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Abstract: The findings of an extensive literature survey focusing on bridge structural health monitoring (SHM) deployments are presented.
Conventional, maturing, and emerging technologies are reviewed as well as deployment considerations for new SHM endeavors. The lack of
published calibration studies (and quantification of uncertainty studies) for new sensors is highlighted as a major concern and area for future
research. There are currently very few examples of SHM systems that have clearly provided significant value to the owners of monitored struc-
tures. The results of the literature survey are used to propose a categorization system to better assess the potential outcomes of bridge SHM
deployments. It is shown that SHM studies can be categorized as one (or a combination) of the following: (1) anomaly detection, (2) sensor
deployment studies, (3) model validation, (4) threshold check, and (5) damage detection. The new framework aids engineers specifying mon-
itoring systems to determine what should be measured and why, hence allowing them to better evaluate what value may be delivered to the
relevant stakeholders for the monitoring investments. DOI: 10.1061/(ASCE)BE.1943-5592.0000735. This work is made available under
the terms of the Creative Commons Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/.
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Introduction

“Knowledge,” Richard Feynman lectured in 1963, “is of no real
value if all you can tellme iswhat happened yesterday. It is necessary
to tell what will happen tomorrow” (Feynman 1998).

The structural health monitoring (SHM) revolution is benefiting
from rapid advances in sensor and data-acquisition technologies.
These have made it possible to install extensive monitoring systems
on structures and obtain large amounts of quantitative data. Civil
engineering is often regarded as a conservative industry not receptive
to change and innovation. However, recent technological develop-
ments have given the profession new opportunities to better un-
derstand and assess the behavior of the complex and valuable
structures that serve modern civilization. The 21st-century civil en-
gineer will be a professional not only versed in the mechanics that
underpin the physical behavior of infrastructure but also able to un-
derstand the functioning of the communications and sensing tech-
nologies that constantlymeasure the performance of the infrastructure
[this new reality for the profession was foreshadowed in Maser
(1988)]. The implications for engineering educators that arise from
this perspective are challenging and worthy of further research, but
they are beyond the scope of this paper.

In the future, SHM may become a standard component of any
civil engineering project; however, the civil engineering profession
is still grappling with how best to use the data from SHM systems to

actually provide useful value. Infrastructure design andmanagement
may be transformed if reliable data can be generated from SHM
deployments that can be related back to the actual performance of the
instrumented structure and then acted on by those who are re-
sponsible for managing infrastructure. The SHM systems that have
a clearly defined purpose have more chance of providing value than
those that are specified simply because it is possible to measure
a particular parameter but without a clear understanding of how such
measurements will be used to inform decision making.

Unfortunately, many existing monitoring endeavors do not have
a clearly defined objective. Instead, seemingly sensible parameters are
measured without proper consideration given to how the data will be
interpreted. Data interpretation is then considered at a later date, often
coupled with the discovery that very little useful information can be
obtained. A more rational approach to the design of SHM systems is
needed. The following questions should be answered:
1. What information regarding structural performance is needed?
2. What action would actually be taken if this information were

available?
3. Can this information be obtained from available sensor tech-

nologies and data interpretation techniques?
Therefore, an understanding of the range of capabilities of dif-

ferent SHM systems will be helpful in directing stakeholders to
evaluate what output and, hence, value can actually be delivered.

This paper has two primary aims: (1) to elucidate the current state
of the art of SHM (focusing on thewidely reported examples used on
bridges) and (2) to present a recently developed categorization system
to describe the types of monitoring deployments commonly specified
and aid in the design of improved future systems. Although the focus
of this paper is on bridges, the findings are expected to also be ap-
plicable to many other infrastructure types.

Why Monitor?

Monitoring requires the commitment of financial and human
resources. As such, consideration first needs to be given to the role
and purpose of proposed SHM systems.

Maser (1988) reviews the role of sensors for infrastructure moni-
toring and discusses the implications for the education of the civil
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engineering profession. Hoult et al. (2009a) outlines some recent
deployments of wireless monitoring systems in the United Kingdom
(including bridges) and concludes that great potential exists for these to
become standard tools for themanagement of infrastructure. However,
there has been less focus on thepurposeofmonitoring and the reasons a
new (or existing) piece of infrastructure should have a SHM system
installed. There are few examples where SHM systems have been
reported to actuallydemonstratevalue to theoperatorsof the structure—
there may be justifiable reasons for how the collected data may prove
useful to someone in the future, but the actual benefit to the system
owner is rarely evident. Instead, the primary purpose of the majority of
deployments is simply demonstrating that a particular new sensor
technology can measure a parameter of interest rather than specifically
to provide information that will inform decisionmaking. Hence, before
the rush to monitor, the question should be asked, “Why monitor?”
If a valid reason cannot be found for a SHM system, then the no-
monitoring option should be viewed as acceptable.

SHM or Condition Monitoring?

It isworth pointing out that there is a key distinction between SHMand
condition monitoring, both of which are established terms. Some
consider condition monitoring to include the measurement of param-
eters such as vehicle loading, air pressure, traffic speed, wind speed,
and temperature, which are not directly related to the health of the
structure,whereas SHMis related to the physical condition of the asset.
Conditionmonitoringmay still provide useful data for use in the future;
this is analogous to many atmospheric measurements that are taken at
meteorological stations. Perhaps a more all-encompassing term should
be used to describe all metrology efforts on infrastructure; for example,
structural monitoring (SM) could be used. However, SHM has now
become almost ubiquitous when discussing all measurement efforts in
civil engineering andas suchwill continue tobeused in thepresent paper.

Objectives and Stakeholders

For any monitoring endeavor to be successful, it is vital to clearly
define the objectives of the monitoring at the beginning of the project
(British Tunnelling Society 2011). A number of different facets must
be considered. In established economies, the need to assess the re-
sidual life and performance of aging, existing infrastructure has a high
priority. In rapidly developing economies, where there is a greater
prevalence of new-build projects, monitoring during construction is
especially relevant. Monitoring of new projects also presents the
opportunity for the collection of data sets that have the potential to
provide long-term validation of structural analysis and performance
models. This has the potential to be of great value to design engineers
and code drafters. It is also potentially easier to install a system during
construction than to retrofit one later in the life of the asset.

Additionally, it is important to consider who is intended to
benefit from the data generated by a monitoring system. Anderson
andVesterinen (2006) provide some brief discussion on this topic in
addition to a number of the other considerations mentioned here,
including identifying key stakeholders of SHM projects, namely
(1) authorities, (2) owners, (3) users, (4) researchers, (5) designers,
(6) contractors, and (7) operators.

Asset ownerswill likely obtainmost value froma system that aids in
decision making related to operational or safety matters. Design engi-
neers are more likely to derive benefit from long-term monitoring,
enabling them to evaluate the appropriateness of their current analysis
techniques and design assumptions. This may lead to future improve-
ments in the pursuit of enhanced safety or design efficiencies. Moni-
toring systems can also be installed primarily as research tools to
investigate various phenomena, e.g., structural performance, testing of
new sensor technologies, or refining novel construction techniques.

Camfield and Holmes (1995) review the use of monitoring efforts
(in the context of design and operation of coastal installations):
“Monitoring is a critical test of design tools, such as physical and
numericalmodels, and the use of these tools. Information obtained from
monitoring can be incorporated into design and construction practices
on future projects to reduce costs of operations and maintenance.”

The emphasis on maintenance has particular significance for the
bridge engineering community. Bridges are expensive, critical in-
frastructure assets that connect communities and serve as lifelines
for regions. The SHM systems that allow for better planning of their
maintenance have the potential to be extremely valuable.

Improvements in SHM have the potential to assist with the sus-
tainability imperative by improving the understanding of structural
performance and hence allowing for extension of the life of existing
infrastructure (e.g., Hoult et al. 2009b). Sánchez-Silva and Rosowsky
(2008) argue that the safety standards used in construction in de-
veloped countries are economically unsustainable and should not be
adopted worldwide. Civil engineers should attempt to reduce the
levels of unnecessary overspecification. It is often proposed that
SHM systems can assist with this challenge.

A further potential use for SHMdata is to allow engineers to better
understandhow structures perform fromboth safety and serviceability
perspectives. Understanding performance is different from un-
derstanding design. Design is concerned with making decisions to
ensure that a structure will be adequate according to set criteria. A
good design can be achieved without necessarily fully understanding
structural behavior: conservative assumptions are made during the
designprocess for precisely this reason. Performance can beobserved,
but the loop between design predictions and measured outcomes is
rarely closed. As a result, the opportunity to compare actual perfor-
mance to design predictions and hence optimize or refine designs is
often missed. Table 1 illustrates how many of these SHM objectives
can be generalized. Catbas et al. (2012) provide an in-depth review of
research related to structural identification, i.e., the process of cali-
brating a structuralmodel using experimental data, an important step if
performance is later to be compared with predictions.

Applications of Infrastructure Monitoring

Many SHM systems have been deployed on a variety of geotechnical
structures and other structural components, e.g., deep excavations in
stiff clays (Schwamb et al. 2014); wireless sensor networks in tunnels
(Bennett et al. 2010a, b); optical fiber installations in transport tunnels
(Cheung et al. 2010; Mohamad et al. 2010); geophones for piled
foundations (Gassman and Finno 1999); strain measurement using
optical fibers for piled foundations (Klar et al. 2006; Schwamb 2010);
ultrasonic testing of bridge piles (McCuen et al. 1988) and longer-term
monitoring of bridge abutment piles (Huntley and Valsangkar 2014);
cracking and thermal expansion in unreinforced masonry structures
(DelloRusso et al. 2008); remote sensing of corrosion in bridges
(Agrawal et al. 2009); and the dynamic response of sporting stadia
(Reynolds et al. 2004). A distinguishing feature of the geotechnical
SHMprojects is that the data are primarily used during construction as

Table 1. General Objectives of SHM (Data from Liu et al. 2009)

Objective Description

1 Detect structural damage
2 Estimate remaining service life of a structure
3 Optimize (based on data) the decision making process for

maintenance efforts to avoid costly replacements
4 Aid in the transition of structural design methodology from

current semiprobabilistic load resistance factored design to
future probabilistic performance-based design

© ASCE 04014118-2 J. Bridge Eng.
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opposed to informingwhole-life asset management thinking, which is
often the primary goal of SHMsystems deployed on bridge structures.
The interpretation ofmonitoring data from bridges also presents some
unique challenges. Bridges are often highly sensitive to varying live-
load,wind, and temperature distributions. These loading forms,which
are often not relevant or significant for geotechnical structures, can be
extremely difficult to quantify. Additionally, bridges are often unique,
complex, and indeterminate structures, making the standardization of
any monitoring techniques and interpretation of data challenging.

The next section aims to briefly review some technologies that
are becoming commonplace in SHM deployments. New technolo-
gies are making the collection of vast and diverse data sets more
feasible but simply having the data does not implymore information
is available. This will be demonstrated later in the paper when the
new categorization system is presented.

Existing Data Acquisition and Deployment
Technology

All monitoring systems require the ability to collect, store and process
data. Farrar and Worden (2007) explain that the technical challenges
of monitoring include “the development of methods to optimally
define the number and location of the sensors, identification of the
features sensitive to small damage levels, the ability to discriminate
changes in these features caused by damage from those caused by
changing environmental and/or test conditions, the development of
statistical methods to discriminate features from undamaged and
damaged structures, and performance of comparative studies of
different damage identificationmethods applied to commondatasets.”

Many review papers summarizing the literature concerning a vari-
ety of aspects of mature and emerging SHM technologies and com-
munication systems have been published. These reviews include
analysis of fiber-optic technologies (Casas and Cruz 2003; Bao and
Chen 2011); vibration based monitoring (Brownjohn et al. 2011); and
wireless sensor networks for SHMdeployments (Lynch andLoh2006;
Stajano et al. 2010). Various authors have reviewed the use and ad-
equacy of the range of available sensors and measuring devices for use
on civil infrastructure (e.g., Dunnicliff 1988; Rens et al. 1997; Ko
andNi2005;Yanev 2007;Vaghefi et al. 2012;Wijesinghe et al. 2013).

Conventional and Maturing Technologies

Some of the conventional technologies used in reported SHM studies
include electronic resistance strain gauges (ERSGs) (e.g., Allen and
Rens 2004); vibrating wire strain gauges (VWSGs) (e.g., Abudayyeh
et al. 2010); laser-based deflection measurements (e.g., Fuchs et al.
2004); deflection measurements using the global positioning system
(GPS) (e.g., Brown et al. 1999, 2006); acoustic emission (AE)
technology for detection of prestressing wire breaks (Webb et al.
2014); and use of ground penetrating radar for inspection studies
(Bungey and Millard 1993).

Fiber-optic technologies are a maturing monitoring method for
civil infrastructure. Fuhr et al. (1993) present an early experimental
study investigating the feasibility of using optical fiber sensors for
stress monitoring of concrete. Casas and Cruz (2003) review various
SHM uses of fiber-optic technology for bridge engineering, namely
crack sensors, strain monitoring, temperature monitoring, inclin-
ometers, acceleration sensors, and even corrosion monitoring. The
authors anticipate an increased use of fiber-optic technology for use
on bridge structures but report little about the accuracy and reliability
of the technology itself.

Chen et al. (1994) compare fiber Bragg grating (FBG) mea-
surements of concrete crack widths to those obtained from

micrometers. The comparison was shown to be very good between
the readings from the two measurement devices.

Whereas the use of FBG technologies is well documented, other
approaches such as the use of Brillouin optical time domain re-
flectometry (BOTDR) are still not standard on large-scale infrastructure
projects. This technology is capable of distributed strain measurements
and hence the determination of strain profiles throughout structures. Use
of BOTDR for strain measurement is becoming more widespread in
tunneling works, such as described inMohamad (2008) and Mohamad
et al. (2010). Klar et al. (2006) report the use of BOTDR for use in
monitoring of piled foundations, as do Schwamb et al. (2014) for
monitoring of deep shafts in the London clay deposit.

Emerging Technologies

Many exciting new technologies are being used in SHM activities. It
is beyond the scope of this paper to review all of them; however,
three key emerging technology types are considered by the authors
to have great future potential, namely (1) imaging and computer
vision, (2) microelectromechanical systems (MEMS) sensors, and
(3) bioinspired sensors.

Imaging and Computer Vision
Sensors do not measure damage directly; they provide data from
which it may be concluded that damage has occurred (Farrar and
Worden 2007). Most conventional sensors only provide readings at
point locations on a structure. Although point sensors do not nec-
essarily have to be placed exactly on damaged locations, they must
be placed in sufficient numbers to allow for reasonable interpolation
to occur across the area being monitored; distributed measurement
technologies avoid this problem somewhat. A camera can be used to
record images of a large area of a structure, which can then be
processed to detect features that may correspond to damage. One
such technique uses an infrared camera to look for disrupted heat
flow through a structure (Washer et al. 2010). Particle image
velocimetry (PIV) [also referred to as digital image correlation
(DIC)], which has its origins in fluid mechanics, can be used to track
areas of concrete between different images and deduce the strain
field. White et al. (2003) have shown this to work for the relatively
large strains encountered in geotechnical applications. Structural
applications of computer vision include crackwidth detection (Kabir
2010); locating structural elements such as concrete columns (Zhu
and Brilakis 2010); and detecting the extent of concrete spalling in
earthquake damaged buildings (German et al. 2012). Transportation
applications include detection of road defects and damage using
video footage taken from a vehicle (Koch et al. 2013) and vehicle
height detection (Khorramshahi et al. 2008; Sandidge 2012). Con-
struction applications include tracking resources on construction
sites (Park et al. 2012) andmovements of constructionworkers (Park
and Brilakis 2012).

MEMS Sensors
Various MEMS strain and displacement gauges have now been
produced (e.g., Wojciechowski et al. 2005; Ferri et al. 2011) that
operate in a similar fashion to vibrating wire strain gauges but on
amicroscopic scale. They have the potential to offer extremely small
(and low power) sensors with very high strain resolutions.

Bioinspired Sensor Technologies
Research work is also being undertaken to develop sensors that are
informed by the characteristics of biosystems (e.g., Del Valle 2011).
For example, sensor skins, inspired by the sensory properties of
human skin, aim to provide a fine spatial resolution of sensors across
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the whole surface of a structure. Researchers such as Tata et al.
(2009) are developing a patch antenna that can be used both to sense
strain and to transmit thosemeasurementswirelessly to a data logger.
The small size of such a sensor should allow dense arrays of
measurement devices to be built up.

Deployment Considerations

Wired Sensor Networks
Wired sensor networks use dedicated cabling to provide both power
and data connectivity. These systems are usually very reliable and
are capable of high data collection rates. One example is the Wind
and Structural Health Monitoring System (WASHMS) devised by
the consultant Arup and the Hong Kong Highways Department
(Wong 2004). This system has been installed on a number of long-
span cable-supported bridges in Hong Kong (China), with each
bridge having up to 1,000 individual sensors taking hundreds of
measurements every second. The cost of cabling and installation
time is a significant disadvantage with wired systems, as is the fact
that sensors cannot readily be added or moved to different locations
on the structure if desired. However, a wired systemmay be themost
cost-effective solution for a SHM system intended to have a long
service life, and that is installed during construction.

Wireless Sensor Networks (WSNs)
Alternatively, WSNs have the advantage of reduced hardware costs
owing to the removal of the need for large amounts of cabling.
However, potential problems with radio signal propagation and the
need for regular changes of batteries (for instance) mean that these
systems tend to be less reliable and robust than wired systems (e.g.,
Bennett et al. 2010a). Therefore,WSNsmay be amore cost-effective
solution for short-lived systems where battery life is less of an issue.
Examples might include monitoring of neighboring preexisting
structures during new construction. Like wired systems, WSNs
can also provide real-time measurements (Hoult et al. 2009b) that
techniques such as visual inspections cannot. Lynch and Loh (2006)
provide an excellent state-of-the-art review of WSNs for SHM
applications; they alsohighlight the need for power,which is generally
derived from batteries. Agrawal et al. (2009) review various remote
corrosionmonitoring sensors and systems for use onhighway bridges.
Stajano et al. (2010) outline a set of 19 operational and technical
principles for developing reliable and useful WSNs.

Park et al. (2008) review a number of energy-harvesting or
wireless energy transfer technologies that may eventually overcome
the need for battery replacements. Examples include electromag-
netic vibration energy harvesters (Sazonov et al. 2009), piezoelectric
vibration energy harvesters (Challa et al. 2011), microwave wireless
energy transmission (Mascarenas et al. 2009), harvesting electro-
chemical power from the concrete corrosion process (Ouellette and
Todd 2014), and even the digestion of insect biomass using a mi-
crobial fuel cell (Ieropoulos et al. 2005; Melhuish et al. 2006).

Data Quality Considerations: Calibration, Resolution,
and Accuracy
There is a paucity of published studies that give evidence of the long-
term performance of the aforementioned technologies. Calibration of
sensing equipment is vital for the users of SHM data to have confi-
dence that decisions can be made on the basis of the data. Klar et al.
(2006) compared the stated technical capabilities of VWSGs, FBGs,
andBOTDR (Table 2). Long-term drift of sensors is also an important
consideration, as discussed by Samaras et al. (2012), who discover
drifts of approximately 200 mɛ using electrical resistance strain
gauges over a 6-month period. Matta et al. (2008) report that in the
field their BOTDR analyzer outperformed the expected accuracy of
640mɛ. Bao and Chen (2011) review the developments of Brillouin
scattering–based fiber sensors; according to the outcome of their
review, state-of-the-art Brillouin scattering fiber sensors can achieve:
(1) 100-km sensing range without the need for inline amplification;
(2) improved spatial resolutions (of 2 m) with added erbium doped
fiber amplifiers (EDFAs); (3) temperature resolutions of 1�C (with
EDFAs); and (4) down to 2.5-mm spatial resolutions (however, no
data are presented to support these conclusions). The experiments
reported in Ge (2013) and Ge et al. (2014) demonstrate limitations
on the accuracy of VWSG and fiber-optic strain measurements on
concrete beams tested in the laboratory: differences of up to 30%were
found between readings taken at comparable locations using different
types of sensors.

Studies describing the accuracy, sensitivity, and reliability of
many sensing technologies are remarkably difficult to source (apart
from the notable exceptions previously cited). More research should
be undertaken to demonstrate the accuracy of sensors for use on
SHM projects. Without this, asset owners will not have sufficient
confidence in any monitoring data to allow decisions to be influ-
enced, rendering the entire monitoring activity futile.

Even if the collected data are deemed acceptable for decision-
making purposes, there needs to be a clearly defined use for the
data so that SHM can be justified. Various deployment types do this
to varying degrees, as will be shown in the following section.

New Categorization System for SHM Deployments

This section presents the verification of a new categorization system
to classify SHMdeployments. All deployments studied can fit into at
least one of five categories, regardless of the technologies used in the
deployment.

Many SHM systems are currently capable of capturing a large
quantity and variety of measurements. Novel methods to rapidly
communicate and disseminate the data are being reported (Fraser
et al. 2010). However, if these data are not interpreted and converted
into valuable information, then (by definition) they can be of no use
to the operators of the monitoring system.

Webb and Middleton (2013) initially propose a four-category
categorization system to assist SHM users to better understand the

Table 2. Comparison of Some Strain Measurement Techniques (Adapted from Klar et al. 2006, with Permission from ICE Publishing)

Method VWSG FBG BOTDR

Sensor Vibrating wire FBG Optical fiber
Measurement Discrete Discrete Distributed
Strain resolution (mɛ) 0.5–1 0.1–10 30
Gauge length 50–250 mm ∼2e40 mm (length of grating) ∼1 m
Number of measurements per sensing element 1 Typically 40 sensors per single fiber Up to 20,000
Measurement time Real time Real time 4–25 min
Maximum strain (mɛ) 3,000 ∼10,000 ∼10,000
Feature Established technique High strain accuracy Distributed measurements

© ASCE 04014118-4 J. Bridge Eng.
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purpose of SHM systems. In this paper, the framework is expanded
and a more complete treatment provided (see also Webb 2014). The
five proposed categories (Table 3) of SHMmonitoring are intended
to enable users of monitoring systems to clearly understand the
purpose of any specified SHM system. They explain the types of
information that the data from a deployment may be converted into.
As the category number increases, so does the potential for value and
impact, but the complexity and difficulty of achieving the stated
outcome also increases. Higher-level categories (e.g., Category 4,
threshold check, and Category 5, damage detection) have the po-
tential to yield great value to many stakeholders, but (as is dem-
onstrated later in the paper) successfully achieving these is difficult
and challenging.

The categories can also be considered as a toolkit of available
interpretation techniques, each capable of producing a different type
of information. The categories of SHM deployment are independent
of the technology used to obtain the data. The categories will remain
valid as emerging SHM technologies (including those reviewed
earlier in the paper) mature; technological advances may mean that
higher-level categories become easier to achieve. The categories
will now be examined in turn.

Category 1: Anomaly Detection

Anomaly detection is a common category of SHM studies. Any
system installed to purely identify changes in measured param-
eters could be considered anomaly detection. This category is
a completely model-free approach to SHM investigation.
Examples of SHM deployments with anomaly detection com-
ponents have been reported in Chang and Im (2000); Lynch et al.
(2006); Staquet et al. (2007); Koo et al. (2013); Roberts et al.
(2006, 2012); and Minardo et al. (2012). Chandola et al. (2009)
give a detailed treatise on the fundamentals of detecting anom-
alies in data sets. An anomaly could be caused by a change in the
loading applied to the structure, changes in the monitoring system, or
changes to the structure itself.

Many analysis methods have been proposed and trialled to distin-
guish between anomalies caused by changing environmental con-
ditions, structural defects, and loadings. Examples include the use of
artificialneuralnetworks(Masri et al. 1996; Zapico et al. 2003),wavelet
decomposition (Houet al. 2000), autoregressivemoving average vector
models (Bodeux and Golinval 2001), cointegration (Cross et al. 2011),
and outlier analysis to detect damage in an unsupervised learning
fashion (Worden et al. 2000). However, for anything to be detected, it
must cause changes in measurable parameters that are large enough to
be distinguished from sensor noise; often this does not occur.

Category 2: Sensor Deployment Studies

Category 2 SHM describes studies that aim to demonstrate (or
showcase) new sensor technologies rather than necessarily derive
information about the performance of the structure to which they are
attached (e.g., Brown et al. 1999; Gebremichael et al. 2005; Hoult
et al. 2008; Hoult et al. 2010; Chen 2010; Rodrigues et al. 2010;

Minardo et al. 2012). Many research papers have been written
simply describing the deployment of sensor networkswithout giving
the raison d’être for the SHM system. Some of these studies present
data on quantities such as temperature, strain, and deflections but
offer no explanation (in the papers) of how these data are to be used
or how they could provide value to the asset owner. A high pro-
portion of the SHM installations surveyed by Webb (2014) were
identified to be in this category. A deployment proposed by Webb
and other coauthors was also found to be well described by this
category (Fidler et al. 2013). It is conceded that in the future these
data sets may prove useful, provided that the data remain available
and in an intelligible, future-proofed data format.

Studies aimed at road-testing emerging sensor technologies (e.g.,
fiber-optic strain gauges) alongside traditional approaches (e.g.,
electronic resistance strain gauges) are valuable exercises. They can
assist with the development of, and testing the reliability, robustness,
and calibration of, new and emerging SHM technologies.

Category 3: Model Validation

Model validation is the first category in the categorization system in
which data are actually related back to the performance of the
structure being monitored. This can be described as a model-based
approach, because data interpretation involves comparing mea-
surements with a model that can be used to predict the behavior of
the structure. This could prove valuable to designers or researchers,
as it can assist with the validation of the structural models and
assumptions that they use. Of course, if a set of measurements are
predicted by a model, then the question of whether the right answers
were obtained for the right reasons is not easily answered (e.g.,
Hemez and Farrar 2014). More strictly, it is only model falsification
that can be achieved, because no model can be completely val-
idated with a limited number of observations. For example, Goulet
et al. (2013) show the use of model falsification procedures to detect
leaks in water pipe networks, and Goulet and Smith (2013) and
Goulet et al. (2014) use a similar philosophy to examine the behavior
of some bridge structures.Model validation studies are likely to be of
less benefit to the asset owner because they have already com-
missioned a design that they expectwill lead to a safe and serviceable
structure. Model validation is a common aim of studies presented in
the SHM literature.

Input Loading Validation
During the design process, various assumptions are made about
the magnitude and type of loadings (demands) that will be applied
to structures. Measuring the actual applied loading in situ (e.g.,
O’Connor andEichinger 2007) allows engineers todeterminewhether
design loads accurately represent real conditions or are overly con-
servative (or unconservative). However, many loadings are difficult
to characterize to the extent that they can be applied to a structural
model. These include wind loads, varying temperatures, and the
dynamic effects of moving vehicles. Xu et al. (2010) carry out a
detailed study of the effects of temperature on the TsingMaBridge in
Hong Kong, finding variations to be within the range of values
specified in design codes. However, a different example, presented by
Shoukry et al. (2009), discovered temperature gradients throughout
the depth of a bridge deck that differed significantly from the design
values used. Loading models were obtained for a bridge over the
Yangtze River by Ji et al. (2012).

Output Response Validation
In addition to verifying the loadings applied to a structure, it is also
possible to compare the structure’s responses with those predicted

Table 3. SHM Categories

Category Description

1 Anomaly detection
2 Sensor deployment studies
3 Model validation
4 Threshold check
5 Damage detection
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by analytical models. Frequently, a model is developed to predict
a facet of bridge response, and this is calibrated by comparing
measured responses (e.g., displacement, strain, natural frequency)
with those predicted by the model. Verification of numerical models
(e.g., finite-element analyses) is a common example of this category
(e.g., Brownjohn et al. 1999; Brown et al. 1999, 2006; Gebremichael
et al. 2005; Ni et al. 2008; Chen 2010; Roberts et al. 2012; Xu et al.
2012; Hedegaard et al. 2013; Kurata et al. 2013).

A danger is that the designer may adjust model parameters so that
responses match the measured results, but this does not necessarily
mean that the model has been universally validated (or if the reverse is
true, then the model falsified). Frangopol et al. (2008) highlight the
importance of the quantification of sensor errors for reliability studies.

Load-Rating Analyses
Nowak and Tharmabala (1988) use bridge test data in conjunction
with load-rating models to estimate what they refer to as safety-
reserve. Similar studies were reported by Jáuregui and Barr (2004)
and Staquet et al. (2007).

Category 4: Threshold Check

A threshold check provides a very simple way of interpreting data to
determinewhether there is likely to be a problemwith a structure that
needs addressing. Deployments that can fit into this category include
elements reported in Hoult et al. (2008) (humidity limit for the
Humber Bridge Anchorage); Corbett et al. (2010) (settlement and
vibration thresholds); and Caetano et al. (2010) (verification that
vibration amplitudes meet serviceability criteria).

Thresholds for measurable parameters can be established in two
different ways. First, limits can be imposed on parameters such as
deck deflections, measured strains, or number of wire breaks, which
are derived from predictive models. If a limit is exceeded, the
monitoring system can alert the bridge’s owners to the need to take
immediate action. Second, limits can be imposed in a cumulative
manner, such as with fatigue life of components and manufacturers’
limits on bearing travel. In this case, the rate at which these
thresholds are being approached can also be used to aid the bridge
owners in their maintenance planning.

To be useful, the assigned threshold must have relevance: that is,
reaching or exceeding the thresholdwill result in action or intervention.
Care should be taken in determining the technical basis for selecting any
assigned threshold to avoid excessive numbers of false alarms while
ensuring that sufficient warning of any defects is provided. For exam-
ple,Mao andTodd (2013) report efforts to use probabilistic uncertainty
quantification models to select meaningful thresholds.

Irrespective of how the threshold is derived, if the threshold value
is not meaningful (or does not have a valid technical basis), then the
SHMdeployment is more akin to an anomaly detection (Category 1)
study, i.e., a change from normal behavior is observed that serves as
a warning or alarm that something, somewhere may be amiss.

Category 5: Damage Detection

The aims of damage detection monitoring are to directly determine
some or all of the following damage characteristics: (1) type, (2)
location, (3) extent, and (4) rate. A general framework describing the
interplay between components of a damage prediction process is
described in Farrar and Lieven (2007), who emphasize that any
model that is predictive has an associated error. The decision maker
must manage uncertainty in the collected SHM data but also un-
certainty from the models used to predict the damage.

Young and Lynch (2010) discuss the visual inspection of the
Severn Bridge suspension cables, the results of which were used to

develop the maintenance program involving dehumidification.
Visual inspections are time consuming and intrusive and cannot
provide continuous measurements. They have also been found to be
unreliable and highly dependent on the individual inspectors con-
cerned (e.g., Moore et al. 2001; Lea andMiddleton 2002). However,
it is currently unlikely that bridge managers will cease to rely on
visual inspection as the primary method of structural evaluation,
regardless of the level of sophistication of any installed SHMsystem.

Global Damage Detection
Global damage detection methods aim to provide information
without requiring any prior input from the designer as to what
damage is expected to occur. The vast majority of such systems
reported in the literature are based on modal analysis methods. A
monitoring system is used to measure various properties of the vi-
brational response of a structure. By analyzing any changes to these
properties, it is hoped that it will be possible to determine the lo-
cation and extent of any damage. Despite the popularity of these
techniques, modal parameters are insensitive to anything except the
most extreme damage scenarios. Additionally, the techniques can-
not provide any information about the type of damage occurring.
Farrar and Jauregui (1998a, 1998b) attempted to implement the
technique on an old composite bridge due to be demolished. They
found that cutting through half of the cross section of a bridge girder
resulted in only an 8% change in the first natural frequency of the
bridge. Xia et al. (2006) presented data that demonstrated variations
of a similar magnitude caused by only temperature and humidity
changes. Brownjohn et al. (2011) reviewed vibration-based moni-
toring of 31 civil infrastructure projects (mainly bridges) and
concluded that as far as damage detection was concerned, vibration-
based methods were not suitable (as the stiffness changes inherent in
all but the most catastrophic levels of damage will not be detectable)
but could be useful to study structural behavior.

Specific Damage Scenarios
Amore feasible approach is to target specific damage or deterioration
scenarios. In this case, the monitoring system’s designers must pos-
tulate what sort of damage or deteriorationmight occur. They can then
predict the effects that the damage will have on the structure, with the
aim of identifying measurable parameters that change, allowing the
extent and rate of damage development to be quantified. Postulating
what damage may occur, and where, is likely to be a difficulty in this
type of study and will be highly dependent on the designer’s
knowledge and experience with similar structures. Visual inspections
will often also be needed in conjunction with the detecting technol-
ogies, although these are known to be unreliable (e.g., Lea and
Middleton 2002). Ritdumrongkul and Fujino (2006) use piezoceramic
actuator sensors and a spectral-element model of a simple bolted
aluminum beam to see if damage could be detected in a laboratory
environment. Bolts were arbitrarily loosened so that damage could be
simulated. The simulated damage was then detected by the sensors.
The requirement to believe the structural model was necessary for the
success of this simple study. Arguably, this is a fusion of model
validation and damage detection. Hoult et al. (2010) describe a mon-
itoring installation consisting of displacement transducers arranged to
measure crack widths, in direct response to a concern that cracks in the
structure may be increasing in size.

Application of the Categories

Table 4 presents examples of SHM deployments from the literature
that have been classified using the new framework, and Fig. 1 shows
the number of examples of each category that were identified.
Examples of each category can be found in the literature and,
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although some studies fit into more than one category, no examples
were found that could not be classified. Table 5 summarizes the value
and complexity of each category. In addition to requiring a clearly
defined objective for any monitoring activities, and using one or
more of the data interpretation categories to assist with the selection
of suitable sensors, there are a number of other challenges involved
with the successful implementation of SHM systems. These are
discussed in the next section.

Implementing SHM

For a monitoring system to be considered successful, it must be able
to produce value to its stakeholders. Currently, guidance for
designers of SHM systems is scarce, leading to many examples of
poorly considered systems providing little or no real benefit. A
number of important considerations have been discussed in this
review. First, all monitoring systems should have a clearly defined
objective; this is often missing in the examples considered. Once an
objective has been established, the information required to realize it
can be determined. The SHM categorization system presented here
describes the different ways in which raw sensor data can be
transformed into information. The information derived (which
varies depending on the SHM category) can then be used by the
system’s operators to aid in decision making and influence future
design decisions or the actions to be taken, either during construction
or during the operation of the structure. This process is represented in
Fig. 2. Intervention decisions are also subject to cost and resource
considerations. However, availability of relevant and reliable data
will assist in making the case for cost and resource expenditure, e.g.,
for maintenance activities.

It should be noted that the ability to categorize a proposed SHM
system does not guarantee a successful outcome; it is only one part of
the process depicted in Fig. 2. It is also vital to consider how any in-
formation obtained from themonitoring activitieswill be used to inform
actions and hencemake progress toward fulfilling the original objective
of the SHM system. Taking measurements from various locations on
a structure and then transforming thesedata into a reliable representation
of performance is a difficult task. It is this task that makes the more
complex SHMcategories very challenging indeed. Simply recognizing
the category of SHMthat is needed to fulfill the needs of the asset owner
does not, in and of itself, mean that value can be successfully delivered.
Understanding the requirements of each category is the starting point,T
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Fig. 1. Classification of the existing monitoring installations pre-
sented in Table 4 (note that some installations fit into more than one
category)
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and then the technical and implementation challenges that need to be
solved can be realistically assessed.

Summary

1. Five categories of SHM deployments have been defined,
namely (1) anomaly detection, (2) sensor deployment studies,
(3) model validation, (4) threshold check, and (5) damage
detection. Each category produces a different type of infor-
mation and has different uses and value. This categorization
scheme is intended to aid in describing the SHM literature, as
well as clearly understanding how monitoring data can be
used. It can also be considered as a toolkit of available
interpretation techniques to aid those planning SHM systems.

2. It is observed that SHM is rapidly becoming a standard feature of
major, large-scale, civil engineering projects, attracting the at-
tention ofmany researchers and practitioners. However, there are
currently few examples of SHM systems that have clearly
demonstrated value to their operators, and especially to the
owners of the bridges they are installed on. Potential objectives
for monitoring systems were discussed. This is an important, and
often neglected, consideration during the design of any moni-
toring system, without which very little value will be obtained.

3. Conventional sensors, e.g., strain gauges, accelerometers, and
acoustic emission devices, have been reviewed alongside
maturing and emerging technologies, e.g., fiber-optic cables
and computer vision techniques. Published studies describing
the calibration, accuracy, sensitivity, and reliability of sensing
technologies are remarkably hard to find (with some notable
exceptions). Further research should be undertaken to dem-
onstrate the accuracy of sensors for use on bridge structures.
Therewill always be uncertainty in data obtained from sensors,

and also in models used to predict structural behavior. This
uncertainty can degrade confidence in information from mon-
itoring systems. Where uncertainties cannot be eradicated by
improvements in measurement science or analysis techniques,
they need to be quantified to give asset owners the confidence
to take decisions on the basis of collected data. Improvements
in sensor technologies, including those that have been
reviewed (BOTDR, imaging and computer vision, MEMS,
and bioinspired sensor technologies), may make some higher-
level categories in the categorization system more achievable,
but they will not invalidate the categorization system itself.

4. Deployment strategies (wired versus wireless) for sensors
have been reviewed, and particular attention has been paid
to the emerging use of WSNs. Although these developments
are promising, there are still limitations with reliability, ro-
bustness, and power supplies which must be addressed in
future research and commercialization efforts.

5. Many SHM systems have been installed and may be criticized
for not having clearly reported aims. It is a duty of authors to
report back on the operation, use, and success (or failure) of
installed systems in future years so that the value proposition
for SHM may be better established.
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Fig. 2. SHM implementation process

Table 5. Summary of the New Categorization System

Category Description Complexity Value

1 Anomaly detection Low complexity Of limited value to asset owner but may initiate further investigations on the
monitored asset (no immediate value)

2 Sensor deployment studies Low complexity Valuable for evaluating capabilities of new sensors, so may in the future lead to
improvements in technical capability (no immediate value to asset owner)

3 Model validation Moderate complexity Useful for bridge designers but of limited value to the asset owner, as the bridge has
already been constructed; may lead to improvements in future bridge designs or
provide some confidence in current bridge performance (little immediate value)

4 Threshold check Moderate complexity Very useful for asset managers as there is a direct link to a performance criterion;
moderately difficult, as establishing the performance criterion can be very
challenging (immediate value)

5 Damage detection High complexity Extremely useful, but also extremely difficult to achieve (immediate value)
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