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Abstract: Data quality (DQ) assessment and improvement in larger 
information systems would often not be feasible without using suitable “DQ 
methods”, which are algorithms that can be automatically executed by 
computer systems to detect and/or correct problems in datasets. Currently, these 
methods are already essential, and they will be of even greater importance as 
the quantity of data in organisational systems grows. This paper provides a 
review of existing methods for both DQ assessment and improvement and 
classifies them according to the DQ problem and problem context. Six gaps 
have been identified in the classification, where no current DQ methods exist, 
and these show where new methods are required as a guide for future research 
and DQ tool development.  
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1 Introduction 
Data quality (DQ) assessment and improvement are the two essential stages used to 
detect and eliminate data problems in organisational information systems (Batini et al., 
2009). The act of assessing DQ, to detect what quality problems exist, informs the 
improvement phase where the relevant data is actually modified to the correct values 
(Woodall, Borek and Parlikad, 2013). Both DQ assessment and improvement in larger 
information systems would often not be feasible without using suitable “DQ methods”, 
which we define as: algorithms that can be automatically executed by computer systems 
to detect and/or correct problems in datasets. Examples include methods such as “column 
analysis”, which can automatically compute statistics such as the number of missing 
values in a column of data. Many of the current DQ software tools that implement these 
algorithms can be applied to relational databases that are in use in the majority of 
organizations today, and automated DQ methods for databases are the focus of this paper.  
 
Performing DQ tasks manually, in many cases, is infeasible (McKenna, 2011), and 
manual inspection and modification of data is very time-consuming when compared to 
the speed at which a software program can execute (Maletic and Marcus, 1999). 
Organisations therefore rely on automated DQ methods, and many vendors, large and 
small, have been providing these for many years. The current trends indicate that the 
volume of data is increasing at staggering rates ((Manyika et al., 2011) (LaValle et al., 
2011), and see, for example, (Finnegan, 2013)), and therefore we can expect that 
automated DQ methods will become even more important in the future. Furthermore, as 
the data grows, not only will DQ automation be a necessity, but also new ways of 
automating methods for DQ assessment and improvement will be required. This paper 
therefore aims to identify gaps where no automated DQ methods exist for particular DQ 
problems, and guide future DQ research and industrial tool development before 
organisations become overwhelmed with their data. To accomplish this, we provide a 
review and classification of the different DQ methods currently available for DQ 
assessment and improvement according to the types of DQ problems they can address. 
Six gaps have been identified in our classification and these indicate the cases where no 
current automated DQ methods exist for a particular problem. In developing our 
classification, we discuss the applicability of each DQ method to each problem by giving 
an illustrative example. We define and use the more abstract term of “DQ method”, as 
above, rather than referring to software tools because our aim is not to focus on which 
software tool is best, but rather to identify gaps where new individual algorithms are 
needed. Moreover, existing DQ software tools often encompass a number of DQ 
methods, and the focus on DQ methods therefore ensures that one method is compared to 
one DQ problem in our classification. 
 
The rest of the paper is structured as follows: first, we introduce and describe an existing 
set of DQ problems that we used to populate our classification followed by a list of DQ 
methods currently used in different DQ tools. We then review other work on DQ method 
classifications before presenting how we developed our classification and the 
classification itself. The paper ends with a discussion of the gaps in the classification and 
a conclusion with an outlook for future research. 



Draft version 

2 Data Quality Problems 
There are many types of DQ problems in organizations and several researchers have 
investigated DQ problems and root causes (Oliveira, Rodrigues and Henriques, 2005; 
Eppler, 2006; Huang, Lee and Wang, 1999; Pipino, Lee and Wang, 2002).  
 
 Data Perspective User Perspective 

Context-
independent 

Spelling error 
Missing data 
Incorrect value 
Duplicate data 
Inconsistent data format 
Syntax violation 
Violation of integrity constraints 
Heterogeneity of measurement units 
Existence of synonyms and homonyms 

Information is inaccessible 
Information is insecure 
Information is hardly retrievable 
Information is difficult to aggregate 
Errors in the information 
transformation 

Context-
dependent 

Violation of domain constraints 
Violation of organization’s business 
rules 
Violation of company and government 
regulations 
Violation of constraints provided by 
the database administrator 

The information is not based on fact 
Information is of doubtful credibility 
Information presents an impartial view 
Information is irrelevant to the work 
Information is incomplete 
Information is compactly represented 
Information is hard to manipulate 
Information is hard to understand 
Information is outdated 

Table 1: A grouping of DQ Problems (extended from (Ge and Helfert, 2007)) 

DQ problems can be grouped into problems that exist independently of a specific context, 
e.g. spelling errors and duplicate data, and problems that depend on the context of use, 
e.g. violation of company and government regulations (Ge and Helfert, 2007). 
Furthermore, these problems can be seen from a user perspective, which are the problems 
recognized by an information consumer, or a data perspective, which exist independently 
of a particular user perspective. 
 
In order to keep the scope of this review as concise as possible, this research focuses on 
the data perspective problems for the context independent DQ problems identified in (Ge 
and Helfert, 2007) (see Table 1). These types of DQ problems are the most appropriate 
for automated tools because they are independent of context, which often requires human 
intervention to establish the correct course of action. The following paragraphs provide a 
brief definition for each data perspective and context independent DQ problem in the 
context of our research.  
 
Spelling errors occur when data values have been misspelt and missing data occurs when 
the data is physically not present in a field, record, table etc. Incorrect values are those 
that aim to represent some real-world property, but refer to this property inaccurately; for 
example, a person’s date of birth could be recorded as some other date than their correct 
date of birth. Duplicate data problems occur when rows are duplicated or when schemas 



Draft version 

contain redundancies (that is, specify duplicate attributes). Inconsistent data format 
problems occur when two or more semantically equivalent data values have different 
representations. Syntax violation problems occur when a pre-specified format has been 
assigned to an attribute and a data value for this attribute does not adhere to this format 
(this includes the incomplete data format and text formatting DQ problems in the original 
classification in (Ge and Helfert, 2007)). Problems with violations of integrity constraints 
arise when data values do not adhere to pre-specified database integrity constraints; we 
also therefore include unique value violations, rather than have these as a separate 
problem, because unique value violations are one type of database integrity constraint. 
Note that, despite its position original classification in (Ge and Helfert, 2007), we treat 
outdated data to be a both a context dependent and user perspective problem because 
whether data is out of date depends on who it is intended for and the purpose it is used 
for. 
 
Since using the DQ problems in Table 1, we noticed that two other distinct data-
perspective and context independent-data DQ problems, mentioned in the taxonomy in 
(Oliveira, Rodrigues and Henriques, 2005), also exist, and hence these have been 
included in our review and have been appended to the bottom of the list in Table 1. 
Heterogeneity of measurement units refers to the situation where one value could be 
recorded in millimetres and the same value for a different instance could be recorded in 
centimetres; both values may be correct, but they are only comparable when the 
appropriate conversion has been applied. The existence of synonyms and homonyms 
occurs when synonyms/homonyms are used for values in different records, and this also 
includes the use of acronyms. For synonyms, two different records could use different 
synonyms for a country name, for example, “USA” and “United States of America”.  

3 DQ Assessment and Improvement Methods 
To obtain a list of DQ methods we reviewed the existing software tools for both DQ 
assessment and improvement and extracted the different methods provided within these 
tools. The landscape of DQ software tools is regularly reviewed by the information 
technology research and advisory firm Gartner, and we used their latest review to scope 
the search for DQ tools from which to extract DQ methods (Friedman, 2012). The list of 
DQ tools reviewed is as follows: 
 

• SAS dataflux • DataMentors 
• Informatica • RedPoint-DataLever 
• Trillium software • Uniserv 
• SAP • Innovative Systems 
• IBM • Human Inference 
• Pitney Bowes Software • Talend 
• Oracle  • Information Builders/iWay 
• Datactics • Ataccama 

 
To perform the extraction of methods, we reviewed the actual tool (for those that were 
freely available) and any documentation of the tool including information on the 
organizations’ websites. We also augmented this review with a general review of DQ 
literature that describes DQ methods, and have cited the relevant works in our resulting 
list of DQ methods in the following section. Once we had reviewed each tool and 
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extracted the DQ methods, the methods were validated (for completeness and validity) by 
an expert with 10 year’s practitioner’s experience of current practices in the data quality 
industry. The resulting methods are described in the following two subsections and have 
been split according to whether they are for DQ assessment or improvement. 

DQ Methods for Assessment 
As noted before, the aim of DQ assessment is to inspect data to determine the current 
level of DQ and the extent of any DQ deficiencies (Woodall, Borek and Parlikad, 2013). 
The following DQ methods, obtained from the review of the DQ tools above, support this 
activity and provide an automated means to detect DQ problems. 
 
Column analysis typically computes the following information: number of (unique) 
values and the number of instances per value as percentage from the total number of 
instances in that column, number of null values, minimal and maximal value, total and 
standard deviation of a value for numerical columns, median and average value scores, 
etc. (Olson, 2003).  In addition, column analysis also computes the inferred type 
information. For example, a column could be declared as a ‘string’ column in the 
physical data model, but the values found would lead to the inferred data type ‘date’. The 
frequency distribution of the values in a column is another key metric which can 
influence the weight factors in some probabilistic matching algorithms. Another metric is 
format distribution where only 5 digit numeric entries are expected for a column holding 
German zip codes. Some DQ profiling tools (for example, Talend profiler) differentiate 
between analyses that are applicable to a single column compared to a “column set”. A 
column set analysis refers to how values from multiple columns can be compared against 
one another. For this research, we include this functionality within the term “column 
analysis”. 
 
Cross-domain analysis (also known as functional dependency analysis in some tools) 
can be applied to data integration scenarios with dozens of source systems (Lenz and 
Shoshani, 1997). It enables the identification of redundant data across tables from 
different, and in some cases even the same, sources. Cross-domain analysis is done across 
columns from different tables to identify the percentage of values that are the same and 
hence indicates whether the columns are redundant. 
 
Data verification algorithms verify if a value or a set of values is found in a reference 
data set (Maydanchik, 2007); these are sometimes referred to as data validation 
algorithms in some DQ tools. A typical example for automated data verification is 
checking whether an address is a real address by using a postal dictionary. It is not 
possible to check if it is the correct address, but these algorithms verify that the address 
refers to a real, occupied address. The results depend on high quality input data. For 
example, verification against the postal dictionary will only produce good results if the 
address information has been standardized (a method described in the following DQ 
improvement section). 
 
Domain analysis can be applied to check if a specific data value is within a certain 
domain of values (Olson, 2003). A domain can be a lookup table containing a series of 
values, some other pre-defined set of values or range conditions where values have to be 
within certain boundaries. Domain analysis and data verification are very similar. The 
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key difference between these is that the domain is just a series of values that are not 
necessarily the only real possible values. It is possible to do a domain analysis to check if 
all values for a zip code are between 10000 and 99000, but not all values between these 
numbers may be valid zip codes in Germany. Hence, data verification is needed to check 
whether a particular zip code is a real in-use zip code using the official address dictionary 
in Germany. 
 
Lexical analysis is usually applied to columns containing ‘string’ values with the intent 
to discover sub-components of unstructured content. There are basically two major 
approaches: rule-based and supervised-model based techniques (Borkar, Deshmukh and 
Sarawagi, 2001; Agichtein and Ganti, 2004). For a field containing “Müller , Christian”, 
lexical analysis would, for example, identify “Christian” as a first name based on match 
against a dictionary, the gender of the first name to be male and “Müller” to be the last 
name. Furthermore, phonetic algorithms, such as, NYSIIS or SOUNDEX (Taft, 1970; 
Patman and Shaefer, 2001), are leveraged by lexical analysis to discover equivalent 
phonetic representations, such as “Müller” is equivalent to “Mueller”. Lexical analysis is 
a technique often applied to name fields, address fields and text fields for product 
information. 
 
Matching algorithms (also referred to as record-linkage algorithms or merge-purge 
algorithms when considered with data consolidation algorithms described in the next 
section) are used to identify duplicates such as two customer records that refer to the 
same customer (Gu et al., 2003). These algorithms typically operate on rows of data 
within a table and are often the fundamental components of master data management 
(MDM) solutions. These algorithms are linked to the data consolidation algorithms 
described in the next section. There has been a significant amount of research on 
matching algorithms, starting with the first formalisation of the method in 1969 (Fellegi 
and Sunter, 1969). More recent work includes approaches that significantly reduce the 
runtime of matching, see for example, the “Sorted Neighbourhood Method (SNM)” 
(Hernández and Stolfo, 1995). 
 
Primary key and foreign key analysis (PK/FK analysis) is applied to columns in two or 
more tables to detect whether or not the analyzed columns are good candidates for a 
PK/FK relationship that is not explicitly defined in the data model. For example, a 
technique for single and multi-column PK/FK discovery can be found in (Li et al., 2006) 
and an efficient method avoiding limitations by implementing PK/FK discovery with a 
pure SQL approach can be found in (Bauckmann, Leser and Naumann, 2006).  
 
Schema matching detects when two attributes are semantically equivalent. It offers help 
to the data modeller using appropriate tools using database schema matching algorithms, 
which are either schema-based matchers, instance-level matchers or hybrid approaches 
(Rahm and Bernstein, 2001). However, on large real-world data models with a few 
thousand or more attributes, current schema matching algorithms are often not very 
effective, although, additional improvements have been proposed in (Byrne et al., 2009; 
Peukert, Eberius and Rahm, 2011). 
 
Semantic profiling (also referred to as “business rule analysis” in some DQ profiling 
tools) is used to express rules on data, and it measures the compliance of the data against 
these specified rules (Chiang and Miller, 2008). For example, a rule for the columns age 
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and profession could be: if age < 18 then profession=’child’, which specifies that the 
attribute value for profession should be ‘child’ when the attribute value for age is less 
than 18. Rules can define any mathematical relationship between numeric data values. 

DQ Methods for Improvement 
Once DQ assessment methods have detected the current problems, it is the improvement 
methods that actually correct the data. The following DQ improvement methods can be 
applied to automatically correct data in different cases. 
 
Data standardization algorithms are used to convert data values into their standardized 
representation. These algorithms might replace “Aktiengesellschaft” with “AG”, “Street” 
with “St.”, etc. Data standardization is often applied in the domain of master data which 
has high requirements on data quality and common techniques include name 
standardization, address standardization and product standardization. Tools with the 
capability of address standardization typically provide country-dependent rule sets and 
dictionaries because the correct structure of an address differs from country to country. 
For instance in (Kothari et al., 2010) a new address standardization technique for 
countries such as India is shown which is able to deal with substantial variants in address 
structures within a country. Also for addresses, (Guo et al., 2009) proposes latent 
semantic association instead of the traditional rule and dictionary-based approaches for 
data standardization. The data standardization step is typically applied before matching 
and data consolidation algorithms are applied to match records with the intent to find 
duplicates.  
 
Data enrichment complements the known attributes of a record with additional 
attributes from trusted internal or external sources. For example, organisations may wish 
to enrich their customer master data with legal information about enterprises. In the 
product domain, some companies subscribe to the Global Data Synchronization Network 
(GDSN) managed by the GS1 non-profit organization. Through the GDSN, companies 
get access to product classification information, unique product identification numbers 
(e.g. GPC, GTIN, etc.), etc. which is used to enrich product information.  
 
Data consolidation (also known as data merging or data de-duplication algorithms) is 
the process of merging two or more duplicate records into one record. This reconciliation 
of data can be done manually or automatically and it uses the results from the matching 
algorithms (described in the assessment methods section) that have flagged records that 
need to be merged. There are two distinct methods available for merging duplicates: 
record-level survivorship or attribute-level survivorship. The first identifies, from a set of 
duplicates, one record as survivor and all others are marked as non-survivors and linked 
to the survivor. If attribute-level survivorship is applied, then for each attribute the 
decision about which value is used is made for each attribute individually. An excellent 
survey on this topic can be found in (Bleiholder and Naumann, 2008) and new techniques 
can be found in (Bleiholder et al., 2010). Again, this technique is quite often applied to 
master data. Based on business requirements the duplicates are reconciled either with 
record-level survivorship or attribute-level survivorship. Note that data consolidation can 
be done fully automatically as well as through Data Stewards in a data stewardship 
processes.    
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Data integration (also referred to as Extract-Transform-Load (ETL)) is a broad field of 
methods which are used to move data from one system to another. The first stage is to 
extract the data from the source system(s), and then transforms usually need to be applied 
before loading the data into the target system(s). Within data integration, and especially 
the transformation stage of ETL, the methods include: transcoding values (for example, 
‘m’ to ‘male’ and ‘f’ to ‘female’), data type conversion (e.g. ‘string’ to ‘timestamp’), data 
reformatting (for example, date formats from. yyyy/mm/dd to dd/mm/yyyy and including 
regular expression (regex) string replacement), unique key generation, and auto 
completion of originally ‘null’ values that cannot be null in the target system. The latter is 
an example of a data rule, which can be developed to add new data or change existing 
data based on a conditional rule. For example a data rule could be if col1=’X’ and col2 
=’Y’ then col3=’Z’, which conditions the data based on business requirements. Typical 
use cases for ETL algorithms are feeds for data warehouses or master data management 
systems. 

4 Existing Classifications of Data Quality Methods  
The requirement for organizations to assess and improve their DQ, has led to similar 
research efforts that aim to guide organizations in their selection of DQ tools. For 
instance, related research specifies useful criteria for the selection of DQ tools based on 
the functionality of the tools (Goasdoué et al., 2007). However, this work does not 
indicate the specific DQ problems which are addressed by these tools. Our research 
differs in this respect, and one of the dimensions of our analysis is the DQ problems and 
how each DQ method addresses them. In the same subject area, Gartner research takes a 
different approach and provides a “Magic Quadrant” to guide organizations in their 
selection of DQ tools. The quadrant indicates which tools fit into the following 
categories: market leaders, challengers, niche players and visionaries (Friedman, 2012). 
In a survey of DQ tools, Barateiro and Galhardas divide DQ tools by their general 
functionality (e.g. debugging capabilities and the ability to extract from different data 
sources etc.) and also specify whether the tools are capable of finding problems that 
relate to multiple or single rows (Barateiro and Galhardas, 2005). In this latter sense, the 
work is based partly on an existing taxonomy of DQ problems (Oliveira, Rodrigues and 
Henriques, 2005) and our research extends this to specify how specific DQ methods 
(rather than DQ tools) fit into all the elements of the taxonomy, not just multiple or single 
rows. 

5 Classifying DQ Assessment and Improvement Methods 
An existing taxonomy (see (Oliveira, Rodrigues and Henriques, 2005)) was used as part 
of our classification of DQ methods to problems. This consists of elements at various 
levels of granularity that relate to the well-known relational database structure which 
includes: attributes (fields or columns), rows (records or tuples), tables (relations) and the 
database (multiple tables). Furthermore, the taxonomy also includes a level that relates to 
multiple databases. The different elements of the taxonomy are shown in Table 2, which 
includes the taxonomy element (an acronym of the element), the name of the element, 
and a mapping requirement. The mapping requirement (not described in the original 
taxonomy in (Oliveira, Rodrigues and Henriques, 2005)) is used for this work to aid the 
mapping of the DQ methods into an element of our classification for a particular DQ 
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problem. This mapping requirement specifies what level of data the DQ method needs in 
order to detect or correct a DQ problem. For example, for the domain analysis method to 
determine whether there is an incorrect value, it only needs to consider whether the value 
of one attribute lies in a domain; thus, it can be classified within the Single Attribute 
Single Tuple (SAST) element for the incorrect value DQ problem.  
 
Taxonomy 
Item 

Name Mapping Requirement 

SAST Single Attribute 
Single Tuple 

One attribute to be compared to external information 

SAMT Single Attribute 
Multiple Tuples 

Comparing multiple rows using one attribute 

MAST Multiple 
Attributes Single 
Tuple 

Comparing multiple attributes in one row 

SR Single Relation Comparing multiple attributes between multiple rows in a 
single relation 

MR Multiple 
Relations 

Comparing multiple attributes between multiple rows in 
multiple relations, for instance, by using the primary/foreign 
key links between relations. 

MDS Multiple Data 
Sources 

Comparing data from different sources, e.g. multiple data 
bases, possibly with different data schemas and semantics 

Table 2: Classification Mapping Requirements 

Note that there is no reason why the domain analysis method could not be applied 
multiple times (to each value in a row and for different attributes) to detect incorrect 
values. This is, however, just a repeated application of domain analysis to different 
values. Other DQ methods can meet the requirements of multiple taxonomy items 
depending on the DQ problem they address. For example, semantic profiling, which 
usually involves checking whether multiple values adhere to a particular relationship, can 
be used on ‘single attribute multiple tuples’, ‘multiple attributes single tuple’, ‘multiple 
relations’ and ‘multiple data sources’.  
 
The classification developed in this paper therefore includes both the elements of the 
taxonomy and DQ problems to demonstrate what problem the DQ method addresses and 
at what taxonomy level the DQ method needs to be implemented (e.g. single attribute 
single tuple etc.). 

6 A Classification of DQ Methods  
Table 3 shows the results of the classification with the taxonomy elements across the top 
and the DQ problems shown vertically. Each DQ method is placed in the relevant cells 
with a reference number in brackets. The data quality assessment techniques are in 
normal font and the data improvement techniques are in italic. For some cells the 
elements of the taxonomy may not be relevant for a given DQ problem, and in these 
cases, the cell is shaded grey. For example, a spelling error only relates to a single 
attribute (and hence only relates to SAST and SAMT) and, by definition, duplicates 
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cannot occur unless there is a second instance which is a duplicate of the first instance, 
hence this problem does not occur for SAST. If, however, an example DQ method has 
been found for a particular problem and taxonomy element, then the cell is populated 
with the relevant method(s). Otherwise, cells are identified as a gap indicating that no DQ 
methods are currently available to address the particular DQ problem in the given 
context. 

Gaps in the classification 
Six gaps were identified from the resulting classification and each gap is described 
below; gaps 1 and 2 have been described in the opposite order because gap 1 is an 
extension of gap 2. 
 
Gap 2: The first gap is for detecting missing data in single relations. Instances of this 
problem occur when, for example, an organization records an item of stock as a row in a 
table (the full table is the inventory of stock) and items of stock may be physically 
present in the warehouse but do not appear in the table as a row. This is a gap since there 
are no methods that can detect whether data records for physically present entities are 
missing. The improvement methods depend on the assessment methods and so it is not 
possible to specify these until assessment methods are proposed.  
 
Gap 1: The problem that this gap relates to occurs when a null value can only be detected 
by observing other rows. For example, a customer record could have a “subsidiary 
company” field that links to other customers who they own as a subsidiary company. This 
field should not be null if another row exists with a subsidiary organisation, but it should 
be null if there are no other organisations that are subsidiaries. The only way to detect 
whether this null is valid or not is therefore to inspect other rows. 
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Taxonomy element DQ Problems 
SAST SAMT MAST SR 

 
MR 
 

MDS 

Spelling error (1)  
Data verification, 
Lexical 
analysis, Data 
standardization, 
Regex string 
replacement 

(2) 
Column  
analysis, Data 
standardization, 
Regex string 
replacement 
 

    

Missing data (3) 
Domain analysis, 
Data enrichment, 
Data rules 

Gap 1 (4) Semantic 
profiling, Data 
rules 

Gap 2 (5) Semantic  
profiling, Data 
rule   
 

(6) Semantic  
profiling, Data 
enrichment, 
Data rules 

Duplicate data  (7) Column 
analysis,  PK/FK 
analysis, Data 
consolidation, 
Data rule 
 

(8) Semantic 
profiling, Lexical 
analysis, Data 
standardisation 

(9) Matching 
algorithms,  
Schema 
matching, Data 
consolidation 

(10) Matching  
algorithms, 
Cross-domain 
analysis 
Schema 
matching, Data 
consolidation 

(11) Matching  
algorithms, 
Cross-domain 
analysis, 
Schema 
matching, 
Data 
consolidation, 

Incorrect value (12)  
Lexical analysis, 
Column analysis,  
Domain analysis, 
Data verification, 
Data 
standardization, 
Data type 
conversion, 
Transcoding 

(13) Column  
analysis, Semantic 
profiling, Key 
generation 
 

(14) Semantic 
profiling, Data 
verification, Data 
rules 

(15) Semantic 
profiling, Data 
rules 

(16) Semantic  
profiling, 
Column analysis, 
Data rules, Data 
reformatting 

(17) Semantic  
profiling, 
Domain 
analysis, 
Column 
analysis, Data 
reformatting 
 

Inconsistent data 
format 

  (18) Column 
analysis , Data 
standardization, 
Regex string 
replacement, Data 
reformatting   

(19) Column 
analysis, 
Semantic 
profiling, Data 
rules, Regex 
string 
replacement, 
Data 
reformatting 

 (20) Column 
analysis, 
Semantic 
profiling,, Data 
type conversion, 
Data 
reformatting   

(21) Column 
analysis, 
Semantic 
profiling, ,  
Data type 
conversion, 
Data 
reformatting   

Syntax violation (22)  
Column analysis, 
Domain analysis, 
Lexical analysis, 
Regex string 
replacement, 
Data 
reformatting   

     

Violation of 
integrity 
constraints 

(23)  
Domain  
analysis, Data 
rules 

(24) Column  
analysis, Key 
generation 

(25) Semantic 
profiling, Data 
rules 

(26) Column 
analysis, Key 
generation 

(27)  
PK/FK analysis, 
Data rules 

(28) Semantic 
profiling, 
Domain 
analysis, 
Transcoding, 
Data rules 

Existence of 
Synonyms and 
Homonyms 

 Gap 3 Gap 4  Gap 5 Gap 6 

Heterogeneity of 
measure units 

 (29) Column 
analysis, Domain 
analysis, Semantic 
profiling, Data 
rules 

(30) Column 
analysis, 
Semantic 
profiling, Data 
rules 

 (31) Cross-
domain analysis, 
Data rules 

(32) Cross-
domain 
analysis, Data 
rules 
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Table 3: Classification of DQ methods to DQ problems 

An example is shown in Table 4. Although, this example is based on a non-normalised 
structure and, hence, is slightly artificial because if it is normalised the problem manifests 
itself as the problem described in Gap 1. Assuming that Turbo Motorsport Tuning does 
not own a subsidiary company, then the subsidiary company field correctly contains null. 
If however, FZR Motor Vehicle Technologies contained a null in the subsidiary company 
field, then it would be incorrect, because it should be linked to Turbo Motorsport Tuning.  
 

id Customer name Subsidiary company 
1 FZR Motor Vehicle Technologies 2 
2 Turbo Motorsport Tuning  

Table 4: Example where a null can only be detected by observing other records 

One way to detect these types of problems is to use data enrichment to describe which 
companies are subsidiaries and check the subsidiary field for incorrect nulls where a 
subsidiary relationship exists and is not recorded. However, there is no individual method 
to address this problem and it is necessary to build custom code to both detect and correct 
these types of problems. Furthermore, in this scenario a desired course of action could be 
to modify the data model and hence, the problem would be as described in Gap 1. 
 
Gap 3: A series of gaps are present in the classification for the detection of the existence 
of synonyms and homonyms, which are not generally possible to detect with algorithms 
today. These include gap 2, which describes how synonyms occur between different 
tuples for one attribute (SAMT). An example is the use of different aircraft part numbers 
for the same physical part. For a part number attribute, a number in one row may be the 
vendor part number and another row may contain the part number used by the aircraft 
manufacturer.  
 
Although there are no specific methods to detect this problem, professionals often build 
custom logic using the data integration capabilities of the commercial tools to search for 
synonyms and homonyms. With this, some organisations build enterprise data 
dictionaries using ontologies, which include a list of synonyms and homonyms for 
business terms.  
 
Gap 4: An example for gap 3 (albeit almost artificial and a consequence of poor data 
modelling), which relates to multiple attributes in one tuple (MAST), is a table that stores 
a column “profession” and a column “job category”, with entries such as: 
• Professor, Teacher 
• Developer, IT 
• Architect, IT 
• Teacher, Teacher 
• Architect, Construction 
 
In this case, the homonym ‘Architect’, which could refer to an IT or construction 
architect, could only be detected by looking across two columns. Currently, there are no 
specific methods to automatically detect homonyms in this case.  
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Gaps 5 and 6: Both gaps 4 and 5 relate to synonyms and homonyms found in multiple 
tables in a single database and multiple databases, and these are discussed together 
because there is little difference between the two cases. A common area for synonyms 
and homonyms to occur is in the domain of reference data, which is typically stored in 
lookup tables (in either the same database or a different database). For the synonym 
problem, the same semantic set of country codes in a lookup table in one system might 
use an integer-based value set for the lookup values whereas another system might use 
two-letter values. As a result, the country Germany might be represented with the value 
‘62’ in one system and ‘DE’ in another system indicating that these values are actually 
synonyms. Since in many cases enterprise applications are customizable regarding lookup 
tables and their values, a company using multiple instances of the same application might 
suffer substantially by different customizations of lookup tables per deployed application 
instance. In one organisation the authors observed this problem, and for roughly 200 
countries several thousands different lookup values were customized in several instances 
of the same application. Not surprisingly, in the data warehousing environment where the 
operational data from all applications came together, revenue reports by country did not 
show meaningful results. Similarly, for homonyms, assigning the same meaning to 
different lookup values across systems can also cause substantial problems.  

Discussion of the entries in the classification 
For each of the DQ methods in Table 3, the reason for classifying these methods into the 
particular cells is described. The numbers in braces in the table are used to reference the 
descriptions. 
 
(1) Using data verification, for spelling errors on a single attribute of a tuple, it is possible 
to check whether a particular word appears in a dictionary and therefore whether it is 
spelt correctly. For any particular word, the cases are that it is in the dictionary (and 
therefore spelt correctly), not in the dictionary because the dictionary is not complete, or 
not in the dictionary because it is spelt incorrectly. The effectiveness of the method 
therefore relies on the comprehensiveness of the dictionary. The effectiveness also relies 
on being able to extract particular words from a field. Therefore, methods such as lexical 
analysis and data standardisation can be used prior to data verification to ensure that 
individual words are extracted and passed to the verification algorithm. For correcting the 
data once spelling errors have been detected, it is necessary to find the correct spelling 
and replace the old value. Within data integration methods, using a find and replace with 
regular expressions in the search can be used to fix a particular recurring spelling issue. It 
is also possible to apply string distance measures (often used in data matching 
algorithms) to find the “closest” word in a dictionary and then replace the value with this 
word; survivorship rules (from data consolidation algorithms) can be applied to control 
this value replacement. 
 
(2) A For spelling errors in a single attribute over all rows, column analysis can be used 
to identify misspellings by examining inconsistencies between rows. A count of the 
frequency of values can indicate a spelling error that is not easy to detect manually. For 
example, in a table of product data, the value “fatscreen” may appear only once in the 
product name column, while the majority of other rows contain the value “flatscreen” for 
this attribute. Similar to (1), the same correction methods can be applied. Data 
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standardisation is especially useful in this case to standardize the spellings of names, 
addresses, etc. between rows to make them consistent. 
 
(3) By specifying that “null” is not a permissible value in the domain of an attribute, 
domain analysis can be used on a single attribute in a single row to detect missing data. 
To correct this problem, a business rule approach, within data integration, can be used to 
map the null value to a permissible domain value. Data enrichment can also be used to 
complete null values if the enrichment organisation has information that can be appended 
to an existing record. For example, an organisation may hold information about a 
customer, but not have a value that indicates the customer’s credit score, which could be 
obtained from a data enrichment organisation. 
 
(4) For null values that depend on other columns, it is possible to define semantic rules 
(using the semantic profiling method), such as “If (age > 18) then (profession != null)”, 
which can detect these. This indicates that a person of age 18 must have a non-null value 
in the profession column. To correct this problem, data rules from the data integration 
method can be applied to insert the correct value, derived from the rule, in place of the 
null. 
 
(5) For detecting missing data that requires inspection of multiple tables, one example 
problem occurs with hierarchical customer objects. A typical customer object in an ERP 
system could consist of multiple tables in a hierarchical table structure. Sometimes, in a 
business to business scenario, the customer object in the ERP system is customized so 
that for each enterprise customer there has to be at least one contact person managing the 
relationship to that customer. The core customer information in the table is representing 
the root node of the table hierarchy and the contact person would be in a table being a 
child node of the root node. Using semantic profiling across the multiple relations (the 
parent and child table in this case), it is possible to check if for each enterprise customer 
record in the parent, there is at least one entry in the child table storing the contact person 
information. If no contact person is found, semantic profiling can define a rule that could 
flag this as a missing record.  
 
For the example given, either a default contact person record is created and using a data 
rule used to fill in the missing contact person record or the same is done using existing 
contact persons. This might be filtered using regional information from the customer 
object so that there is a default (existing) contact person by region for each customer who 
has not yet a contact person assigned.  
 
(6) For missing data between multiple systems, assume that customer information is 
stored in one data source (for example, a master data management system (MDM)) and 
another data source is used for customer orders. A semantic profiling rule could check if 
for each active customer in the MDM system, there is at least one order by this customer 
placed in the last 2 years. Otherwise, the customer status may want to be marked as 
inactive. Updating the customer status based on such semantic rules is an application of a 
data enrichment method. In more complex examples, it’s likely that complex business 
data rules updating the data will be applied.  
 
(7) To identify duplicates in different rows, column analysis can be used to create a 
frequency distribution counting if there are two or more occurrences of values to identify 
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duplicates. The description of the data model for an attribute might indicate a uniqueness 
constraint (e.g. a unique index or a primary key). Using column analysis, it is possible to 
detect whether or not the values across all records for this attributes are unique and thus 
satisfy this requirement. A PK/FK analysis could therefore also be used with column 
analysis to flag duplicate values in a column. To correct the problem depends on the 
nature of the duplicate. It may indicate that the entire record is a duplicate, in which case 
data consolidation algorithms should be used. However, it may be only the value that is 
incorrect in which case a specific data rule would be needed to correctly update the data. 
 
(8) In semantic profiling expressions like “If a1 = a2 and a2=a3 and … then record 
exception” (where a1, a2, a3 are attributes) can be specified to discover if multiple 
columns in the same row have the same value (i.e. to find duplicates between attributes). 
In some cases, users enter dummy data like “abc” in all mandatory fields to pass 
validation checks when they don’t have the information available, and this technique is 
useful to detect this problem. Other cases involve users duplicating values in part of a 
field such as duplicating the state code in a “country” field as well as having this value in 
a “state” field, see Table 5. This would require that the country field split into individual 
words so methods such as lexical analysis and data standardisation could be applied to 
perform this.  
 

id State Country 
1 CA USA, CA 
2 FL USA, FL 

 

Table 5: An example of duplicate values in different fields 

(9) For master data management projects, de-duplication of employee, supplier, 
customer, product, account, etc. records in the database tables is a requirement. 
Probabilistic matching techniques are a commonly used assessment method, which works 
on multiple attributes and rows to check for matches. . At the schema level, rather than 
with the individual values, schema matching can be used to detect when attributes in 
multiple tables are redundant. Data consolidation is then applied to merge the duplicate 
records into a single survivor. 
  
(10) Similar to (9) master data can also be duplicated because information like customers 
often exists in multiple relations. Cross-domain analysis is used across columns of 
different tables to identify the percentage of overlapping data, which might be an 
indication that two different tables are duplicates. Similar to (9) data consolidation 
methods are relevant DQ improvement methods to address duplicates in this context. 
 
(11) Duplicates may also occur between tables in many different organisational 
databases. As well as being duplicates in a single table and multiple tables in a single 
system, duplicates can also occur in multiple tables in different systems. The methods at 
this level are therefore the same as in (10). 
 
(12) To detect incorrect values in a single field, lexical analysis can be applied. For 
example, lexical analysis could be applied to an address field with the value 



Draft version 

“Hirschkopfstrasse 13 71149 Bondorf 07457948953” and it would report that 
“07457948953”, as a token, cannot be recognized as an element of an address and is thus 
an incorrect value. Also, a column analysis could be applied to check for type 
discrepancies such as the value “abc” in a column, which according to the metadata 
should be of data type INT, and, thus, is obviously a wrong value in that column. When a 
particular domain of values is available for validation of a field, domain analysis could 
operate on a column containing titles (for example, “Mr.”, “Mrs.”, “Dr.” and “Prof.”) and 
if it finds a value not in the domain, such as “Herr”, it would report this value to be 
incorrect. Another example of domain analysis could be a data integrity constraint on a 
column storing AGE information that the permissible range of values is between 0 and 
140, so that any value outside this range is flagged as incorrect. Data verification could 
also be applied to determine that a syntactically correct value is not correct if it does not 
exist in an external data dictionary. In order to correct the data, the data standardisation 
method can be used to solve the problem with addresses and any case where an incorrect 
value needs to be extracted from a field containing free text. The data integration method 
of data type conversion (e.g. STRING to TIMESTAMP), can be used to correct data that 
is of the wrong type. Also within data integration, the transcoding values method can be 
used to map any incorrect entries detected by domain analysis to the correct value; for 
example, the title “Herr” could be mapped to “Mr”. 
 
(13) For incorrect values that are detectable by observing the value in a field in multiple 
rows, one example, is a business decision that requires products should be numbered 
sequentially by a product number increased by a fixed value or fixed pattern (e.g. 1, 2, 3, 
4, 5, … or 000010, 000020, 000030, 000040, …). Using column analysis or semantic 
profiling can help to discover if data complies to such a number scheme. To correct this 
problem the key generation method from data integration is applicable to fix this 
problem.  
 
(14) An example incorrect value detectable from multiple attributes could be a rule such 
as: if (gender = male AND religion = Roman-Catholic AND profession = Priest) then 
marital-status =single. Semantic profiling could be used to represent this rule and check 
whether the data adheres to it. Data verification can also be used to detect whether or not 
syntactically correct data is valid. For example, if: street = Oxford Street, House Number 
= 185, Zip code = W1D 3DG, City = London and Country = UK, then this would be a 
syntactically correct address. Performing data verification against the UK postal address 
dictionary would flag that all values are correct except for the HOUSE NUMBER for 
which number 185 does not exist because the largest number in Oxford Street is 157. The 
data rules method in data integration is used to solve these types of problems. 
 
(15) An example of an incorrect value that is detectable by observing multiple rows and 
multiple columns is shown in Table 6. In this case the time periods should not be 
overlapping and, hence, the beginDate value in the second row should be 2/1/2002.   
 

BeginDate EndDate ProductsSold 
2/1/2001 1/1/2002 100 
2/7/2001 1/1/2003 150 

Table 6: An example incorrect value that is detectable by observing multiple row and columns 
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Semantic profiling can be used to detect this problem by defining a rule that checks each 
date to see if it is between any other date range specified by the begin and end dates in 
other rows. To correct the problem, data rules in data integration can be defined to adjust 
the date so that it follows from the known latest date. 
 
(16) It is possible to check for incorrect values across tables using semantic profiling. For 
example, a semantic rule could be used to ensure that each sales employee is associated 
with at least one customer. Also, performing a format analysis as part of column analysis 
might expose that the syntax of data fields is not consistent across tables (e.g. 12/31/2010 
in one table and 31/12/201 in another table). Data rules from data integration techniques 
can be used to replace the violating values to solve the first problem and format 
conversions from the data integration technique set fix the problem of the second 
example.  
 
(17) Some of the examples for (15) like semantic rules across multiple tables can also be 
used in a scenario where the tables come from multiple sources. Additionally, semantic 
profiling might be used if complementary data sources are involved to check the 
correctness of data. Domain analysis against the domain value set of the target system for 
a field might expose that none of the source systems is using the same domain values for 
this field. For instance, without transcoding (for example, converting a country code 
“DE” to “62”) while moving a record from a source system to the target system, the 
target system would be loaded with a data quality defect, since it is not understanding the 
value “DE”, being not part of its domain value set for that field. Similarly if another 
source system uses “GER” for Germany, a different transcoding rule needs to be 
implemented to map “GER” to “DE” for the records coming from this source system. 
Column analysis might also be used to detect different formats across multiple sources 
for dates, etc. Data reformatting conversions from the data integration technique set are 
usually applied to harmonize formats across records coming from different sources.  
 
(18): Inconsistent formats, for example,German phone numbers, in one column should all 
be compliant with the format of 0049+area code+phone number. Inconsistencies between 
the formats in different rows for this column can be detected using column analysis, 
similar to the previous examples. Either data standardization or data integration 
techniques such as regular expressions or format conversions can be used to correct 
inconsistent formats. 
 
(19): A table might contain contact information with multiple fields for phone numbers 
such as a field for office phone, mobile phone and home phone. If someone uses just one 
mobile phone and wants to be contacted only with the mobile phone number, then the 
values are semantically equivalent and should appear in the same format. Column 
analysis or semantic profiling using for example regular expressions can be used to detect 
whether or not the format is applied consistently across the columns. Either data 
standardization or data integration techniques such as regular expressions or format 
conversions can be used as part of a data rule enforcing the same phone number across 
office, mobile and home phone to correct inconsistent formats if that’s an option 
available to a customer. 
 
(20) and (21): In both cases, it could be that tables in the same or multiple data sources 
store similar information like price information, dates, etc. For example, there might be a 
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table (in the product development system) with product prices with a field for price which 
is a decimal type. In an order item table (such as an e-Commerce system) containing the 
individual items of an order, the price field could be a fixed-length STRING of length 32 
with leading, padding whitespaces if the price does not have 31 digits. This and similar 
issues could be detected with column analysis and/or semantic profiling techniques. If 
data coming from the development and e-commerce system of the example mentioned 
requires harmonization before loading into a common target, then reformatting string 
operations, such as trimming in conjunction with data type conversions, can be used.  
 
(22) Syntax violations can be detected using a number of different methods. For example, 
dates are often required to adhere to a specific syntax (e.g. dd/mm/yyyy) and violations 
can be detected using column analysis. Domain analysis can be used to identify erroneous 
values that do not have the right syntax by flagging any value that is not within the 
domain (provided that the domain contains no syntax violations). Lexical analysis is able 
to discover if all tokens in a text are recognized as patterns in a specific format of a 
domain like addresses, products, etc. Assume an attribute “street” with the following 
value “274 St. John St.”. Lexical analysis in the parsing step would identify 4 tokens: 
‘274’, ‘St.’, ‘John’ and ‘St.’. In the lexical investigation, it classifies the tokens as 
follows: ‘274’ is identified to be a number, ‘St.’ is identified as a possible street type, 
‘John’ is identified as an alphanumeric string possible being a unique name and ‘St.’ is 
again identified as a possible street type. In the final step applying context sensitive 
interpretation of the lexical investigation, the conclusion would be that ‘274’ is the house 
number, ‘St. John’ would be the street name and the last ‘St.’ must be the street type 
indicator. The output of the lexical analysis would be, in addition to the input column 
“street”, three columns indicating house number, street name and street type and the 
string would have not produced any unhandled pattern (a token which the lexical analysis 
would flag as not understood based on available dictionaries and rules). With the 
additional three columns applying address standardization is now able to produce much 
better results. Regular expressions within the integration technique can be used to correct 
syntax errors by using them with search and replace functions. Reformatting methods can 
also be used where the correct syntax format is known. 
 
(23) One integrity constraint on a single value is that the primary key cannot be null. This 
is usually enforced by the database and does not need manifest as a problem; however, 
the detection of null values was discussed as a separate problem previously. Another 
relevant integrity constraint is a user defined integrity constraint on a single value. For 
example an age field may need to be between 16 and 40. Domain analysis can be used to 
determine if all values for an attribute are within an allowed range. Similar, using domain 
analysis, it is possible to check if a value in a field is in a given value set of the lookup 
table supporting this field. Data rules from the data integration technique set can be used 
to deal with violating values in some instances. 
 
(24) Column analysis can be used to detect if all the values in a column are unique. If the 
column supposedly only contains unique values, then the number of violations of the 
uniqueness constraint determines if it is feasible to use key generation from the data 
integration technique is a viable improvement option.  
 
(25) With semantic profiling, business constraints across multiple attributes can be 
detected. An example could be selling price = base price * sales tax. Data rules can be 
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used to fix violations. For example, if there is an erroneous entry of ‘abc’ in the selling 
price attribute, then a business rule computing base price * sales tax could be used to fix 
this error (and all other incorrect sales prices). 
 
(26) Column analysis can be applied to a set of fields to detect whether or not they violate 
a composite primary key constraint which requires unique value combinations across all 
records in the fields of the composite key. The number of violations of a composite 
primary key constraint determines if it is more feasible to fix with a key generation 
approach from the data integration technique set.  
 
(27) Primary/Foreign key analysis can be used to detect if two tables in a parent-child 
relationship comply with the Primary/Foreign Key constraint for the key columns. Data 
rules could be used to fix this type of problem to update the values in the relationship 
between the tables. 
 
(28) Semantic profiling with rules can be used to detect if integrity constraints are 
complied with for data across sources. For example, a rule can check between data tables, 
from a sales territory management system and tables from the human resources system, 
whether only seasoned sales employees, which work at least for 3 years in sales, should 
have been assigned to customer accounts in the platinum customer segment. Data rules 
can be applied to fix violations of integrity constraints.  For the example given, for any 
violation found there could be a default sales employee per sales territory assigned to a 
platinum customer with the necessary experience. During data migration from a source 
system to a target system, a domain analysis for source records after transcoding can 
discover if the transcoding has been configured correctly so that the transcoded values 
indeed are all known by the target system. 
 
(29) The values in a single column could be based on different measurement units and, 
hence, any pair of values from different records could not be meaningfully compared 
without a conversion factor. This type of problem can be detected with a column analysis 
by checking the distribution of values and looking for outliers. Domain analysis could 
also be used to check that values are in a particular range, however, this method only 
works when the ranges for likely different measurements do not overlap. Semantic 
profiling could also be used where common conversion factors (e.g. 1 inch = 25.4mm) 
are included in the rule to highlight groups of values that differ by this factor. To correct 
the data, data rules could be defined to find and replace the outliers.  
 
(30) Depending on the data model, a series of measurement values, taken at different 
places for the same object, may be represented in multiple attributes. Measurement 
discrepancies in this scenario could be detected with semantic profiling methods and 
column analysis methods that operate across different attributes (e.g. column set 
analysis). Similar methods to 29 can be used to correct the problems. 
 
(31 and 32) A problem of different measurement units could exist between tables where 
in one table millimetres is used and in another, inches is used. Any algorithms that intend 
to compare these values could not do so meaningfully unless the conversion is known. 
This problem also extends to the case where the tables are in different systems. In order 
to detect this problem cross-domain analysis can be used to identify if the values are 
within the same ranges but have been scaled by a factor (the measurement factor). Data 
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integration methods, such as data rules, can be used to address the problem; although, if 
one system needs to change an entire column to a different measurement unit, this may 
require significant changes to the system. It is also partly a data governance issue because 
the decision about which system to change and what will be the ‘standard’ measure that 
the company uses, needs to be agreed.  

7 Discussion and Conclusion 
The aim of this research was to provide a review of methods for DQ assessment and 
improvement and identify gaps where there are no existing methods to address particular 
DQ problems. Six gaps were identified overall for two DQ problems: missing data and 
existence of synonyms and homonyms. The first gap relates to the missing data DQ 
problem, where for example a table is missing a row. In this case the whole relation is 
needed to determine if any rows are missing (all rows need to be checked) as well as 
external knowledge of the entity that the missing row(s) should represent. The second 
gap is closely related to the first and requires an understanding of the relationships 
between rows in order to detect problems. The remaining gaps relate to the detection of 
synonyms and homonyms throughout multiple rows, multiple attributes, multiple 
relations and multiple data sources. For homonyms, this problem often occurs when 
inconsistent coding schemes are used for domain values in different databases, such as 
assigning the code ‘2’ and ‘4’ to ‘married’ and ‘single’ attribute value options in one 
database and a different coding scheme in other databases. Clearly, any data that is 
moved between these databases changes its value inadvertently. New solutions are 
required to tackle this interesting, but also difficult, problem.  
 
For many of the DQ problems, despite the fact that some problems can be automatically 
detected and that the correction methods can also be automated, the whole process cannot 
be carried out automatically without human intervention in most cases. For example, in 
finding a common spelling error in many different instances of a word, a human is often 
used to develop the correct regular expression to automatically find and replace all the 
incorrect instances. So between the application of the automated assessment and 
improvement methods, there often exists a manual analysis and configuration step.  
 
One limitation of the classification is that it only considers whether a DQ method 
addresses a DQ problem (for each taxonomy element), and this may not always be 
absolute in the sense that some DQ methods may be more comprehensive than others—
certain DQ methods will have limitations in their use such as execution performance and 
these have not been captured in the final classification. Future work could therefore 
address this issue. Future work could also extend the classification by focussing on semi-
structured data like XML files and unstructured data. Electronic slide decks (from 
presentation software) are becoming increasingly important and an analogous 
classification for these data types is also needed. Lastly, this paper focussed on DQ 
methods for standard relational databases, and a similar classification for the latest 
systems, such as “NoSQL” type databases, will be essential as these become more 
prevalent in organisations of the future. 
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