
i

Structural and biochemical studies of the regulation

and catalytic mechanism of ATP synthase

by

Matthew William Bowler

A dissertation submitted to the University of Cambridge in

candidature for the degree of Doctor of Philosophy

Lent Term 2005

Medical Research Council Dunn Human Nutrition Unit

and

Girton College, Cambridge University



ii

Declaration

The work described in this thesis was carried out at the Medical Research Council Dunn

Human Nutrition Unit between October 2001 and January 2005.  Except where

specifically stated, this dissertation is the outcome of my own work and not the result of

any collaboration.  No part of this thesis has been submitted for a qualification at any

other university.

Matthew W. Bowler

January 2005



iii

Acknowledgements

I thank Prof. Sir John Walker for supervising my research; it has been a fascinating and

inspiring three years.  I am grateful for his continued support.  I would also like to thank
Dr. A. G. W. Leslie for teaching me crystallography and for being extremely generous

with his time and knowledge.

Analytical centrifugation was carried out in the Laboratory of Molecular Biology under

the guidance of Dr. P. J. G. Butler.  I am very grateful for the time and effort given to
showing me the technique.  I thank Prof. D. M. Mueller for the yeast strain with a

histidine tagged ATP synthase β subunit.  I received much advice on cloning, expressing,

purifying and crystallising proteins from Mr. M. G. Montgomery and Mr. M. J.
Runswick, I am extremely grateful for their efforts.

For proofreading and invaluable comments on the manuscript I thank Dr. I. M. Fearnley,
Dr. M. G. Bowler, Dr. A. G. W. Leslie, Dr. V. R. Smith, Mr. M. G. Montgomery and Mr.

M. J. Runswick.  Many thanks are due to Mr. M. G. Montgomery for help with all things

Macintosh.  I also thank Mary for excellent proofreading.

I would like to thank all the members of the Walker group for making my time here
incredibly enjoyable, in particular Dr. V. R. Smith, Dr. J. L. Rubinstein, Mr. M. G.

Montgomery, Mr. M. J. Runswick and Miss C. Terry.

I thank Mary for her tireless support, timely advice and tolerance of numerous late nights.

This thesis is dedicated to Mary and to the memory of PMB.

Matthew W. Bowler, January 2005.



iv

“I hate quotations. Tell me what you know.”

Ralph Waldo Emerson



v

Contents

Abstract xii

Abbreviations xiii

Chapter One: Introduction 1

1.1 The mitochondrion and bioenergetics 1

1.1.1 The mitochondrion 1

1.1.2 Bioenergetics 7

1.2 The electron transport chain and oxidative phosphorylation 9

1.3 The ATP synthase 15

1.3.1 Introduction 15

1.3.2 The subunits of the ATP synthase 16

1.3.3 The minor subunits 19

1.3.4 The peripheral stalk 20

1.3.5 Proton translocation by the Fo domain 22

1.3.6 The structure of bovine mitochondrial F1-ATPase 26

1.3.7 The catalytic mechanism 29

1.3.8 Direct observation of rotation 31

1.3.9 Structures of F1-ATPase 32



vi

1.4 The inhibitor protein of the ATP synthase 34

1.4.1 Regulation of the ATP synthase 34

1.4.2 The bovine mitochondrial IF1 36

1.4.3 The inhibitor protein of Saccharomyces cerevisiae 38

1.5 Metallofluorides as analogues of nucleotides and of the transition

state of phosphoryl transfer 39

1.5.1 The chemistry of phosphoryl transfer 41

1.5.2 Aluminium and beryllium fluoride 44

1.5.3 Transition states in the catalytic cycle of F1-ATPase 45

1.5.3.1 The structure of bovine F1-ATPase with all three catalytic sites occupied 45

1.5.3.2 The structure of bovine F1-ATPase with two sites occupied by ATP 48

1.5.4 Magnesium fluoride 50

1.6 Aims of this work 52

Chapter Two: Materials and methods 54

2.1 Materials 54

2.1.1 Chemicals 54

2.1.2 Chromatography 55

2.1.3 Bacterial strains and growth media 55

2.1.4 Saccharomyces cerevisiae strains and growth media 56

2.1.5 Synthetic oligonucleotides 56



vii

2.2 Biochemical methods 56

2.2.1 Agarose gel electrophoresis 56

2.2.2 SDS-PAGE 57

2.2.3 Western blotting 58

2.2.3.1 Protein transfer 58

2.2.3.2 Immuno-detection of proteins 58

2.2.4 Measurement of protein concentration 59

2.2.5 Preparation of competent cells 59

2.2.5.1 Electro-competent cells 59

2.2.5.2 Chemically competent cells 59

2.2.6 Transformation of bacteria 60

2.2.6.1 Electroporation 60

2.2.6.2 Heat shock transformation 60

2.2.7 Calibration of gel filtration columns 61

2.2.8 Activity assays 61

2.2.9 Construction of expression plasmids bearing wild type and mutant IF1 62

2.2.9.1 Polymerase chain reaction (PCR) 63

2.2.9.2 Restriction digestions 64

2.2.9.3 Vector preparation 65

2.2.9.4 Vector screening and preparation 65

2.2.9.5 DNA sequence analysis 66

2.2.10 Purification of inhibitor proteins 66

2.2.10.1 Overexpression 66



viii

2.2.10.2 Purification of yeast IF1 67

2.2.11 Purification of F1-ATPase from S. cerevisiae 67

2.2.11.1 Cell growth and purification of mitochondria from S. cerevisiae 67

2.2.11.2 Preparation of submitochondrial particles 68

2.2.11.3 Purification of S. cerevisiae F1-ATPase 68

2.2.12 Purification of bovine mitochondrial F1-ATPase 69

2.2.12.1 Purification of bovine heart mitochondria 69

2.2.12.2 Purification of bovine F1-ATPase 70

2.2.13 Inhibition of F1-ATPases by inhibitor proteins 71

2.2.14 Analysis of the oligomeric state of S. cerevisiae IF1 72

2.2.14.1 Gel filtration chromatography 72

2.2.14.2 Covalent cross-linking 72

2.2.14.3 Analytical centrifugation 72

2.2.15 Inhibition of bovine F1-ATPase with ADP and magnesium fluoride 73

2.2.16 Protein crystallisation 74

2.2.16.1 Crystallisation of F1-ATPase inhibited by ADP and magnesium fluoride 74

2.2.16.2 Harvesting and cryoprotection 75

2.2.17 X-ray crystallography analysis 76

2.2.17.1 Crystal screening 76

2.2.17.2 Data collection 77

2.2.17.3 Data processing 77

2.2.17.4 Molecular replacement 79

2.2.17.5 Model refinement 80



ix

2.2.17.5.1 Refinement using Refmac5 80

2.2.17.5.2 Manual rebuilding 81

2.2.17.6 Structure validation 81

2.2.17.7 Figure preparation 82

Chapter Three: Mechanism of action of the F-ATPase

inhibitor protein IF1 from Saccharomyces cerevisiae 83

3.1 Results 83

3.1.1 Purification of recombinant inhibitor proteins 83

3.1.2 Inhibitory activity of S. cerevisiae inhibitor proteins 86

3.1.3 Covalent crosslinking of inhibitor proteins 88

3.1.4 Oligomeric state of the S. cerevisiae F1-YIF1 complex 90

3.1.4.1 Gel filtration analysis 90

3.1.4.2 Analytical ultracentrifugation 92

3.2 Discussion 94

3.2.1 Active and inactive states of the S. cerevisiae inhibitor proteins 94

3.2.2 Structure and mechanism of action of the inhibitor proteins 95

3.2.3 Dimerisation of F-ATPases 98



x

Chapter Four: The structure of bovine mitochondrial F1-

ATPase inhibited with ADP and magnesium fluoride 99

4.1 Results 99

4.1.1 Introduction 99

4.1.2 Inhibition of bovine F1-ATPase with ADP and magnesium fluoride 99

4.1.3 Crystallisation of bovine F1-ATPase inhibited with ADP and magnesium

fluoride 101

4.1.4 Cryoprotection of crystals 102

4.1.4.1 Harvesting solution 102

4.1.4.2 Cryoprotectant 102

4.1.4.3 Screening of crystals 104

4.1.5 Structure determination 104

4.1.5.1 Data collection 104

4.1.5.2 Structure solution 106

4.1.5.3 Structure validation 110

4.1.6 Molecular architecture of the ADP and magnesium fluoride inhibited bovine

F1-ATPase 113

4.1.7 The nucleotide binding sites 115

4.1.8 The nucleotide occupancy of F1-ATPase in crystal 22 118

4.2 Discussion 121

4.2.1 Comparison of the F1-MgF3
- structure with previously solved structures 121

4.2.2 The catalytic sites 124



xi

4.2.3 Why does the βE subunit bind nucleotide? 125

4.2.4 Implications for the catalytic mechanism 130

4.3 Conclusion 132

Appendix A: Crystallographic theory 135

A.1 Introduction 135

A.2 X-ray sources 136

A.2.1 Rotating anode X-ray tubes 136

A.2.2 Synchrotron radiation 138

A.3 X-ray detectors 140

A.3.1 Image plates 140

A.3.2 CCD detectors 142

A.4 Crystals 144

A.5 Scattering of X-rays by protein crystals 149

A.6 The Ewald sphere and reciprocal space 152

A.7 Structure solution and the phase problem 153

A.8 The molecular model 158

Appendix B: Supplementary figures 160

References 167



xii

Abstract

Structural and biochemical studies of the regulation and catalytic mechanism of
ATP synthase

Matthew W. Bowler

ATP synthase (F1Fo-ATPase) catalyses the production of ATP from ADP and
orthophosphate by using the proton motive force established across a membrane by
photosynthesis or oxidative phosphorylation.  The ATP synthase of eukaryotic
mitochondria is located in the inner membrane and is comprised of two domains.  The
globular F1 domain protrudes into the matrix and it contains the catalytic sites for ATP
synthesis.  The membrane bound Fo domain contains a proton channel.  The two domains
are connected by central and peripheral stalks.  When F1 is removed from the complex, it
can hydrolyse ATP but not synthesise it.  It is composed of nine subunits with the
stoichiometry α3β3γδε .  The α  and β  subunits are arranged alternately round the
asymmetric γ subunit, which, with the δ and ε subunits, forms the central stalk.  Catalysis
occurs by a rotary mechanism where rotation in Fo, induced by the passage of protons, is
transmitted to F1 via the central stalk.  The rotation of the γ  subunit induces
conformational changes in the catalytic β subunits that lead to the synthesis of ATP.  The
three catalytic sites proceed through three major and well defined conformations
sequentially, and no two sites are the same at any one time.  The peripheral stalk counters
the tendency of the α3β3 subcomplex to rotate with the γ subunit. The ATP synthase of
mitochondria is regulated by an inhibitor protein, IF1, that prevents hydrolysis of ATP
when the proton motive force collapses.

Saccharomyces cerevisiae has two inhibitor proteins, YIF1 and STF1.  The states
of oligomerisation of their active and inactive forms have been investigated.  In contrast
to bovine IF1, which is active as a dimer, the yeast inhibitors are active as monomers
around pH 7.0.  Like the bovine protein, they form inactive oligomers at higher pH
values.

While many of features of the mechanism of catalysis of the ATP synthase are
well understood, it is now clear that there are many sub-steps within the cycle.  Some of
them have been revealed by analogues of phosphoryl transfer.  Bovine mitochondrial
F1-ATPase inhibited with ADP and magnesium fluoride forms a transition state analogue
complex.  Its structure was solved to 2.5 Å resolution.  The βTP and βDP catalytic sites
both contain ADP and MgF3

-.  The βE subunit binds ADP, despite being in an essentially
open conformation.  The structure represents a new sub-step in the catalytic cycle just
before the release of the substrates of ATP hydrolysis.
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Abbreviations

Structures:

1. Reference structure: bovine F1-ATPase containing AMP-PNP in the βTP subunit

and ADP in the βDP subunit (Abrahams et al., 1994).  The structure used is taken

from a single crystal cooled to 100K (Braig et al., 2000).

2. (ADP.AlF3)-F1: The structure of bovine F1-ATPase inhibited with ADP and

aluminium fluoride.  The structure contained AMP-PNP in the βTP subunit and

ADP-AlF3 in the βDP subunit (Braig et al., 2000).

3. (ADP-AlF4
-)2-F1: The structure of bovine F1-ATPase inhibited with ADP and

aluminium fluoride. The structure contained ADP-AlF4
- in the βTP subunit and the

βDP subunit and the β E subunit contained ADP and sulphate (mimicking

phosphate) and adopted a ‘half-closed’ conformation (Menz et al., 2001b).

4. F1-DCCD: The structure of bovine F1-ATPase inhibited with

dicyclohexylcarbodiimide (DCCD) (Gibbons et al., 2000).

5. BeF3
--F1: The structure of bovine F1-ATPase inhibited with ADP and beryllium

fluoride.  The structure contained ADP-BeF3
- in the βTP subunit and the βDP

subunit (Kagawa et al., 2004).

6. F1-MgF3
-: The structure of bovine F1-ATPase inhibited with ADP and magnesium

fluoride.
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CHAPTER 1: INTRODUCTION

1.1 The mitochondrion and bioenergetics

Mitochondria are often referred to as the power plant of eukaryotic cells, as they are

the site of oxidative metabolism and produce the energy used by the cell in the form of

adenosine triphosphate (ATP).  Almost all energetic processes within biological cells require

ATP, mostly produced by the membrane bound multimeric complex ATP synthase.  This

complex, and the complexes associated with the production of energy, are located in the inner

membrane of mitochondria.

ATP synthase is also found in the energy transducing membranes of prokarya, archea

and eukarya.  These membranes are the plasma membrane of eubacteria and archea, and the

thykaloid membrane of chloroplasts.  Some of the protein complexes found in these

membranes perform essentially the same functions and are structurally very similar as they

share the same evolutionary origin:  Mitochondria and chloroplasts are the evolutionary

legacy of endosymbiotic events when non-respiring or photosynthetic eukaria ingested, or

were invaded by, prokaryotes (Altmann, 1890; Gray et al., 1999).

1.1.1 The mitochondrion

Mitochondria are eukaryotic cellular organelles present throughout the cytosol of

most cells (Figure 1.1).  Their size and morphology vary according to tissue type but they are

generally ellipsoidal in shape, with dimensions of about 1.5 µm in diameter and 2 µm in

length.  They are bounded by two membranes, a smooth outer membrane and a highly folded

inner membrane (Mannella et al., 1997).  The outer membrane is freely permeable to ions

and small molecules via a non-specific channel VDAC [voltage dependent anion channel, or
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porin].  The invaginated inner membrane provides an enormous surface area for energy

transduction [(Palade, 1953) Figure 1.2].  These invaginations, or cristae, are impermeable to

metabolites, macromolecules and protons but they are freely permeable to oxygen and carbon

dioxode.  The cristae contain the proteins of oxidative phosphorylation (Saraste, 1999) and

transporters that import necessary metabolites and export metabolic products (Walker and

Runswick, 1993).

The cristae split the mitochondria into two compartments:  the matrix, which is

bounded by the inner membrane, where the citric acid cycle, fatty acid oxidation and ATP

synthesis take place; and the intermembrane space.

Figure 1.1.  Mitochondria of a human fibroblast.  A human fibroblast was incubated with

iodobutyltriphenylphosphonium (IBTP), fixed, and visualised with anti-IBTP antiserum and
an Oregon green linked secondary antibody.  IBTP accumulates in mitochondria driven by

the membrane potential and reacts covalently with free protein thiols in the matrix.  The scale
bar represents 50 µm.  [Figure courtesy of Meredith Ross, MRC Dunn Human Nutrition

Unit]
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Electron tomography of mitochondria has revealed that the cristae are, in turn, differentiated

into two sections: the inner membranes and the cristae membranes.  The inner membranes

closely follow the outer membranes and the cristae membranes fill most of the

mitochondrion, and are connected to the inner membranes by tubular structures referred to as

cristae junctions [Figure 1.3 (Frey et al., 2002)].  This effectively splits the inner membranes

into two sections.

Figure 1.2.  The mitochondrion.  A:  Schematic of the mitochondrion showing the major

features.  [From (Lodish et al., 2000)].  B:  Cross-section of a mitochondrion taken by
electron microscopy in negative stain.

Mitochondria are semi-autonomous as they posses their own DNA, and independent

machinery to replicate and transcribe it and to translate the transcripts into proteins.  The

human mitochondrial genome is a closed circular molecule of 16,596 bp that contains 37

genes.  Of these genes, 13 encode proteins of the respiratory chain and the ATP synthase, 22

encode transfer RNAs and the remaining two encode the 12 and 16 S ribosomal RNAs

(Figure 1.4).  The proteins encoded by the genome are as follows: seven subunits of complex

A B
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Figure 1.3.  Electron tomography of a chick cerebellar mitochondrion.  A: A three-
dimensional model of a mitochondrion.  The outer membrane is coloured dark blue, the inner

membrane light blue and the cristae green.  B: The isolated cristae from A shown from

behind.  The cristae junctions are outlined in red [adapted from (Frey et al., 2002)].

I (ND1-6 and 4L), cytochrome b of complex III, three subunits of complex IV (COX I-III)

and subunits a and A6L of the ATP synthase.  All of these subunits are highly hydrophobic.

The size of the genome varies with the species, with more complex organisms having a

smaller number of proteins encoded in the mitochondrial genome.  The size of mitochondrial

genomes varies from 6000 bp in Plasmodium to over 200,000 bp in some plant mitochondrial

genomes.  Sequencing of the genomes has revealed the closest relative to the prokaryotes that

were involved in the endosymbiotic events.  Comparison of bacterial genomes with those of

mitochondria has identified the intracellular parasite genus Rickettsia (the causative agent of

typhoid) as having a genome most similar to mitochondria (Gray and Spenser, 1996).

A B
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Figure 1.4 The human mitochondrial genome.  The proteins and tRNAs that are encoded
are shown, as well as disease causing mutations.  All the proteins encoded in the human

mitochondrial genome are integral membrane subunits of the complexes of the electron

transport chain and the ATP synthase.  Single letter codes for amino acids indicate their
corresponding tRNAs, OH and OL are the replication origins of the light and heavy chains

respectively and PH and PL are the transcription sites.  [Adapted from MITOMAP: A Human

Mitochondrial Genome Database, http://www.mitomap.org]

The vast majority of the proteins present in mitochondria are imported from the

cytoplasm where nuclear encoded proteins are synthesised and directed to the mitochondria.

Many, but not all of these proteins, contain a targeting sequence, containing positively

charged residues that help to carry the protein into the matrix, driven by the negative

membrane potential difference.  The presequence is cleaved during the process (von Heijne,

1986).
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Figure 1.5 The import of proteins containing a presequence into the mitochondrial
matrix.  The presequence is recognised by the TOM complex and directed to the TIM

complex.  The positively charged residues of the presequence move through the TIM channel
due to the membrane potential (Δψ) and passes into the matrix.  Binding of the peptide by

Hsp70 and Pam18/Tim14 causes ATP hydrolysis leading to Hsp70 release from Tim44 (I).

A free Hsp70 with ATP bound is then able to bind to Tim44 (II).  The polypeptide moves
into the matrix by Brownian motion and is continuously bound by Hsp70 until the complete

polypeptide is imported (III and IV).  The soluble protein Mge1 causes the release of ADP

from peptide bound Hsp70 and the rebinding of ATP (V) inducing the release of the bound
polypeptide (VI).  [After (Mayer, 2004)].
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Many of the proteins of the inner and outer membranes contain the targeting

information within the mature protein.  However, how this targeting occurs is largely

unknown, but some experiments with the adenine nucleotide transporter (ANT) of

S. cerevisiae (a protein imported without presequence) suggest a possible mechanism.  The

ANT (and other members of the transporter superfamily) contains three homologous

domains.  These domains may contain the targeting information, as each can form a complex

with a Tom70 dimer.  The domains would then pass through the outer membrane sequentially

(Wiedemann et al., 2001).

Proteins are imported through two translocases; the Translocase Outer Membrane

(TOM) and the Translocase Inner Membrane (TIM) (Jensen and Dunn, 2002; Paschen and

Neupert, 2001).  The TOM complex consists of protein import receptors and the import

channel itself.  The receptors, Tom20, 22, 37 and 70, bind the precursor protein and initiate

the transport of the protein through the channel [consisting of Tom40 and some smaller

subunits Tom5, 6 and 7 (Lithgow, 2000)].  Proteins containing a targeting sequence pass the

inner membrane through the TIM23 pore (made up of Tim23 and 17 and the translocation

motor composed of Tim44, hsp70 and mGrpE).  This process is energy dependent and

utilises ATP and the proton motive force [pmf (Figure 1.5)].  Insertion of proteins into the

inner membrane is facilitated by the TIM22 complex.  Precursor proteins are brought into the

membrane by a membrane bound insertion complex (composed of Tim10, 12, 18, 22 and 54),

again this process utilises energy from the pmf.

1.1.2 Bioenergetics

All biochemical reactions within the cell require energy and many of these reactions,

such as the maintenance of large gradients across membranes or the synthesis of ATP, are
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thermodynamically unfavourable.  The energy required for these reactions is provided by the

oxidation of nutrients or by photosynthesis.  These energy producing processes are coupled

by the formation of a proton electrochemical gradient across the inner membrane of

mitochondria, a concept first proposed in the chemiosmotic theory (Mitchell, 1961).  The

protein complexes of the electron transport chain generate a proton electrochemical gradient

across the inner mitochondrial membrane (detailed in Section 1.2) converting a redox

potential difference to a chemiosmotic potential difference.  This gradient is called the proton

motive force (pmf) and has two components: the differences in pH (ΔpH) and in electrical

potential (Δψ) across the membrane as shown in equation 1.1:

 (1.1)

where Δ

€ 

~
µ H is the proton motive force in kJM-1, Δψ is the membrane potential in mV, F is the

Faraday constant, R is the gas constant, T is the temperature in Kelvin and ΔpH is the pH

difference across the membrane.

The maintenance of the proton electrochemical gradient far from equilibrium is used by the

ATP synthase to convert ADP and orthophosphate to ATP.  The maintenance of the ATP to

ADP ratio up to 1000 fold away from equilibrium results in the high potential chemical

energy.  This potential is utilised by the cell to fuel thermodynamically unfavourable

reactions.  The ΔG of hydrolysis of ATP (to ADP and Pi) is given by equation 1.2:

€ 

Δ
~

µ H+
= −FΔψ + 2.3RTΔpH
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(1.2)

where K is the equilibrium constant and Γ is the observed mass action ratio (the ratio of

reactant to product, in this case [ATP]/[ADP]).  In the cytoplasm, the mass action ratio is

maintained as low as 10-5 M whereas the equilibrium constant is as high as 105 M.  At this

displacement from equilibrium the hydrolysis of ATP typically liberates 57 kJM-1 of free

energy (Nicholls and Ferguson, 2002).

1.2 The electron transport chain and oxidative phosphorylation

Glycolysis, fatty acid oxidation and the citric acid cycle produce high energy

electrons bound to nicotine adenine dinucleotide (NADH) and flavin adenine dinucleotide

(FADH2).  These electrons are used to reduce oxygen to water, releasing large amounts of

free energy.  The electrons are passed down a series of membrane bound protein complexes

that pump protons out of the mitochondrial matrix as redox energy is abstracted during

electron transport.  The accumulation of protons in the intermembrane space generates the

pmf that is used to drive the synthesis of ATP (Figure 1.6).

Complex I (NADH-Q oxidoreductase), the first enzyme in the electron transport

chain, oxidises NADH to NAD+.  It passes its electrons to a flavin mononucleotide (FMN)

prosthetic group becoming FMNH2 (FMN binds protons when reduced).  Then the electrons

are passed through a series of iron-sulphur clusters to reduce coenzyme-Q (Q) to quinol

(QH2) in the lipid bilayer.

€ 

ΔG = −RT ln K
Γ
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Figure 1.6.  The protein complexes of oxidative phosphorylation in mitochondria.  Complex I (NADH-Q

oxidoreductase) oxidises NADH.  Two electrons are passed to coenzyme Q, which is reduced from ubiquinone

(Q) to ubiquinol (QH2), and 4 protons are pumped into the intermembrane space.  Electrons also enter the chain

from complex II (succinate-Q reductase), which oxidises succinate to fumarate, and passes the electrons to Q

but does not pump any protons.  Complex III (cytochrome reductase) shuttles electrons from Q to cytochrome c

and transfers 4 protons to the intermembrane space.  In the final stage, 4 electrons from cytochrome c are passed

to complex IV (cytochrome c oxidase) to reduce molecular oxygen to water with the concomitant pumping of 4

protons from the matrix.  The resultant proton gradient is used by the ATP synthase to power the production of

ATP from ADP and Pi.  The adenine nucleotide transporter shuttles synthesised ATP out of the matrix and ADP

in and the phosphate transporter imports orthophosphate (with a proton, maintaining electroneutrality).

Structures and references:  complex I from bovine heart mitochondria (Grigorieff, 1998), complex II from

E. coli [PDB 1NEN, (Yankovskaya et al., 2003)], complex III from bovine heart mitochondria [PDB 1BE3,

(Iwata et al., 1998)], complex IV from Paracoccus denitrificans [PDB 1AR1, (Ostermeier et al., 1997)], ATP

synthase: a chimera between bovine F1-ATPase [PDB 1E79, (Gibbons et al., 2000)], the c-ring from yeast

mitochondrial ATP synthase [PDB 1Q01, (Stock et al., 1999)] and the peripheral stalk, and remaining Fo

subunits, from bovine ATP synthase [a 3-D reconstruction from electron cryomicroscopy of single particles in

ice (Rubinstein et al., 2003)].  Cytochrome c is from horse heart mitochondria [PDB 1HRC, (Bushnell et al.,

1990)] and ANT from bovine heart mitochondria [PDB 10KC, (Pebay-Peyroula et al., 2003)].  The phosphate

transporter is modelled from the ANT coordinates.  Their sequences are highly homologous (Walker and

Runswick, 1993) and they probably adopt a similar fold.  The structures are not shown to scale.
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Accompanying the transfer of two electrons, four protons are removed from the matrix.  Two

of them are pumped into the intermembrane space and the other two are passed to Q in the

membrane.

Complex II (succinate-Q reductase) oxidises FADH2, from succinate dehydrogenase,

to FAD+.  Again the electrons are passed through a series of iron sulphur clusters to Q in the

membrane, contributing to the pool of QH2.  Unlike the other electron transfer complexes no

protons are pumped into the intermembrane space at this site.  Complex III (cytochrome c

reductase) transfers electrons from the reduced Q pool, through three haem irons and a

Rieske centre (a two iron cluster bound by sulphurs and two histidines that maintains the

irons with a higher reduction potential ensuring initial electron transfer is to the Rieske iron)

to the soluble protein, cytochrome c, in the intermembrane space.  This reduction is

associated with the pumping of four protons, two from the matrix and two from the Q pool

(see Figure 1.7).

The final stage of the electron transport chain is catalysed by complex IV

(cytochrome c oxidase).  This complex transfers an electron from reduced cytochrome c, to a

binuclear centre.  Then the electron is shuttled through two haem groups to a final copper

centre.  At this stage a second electron enters the protein from cytochrome c, passing down

the same pathway, but stopping at the second haem iron as the final copper is already

reduced.  This iron is then able to bind oxygen (freely permeable in the membrane) as it is in

the Fe2+ state.  The electron bound to the copper, reduces the iron oxygen, forming a peroxide

bridge between the metals.  A further electron from cytochrome c, and a proton from the

matrix, cleaves this bond, reducing the copper oxygen.  A fourth electron and another matrix

proton reduce the iron oxygen and the addition of another two protons from the matrix

releases two water molecules into the intermembrane space, and the protein returns to the

oxidised form.  The end result of complex IV activity is that four protons are removed from

the matrix and enter the cytosol in the form of water (see Figure 1.8).  Complex IV also
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Figure 1.7 The Q cycle in mitochondria.  A: Two electrons from a bound QH2 are
transferred, one to cytochrome c and the other to a bound Q (forming semiquinone, Q

-), B.

C: The newly formed Q is released and a new QH2 diffuses in from the membrane and
transfers its electrons, one to cytochrome c the other reduces semiqinone to QH2.  This last

step leads to the uptake of two protons from the matrix.  D: Newly formed QH2 and Q diffuse

back into the membrane.
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pumps four protons from the matrix per oxygen molecule reduced, although the mechanism

of this pump is unclear.

Figure 1.8 The mechanism of complex IV.  A: The prosthetic groups of complex IV as
arranged in the protein.  Electrons from cytochrome c proteins are transferred to the CuA/CuA

cluster, through the haem groups to reduce CuB.  A second electron reduces the haem a3 iron
enabling it to bind oxygen.  B: The reduction of oxygen to water.  Oxygen binds the reduced

iron and a further two electrons from cytochrome c are transferred to the oxygen forming a

peroxide bridge between the iron and CuB.  Another electron breaks this bond and leads to the
uptake of a proton from the matrix.  Another electron and a further three protons from the

matrix generates two water molecules that are released into the intermembrane space and
leave the enzyme in the reduced state.

The proton electrochemical gradient across the inner mitochondrial membrane is used

not only in the production of ATP by the ATP synthase (Section 1.3) but also in the transport

of some metabolites in and out of the matrix.  The adenine nucleotide translocase (ANT)
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catalyses the antiport of one ADP into the matrix and an ATP out.  In the presence of a pmf,

it will preferentially transport ATP out, and vice versa, as ATP has an additional negative

charge, in effect repelling it from the matrix.  The phosphate carrier transports

orthophosphate into the matrix with a proton, maintaining electroneutrality.  Around 30% of

the pmf is utilised in removing ATP and importing ADP and phosphate.  The combined

effect of these transporters provides the ATP synthase with reactants, and the cytosol with

ATP.  A large family of these transporters exist to provide the mitochondria with metabolites

and they all share a common structure (Walker and Runswick, 1993).

The mechanisms of many of the complexes involved in ATP generation in

mitochondria has been illuminated by high resolution crystal structures which have provided

information about the position and number of prosthetic groups.  High resolution structures

exist for, complex III (Hunte et al., 2000; Iwata et al., 1998; Lange and Hunte, 2002),

complex IV (Ostermeier et al., 1997; Soulimane et al., 2000; Svensson-Ek et al., 2002;

Yoshikawa et al., 1998) and parts of the ATP synthase (Abrahams et al., 1994; Carbajo et al.,

2004; Gibbons et al., 2000; Stock et al., 1999) from mitochondria.  The structure of the ANT

inhibited with carboxyatractyloside has provided the first glimpse of the transporter family

(Pebay-Peyroula et al., 2003). There are also structures for the eubacterial complex II

(Yankovskaya et al., 2003) and complex IV (Ostermeier et al., 1997; Soulimane et al., 2000).

Complex I, the largest and most complicated of the complexes, is known only at low

resolution (Grigorieff, 1998).  A high resolution structure will be required to help to explain

its mechanisms of electron transport and proton pumping.
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1.3 The ATP synthase

1.3.1 Introduction

The ATP synthase (F1Fo-ATPase) is common to eubacteria, chloroplasts and

mitochondria.  The archaeal H+ ATPase (A-type ATPase) is similar to the F-type ATPases

but has a greater resemblance to the ATPases found in the vacuoles of eukaria (V-type

ATPases) which are also related to the F-ATPases, pointing to a common evolutionary origin

for F, V and A-type ATPases.  ATP synthase was first observed by electron microscopy as

spherical structures of unknown function attached by a stalk to the membrane of inside-out

vesicles made from mitochondrial inner membranes (Figure 1.9) [sub-mitochondrial particles

(SMPs)] (Fernandez-Moran, 1962).  It was found subsequently that the spheres could

synthesise ATP while SMPs were respiring, but, when removed from the membrane by

treatment with urea, they were only able to hydrolyse ATP (Pullman et al., 1960). However,

the particles could be reconstituted with the membranes with subsequent restoration of ATP

synthetic activity (Kagawa and Racker, 1966c).  The depleted membranes were also found to

be unable to respire and were highly permeable to protons.

Further experiments demonstrated that there were two major parts to this enzyme:  the

soluble F1 (factor 1) domain (Kagawa and Racker, 1966b), where ATP synthesis occurs and

the integral membrane domain Fo (Kagawa and Racker, 1966a) where the proton channel is

located (oligomycin blocks proton flow and ATP synthesis).  These experiments were the

first in a long line that have revealed much about the structure and mechanism of this

enzyme.  The current state of knowledge is outlined in the following sections.
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Figure 1.9 Electron micrographs of submitochondrial particles (175,000 x
magnification).  A: SMPs – ATP synthase is visible as spheres protruding from the

membrane (arrow).  B: SMPs after treatment with urea.  The membranes are smooth as the F1

portion has been removed.  C: The water soluble F1-ATPase removed from the membrane,

the particles are unable to synthesise ATP but will hydrolyse it.  D: SMPs reconstituted with
F1 particles – they regain the ability to synthesise ATP in the presence of a pmf.  [Image from

(Weissmann and Claiborne, 1975)]

1.3.2 The subunits of the ATP synthase

The ATP synthase is a large multimeric complex.  The bacterial enzyme from

Escherichia coli is representative of the most simple form, being composed of eight different

subunits with the stoichiometry: α3β3γδεab2c9-11.  The genes for these proteins are contained

A B

C D
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in a single operon (Foster and Fillingame, 1982; Walker et al., 1984a; Walker et al., 1984b).

Subunits αβγδε form F1 and a, b and c form the Fo portion.  The number of c subunits is

uncertain in E. coli as crosslinking and radiolabelling experiments are not conclusive, but the

value is likely to be in the range 9 to 12 (Foster and Fillingame, 1982; Jones et al., 2000) and

10 has been decided on (Jiang et al., 2001).  The subunit composition and nomenclature

varies with the species (Table 1.1); but the overall architecture of the enzyme is likely to be

the same throughout.  Figure 1.10 shows a comparison of the subunits and their roles in the

complex.  The ATP synthase from chloroplasts (Süss and Schmidt, 1982) and photosynthetic

bacteria (Cozens and Walker, 1987; Falk et al., 1985; Tybulewicz et al., 1984; van Walraven

et al., 1984; van Walraven et al., 1993) have similar subunits in the stoichiometry of

α3β3γδεabb’c9-12 where b and b’ are homologous and replace the b dimer found in other

species (Cozens and Walker, 1987; Dunn et al., 2000; Falk et al., 1985).

The ATP synthase from mitochondria is the most complex and contains the largest

number of subunits.  The best characterised of these protein complexes are those from bovine

heart and yeast mitochondria.  The bovine enzyme comprises 16 subunits that combine to

form a complex of 583.6 kDa containing 28 separate polypeptides (Walker et al., 1991).  The

stoichiometry of subunits in the F1 domain is α3β3γδε (Walker et al., 1985) and in Fo subunits

abc10defgOSCPF6 and A6L (Collinson et al., 1994b; Collinson et al., 1996; Walker et al.,

1987; Walker et al., 1991).  Subunits a and c form the proton channel and the other subunits

are in the peripheral stalk (see Section 1.3.4) or in Fo (see Section 1.3.3).  The Fo subunits are

all present in a 1:1 ratio (Collinson et al., 1994b; Collinson et al., 1996) except for subunit c,

where many copies are found.  The yeast enzyme has two additional subunits (i and k), but it

adopts essentially the same arrangement as the bovine protein (Velours and Arselin, 2000),

see Table 1.1.  Both enzymes are regulated by one or more inhibitor proteins (see Section

1.4).
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Table 1.1 The subunits of ATP synthase from various species.  Subunit equivalence is

based on sequence homology.  A dash indicates no homologous subunit is present.  Bold
subunits are encoded in the mitochondrial or chloroplast genomes (the chloroplast genome

sampled was that of Arabidopsis thaliana).

Mitochondria

bovine yeast

Chloroplasts and

photosynthetic

bacteria

E. coli and some

other eubacteria

α α α α

β β β β

γ γ γ γ

δ δ ε ε

ε ε - -
OSCP OSCP δ δ

a a (6) a (IV) a

b b (4) b and b’ (I and II) b

c c (9) c (III) c

d d - -

e e - -
f f - -

g g - -

F6 h - -

A6L 8 - -

IF1 IF1 - -
- STF1 (9 kDa) - -

- STF2 (15 kDa) - -

- i - -

- k - -
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Figure 1.10 Models of mitochondrial and eubacterial ATP synthase.  The models are
based on structural and biochemical information and show all the bacterial subunits and the

major mitochondrial subunits (subunits e, f, g, i, k, A6L and IF1 are not shown).  A β subunit

has been removed in order to expose the central stalk.  The rotary assembly (γδεc) is outlined

in black.

1.3.3 The minor subunits

The bovine subunits e, f, g, A6L, IF1 and the yeast subunits e, f, g, 8, i, and k are not

found in the bacterial or chloroplast complexes and are generally collectively termed the

minor subunits.  While yeast subunits e, g and k are not considered necessary for a fully

functioning ATP synthase, they have been implicated in yeast ATP synthase dimer

formation, as has subunit i (Arnold et al., 1998; Paumard et al., 2002a; Paumard et al., 2000).

They are thought to be in the membrane and to form homodimeric parallel α-helical coiled-

coils between complexes that may lead to ‘supra-molecular’ complexes (Schägger and
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Pfeiffer, 2000).  The presence and levels of e and g have also been observed to have an affect

on formation of cristae (Arselin et al., 2004; Paumard et al., 2002b).  It has been proposed

that the formation of dimers of ATP synthase controls cristae morphology.  A subunit f null

yeast mutant was shown to have much lower ATPase activity and a role for it in complex

assembly has been postulated (Roudeau et al., 1999; Vaillier et al., 1999).  Subunit A6L (8 in

yeast) is hydrophobic and may play a role in energy transduction (Fearnley and Walker,

1986; Higuti et al., 1988).

1.3.4 The peripheral stalk

The peripheral stalk that connects F1 and Fo is essential for the function of the

enzyme.  It is thought to counter the tendency of the α3β3 hexamer of F1 follow the rotation of

Figure 1.11 Cryo-electron microscopy of isolated ATP synthases.  A: Negatively stained

bovine ATP synthase.  The peripheral stalk can be seen to the right of the complex (arrow)

and additional density, probably corresponding to OSCP, is seen above F1.  [Image from
(Karrasch and Walker, 1999)].  B: Negatively stained ATP synthase from E. coli.  Density

for a peripheral stalk is also observed (arrow) and extra density above F1.  [Image from

(Wilkens and Capaldi, 1998)]
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the rotor, (Collinson et al., 1994b; Walker, 1998).  It is comprised of single copies of OSCP,

and subunits b, d and F6 (Collinson et al., 1994a; Collinson et al., 1994b; Collinson et al.,

1996).  The OSCP binds to the top of F1 and extends down the side of a non-catalytic α-β

interface to connect to subunit b (Collinson et al., 1994b; Joshi et al., 1996; Rubinstein and

Walker, 2002; Rubinstein et al., 2003), which is bound to the membrane and Fo at its C-

terminus (Walker et al., 1987).

The OSCP and subunit b bind subunits F6 and d (Collinson et al., 1994a; Collinson et

al., 1994c; Rubinstein et al., 2004).  The peripheral stalk was first observed by electron

microscopy in negative stain [(Böttcher et al., 2000; Karrasch and Walker, 1999; Wilkens

and Capaldi, 1998) see Figure 1.11].  A three-dimensional reconstruction of bovine ATP

synthase in vitreous ice has provided the first overall glimpse of the asymmetric architecture

of the peripheral stalk [(Rubinstein et al., 2003) Figure 1.12].  This structure shows the

peripheral stalk wrapping around the F1-c10 sub-complex in a direction opposing rotation (in

this case accompanying hydrolysis).  This arrangement implies a much more flexible

structure than had been envisaged previously.  Rather than being a rigid body, opposing

rotation of α3β3, the peripheral stalk is probably elastic and moves round with α3β3 in the

direction of the motion it opposes (Rubinstein et al., 2003).

Further progress on the structure of the peripheral stalk has been made by the solution

NMR study of individual subunits.  The N-terminal domain of the E. coli δ subunit (Wilkens

et al., 1997), of bovine OSCP (R. J. Carbajo, F. A. Kellas, M. J. Runswick, J. E. Walker and

D. Neuhaus; unpublished results) and intact bovine F6 (Carbajo et al., 2004) have been solved

by NMR spectroscopy.  In addition, part of the E. coli subunit b has been solved by X-ray

crystallography as well as its membrane domain by other methods (Del Rizzo et al., 2002;

Dmitriev et al., 1999) .  By fitting individual subunit structures into the EM model, it may be

possible to provide a complete molecular picture of the peripheral stalk.
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Figure 1.12 Three-dimensional model of bovine ATP synthase from analysis of single
particles in ice.  The model has been divided into two portions: The F1-c10 subcomplex is
blue and the peripheral stalk [including subunit a and other membrane components (subunits

e, f, g and A6L)] is green.  The model shows the extent of the stalk and its curvature around

F1.  [Image from (Rubinstein et al., 2003)]

1.3.5 Proton translocation by the Fo domain

The proton channel is formed at the interface between the c ring and subunit a.  The

flow of protons from the intermembrane space through this interface, drives the rotation of

the c ring.  The a subunit is probably comprises five transmembrane helices (Valiyaveetil and

Fillingame, 1998; Wada et al., 1999) and the c subunit of two (Hoppe et al., 1984; Hoppe and

Sebald, 1984).  The c subunit forms a ring structure that is thought to interact intimately with

the helices of subunit a forming a proton channel (Schneider and Altendorf, 1985).  Exactly

how protons flow through the channel and generate rotation of the c ring is still the subject of

much debate.
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Three models have been proposed.  The two-channel model is based around a highly

conserved aspartate in subunit c (Asp-61, bovine numbering) and a conserved arginine in

subunit a [Arg-157 (210 in E. coli)], see Figure 1.13 part A.  The model places the

carboxylate of Asp-61 in the middle of the lipid bilayer, interacting with the positive

guanidinium of Arg–157 (210 in E. coli).  A proton is thought to enter a ‘half channel’ and

bind to the carboxyl, removing the charged interaction with the arginine.  Then the arginine is

free to interact with a deprotonated carboxylate from another c subunit that had lost its proton

in the second ‘half channel’.  This moves the subunit closer, thus driving the rotation of the c

ring (Engelbrecht and Junge, 1997; Junge et al., 1997; Walker, 1998).

The one channel model, based on experiments on a sodium dependent ATP synthase,

places the aspartate at the surface of the membrane with a single channel between subunits a

and c spanning the membrane (Figure 1.13, part B).  The mechanism of rotation is proposed

to be similar except the sodium ion would be released from a c subunit once the subunit no

longer interacts with the a subunit (Dimroth et al., 2000; Dimroth et al., 1999).  A third

model proposes a rotation of the C-terminal helix on protonation and deprotonation of the

carboxylate.  The proposal is based on NMR experiments, conducted in chloroform methanol

mixtures, at different pH values (Rastogi and Girvin, 1999).  A 140° rotation in the C-

terminal helix on protonation of the aspartate is proposed to drive rotation by a ratchet type

mechanism.  However, as these experiments were conducted on isolated c subunits, in

chloroform:water:methanol, the biological relevance of the observed structural changes is

questionable.

From the proposed models it can be seen that the number of protons translocated per

complete 360° rotation depends on the number of c subunits.  The number present in the

E. coli complex has been estimated variously as between nine and eleven and eventually
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Figure 1.13 Theoretical models of the ATP synthase Fo domain and the generation of
rotation.  A: The two channel model (Engelbrecht and Junge, 1997).  B: The single channel

model based on experiments performed on the sodium motive ATP synthase from
P. modestum (Dimroth et al., 1999).

twelve (Foster and Fillingame, 1982; Jones et al., 2000).  However, an electron density map

of a sub-complex of the yeast mitochondrial ATP synthase clearly showed a ring of ten c

subunits attached to F1-ATPase (Stock et al., 1999).

The presence of ten c subunits in the ATP synthase implies that 3.3 protons are

translocated per ATP molecule synthesised.  Previously, it had been assumed that the ATP:H+

ratio would be integral, and measured values were in the range of 3 and 4 (van Walraven et

al., 1996).  The symmetry mismatch between the c ring and catalytic sites in F1-ATPase may

also be an important feature as this arrangement could avoid energy minima that may form in

a symmetrical arrangement.  This concept was first proposed for the rotary mechanism of the

flagellum (Thomas et al., 1999).  As the energy of rotation from the c-ring is stored

elastically within the central stalk and released in a quantised manner, the enzyme is

prevented from resting at an energy minimum.
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Figure 1.14 Subunit stoichiometry in the c-rings of various species.  A: Electron density
map of the yeast ATP synthase showing a ring of 10 c subunits (Stock et al., 1999). B: An

atomic force microscopy image of the 14 c-ring from chloroplast ATP synthase from spinach

(Seelert et al., 2000).  C: Two-dimensional crystals of the 11 c-ring from Ilyobacter

tartaricus (Stahlberg et al., 2001).

Since the discovery of ten c subunits in the yeast enzyme, symmetry mismatch has

been observed in other species (Figure 1.14).  The number is different for each species but

the protons translocated per ATP is always non-integral.  The chloroplast ATP synthase

contains a ring of 14 c subunits (4.6 H+:ATP) (Seelert et al., 2000), the sodium driven

ATPase from Ilyobacter tartaricus contains 11 c subunits (3.6 H+:ATP) (Stahlberg et al.,

2001; Vonck et al., 2002) and the thermophilic Bacillus PS3 probably has 10 c subunits

(3.3 H+:ATP) (Mitome et al., 2004); see Figure 1.14.  Recently, the structure of an isolated

ring from the sodium motive V-type ATPase of Enterococcus hirae has been shown to

contain 20 equivalents of the c subunit with 10 sodium binding sites [Murata, T, Leslie, A. G.

W. and Walker, J. E.; unpublished results] and in the genome of the archaeon Methanopyrus

kandleri, a gene for a single polypeptide containing the equivalent of 13 c subunits, fused

together, has been found (Lolkema and Boekema, 2003).  In the light of this evidence, and
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after further experiments, the number of c subunits in the E. coli complex has been changed

to 10 (Jiang et al., 2001).  It has also been suggested that E. coli may change the size of the

ring in response to growth conditions (Schemidt et al., 1998).

1.3.6 The structure of bovine mitochondrial F1-ATPase

The best understood part of the ATP synthase is the F1 catalytic domain, largely due

to extensive structural studies of the bovine enzyme at high resolution (Abrahams et al.,

1996; Abrahams et al., 1994; Braig et al., 2000; Cabezón et al., 2003; Gibbons et al., 2000;

Kagawa et al., 2004; Menz et al., 2001b; Orriss et al., 1998; van Raaij et al., 1996a).

Treatment of SMPs with chloroform releases it in a soluble and active form (Beechey et al.,

1975).  It is capable of ATP hydrolysis and has proved to be amenable to structural studies

(Lutter et al., 1993).  Structural studies of the bovine heart mitochondrial F1-ATPase have

revealed the principal features of its architecture and mechanism [Figure 1.15 (Abrahams et

al., 1994; Braig et al., 2000; Cabezón et al., 2003; Gibbons et al., 2000; Kagawa et al., 2004;

Menz et al., 2001b; Orriss et al., 1998)].  The three α and three β subunits surround the γ

subunit in alternation and have extremely similar folds, [as expected from their related

sequences with 20% identity (Walker et al., 1982)].  This arrangement confers a pseudo

three-fold symmetry on the complex.  However the three β subunits adopt very different

conformations, because of the asymmetric central stalk in the centre of the complex (Figure

1.16).  The γ subunit forms an anti-parallel α-helical coiled-coil from its N and C-terminal

regions.  The lower end of the central stalk was disordered in the first structure, and so much

of the electron density for the remaining portion of the subunit, and the δ and ε subunits, was

missing.  However, it was resolved subsequently [Section 1.3.9 (Gibbons et al., 2000)].  The

nucleotide binding sites are located near the interfaces of α and β subunits and there are
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Figure 1.15 The structure of bovine heart mitochondrial F1-ATPase at 2.8 Å resolution.
The structure is shown with α-helices as ribbons and β-sheets as arrows.  The α subunits are

red and the β subunits yellow.  They are held together by six-stranded β-barrels located at

their N-termini (top of complex).  The  γ subunit (blue) penetrates the α3β3 hexamer.  [Figure

generated from the first F1-ATPase structure PDB code 1BMF (Abrahams et al., 1994)]

significant differences in the bound nucleotide.  The α subunits all bind the non-hydrolysable

ATP analogue AMP-PNP (where the bridging oxygen between the β and γ phosphates is

replaced with a nitrogen) and adopt similar ‘closed’ states binding nucleotide tightly.  It is in

the catalytic β chains that the significant differences lie.  The three β subunits are all in

different conformations:  The first is in a ‘closed state’ with AMP-PNP bound tightly and is

termed βTP (Tri-phosphate), the second has a similar overall conformation but binds ADP and

is termed βDP (Di-phosphate) and the third is in an open conformation and binds no

nucleotide, βE (Empty).  The three α chains are called αTP, αDP and αE according to which β

subunit they neighbour (Figure 1.16).  The three different states of the β subunits fitted the
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proposed binding change mechanism (Boyer, 1975; Boyer, 1993; Boyer et al., 1975; Cross

and Boyer, 1975) and they provided a molecular mechanism for rotary action (see Section

1.3.7).

Figure 1.16 Structural differences in the β subunits of F1-ATPase.  A: Cross-section of

the ATPase showing subunits βE and αDP.  The β chain adopts a very different conformation

to the α chain.  The nucleotide binding pocket (asterisk) is empty and the helix-turn-helix

motif in the C-terminal region (arrow) has undergone a 37º rotation relative to the βTP subunit

(B).  Two α and two β chains have been removed for clarity.  B: The βTP and αE subunits; the

complex has been rotated 120º relative to A.  The α chain is in the same conformation as the

others, the β chain is in a closed state, binding AMP-PNP.  The helix-turn-helix motif is

interacting closely with the γ subunit.  βDP (not shown) adopts a similar overall conformation

as the βTP subunit.

The structure of F1-ATPase demonstrated that the γ subunit introduced the asymmetry

and caused the three β subunits to be in three different conformations.  A structure of an α3β3

hexamer, from the thermophilic Bacillus PS3, without the γ subunit, had exact three-fold

symmetry and bound no nucleotide, demonstrating that the γ subunit confers asymmetry on

A B
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the complex (Shirakihara et al., 1997).  The catalytic importance of nucleotide binding

pocket residues was also determined.  As expected, the residues of the P-loop motif

GXXXXGKT (Walker et al., 1982) were found to interact with the nucleotide phosphates.

Density was observed for an attacking water (or leaving water in synthesis) coordinated by β-

Glu 188, the negative charge activating nucleophilic attack by the water (in the α subunits

this glutamate is replaced by a glutamine residue with no charge which may explain their lack

of catalytic activity).  An arginine residue, contributed from a neighbouring α subunit (αArg-

373), implicated in catalysis by mutational studies (Futai et al., 1989), was found to be

involved in catalysis.  The positively charged guanidinium group interacts closely with the γ

phosphate and is thought to stabilise the negative charge that would develop on a transition

state (Abrahams et al., 1994).

1.3.7 The catalytic mechanism

In the intact complex, energy in the form of the pmf is converted into rotational

energy which is transmitted to the catalytic sites in the F1 domain (around 100 Å distance

from Fo) via the central stalk.  Exactly how this is achieved has been a focus of research since

the complex was first discovered.  The first mechanism to be widely accepted, and that was

subsequently confirmed by X-ray crystal structures, was the binding change mechanism

(Boyer, 1979; Boyer, 1993; Cross, 1981; Gresser et al., 1982).

There are two main tenets of this mechanism: First, the energy required for the

synthesis of ATP is used to release the product from a tightly bound pocket and second, that

all three sites act cooperatively, rather than as discrete sites of catalysis.  The three catalytic

sites in the β subunits were proposed to adopt three conformations with three affinities for

nucleotide:  Open (O), loose (L) and tight (T), with low medium and high affinities for
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nucleotide respectively (Figure 1.17).  Energy derived from the pmf drives the conversion of

one site to the next; in synthesis this would convert a tight binding site to a loose one

releasing freshly synthesised ATP (T to O), the site next to this one is converted from loose,

binding ADP and Pi, to a tight site causing the synthesis of ATP (L to T).  The third site will

be converted from an open site to a loose, binding ADP and Pi (O to L), see Figure 1.17).

The sites move sequentially from one form to the next.

Figure 1.17 The binding change mechanism.  Schematic showing the three different

catalytic states of the β subunits denoted O (open), L (loose) and T (tight).  As the γ subunit

(blue) rotates, the tight site is converted to an open site and ATP is released, at the same time

an open site is converted to a loose site binding ADP and orthophosphate.  The energy put
into the system by the rotation of γ is used to release tightly bound ATP.  [After (Cross,

1981), the position and role of the γ subunit was not known at the time].

The crystal structure of F1-ATPase (Abrahams et al., 1994) provided direct evidence for this

catalytic mechanism (see previous section) with the three β subunits adopting the three

nucleotide binding affinities (βE, βTP and βDP for O, L and T) and afforded the first firm basis

for a rotary mechanism.  The cooperativity between the sites is caused by the asymmetric γ

subunit that induces the conformational changes.  The rotation of the γ subunit had been

suggested as the mechanism of transfer of energy to the catalytic sites, converting them from
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one form to another.  This rotating mechanism was confirmed by the direct visualisation of

rotation using information obtained from the structural model [see section 1.3.8 (Noji et al.,

1997)].

1.3.8 Direct observation of rotation

The direct observation of rotation of the γ  subunit in F1-ATPase not only

demonstrated the reality of rotary catalysis but also revealed much about the mechanism

itself.  Rotation was first observed in the (αβ)3γ subcomplex of Bacillus PS3; the complex

has three histidine tags, on the N-termini of its β subunits, and was attached to a glass

coverslip coated with Ni-NTA beads.  In the first experiment, a fluorescent actin filament

was connected to the γ subunit via biotin and avidin to allow inspection of rotation (Noji et

al., 1997).

In initial experiments rotation was seen but at much lower rates than those

theoretically possible, due to the viscous drag on the actin filament.  Later experiments,

replacing this probe with smaller ones such as Cy3-maleimide (Adachi et al., 2000) or a gold

bead (Yasuda et al., 2001) revealed distinct 120º substeps as postulated in the binding change

mechanism but as the ATP concentration was lowered the 120º step was resolved into 90º

and 30º sub-steps thought to correspond to ATP binding then subsequent hydrolysis (Yasuda

et al., 2001).

Rotation has also been observed in the c-ring.  An actin filament attatched to a c

subunit showed rotation, demonstrating transmission of energy from the γ subunit to the c-

ring and vice versa (Sambongi et al., 1999).  A later experiment linked the c subunits to Ni-

NTA beads and observed rotation of the (αβ)3 subcomplex or the a subunit (Nishio et al.,

2002) demonstrating rotation in a fully coupled complex.
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These experiments all investigated the hydrolysis of ATP as opposed to synthesis.

The final proof of rotary catalysis came with an experiment showing ATP synthesis during

mechanical rotation of the γ subunit (Itoh et al., 2004).  Mechanical rotation of the γ subunit

of immobilised Bacillus PS3 F1-ATPase was achieved via a linked magnetic bead.

Electromagnets were rotated in the appropriate direction (clockwise in this case as the

hydrolytic rotation was observed as anti-clockwise).  As the magnets were rotated, synthesis

of ATP from ADP and orthophosphate was measured by the luciferase assay.  This

experiment demonstrated for the first time that mechanical force on a protein can drive

chemical synthesis in remote catalytic sites, although by the time it was demonstrated this

conclusion was inescapable.

1.3.9 Structures of F1-ATPase

Since the first structure of bovine F1-ATPase was solved in 1994 nine further

structures of bovine mitochondrial F1-ATPase have been solved (Abrahams et al., 1996;

Braig et al., 2000; Cabezón et al., 2003; Gibbons et al., 2000; Kagawa et al., 2004; Menz et

al., 2001b; Orriss et al., 1998; van Raaij et al., 1996a) as well as other structures from various

sources (Bianchet et al., 1998; Groth and Pohl, 2001; Hausrath et al., 1999; Stock et al.,

1999).  Many of the subsequent structures supported the rotary catalytic mechanism and

located sites of inhibition, and helped to demonstrate that the original 1994 structure

represented an intermediate in the active catalytic cycle (Abrahams et al., 1996; Braig et al.,

2000; Kagawa et al., 2004; Orriss et al., 1998; van Raaij et al., 1996a).

The structure of the DCCD inhibited enzyme (Gibbons et al., 2000) was the first in

which the entire central stalk was resolved.  The γ subunit contained an unpredicted β-sheet

domain and a Rossman fold which could add rigidity to the coiled-coil domain.  The δ

subunit consists of a ten-stranded β-sheet and two helices connected by a hairpin turn.  The γ
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and δ subunits are held together by the ‘pincer’ like ε subunit, forming two helices connected

by a coiled region (Figure 1.18).  The three subunits of the stalk interact extensively to form a

stable shaft and a ‘foot’ that couples F1 to the c ring in Fo.

Figure 1.18 The structure of the central stalk of F1-ATPase at 2.4 Å resolution.  A: The
architecture of the complete F1-ATPase.  The δ subunit is shown in green and the ε subunit in

magenta.  B: The central stalk.  The structure contains an unpredicted Rossman fold that

stabilises the coiled coil domain that penetrates the (αβ)3 hexamer.  C: The foot of the central

stalk that interacts with the ring of c subunits in the Fo domain.  [Figure generated from the

F1-DCCD structure, PDB code 1E79 (Gibbons et al., 2000)]

An electron density map of yeast mitochondrial ATP synthase provided the first structural

glimpse of the Fo domain (Stock et al., 1999).  It revealed, at low resolution (3.9 Å), a ring of

10 c subunits and it showed their interaction with the central stalk of the F1-ATPase (Figure

1.19).  The results changed the current model for coupling the pmf to ATP synthesis (Section

1.3.5).  Other structures have demonstrated that the nucleotide occupancy is due to the fold

the protein adopts and not the nucleotide concentration (Menz et al., 2001a) or they represent
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transition states in the catalytic cycle of F1-ATPase (Kagawa et al., 2004; Menz et al.,

2001b); the latter are discussed in Section 1.5.

Figure 1.19 The architecture of the rotor of ATP synthase.  A 3.9 Å electron density map

of the yeast F1-c10 sub-complex of ATP synthase.  A model was built using the α-carbon

backbones of the bovine F1-ATPase, the E. coli ε subunit (equivalent to the bovine δ) and ten

copies of the E. coli c subunit.  The presence of a symmetry mismatch between Fo and F1

(10:3) was unexpected and changed the models of Fo.  [Image from (Stock et al., 1999)].

1.4 The inhibitor protein of the ATP synthase

1.4.1 Regulation of the ATP synthase

The ATP synthase is regulated in vivo to prevent the hydrolysis of ATP under

conditions where the pmf is lost, for example during anoxia (Walker, 1994).  The hydrolytic

activity of ATP synthase is controlled in different ways in different species.  The chloroplast
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ATP synthase is thought to be regulated by the γ subunit (Richter et al., 2000).  An insertion

in the chloroplast γ subunit, not present in the mitochondrial enzyme, contains two cysteines

(Arana and Vallejos, 1982).  In the dark, where the pmf falls, conditions become oxidising

and a disulphide bond is formed, blocking the rotation of γ and preventing hydrolysis of the

ATP pool.  In daylight, the pmf is restored and the disulphide bond is reduced by thioredoxin,

allowing ATP synthesis to resume (Nalin and McCarty, 1984; Schwarz et al., 1997).

Bacteria have no obvious physiological need to prevent ATP hydrolysis.  Under

anoxic conditions, ATP made by glycolysis is hydrolysed in order to generate a pmf.  The

addition of excesses of the ε subunit of the E. coli enzyme (homologous to bovine δ) inhibits

the enzyme (Mendel-Hartvig and Capaldi, 1991; Smith and Sternweis, 1977; Weber et al.,

1999).  It is proposed that the protein has two different conformations.  In one conformation,

the ε  subunit extends towards the F1 domain, interacting with an αβ pair, preventing

hydrolysis (Rodgers and Wilce, 2000).  The second conformation is the down conformation

observed in the bovine enzyme.  It has been proposed that the up connection may be broken

on the synthesis of ATP and the second conformation is assumed, regulating the enzyme like

a ratchet (Tsunoda et al., 2001), allowing rotation in only one direction.  However, the

physiological need for such a mechanism has not been explained.

Mitochondrial ATP synthase is regulated by a natural inhibitor protein, IF1, that is not

present in either bacteria or chloroplasts. The inhibitor protein is found in all eukaryotes and

has been characterised from many species (Cintron and Pedersen, 1979; Di Pancrazio et al.,

2004; Hashimoto et al., 1981; Ichikawa and Ogura, 2003; Matsubara et al., 1981; Norling et

al., 1990; Pullman and Monroy, 1963).  The manner of regulation in mitochondria is outlined

in the following sections.
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1.4.2 The bovine mitochondrial IF1

In the absence of oxygen the pmf generated by the electron transport chain will

collapse.  This may happen in ischemia, where blood flow to an organ is prevented, for

example during a heart attack.  Cellular ATP will be provided by glycolysis and the pH

values of both the cytosol and matrix will drop.  The loss of the pmf will lead the ATP

synthase to reverse, hydrolysing ATP instead of synthesising it.  The inhibitor protein is

thought to prevent this detrimental activity (Rouslin, 1983).  The drop in pH activates the

inhibitor protein which then binds to the catalytic subunits of the ATP synthase preventing

ATP hydrolysis.  When the pmf is restored the matrix pH will increase and IF1 is released

from F1 and returns to its inactive state (Walker, 1994).

The bovine protein is the best understood.  It is 84 amino acids in length and forms an

α-helix (Cabezón et al., 2001).  In the active state, formed at pH values below 7.0, it is a

dimer, where the C-terminal residues 49-84 associate in an antiparallel coiled coil [Figure

1.20 (Cabezón et al., 2001)].  The rest of the protein (residues 1-48) is free to bind two F1

domains concurrently (Cabezón et al., 2000a; Cabezón et al., 2003).  By deletion analysis, it

has been demonstrated that residues 14-47 of bovine IF1 represent the minimal inhibitory

sequence (van Raaij et al., 1996b).  The N-terminus of the protein binds between the αDP and

βDP subunits in each of two F1 domains trapping an ATP molecule in the catalytic sites,

preventing hydrolysis (Cabezón et al., 2003).  The inactive state of the protein is formed at

pH values above 7.5; it is a dimer of dimers in which the inhibitory N-terminal regions are

occluded in dimer-dimer contacts, preventing them from binding to the F1 domain (Cabezón

et al., 2000a; Cabezón et al., 2000b; Cabezón et al., 2001).

The conversion between active and inactive forms is thought to involve five histidine

residues that interact in the tetramer (Gordon-Smith et al., 2001) and histidine 49 may be the

pH sensor that prevents aggregation.  Histidine 49 is located in the second of seven heptad
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repeats that form the coiled coil region.  Mutation of this residue to a lysine results in a

protein that is an active dimer, regardless of the pH (Cabezón et al., 2003; Schnizer et al.,

1996).

The crystal structure of bovine F1-ATPase in complex with IF1 revealed the

mechanism of inhibition [(Cabezón et al., 2003) Figure 1.21].  It contained two F1 domains

bound to an IF1 dimer (Cabezón et al., 2000a).  Residues 4 to 47 were found in intimate

contact with the αDP βDP interface and with the γ subunit.  The nucleotide binding sites are in

a similar conformation to the reference structure (Braig et al., 2000).  However, both βTP and

βDP contain ATP or AMP-PNP (the enzyme was inhibited in the presence of ATP, but the

crystallisation buffers contained AMP-PNP, and they are indistinguishable in the electron

density map).  ATP (or AMP-PNP) is bound in the DP site because of inhibitor protein

binding preventing hydrolysis, either by locking the αβ interface, preventing the interchange

to a loose state, or by preventing rotation of the γ subunit, or both.

Figure 1.20 The inhibitor protein IF1 of bovine mitochondria.  A: The crystal structure of

an IF1 dimer.  Two monomers are shown (red and blue) and residues involved in the coiled

coil formation are represented as sticks.  [Figure generated from PDB code 1GMJ (Cabezón
et al., 2001)].  B: The complete structure of IF1.  The crystal structure of IF1 overlaid with the

N-termini observed in the crystal structure of the F1-IF1 complex [PDB code 1O0H (Cabezón
et al., 2003)] the C-terminal region (residues 40 to 83) was disordered in the complex.
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Figure 1.21 Architecture of the F1-IF1 complex.  A: Side view of the complex.  IF1 (green)
binds between the αDP-βDP interface.  B: The complex viewed from the membrane.  IF1

extends through the α-β interface and makes contact with the γ subunit.  [From PDB code

1O0H (Cabezón et al., 2003)].

1.4.3 The inhibitor protein of Saccharomyces cerevisiae

The ATP synthase in S. cerevisiae is regulated by two inhibitory peptides, IF1

(Hashimoto et al., 1981; Matsubara et al., 1981) and STF1 [Stabilising Factor 1 (Akashi et

al., 1988)], and two other proteins, STF2 (Okada et al., 1986) and STF3 (Hong and Pedersen,

2002), that are thought to modulate their activities, but have no intrinsic inhibitory activity.

Yeast IF1 and STF1 are 63 amino acids in length (considerably shorter than the 83 residues of

bovine IF1) and have 49% sequence identity to each other and 30% identity to the bovine

protein.  Despite the sequence similarity of IF1 and STF1 their inhibitory potencies differ.

Below pH values of 7.0, IF1 is much more active than STF1, but it is still able to inhibit ATP

hydrolysis completely at high concentrations.  It has been suggested that the role of STF1 is to

assist in the binding of IF1 to the F1 domain (Akashi et al., 1988).  However, removal of the

stf1 gene has no affect on the inhibition of hydrolysis in the absence of a pmf (Venard et al.,

2003).  Another proposed role is that STF1, having a lower tendency to aggregate than IF1,
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can act as an inhibitor at higher pH values (Cabezón et al., 2002).  As it has a lower binding

constant (Venard et al., 2003), it should not prevent ATP synthesis on the restoration of the

pmf.  The mechanism of activation of the yeast proteins seems to be based on the same

principle as the bovine protein but via a different mechanism.  The yeast proteins have no

equivalent to H49 and their C-termini are truncated with respect to the bovine protein.  Two

residues, histidine-39 and glutamate-21 have been shown to confer pH sensitivity on the

proteins (Ichikawa et al., 2001).  However, how these residues affect oligomer formation has

yet to be discovered.

1.5 Metallofluorides as analogues of nucleotides and of the transition state

of phosphoryl transfer

The transfer of phosphate groups is central to organisms as it is the primary way of

transducing energy and is a major component of cell signalling and its regulation.  A vast

number of protein families exist that hydrolyse nucleotide triphosphates, and their mode of

action is an area that has been studied extensively.  Biological systems maintain the ATP to

ADP ratio far from equilibrium, allowing a large amount of free energy to be generated by

the hydrolysis of ATP to ADP and phosphate (typically –57 kJM-1, in the cytoplasm, where

the ATP:ADP ratio can be maintained at 1000:1).

While the hydrolysis of ATP is a thermodynamically favourable reaction, it will not

occur spontaneously as the activation energy is too high.  This barrier makes ATP an ideal

molecule for storage of energy, allowing organisms to develop a large number of proteins

able to hydrolyse ATP, and to utilise the energy released.  Many of these enzymes contain a

common motif where the transition state intermediate of hydrolysis is surrounded by positive

charges, thereby stabilising it and decreasing the activation energy required.  The common

motif for phosphate binding is referred to as the P-loop or Walker A motif [(Walker et al.,
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1982) Figure 1.22].  A vast number of proteins contain this motif including kinases, ion

motive ATPases (F, V and P-types) and ATP binding cassette (ABC) transporter

superfamilies (Higgins et al., 1986).  Metallofluorides have been used extensively in the

study of protein mediated phosphoryl transfer reactions.  In the presence of ADP (or GDP),

metallofluorides bind in the position occupied by the γ phosphate mimicking either the

terminal phosphate or a transition state intermediate, depending on the metal.  The chemistry

of phosphoryl transfer and the use of metallofluorides in the study of the catalytic mechanism

of bovine F1-ATPase, and other enzymes, is discussed below.

Figure 1.22 Comparison of some P-loop residues from different enzymes.  A: The ATP
binding pocket of the βDP subunit of F1-ATPase.  The negative charge that develops on the

phosphoryl intermediate is stabilised by the positive side chains of βArg-189 and βLys-162

and αArg-373.  βGlu -88 activates the attacking water.  B: The nucleotide binding pocket of

the RAS GTPase.  The phosphoryl intermediate is stabilised by similar residues to the

ATPase and an arginine is contributed from the GTPase activating protein (GAP).  Gln-63

activates the attacking water performing the same role as Glu-188 in the ATPase.  [Figure
generated from bovine F1-ATPase (Abrahams et al., 1994), PDB 1BMF and RhoA.GTPase

RhoGAP complex (Graham et al., 2002), PDB 1OW3].
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1.5.1 The chemistry of phosphoryl transfer

The transfer of phosphoryl groups may take place via either of two proposed

mechanisms; dissociative (SN1) and associative (SN2) [Figure 1.23 A and B respectively

(Knowles, 1980)].  In the dissociative mechanism, the bridging oxygen bond between the β

and γ phosphates is broken as the nucleophile approaches, but before a new bond is formed

with the nucleophile.  The reaction intermediate formed is a metaphosphate, which then

forms a bond with the nucleophile, transferring the phosphate group.  In an associative

reaction, nucleophilic attack takes place on the phosphorous without bond breakage, forming

a trigonal bipyramidal penta-coordinated phosphorane.  The metaphosphate intermediate

contains only one negative charge as opposed to three in the phosphorane; the charge is

compensated in enzyme mediated hydrolysis by positively charged side chains and divalent

metal ions.

In the F1-ATPase, hydrolysis of ATP begins with an ‘in-line’ nucleophilic attack,

from a water polarised by βGlu-188, on the γ phosphate.  The transition state is a trigonal

bipyramid, with the apical positions occupied by the oxygen of the β phosphate and the

attacking water.  Hydrolysis leads to an inversion of the phosphate stereochemistry (Webb et

al., 1980).  Evidence that NTP hydrolysis proceeds via a dissociative mechanism  is provided

by experiments based on kinetic analysis, which show that the rate limiting step of the

reaction is bond cleavage of the leaving group, before bond formation with the nucleophile

(Admiraal and Herschlag, 1995; Westheimer, 1981).   However, it has been suggested that

the same data could be interpreted equally well as supporting an associative mechanism

(Aqvist et al., 1999).  In the dissociative mechanism, the role of the nucleophile is less than in

the associative mechanism.  Using this premise, tyrosine kinases were studied where the
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nucleophilicity of the attacking group (the tyrosine oxygen) was varied (Ablooglu et al.,

2000).  The results indicated strongly a dissociative mechanism.

Figure 1.23 Reaction mechanisms of phosphoryl transfer.  A: The dissociative

mechanism.  The covalent β-γ phosphonate ester bond is broken before the nucleophile bond

is formed, the reaction proceeds with a metaphosphate intermediate.  B: The associative
mechanism.  Nucleophilic attack forms a new bond before the phosphonate ester bond is

broken.  The reaction proceeds via a trigonal bipyramidal pentavalent phosphorane
intermediate.

Transfer intermediates are extremely short lived (around 10-3 sec) making their study

by X-ray crystallography difficult.  However, there is some crystallographic evidence about

transition states.  Two crystal structures have been solved that have been interpreted as

containing a true phosphoryl transfer transition state.  First, the crystal structure of β-

phosphoglucomutase may contain a stabilized penta-coordinated phosphorane intermediate

[Figure 1.24 A (Lahiri et al., 2003)], but this interpretation has been disputed (Blackburn et

al., 2003; Webster, 2004).  Second, the structure of fructose-1,6-bisphosphatase, inhibited by

high concentrations of potassium, contains a stabilized metaphosphate intermediate, perhaps

demonstrating a dissociative mechanism [Figure 1.24 B (Choe et al., 2003)].
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Figure 1.24 Crystallographically observed transition states of phosphoryl transfer.  A:
The possible pentavalent phosphorane observed in β-phosphoglucomutase.  However, the

observed transition state may be MgF3
- rather than a phosphorane (Blackburn et al., 2003).

[Figure created from PDB 1O03 (Lahiri et al., 2003)].  B: The metaphosphate intermediate
observed in fructose-1,6-bisphosphatase, an equilibrium between metaphosphate and

orthophosphate.  [Figure created from PDB code 1NUW (Choe et al., 2003)].

Transition states are usually studied using non-reactive analogues that mimic the

geometry, size and charge distribution of phosphoryl transfer.  Many crystal structures

containing analogues have been interpreted as indicating an associative mechanism

(Klabunde et al., 1996; Lindqvist et al., 1994; Sondek et al., 1994).  However, the analogue

may be forcing the geometry of a phosphorane intermediate on the protein and may not

represent an actual reaction intermediate.  Another crystal structure, of a cyclin dependent

kinase, solved with a metaphosphate analogue (NO3
-) suggests a dissociative mechanism

(Cook et al., 2002), but again this may be influenced by the analogue.  The most commonly

used transition state analogues in nucleotide hydrolysis are complexes between ADP (or

GDP) and aluminium fluoride and beryllium fluoride as described in the next section.



                                                                                                                          Chapter 1:  Introduction

44

1.5.2 Aluminium and beryllium fluoride

In solution, aluminium and beryillium fluoride form mixtures of species.  The

distribution depends on the fluorine concentration and the pH value of the solution (Martin,

1988).  Many crystal structures of NTPases containing aluminium fluoride as either AlF3 or

AlF4
- have been solved.  In all cases, both species are planar and mimic the transition state of

phosphoryl transfer.  Beryllium fluoride is usually found as BeF3
- [one structure, a

UMP/CMP kinase, has been solved that contained BeF2, forming a bridge between the

terminal oxygens of the nucleotides (Schlichting and Reinstein, 1997)].  Beryllium fluoride

adopts tetrahedral geometry regardless of valency, mimicking a ‘ground state’ phosphate

group.  Fluorine is one atomic number greater than oxygen and is highly electronegative,

giving it a strong propensity to form hydrogen bonds.  The lengths of aluminium-fluorine and

beryllium-fluorine bonds are very close in length to phosphorous-oxygen bonds (Table 1.2).

Table 1.2 Comparison of lengths of the phosphorous-oxygen bond compared to metal-
fluorine bonds.

Bond Length (Å)

P-O 1.55 (1.67 in phosphorane)

Al-F 1.61

Be-F 1.48

As the bonds in metallofluorides are ionic, the fluorides are freely exchangeable with

those in solution, and a high concentration is needed to inhibit nucleotide hydrolases fully.

The metallofluoride is thought to bind quickly, via hydrogen bonds, to the site in the protein

normally occupied by the γ phosphate of ATP.  Then the metal forms an ionic bond with the

β phosphate oxygen of ADP.  As the geometry of the analogues is fixed the conformation of

the protein is locked by coordinating to it and the protein is inhibited.  Aluminium and
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beryllium fluoride have been used to study the catalytic mechanism of F1-ATPases by both

biochemical (Issartel et al., 1991; Lunardi et al., 1988) and structural methods (Braig et al.,

2000; Kagawa et al., 2004; Menz et al., 2001b).

1.5.3 Transition states in the catalytic cycle of F1-ATPase

While the majority of structures of bovine F1-ATPase have been found to be very

similar, three structures differ.  They are the ATPase in complex with IF1 which contains

ATP in both the βTP and βDP catalytic sites [(Cabezón et al., 2003), discussed in Section 1.4.2]

and two structures inhibited with metallofluorides also have different nucleotide occupancies

(Kagawa et al., 2004; Menz et al., 2001b), these are described in the following sections.

1.5.3.1 The structure of bovine F1-ATPase with all three catalytic sites occupied

The first structure of bovine F1-ATPase inhibited with aluminium fluoride was determined

with crystals where the aluminium fluoride was not maintained in the mother liquor during

crystallisation.  It contained an AlF3 in the βDP subunit and was similar to the reference

structure [the first crystal structure, solved from a single crystal cooled to 100K (Braig et al.,

2000)].  However, when AlCl3 and NaF were maintained in the crystallisation buffers, the

protein structure, solved to 2.0 Å, contained nucleotide in all three catalytic sites (Menz et al.,

2001b).  It provided the first direct evidence that three sites could be occupied concurrently

during hydrolysis. In this structure the βE site adopted a ‘half-closed’ conformation binding

ADP and a sulphate ion mimicking orthophosphate (Figures 1.25 and 1.26). This structure

probably represents a post hydrolysis step before the release of products.
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Figure 1.25 Stereo image of the superimposed half closed site in the (ADP AlF4
–)2-F1

structure and the βTP of the reference structure.  The ‘half closed’ site (coloured) is

superimposed on the βTP site (grey).  The adenine ring binding residues (βPhe-424 and βTyr-

345) adopt a similar conformation.  βGlu-188 activates the attacking water in the TP site but

has moved out of the way in the half closed site.  βArg-189 coordinates the γ phosphate in the

TP site and moves with the sulphate.

The other two catalytic sites contain ADP-AlF4
-, whereas the first aluminium structure

contained ADP-AlF3 in the βDP site only (Braig et al., 2000).  Both species are planar, the first

mimics the shape of a phosphoryl transfer analogue, the second mimics the equivalent

charge.  Also, the γ subunit was observed in a different position to other structures.  It was

twisted by around 20° in its C-terminal region.  This rotation may be equivalent to the 30°

substep observed in rotational experiments (Yasuda et al., 2001). This structure implied that

in the catalytic cycle the enzyme alternates between states where two and three sites are

occupied.
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Figure 1.26 Stereo image of the superimposed half closed site in the (ADP-AlF4
–)2-F1

structure and the βE of the reference structure.  The ‘half closed’ site is coloured and the

βE site is grey.  The adenine ring binding residues have opened to release nucleotide and

βArg-189 and βGlu-188 adopt a different conformation no longer coordinating the sulphate.

This was confirmed by the results of tryptophan fluorescence experiments (Weber and

Senior, 2000) and studies of fluorescent ATP analogues (Nishizaka et al., 2004).  A new

catalytic scheme was proposed based on the structural information.  Binding of ATP to an

open site causes a rotation in the γ subunit causing ATP bound in a tight site to be committed

to hydrolysis (T’) and a loose site to ‘half-close’ around an ATP (L’).  The next step is the

hydrolysis of ATP in the site committed to it and its conversion to a half-open site

corresponding to the βE in the (ADP-AlF4
–)2-F1 structure (L’’).  The release of ADP and Pi

from this site converts it to an open site and the ‘ground state’ (equivalent to the reference

structure) is returned to (Figure 1.27).
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Figure 1.27 Schematic of the binding change mechanism based on structures of bovine
F1–ATPase.  The binding of ATP changes an open site (O) to a half-closed site (L’) causing

rotation of the γ subunit and the commitment of ATP in T to hydrolysis [(T*), b].  Hydrolysis

in T* converts it to a half-closed state (L’’) and the loose to a tight [(L to T), c].  Release of
ADP and phosphate returns the enzyme to the ground state (d).  [Figure from (Menz et al.,

2001b)]

1.5.3.2 The structure of bovine F1-ATPase with two sites occupied by ATP

The structure of bovine F1-ATPase inhibited with ADP and beryllium fluoride was the

first to be solved with a truly non-hydrolysable ATP analogue bound to the active sites

(Kagawa et al., 2004).  Although in many respects it is similar to the reference structure it

differs significantly that ATP analogues are bound in both the βDP and β TP subunits.

Beryllium fluoride mimics the γ phosphate of ATP.  It binds at nearly covalent distance to the
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bridging oxygen of the β phosphate of ADP and adopts a tetrahedral atomic arrangement

closely imitating the terminal phosphate of ATP.

The hydrolysis of ATP involves the terminal phosphate undergoing a series of

coordination states (see Section 1.5.1), as beryllium fluoride can only be tetrahedral, the

enzyme is inhibited in this state.  The structure contained two ATP analogues in the βTP and

βDP sites; and was the first structure to contain an ATP in the catalytically active DP site [the

tight site in the binding change mechanism (see Section 1.3.7)].  As in earlier structures the

empty site contained no nucleotide.  The DP site had been designated as the catalytically

active site from the original structure (Abrahams et al., 1994) and other experiments (Gao et

al., 2003), as the nucleotide binding pocket was more tightly closed that the TP site.  This

was confirmed by the beryllium fluoride structure.

In this structure the nucleophilic water molecule in the βDP site is 2.6 Å from the

beryllium, over 1 Å closer than the equivalent water molecule in βTP subunit (3.6 Å from

beryllium).  The high resolution of the structure (2.2 Å) allowed these water molecules to be

confidently modelled into the density.  Alignment of the two binding pockets revealed the

reason for the catalytic differences.  The arginine finger that stabilises the phosphoryl

transition state is 1Å further away from the nucleotide binding pocket in the TP site.  This

arrangement moves the beryllium away from the attacking water molecule and changes the

geometry of the interaction, making nucleophilic attack less likely (Figure 1.28).
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Figure 1.28 Stereo image of the superimposition of the βTP and βDP catalytic sites of the

beryllium fluoride inhibited bovine F1-ATPase.  The βDP site is coloured and the βTP site is

grey.  The major shifts are seen in the attacking water molecule (wat), the γ phosphate (in this

case beryllium fluoride) and αArg-373.

1.5.4 Magnesium fluoride

The activating effect of aluminium fluoride on GTPases has been investigated for

many years (Sternweis and Gilman, 1982) and later it was found that fluoride has a similar

effect in the absence of aluminium but in the presence of magnesium (Higashijima et al.,

1987).  This effect is due to magnesium binding three fluorines and mimicking the γ

phosphate in a similar manner to aluminium fluoride.  The crystal structure of RhoA.GDP

bound to RhoGAP (GTPase activating protein) with magnesium and fluoride present showed

that an MgF3
- was bound in the active site, replacing the γ phosphate of GTP (Graham et al.,

2002).  The MgF3
- species was planar and mimicked the charge and geometry of a

phosphoryl transfer intermediate (Figure 1.29 B).  As the coordination and charge of this
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species matches a phosphoryl intermediate so well, magnesium fluoride was suggested as the

best analogue to study these reactions (Graham et al., 2002).  It has been suggested that the

crystal structure of β-phosphoglucomutase containing the pentavalent phosphorane really

contains MgF3
- (Blackburn et al., 2003).  The crystals were grown in the presence of 100 mM

fluoride and magnesium and it has been proposed that as magnesium fluoride mimics this

state so closely it has been mistaken for phosphorane.  However, this interpretation has been

refuted by the original authors (Blackburn et al., 2003).

To date only two other structures containing magnesium fluoride have been solved,

these are an NMR solution structure of Ap4A hydrolase (Fletcher et al., 2002) and the crystal

structure of the sarcoplasmic calcium ATPase (Toyoshima et al., 2004).  The latter appears to

contain MgF4
2- representing the post hydrolytic release of phosphate from phosphorylated

Asp351 and is not associated with nucleotide (Figure 1.29 A).  Therefore, it does not

represent a transition state.  However, the electron density could also be interpreted as a

planar MgF3
- species with the ‘top’ fluorine actually being a nucleophilic water molecule.  If

this is the case, the structure represents a transition state of phosphorous release from Asp-

351.  The catalytic mechanism of this protein has been revealed almost entirely by X-ray

crystallography experiments using reaction intermediate analogues and non-hydrolysable

ATP analogues (Sorensen et al., 2004; Toyoshima and Mizutani, 2004; Toyoshima et al.,

2000; Toyoshima and Nomura, 2002; Zhang et al., 1998).

In this thesis, the structure of bovine mitochondrial F1-ATPase inhibited with ADP

and MgF3
- is presented.  Magnesium fluoride is bound in both the βDP and βTP sites and the βE

site binds ADP.  The structure represents a new step in the catalytic cycle.
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Figure 1.29 The magnesium fluoride found in the structures of sarcoplasmic Ca2+

ATPase and the RhoA.GDP GAP complex.  A: The MgF4
2- in the Ca2+-ATPase.  The

magnesium fluoride is thought to represent the released phosphate from Asp 351 that is

phosphorylated during the catalytic cycle.  B: The nucleotide binding pocket of RhoA
GTPase.  The MgF3

- is in the position of the γ phosphate of GTP and mimics the planar

transition state.  The attacking water is polarised by Gln 63 and the negative charge on the

transition state is stabilised by the positively charged side chains of Lys 18 and Arg 85
[contributed from the GTPase activating protein (GAP)].  [Figures generated from PDB files

1WPG for part A (Toyoshima and Mizutani, 2004) and 1OW3 for part B (Graham et al.,

2002)]

1.6 Aims of this work

The aims of this study were two fold: First, to investigate the mechanism of pH

sensitivity of the yeast inhibitor proteins IF1 and STF1.  The present investigation built on

previous work on the aggregation states of bovine IF1 in response to differing pH values

(Cabezón et al., 2002). Their properties both in solution and bound to the S. cerevisiae

F1–ATPase have been studied.  In contrast to bovine IF1, the yeast inhibitors are active as

monomers. Like the bovine protein they form inactive higher oligomers above pH 7.0.
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Second, the catalytic cycle of bovine F1-ATPase was investigated by crystallisation

with a novel analogue of phosphoryl transfer, magnesium fluoride.  While many of features

of the mechanism of catalysis of the ATP synthase are well understood, it is now clear that

there are many sub-steps within the cycle.  Revealing and understanding these steps will

provide a clearer understanding of how ATP is made and how rotation is generated.  An

important method for understanding these steps is to crystallise the protein in a sub-step that

is also accessible by biochemical or biophysical means.  This approach had previously

revealed new steps in the catalytic mechanism of F1–ATPase (Kagawa et al., 2004; Menz et

al., 2001b) and the P-type Ca2+-ATPase (Sorensen et al., 2004; Toyoshima and Mizutani,

2004; Toyoshima et al., 2000; Toyoshima and Nomura, 2002; Toyoshima et al., 2004).  It

was hoped that a new crystal structure would reveal a new state in the catalytic mechanism.
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CHAPTER 2: MATERIALS AND METHODS

2.1 Materials

2.1.1 Chemicals

All chemicals, biochemicals and enzymes were purchased from Sigma-Aldrich

Chemicals (St. Louis, MO, USA), Fluka Chemicals (Gillingham, UK), VWR Internatinal

(Merck House, Poole, Dorset, BH15 1TD) and New England Biolabs (73 Knowl Piece,

Wilbury Way, Hitchin, Herts, SG4 0TY, UK), except for the following:

Acrylamide/bis acrylamide 37.5:1 30% (w/v) stock solution was purchased from

Severn Biotech Ltd (Unit 2, Park Lane, Kidderminster, DY11 6TJ, UK), DTT, ampicillin and

IPTG were obtained from Melford Laboratories (Bildeston Rd, Chelsworth, Ipswitch IP7

7LE, UK) and dimethyl suberimidate was acquired from Perbio Science (Unit 9, North

Nelson Industrial Estate, Cramlington, Northumberland, NE23 1WA, UK).  Complete

protease inhibitor tablets were bought from Roche Biochemicals (Lewes, UK).  Agarose

(electrophoresis grade) was procured from BioGene Ltd (Kimbolton, UK).  Crystallisation

screens were purchased from Hampton Research (Laguna Niguel, CA, USA), Emerald

Biostructures (7869 NE Day Road Bainbridge Island, WA 98110 USA) and Molecular

Dimensions (61-63 Dudley St, Luton, LU2 0NP, UK).

Deionised water was purified using a Milli-Q academic purification system (Millipore

Ltd, Herts, UK) by reverse osmosis and microfiltration to produce ultra-pure water.  This

water was used to prepare all aqueous solutions where deuterium oxide was not used.
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2.1.2 Chromatography

Chromatographic columns were obtained pre-packed or they were packed ‘in-house’.

Ion exchange chromatography was performed using CM-sepharose packed in a XK 26

column (Amersham Biosciences, Amersham Place, Little Chalfont, Buckinghamshire, HP7

9NA).  Gel filtration chromatography was conducted using a Superdex 200 XK16/60 column

or a Superose 6 HR 10/30 column (Amersham Biosciences, Amersham Place, Little Chalfont,

Buckinghamshire, HP7 9NA, UK).  Nickle affinity chromatography was carried out using

either Ni-NTA  superflow (Qiagen Ltd. Qiagen House, Fleming Way, Crawley, West Sussex,

RH10 9NQ, UK) packed in a XK50 column or a 1 mL HisTrap HP column (Amersham

Biosciences, Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA, UK).

2.1.3 Bacterial strains and growth media

The Escherichia coli strain XL1-Blue (Stratagene, 11011 N. Torrey Pines Road La

Jolla, CA 92037, USA) was used for propagation and production of plasmid DNA.  For

protein expression, the strain C41 (DE3) (Miroux and Walker, 1996) was used.  It is a

derivative of BL21 (DE3) selected for high level expression of globular and membrane

proteins.

Agar plates were made with TYE medium [tryptone 0.16% (w/v), yeast extract 0.1%

(w/v) and NaCl 0.5% (w/v) pH 7.4] supplemented with 1.5% (w/v) Bacto agar and the

appropriate antibiotic.  The liquid growth medium contained 2xTY [tryptone 0.16% (w/v),

yeast extract 0.1% (w/v) and NaCl 0.5% (w/v) pH 7.4].
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2.1.4 Saccharomyces cerevisiae strains and growth medium

S. cerevisiae strain DMV301ATP2HIS, a variant of strain W303-1A lacking the

β–subunit of the ATP synthase, but bearing the plasmid pRSATP2HIS expressing the

β–subunit with an N-terminal hexa-histidine tag (his tag) (Mueller et al., 2004), was a gift

from Prof. D. Mueller, The Department of Biochemistry and Molecular Biology, Rosalind

Franklin University of Medicine & Science, 3333 Green Bay Road, North Chicago, IL

60064, U. S. A.

Yeast was grown in YPEG medium which consists of 1% (w/v) yeast extract, 2%

(w/v) peptone, 3% (w/v) glycerol, 2% (v/v) ethanol and 1.5% (v/v) antifoam 204.

2.1.5 Syntheic oligonucleotides

Oligonucleotide primers were made by Sigma-Genosys (London Road, Pampisford,

Cambridgeshire, CB2 4EF, UK).  They were desalted before use.

2.2 Biochemical Methods

2.2.1 Agarose gel electrophoresis

Agarose gels were prepared in TBE buffer (90 mM Tris-boric acid pH 8.3 and 1 mM

EDTA) containing 1% (w/v) agarose.  They were cast as slabs.  Ethidium bromide (1 µg/mL)

was added to both the gel and the running buffer to allow visualisation of DNA under UV

light.  Samples were mixed with a one-quarter volume of sample buffer [50% (w/v) sucrose,

0.3% (w/v) bromophenol blue and 0.3% (w/v) xylene cyanol FF in TBE] and then loaded into

the wells.  Electrophoresis was performed in TBE buffer at a constant current of 100 mA

until the dye front had reached the end of the gel.
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2.2.2 SDS-PAGE

SDS-PAGE was used to analyse the protein content of samples.  They were run

according to the conditions of Laemmli (Laemmli, 1970).  Mini-gels (10 cm x 10 cm) were

prepared with a 12 to 22% (w/v) acrylamide gradient separating gel and a 4% (w/v) stacking

gel.  The separating gel was prepared in Anderson’s buffer [375 mM Tris-HCl pH 8.8, 0.1%

(w/v) SDS] and the stacking gel was prepared in stacking buffer [125 mM Tris-HCl pH 6.8

and 0.1% (w/v) SDS].  Gels were run in a protein gel electrophoresis unit (Cambridge

Electrophoresis Ltd, Cambridge, UK).  The running buffer contained 0.25 M glycine, 25 mM

Tris-HCl pH 6.8, 10% (w/v) SDS.  It was poured into top and bottom reservoirs.  Samples

were mixed with 3 µL loading buffer [0.3 M Tris-HCl pH 6.8, 10% (w/v) SDS, 25% (v/v)

glycerol, 5 mM β–mercaptoethanol and 0.015% (w/v) bromophenol blue] and loaded into

wells.  Electrophoresis was performed at a constant current of 42 mA until the dye front had

reached the end of the gel.

Proteins were visualised by soaking gels in staining solution [50% (v/v) methanol, 7%

(v/v) acetic acid and 0.2% coomassie blue] for 15 min and by then transferring them to

destaining solution [20% (v/v) methanol and 7% (v/v) acetic acid].  If samples contained low

concentrations of protein, gels were silver stained according to the following protocol

(Ansorge, 1985):

Gels were soaked for 5 min in each of the following solutions: 50% methanol (v/v),

12% TCA (w/v) and 2% CuCl2 (w/v); 10% ethanol (v/v), 5% (v/v) acetic acid; 0.01% (w/v)

KMnO4; 10% ethanol (v/v), 5% (v/v) acetic acid; 10% (v/v) ethanol; water; 0.1% (w/v)

AgNO3.  Then they were soaked in developing solution [2% (w/v) K2CO3 and 0.04% (v/v)

formaldehyde] until protein bands appeared.  Once bands were clearly visible, the reaction

was stopped by placing the gels in water.



                                                                                                         Chapter 2:  Materials and methods

58

2.2.3 Western Blotting

2.2.3.1 Protein transfer

After SDS-PAGE unstained gels were placed in transfer buffer [10 mM NaHCO3,

3 mM Na2CO3 and 0.05 (w/v) SDS].  PVDF membranes (Immobilon P, Millipore, Watford,

UK) were placed in methanol then wetted in transfer buffer.  Six pieces of blotting paper,

soaked in transfer buffer, were placed on the anode of a BioRad Trans-blot semi-dry transfer

cell (BioRad Laboratories, Hercules, CA, 94547, USA).  The PVDF membrane was placed

on top of the blotting paper and the gel on top of the membrane.  Then the gel was covered

with four pieces of blotting paper and the cathode placed over the sandwich.  The transfer of

proteins was carried out at 10 V for 30 min.

2.2.3.2 Immuno-detection of proteins

After transfer of proteins, the membrane was incubated in blocking buffer [4.3 mM

Na2HPO4, 1.4 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, 5% (w/v) BSA and 1% (w/v)

Marvel milk powder] for 1 hr at room temperature.  Then membranes were incubated in

blocking buffer containing the appropriate primary antibody at a dilution of 1/10,000 for 2 hr

at room temperature.  Membranes were washed extensively in blocking buffer before

incubation with the secondary antibody (goat anti-chicken or rabbit IgG-alkaline phosphatase

conjugate, at a dilution of 1/1000, in blocking buffer for 1 hr at room temperature.  Then the

membrane was exhaustively washed in PBS (4.3 mM Na2HPO4, 1.4 mM KH2PO4, 137 mM

NaCl and 2.7 mM KCl) and proteins were detected using the ECL GST Western Blotting

Detection Kit (Amersham Biosciences).
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2.2.4 Measurement of protein concentration

Protein concentrations were determined by the bicinchoninic acid (BCA) assay

(Smith et al., 1985) the reagents were purchased from PerBio Science (Unit 9, North Nelson

Industrial Estate, Cramlington, Northumberland, NE23 1WA, UK).  When sample conditions

were incompatible with the BCA assay the Bradford assay (Bradford, 1976) was used,

reagents were purchased from BioRad Laboratories (BioRad Laboratories, Hercules, CA,

94547, USA).  Assays were performed according to the manufacturers’ instructions.

2.2.5 Preparation of competent cells

2.2.5.1 Electro-competent cells

A single colony of XL1-Blue cells (Stratagene, 11011 N. Torrey Pines Road La Jolla,

CA 92037) was picked and used to inoculate 1 L of 2xTY broth.  The culture was incubated

at 37°C until the optical density at 600 nm (OD600) had reached 0.5, then the culture was

placed on ice for 30 min.  Cells were harvested by centrifugation (10,000 g, 10 min) and

resuspended in 1 L of sterile water at 4°C.  Then cells were re-centrifuged and resuspended in

500 mL of sterile water at 4°C.  The cells were centrifuged once more and then resuspended

in 40 mL of 10% (v/v) glycerol.  The suspension was centrifuged at 8,000 g for 10 min and

resuspended in 6 mL 10% (v/v) glycerol.  Then resuspended cells were divided into 100 µL

portions and stored at −80°C until required.

2.2.5.2 Chemically competent cells

A single colony of E. coli C41 (DE3) cells was used to inoculate a 50 mL culture in

2xTY medium.  The culture was placed in a shaker incubator at 37°C until the OD600 had

reached 0.4.  Cells were harvested immediately by centrifugation (10,000 g, 5 min) and
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resuspended in 20 mL of a sterile solution of 0.1 M calcium chloride at 4°C.  The cells were

kept at 4°C and then centrifuged as before.  They were resuspended in 4 mL of 0.1 M

calcium chloride and the suspension was stored at 4°C.  They remained competent for 10

days.

2.2.6 Transformation of bacteria

2.2.6.1 Electroporation

Electro-competent cells (80 µL) were added to 10 µL of ligation reaction product and

transferred to an electroporation cuvette with an electrode gap of 2 mm at 4°C.

Electroporation was performed with a Gene Pulser (BioRad Laboratories, Hercules, CA,

94547, USA).  The pulse was set to 2.5 kV, the resistance to 200 Ω and the capacitance to

25 µF with a pulse time of 4.6 msec.  Then the cells were added to 100 µL of 2xTY buffer

and incubated at 37 °C for 1 hour to allow the cells to recover.  The cells were plated onto

TYE plates and incubated overnight at 37°C.

2.2.6.2 Heat shock transformation

A 50 µL portion of chemically competent cells was added to 1 µL of plasmid DNA

and the mixture was kept on ice for 30 min.  The cells were first heat shocked for 2 min at

42°C to allow uptake of DNA and then kept on ice for a further 2 min.  Then the cells were

added to 50 µL of 2xTY medium and incubated at 37°C in a shaker incubator for 30 min to

allow cells to recover.  The cells were spread onto a TYE plate, containing ampicillin

(100 µg/mL) to select for successful transformants, and incubated at 37°C overnight.
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2.2.7 Calibration of gel filtration columns

A Superose 6 HR 10/30 column (Amersham Biosciences, Amersham Place, Little

Chalfont, Buckinghamshire, HP7 9NA) was calibrated with the following proteins:

thyroglobulin (669 kDa), ferritin (440 kDa), catalase (232 kDa) and aldolase (158 kDa). The

void volume was measured with blue dextran 2000. The Kav of each protein was calculated

from Equation 2.1:

Kav= (Ve – V0)/(Vt – V0)            (2.1)

Where Ve is the elution volume, Vt is the total bed volume and V0 is the void volume. By

plotting Kav against log(molecular weight) a straight line with a correlation coefficient of 0.99

was obtained.  The graph was used to estimate apparent molecular weights.

2.2.8 Activity assays

The ability of S. cerevisiae and bovine F1-ATPases to hydrolyse ATP was determined

by an assay that couples ATP hydrolysis to oxidation of NADH (Pullman et al., 1960).  The

rate of hydrolysis was measured from the decrease in absorption at 340 nm corresponding to

decreasing NADH.  ATP consumed by F1 is regenerated by pyruvate kinase which transfers a

phosphate group from phosphoenolpyruvate to ADP producing pyruvate.  The pyruvate is

reduced to lactate by lactate dehydrogenase, a reaction that reduces NADH to NAD+ causing

a decrease in absorption at 340 nm proportional to ATP hydrolysis.

Reactions were carried out in a solution containing 83mM sucrose, 33 mM Tris pH

8.0, 10 mM KHCO3, 12 mM MgCl2, 3 U pyruvate kinase and 3 U lactate dehydrogenase.

ATP (5 mM), 5 mM phosphoenol pyruvate and 0.25 mM NADH were added before the

assay.  The reactions were carried out at 37 °C over 30 seconds.
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Fig. 2.1  The ATP regenerating assay system.  The rate of hydrolysis of ATP is coupled

directly to the reduction of NADH.  The accompanying drop in the absorbance at 340 nm is
proportional to the rate of ATP hydrolysis.  Hydrolysed ATP is converted back to ATP by

pyruvate kinase (PK) transferring a phosphate from phosphoenol pyruvate (PEP).  The
pyruvate produced in this reaction is reduced to lactate by lactate dehydrogenase (LDH),

NADH is reduced to NAD+ during this reaction and the resulting drop in absorbance by

340 nm is used to estimate the rate of ATP hydrolysis (Pullman et al., 1960).

2.2.9 Construction of expression plasmids bearing wild type and mutant IF1

Construction of expression plasmids bearing the coding sequence for the mature (i.e.

lacking presequence) inhibitor proteins IF1 from Bos taurus and IF1 and STF1 from

Saccharomyces cerevisiae has been described previously (Cabezón et al., 2000a; Cabezón et
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al., 2002; Cabezón et al., 2000b; van Raaij et al., 1996b).  The plasmid expressing

S. cerevisiae YIF1 containing the mutation E21A was generated by PCR using the plasmid

bearing the wild type sequence as template.

2.2.9.1 Polymerase chain reaction (PCR)

PCR reactions (Saiki et al., 1985) were used to amplify DNA for cloning and to

introduce specific mutations into genes.  Oligomeric primers were designed to anneal in the

5’ to 3’ direction (forward primer) and in the 3’ to 5’ direction (reverse primer) of the gene of

interest.  They also contained a specific site for a restriction endonuclease.  Alternatively they

were annealed to an area within the gene but introduce a mutation (see Table 2.1).  Primers

were made by Sigma-Genosys (London Road, Pampisford, Cambridgeshire, CB2 4EF, UK).

They were desalted before use.  Lyophilized primers were diluted in 200 µL of water and a

stock solution was made at 1 in 10 dilution, and stored at –20°C.

PCRs were performed in a Techne Touchgene thermal cycler (Techne, Duxford,

Cambridge, CB2 4DZ, UK).  The reaction mixture (100 µL) contained template DNA,

200 µM of each deoxyribonucleic acid triphosphate (dNTPs), 1 µM of each primer, DNA

polymerase and 10x reaction buffer supplied with the polymerase.  The choice of polymerase

depended on the task required.  For amplification of DNA fragments, where fidelity was

important, the Expand high fidelity PCR system (Roche Biochemicals, Lewes, UK) was

used.  It contains a mixture of two thermostable polymerases: Taq polymerase from Thermus

aquaticus and Pwo polymerase from Pyrococcus woesei.  The latter has 3’ to 5’ exonuclease

activity (proof-reading) and so introduces fewer mutations into DNA sequences.  As this

activity would also correct any mutations deliberately inserted on primers, only Taq

polymerase was used in these cases.
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Samples were heated initially to 90°C, without DNA polymerase, for 5 min to reduce

any secondary structure within primers and template DNA.  After the initial denaturing step,

reaction mixes were subjected to the following cycle: 1 min at 94°C denaturing, 2 min at

55°C annealing and 2 min at 72 °C extension, for 30 cycles.  After these cycles the reaction

mixtures were maintained at 72°C for a final 7 min extension.  Once the cycle had been

completed, the mixtures were cooled to 4°C.  The presence and correct size of reaction

products was assessed by agarose gel electrophoresis.  PCR products were purified to remove

primers and enzymes using the QiaQuick nucleotide removal kit (Qiagen Ltd. Qiagen House,

Fleming Way, Crawley, West Sussex, RH10 9NQ) and stored at –20°C until required.

Table 2.1  Oligonucleotide primers used to produce plasmids expressing mutants of the
yeast inhibitor protein YIF1.  Codons that introduce mutations are underlined.  Forward and

reverse primers are indicated by F or R respectively.

Primer Sequence

YIF1E21AF TTT GTT AAA AGG GCT AGG GCC ACG

YIF1E21AR GCT GGC CCT AGC CCT TTT AAC AAA

YIF1H39RF GAA CAA CTA CGC CGT TTG AAA GAA CAA

YIF1H39RR TTG TTC TTT CAA ACG GCG TAG TTG TTC

2.2.9.2 Restriction digestions

Restriction endonucleases were used to create ‘sticky’ ends that were compatible to

those of an expression plasmid.  Recognition sequences for the restriction endonucleases

HinD III and Nde I were included in the primers for PCR.  Reaction products were incubated

for 1.3 hours at 37°C with both enzymes at the same time in Carlos buffer (33 mM Tris-



                                                                                                         Chapter 2:  Materials and methods

65

acetate pH 7.5, 66 mM potassium acetate, 10 mM magnesium acetate, 3 mM spermidine, 0.1

mg/mL BSA fraction V and 1 mM DTT).  As the cutting efficiency of Nde I is greatly

reduced after 20 min at 37°C, the enzyme was added in 4 portions every 20 min.  After

digestion, the reaction products were purified to remove the enzymes using the QiaQuick

nucleotide removal kit (and stored at –20°C until required).

2.2.9.3 Vector preparation

The digested PCR fragments were ligated into an expression plasmid (pRun) with

compatible ‘sticky ends’.  The plasmid pRun is a construction, made by M. J. Runswick,

derived from the pET series of vectors where expression is controlled by the T7 promoter

(Studier and Moffatt, 1986).  The T7 promoter allows high-level expression of recombinant

proteins in E. coli.  Ligation reactions were performed in 10 µL of ligase buffer [50 mM Tris-

HCl pH 7.5, 5% (w/v) PEG 8000, 10 mM MgCl2 and 1 mM DTT] with a five-fold excess of

insert over plasmid and 16 units of T4 DNA ligase.  The reactions were kept at room

temperature for 2 hours.

2.2.9.4 Vector screening and preparation

The reaction mixtures were diluted to 100 µL with water and the DNA was

precipitated by the addition of 260 µL of ethanol:3 M sodium acetate (25:1, v/v) and by

cooling to –70°C for 30 min.  Precipitated DNA was pelleted by centrifugation (7,500 g, 10

min), washed in 70% (v/v) ethanol and dried under vacuum.  Dried DNA was resuspended in

10 µL water and used to transform XL1-Blue cells by electroporation (see Section 2.2.6.1).

Colonies from the transformation were screened by PCR for the presence of the

inserted gene.  Typically, 10 colonies were picked and added to a PCR reaction mix.  The

remainder of the colony was placed in 2 mL of 2xTY medium supplemented with ampicillin
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(100 µg/mL) and grown at 37°C in a shaker incubator.  The PCR reaction mixtures contained

a forward primer specific to the T7 promoter region of pRUN (T7FOR) and a reverse primer

complementary to the insert.  Reactions were analysed by agarose gel electrophoresis (section

2.2.1).  Those reactions that contained a product with the correct size of insert should come

from colonies containing both the plasmid and insert.  Cultures grown from positive clones

were transferred to 10 mL of 2xTY broth supplemented with ampicillin (100 µg/mL) and

grown overnight at 37°C in a shaker incubator.  The cells were harvested by centrifugation

(8000 g, 5 min) and the plasmid DNA was purified using the QiaPrep spin miniprep kit.

Plasmid DNA was eluted in 100 µL of water and stored at –20°C until required.

2.2.9.5 DNA sequence analysis

Clones were sequenced by the MRC Geneservice (Babraham Bioincubator,

Babraham, Cambridge, CB2 4AT) in order to verify the presence of correct DNA sequences.

2.2.10 Purification of inhibitor proteins

2.2.10.1 Overexpression

The bacterial expression of yeast inhibitor proteins and mutants was performed as

described previously (Cabezón et al., 2002).

Competent cells of E. coli C41 (DE3) were transformed with the appropriate plasmid

and plated out onto TYE plates.  Single colonies were picked and transferred to 2 L flasks

containing 1 L of 2xTY broth supplemented with ampicillin (100 µg/mL).  Flasks were

incubated at 37°C in a shaker incubator.  When the culture had reached an OD600 of 0.6,



                                                                                                         Chapter 2:  Materials and methods

67

expression was induced by addition of 600 µM IPTG.  The culture was incubated at 25 °C

overnight.

2.2.10.2 Purification of yeast IF1

Cells were harvested by centrifugation (5,000 g, 10 min, 4 °C) and resuspended in

30 mL of TEP buffer [50 mM Tris-HCl pH 7.0, 1 mM EDTA, 0.001% (w/v) PMSF]

containing a complete protease inhibitor tablet (Roche Biochemicals, Lewes, UK).  The cells

were passed through a French Pressure Cell (SLM Instruments, Urbana, IL, USA) three times

to lyse the cells and to shear the DNA.  Then samples were centrifuged (180,000 g, 2 hr, 4

°C) to remove cell debris.  The supernatant was dialysed twice against 4 L of TEP buffer for

4 hours and applied to a column of CM-sepharose (XK 26) pre-equilibrated in TEP buffer.

The column was washed with TEP buffer until the eluate absorption (monitored at 280 nm)

was stable.  A gradient of 0 to 1M NaCl was run over the column.  The yeast inhibitor

proteins eluted at 0.4 M NaCl.  Fractions containing the inhibitor protein were identified by

SDS-PAGE.  They were pooled and concentrated to 10 mg/mL using a stirred cell (Millipore,

Watford, U.K.).  The concentrated protein was dialysed twice against 4 L TEP and stored at

–20°C until required.

2.2.11 Purification of F1-ATPase from Saccharomyces cerevisiae

2.2.11.1 Cell growth and purification of mitochondria from S. cerevisiae

S. cerevisiae strain DMV301ATP2HIS, was used for all experiments.  A preculture of

this strain (500 ml) was used to inoculate 30 L of YPG medium containing 3% (v/v) ethanol

as an additional carbon source in a 40 L fermentor (FT Applikon, Gloucestershire, U.K.).

Cells were grown for 48 h at 30 °C.  They were harvested by centrifugation at 3000 g for 15
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min and washed three times in chilled water.  Cells were resuspended in breaking buffer

[0.65 M sorbitol, 0.1 M Tris-HCl pH 8.0, 10 mM EDTA, 5 mM εACA, 5 mM PAB, 2%

bovine serum albumin and 0.001% PMSF], (v/w), 2:1 and disrupted either in a cell disruptor

(Constant Systems, Daventry, UK) or in a cooled bead beater (Biospec Products, Bartlesville,

OK, USA).  Cellular debris was removed by centrifugation at 2000 g for 15 min.  Then the

supernatant was centrifuged at 53000 g for 20 min.  The mitochondrial pellets were washed

in buffer WB [0.65 M sorbitol, 0.02 M Tris-HCl pH 7.5, 1 mM EDTA, 5 mM εACA, 5 mM

PAB and 0.001% PMSF] by resuspension and centrifugation, and stored at –20 °C.  All steps

were performed at 4°C.

2.2.11.2 Preparation of submitochondrial particles

Thawed mitochondria were suspended in SBE buffer (0.25 M sucrose, 8 mM

NaH2PO4, 42 mM Na2H PO4 pH 7.5, 1 mM EDTA, 5 mM εACA, 5 mM PAB) to a protein

concentration of 10 mg/ml and sonicated (Misonix Inc., Farmingdale, NY, USA.) twice in

70 ml portions at power 6.  Then the solution was centrifuged at 3000 g for 10 min to remove

unbroken mitochondria.  The supernatant was centrifuged for 1 hour at 160000 g to pellet the

SMPs.

2.2.11.3 Purification of S. cerevisiae F1-ATPase

The pellets of SMPs were resuspended in SB buffer [0.25 M sucrose, 12 mM NaH2

PO4, 38 mM Na2H PO4 pH 7.3, 5 mM εACA, 5 mM PAB] at a protein concentration of

20 mg/ml and Tris-HCl buffered chloroform was added [0.5:1 (v/v)].  The mixture was

shaken vigorously for 30 seconds to release F1-ATPase from the SMPs and then centrifuged

for 5 min at 4500 g to break the emulsion.  The supernatant was removed and centrifuged at

96000 g to remove residual chloroform.  Methanol was added to the supernatant to 10% (v/v)
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to prevent cold sensitivity of F1–ATPase and applied to a column of Ni-NTA superflow

(Qiagen, Crawley, UK) at a flow rate 2 mL/min.  Then the column was washed extensively

with buffer A (10% methanol, 0.25 mM sucrose, 0.3 M NaCl, 50 mM Tris-HCl pH 7.5, 5

mM MgCl2, 5 mM εACA, 5 mM PAB and 1mM ADP) supplemented with 15 mM imidazole.

The protein was eluted from the column with buffer A containing 200 mM imidazole and

concentrated immediately to approximately 10 mg/ml in a stirred cell (Millipore, Watford,

U.K.).  Then the protein was applied to a column of Superdex 200 (XK16/60) (Amersham

Biosciences, Amersham, U.K.) pre-equilibrated in SDX buffer [10% methanol, 0.25 M

sucrose, 0.2 M NaCl, 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 5 mM MgCl2 and 1 mM ADP].

Fractions containing pure F1-ATPase were identified by SDS-PAGE.  They were pooled and

the protein was precipitated with 70% saturated ammonium sulphate. All steps (except

preparation of SMPs) were performed at 4°C.

2.2.12 Purification of bovine mitochondrial F1-ATPase

2.2.12.1 Purification of bovine heart mitochondria

Bovine hearts were collected from an abattoir (Dawn Cardington, Bedford, UK) and

immediately packed in ice.  Fat and connective tissue were removed from the hearts and

diced.  The meat was minced and suspended in 1 kg portions of 1.4 L buffer A (10 mM Tris-

HCl pH 7.8, 0.25 M sucrose and 5 mM β-mercaptoethanol) and then filtered through muslin.

The filtered minced meat was added to 1.6 L of buffer B [10 mM Tris-HCl pH 7.8, 0.25

M sucrose, 5 mM β-mercaptoethanol, 0.2 mM EDTA and 1 mM Tris-succinate pH 7.8], with

25 mL 2M Tris to maintain the pH at 7.8, and homogenised in a blender (Waring Products

Division, New Hertford, CT, USA) for 30 sec.  Cellular debris was pelleted by centrifugation

at 2700 rpm for 15 min in a Sorvall RC12 centrifuge.  The supernatant was decanted through

a single layer of muslin and centrifuged at 11,000 rpm for 27 min in a Sorvall centrifuge.
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The pellets were resuspended and combined in a total volume of 3.6 L of buffer B and

centrifuged for 42 min at 11, 000 rpm.  The supernatant was discarded and the pellets were

stored at -20°C. All steps were performed at 4°C.

2.2.12.2 Purification of bovine F1-ATPase

Mitochondria from 2 hearts were thawed and resuspended in 210 mL of buffer A (20

mM Tris-HCl pH 7.5, 0.25 M sucrose, 1 mM DTT and 0.002% PMSF) using a Potter

homogeniser.  The sample was divided into three portions of 70 mL and sonicated (Misonix

Inc., Farmingdale, NY, USA) for 3 x 40 sec at power 10 with rest periods of 2 min between

sonicating.  Unbroken mitochondria were removed by centrifugation for 10 min at 12,000

rpm in an SS34 rotor.  SMPs were pelleted by centrifugation overnight in an SW28 rotor at

27,000 rpm.

Pelleted SMPs were resuspended to a total volume of 120 mL in buffer B (50 mM

Tris-HCl pH 8.0, 0.25 M sucrose, 1 mM DTT, 4 mM EDTA, 2 mM ADP, 0.002% PMSF and

10 µM amastatin), at room temperature, using a Potter homogeniser.  The solution was added

to 60 mL of chloroform saturated with 1 M Tris-HCl pH 8.2 and shaken vigorously for

20 sec.  The emulsion was broken by centrifugation at 4000 rpm in a benchtop centrifuge

(Biofuge Primo, Heraeus Instruments Ltd.) for 5 min.  The supernatant was centrifuged at

27,000 rpm in an SW28 rotor for 30 min to remove F1-ATPase depleted SMPs and any

remaining chloroform.  The supernatant was removed and nitrogen blown over the surface

for 15 min to ensure that no chloroform remained.  The supernatant was concentrated to 4-7

mL in an Amicon Ultra-Filtration cell using a XM300 membrane (Millipore), filtered

(0.22 µM) and applied to an XK26/60 Superdex 200 gel filtration column (Amersham

Biosciences, Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA) pre-equilibrated

in F1-column buffer (20 mM Tris-HCl pH 8.5, 200 mM NaCl, 1 mM DTT, 4 mM EDTA, 1
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mM ADP, 0.002% PMSF and 0.02% NaN3).  The eluate was monitored from its absorption at

280 nm, and the fractions containing F1-ATPase were identified by SDS-PAGE.  The purest

fractions were pooled and loaded onto a Matrix Gel Blue A column pre-equilibrated in F1-

column buffer.  Fractions of 4 mL were collected by gravity flow.  F1-ATPase does not bind

to this column, whereas creatine kinase and any endogenous inhibitor protein IF1 bound to

F1–ATPase are removed.  Fractions containing F1-ATPase were identified by the Bradford

assay and the purity of the enzyme analysed by SDS-PAGE.  The purest fractions were

pooled and precipitated with 50% saturated ammonium sulphate and stored at 4°C.

2.2.13 Inhibition of F1-ATPases by inhibitor proteins

Assay of the inhibition of the ATPase activity of bovine and S. cerevisiae F1-ATPase

by YIF1, STF1 and mutants was performed as described previously (Cabezón et al., 2002;

Cabezón et al., 2000b).  The activities of YIF1 and YIF1-E21A were assayed at various pH

values with purified yeast F1-ATPase.  YIF1 or YIF1-E21A (1 µg) were mixed with 12 µg F1-

ATPase in a volume of 100 µl in 10 mM 4-morpholinepropanesulphonic acid for pH 6.1-7.1,

10 mM Tris-HCl for pH 7.4-8.0 and 10 mM 3–[1,1-dimethyl-2-hydroxyethylamino]-2-

hydroxypropanesulfonic acid for pH 9.1.  Then the samples were incubated at 37°C for 5 min

with 1 mM MgATP.  ATPase activity was measured by transferring 10 µl of the mixture to

1 ml of ATPase assay mixture at 37°C and measuring the decrease in absorbance of NADH

at 340 nm for 5 min.  Control activities were measured using yeast F1-ATPase, incubated at

37°C for 5 min at each pH value, in the absence of any inhibitor.
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2.2.14 Analysis of the oligomeric state of S. cerevisiae IF1

2.2.14.1 Gel filtration chromatography

Precipitated yeast F1-ATPase was redissolved in minimal buffer (50 mM 4-

morpholinepropanesulphonic acid, pH 6.6, 1 mM EDTA, 10 % (v/v) glycerol and 0.001%

PMSF) and desalted on a Micro Bio-Spin 6 column (BioRad Laboratories, Hercules, CA,

94547, U. S. A.). The enzyme was mixed with a seven-fold molar excess of inhibitor protein,

and incubated at 37°C for 20 min with 1 mM MgATP. Samples were applied to a Superose 6

HR 10/30 column (Amersham Biosciences) pre-equilibrated in minimal buffer, and run at a

flow rate of 0.5 ml/min. The absorbance of the eluant was monitored at 280 nm

2.2.14.2 Covalent cross-linking

Cross-linking of primary amines in the inhibitor proteins with dimethyl suberimidate

was performed at pH 9.1. Samples (0.5 mg/ml) were dialysed overnight in 100 mM 3–[1,1-

dimethyl-2-hydroxyethylamino]-2-hydroxypropanesulphonic acid, pH 9.1.  Dimethyl

suberimidate was added to a final concentration of 1 mg/ml from a freshly prepared stock

solution (20 mg/ml) and kept for 2 h at room temperature.  Samples were removed at various

times, and the reaction was quenched with Tris-HCl buffer, pH 8.0.  The degree of cross-

linking was assessed by SDS-PAGE.

2.2.14.3 Analytical ultracentrifugation

Sedimentation velocity measurements were made with a Beckman Optima XL-A

analytical ultracentrifuge and an An60-Ti rotor, using double-sector cells with a 12 mm

pathlength. Samples were prepared as described in Section 2.2.14.1, but in a different buffer

(10 mM 4-morpholinepropanesulfonic acid, pH 6.6, 100 mM NaCl and 1 mM MgATP) and
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incubated for 20 min with a seven fold molar excess of YIF1. After inhibition, the sample was

diluted with the same buffer, but lacking MgATP, to a protein concentration of 1.5 mg/ml

and a MgATP concentration of 0.1 mM to lower the background absorbance at 280 nm. The

enzyme remained inhibited after dilution and throughout the course of the experiment.

Measurements were made at 32,500 rpm and 20.0 °C, scanning at 280 nm and with a 0 min

interval (i.e. to give repetitive scans as quickly as possible).  Adjacent sets of scans (up to 12,

but fewer when band broadening would not permit this many for the molecular mass of a

monomer) were analysed using the programme DcDt+ version 1.16 (Philo, 2000) and taking

the partial specific volume as 0.73 ml/g and the solvent density as 1.005 g/ml.  The molecular

mass of the complex was calculated taking values of 0.7418 ml/g for the partial specific

volume, 1.00265 g/ml for the solvent density and 1.0137 (cpoise) for the viscosity, calculated

with SENTERP (Laue, 1992).  This programme was also used to fit the dc/dt data for each set

of scans, optimising the initial concentration, the sedimentation coefficient and the molecular

mass, using a model with only a single component.  Plots of the residuals from the fitting,

and the standard deviations for the fitted parameters, showed that this model fitted the data

well. Therefore, no attempt was made to fit a model with two, or more, components.

2.2.15 Inhibition of bovine F1-ATPase with ADP and magnesium fluoride

Precipitated bovine F1-ATPase was redissolved in MgF buffer (200 mM Tris-DCl pH

7.2, 400 mM NaCl, 1 mM ADP and 0.04% (w/v) NaN3 in D2O) and desalted on a Micro Bio-

Spin 6 column (BioRad Laboratories, Hercules, CA, 94547, U. S. A.).  Then the protein was

incubated for 20 min with 10 mM MgCl2.  After this incubation 10 mM NH4F was added and

the protein was kept at room temperature until inhibition was complete (typically 2 hrs).  The
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enzyme inhibited in this way was immediately used in crystallisation experiments described

below in Section 2.2.16.

2.2.16 Protein Crystallisation

Three-dimensional protein crystals are grown by forming a super-saturated solution

and causing precipitation sufficiently slowly, and in such a manner, that ordered arrays of the

protein are formed.  Reagents, such as salts or polyethylene glycols (PEGs), that ‘compete’

for the water in the protein solution, bring the protein out of solution.  Changing the pH of the

solution, the length of equilibration or changing the temperature can alter the way the protein

molecules interact with each other leading to crystallisation.

2.2.16.1 Crystallisation of bovine F1-ATPase inhibited with ADP and magnesium

fluoride

The crystallisation of bovine F1-ATPase inhibited with magnesium fluoride was

carried out as in (Lutter et al., 1993) but with several modifications.  Purified F1-ATPase was

desalted and inhibited as described in Section 2.2.15 and the concentration of the protein was

adjusted to 10 mg/mL.  An equal volume of inside buffer [100 mM Tris-DCl pH 7.2, 400

mM NaCl, 10 mM MgCl2, 0.05 mM ADP, 0.04% (w/v) NaN3, 0.004% (w/v) PMSF and 14%

(w/v) PEG 6000 in D2O] was added slowly to the protein and the solution mixed gently.

Then the sample was centrifuged (33,000 g, 10 min) to remove any particulate matter.

Microdialysis buttons (50 µL, Cambridge Repetition Engineers, Cambridge, UK) were filled

with 55 µL protein solution and covered with dialysis membrane (SpecraPor, 3,500

molecular weight cut-off, Spectrum Medical Industries, Houston, TX, USA), taking care to

exclude bubbles, and sealed with a rubber O-ring.  The button was placed in a vial and

dialysed against 3 mL of outside buffer [50 mM Tris-DCl pH 8.2, 200 mM NaCl, 10 mM
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MgCl2, 10 mM NH4F, 0.05 mM ADP, 0.02% (w/v) NaN3, 0.004% (w/v) PMSF and 9% (w/v)

PEG 6000].  After 48 hr, this buffer was removed and replaced with the same buffer

containing concentrations of PEG 6000 from 10 to 14% (w/v) in 0.25% steps.  Crystals

appeared after 1 week and were fully grown after 6 weeks.

2.2.16.2 Harvesting and cryoprotection

In order to assess the diffraction quality of crystals, they must be removed from the

mother liquor and mounted in an X-ray beam.  Protein crystals are extremely sensitive to

damage by X-radiation caused by free radicals which can seriously compromise the quality of

the data collected.  Cooling the crystals to 100 K dramatically reduces the damage to the

crystals by preventing the chain reaction of radical damage (Garman, 1999).  However,

cooling crystals to these temperatures can also cause damage to the crystals by the formation

of ordered ice disrupting the order of the crystals and itself diffracting X-rays, thereby

compromising data collection.  This latter damage can be prevented in two ways.  First, the

crystal must be frozen extremely quickly to reduce the time available for ordered ice to form.

Second, the crystal can be transferred to a mother liquor solution containing a known

cryoprotectant (Garman and Schneider, 1997).  The cryoprotection agent changes the

freezing point and kinetics of the mother liquor allowing sufficient time for the formation of

vitrified water (an amorphous state without ice crystals).  Cryoprotection has several

advantages: The crystal is mounted in a thin film held by surface tension in a loop.  This

technique (Teng, 1990) involves less handling of the crystal, and therefore less mechanical

damage; cryocooled crystals can be stored for long periods, and as there is less radiation

damage, usually a complete data set can be taken from a single crystal increasing the quality

of the data.  Cryocooling of crystals can increase the mosaic spread; however, careful

selection of cryoprotectant and cryoprotection protocol can minimise this effect.
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As crystals of bovine F1-ATPase are grown in microdialysis buttons, the transfer of

crystals to a cryoprotection buffer is relatively simple and avoids extensive handling of the

crystals.  The outside buffer was removed from the vial and replaced with buffer containing

5% (v/v) glycerol and a PEG 6000 concentration of 15% (w/v).  The solution was left for 15

min and then replaced with a solution containing 10% (v/v) glycerol.  The concentration of

glycerol was increased to 20% in 5% steps with 15 min at each concentration.  At the end of

the final soak, the dialysis membrane was removed from the button with a razor blade.

Crystals were harvested using a mounted cryo-loop (Hampton Reasearch, Laguna Niguel,

CA, USA) of appropriate size and immediately plunged into liquid nitrogen.  The cryo-loop

was transferred to a vial, placed in a cryo-cane and stored at 100 K until required.

2.2.17 X-ray crystallography analysis

2.2.17.1 Crystal screening

The diffraction quality of the crystals was assessed using CuKα radiation from a

laboratory X-ray source (RuH3R rotating anode generator, Rigaku MSC, The Woodlands,

TX USA) and a MAR345 image plate detector (Mar Research, Hans-Böckler-Ring, 1722851,

Norderstedt, Germany) at a crystal to detector distance of 300 mm (resolution limit 3 Å).

Crystals were mounted in cryo-loops, using cryotongs, and maintained at 100 K by a stream

of dry nitrogen gas at 100 K from a cryo-stream (Oxford Cryosystems Ltd, 3 Blenheim

Office Park, Lower Road, Long Hanborough, Oxford OX29 8LN).  Two diffraction images

(oscillation angle 0.5°) were taken at φ 0° and 90° with an exposure time of 10 min, and the

quality of the diffraction inspected visually.  Crystals that diffracted to between 3–4 Å and

had low mosaic spread were recovered and stored for data collection at a synchrotron

radiation source.
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2.2.17.2 Data Collection

Crystals showing good quality diffraction patterns were taken to the European

Synchrotron Radiation Facility (ESRF, 6 Rue Jules Horowitz, Grenoble, France) beamline

ID29 for data collection.  The quality of the diffraction was assessed in the same manner as

Section 2.2.17.1 with careful inspection for split spots and the resolution limit and a decision

made on whether to take a data set.  Diffraction data were collected on an ADSC Q210 2D

CCD detector (Area Detector Systems Corporation, 12550 Stowe Drive, Poway, California

92064, USA) at a crystal to detector distance of 245 mm.  Initial diffraction images were

inspected with MOSFLM (Leslie, 1992) and the crystal orientation, probable space group and

unit cell parameters were determined by the autoindexing function.  MOSFLM produces a

list of possible space groups and unit cell parameters; generally, the option with the lowest

penalty and highest symmetry space group is correct.  The accuracy of the choice of unit cell

is verified by MOSFLM placing boxes where spots are predicted from the selected space

group: If the boxes overlay all observed reflections, the unit cell is correct.  Once the

orientation of the crystal was determined, the strategy function was used to calculate the

starting angle and minimum φ  range needed to collect a complete data set; for the

orthorhombic space group this was 60°.

2.2.17.3 Data processing

Once a complete data set had been collected, the unit cell parameters were refined.

The initial measurements from autoindexing were calculated from the position of the spots;

the cell is refined accurately by measuring observed reflections.  Two wedges of data

(typically 2 degrees) at a large distance apart in φ were used for the measurement using the

refine cell function in MOSFLM.  After refinement the data were integrated.  MOSFLM
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places a rectangle over the predicted spot position and measures the peak intensity and

background within the rectangle.  This was performed for the entire data set and the

intensities written out to an ‘mtz’ file.

Once the data had been integrated they were scaled and merged.  The intensities

recorded will vary over time and place due to a number of factors:  The intensity of the beam

may change over time and differences in the size of the crystal will affect measured

intensities and radiation damage to the crystal will also influence the scale of the data.  The

program SCALA (Evans, 1997) compares symmetry related reflections and models the scale

factor to achieve a data set with overall consistency of intensities.  This step in data

processing provides the best measure of the quality of the data.  The integrated and scaled

data were then merged to form a single mtz containing the intensities for a complete data set.

The scaled and merged intensities were converted to amplitudes by TRUNCATE

(French and Wilson, 1978).  The intensity of reflections is directly proportional to the square

of the amplitude of the incident X-rays.  Therefore, the amplitude is the square root of the

intensity.  However, by taking the square root of the intensity, the negative intensities are set

to zero and the contribution from weak reflections is underestimated.  TRUNCATE

calculates amplitudes by comparing intensities and their standard deviations and the

intensities to the resolution shell.  This gives better estimates of the data as negative

intensities become positive.  TRUNCATE outputs an mtz file containing the observed

amplitudes and a Wilson B factor, reflecting how the intensities fall off with resolution.  At

this stage a random 5% of the data were ‘flagged’ to be used in the Free R-factor calculation

(see appendix A:  Crystallographic Theory) using the program FreeRFlag.
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2.2.17.4 Molecular replacement

The structure factor amplitudes contain half the structural information, but the phases

are also required to calculate an electron density map.  The phases can be estimated by

several techniques (see Appendix A:  Crystallographic Theory).  In the case of F1-ATPase,

the overall architecture of the protein is well known so the phases can be estimated from the

structural model; this procedure is referred to as molecular replacement (Rossman and Blow,

1962).  Molecular replacement was performed using the program AMoRe [Automated

Molecular Replacement (Navaza, 1994)] using the beryllium fluoride inhibited structure

[PDB accession code 1WOJ (Kagawa et al., 2004)], with the beryllium fluoride and waters

removed, as a search model.  There are several programs that run within AMoRe.  The first is

SORTING, which reads in the amplitudes from the mtz file and converts them to an AMoRe

format.  In the next step, TABLING, calculates the amplitudes from the search model by

performing a Fourier transform on the electron density predicted from the atomic coordinates.

Then data are compared to the observed amplitudes of the new structure.

The first stage of molecular replacement is the rotation search performed by

ROTING.  This program compares the Patterson maps [the Fourier transform of the

intensities (see Appendix A: Crystallographic Theory)] from the model and new structure;

peaks within the Patterson maps from intramolecular vectors only depend on the orientation

of the structure in the unit cell.  Therefore, peaks for approximately 2/3 of the volume of the

molecule are looked at and matching the peaks from the Patterson maps will find the

orientation of the new structure within the unit cell.  ROTING produces a list of the possible

Euler (rotation) angles listed in order of peak height; generally, the first option is correct, but

all solutions (above a threshold) are used in the translation search.

Once the orientation of the structure has been found, its position within the unit cell

can be calculated.  This calculation is performed by TRAING.  This search looks at the
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intermolecular vector peaks that are in the Patterson map.  The intramolecular peaks found in

ROTING are subtracted from the Patterson and only these peaks are matched.  These peaks

arise from any pair of atoms in different molecules related by crystal symmetry.  This places

the molecule within the unit cell.  Then AMoRe compares calculated structure factors from

various orientations of the model to the observed data, and for each solution calculates the

correlation coefficient between the data and the R-factor (the measure of agreement between

observed structure factors and those calculated from the model: see Appendix A:

Crystallographic Theory).  The solution with the highest correlation coefficient and the

lowest R-factor is generally the correct one.

The chosen rotation and translation parameters are refined by rigid body refinement

performed by FITING.  This procedure will indicate if the solution choices were correct, as

the R-factor should decrease and the correlation coefficient increase if the solutions are

correct.  The final output from AMoRe is a coordinate file which can be refined against the

observed data.

2.2.17.5 Model refinement

2.2.17.5.1 Refinement using REFMAC5

The model produced by AMoRE was refined against the observed data using the

program REFMAC (Murshudov et al., 1997).  This program refines the data using maximum

likelyhood methods and contains a dictionary of bond angles, lengths and other restraints for

polypeptides and ligands to maintain correct stereochemistry within the model during

refinement.  The matrix weighting term (the weight given to the observed data against the

stereochemistry of the model) was varied.  The value that gave the lowest Free R-factor and

best stereochemistry was chosen.  The quality of the refinement was assessed by the values of

the Free R-factor and RMS deviations in bond angle and chirality.
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2.2.17.5.2 Manual rebuilding

After the first round of refinement with REFMAC, electron density and difference

maps (showing densities for regions that are either missing or misplaced in the model) were

calculated from the Fourier transform of observed amplitudes and phases calculated from the

refined model using the program FFT.  Then the maps and model were read into the program

‘O’ (Jones et al., 1991) a molecular modelling program.  ‘O’ allows the maps and model to

be displayed in three-dimensions and the rebuilding of the model to match the observed

electron density.  The maps were inspected initially for their quality and for novel features.

The first stage of manual rebuilding was to search for the highest density peaks (either

positive or negative).  This procedure was performed using PEAKMAX, a program that

searches for peaks above a certain value and ranks them in order of height and writes out

their coordinates.  Then the peaks are displayed in ‘O’ and interpreted.  The largest features

in the difference maps were due to side-chains that had moved as a result of different lattice

contacts in the crystal and ordered water molecules.  Large novel features (for example the

magnesium fluoride) were not included in the model in until further refinement had been

performed, so as not to bias the maps.  Waters were inserted where the stereochemistry was

correct.  After manual rebuilding, the coordinates were written out and refined against the

observed X-ray data in REFMAC.  This process was repeated until the density peaks

remaining could not be interpreted.

2.2.17.6 Structure validation

The final model was analysed for gross structural errors using the program

PROCHECK (Laskowski et al., 1992). The φ and ψ bond torsion angles of the α-carbon

backbone of proteins adopt preferred combinations due to steric hindrance (Ramakrishnan

and Ramachandran, 1965).  PROCHECK analyses the model for the φ and ψ angles for any
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deviation from the preferred conformations.  A Ramachandran plot of the φ versus ψ angles

is output that will show any residues that deviate from ideality (Ramachandran et al., 1963).

2.2.17.7 Figure preparation

All images of the F1-ATPase models, electron density maps and other structures were

produced using the molecular graphics program PyMOL (DeLano, 2002).  The coordinates

for solved structures, used to prepare figures, were downloaded from the Protein Data Bank

[http://pdb.ccdc.cam.ac.uk/pdb/, (Berman et al., 2000)].
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CHAPTER 3: MECHANISM OF ACTION

OF THE F-ATPase INHIBITOR PROTEIN IF1

FROM Saccharomyces cerevisiae

3.1 Results

The ATP synthase in mitochondria of Saccharomyces cerevisiae is regulated by two

inhibitory proteins YIF1 and STF1 and one, or possibly two, other proteins STF2 and STF3.

The bovine inhibitor protein is active as a dimer at pH values below 7.0, as the pH increases

above this value, tetramers and higher oligomers form that occlude the inhibitory regions.  As

the yeast proteins are considerably shorter than the bovine, their physical properties at

various pH values were investigated.  In this chapter the mechanism of activation and

oligomeric states of the yeast inhibitory proteins are discussed and compared to the bovine

inhibitor protein, IF1, throughout.

3.1.1 Purification of recombinant inhibitor proteins

The inhibitor proteins from Sacharomyces cerevisiae YIF1 and STF1 and mutants of

YIF1 E21A and H39R were cloned and expressed in E. coli to high levels [typically 10-20 mg

protein per litre culture (see Section 2.2.9)].  All of the proteins were expressed in the

cytoplasm as soluble, folded protein.  After overexpression and cell lysis the proteins were

purified by ion exchange chromatography (see Section 2.2.10 and Figures 3.1, 3.2, 3.3 and

3.4).  There was no difference in the chromatographic behaviour of YIF1, STF1 or YIF1

mutants.
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Figure 3.1 Purification of YIF1 by ion exchange chromatography (CM-Sepharose).  The

elution profile of the purification is shown.  Cell lysate was loaded and the column washed

until the baseline stabilised.  A 0 to 1 M NaCl gradient (red line) was passed over the column
to elute YIF1.

Figure 3.2 SDS-PAGE analysis of column fractions from ion-exchange
chromatography.  Fractions corresponding to the peak seen in Figure 3.1 were analysed.
The protein was present at high levels and no further purification was required. The positions

of molecular weights (M) are shown on the left hand side and L is the cell lysate loaded onto

the column.
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Figure 3.3 SDS-PAGE analysis of column fractions from ion-exchange chromatography
of YIF1-E21A.  The protein was present at high levels and no further purification was
required. The positions of molecular weights (M) are shown on the left hand side and L is the

cell lysate loaded onto the column.

Figure 3.4 SDS-PAGE analysis of column fractions from ion-exchange chromatography
of STF1.  The protein was present at high levels and no further purification was required. The

positions of molecular weights (M) are shown on the left hand side and L is the cell lysate

loaded onto the column.
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3.1.2 Inhibitory activity of S. cerevisiae inhibitor proteins

The inhibitory potency of the recombinant proteins was measured by the degree to

which they inhibited the activity of purified F1-ATPase from S. cerevisiae.  The ATP

hydrolase activity of the F1-ATPase was found to be inhibited by 94% by a seven fold molar

excess of YIF1 and by 96% by a twenty-seven fold molar excess of STF1 (Figure 3.5).  The

IC50 of the inhibitor proteins was estimated from the inhibition curves.  The IC50 was taken to

be the concentration of inhibitor protein which inhibited 50% of the control ATPase activity.

The values were found to be 1.3 for YIF1 and 6.4 for STF1.  This correlates well to the

differences in the dissociation constant (KD) found in another study (Venard et al., 2003).

This established the activity and correct folding of the recombinant proteins.

Figure 3.5 Inhibition of F1-ATPase from S. cerevisiae by the YIF1 and STF1 inhibitor
proteins. Parts (A) and (B), inhibition of the activity of F1-ATPase by YIF1 and STF1,

respectively.
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The YIF1 mutant E21A has been shown to be active at all pH values (Ichikawa et al., 2001).

This activity was investigated, at a range of pH values, for the mutant produced in this work.

YIF1 or YIF1-E21A (1 µg) were mixed with 12 µg yeast F1-ATPase in a volume of 100 µl in

10 mM 4-morpholinepropanesulfonic acid for pH 6.1-7.1, 10 mM Tris-HCl for pH 7.4-8.0

and 10 mM 3–[1,1-dimethyl-2-hydroxyethylamino]-2-hydroxypropanesulfonic acid for pH

9.1.  The samples were then incubated at 37°C for 5 min with 1 mM MgATP.  ATPase

activity was measured by transferring 10 µl of the mixture to 1 ml ATPase assay mixture at

37°C and measuring the decrease in absorbance of NADH at 340 nm for 5 min.  Control

activities were measured using yeast F1-ATPase, incubated at 37°C for 5 min at each pH

value, in the absence of any inhibitor.  The results show that the mutant E21A is fully active

above pH 7.0 (Figure 3.6)

Figure 3.6 The effect of pH on the inhibitory activities of the YIF1 and YIF1-E21A
proteins.  The ATPase activity increases steeply above pH values of 7 for the wild type YIF1

but remains below 6% for the mutant E21A.  ●, YIF1; , YIF1-E21A
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3.1.3 Covalent crosslinking of inhibitor proteins

By creating covalent bonds between near-neighbour proteins the oligomeric nature of

the inhibitor proteins at different pH values could be probed.  The crosslinking reagent

dimethyl suberimidate (DMS) was used to covalently link protein oligomers by crosslinking

amine groups on lysine residues.  The extent of oligomer formation was monitored by

observing the pattern of oligomers seen by SDS-PAGE.  During all crosslinking experiments

results were compared to the bovine IF1 as a control.  The bovine protein is well characterised

in vitro and its structure is known in both an F1-ATPase bound and free form (Cabezón et al.,

2003; Cabezón et al., 2001).  Samples of inhibitor proteins were dialysed into buffers at pH

values of either 7.1 or 9.1 overnight and crosslinking experiments were performed as

described in Chapter 2.  The results are shown in Figures 3.7 and 3.8.

Figure 3.7 Covalent crosslinking of wild type and mutant inhibitor proteins at pH 9.1.
The durations of cross-linking of quenched samples of bovine IF1 (BIF1), YIF1, STF1 and

YIF1 containing the mutation E21A (denoted YIF1-E21A) analyzed by SDS-PAGE are
indicated above the lanes of the stained gel. The positions of molecular weights (M) are

shown on the left hand side.
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Figure 3.8 Covalent crosslinking of inhibitor proteins at pH 7.0.  The durations of cross-

linking of quenched samples of bovine IF1 (BIF1), YIF1and STF1 by SDS-PAGE are indicated
above the lanes of the stained gel. The positions of molecular weights (M) are shown on the

left hand side.

The bovine protein shows clear tetramer formation after 120 minutes and by this time

almost all of the protein has been converted to this form.  In contrast the yeast proteins show

clear trimer formation and at 120 minutes around half of the protein has been converted to

this form. The first three lanes in Figures 3.7 and 3.8 show the crosslinking of bovine IF1, the

interaction to form dimers is sufficiently strong to be seen even before crosslinking has taken

place (0 minutes), this is not evident in the yeast proteins.  The bovine protein shows a clear

pattern of crosslinking progressing from monomer to tetramer with some higher oligomer

formation at pH 9.1 but only dimers at pH 7.0.  The yeast proteins show clear trimer

formation and again higher oligomer formation at pH 9.1 but no oligomer formation at pH

7.0.  The crosslinking of the mutant YIF1-E21A shows a lower tendency to form oligomers
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(Figure 3.7) consistent with previous experiments showing that this mutant is able to inhibit

F1-ATPase at all pH values [Figure 3.6 and (Ichikawa et al., 2001)].

3.1.4 Oligomeric state of the S. cerevisiae F1-YIF1 complex

It has been shown, by hydrodynamic and X-ray crystallographic experiments

(Cabezón et al., 2000a; Cabezón et al., 2003), that the bovine F1-IF1 complex is a dimer.

This dimeric state depends on the dimeric nature of the active inhibitor protein.  To

investigate the oligomeric nature of the active S. cerevisiae inhibitor protein, its state in

complex with F1-ATPase was studied.  The oligomeric state of the S. cerevisiae F1-YIF1

complex was investigated by gel filtration chromatography and sedimentation velocity

analytical centrifugation.

3.1.4.1 Gel filtration analysis

A Superose 6 HR 10/30 column was calibrated (Figure 3.9 and Section 2.2.7) and the

S. cerevisiae F1-YIF1 complex and uninhibited F1-ATPase applied to the column.  The

complex and inhibitor free F1-ATPase eluted at the same position with an apparent molecular

weight of 306 kDa.  This confirmed that the S. cerevisiae complex is monomeric and consists

of one copy each of YIF1 and F1-ATPase (Figure 3.10).  Analysis of the peak fractions, by

SDS-PAGE, confirmed the presence of both YIF1 (7.3 kDa) and F1-ATPase in the complex in

approximately equivalent amounts (Figure 3.11).  In contrast, as expected, the bovine F1-IF1

complex eluted from the same column with an apparent molecular mass of 620 kDa (Figure

3.10) consistent with its known structure as a dimeric complex composed of dimeric IF1

attached to two F1-ATPase assemblies (Cabezón et al., 2003).



              Chapter 3:  Mechanism of action of the F-ATPase inhibitor protein IF1 from S. cerevisiae

91

Figure 3.9 Calibration of the Sepharose 6 column. The column was calibrated with the

following proteins: thyroglobulin (669 kDa), ferritin (440 kDa), catalase (232 kDa) and

aldolase (158 kDa). The void volume was measured with blue dextran 2000.  The plot of Kav

against log[molecular weight] gives a straight line and enables the apparent molecular weight

of unknowns to be estimated. See Section 2.2.7 for experimental details.

Figure 3.10 Estimation of molecular weights of complexes by size exclusion
chromatography.  Elution profiles of the yeast F1-ATPase, the YIF1-F1 complex and the
bovine IF1-F1 complex, denoted by traces A, B and C, respectively. The peaks that elute

second in traces B and C are excesses of unbound inhibitor proteins. The excluded volume of

the column, V0, is indicated.
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Figure 3.11 Analyses by SDS-PAGE of the main peaks in traces A and B from Figure
3.10 (denoted by A and B above the gel). The positions of the five subunits α, β, γ, δ and ε

of the S. cerevisiae F1-ATPase and of the inhibitor protein, YIF1, detected by staining with

Coomassie blue dye, are indicated on the left.

3.1.4.2 Analytical ultracentrifugation

To confirm the conclusion that the F1-YIF1 complex is monomeric, it was analysed by

sedimentation velocity ultracentrifugation (Figure 3.12). The F1-YIF1 complex gave a mean

s20,w value of 12.84 S and a mean molecular mass of 338 kDa, consistent with monomeric F1-

ATPase bound to monomeric YIF1. The values obtained with bovine F1-ATPase and the

bovine F1-IF1 complex were 12.1 ±0.7 S and 17.0 ±0.1 S, respectively , with corresponding

molecular masses of 330 kDa and 521 kDa. This latter value is somewhat low for the dimer,

but this could well be due to some non-homogeneity in the boundary (which is rather broad,

although still well fitted as a single component), possibly due to different conformations of

how the IF1 can bind two F1-ATPases together.
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Figure 3.12 Sedimentation velocity analysis of the yeast F1-ATPase-YIF1 complex.

Original scans taken at intervals of 15 min are shown, together with plots of g(s*20,w) against
s*20,w and of the residuals from the model fitting against s*20,w for sets of scans from 51–62

and from 81–92.
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3.2 Discussion

3.2.1 Active and inactive states of the S. cerevisiae inhibitor proteins

The results from crosslinking experiments show that at pH values above 7.0 the

S. cerevisiae inhibitor proteins forms trimers, in contrast to the tetramer formation observed

in the bovine inhibitor protein (Figure 3.7).  The patterns obtained with YIF1 and STF1 differ.

STF1 shows a weaker tendency to aggregate at pH values of 9.1.  This is consistent with

analytical ultracentrifugation experiments in a previous study (Cabezón et al., 2000a;

Cabezón et al., 2002).  STF1 contained less dimer and more trimer indicating a stronger

equilibrium between monomeric and trimeric states than in YIF1 where monomer, dimer and

trimer coexisted in equilibrium. The crosslinking results also demonstrate that the bovine

protein is more stringently controlled than the S. cerevisiae proteins.  After 120 minutes the

bovine protein is almost entirely converted to the tetrameric form.  In contrast, the

S. cerevisiae proteins remain as an equal mixture of oligomers after the same time (Figure

3.7).

The crosslinking experiments at pH 7.0 show the active state of the proteins (Figure

3.8).  The bovine protein shows monomer and dimer even at 0 min, indicating that the dimer

interaction is sufficiently strong to withstand a denaturing gel to some extent.  The

S. cerevisiae proteins only show monomer, even after 180 min.  The crosslinking

experiments at this pH value were left for a longer period, as DMS is much less active at this

value.  However, as crosslinking is observed in the bovine protein, oligomers of the

S. cerevisiae proteins, if present, should be observed.

These experiments investigate the properties of the free inhibitor proteins, but how do

they behave when interacting with F1-ATPase?  The gel filtration and analytical

ultracentrifugation experiments show that the complex is monomeric (Figures 3.10 and 3.12).



              Chapter 3:  Mechanism of action of the F-ATPase inhibitor protein IF1 from S. cerevisiae

95

Analysis of the fractions containing F1-YIF1 eluted from the gel filtration column show that

the F1-ATPase and YIF1 are present in approximately equivalent amounts (Figure 3.11).  The

exact stoichiometry of the complex cannot be determined from the SDS-PAGE gel and it

may be possible that a dimeric YIF1 binds to the F1-ATPase.  This may be possible as the

shorter length of YIF1 compared to bovine IF1 (63 amino acids and 84 amino acids

respectively) may not enable the second C-terminus to reach another F1-ATPase.  However,

coupled with the crosslinking results it seems likely that a monomeric YIF1 binds one

F1–ATPase.  The length of the S. cerevisiae proteins also indicates a monomeric active state.

Truncating the bovine IF1 to the first 64 amino acids renders the protein monomeric

(Gledhill, J. G., personal communication) probably because the α-helical coiled coil forming

regions are removed.  The mechanism of oligomerisation of the S. cerevisiae inhibitor

proteins is discussed in the following section.

3.2.2 Structure and mechanism of action of the inhibitor proteins

By deletion analysis, it has been demonstrated that residues 14-47 of bovine IF1

represent the minimal inhibitory sequence (van Raaij et al., 1996b), and the structure of the

bovine F1-IF1 complex has shown that residues 1-37 are in intimate contact with the βDP-αDP

catalytic interface of F1-ATPase (Cabezón et al., 2003).  The bovine and yeast proteins are

most strongly conserved in this N-terminal inhibitory region (Figure 3.13).  Their sequences

are more divergent in the C-terminal regions, which are involved in the modulation of active

and inactive states of the protein by pH.  The major difference between the bovine and yeast

proteins is that the C-terminal regions of the yeast proteins are truncated by 21 amino acids

relative to the bovine sequence.  Residues 39-80 of bovine IF1 contain seven consecutive

heptad repeats that are involved in dimer formation by formation of an anti-parallel coiled-

coil of α-helices.  The critical role of histidine-49 in heptad-2 in the formation of tetramers
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was demonstrated by the mutation H49K which led to the bovine IF1 being maintained in an

active dimeric state independent of pH (Cabezón et al., 2003; Schnizer et al., 1996).

Figure 3.13 Sequence alignment of inhibitor proteins.  Alignment of the sequences of
bovine IF1 (BIF1) with those of YIF1 and STF1 from S. cerevisiae with the program ClustalW

(Thompson et al., 1994).  Residues that have been found to be important in oligomer
formation are shown in bold.  Identical residues are indicated by an asterisk, highly

conserved residues by a colon and weakly conserved residues by a full stop.

By analysis of the sequences of the yeast proteins for heptad repeats with the program

MultiCoil (Wolf et al., 1997), four or five repeats were predicted to be present in their C-

terminal regions (Figure 3.14).  The yeast proteins do not contain a residue equivalent to

histidine-49, but two residues, histidine-39 and glutamate-21, appear to influence the pH

regulation of their activities (Ichikawa et al., 2001).  The former is in the coiled-coil forming

region (Figure 3.14), and mutation of this residue could interfere directly with coiled-coil

formation.  One striking difference between the bovine and yeast proteins is the formation of

dimers and of dimers-of-dimers by the former, and of dimers and trimers (and no dimers-of-

dimers) by the latter, implying that the aggregation process involves coiled-coil formation by

two and three α-helices in dimers and trimers, respectively.  A leucine zipper sequence

provides an example of how one sequence can form both dimeric and trimeric parallel coiled-

coils under slightly different conditions (Gonzalez et al., 1996). In the case of the yeast
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inhibitor proteins, it is not known whether the coiled-coils are parallel or antiparallel.  Further

mutational and structural analyses will be required to elucidate how their coiled-coils are

formed.

Figure 3.14 Positions of heptad repeats in inhibitor proteins.  The positions of heptad

repeats, a-g, predicted by the program MULTICOIL (Wolf et al., 1997) to be involved in the
formation of α-helical coiled-coils in bovine IF1 (BIF1) and YIF1 and STF1 from S. cerevisiae.

Glutamate-21, a second residue in the yeast protein that has been identified as

influencing oligomer formation (Ichikawa et al., 2001), is in the inhibitory region, and, by

comparison with the bovine F1-IF1 structure, it would be expected to be in contact with F1-

ATPase and not to influence coiled-coil formation directly.  However, the mutation E21A

causes YIF1 to become fully active at pH 8.0.  By cross-linking (Figure 3.7), it was shown

that the mutation suppresses the formation of dimers and trimers, and the inhibitory activity

of the mutant protein becomes independent of pH (Figure 3.6), suggesting that the negative
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charge at residue-21 in the wild-type protein helps to promote higher oligomer formation and

aggregation.

Further structural analysis will also be required to understand the precise mechanism

of inhibition of yeast F1-ATPase by YIF1 and STF1, although it is likely that the general

modes of interaction and inhibition will be similar to the bovine proteins.  However, it is

already clear that the YIF1 and STF1 proteins are less potent than bovine IF1, and the activity

of the bovine protein is more stringently regulated since more yeast inhibitor protein remains

active at elevated pH than does the bovine protein (Figure 3.7).

3.2.3 Dimerisation of F-ATPases

Dimeric forms of both the bovine and yeast F1Fo-ATPases have been observed by

blue native PAGE (Arnold et al., 1998; Schagger and Pfeiffer, 2000).  Dimerisation of bovine

F1-ATPase, but not as yet of the intact F1Fo-ATPase, by the inhibitor protein has been

demonstrated by a range of independent methods, including X-ray crystallography (Cabezón

et al., 2000a; Cabezón et al., 2003). Therefore, the dimers of the bovine F1Fo-ATPase

observed by gel analysis could be mediated by IF1.  However, dimerisation of the F1Fo-

ATPase in S. cerevisiae is mediated by other subunits, namely subunits e and f, which appear

to make homodimeric parallel α-helical coiled-coils (Arnold et al., 1998).  It has also been

shown that an Inh1 null strain of S. cerevisiae still contains ATP synthase dimers (Dienhart et

al., 2002).  The present results, which show that monomeric YIF1 and STF1 are the active

forms of these inhibitors, effectively eliminates their participation in the dimerisation of the

yeast F1Fo-ATPase.
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CHAPTER 4: THE STRUCTURE OF BOVINE

MITOCHONDRIAL F1-ATPase INHIBITED WITH ADP

AND MAGNESIUM FLUORIDE

4.1 Results

4.1.1 Introduction

Metallofluorides, together with ADP, inhibit F1-ATPase by replacing the γ phosphate

of ATP. As they have fixed geometric arrangements (either as a phosphate analogue or a

transition state analogue), the protein is stabilised in this conformation.  Crystallographic

studies of F1-ATPase with metallofluorides have revealed new substeps in the catalytic

mechanism (Kagawa et al., 2004; Menz et al., 2001b) and as described below, crystallisation

with a novel metallofluoride, magnesium fluoride, has shown a new step in the catalytic

pathway.  Bovine F1-ATPase was inhibited with ADP and magnesium fluoride as described

in Section 2.2.15, and crystallised in their presence.  The structure was solved to high

resolution revealing a new step in the catalytic cycle in which nucleotide is bound to the βE

subunit with the subunit in an essentially open conformation.  The βTP and βDP sites contain

ADP-MgF3
- complexes.  This structure probably represents a stage in the catalytic cycle of

ATP hydrolysis just before release of the products of ATP hydrolysis.

4.1.2 Inhibition of bovine F1-ATPase with ADP and magnesium fluoride

The inhibition of F1-ATPase by ADP and magnesium fluoride was examined under

various conditions.  The progress of inhibition was monitored at 20 min intervals by

measuring the hydrolytic activity of the enzyme.  Several conditions were tried so as to attain

maximum inhibition of the enzyme.  Initial trials using MgSO4 as the magnesium salt failed
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to inhibit the enzyme sufficiently for crystallisation experiments.  Changing the salt to MgCl2

rectified this problem.  In the final protocol, the enzyme was incubated first with 10 mM

MgCl2 for 20 min.  Then 10 mM NH4F was added.  After approximately 2 hours the enzyme

was 94% inhibited (Figure 4.1).

Figure 4.1 The inhibition of bovine mitochondrial F1-ATPase by ADP and magnesium
fluoride.  The protein was incubated in 10 mM magnesium chloride and 1 mM ADP.  After

20 min 10 mM ammonium fluoride was added.  The inhibition of the enzyme was monitored,
by measuring ATP hydrolysis at intervals, until the sample approached complete inhibition.

After 2 hours, 94% inhibition had been achieved.
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4.1.3 Crystallisation of bovine F1-ATPase inhibited with ADP and magnesium fluoride

Crystallisation experiments were set up with the inhibited enzyme using the

microdialysis method (see Section 2.2.16.1) using conditions similar to standard conditions

for producing reference state crystals (Lutter et al., 1993).  Experiments were conducted with

a range of concentrations of PEG 6000.  The first crystals appeared after one week with

13-14% PEG 6000.  However, these experiments produced a large number of badly formed

crystals.  Experiments with PEG 6000 concentrations from 11.75-13% produced a small

number of well formed crystals after two weeks (Figure 4.2).  The crystals were fully grown

after a month and their dimensions were typically 250 x 50 x 50 µm3.

Figure 4.2 Crystals of bovine F1-ATPase inhibited with ADP and magnesium fluoride.

Crystals were grown from 50 mM Tris-DCl pH 8.2, 200 mM NaCl, 10 mM MgCl2, 10 mM

NH4F, 0.05 mM ADP, 0.02% (w/v) NaN3, 0.004% (w/v) PMSF and 12.5% (w/v) PEG 6000.
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4.1.4 Cryoprotection of crystals

4.1.4.1 Harvesting solution

Previous crystallographic studies of the F1-ATPase have shown that a shorter

crystallographic cell edge in the a dimension correlates with an increase in the order of the

molecules within the crystal (see Appendix B for a figure of the unit cell).  Such crystals have

produced more complete data sets with higher resolution limits (Gibbons et al., 2000; Menz

et al., 2001b).  The shrinkage in the a dimension was probably due to higher concentrations

of PEG 6000 in the harvesting solution, which dehydrated the crystals and reduced the unit

cell a dimension by up to 16 Å (the range of values is 267-283 Å).  Similar effects have been

observed in crystals of a number of other proteins (Cramer et al., 2000; Esnouf et al., 1998;

Haebel et al., 2001; Kuo et al., 2003).  Therefore, the higher limit of PEG 6000 concentration

was investigated.  The concentration of PEG 6000 was increased stepwise by dialysis until

deleterious effects were observed (usually cracking of the crystals).  From these studies, the

upper limit for PEG 6000 concentration, for harvesting the magnesium fluoride inhibited

crystals, was judged to be 15%.

4.1.4.2 Cryoprotectant

In previous studies, glycerol and ethylene glycol have been used successfully to

cryoprotect crystals of F1-ATPase.  In the present study glycerol was used and the

concentration and time course of soaks investigated.  Glycerol was introduced to the mother

liquor by dialysis (the concentration of PEG 6000 was increased at the same time).  The

concentration was increased in 5% steps with a soaking time of 15 min.  The success of

cryoprotection was judged by analysing the crystals using the laboratory X-ray source and

inspecting the diffraction pattern for ice rings and mosaic spread of the crystals.  Previous

cryoprotection protocols have used soaking times between 30 min and 12 hours.  By
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decreasing the time to 15 min, no decrease in the quality of diffraction from crystals was

observed and the process of cryoprotection was considerably faster.  A final concentration of

20% (v/v) glycerol (in combination with 15% (w/v) PEG 6000) led to diffraction patterns

with no ice rings and a typical mosaic spread of 0.4-0.6°.  Figure 4.3 shows a typical ‘in

house’ diffraction pattern from a ‘good’ crystal.

Figure 4.3 Diffraction pattern of F1-MgF3
- crystals using the laboratory X-ray source.

The rings show the resolution in Ångströms.  The crystals diffract to approximately 3.5 Å.

No ice rings were observed and the mosaic spread was estimated to be 0.5°.
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4.1.4.3 Screening of crystals

Approximately 100 crystals were cryoprotected and stored at 100 K.  These crystals

were screened with a laboratory X-ray source.  Diffraction patterns were assessed for the

resolution limit and mosaic spread with MOSFLM (Leslie, 1992).  Crystals that diffracted to

at least 4 Å and had a mosaicity of less than 0.6° were recovered and stored for data

collection at a synchrotron radiation source.

4.1.5 Structure determination

4.1.5.1 Data collection

Selected crystals were taken to the European Synchrotron Radiation Source (ESRF,

Grenoble, France) where data were collected at beamline ID29.  Out of 30 crystals that were

examined, 3 of them were of sufficient quality to collect data sets.  The details of collection

of the data sets are summarised in Table 2.1.

Table 2.1 Data sets of bovine F1-ATPase inhibited with ADP and magnesium fluoride.

Crystal φ range Exposure time Oscillation angle X-ray λ (Å)

X2 267 to 297 and

317 to 347

1 s 0.2° 0.976

X22 251 to 281 and
301 to 331

1 s 0.3° 0.976

X25 196 to 226 and
246 to 276

1 s 0.2° 0.976

For 3 crystals, complete data sets were taken to 2.5 Å resolution.  All of the crystals belonged

to the orthorhombic space group P212121, but they had different unit cell dimensions (Table

2.2) with an a axis varying from 270 to 279 Å.  These values are intermediate between the
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Figure 4.4 Diffraction by crystals of F1-ATPase inhibited by magnesium fluoride and
ADP.  The image was recorded on an ADSC Q210 2D CCD detector at beamline ID29,

ESRF, Grenoble.  Circles mark resolution shells.  Diffraction was observed to 2.4 Å.

fully ‘shrunk cell’ (ca 267 Å) and the standard cryo-cooled cell (ca 280 Å).  An example of

the diffraction pattern from crystal 2 is shown in Figure 4.4.
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4.1.5.2 Structure solution

Data were processed and the model refined using programs from the CCP4 suite

(Collaborative Computational Project Number 4, 1994).  The methods used to process the

data and solve the structure of the magnesium fluoride inhibited F1-ATPase are described in

Section 2.2.17.

Table 2.2 Unit cell dimensions of crystals
Crystal Unit cell dimensions (Å)

X2 a= 270.5, b=107.4, c=134.6

X22 a= 278.6, b=106.8, c=134.2

X25 a= 274.5, b=107.2, c=133.5

Initial inspection of the data sets showed that only the data set from crystal 2 (X2) could be

processed to give a data set with high completeness due to problems in resolving diffraction

spots that were too close to permit their intensities to be measured accurately.  This dataset

was used for structure solution.

The structure was solved by molecular replacement using the beryllium fluoride

inhibited structure [PDB accession code 10WJ (Kagawa et al., 2004)] as the search model.

So as not to bias the density map calculations, the beryllium fluoride and water molecues

were removed.  After molecular replacement, the model was refined against the data using

REFMAC5 (Murshudov et al., 1997).  During refinement, the R-factor and Free R-factor

dropped from 31.5%, for both, to 22.1% and 29.4%, respectively.  At this stage, (2FO-FC) and

(FO-FC) electron density maps were calculated and inspected for novel features.  The catalytic

sites in the βDP and βTP subunits were found to contain density for ADP and additional
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trigonal planar density in the position normally occupied by the γ phosphate of ATP.  In the

βE subunit, strong positive density peaks for the adenine ring and phosphates of ADP were

detected.  Surprisingly, the βE subunit was in the open conformation found in the reference

structure, rather than being in the ‘half-closed’ conformation seen in the (ADP-AlF4
-)2-F1

structure.  Altered side chain conformations, due to lattice contacts, and ordered water

molecules, were built using the program ‘O’ (Jones et al., 1991).

The coordinates of magnesium trifluoride were taken from the structure of Rho

GTPase in complex with the GTPase activating protein [PDB accession code 1OW3,

(Graham et al., 2002)].  They were modelled into the density in the βTP catalytic site (Figure

4.5).  The additional density present in the βDP catalytic site resembled divalent magnesium.

Figure 4.5 Stereo image of the βTP catalytic site in the F1-MgF3
- structure.  Density from

initial FO-FC difference map for the magnesium fluoride is shown (green mesh) before it was
included in the model.  The density is contoured at 2σ.  The orientation of the model in this

and subsequent figures is chosen to illustrate amino acid side chains and ligands clearly.  The

orientation is different to that shown in Figure 4.10.  See Appendix B for the orientation of
catalytic sites relative to the ‘standard’ orientation seen in Figure 4.10.
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Therefore, initially MgF3
- was not modelled into this subunit.  After subsequent rounds of

refinement, the density in the βDP subunit became trigonal in appearance and MgF3
- was

modelled in [Similar observations were made during refinement of the (ADP-AlF4
-)2-F1

structure, where density in one of the catalytic sites initially looked like a combination of

AlF3 and AlF4
-, but the morphology changed to square planar AlF4

- during refinement (Leslie,

A. G. W., personal communication)].  To avoid introducing model bias to the density, ADP

was not placed in the density present in the βE subunit until the last stage of refinement.

Crystals with a shorter a axis have often been found to have greater order in the

region of the γ subunit most remote from the α3β3 hexamer.  However, in the case of

F1-MgF3
-, there was no clear density corresponding to this region in the calculated maps.  The

density around the N and C-termini of the γ subunit, the part that penetrates the α3β3 hexamer

Figure 4.6 Difference density map for the γ subunit.  Refinement was carried out against a

model of F1-ATPase with the γ subunit removed.  The resulting difference maps showed

strong peaks for the α-helical coiled coil region of the γ subunit and gave its position

unambiguously.
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showed a higher level of noise than was expected, possibly because of the presence of an

alternative conformation.  To test the location of the central stalk, refinement was carried out

after excluding the γ subunit from the model.  The difference maps, following refinement,

had very strong positive peaks for the α-helical coiled coil regions of the γ subunit, indicating

that there was no significantly occupied alternative conformation for the γ subunit (Figure

4.6).  The additional features may be due to the relatively low quality of the data set or high

mobility of the exposed part of the γ subunit.

After several rounds of refinement, the model contained 261 ordered water molecules

and as much of the difference density as was possible had been interpreted.  The R factor had

dropped to 22.7% and the free R factor to 27.8%.  At this stage, the remaining novel features

Figure 4.7 Stereo image of the difference density for nucleotide in the βE catalytic site.

The green mesh shows the initial FO-FC difference map contoured at 3σ.  The final refined

coordinates for the nucleotide are superimposed and show the correspondence between the

density and model.
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Figure 4.8 Stereo image of the refined 2FO-FC density for nucleotide in the βE catalytic

site.  Density is clear for the entire nucleotide molecule and the B factors are sufficiently low
to place the occupancy at 100%.  The density is contoured at 1σ.

were modelled into the density.  Coordinates for ADP from the βTP catalytic site were aligned

onto the P-loop of the βE subunit and then moved into the density (Figures 4.7 and 4.8).  Then

the new coordinates were refined against the data and the temperature factors (B factors) for

the nucleotide inspected.  As the density for nucleotide was of low quality, the occupancy

may be less than 100%.  However, the average B factors were 72 Å2 for the nucleotide and

the surrounding residues had similar B factors, so the occupancy was placed at 100%.

4.1.5.3 Structure validation

After a final round of refinement, the R factor was 20.4% and the free R factor was

26.8%.  The statistics for data processing and refinement are shown in Table 4.3.  The
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stereochemistry of the model was checked with the program PROCHECK (Laskowski et al.,

1992).

Table 4.3 Data collection and refinement statistics

Space group

Unit cell dimensions (Å) a, b, c

Resolution range (Å)
Number of unique reflections

Multiplicity1

Completeness1 (%)

Rmerge
1,2

<I/σ(I)>1

Average B factor (from Wilson)
Water molecules

R-factor3 (%)

Free R-factor4 (%)
RMS deviations:

Bonds (Å)
Angles (°)

P212121

270.5, 107.4, 134.6

20.0-2.53
126,279

2.5 (2.5)
97.4 (98.7)

0.135 (0.596)

5.8 (1.6)
52.8 Å2

261
20.4

26.8

0.007

0.952

1 Statistics for the highest resolution bin (2.67 - 2.53 Å) are shown in parenthesis

2 

€ 

Rmerge =
I(h) − I(h)ii∑h∑

I(h)ii∑h∑
, where I(h) is the mean weighted intensity after rejection of outliers.

3 

€ 

R =

Fobs −k Fcalc
hkl
∑

Fobs
hkl
∑

, where Fobs and Fcalc are the observed and calculated structure factor amplitudes.

4

€ 

Rfree =

Fobs −k Fcalc
hkl⊂T
∑

Fobs
hkl⊂T
∑

, where Fobs and Fcalc are the observed and calculated structure factor amplitudes

and T is the test set of data omitted from refinement (5% in this case)
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Figure 4.9 Ramachandran plot for the model of F1-MgF3
-.  Main chain torsion angles φ

and ψ  are plotted against each other.  The most favoured regions are shown in red,

additionally allowed regions in yellow, and generously allowed regions in cream.  The

triangles represent glycine residues, which have no restrictions on the φ and ψ angles.  All

other residues are marked by a black square (red squares for residues in generously allowed

regions).
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The φ and ψ  bond torsion angles of the α-carbon backbone of proteins adopt preferred

combinations due to steric hindrance (Ramachandran et al., 1963; Ramakrishnan and

Ramachandran, 1965).  A Ramachandran plot of the φ and ψ angles of the carbon backbone

placed 91.6% of residues in the most favoured regions, 8.2% in additionally allowed regions

and 0.2% in generously allowed regions (Figure 4.9).  No residues were found in disallowed

regions.

4.1.6 Molecular architecture of the ADP and magnesium fluoride inhibited bovine
F1-ATPase

The final model contains 3235 amino acid residues and 261 water molecules, and the

overall architecture is very similar to the reference structure (Figure 4.10).  The overall B

Figure 4.10 Structure of the F1-MgF3
- structure.  A ribbon representation of the structure is

shown where α subunits are in red, β subunits in yellow and the γ subunit in blue.
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factor for the structure is 49 Å2.  Superimposition of the F1-MgF3
- and reference structures

gave an rms deviation of 0.56 Å for the Cα atoms.  Superimposition of the Cα atoms of

P–loop residues of individual subunits (residues 155-165), gave rms deviations of

approximately 0.15 Å for the α subunits and for the βDP and βTP subunits.  Comparison of the

P-loops of the βE subunits gave an rmsd of 0.34 Å, the increase due to binding ADP.  The

average B factor of the F1-MgF3
- βE subunit was also much lower than the reference structure

βE subunit’s average B factor (Table 4.4).  The γ subunit gave an rmsd of 0.62 Å.  None of

these values correspond to major structural differences in the subunits.

Table 4.4 Average B (temperature) factors for all atoms of the βDP, βE and γ subunits

and βDP and βE bound ligands of the reference, (ADP-AlF4
-)2-F1 and F1-MgF3

- structures.1

StructureDomain

Reference (ADP-AlF4
-)2-F1 F1-MgF3

-

βDP subunit 61 Å2 37 Å2 45 Å2

βDP bound ADP 43 Å2 28 Å2 28 Å2

βE subunit 73 Å2 55 Å2 54 Å2

βE bound ADP None 42 Å2 73 Å2

γ subunit 84 Å2 62 Å2 77 Å2

In general, the nucleotide binding sites of F1-MgF3
- are similar to those is a number of

previously solved structures (Abrahams et al., 1996; Abrahams et al., 1994; Braig et al.,

2000; Orriss et al., 1998; van Raaij et al., 1996a).  The α subunits all contained MgADP as in

the beryllium fluoride inhibited and F1-ADP structures (Kagawa et al., 2004).  The βDP and

                                                  
1 The average B factor is also dependent on the resolution to which the structure is solved.  As a control the
average B factor of the βDP subunit is included.  The resolutions are as follows: Reference: 2.8 Å;
(ADP–AlF4

–)2–F1: 2.0 Å and F1-MgF3
- 2.53 Å.



           Chapter 4:  The structure of bovine F1-ATPase inhibited with ADP and magnesium fluoride

115

βTP nucleotide binding sites both contained MgADP and MgF3
-.  The most unusual feature of

the structure is found in the βE subunit, which despite being in the open conformation

contains ADP, but no magnesium, in its nucleotide binding site (Figure 4.8).  Also, although

the length of the a axis of the unit cell was reduced, the γ subunit was considerably disordered

and only residues 1-47, 77-90 and 216-272 could be modelled into the density.  There was no

density corresponding to the δ and ε subunits.  The residues of the subunits that have been

built into the model are summarised in Table 4.5

Table 4.5 Summary of the residues of the subunits of F1-ATPase that are present in the
F1-MgF3

- model and of the bound substrates.
Subunit Residues Bound substrate

αTP 23-401 and 413-510 ADP, Mg2+

αDP 25-510 ADP, Mg2+

αE 24-510 ADP, Mg2+

βTP 9-474 ADP-MgF3
-, Mg2+

βDP 9-475 ADP-MgF3
-, Mg2+

βE 9-474 ADP

γ 1-47, 77-90 and 216-272 None

4.1.7 The nucleotide binding sites

The nucleotide binding sites of βDP and βTP have adopted a very similar conformation.

The rmsd for their P-loops is 0.16 Å compared with an rmsd of 0.33 Å for the βDP and βTP

subunits in the reference structure.  The P-loops in the reference structure adopt slightly

different conformations as the nucleotide content is different (AMP-PNP in βTP and ADP in
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βDP).  When the nucleotide content is the same, the two P-loops align more closely.  The rms

deviations for the βTP and βDP subunits for the (ADP-AlF4
-)2-F1 and BeF3

--F1 structures are

0.14 Å and 0.09 Å, respectively.  The MgF3
- occupies the site where a proposed

metaphosphate or phosphorane reaction intermediate would form during hydrolysis (Figure

4.11).  This is the first structure of F1-ATPase to contain an accurate mimic of phosphoryl

transfer, as MgF3
- adopts the bond lengths and charge of a phosphorane intermediate

(Graham et al., 2002).

Figure 4.11 Stereo image of the catalytic site in the βTP subunit.  The catalytic and adenine

binding residues are shown.  The negatively charged magnesium fluoride is coordinated by
the positively charged side chains of βArg 189, βLys 162 and αArg 373.  The attacking water

molecule (wat) is coordinated by βGlu 188 and the magnesium of MgF3
-.  The adenine is held

in place by βPhe 424 and βTyr 345.
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The only major difference between the βDP and βTP catalytic sites is the absence of an

attacking water in the βDP site.  The attacking water in the βTP catalytic site has a peak of

3.5 σ in the initial difference (FO-FC) maps.  Close inspection of the electron density at this

level in the βDP catalytic site gives no indication of an ordered water molecule coordinated

between the magnesium of MgF3
- and the βGlu-188.  Water has not always been observed in

the catalytic sites of previous structures.  In the F1-MgF3
- structure it is either present but

disordered, so no density is calculated for it, or it may just not be present in the crystal.

Figure 4.12 Schematic of the nucleotide binding sites of the βTP and βDP subunits.  The

two catalytic sites have very similar conformations and intermolecular distances are closely
matched.  Distances are shown in Ångstroms.  Possible hydrogen bonds are shown as dotted

lines.

The F1-MgF3
- structure contains ADP in the βE subunit nucleotide binding site, despite

the open conformation that it adopts (Figure 4.13).  There are very few structural differences

between the F1-MgF3
- structure βE subunit and the βE subunit in the reference structure.  The

most obvious difference is the conformation of βE Phe-424, where the aromatic ring of the
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side chain is positioned half way between the conformations observed in the βDP (and βTP)

sites and in the βE site of the reference structure, coordinating the adenine ring.

Figure 4.13 Stereo image of the βE subunit in the F1-MgF3
- structure.  The βEPhe-424 and

βETyr-345 side chains are in a similar position to the other catalytic sites.  They form a

hydrophobic binding pocket for the adenine ring.  The side chains of βEArg-189, βEGlu-188,

βELys-162 and αEArg-373 adopt dramatically different conformations, where the nucleotide

phosphates are no longer coordinated (see Figure 4.11).

4.1.8 The nucleotide occupancy of F1-ATPase in crystal 22

The only other structure of bovine F1-ATPase determined so far that contains

nucleotide in all three catalytic sites is the (ADP-AlF4
-)2-F1 structure (Menz et al., 2001b).

Exactly why the nucleotide is bound to the βE subunit in the F1-MgF3
- structure is unclear.

The smaller a axis of the unit cell could lead to increased lattice contacts, which may
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influence the nucleotide binding pocket.  To test this theory, the data set taken from crystal

22 (X22) was processed and the structure was solved.  This crystal had an a axis dimension

of 278 Å (7 Å longer than in X2) and contained magnesium fluoride.  The data were of low

quality, but if the βE subunit contained nucleotide, then positive density should be observed.

After processing, the data were 60% complete.  The structure was solved by

molecular replacement as before, but using the refined F1-MgF3
- coordinates (with MgF3

- and

the βE nucleotide removed) as a search model.  After one round of refinement, the R factor

was 29% and the free R factor was 37%.  Electron density maps were calculated and

inspected for positive density in the βE subunit.

Figure 4.14 Stereo image of the difference electron density found in the βE subunit of

crystal 22.  The βE nucleotide from the F1-MgF3
- structure (crystal 2) was aligned with the

X22 structure and fitted the density well.  The FO-FC map is shown contoured at 2σ.
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The difference density clearly showed positive peaks for nucleotide (Figure 4.14).  The βTP

and βDP subunits both contain MgADP-MgF3
- and the structure is very similar to the X2

crystal structure.  This result indicates that nucleotide binding to the βE subunit is a function

of the inhibitor rather than being influenced by crystal contacts.  This aspect is discussed

further in the following section.
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4.2 Discussion

4.2.1 Comparison of the F1-MgF3
- structure with previously solved structures.

In some respects the F1-MgF3
- structure is similar to the reference structure and many

of the other solved structures of bovine F1-ATPase (Abrahams et al., 1996; Abrahams et al.,

1994; Braig et al., 2000; Gibbons et al., 2000; Orriss et al., 1998; van Raaij et al., 1996a).

The individual subunits adopt similar conformations and the overall structures superimpose

with small deviations.  However, the catalytic sites in the βTP and βDP subunits are more

closely matched to the (ADP-AlF4
-)2-F1 structure (Figure 4.15).  This structure contained a

square planar AlF4
- in the catalytic sites in the βTP and βDP subunits, mimicking the transition

state of hydrolysis of the γ phosphate.

Figure 4.15 Superimposition of the nucleotide binding sites of the βDP and βTP subunits

from the F1-MgF3
- and (ADP-AlF4

-)2-F1 structures.  A: Superimposition of the βDP sites of

the F1-MgF3
- (coloured) and (ADP-AlF4

-)2-F1  (grey) structures. B: Superimposition of the βTP

sites of the F1-MgF3
- (coloured) and (ADP-AlF4

-)2-F1  (grey) structures.  Very little deviation

is observed in the positions of nucleotides, side chains or metallofluorides.
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The Cα atoms of the P-loops of these subunits in the two structures superimpose with rms

deviations of 0.16 Å (βTP) and 0.15 Å (βDP).  The positions of the metallofluorides and

coordinating residues also correspond closely (Figure 4.15).  Both the ADP-AlF4
- and

ADP-MgF3
- species mimic the reaction intermediate of phosphoryl transfer.  It is largely

unknown whether this is an associative, a dissociative or a mixed reaction (see Section 1.5.1),

but in both cases the transition state will be trigonal bipyramidal; ADP-AlF4
- and ADP-MgF3

-

mimic this state.  However, ADP-MgF3
- is a much more accurate analogue than AlF4

-, as it

has both the geometry and charge of a phosphoryl transfer intermediate (Graham et al.,

2002).  The distances between the magnesium of MgF3
- and the bridging oxygen of ADP and

the attacking water are similar to those that would be found in an associative mechanism.

However, by placing a phosphorane analogue in the active site, the distances will, to some

extent, be forced into these values.

The catalytic sites containing AlF4
-, AlF3, BeF3

- and MgF3
- all superimpose well.  This

similarity is despite significant differences in shape, size and distances in the apical atoms

between the metallofluorides.  The active site seems to be able to accommodate all of these

species, with very little energetic cost, facilitating the hydrolytic, or synthetic, reaction stages.

The βDP catalytic site has been characterised as the catalytically active site by the

tighter binding of nucleotide (Abrahams et al., 1994), the binding of AlF3 in the βDP site alone

(Braig et al., 2000), and the position of the attacking water in the BeF3
--F1 structure (Kagawa

et al., 2004).  This interpretation is also supported by molecular dynamics simulations (Gao

et al., 2003).  Thus, it is odd that there is no ordered attacking water in this site in the

F1-MgF3
- structure.

Although there is a close correspondence between the βTP and βDP subunits in the

(ADP-AlF4
–)2-F1 and F1-MgF3

- structures, they differ significantly in the conformation of the

βE subunits (Figure 4.16).  In the (ADP-AlF4
-)2-F1 structure, the βE subunit adopts a



           Chapter 4:  The structure of bovine F1-ATPase inhibited with ADP and magnesium fluoride

123

half-closed conformation and binds MgADP and sulphate (the latter mimicking

orthophosphate).  In the F1- MgF3
- structure, the βE subunit is in the open conformation and it

binds ADP only.  The rmsd between these βE subunits is 0.9 Å.  This value is less than the

value of 1.44 Å for the reference structure and the (ADP-AlF4
-)2-F1, suggesting that the βE

subunit in the F1-MgF3
- structure is intermediate between them.  No sulphate or phosphate

was present in the crystallisation buffers; therefore, it is not known whether phosphate can

bind to the P-loop region of the βE subunit in this state.  It is possible that the binding of

phosphate, or an analogue, will cause the half-closed conformation to form in ADP-MgF3
-

inhibited F1-ATPase.

Figure 4.16 Stereo image of the superimposed βE subunits of F1-MgF3
- (coloured) and

(ADP AlF4
–)2-F1 (grey) structures.  The nucleotide and βTyr-345 align well.  The βPhe-424

side chain in the F1-MgF3
- subunit is much further away from the adenine ring and the

βGlu-188 and βArg-189 side chain are in a similar conformation to the βE subunit of the

reference structure.  Subunits were aligned on Cα atoms of the P-loop residues (155 to 165).
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4.2.2 The catalytic sites

While the rms deviations for the βDP and βTP catalytic sites are low, there are subtle

differences in the positions of side chains in the site (Figure 4.17).  The ADP and MgF3
-

molecules align well, as do most of the side chains of catalytic residues.  However, the

guanidinium group of the αArg-373 in the βDP site is about 1 Å closer to the MgF3
- than in the

βTP subunit (Figure 4.17).

Figure 4.17 Stereo image of the superimposed βTP (grey) and βDP (coloured) catalytic

sites from the F1-MgF3
- structure.  The αArg-373 side chain of αDP is about 1 Å closer to

the MgF3
- than the αArg-373 side chain of αTP.

Such a shift in the position of the guanidinium group of the αArg-373 has been noted

in the previously solved structures of (ADP AlF4
–)2-F1 and BeF3

--F1.  This arrangement

indicates that the βDP site is catalytically active.  It is interesting to note that only very small

changes are required in the arrangement of side chains to effect large changes to the activity

of the catalytic site.  This was best illustrated by the BeF3
--F1 structure.  The only significant
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difference between the βTP and βDP subunits was the shift in the αArg-373 side chain.  This

shift caused a dramatic change in the position of the attacking water, the βDP water being over

1 Å closer to the γ phosphate site than in the βTP subunit (Kagawa et al., 2004).  It is

unfortunate that the attacking water is not resolved in the βDP subunit of the F1-MgF3
-

structure, enabling any differences in the positions to be resolved.  This is the first structure

of bovine F1-ATPase to contain a true analogue of phosphoryl transfer and enables the

coordination of a negatively charged trigonal planar species to be observed in the catalytic

sites.

4.2.3 Why does the βE subunit bind nucleotide?

The βE subunit in the F1-MgF3
- structure binds ADP, but not magnesium.  The

conformation of this subunit is essentially the same as the in the reference structure

(Abrahams et al., 1994) which is in the ‘open’ state with an apparent low affinity for

nucleotide.  Could the concentration of nucleotide affect the occupancy in the crystals?  The

concentration of ADP in the crystallisation buffers was 50 µM.  This is 100 fold lower than

the physiological concentration of nucleotide in the mitochondrial matrix and cannot be

considered to be a ‘high’ concentration.  Many other structures of the bovine F1-ATPase have

been solved in similar concentrations of nucleotide without any observed binding of

nucleotide to the βE subunit.  It has also been shown that raising the concentration of

AMP-PNP to 5 mM does not affect the nucleotide occupancy of the enzyme and the βE

subunit remained unoccupied (Menz et al., 2001a).  The crystals of F1-ADP were grown in

the presence of 2 mM ADP; again, the βE subunit in this structure remained unoccupied by

nucleotide (Kagawa et al., 2004).  Therefore, it is unlikely that the concentration of

nucleotide affects the occupancy of the βE subunit.
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Another factor to be considered is the smaller a axis of the unit cell which could lead

to increased lattice contacts and thus influence the affinity of the βE subunit for nucleotide.

The (ADP AlF4
–)2-F1 structure contains nucleotide in the βE subunit and has an a axis of

267.7 Å, compared to previously solved structures that have values of ca 280 Å (Braig et al.,

2000; Kagawa et al., 2004; Menz et al., 2001a; Orriss et al., 1998).  However, the F1-DCCD

crystal (Gibbons et al., 2000) had an a axis of 267.2 Å and no nucleotide was bound to the βE

subunit.  The absence of nucleotide from the βE subunit could have been influenced by the

inhibitor (DCCD) or by different lattice contacts in the crystals.  The presence of ADP in the

βE subunit of crystal 22 (X22) (see Section 4.1.8) does not support the suggestion that lattice

contacts influence the nucleotide occupancy of the βE subunit.  This crystal had a

crystallographic a axis of 278.6 Å, sufficiently similar to the ‘normal’ a dimension to

distinguish whether nucleotide binding is influenced by lattice contacts.

One remaining possible explanation of nucleotide binding to the βE subunit is that it is

connected to the presence of transition state analogues in the βDP and βTP catalytic sites.  The

only structures that bind nucleotide in the βE subunit contain either AlF4
- or MgF3

- in both the

βTP and βDP subunits.  The ADP beryllium fluoride inhibited structure has BeF3
- in these

subunits but no nucleotide in the βE subunit.  However, ADP BeF3
- mimics the ‘ground-state’

of the γ phosphate, it is not a transition state analogue.  The corollary is that the transition

state analogues fix the βTP and βDP subunits into a conformation that somehow transmits

structural changes to the βE subunit causing it to bind nucleotide.

How this communication could be achieved is unclear.  The γ subunit provides the

means of interconverting the binding affinities of the β-subunits.  In the (ADP AlF4
–)2-F1

structure, the γ subunit has rotated by 1° at its C-terminus and by 30° in the α-helical coiled

coil region.  This rotation results in a greater extent of twisting of the subunit than in the

reference structure.  This twisting accompanies the change in the βE from the open to the
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half-closed state.  However, this twisting does not entirely explain the presence of the half

closed state.  Superimposition of the βTP and βDP subunits from the (ADP AlF4
–)2-F1 structure

and the reference and other structures shows they are very similar, implying that the large

movements seen in the half-closed state can occur without accompanying large changes to

the other β subunits.  In another unpublished crystal structure of F1-ATPase, both the open

and half closed states are observed in the βE subunit (Bartoschek, S., Contessi, S.,

Montgomery, M. G., Leslie, A. G. W. and Walker, J. E. unpublished results).  As the crystals

were grown under the standard conditions used for growing the crystals for determining the

reference structure, it appears to be easy for the βE subunit to convert between the open and

half closed states.

Figure 4.18 Stereo image of the superimposed βE subunits of the reference structure

(grey) and the F1–MgF3
- structure (coloured).  The residues align closely apart from

βPhe–424 and βTyr-345.  In the F1–MgF3
- βE subunit these residues are closer, and aligned

with, the adenine ring of ADP.
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Figure 4.19 Surface representation of the interfaces between α and β subunits in various

structures of bovine mitochondrial F1–ATPase.  The α subunits are red and the β subunits

are yellow, the nucleotide surface is coloured magenta.  The transition between closed and
open states is shown.  The closed state is the αDP-βDP interface from the reference structure.

The half-closed state is the αE-βE interface from the (ADP AlF4
–)2-F1 structure.  The F1–MgF3

-

state is the αE-βE interface from the F1–MgF3
- structure, where the nucleotide binding pocket

is slightly more occluded than in the open state.  The open state is represented by the αE-βE

interface in the reference structure.
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The twisting observed in the γ subunit of the (ADP AlF4
–)2-F1 structure may be caused by

lattice contacts.  In the F1-DCCD structure, a rotation of 20° is seen in the γ subunit.  As this

crystal also has a shrunken cell, it may be the cause of the rotation of the γ subunit.  The γ

subunit in the F1-MgF3
- structure adopts essentially the same conformation as in the reference

structure.  Despite the shrunken cell, the lower portion of the γ subunit was disordered and no

corresponding electron density was observed for it.  Because the a dimension of the unit cell

has increased by ca 3 Å it may be that the γ subunit has freedom to adopt a range of

conformations in this region.

As the γ  subunit has the same conformation as the reference structure, it is not

immediately obvious how it could affect the βE subunit and lead to it binding nucleotide.  The

reference, BeF3
--F1 and F1–MgF3

- structures were aligned on their six N-terminal domains

(which vary very little between structures).  The rms deviations were about 1 Å.  Comparison

of the βE subunits from these structures after this alignment showed that they were very

similar.  However, there are subtle differences in the structures of βE subunits (Figures 4.18

and 4.19), most notably a 2.4° rotation, relative to the reference structure, of the C-terminal

α-helical region of the βE subunit towards the γ subunit.

Two of the residues that form the adenine binding pocket have different positions in

the F1–MgF3
- structure relative to the βE subunit of the reference structure.  In the F1–MgF3

-

structure the side chain of βTyr-345 is twisted towards and aligned with the adenine ring.

The side chain and main chain atoms of βPhe-424 are much closer than in the reference

structure to the adenine ring, providing a hydrophobic binding pocket.  Whether these

residues have moved closer to the adenine ring as a result of structural changes in the βDP and

βTP subunits or whether the fit is induced by the presence of ADP cannot be determined at

present.  Surface representations of α and β subunit interfaces are shown in Figure 4.19.

From these figures it can be seen that the interface is slightly more occluded in the F1-MgF3
-
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structure than in the reference structure.  This is due to a 2.4° rotation of the C-terminal

α-helices towards the γ subunit.  The same domain is rotated 16° in the (ADP AlF4
–)2-F1 βE

subunit relative to the reference structure βE subunit and by 13° relative to the F1–MgF3
- βE

subunit.  This small rotation of the C-terminal domain leads to a slightly tighter αE-βE

interface and may increase the affinity of the βE subunit for nucleotide.

In all previously solved structures of bovine mitochondrial F1-ATPase, a sulphate has

been found bound to the βE subunit in a position normally occupied by the β phosphate of

nucleotide in the other subunits.  The sulphate in this site could compete with nucleotide as

the concentration is much higher (20 mM) than ADP (50 µM).  The F1–MgF3
- structure is the

first to be solved in the absence of sulphate.  Therefore, it is possible that the sulphate in the

βE subunit of the previously solved structures is preventing ADP binding.  Further

experiments will be required to test this hypothesis.

4.2.4 Implications for the catalytic mechanism

Does the F1–MgF3
- structure represent a step in the catalytic mechanism of F1-ATPase

and, if so, how does it fit into the catalytic schemes proposed based on crystallographic

evidence and on other methods?  That the three sites can bind nucleotide simultaneously has

been shown by a variety of methods (Menz et al., 2001b; Nishizaka et al., 2004; Weber et al.,

1996).  The F1–MgF3
- structure can be interpreted as representing a new step in the catalytic

cycle immediately following the half-closed step when ADP and Pi are bound (represented

by the βE subunit of the (ADP AlF4
–)2-F1 structure).  The present structure might suggest that

phosphate is released before ADP, but as no phosphate or analogue was present in the

crystallisation buffers, this is a tentative suggestion requiring more experimental

investigation. A sulphate was found bound in the βE subunit of many of the previously solved
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structures, but it is bound to the site occupied by the β phosphate of ADP, rather than in a site

associated with the γ phosphate.

Figure 4.20 A possible reaction scheme for ATP hydrolysis taking the F1–MgF3
-

structure into account.  The F1-ATPase is viewed from the membrane.  Only the β and γ

subunits are shown.  I: Binding of ATP causes an 80° rotation of the γ subunit committing the

ATP in the βTP subunit to hydrolysis (ATP*).  II: A further rotation of the γ subunit (40°)

hydrolyses ATP and causes the conversion of the βDP subunit to the βE subunit.  III:

Phosphate is released before ADP (represented by the F1–MgF3
- structure).  IV: Further

catalytic events, and possible movements of the γ subunit, lead to the release ADP.  [After

(Kagawa et al., 2004)].

A sequence of states in the catalytic cycle, based on solved structures, has been

proposed [Figure 4.20 (Kagawa et al., 2004)].  State I is represented most closely by the

(ADP.AlF3)-F1 structure (Braig et al., 2000) which contains AMP-PNP in the βTP subunit and

ADP and AlF3 in the βTP subunit.  The distances between the AlF3 and the attacking water

and β phosphate oxygen are quite large (3.4 Å).  State II was proposed to be represented by

the (ADP AlF4
–)2-F1 structure.  However, as the γ subunit in this structure is twisted, relative

to the reference structure, it also represents state III to some extent (with ADP and Pi bound).

Thus, the structure probably represents a state intermediate between II and III.  The two sites
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occupied by ATP in state II may, therefore, be better represented by the βTP and βDP subunits

of the F1–MgF3
- structure.  The γ subunit is not twisted in this structure and the MgF3

- mimics

the transition state between ATP and ADP and phosphate accurately.  In state III, partly

represented by the (ADP AlF4
–)2-F1 structure, the next step is the opening of the half closed

state.  This opening is achieved by the rotation of the C-terminal α-helical region of the βE

subunit by 16°.  Bound phosphate and magnesium may be released first, as the rotation

removes αArg-373 and βArg-189, which coordinate the γ-phosphate, from the nucleotide

binding site (Figure 4.16).  Subsequent catalytic changes or movement in the γ subunit would

then lead to the ADP remaining in the βE subunit to being released (state IV).

4.3 Conclusion

The crystallisation of bovine F1-ATPase with ADP and magnesium fluoride has

shown, for the first time, the nature of the catalytic sites when an accurate analogue of

phosphoryl transfer is present.  This structure has also revealed a new sub-step in the catalytic

cycle of the enzyme, after ATP hydrolysis and release of phosphate and magnesium, but

before ADP release.  It will be interesting to see if crystallisation of the ADP and magnesium

fluoride inhibited enzyme in the presence of phosphate (or an analogue) produces the

half-closed state of the βE subunit seen in the (ADP AlF4
–)2-F1 structure.  The major sub-step

within the cycle yet to be resolved is that with the γ subunit in an intermediate state between

states I and II in Figure 4.20.  Further experiments with different inhibitors and reaction
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Figure 4.21 Stable transition state analogues of ATP.  A: ATP analogue with the β-γ

phosphate bridging oxygen replaced by a CH2-O group.  B: An ATP analogue with both the

α-β and β-γ bridging oxygens replaced by CH2-O groups.  The species are larger than ATP

but the β-subunit catalytic sites would probably accommodate the extra bond lengths.

[Figure courtesy of Prof. M. Blackburn, Krebs Institute, Department of Chemistry, University

of Sheffield.]

intermediate analogues may reveal the crystal structure of this part of the catalytic cycle.  It is

still unclear how cooperativity between the β-subunit catalytic sites is mediated.

Communication occurs via the γ and α subunits but the mechanism must be extremely subtle.

A film, currently being produced, morphing together the crystal structures that represent steps

in the catalytic cycle, may demonstrate the structural basis of this communication.

Many analogues and inhibitors remain to be co-crystallised with bovine mitochondrial

F1-ATPase.  These include stable analogues of ATP that may mimic a transition state (Figure

4.21).  The introduction of a carbon between the β and γ phosphates [and between the α and

β phosphates (Figure 4.21 B)] prevents hydrolysis of the phosphates but retains the

stereochemistry of ATP.  These molecules are larger than ATP but the β-subunit catalytic
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sites appear to be able to accommodate many different sizes of nucleotide analogues.

Crystallisation with other phosphate analogues, such as nitrate [which has been shown to

mimic a metaphosphate reaction intermediate (Cook et al., 2002) and has been shown to

inhibit ATP hydrolysis by F1-ATPase (Ebel and Lardy, 1975)] or pyrophosphate, may reveal

further insights into how the process of generation of mechanical energy from chemical

energy is achieved.
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Appendix A: Crystallographic theory

A.1 Introduction
The interpretation of the diffraction patterns of X-rays by metals and salts by Max

von Laue and Peter Ewald instituted the study of molecular structure by X-ray diffraction.

The work of Lawrence and William Bragg (Bragg and Bragg, 1913) on the reflection of X-

rays by crystals produced ‘Bragg’s law’ (Equation A.1, discussed in Section A.5) and led to

the solution of inorganic salt structures.

2d sin θ = λ (A.1)

The analysis of biological molecules by X-ray diffraction began with W. T. Astbury’s

investigations of fibrous molecules (wool, silk and keratin); the classification of the

diffraction into either α or β patterns was the first glimpse of the secondary structure of

proteins (Astbury, 1933).  At this time the methods used to purify globular proteins had

become sophisticated enough to allow sufficient purity for crystallisation, the most famous

example being haemoglobin.  The initial analysis of these crystals, by Max Perutz, lead to the

prediction of the presence of α-helical rods (Boyes-Watson et al., 1947) and the development

of isomorphous replacement, the technique that enabled the first structure of a globular

protein to be solved (Green et al., 1954).  The structure of myoglobin followed in 1957

(Kendrew et al., 1958) and lysozyme, the first enzyme structure, was solved in 1965 (Blake

et al., 1965).  Since then, the development of recombinant protein techniques combined with

advances in structural analysis such as molecular replacement (Rossman and Blow, 1962),
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anomalous dispersion (Hendrickson, 1991) and synchrotron radiation, have allowed the

number of structures solved per year to increase almost exponentially.

A.2 X-ray sources

A.2.1 Rotating anode X-ray tubes

Most ‘in-house’ X-ray diffraction experiments are performed on a rotating anode X-

ray tube that produces copper Kα X-rays (Figure A.1).

Figure A.1 Schematic of a rotating anode X-ray tube.  Electrons are emitted towards the

anode and strike at a high speed.  Most energy is released as heat and is removed by cooling
the anode with water.  The remaining energy is emitted as X-rays.
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X-rays are produced by firing electrons from a tungsten cathode at a copper anode.  As the

electrons strike the anode, most of the energy is dissipated as heat (anodes require water

cooling) but some electrons displace copper electrons to higher orbitals.  As other electrons

move down to replace the displaced electrons, energy is released in the form of X-rays with

characteristic wavelengths: Kα and Kβ X-rays (Figure A.2).  The anode is rotated to

constantly present a fresh surface to the electron beam, so that more electrons can be fired at

the target leading to higher brilliance of the X-rays emitted.  Rotation is necessary as water

cooling cannot remove heat quickly enough from the focal spot.  Without rotation the anode

would melt.

Figure A.2 The X-ray spectrum generated by a copper anode bombarded with
electrons.  X-rays are emitted over a range of wavelengths, but there are two high intensity

peaks (the Kα and Kβ peaks).  I is intensity on an arbitrary scale.

Only the Kα doublet (λ=1.5418 Å) is used for diffraction experiments.  The Kβ

radiation is removed by passing the beam through a nickel filter.  Alternatively, the X-rays

are then passed through a monochromator.  In rotating anode generators, this is usually
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graphite.  The planes of carbon atoms reflect X-rays with a wavelength of 1.5418 Å.  This

produces a beam of X-rays at a single wavelength.  Modern generators contain X-ray mirrors

(made of highly polished glass or quartz covered in a thin layer of either gold or platinum)

that both focus and monochromatise the beam.

A.2.2 Synchrotron radiation
Synchrotron radiation has many advantages over in-house X-rays.  The beams

produced are more intense than rotating anode generators by several orders of magnitude.

Synchrotrons circulate charged particles (usually electrons) in a large ring.  Originally used

as particle colliders to study, for example, electron positron elimination, it was found that

when the charged particles change direction, radiation is emitted.  This radiation was a by

product of the collider experiments, but the potential of this radiation in structural biology

was harnessed by the construction of synchrotrons specifically for this radiation (Rosenbaum

et al., 1971).  The ring is more accurately described as short, straight sections, with the

direction being changed by bending magnets (Figure A.3). The rings have a diameter

between 10 and 100 meters.  There are four types of magnet in a synchrotron:

1. Bending magnets – These magnets guide the electrons around the ring and produce

radiation in the process.  Other magnets are placed in the straight sections and are

referred to as insertion devices (2 to 4).

2. Wavelength shifters – These magnets introduce a sharper bend in the particle

trajectory and a stronger magnetic field than bending magnets before returning

particles to their original trajectory.  The beam produced is generally more intense

and has a shorter wavelength.
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Figure A.3 Schematic of the electron storage ring of a synchrotron.  Bending magnets

(corners) keep the electrons in a circular path.  As the electrons change direction synchrotron

radiation, utilised at beamlines, is emitted.  Insertion devices (undulators, wigglers and
wavelength shifters) are placed between bending magnets and they also emit radiation.
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3. Wigglers – They are essentially many wavelength shifters in a row.  The beams

produced have a higher flux.  Constructive interference between the radiation emitted

at each change of direction produces a broad band of wavelengths.  Wavelengths can

be selected by using different monochromators.

4. Undulators – These devices are wigglers with lower magnetic field strength, but with

a larger number of poles at more frequent intervals.  The radiation produced is more

intense, tuneable and has lower beam divergence.  The wavelength is changed by

changing the gap between the magnets above and below the beam.

Synchrotron radiation has many advantages over in-house generators, the greatest of

which is the intensity of the beam.  This is extremely useful for protein crystallography where

crystals generally diffract weakly.  The other advantage of synchrotron radiation is the

tunability of the wavelength; this function is used in Multiple wavelength Anomalous

Dispersion (MAD) experiments (see Section A.7).

A.3 X-ray detectors

A.3.1 Image plates

Image plates consist of a thin layer of inorganic phosphor [usually BaFBr(Eu)2+]

placed on a flat base (Figure A.4).  Incident X-ray photons excite the europium creating

defects in the phosphor lattice.  This produces a latent image of the incident X-rays and is

read by stimulating the phosphor with laser light, resulting in fluorescent emission.  Plates are

usually scanned with a laser in the red region of visible light (λ=633 nm).  The emitted light

is in the blue region (λ=390 nm) and is measured by a photomultiplier.  The light emitted is

approximately proportional to the number of X-ray photons to which a specific area has been
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Figure A.4 Principle of operation of an image plate detector.  Incident X-rays excite the

phosphor to metastable states.  The stored energy is released by exposure to red light.  The

energy is released as blue light and read by a photomultiplier.  The plate is reset by exposure
to visible light.
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exposed.  Image plate detectors are the most commonly found ‘in-house’ for detecting X-

rays.

A.3.2 CCD Detectors

The most commonly found detector at synchrotron radiation sources is the charge

coupled device (CCD) detector.  These detectors have extremely fast readout times, low

background levels and a high maximum count rate (particularly useful with the intense beams

produced by synchrotrons). X-ray photons interact with a phosphor (in the ADSC Quantum

detectors this is gallium arsenide doped with europium ions).  The interaction of the X-ray

photon with the phosphor converts, and magnifies, the signal to light photons (500 to 700

light photons are released per X-ray photon).  The light signal is then passed through a fibre

optic taper to demagnify the active area to the size of the CCD chip.  The CCD chip converts

the light signal to an electronic signal, which is digitised and, after corrections for non-

uniformity of response and spatial distortion, is converted into an image file (Figure A.5).

The light that hits the CCD chip frees an electron from the silicon, creating a charge

proportional to the number of incident photons.  The electrons released by incident light are

kept within the pixel by maintaining high potential around the pixel.  This is performed by

gate electrodes (Figure A.6).  Once the exposure is over, the gate electrodes are changed to

release the charge, which is read for each pixel sequentially and produces a charge associated

with each pixel.  This charge is amplified and converted to an image that represents the

number of X-ray photons incident on the detector surface.
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Figure A.5 Schematic of a CCD detector.  X-ray photons interact with the phosphor
converting the signal to light photons.  Demagnifying optics reduce the light image to the size

of the CCD chip which detects the light image as an electrical charge image.  This
information is then converted into an image file similar to those produced by other types of

detector.
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Figure A.6 Schematic of a CCD chip.  The diagram is viewed from the point of view of an
incident photon.  Photons release electrons from the silicon in a pixel.  The charge is

maintained within the pixel, until the exposure is over, by surrounding high potentials created
by the gate electrodes.  The charge from each pixel is then moved sequentially to the serial

readout register where the charge is amplified and converted to a digital signal.

A.4. Crystals

Crystals are three-dimensional ordered arrays of ions or molecules.  When molecules

precipitate from solution, they attempt to reach the lowest possible energetic state.  Often this

can be the regular packing found in crystals.  This applies as much to small molecules as to
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complex macromolecules.  The size and shape of macromolecules means the crystal packing

leads to large spaces between molecules.  The contacts between molecules also tend to be

rather small.  Therefore, crystals of macromolecules tend to have a high solvent content and

be rather more fragile than crystals of ions or small molecules.  Protein crystals usually

contain 50% protein and 50% mother liquor (values can range from 27% to 80% solvent).

These crystals are far from ideal.  Single crystals and the diffraction patterns observed are the

sum of the patterns from numerous mosaic blocks, within the crystal, that all have slightly

different orientations (Figure A.7).

Figure A.7 Schematic of the mosaicity of protein crystals.  Macromolecular crystals are

imperfect and are made up of mosaic blocks, all in a slightly different orientation.  The

schematic is grossly exaggerated.
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Figure A.8 A unit cell within a crystal lattice.  The unit cell is defined by three cell edges a,

b and c and three angles α, β and γ.  The coordinates x, y and z are measured along a, b and c

respectively.

The unit cell of a crystal is the smallest unit that can repeat in all directions.  It is

defined by three lattice translations: a, b and c, which have a length and direction, and by the

angles between them α, β and γ (Figure A.8).  The unit cell with minimum volume is termed

the primitive cell, the crystal lattice is composed of the primitive cell stacked in three

dimensions in the same orientation.  As biological molecules are composed of L-amino acids,

crystals cannot contain mirror plane symmetry.  Therefore, protein crystals are based on 2, 3,

4, or 6 fold rotation symmetries, the requirements for these systems are shown in Table A.1.
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Table A.1 The seven crystal systems
Crystal system Symmetry requirement Axes Angle and length

constraints
Triclinic None No constraints None

Monoclinic One 2-fold axis b parallel to 2-fold
axis, a and c
perpendicular to 2-fold
axis

α and γ = 90°

Orthorhombic Three perpendicular 2-
fold axes

a, b and c parallel to 2-
fold axes

α, β and γ = 90°

Trigonal One 3-fold axis c parallel to 3-fold
axis, a and b
perpendicular to 3-fold
axis

α and β = 90°
γ = 120°
a = b

Tetragonal One 4-fold axis c parallel to 4-fold
axis, a and b
perpendicular to 4-fold
axis

α, β and γ = 90°
a = b

Hexagonal One 6-fold axis c parallel to 6-fold
axis, a and b
perpendicular to 6-fold
axis

α and β = 90°
β = 120°
a = b

Cubic Four 3-fold axis a, b and c related by 3-
fold axis

α, β and γ = 90°
a = b = c

The entire symmetry of a crystal lattice is described by its space group.  The space group

defines the symmetry operations that generate the crystal lattice.  The smallest unit that can

be rotated and translated to generate one unit cell, using only the symmetry operators allowed

by the crystallographic symmetry, is called the asymmetric unit (as it requires no symmetry

itself).  An example space group is shown in Figure A.9.  The space group P212121 has three

2-fold screw axes (Figures A.9 and A.10).  This relates molecules within the unit cell by a

rotation and a translation.
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Figure A.9 The projection of a P212121 unit cell.  The unit cell contains four asymmetric
units.  The F1-ATPase complexes represent identical particles related by the symmetry of the

space group.  The plus sign (+) indicates that that the particle is a certain distance (z) above
the bottom plane of the unit cell and 1/2+ at z above the mid-plane.  The minus sign (-)

designates the particle is at z below the bottom plane and 1/2- at z below the mid-plane.  The

screw axes 1/4 are at height 1/4 and 3/4 of the unit cell.  The third set of screw axes are not
shown and are normal to the plane of the paper.  N.B the F1-ATPase complex is shown for

illustrative purposes only and should not be interpreted as representing the true crystal
packing.  [After (Drenth, 1999)].
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Figure A.10 A 2-fold axis (A) and a 2-fold screw axis (B).  The 2-fold axis relates the

molecules by a 180º rotation.  The 2-fold screw axis relates the two molecules by a 180º

rotation and a translation over half the unit cell length.

A.5 Scattering of X-rays by protein crystals

The majority of X-rays pass through a crystal mounted in an X-ray beam.  However,

some are scattered by the electrons of the molecules within the crystal.  The diffraction of X-

rays by crystals can be viewed as reflections from a series of planes (Figure A.11 A).  Parallel

X-rays are reflected from the parallel planes of the crystal.  The angle of incidence is equal to
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Figure A.11 Bragg’s theory of diffraction of X-rays by crystals.  A: Four lattice planes are

shown separated by a distance d.  The incident and reflected beams arrive, and leave, at an
angle θ to the lattice planes.  Therefore, the beam is reflected by an angle 2θ relative to its

incident direction (B).
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the angle of reflection, θ and the beam is reflected by an angle 2θ relative to its incident

direction (Figure A.11 B).  Constructive interference will occur between X-rays, reflected

from different planes within the crystal, when the difference in the pathlength (the distance

travelled by the X-ray) is an integral number of wavelengths.  The difference in the distance

travelled by reflected X-rays is 2 d sinθ, this can be applied to all reflected X-rays and gives

Bragg’s Law (equation A.2).

2d sinθ = n λ (A.2)

where d is the distance between planes in the crystal, θ is the angle of incidence of the X-

rays, n is an integer and λ is the wavelength of the X-rays.  This law determines where a

diffraction spot will be observed; the spacing of the spots is inversely proportional to the

spacing of crystal planes.  The intensity of the spots is not governed by this law and depends

on the electrons that scatter the X-ray.  Therefore the intensity arises from the structure of the

molecule in the crystal and the position of the spot arises from the positions of the molecules

within the crystal lattice.

The planes of the crystal that give rise to the diffraction are defined by the Miller

indices h, k and l.  These indices define the series of planes that intersect the lattice points.

The h index gives the number of planes in one unit cell repeat along the x axis and the k and l

indices give the number of planes in one unit cell repeat along the y and z axes.

The spacing of spots in the diffraction pattern varies with the spacing of molecules

within the lattice.  Specifically, there is an inverse relationship; so large unit cells produce

tightly spaced spots in a diffraction pattern and vice versa.  The spacing of the reflections is

called the reciprocal lattice as it the inverse of the real lattice.
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A.6 The Ewald sphere and reciprocal space

The Ewald sphere is a construction to visualise which planes within a crystal are in

the correct orientation to diffract X-rays.  The sphere has a radius of 1/λ and represents the

wavelength in reciprocal space, with its centre at the crystal origin.  A reciprocal lattice point

must be in contact with the sphere in order satisfy Bragg’s law and produce a reflection

(Figure A.12).

Figure A.12 A two-dimensional representation of the Ewald sphere.  The sphere has a
radius of 1/λ, so is the direction of the incident X-rays and s the direction of the scattered

beam.  The sphere has its origin at the crystal position.  The origin of the reciprocal lattice is

O, where the X-ray beam exits the Ewald sphere.  The lattice point P is in contact with the
sphere and will produce a reflection.  For another lattice point P’ to produce a reflection, the

reciprocal lattice must be rotated about its origin O.  In practice this means rotating the

crystal in the X-ray beam.
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As all lattice points cannot be in contact with the sphere at any time, the crystal must be

rotated in the beam in order for all lattice points to be in contact with the sphere and to

measure all possible reflections.  The angle by which the beam is diffracted can be between

0° and 180° and be in any direction, the vector representing the diffracted ray ends anywhere

on the surface of the sphere of radius 1/λ, the Ewald sphere.

A.7 Structure solution and the phase problem

The intensity of each of the spots in a diffraction pattern depends on the distribution

of the electron density within the unit cell.  The intensity of the diffracted beam is

proportional to the square of the amplitude of the structure factor, Fhkl.  The structure factor

equation is shown (Equation A.3):

€ 

Fhkl = f j
j=1

n

∑ e2πi(hx j +ky j + lz j )

(A.3)

The contribution of each atom (j) to the structure factor is shown.  The amplitude of the

atomic scattering factor (fj) is determined by the type of atom and the phase is determined by

its position within the unit cell (xj, yj and zj); n is the number of atoms within the unit cell.

The electron density and the structure factors are the Fourier transform of one another and the

electron density can be written as a Fourier series (Equation A.4):

€ 

ρ(x,y,z) =
1
V

Fhkle
−2πi(hx+ky+ lz )

l
∑

k
∑

h
∑ (A.4)



                                                                                                     Appendix A:  Crystallographic theory

154

where ρ(x,y,z) is the electron density function for a given position (xyz) in the unit cell, V is

the volume of the unit cell, Fhkl is the structure factor and hkl are the Miller indices (Section

A.5).

Figure A.13 Two simple waves that are out of phase with respect to each other.  Wave A has
maximum amplitude at a distance of zero whereas wave B has maximum amplitude at a

distance of 1.5; therefore, the phase difference between the waves is 1.5.  Phases and

differences are expressed in degrees, in this case 270°.

The amplitude of the structure factor can be calculated from the observed intensities.

However, the detector records no information on the phases.  The phase of a wave is the

relative position of the waveform with respect to an origin from which the X-rays are

A

B
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scattered (Figures A.13 and A.14).  Without the phases the electron density within the unit

cell cannot be calculated, this is the ‘phase problem’.

Different methods have been derived to overcome this problem.  The amplitudes and

phases are determined by the structure of the molecule in the crystal.  Therefore, any

knowledge of the electron density or structure can be used to estimate the phases of the

structure factors.  The simplest method is assign trial phases to a small set of reflections.

Phase relationships are then used to generate phases of other reflections.  This method (so

called direct methods) requires very high resolution data (<1.2 Å) and is generally only

applicable to small molecules but has been used to solve the structures of some small

proteins.

Figure A.14 The structure factor.  The structure factor can be represented as a vector F.

The length if the vector is proportional to I1/2 (the square root of the intensity) and the angle α

is the phase.

If the structure of a homologous protein is known the model can be used to estimate

the phases.  This process is called molecular replacement.  Molecular replacement uses the
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Figure A.15 The processes of molecular replacement.  The orientation of the unknown

structure is found by the rotation function and its position within the new unit cell by the

translation function.

Patterson maps (the Fourier transform of the intensities) to find the orientation of the new

molecule in the unit cell and then the position of the new protein relative to the origin of the

new unit cell (Figure A.15 and Section 2.2.17.4).  The Patterson maps from the model and
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new structure are compared; peaks within the Patterson maps from intramolecular vectors

only depend on the orientation of the structure in the unit cell.  Therefore, peaks for

approximately 2/3 of the volume of the molecule are looked at and matching the peaks from

the Patterson maps will find the orientation of the new structure within the unit cell.  The

search for the position of the molecule looks at the intermolecular vector peaks in the

Patterson map.  These peaks arise from any pair of atoms in different molecules related by

crystal symmetry.  The intramolecular peaks are subtracted from the Patterson and only peaks

due to intermolecular vectors are matched.  This places the molecule within the unit cell.

Once the position of the molecule in the new unit cell is known, phases can be

determined from the model, and electron density maps calculated using measured amplitudes

for the unknown structure and calculated phases from the model placed in the unit cell of the

unknown structure.

In cases where no homology model exists other methods must be employed to

estimate the phases.  The first method developed was isomorphous replacement (Green et al.,

1954).  In this method, heavy metal atoms (such as mercury, platinum or gold) are introduced

into the crystals that bind to specific residues (mercury binds to cysteines, platinum to

methionines), naturally present or introduced into the protein, to create heavy atom derivative

(i.e. crystals with the same unit cell and orientation of protein).  As heavy atoms are electron

rich, the diffraction of the incident X-rays will differ from the diffraction from the native

crystals.  This leads to measurable differences in the intensity as the structure factors are

different.  The locations of the heavy atoms can then be determined from the difference

Patterson maps and this allows calculation of the protein phases.

Isomorphous replacement can often fail as introducing heavy atoms to the protein can

cause changes in unit cell dimensions and protein conformation.  The technique of

multiplewavelength anomalous dispersion [MAD (Hendrickson, 1991)] overcomes many of
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these problems.  This technique also requires the presence of a heavy atom, either naturally

present, soaked in or by replacing natural amino acids with those containing a heavy atom

(seleno-methionine is equivalent to a methionine where the sulphur is replaced by a selenium

atom).  MAD takes advantage of the wavelength dependence of the atomic scattering factor

of an element at wavelengths close to its absorption edge, together with the ability to tune the

wavelength of synchrotron radiation.  First, the absorption peak of the atom is found by a

fluorescence scan of the crystal.  This establishes the peak for the atom in its current

environment.  Then three data sets are collected, at the absorption peak, the point of

inflection of the absorption curve and a remote wavelength.  As data are collected on a single

crystal, there is no problem with isomorphism.  The scattering factors of the anomalously

scattering atoms are different, and therefore, the intensities of reflections will be different for

each wavelength at which a data set is taken.  The presence of the heavy atom also breaks

Friedel’s Law [that (Ihkl = I-h-k-l)] and leads to different intensities of Friedel related

reflections.  Comparison of the intensities of the Friedel pairs can be used to estimate the

phases.

A.8 The molecular model
After phases have been estimated and electron density maps calculated, the model can

be built.  The electron density is interpreted and a molecular model is built to fit the density.

The atomic coordinates and temperature factors of the molecule are refined against the

observed amplitudes.  As the model improves, the theoretical amplitudes calculated from the

model should converge with the observed amplitudes.  The measure of this convergence is

called the R factor (Equation A.5):
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€ 

R =

Fobs −k Fcalc
hkl
∑

Fobs
hkl
∑ (A.5)

where Fobs are the observed amplitudes, Fcalc are the calculated amplitudes from the model and

k is the scale factor.

However, the refinement process may make adjustments to the model that reduce the

R factor but do not represent realistic changes to the model.  To avoid this pitfall the Free R

Factor is used.  A small set of reflection (usually 5%) are removed from the data before

refinement.  These reflections are then used to calculate an R factor called the Free R Factor

(Equation A.6):

€ 

Rfree =

Fobs −k Fcalc
hkl⊂T
∑

Fobs
hkl⊂T
∑ (A.6)

where T is the test set of reflections removed from the data set.  Reducing the Free R Factor

gives an unbiased estimate of the improvement in the model, as the model has not been

refined against these data.
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Appendix B: Supplementary figures

Figure B.1 The structure of F1-MgF3
- viewed from the ‘standard’ orientation with a

magnification of the βTP catalytic site.  The catalytically important residue side chains are

displayed.
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Figure B.2 The asymmetric unit of the F1-MgF3
- structure.  The atomic model of F1-MgF3

-

and the unit cell edges are shown in red and the electron density for the model and symmetry

related molecules is shown as a blue mesh (contoured at 1σ).  The decrease in the a axis by

up to 16 Å increases the order of the crystals
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Figure B.3  The βE subunit of bovine F1-ATPase inhibited with ADP and magnesium

fluoride (F1-MgF3
-).  The subunit is essentially in the open conformation observed in the

reference structure but binds ADP (magenta).
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Figure B.4  Ribbon representation of the F1-MgF3
- βE subunit (blue) superimposed on

the N-terminal β-sheet domain of the reference structure βE subunit.  The structures are

in essentially the same conformation but there is a 2.4º rotation of the C-terminal domain and
a tightening of the hydrophobic pocket. ADP is shown (green)
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Figure B.5  The progression from open to half-closed, the view is in stereo.  The βE

subunits of the reference (magenta), F1-MgF3
- (yellow) and (ADP-AlF4

-)2-F1 (cyan) structures
were superimposed on their P-loops (residues 155-165).  Initial binding of ADP is

accompanied by a movement of the Cα and side chain of βPhe-424 towards the adenine ring

forming a hydrophobic binding pocket.  The transition from open (ADP bound) to half closed

involves a tightening of the hydrophobic pocket and a rotation and movement of βArg-189

closer to the β phosphate as it coordinates a phosphate (also coordinated by βLys-162).  The

transition from half closed to closed involves no further tightening of the hydrophobic pocket
but the movement of βArg-189 towards the β phosphate and the alignment of βGlu-188 with

the phosphate intermediate to present the attacking water (see next figure)
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Figure B.6  Superimposition of the βE subunit from the (ADP-AlF4
-)2-F1 structure (grey)

and the βTP subunit from the F1-MgF3
- subunit (coloured).  The transition from half closed

to loose.  Structures were superimposed on their P-loops (residues 155-165).
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Figure B.7  Nucleotide binding in the βE subunit.  The βE subunits of the reference

(magenta), F1-MgF3
- (yellow) and (ADP-AlF4

-)2-F1 (cyan) structures were superimposed on

their P-loops (residues 155-165).  A: Initial binding of ADP is accompanied by a movement

of the Cα and side chain of βPhe-424 towards the adenine ring forming a hydrophobic

binding pocket.  B:The transition from open (ADP bound) to half closed involves a
tightening of the hydrophobic pocket and a rotation and movement of βArg-189 closer to the

β phosphate as it coordinates a phosphate (also coordinated by βLys-162)
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