when

subbands depopulate. However, these cusps may be expected to be smoothed

by the finite lifetime of the particles. Although the ‘oscillations’ are most

pronounced when there are few 1D subbands occupied, up to magnetic fields

of the first crossing points the oscillation is rather small and the Fermi energy

may be approximated by a horizontal line. These self-consistent processes are

not expected to have affected the g factor measurements significantly.

7.4.3 Diamagnetic Shift

The parallel magnetic field applied also affects the energies of the 1D subbands

diamagnetically; however, a theory of the properties of the 1DHS in a parallel

magnetic field has not been published yet. Reference [148] presents calcula-

tions of the 2D valence band structure of (100)-grown symmetric quantum

wells in parallel magnetic fields which show that B|| changes the mixing of the
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Figure 7.6: (a) A schematic diagram of the (two-fold degenerate) 1D subband edges

formed at the saddle-point of the confinement potential. The 1D density of states is

plotted on the left. (b) Contours of constant carriers per unit length (dotted lines) in

the constriction, as a function of parallel magnetic field.

LH and HH subbands. It suggests that for a 120 Å quantum well subject to

B|| = 15 T, crossings occur between LH and HH subbands for k|| > 0.02 Å−1.

The wider wells studied in this dissertation should be affected more strongly by

B|| because of the smaller 2D subband spacings, so strong B||-induced mixing

effects might be expected for parallel fields of less than 15 T.

In electron systems, there are three diamagnetic effects [149], depending on

the experimental details: B|| perpendicular to the current; B|| parallel to the

current; B perpendicular to the plane of confinement. The first of these orien-

tations is relevant here (the latter orientation was discussed in Section 6.4.6).

In this case, the magnetic field provides extra confinement in the crystal

growth direction but has no effect on the 1D confinement. The energy spacing

of the 1D subbands is not changed to first order, but the zero of energy is

shifted when the magnetic length associated with the applied field becomes

smaller than the characteristic half-width of the z component of the wave-

function of the 2DHS. For T240, this occurs at fields of approximately 6 T.

Such diamagnetic shifts have been observed in parallel field experiments in

1DESs [137], and do not become significant until fields of approximately this

size. The deductions of the parallel g factors of the 1DHSs were made using

parallel magnetic fields smaller than 4 T; this type of diamagnetic effect can

be safely neglected.
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7.5 Estimates of device parameters

A discussion of the possible mechanisms responsible for the observed enhance-

ment of the 1D g factors requires estimates of the device properties. Although

the calculations to be presented are crude, they provide order of magnitude

estimates of such quantities as the numbers of particles in the 1DHS. It is

assumed here that the effective mass of the 2DHS is approximately 0.25m0.

Provided that the number of carriers in the constriction is low, the confine-

ment potential is approximately parabolic. The small number of 1D subbands

observed in the J9, J10 and J11 devices indicates that this approximation

should be valid. As a device is pinched-off by an increase in Vg, both the Fermi

energy and Φ0 are expected to vary. Using the measurement ∆1D
9 = 0.09 meV,

the Fermi energy of the lowest energy 1D subband (see Fig. 7.6) at this gate

voltage can be estimated crudely to be 4 × 0.09 = 0.36 meV. Similarly, ∆1D
3

corresponds to a Fermi energy of 1 × 0.25 = 0.25 meV. As expected this is

lower than the previous result because of the increase in gate voltage, which

depletes carriers from the constriction. The difference in energy, µ − qΦ0,

can be estimated by adding to the Fermi energies the quantity ∆1D
i /2, to

account for the zero-point energy. The two-dimensional Fermi energy of the

T240 2DHS is estimated to be approximately 1.7 meV (see Chapter 2), which

indicates that qΦ0 must be very large. This suggests that 2DHS near to the

constriction is rather depleted, and is probably related to the lateral depletion

effects discussed in Chapter 6.

Approximate calculations, assuming that the confinement is parabolic,

show that the width of the constriction at the chemical potential drops from

about 0.4 µm to 0.1 µm as G falls from 9e2/h to 3e2/h. Over the same range,

the approximate total number of holes in the channel (which is assumed to be

around 1 µm long) drops from 200 to about 30.

7.6 Discussion: mixing in 1D

7.6.1 Band structure of the 1DHS

The description and analysis of results presented in Chapter 6 neglected the

peculiar properties of the valence band; it was implicitly assumed that the

dispersion of holes for motion along the 1D wires was parabolic. This approach

is partially justified at zero magnetic field because the theoretical treatments

of the conductance quantization and DC source-drain bias are independent of

the down-wire dispersions, because they originate from the cancellation of the

1D density of states and the group velocity (see Chapters 1 and 6).

However, in this chapter the ‘spin’ properties of the 1D subbands are ex-
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amined; the spin-orbit coupling in the valence band, and its associated mixing

of the angular-momentum characters of the subbands, may not be ignored.

The starting point for this brief discussion is the 2D band structure described

in detail in Chapter 2. At k|| = 0, the hole energy is quantized by the crys-

tal confinement potential into decoupled ladders of HH and LH 2D subbands.

The effect of a lateral confinement potential is to produce series of 1D sub-

bands associated with each 2D subband. In general, they cannot be labelled

|J,MJ 〉 because of the reduction in symmetry of the system, even for down-

wire wavevectors of k1D
|| = 0. k.p calculations of the valence band in 1D

systems [150, 151, 152] show that as k1D
|| increases from zero, a set of highly

non-parabolic 1D subbands are formed, and in principle the mixture of |J,MJ 〉
states in each 1D subband is different.

7.6.2 Variation of mixing with Vg

The g factors plotted in Figs. 7.4 and 7.5 were obtained at different gate volt-

ages, Fermi energies, and magnetic fields. Each g factor therefore originates

from a different confinement potential. In principle, the measured enhance-

ment of the 1D in-plane g factor could be explained by increased HH-LH

mixing as Vg is increased.

Calculations described in Chapter 2 indicate that appreciable mixing does

occur, in this particular system, between the three lowest energy 2D sub-

bands which are HH1, HH2 and LH1, in order of increasing hole energy (see

Fig. 2.2(a)). This implies that, at our 2D Fermi wavevector kF , the 2D parallel

hole g factor should be non-zero (in the limit of vanishing magnetic field). It

is not apparent from the data whether in the 2D limit, which is approached

as the plateau index i → ∞, the g factor will reach zero. It is possible to

set an upper bound g1D
∞ = g|| < 0.65 ± 0.2. This should be compared with

g|| = 0.95 ± 0.05 obtained from the 2D tilted-field measurements described in

Chapters 4 and 5. The latter result, which was obtained at ν = 4 and agreed

with data at ν = 5, was measured in a strong perpendicular magnetic field

which causes extra mixing of LH and HH states. It is therefore not surprising

that the 2D result yields a larger parallel g factor. However, these comparisons

must be viewed with caution as it has not been shown that the signs of the

1D and 2D g factors are the same.

We turn now to the measured increase of g1D
i as i decreases. The k.p

calculations (mentioned above) of the valence-band 1DS has concentrated on

wires in which the characteristic confinement lengths, λz and λx, are compa-

rable. In this case, the 1D subbands obtained bear little resemblance to the

2D subbands of the host 2DS; the dominant direction in the system is now

the wire axis and not the crystal growth direction. However, the simple argu-
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ments presented in Section 7.5 indicate that λx > 0.1 µm in this experiment.

In contrast, the quantum-well width gives λz = 0.02 µm.

In this ‘quasi-2D’ limit the non-interacting k.p theories predict sets of 1D

subbands which reflect the 2D subband from which they are derived [150]

(until the 1D subbands from adjacent 2D subbands start to interact). The

source-drain bias measurements of Chapter 6 indicate that the 1D subband

energy spacings are always less than 0.3 meV, which is an order of magnitude

less than the 2D subband spacing. This is equivalent to stating that the well

width is much smaller than the 1D constriction width, even near to pinch off.

Thus, all of the 1D subbands probed exist very near to the 2D subband from

which they derived, and it appears unlikely that they should contain strongly

differing mixtures of HH and LH states. Hence it is not thought that the

increase in g1D
i is likely to be due to changes in the spin-components of the

1D subbands.

Furthermore, we attach little importance to mixing by the parallel mag-

netic fields applied in these measurements, because the g factors calculated by

the two methods described earlier yield roughly consistent results despite the

fact that they utilize information at strongly different magnetic fields. This

observation also justifies the neglect of the diamagnetic and self-consistent

effects described earlier.

7.7 Discussion: interactions in 1D

7.7.1 Summary of theory

Some of the theory of interactions in 2D has been described in Chapter 3. In

this section, arguments are presented which indicate that interactions are very

important in the 1DS too.

The large hole effective mass and reduced dimensionality point to an en-

hanced importance of exchange energies (relative to the kinetic energy). Defin-

ing the number of carriers per unit length in the constriction to be n1D, rS in

one dimension can be shown to be 1/(2n1Da∗0). It takes values between two

and seven as the device is pinched off, using the estimates of sample parame-

ters described in Section 7.5. It should be borne in mind that, in contrast to

the cases of two and three dimensions (equations 3.4 in Chapter 3), exchange

energies in 1D are a function of both rS and also a wire width parameter [70].

The total interaction energy per particle, E1D, is the sum of the Hartree,

exchange and correlation energies [69, 153]

E1D = E1D
H + E1D

X +E1D
cr . (7.2)
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The effects of exchange in an infinite quasi-one-dimensional wire formed from

an ideally thin 2DES by the application of a parabolic potential, have been

studied by Wang et al. [154] using density-functional theory.

The primary results of the calculation may be summarised as follows: (i)

there exists a large energy gap whenever the number of occupied 1D subbands

is an odd integer, which arises not from the Zeeman term but the exchange

interaction; (ii) these energy gaps increase as the number of occupied subbands

decreases; (iii) at the lowest densities, the system is magnetized at B = 0.

Thus, the effects of the exchange energy in a 1DS at zero magnetic field

bear similarities to the properties of the 2DS in a strong perpendicular mag-

netic field. In the former case, the quantization is provided by the lateral

confinement potential, whereas in the latter case the system is quantized into

Landau levels. The excitation gaps and ground state of the system depend

strongly on its spin properties, via the exchange interaction.

The instability to spin-polarization at zero magnetic field in the 1DS is

analogous to the magnetization instability that occurs in the 2DS (see Chap-

ters 3 and 5). However, the inconvenient nature of the density of states in 1D

prevents the description of these exchange effects in terms of simple coefficients

such as Aij.

According to Wang et al., the apparent enhancement of the spin-gaps is

strongest at odd integers; if this were represented as a g factor, oscillations

would be observed. The experimental data for the 1DES, however, do not

exhibit oscillations. There is also disagreement in the magnitude of the effects,

which are predicted to be much larger than the experimental observations.

Wang et al. discuss the possibility that correlation effects might explain the

discrepancies. However, they argue that correlations ought to be small in the

‘device’ they considered.

Correlation (and exchange) energies in 1D have been investigated theoret-

ically [69, 153], for an infinite cylindrical 1D wire with up to two occupied 1D

subbands. The pertinent results were that, for wide wires, correlation energies

are at least an order of magnitude smaller than exchange energies. The calcu-

lations were performed assuming that E1D
H = 0; this approximation assumes

that the interaction of the particles with a dopant background introduces a

term of equal magnitude and opposite sign to the direct Coulomb term. This

clearly cannot hold generally for devices in which gate voltages are swept. In

a subsequent paper [155], the same authors also discuss spin-polarization in-

stability at zero magnetic field and find that theories including correlations do

predict their occurrence in one dimension.
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7.7.2 Application to data

In this subsection, we discuss the possibility that the measured enhancement

of g1D
i as i decreases is due to exchange interactions.

In the activation-energy measurements presented in Chapters 4 and 5,

the property of the 2DHS being probed was the single-particle excitation en-

ergy ∆ν . This contained contributions from a non-interacting energy and the

exchange interaction. The latter energy depended only on B⊥; hence to de-

scribe the g factor as enhanced was mis-informative, because the ‘real’ g factor

∂∆ν/∂B (for constant B⊥) remained at its non-interacting value.

In the 1D experiment described here, there are no energy gaps at the

chemical potential because of the long-ranged nature of the 1D density of

states. Hence in contrast to the 2D case, in 1D exchange might be expected

to affect the ‘real’ g factors defined in terms of the partial derivative above.

The data presented in Fig. 7.5 have large error bars, and there are relatively

few points. No clear oscillation of g1D
i is discernible, which agrees with the data

for 1DESs presented in reference [156] (to be discussed below) but contradicts

the predictions of Wang et al., discussed in the previous section. However

that calculation did not take any account of effects which might have blurred

the measurements, such as the limited lifetime of the quasiparticles due to

interactions and disorder.

According to reference [153], and assuming that their width parameter

(which is the radius of the 1D subband wavefunction) b = 1/2 ×
√
λxλz, it

is predicted that the exchange energy per particle in the lowest subband of

our 1DS is about 1 meV. This is significantly larger than the Fermi energy

in the constriction, and shows that the device under consideration cannot be

modelled accurately using standard techniques. Nevertheless, it shows also

that the single-particle picture is strongly modified. This energy is probably

strongly reduced by screening and the effects of disorder in the constriction.

Since exchange interactions increase in importance as a system becomes

increasingly one dimensional, it seems likely that the increased coupling be-

tween the Coulomb interaction energy and the ‘spin’ of the hole system towards

pinch-off can explain the observed enhancement.

7.7.3 Comparison with 1DESs

The first observations of enhanced g factors in one dimension were described

in reference [157], which reported a measurement of |g1D| ≈ 1 for the two

lowest energy subbands of a split-gate device made from a GaAs/AlGaAs

2DES. More recent studies of very high quality 1DESs have been reported by

Thomas et al. [137, 156]. In these experiments, the g factors were obtained
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using a combination of DC source-drain bias and parallel magnetic field mea-

surements. However, the superior stability of 1DESs enabled the use of a more

sensitive technique using the gate voltage axis as a reference. The crossing of

1D subbands was not observed for the lowest subbands because of the large

1D subband energy spacing of the 1DES.

The magnitudes of the g factors were found to increase from 0.4 in the 2D

limit (which was reached because of very high device quality) to about 1.2 for

the lowest subband. It was suggested that electron-electron interactions were

responsible for this increase. In the absence of a strong spin-orbit effect in the

conduction band of GaAs/AlGaAs two-dimensional systems, and with other

data presented suggesting possible spin-polarization in the last subband, this

seems a likely explanation.

The similarity of the sizes of the g factors of the electron and hole systems

in the 1D limit is probably coincidental. Nevertheless, the increases observed

are probably fundamentally related.

7.8 Conclusions

This chapter has described measurements of the effect of a parallel magnetic

field on the conductance quantization of 1DHSs. Three split-gate devices

exhibited characteristic changes in their conductance which were attributed

to the crossing of the 1D subband edges. This occurred at low magnetic fields,

because of large g factors and small subband energy spacings of the 1DHS.

A set of parallel 1D g factors {g1D
i } were defined in terms of the magnetic

fields at which the 1D subbands appeared to cross, using measurements of the

1D subband energy spacings at zero magnetic field. The technique provided

the magnitudes but not the sign of the g factors, which were found to increase

by a factor of approximately two as the number of occupied 1D subbands

in the constriction decreased. The results for high index provided an upper

bound on the 2D parallel g factor, g|| < 0.65 ± 0.2, which was compared with

the tilted-field measurements performed in a strong perpendicular field (see

Chapter 5).

The possibility that the enhancement, as the system became more one

dimensional, was due to changes in the HH and LH components of the 1D

subbands was discussed. However, it was argued that this appeared not to

explain the observations because of the 2D nature of the 1D subbands (in

terms of mixing).

Finally, the possibility that the observed enhancement of the g factors

could be attributed to exchange interactions in one dimension was considered.

It turns out that the reduction of dimensionality does increase the importance
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of exchange. However, the theory is of limited use in the 1DHS, and also

predicts an oscillatory enhancement of g factors which favours odd indices.

This has not been observed either in this experiment, or in experiments on

similar electron systems.
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Chapter 8

1DHSs in strong in-plane

magnetic fields

8.1 Introduction

Chapter 7 described the determination of the 1D parallel g factors of 1DHSs,

using a combination of measurements of the 1D subband energy spacings

(Chapter 6) and the parallel magnetic fields required to cross the subbands.

In this brief chapter, the effect of increasing B|| even further is presented. It

is shown that the pattern of conductance features can generally be explained

using the ideas of multiple subband crossing.

8.2 High B|| data

8.2.1 Experimental data

Figure 8.1 shows data obtained from sample J9, on a cooldown in which B||

was aligned at 45◦ to the current flowing through the constriction. A constant

series-resistance correction has been applied to the data.

As the applied magnetic field increases, the component B⊥ which arises

from orientation errors increases proportionally. The high magnetic fields

to which these measurements extend emphasize any orientation errors of the

2DHS to the magnetic field. For this reason, B⊥ has been included in Figs. 8.1

and 8.2 on the right-hand vertical axes. An important consequence of an

orientation error δθ is the effect of B⊥ on the confinement of the holes, and

the subsequent transition to the quantum Hall effect discussed in Section 6.4.6.

Examination of Fig. 6.13 shows that for B⊥ < 0.1 T, there is no apparent effect

on the G versus Vg traces. Therefore the condition that ‘reflected edge-state’

effects do not become important, for a typical δθ = 1◦, is B < 5.7 T.
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Figure 8.1: Data obtained on a cooldown of device J9, in which B|| was oriented

approximately 45◦ to I. Black regions represent plateaux in the G versus Vg traces.

See the text for details.

As usual, black regions of Fig. 8.1 correspond to plateaux in the G versus

Vg traces. At B = 0, they occur at approximately even integer multiples of

e2/h. As B|| is increased, a transition is observed to odd integer quantization;

these features are strongest in the range 1.5 T to 2.5 T, and have been marked

with integers to denote their supposed ideal conductances in units of e2/h.

Similar behaviour was observed at low B|| in the measurements presented in

Fig. 7.2, and was explained by the crossing of 1D subbands due to a Zeeman

energy.

However, the magnetic fields B1D
i , at which the odd plateaux are most

clear, differ between the two experiments and are lower in the case of Fig. 8.1

(for the same sample). It is generally true for small structures that the same

device can exhibit slightly different characteristics on different cooldowns, es-

pecially if the rate of cooling (between 300 K and less than 4 K) differs signif-

icantly. Indeed, these two experiments were performed on different cryostats.

Hence it is possible that, for example, the 1D subband energy spacings were

smaller in case of Fig. 8.1. Another possible explanation of this discrepancy is

the differing orientations of the current flowing through the constriction with

respect to the applied magnetic field, which certainly would result in different
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diamagnetic effects. A final possibility is that the parallel g factor of the 1DS

is strongly anisotropic in the plane of confinement; such 1D anisotropies have

been measured optically in arrays of very narrow 1DESs [158].

Figure 8.2 shows more data, obtained from sample J10; in this case B||

was aligned at 90◦ to I. This data set is composed of single sweeps, and has

Figure 8.2: Data obtained from device J10, with B|| oriented at 90◦ to I. Black

regions represent plateaux in the G versus Vg traces.

therefore not been averaged.

8.2.2 Discussion

The features at higher B|| in Figs. 8.1 and 8.2 may be explained qualitatively

within a scheme of multiple subband crossings, which are depicted schemat-

ically in Figs. 8.3(a) and (b). At the magnetic field of the first crossing, the

conductance of the device increases from zero in odd multiples of e2/h. At the

second crossing field, the two lowest energy 1D subbands are of the same spin.

As the Fermi energy is increased from pinch-off (by a reduction in Vg), these

subbands are occupied first and the conductance takes the values e2/h and

2× e2/h. At this point, the system is completely polarized with a large mag-

netic moment. With further increases in the Fermi energy, the conductance

takes even integral multiples of e2/h.
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Figure 8.3: (a) Schematic diagram of the 1D subband edges in a parallel magnetic

field. Opposite spin subbands are distinguished by the solid and dotted lines. (b)

Same as (a), but for a larger B|| range. The subband edges cross repeatedly, and the

total magnetization of the system (for a fixed number of occupied subbands) increases.

The numbers represent the conductance of the device in units of e2/h.

At each subsequent crossing field, the number of same-spin 1D subbands

which are sequentially occupied as Vg is decreased from pinch-off increases

by one. Thus, after many crossings, a situation is predicted in which many

same-spin 1D subbands can exist below the chemical potential and the system

is very strongly magnetized.

White integers superimposed on Figs. 8.1 and 8.2 are positioned using this

‘multiple subband-crossing’ model of the device. The ‘rule’ for assignment is

that, starting from B = 0, it should be possible to move diagonally upwards

along lines of sequentially increasing indices and diagonally downwards with

decreasing indices. Inspection of the J9 data shows that this rule is quite

successful, although at higher magnetic fields the indices do not agree well

with the measured conductances of the device. It seems likely that this is

because of a changing series resistance, for which we have not corrected. In

the case of device J10, the assignment is more problematic because of the

extra set of features at approximately 4.5 T (marked by the question marks).

If these were counted as ordinary plateaux, extraordinary curvature would

be introduced into the labelling scheme. It proved impossible to retake the

data more carefully because the device was destroyed by a power cut which

occurred during a thunder storm. Nevertheless, both devices show that the

1D subbands crossed as many as four times.

An overall trend clear in Fig. 8.2 is the featureless region at high conduc-

tance and high magnetic field. It occurs partly because of an increase in the
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contact resistance as B|| increases, and partly because of the addition of the

Hall resistance (due to B⊥) to the two-terminal resistance of the device.

8.2.3 Strong B⊥ and B||.

On a further cooldown of device J9, in which I was perpendicular to B||, the

total magnetic field was found to be mis-oriented (with respect to the plane

of the 2DHS) by approximately 8◦. This offered an opportunity to study the

conductance of the device in simultaneously strong parallel and perpendicular

magnetic fields. The data are presented in Fig. 8.4, with B and B⊥ plotted

on the left- and right-hand abscissae. This data set exhibits strong quantum

Figure 8.4: Data obtained from sample J9, with B|| aligned perpendicular to I. The

angle between the plane of the 2DHS and B is approximately 8◦ from parallel.

Hall effect features. Starting at B = 0, there are some roughly quantized

plateaux at even multiples of e2/h. In contrast to previous cooldowns, there

is also a feature at approximately 1× e2/h. There is the temptation to argue

that this plateau demonstrates spin-polarization in the lowest 1D subband at

B = 0. However, its lack of reproducibility on other cooldowns favours its

interpretation as an impurity effect.

As B increases, there is an increase in the conductance of the plateaux

with indices four, six, eight and ten. This effect was also observed in the
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data obtained in a purely perpendicular magnetic field (Fig. 6.13). The data

presented in the purely parallel magnetic field are not affected in this way.

This supports the theory that the change occurs as B⊥ changes the coupling

between 2D and 1D channels.

The conductance then exhibits a transition to odd quantization. The clar-

ity of the plateaux also improves, as the extra confinement due to ωC becomes

important. It is revealing to examine a constant conductance feature. In the

data of figures 8.1 and 8.2, a plateau with (for example) index 6 alternately

appears and disappears as B|| increases. This behaviour reflects the repeated

crossing of the 1D subbands, as depicted in Fig. 8.3. Ultimately however, the

plateau is expected to be visible independent of B when there are six lowest-

energy same-spin 1D subbands. In contrast, in Fig. 8.4, the black regions with

index 4 and 6 disappear only one time; once the odd plateaux with indices 5

and 7 appear, they do not disappear again.

These features can be explained in terms of a cross over from 1D electric

subbands dominated by the Zeeman effect, to magnetic subbands (i.e. Lan-

dau levels) dominated by the cyclotron energy. To show the possible effects,

it is convenient to consider a very simple quasi-1D system in which the 1D

subbands are formed by harmonic confinement, and the g factor is isotropic

and the same for each subband. Then, the energy of a particular subband

edge may be written as [15]

E = ~

√

ω2
x + ω2

c + gµBB.̂s. (8.1)

The dispersions of ten spin-resolved subbands are plotted in Figs. 8.5(a)-(d) for

a range of increasing tilt angles. The two spin species are represented by the

solid and dashed lines. Note that in contrast to the tilted field measurements

of Chapter 4, θ represents the angle between B and the plane (not the angle

between B and the normal to the plane).

It must be borne in mind that the experimental data of Fig. 8.4 were

obtained from a whole set of these diagrams (but at one fixed angle), corre-

sponding to different gate voltages.

In Fig. 8.5(a), which corresponds to the perfectly parallel case, the conduc-

tance is expected to alternate between even and odd quantization. However,

as the tilt-angle increases (b-d), the crossings at higher B cease to occur as

~ωC (which affects each subband identically) separates the subbands. Hence,

depending on the angle, the 1D subbands may never cross (Fig. 6.13), cross

just once or twice (Fig. 8.4), or cross many times (Figs. 8.1 and 8.2).
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Figure 8.5: (a)-(d) Schematic diagrams of the effect of the magnetic field on a sample

for increasing tilt angles. At low fields, the confinement potential is important and the

Zeeman effect dominates. At high fields, Landau levels are obtained. The cross-over

occurs at lower B as the tilt angle increases. The up and down spin projections are

represented by solid and dashed lines.

8.2.4 Exchange effects in 1D

In Chapters 4 and 3 it was argued that when Landau levels approach each

other, a first-order phase transition in which particles transferred between the

Landau levels can occur. The transition is driven by the fact that an increase

in the magnetization of the system lowers its interaction energy through the

exchange mechanism. In 1D, the application of B|| brings together opposite-

spin 1D subbands so an analogous phase transition might be expected to occur.

If a process analogous to the 2D phase transition were to take place, the

1D subband edges would fail to cross. This would result in certain index

plateaux weakening but not disappearing totally, and then strengthening, as

a function of B||. Of course, such an observation could also be explained in

an anticrossing picture; as for the 2D case described in Chapter 5, it would

be problematic to distinguish between the two mechanisms. Figures 8.1 and

8.2 are surprisingly well described by the simple non-interacting electron-like

theory outlined previously; there is no clear evidence of anticrossing.

However, as discussed in Section 7.7, there are important differences be-

tween the densities of states of the 2D and 1D systems. It is therefore not clear
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whether, as a function of B||, a re-ordering of the occupied 1D subbands would

occur discontinuously. An exchange-driven phase-transition may occur in 1D,

but it need not be first order. In this case, there would be no anticrossing;

but the magnetic fields at which the subbands crossed might not be explained

by the simple non-interacting theory employed previously. Without devices of

higher stability, which would allow the use of gate-voltage information, it is

not possible to suggest that features of Figs. 8.1 and 8.2 can be attributed to

these speculative phase transitions.

Finally, it is remarked that the exchange interaction may be expected to

have a strong effect on the single-particle excitations of the system when it is

strongly magnetized. This occurs after many crossings of the 1D subbands (see

Section 8.2.2). The boundaries between the totally and partially magnetized

regions of the data are marked using the thick dotted lines in Fig. 8.1 and 8.2.

8.3 Summary

This chapter has described the multiple crossing of the 1D subbands of con-

strictions subjected to strong parallel magnetic fields. The measured pattern

of the conductance quantization was observed to change from even to odd,

or vice-versa, each time the subbands crossed. Furthermore, a sample tilted

away from parallel exhibited a cross-over from a region at low B dominated

by the Zeeman effect to a region at higher B in which Landau level effects

became important. This chapter also included some speculation about the

exchange interaction. However, it did not appear to be manifested clearly in

the data because of the poor device quality and the very small energy gaps

under investigation.
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Chapter 9

Conclusions and suggestions

for further work

9.1 Introduction

In this chapter the main conclusions of this thesis are described and suggestions

are made for further work. Before the specific conclusions of this research are

detailed, attention is drawn to the physical themes common to most of this

work.

In both the two and one dimensional devices studied, the motion of the

holes in the [311] crystallographic direction of the GaAs/AlGaAs heterostruc-

tures was limited to a region of size 200 Å in width. In both types of device

extra quantization was introduced by the application either of a magnetic

field in the [311] direction (B⊥), or an electrostatic confinement potential in

the plane perpendicular to [311]. In the latter case, the confinement potential

was rather weak, and a series of closely spaced 1D subbands was formed which

are thought to have had many of the ‘spin’ properties of the parent 2D HH1

subband. In contrast, the confinement by the magnetic field created Landau

levels with energy spacings less than an order of magnitude smaller than the

2D subband spacing; the result was extra mixing of the ‘spin’ components of

the Landau levels.

Both types of experiments then investigated the response of the Landau

or one-dimensional quantization to the application of a magnetic field applied

parallel to the plane of the 2DS; in both cases levels of opposite spin were

brought into proximity.

Besides demonstrating that the basic 2DHS studied had strong mixing of

LH and HH states at the Fermi wavevector, the parallel field measurements in

both cases provided evidence for the importance of the exchange interaction. It
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should be borne in mind that the ‘raw’ Coulomb energy of interaction between

a pair of holes in a typical 2DHS is over 50 K, which exceeds the Fermi energy

by almost a factor of three.

9.2 The two-dimensional hole system

9.2.1 Confinement symmetry

Towards the end of Chapter 2, new (but preliminary) results were presented

which demonstrated the relationship between the reflection-symmetry of the

quantum-well confinement potential and the low-field Shubnikov-de Haas os-

cillations. This was achieved by changing the electric field perpendicular to

the 2DHS, whilst keeping its carrier concentration constant, using a sample

with both a front gate and a back gate. In the past, there have been studies of

this effect in different samples; this measurement enabled the in-situ variation

of the potential in one sample. It proved to be possible to interpret the results

in terms of a model at zero magnetic field, in which the electric field lifted the

two-fold degeneracy of the 2D subbands.

9.2.2 Tilted-field measurements

Chapter 4 presented detailed measurements of the integer quantum Hall effect

states of the 2DHS in tilted magnetic fields. It was found that the hole Landau

levels at ν = 4 were well described by an approximately isotropic g factor with

a magnitude close to one.

Careful activation-energy measurements at constant filling factors were

used to determine the energy gaps, ∆ν , as a function of total magnetic field. It

was found that at even filling factors the energy gaps decreased approximately

linearly to a turning point at non-zero gap, and then increased. In contrast, at

odd filling factors, the ∆ν versus B dependence appeared to exhibit curvature

over a range of magnetic fields.

Owing to the current absence of a simple, intuitive, theory to describe the

tilted-field measurements of the 2DHS, a qualitative model was introduced

which incorporated some features of the complex dispersion of hole Landau

levels as a function of B⊥. This model explained the apparent curvature

observed at odd filling factors in terms of the crossing of the Landau levels

above and below the chemical potential at different total magnetic fields. The

failure of the hole Landau levels to cross at even filling factors was discussed

in the context of an anticrossing due to the low symmetry of the system.

However, it was argued that this picture failed to account for the apparent

lack of curvature in the ∆4 versus B data.
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Exchange effects in hole systems have received very little attention to date.

It was demonstrated here that the data at even filling factor could be explained

very simply in terms of a first-order phase transition driven by the exchange

interaction, and some estimates and limits for the exchange contributions to

the single-particle excitation gaps were presented.

9.2.3 Suggestions for further work

Many more experiments will have to be performed to distinguish unambigu-

ously between the anticrossing and phase-transition theories. To prove that

there is a truly discontinuous change in the magnetization of the system is a

formidable task.

Experiments which could be performed include repetitions of the activation-

energy measurements in a dilution refrigerator, which would enable a more

reliable measurement of small energy gaps. Higher filling factors could also

be investigated in a cryostat with a lower base temperature. A useful ex-

perimental facility would be the ability to vary B|| and B⊥ independently.

This would enable a very high resolution study of the turning point of the

∆4 data. However, this combination of magnetic fields is rather difficult to

achieve in practice because it requires the presence of a pair of orthogonal

superconducting magnets.

An essential component of future work will be accurate k.p calculations

of the Landau levels in a tilted magnetic field; it will probably be necessary

to go beyond the axial approximation. These will provide predictions of the

magnetic fields of the turning points, and their energy gaps. If the first-

order phase transition does occur, then the measured energy gaps will be

larger than those predicted and the turning points will occur at lower magnetic

fields. It is pointed out that, according to reference [91], 4 × 4 Luttinger

Hamiltonian calculations fail to account fully for the ρxx oscillations observed

in their experiments.

However, the crucial test is the detection of a discontinuity in the magne-

tization. Unfortunately, transport measurements offer a rather indirect probe

of such thermodynamic quantities; and direct measurements of magnetiza-

tion are notoriously difficult [159]. It could be that an optical probe such as

magneto-absorption would be more suitable, as the polarization-dependence

may be related rather simply to the spin composition of the optically active

levels [160]. However, the requirements of temperatures far below 1 K and

in-situ rotation of the sample will limit the ease of such experiments.

Finally, it is mentioned that the InGaAs/InP material system has a large

electron g factor, which allows Landau level coincidence experiments at low

filling factors to be performed at accessible magnetic fields; indeed, this is
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the basis for the experiment reported in reference [123]. Measurements of ∆ν

versus B would be simpler to interpret because of the parabolic conduction

band.

9.3 The one-dimensional hole system

9.3.1 The 1DHS at zero magnetic field

Chapter 6 presented a method for the fabrication of 1DHSs, using a ‘mid-line’

technique to limit some of the instabilities that have plagued previous small

structures fabricated in hole systems.

Three devices of differing geometries were fabricated which clearly exhib-

ited ‘plateaux’ in their pinch-off curves. However, the plateaux were not very

flat and their conductances were found to deviate from integer multiples of

e2/h. The latter result was explained in terms of non-ideal coupling between

the 2D and 1D regions of the devices. The quality of the devices was sig-

nificantly higher than those studied previously, and enabled the first detailed

measurements of the properties of holes in 1D.

It was shown, by the application of a perpendicular magnetic field, that

at B = 0 each plateau was two-fold degenerate within the resolution of the

experiment. DC source-drain bias measurements were used to estimate the

spacings between the 1D subband edges of the constrictions, which were found

to be an order of magnitude smaller than those of typical 1DESs.

9.3.2 Small parallel magnetic fields

Chapter 7 described how the conductance was affected by a magnetic field

oriented perpendicular to the current flow through the 1DHS but parallel

to the crystal growth plane. A change in the conductance quantization was

observed from even to odd integer multiples of e2/h. This was interpreted

in terms of the crossing of 1D subband edges; from the magnetic fields at

which the odd quantization was most clear, and using DC-bias measurements

obtained on the same cooldown, the parallel 1D g factors of the system were

deduced. These were found to increase as fewer 1D subbands were occupied

in the constriction.

The increase in the 1D g factors of the 1DHS was discussed in the context

of mixing effects and exchange interactions. The mixing effect was argued

to be unlikely to explain the observed increase, because the 1DHS remained

rather wide in comparison with the width of the quantum well. However, this

argument will require verification by modelling.
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In general, exchange interactions increase in importance as a system be-

comes increasingly one dimensional. It was argued that the increased coupling

between the Coulomb interaction energy and the ‘spin’ of the hole system to-

wards pinch-off could explain some features of the observed enhancement.

9.3.3 Large parallel magnetic fields

Chapter 8 presented measurements of the 1DHSs at even higher parallel mag-

netic fields. The quantization of the conductance exhibited changes between

even and odd multiples of e2/h consistent with the crossing of the 1D subband

edges as many as four times. Measurements were also presented of a 1DHS

in a tilted magnetic field, which showed a cross-over between the Zeeman ef-

fect and the quantum Hall effect in the one-dimensional system. Speculation

on the ways in which exchange interactions might affect the system was also

provided.

9.3.4 Suggestions for further work

Device stability for all gate voltages is the fundamental requirement for de-

tailed studies of the 1DHS. Although the devices measured as a part of this

work were significantly more stable than the only previous working 1DHSs,

they proved to be far from ideal.

It was speculated that the instabilities observed in these devices arose

from charge mobility in the doped regions of the heterostructure. An elegant

method for the fabrication of an ultra-clean 2DS uses a front gate to induce

carriers into an undoped heterostructure [161]. This technique has recently

been extended by the authors of reference [161], and independently by this

research group [162], to enable the fabrication of long clean 1DESs. When

applied to the hole system, the technique should provide stable 1DHSs because

of the lack of dopants.

With an ideal 1DHS, there are a number of experiments that should be

performed. Firstly, the multiple crossing of the 1D subbands as a function

of parallel magnetic field needs to be investigated for B|| oriented both per-

pendicular and parallel to the current direction. The use of the gate voltage

axis as a reference is likely to reveal a plethora of anticrossing and exchange

effects. The parallel 1D g factors could then be determined; it is certain that

the absolute values will depend on the characteristics of both the 2D and 1D

confinement and carrier concentrations. The interesting result would be the

observation of an oscillatory enhancement independent of the absolute values

of the g factors. It could also prove to be fruitful to investigate the importance

of the orientations of the parallel magnetic field with respect to the lateral con-
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finement potential, and of the crystallographic direction with respect to the

constriction potential.

The fabrication of long 1DHSs will also facilitate the study Luttinger liquid

[163, 138, 137] effects in this strongly interacting system.
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Appendix A

Physical constants

SI units have been used in most of this thesis. Exceptions include quantities

involving energy, which is often usually expressed in electron volts (eV) or

Kelvin (K), and distance which is sometimes measured in Angstroms (Å).

The physical constants relevant to this thesis are tabulated below.

Symbol Constant Value Unit

e Electronic charge 1.602 × 10−19 C

~ Planck’s constant 1.055 × 10−34 Js

m0 Electron mass in free space 9.110 × 10−31 kg

kB Boltzmann constant 1.381 × 10−23 JK−1

ǫ0 Permittivity of free space 8.854 × 10−12 Fm−1

µB Bohr magneton 9.274 × 10−24 JT−1
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Appendix B

Wafer structures

This appendix contains the structures of the wafers studied in this thesis. All

of the wafers were grown by Dr M. Y. Simmons using MBE on the (311)A

surface of GaAs substrates, using Si as the p-dopant (see Chapter 1). The

aluminium fraction x of the AlxGaxAs regions was 0.33.

Material Doping / 1018 cm−3 Thickness / Å Comment

GaAs - 170 Cap

AlGaAs 0.12 2000 Doped

AlGaAs - 600 Spacer

GaAs - 200 Quantum Well

AlGaAs - 800 Spacer

AlGaAs 0.12 2000 Doped

AlGaAs - 2500 Cooled

AlGaAs* - 1000

GaAs - 20000

GaAs - - substrate

Table B.1: Structure of the symmetrically-doped quantum well T240. The asterisk

indicates that the Al concentration was ramped from 0 to 0.33 in that particular

growth phase.

149



Wafer Structures Appendix: B

Material Doping / 1018 cm−3 Thickness / Å Comment

GaAs - 170 Cap

AlGaAs 0.1 2000 Doped

AlGaAs - 1150 Spacer

GaAs - 200 Quantum Well

AlGaAs - 950 Spacer

AlGaAs 0.1 2000 Doped

AlGaAs - 2500 Cooled

AlGaAs* - 1000

GaAs - 20000

GaAs HIGH - n+ substrate

Table B.2: Structure of the T335n+ quantum well, which is approximately symmet-

rically doped. It was grown on an n+ substrate.

Material Doping / 1018 cm−3 Thickness / Å Comment

GaAs - 170 Cap

AlGaAs 1.2 400 Doped

AlGaAs - 270 Spacer

GaAs - 1000

GaAs - 10000

GaAs - - substrate

Table B.3: Structure of the single-interface heterostructure T136
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Appendix C

Processing techniques

C.1 Preliminaries

Following the growth of the wafer by MBE, a number of processing steps must

be carried out to produce a sample suitable for measurement.

The wafers studied in this work were grown by Dr M. Y. Simmons using a

Varian Gen-II MBE machine, in which the wafers are secured to the substrate

holder using an Indium/Gallium amalgam. The first step of the processing

procedure is therefore to strip these metals from the underside of the wafer,

by immersing it in a concentrated solution of HCl. It should be noted that

considerable diffusion of indium occurs into the underside of the substrate,

because of the elevated growth temperatures. The diffused indium is not

removed by the stripping procedure.

The wafer is then scribed, using a diamond-tipped stylus, and cleaved into

conveniently-sized chips which typically measure 5 × 5 mm. The preferential

Figure C.1: The cleavage planes of a (311)-grown wafer.
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cleavage planes of GaAs are generally those with low Miller indices, {100}
and {011}. An orthogonal combination of these planes with the (311) plane

cannot be found, which means that in contrast to (100)-grown wafers, the

faces of a cleaved chip will not all be orthogonal. In fact, the [011] direction

is orthogonal to [311] but the [011] is not. Therefore the [233] direction can

be identified by the fact that it runs parallel to those sides of the chip which

are orthogonal to its upper surface. Figure C.1 shows that the other pair of

faces, with indices (011), are bevelled.

C.2 Mesa etch

The next stage in the processing is the etching of selected areas of the chip

to produce a mesa, to restrict the 2DHS to a well-defined strip of typical

dimensions 80× 800 µm. This region of 2DHS is known as a Hall bar, and is

‘contacted’ by a set of narrower mesas which will eventually connect to ohmic

contacts (see Section C.6).

Figure C.2: Schematic diagram of processing steps required to create a mesa.

The area to be etched is defined by optical lithography, as follows. A

layer of Microposit 1813-S positive photoresist is spun onto the top surface

of the chip, and is then baked for ten minutes at 70◦C. The chip is aligned

to a mask, which is brought into contact with the surface, and the uncovered

regions of photoresist are exposed to ultraviolet (UV) light. The photoresist

is then developed in Microposit MF319 developer; this solution dissolves only

those regions of the resist which were exposed to the UV radiation. These

processing steps are depicted in Figs. C.2(a) to (d).
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The chip is then ‘cleaned’ in a 10% aqueous solution of HCl; this process

dissolves the thin layer of oxide on the surface of the chip, and dislodges dirt

and traces of developed photoresist which may have adhered to the oxide.

Such ‘HCl dips’ follow all development stages, and precede all evaporation

stages.

The exposed regions of the chip are then etched using a 100:8:1 mixture

of H2O:H2O2:H2SO4; the etch-rate is typically 50 Ås−1 at 22◦C. The depth of

the etch is periodically checked using a DekTak surface profiler; a total etch-

depth greater than the distance between the surface of the chip and the 2DHS

is chosen. The resist is then stripped from the chip using acetone, to leave the

Hall bar, and rinsed in propanol to prevent the formation of a residue. See

Figs. C.2(d) to (f).

C.3 Ohmic contacts

Figure C.3: Schematic diagram of processing steps required to pattern metal onto

the surface. In the case for ohmic contacts, an anneal is required after step (f). No

anneal is used for Schottky gates.

The next stage of the processing is to fabricate ohmic contacts to the

2DHS, and is depicted in Fig. C.3.

The chip is re-coated with photoresist and baked, and then exposed using

a mask for ohmic contacts. Before development, the exposed chip is immersed

in chlorobenzene for seven minutes. Figure C.3(d) shows that the profile of the

developed resist is undercut, because its surface is hardened by the chloroben-
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zene.

Following an HCl dip, the chip is placed into an evaporator and approxi-

mately 200 nm of Au/Be alloy (10% Be by mass) is deposited onto the surface,

at a rate of approximately 0.4 nm per second. Immersion of the chip in ace-

tone removes the remaining resist and ‘lifts off’ metal deposited onto it, to

leave only the metal adhered directly to the mesa. Lift-off is facilitated by

the under-cut profile of the resist. Ohmic contact is made to the 2DHS by a

carefully controlled anneal using a Leisk annealer, in a reducing atmosphere

of hydrogen and nitrogen. The optimal anneal time was determined by ex-

periment to be approximately 480◦C for three minutes, giving resistances of

between 250 Ω and 700 Ω per ohmic contact at temperatures below 4 K.

C.4 Schottky gates

The final stage of optical lithography is the deposition of Schottky gates onto

the Hall bar. The processes described above for ohmic contacts are repeated,

except that the metallization is usually 10 nm of NiCr alloy followed by 70 nm

of Au. There is no anneal. The NiCr is deposited first because it adheres more

strongly to the GaAs surface than does Au; if it is omitted then problems are

encountered during bonding.

The optically-defined Schottky gates used in the course of this work fall

into two categories. For two-dimensional measurements in which it is neces-

sary to be able to vary the carrier concentration, large gates are deposited

which cover many squares of the 2DHS. These are known as ‘front gates’. For

chips intended for electron-beam lithography (subsection C.5), ‘side-gates’ are

patterned onto the chip. They climb onto the mesa but do not cross it, and

provide electrical contact to the smaller features to be defined by electron-

beam lithography.

C.5 Electron-beam lithography

Diffraction limits the minimum size of features which can be defined to length

scales larger than the wavelength of the radiation used; a typical lower limit for

optical lithography is approximately 1 µm. For this reason, the split gates used

to make 1DHSs (which contain feature sizes of around 0.1 µm) are patterned

using electron-beam lithography.

In this research group, electron-beam lithography is performed using a

25 keV Hitachi scanning electron microscope (SEM) modified by the addition

of a pattern generator. The spot-size of the electron beam is around 20 Å;

the proximity effect, which arises from scattering of the electron-beam by the
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substrate and resist, reduces the resolution so that the minimum feature size

possible is approximately 0.05 µm.

The resist used for this work was the polymer: isofine P5 polymethyl-

methacrylate (PMMA). It is spun onto the chips to produce a layer of resist of

thickness 180 nm. The chip is then baked for at least thirty minutes at 150◦C.

Devices are ‘drawn’ using patterns carefully designed to minimize the inherent

instabilities of the SEM and proximity effects, and are then developed in 3:1

solution of propanol:MIBK (methylisobutylketone) which dissolves regions of

the resist exposed to the electron beam. A standard HCl dip, and then the

deposition of 10 nm of NiCr and 30 nm of Au, follow. Lift-off of the unwanted

metal is achieved in acetone, and can take a number of hours.

C.6 Bonding

Figure C.4: Photograph of a completed chip. The light region is a NiCr/Au Schot-

tky front gate, on top of a pair of orthogonal Hall-bar mesas. The dark, mottled,

areas are annealed AuBe ohmic contacts. Strips of mesa connect ohmic contacts to

voltage probes on the Hall bars. Bond wires are visible on the right-hand side of the

photograph.

Completed chips are glued by their under-surface to a twenty-pin package

using GE varnish or silver-epoxy resin, and the ohmic- and Schottky-contact
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bond-pads are electrically connected to the pins of the package by fine gold

wire, using a Kulick and Soffa ultrasonic ball-bonder. A photograph of a

completed chip is presented in Fig. C.4. Particular care must be taken when

bonding to samples containing small gate features, because the ball on the end

of the gold wire is created by a spark which can destroy fine features.
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Appendix D

Measurement techniques

D.1 Introduction

The measurements presented in this thesis were performed at very low temper-

atures. This appendix presents some of the important concepts pertaining to

electrical measurement at low temperatures, and diagrams of typical circuits

used.

Typically, ohmic-contact and gate-leakage characterization are performed

in 4He dewars, which provide sample temperatures of approximately 4 K by

immersion in liquid helium, or in pumped-4He cryostats with base temper-

atures of 1.5 K. Experiments are performed in pumped-3He cryostats, with

base temperatures of around 0.28 K, or in dilution refrigerators which attain

temperatures as low as 30 mK. In practice, the temperature which character-

izes the hole system is slightly higher than that of the crystal lattice because

of the lack of phonons, which provide the thermal coupling at higher tempera-

tures. A detailed description of the cryogenic techniques employed in the field

of low-temperature solid state physics may be found in reference [164]

D.2 Lock-in amplifiers

The measurement of resistance, or conductance, at temperatures below 1 K

is problematic because the passage of a current through a sample dissipates

heat, and may increase its temperature. This effect can only be avoided by the

use of very small excitations, which then introduce the problem of separating

the signal from electrical noise. These difficulties may be alleviated through

the use of a lock-in amplifier (LIA), which may be considered to act as a very

sensitive voltmeter.

To illustrate the properties of a LIA, it is convenient to consider the mea-
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surement of the resistance of a resistor, as depicted in Fig. D.1(a). The mea-

surement is performed by using an AC constant-current source to provide a

known current Iex through the resistor, at some frequency ω. The voltage

dropped across the resistor, VR is measured using the LIA. In general, VR is

the sum of the desired signal, at frequency ω, and a noise voltage which is also

a function of frequency.

Figure D.1: (a) Schematic diagram of a measurement of a voltage across a

resistor, using a LIA. (b) Block diagram of a LIA, showing the AC and DC

amplification stages.

The ideal LIA may be considered to amplify the portion of the input signal

over some very narrow frequency range ω− δω < ω < ω+ δω. In the simplest

of analogue cases this is achieved by multiplying the signal by the reference,

which yields a DC (ω = 0) component proportional to the voltage required

and AC components at all other frequencies. This signal is passed through a

low-pass filter and is then amplified by a high quality DC amplifier to produce

an output voltage proportional to Iex/R. The reference frequency is typically

chosen to be less than 100 Hz; in this frequency range, the dominant source of

electrical noise is mains pick-up. Although pick-up was always minimized in

experimental circuits, by the use of twisted pairs and the elimination of earth

loops, it was found to be difficult to reduce it to less than 0.2 µV peak to

peak; therefore reference frequencies near to 50 Hz are always avoided.

Modern LIAs achieve better noise rejection and stability through a multi-

stage amplification process, and may be classified as either analogue or digital

according to the nature of their circuitry. The only analogue LIAs used ex-

tensively in this work were from the Brookdeal 9500 series. The amplification

process in such a LIA is depicted in Fig. D.1(b). The input to the LIA is

filtered using a fairly broad band-pass filter; it is then subjected to an AC
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amplification stage followed by demodulation (i.e. selection of the required

frequency component) and a DC amplification stage.

For a given total gain, the experimental physicist has some control of the

way the amplification is shared between the AC and DC amplifiers. The

AC amplifier usually has higher linearity and greater stability than the DC

amplifier; switching the dynamic reserve of the LIA to ‘low’ transfers as much

of the amplification to the AC stage as possible. However, the LIA can fail

to lock-in if the noise on the input signal increases. In these circumstances,

the noise-rejection is improved by limiting the AC amplification; however,

the DC amplification stage introduces offsets onto the output of LIA, thereby

distorting the recorded measurement.

Purely digital LIAs such as the Standford SR830 offer very high perfor-

mance, because the signal processing is achieved purely computationally. The

problems of noise-induced offsets are eliminated entirely. However, for mea-

surements at millikelvin temperatures, analogue LIAs are preferred because

they do not contain high-frequency circuits that can introduce noise into the

measurement circuit and actually heat the sample. Measurements were gener-

ally performed using analogue LIAs, or hybrid LIAs such as the EG&G 5209

or 5210 models.

D.3 Two- and four-terminal measurements

Figure D.2: Schematic diagram showing two and four terminal resistance mea-

surements.

The simplest of resistance measurements is two terminal, in the sense that

the voltage is measured using the same contacts that are used to pass the

current through the sample. Referring to Fig. D.2, the voltage dropped due to

the current I is V2T = I× (2Rw +2Rc +R), where Rw, Rc and R represent the

resistances of the wires, contacts and sample respectively. Therefore the mea-

sured resistance, R2T , is affected by the wires and contacts used. Four-terminal
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measurements use different ohmic contacts for the measurement of the voltage

and the conduction of the current. Provided that the input impedance of the

voltmeter is much greater than the resistance of the sample, the current drawn

by the voltmeter is negligible. The voltage measured is then V4T = I×R, and

is therefore unaffected by the resistances of the contacts and wires.

D.3.1 Typical experimental configurations

Figure D.3: Schematic diagram of a constant-current measurement.

Figure D.3 shows a generic four-terminal measurement of ρxx, using a cir-

cuit in the constant-current configuration. All of the sensitive measurements

presented in this thesis were performed in screened rooms, which offer better

electrical-noise characteristics than can be found elsewhere in the laboratory.

The data are acquired by feeding the analogue output of the LIAs out of the

screened room via low-pass filters incorporating resistors on both high and low

connections to break earth loops. This voltage is digitized by a CIL microsys-

tems analogue to Digital Converter (ADC), which communicates using IEEE

connections with the computer used to control equipment and record data.

160



Appendix: D Measurement Techniques

The software used for this purpose is the CryoMeas program written by Dr C.

J. B. Ford. DC voltages used for biasing Schottky gates, and for applying a

DC source-drain bias to the samples, are obtained from IQ-Tech DAC 488/4

‘quad sources’. They provide a 0.25 mV resolution floating voltage with 0.5 Ω

output impedance. This source is also kept out of the screened room.

The excitation is provided by placing a 10 MΩ resistor in series with a

Brookdeal 9473 signal source, which has an output impedance of 50 Ω. Ob-

viously, a constant current is only provided if the impedance of the device

remains much less than that of the series resistor. A 1 kΩ resistor is also

included to facilitate measurement of the current. The voltage dropped across

the ohmic contacts is measured differentially, with a LIA referenced to the

signal source. Typical frequencies for quantum Hall effect measurements lay

in the range two to eight Hertz.

Figure D.4: Schematic diagram of a constant-voltage measurement.

Measurements of 1DHSs were always performed using constant-voltage

circuits; a typical circuit is presented in Fig. D.4. Provided that the total

resistance of the sample is much greater than 10 Ω, the voltage divider provides

an approximately constant 10 µV AC excitation across the source and the

drain. The constant-voltage circuits were calibrated by replacing the sample

with a calibrated 10 kΩ resistor.

The current flowing through the 1DHS is measured using a floating cur-

rent pre-amplifier (with negligible input impedance) which produces an output

voltage with a gain 106 V/A that is measured using a LIA. It is common prac-

tice to place a large capacitor between the drain and the current amplifier to

‘block’ any DC offset voltage between its high and low inputs.

The DC-bias measurements presented in Chapter 6 were performed using

the circuit depicted in Fig. D.5, which was designed to allow the gate voltages

to be referenced to half of the DC source-drain voltage across the device.
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Figure D.5: Schematic diagram of circuit which allows for symmetric DC

biasing.

This symmetric biasing arrangement requires the use of a floating DC voltage

source; the biases across the device were measured independently using a DC

voltage pre-amplifier.

As the device is pinched off, the AC and DC voltages dropped across it

change. Because the circuits were calibrated near to pinch off, errors may be

expected to occur when the device has high conductance. However, because

the series resistance of the devices always exceeds 600 Ω, the change in the

voltage amounts to 1.6% at most. Furthermore, conductances of interest al-

ways occurred for total device resistances in excess of 3 kΩ, which are subject

to errors of only 0.3%.
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Appendix E

Some notes on the Luttinger

Hamiltonian

This brief appendix contains some notes relevant to Section 2.2.2 of Chapter 2.

The Luttinger Hamiltonian (equation 2.1) may be written as a single 4 × 4

matrix. In one representation of the J matrices, we obtain [56]:

Hk =









P +Q S R 0

S† P −Q 0 R

R† 0 P −Q −S
0 R† −S† P +Q









(E.1)

with

P = ~2

2mγ1k
2,

Q = ~
2

2mγ2(k
2
x + k2

y − 2k2
z),

S = − ~2

2mγ3(2
√

3)k−kz,

R = − ~
2

2m

√
3/2[(γ2 + γ3)k

2
− + (γ2 − γ3)k

2
+],

(E.2)

where γ1 = 6.85 ± 0.15, γ2 = 2.1 ± 0.15 and γ3 = 2.9 ± 0.15 are the k · p
parameters [4], and k± = kx± iky. The z direction has been taken to point in

the [100] crystallographic direction. For systems grown on alternative planes,

it is necessary to rotate the coordinate system to align the z axis to the required

crystallographic direction.

To find the 2D subband dispersions, a confinement potential V (z) may be

added along the diagonal of the matrix, and kz is replaced by the operator

−id/dz. The matrix operates on the envelope function F = (F1, F2, F3, F4),
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which is related to the wavefunction by Ψ = F1|3/2, 3/2〉 + F2|3/2, 1/2〉 +

F3|3/2,−1/2〉 + F4|3/2,−3/2〉. The simplest case of an infinite symmetric

quantum well in the flat-band limit has an analytic solution [165]; an exact

solution may also be found for a well of finite depth [166].

The general problem requires the numerical solution of the system of four

coupled second-order differential equations subject to suitable boundary con-

ditions. If the well is infinite, it is sufficient to assume that F = 0 at its

boundaries.
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