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Abstract

This paper considers a multivariate t version of the Gaussian dynamic
conditional correlation (DCC) model proposed by Engle (2002), and sug-
gests the use of devolatized returns computed as returns standardized by
realized volatilities rather than by GARCH type volatility estimates. The
t-DCC estimation procedure is applied to a portfolio of daily returns on
currency futures, government bonds and equity index futures. The results
strongly reject the normal-DCC model in favour of a t-DCC speci�cation.
The t-DCC model also passes a number of VaR diagnostic tests over an
evaluation sample. The estimation results suggest a general trend towards
a lower level of return volatility, accompanied by a rising trend in condi-
tional cross correlations in most markets; possibly re�ecting the advent of
euro in 1999 and increased interdependence of �nancial markets.
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1 Introduction

Modelling of conditional volatilities and correlations across asset returns is an
integral part of portfolio decision making and risk management. In risk man-
agement the value at risk (VaR) of a given portfolio can be computed using
univariate volatility models, but a multivariate model is needed for portfolio
decisions. Even in risk management the use of a multivariate model would be
desirable when a number of alternative portfolios of the same universe of m
assets are under consideration. By using the same multivariate volatility model
marginal contributions of di¤erent assets towards the overall portfolio risk can
be computed in a consistent manner. Multivariate volatility models are also
needed for determination of hedge ratios and leverage factors.
The literature on multivariate volatility modelling is large and expanding.

Bauwens, Laurent, and Rombouts (2006) provide a recent review. A general
class of such models is the multivariate generalized autoregressive conditional
heteroscedastic (MGARCH) speci�cation. (Engle and Kroner (1995)). How-
ever, the number of unknown parameters of the unrestricted MGARCH model
rises exponentially with m and its estimation will not be possible even for a
modest number of assets. The diagonal-VEC version of the MGARCH model is
more parsimonious, but still contains too many parameters in most applications.
To deal with the curse of dimensionality the dynamic conditional correlations
(DCC) model is proposed by Engle (2002) which generalizes an earlier speci-
�cation by Bollerslev (1990) by allowing for time variations in the correlation
matrix. This is achieved parsimoniously by separating the speci�cation of the
conditional volatilities from that of the conditional correlations. The latter are
then modelled in terms of a small number of unknown parameters, which avoids
the curse of the dimensionality. With Gaussian standardized innovations Engle
(2002) shows that the log-likelihood function of the DCC model can be max-
imized using a two step procedure. In the �rst step, m univariate GARCH
models are estimated separately. In the second step using standardized residu-
als, computed from the estimated volatilities from the �rst stage, the parameters
of the conditional correlations are then estimated. The two step procedure can
then be iterated if desired for full maximum likelihood estimation.
DCC is an attractive estimation procedure which is reasonably �exible in

modeling individual volatilities and can be applied to portfolios with a large
number of assets. However, in most applications in �nance the Gaussian as-
sumption that underlies the two step procedure is likely to be violated. To
capture the fat-tailed nature of the distribution of asset returns, it is more
appropriate if the DCC model is combined with a multivariate t distribution,
particularly for risk analysis where the tail properties of return distributions are
of primary concern. But Engle�s two-step procedure will no longer be applicable
to such a t-DCC speci�cation and a simultaneous approach to the estimation
of the parameters of the model, including the degree-of-freedom parameter of
the multivariate t distribution would be needed. This paper develops such an
estimation procedure and proposes the use of devolatized returns computed as
returns standardized by realized volatilities rather than by GARCH type volatil-
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ity estimates. Devolatized returns are likely to be approximately Gaussian al-
though the same can not be said about the standardized returns. (Andersen,
Bollerslev, Diebold, and Ebens (2001), and Andersen, Bollerslev, Diebold and
Labys (2001)). In the absence of intradaily observations the paper proposes an
approximate measure based on contemporaneous daily returns and their lagged
values.
The t-DCC estimation procedure is applied to a portfolio composed of six

currency futures, four 10 year government bonds and �ve equity index futures
over the period 02 January 1995 to 31 December 2006, split into an estimation
sample (1995 to 2004) and an evaluation sample (2005 to 2006). The results
strongly reject the normal-DCC model in favour of a t-DCC speci�cation. The
t-DCC model also passes a number of VaR diagnostic tests over the evaluation
sample.
The estimates over the full sample show a number of interesting patterns:

there has been a general trend towards a lower level of volatility in all markets,
with currency futures leading the way. In contrast, conditional correlations
across currencies and equity returns have been rising. Only the conditional
correlations of bonds and equities seem to have been declining. Some of these
patterns might be re�ecting the advent of euro and the increased interdepen-
dence of �nancial markets particularly over the past decade. A detailed analysis
of these trends and their possible explanations is beyond the scope of the present
paper.
The plan of the paper is follows. Section 2 introduces the t-DCC model and

discussed the devolatized returns and the rational behind their construction.
Section 3 considers recursive relations for real time analysis. The maximum
likelihood estimation of the t -DCC model is set out in Section 4, followed by a
review of diagnostics in Section 5. The empirical application to return futures
is discussed in Section 6, followed by some concluding remarks in Section 7.

2 Modelling Conditional Correlation Matrix of
Asset Returns

Let rt be an m � 1 vector of asset returns at close day t assumed to have a
conditional multivariate t distribution with means, �t�1, and the non-singular
variance-covariance matrix �t�1, and vt�1 > 2 degrees of freedom. Here we are
not concerned with how mean returns are predicted and take �t�1 as given.

1

For speci�cation of �t�1 we follow Bollerslev (1990) and Engle (2002) consider
the decomposition

�t�1 = Dt�1Rt�1Dt�1; (1)

1Although, the estimation of �t�1 and �t�1 are inter-related, in practice mean returns
are predicted by least squares techniques (such as recursive estimation or recursive modelling)
which do not take account of the conditional volatility. This might involve some loss in e¢ -
ciency of estimating �t�1, but considerably simpli�es the estimation of the return distribution
needed in portfolio decisions and risk management.
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where

Dt�1 =

0BBB@
�1;t�1

�2;t�1 0

0
. . .

�m;t�1

1CCCA ;

Rt�1 =

0BBBBBB@

1 �12;t�1 �13;t�1 � � � �1m;t�1
�21;t�1 1 �23;t�1 � � � �2m;t�1
...

. . .
...

... �m�1;m;t�1
�m1;t�1 � � � � � � �m;m�1;t�1 1

1CCCCCCA ;

Rt�1 = (�ij;t�1) = (�ji;t�1) is the symmetric m �m correlation matrix , and
Dt�1 is the m � m diagonal matrix with �i;t�1; i = 1; 2; : : : ;m denoting the
conditional volatility of the i-th asset return. More speci�cally

�2i;t�1 = V (rit j 
t�1) ;

and �ij;t�1 are conditional pair-wise return correlations de�ned by

�ij;t�1 =
Cov (rit; rjt j 
t�1)

�i;t�1�j;t�1
;

where 
t�1 is the information set available at close of day t � 1. Clearly,
�ij;t�1 = 1; for i = j.
Bollerslev (1990) considers (1) with a constant correlation matrixRt�1 = R.

Engle (2002) allows for Rt�1 to be time-varying and proposes a class of multi-
variate GARCH models labeled as dynamic conditional correlation (DCC) mod-
els. An alternative approach would be to use the conditionally heteroskedastic
factor model discussed, for example, in Sentana (2000) where the vector of
unobserved common factors are assumed to be conditionally heteroskedastic.
Parsimony is achieved by assuming that the number of the common factors is
much less than the number of assets under considerations.
The decomposition of �t�1 in (1) allows separate speci�cation of the condi-

tional volatilities and conditional cross-asset returns correlations. For example,
one can utilize the GARCH (1,1) model for �2i;t�1, namely

V (rit j 
t�1) = �2i;t�1 = ��2i (1� �1i � �2i) + �1i�2i;t�2 + �2ir2i;t�1; (2)

where ��2i is the unconditional variance of the i-th asset return. Under the
restriction �1i+ �2i = 1, the unconditional variance does not exist and we have
the integrated GARCH (IGARCH) model used extensively in the professional
�nancial community, which is mathematically equivalent to the �exponential
smoother�applied to the r2it�s

2

�2i;t�1 (�i) = (1� �i)
1X
s=1

�s�1i r2i;t�s 0 < �i < 1; (3)

2See, for example, Litterman and Winkelmann (1998).
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or written recursively

�2i;t�1 (�i) = �i�
2
i;t�2 + (1� �i) r2i;t�1: (4)

For cross-asset correlations Engle proposes the use of the following exponen-
tial smoother applied to the �standardized returns�

�̂ij;t�1 (�) =

P1
s=1 �

s�1zi;t�szj;t�sqP1
s=1 �

s�1z2i;t�s

qP1
s=1 �

s�1z2j;t�s

; (5)

where the standardized returns are de�ned by

zit =
rit

�i;t�1 (�i)
: (6)

For estimation of the unknown parameters, �1; �2; ::::; �m; and �, Engle
(2002) proposes a two-step procedure whereby in the �rst step individual GARCH(1,1)
models are �tted to the m asset returns separately, and then the coe¢ cient of
the conditional correlations, �, is estimated by the Maximum Likelihood method
assuming that asset returns are conditionally Gaussian. This procedure has two
main drawbacks. First, the Gaussianity assumption does not hold for daily re-
turns and its use can under-estimate the portfolio risk. Second, the two-stage
approach is likely to be ine¢ cient even under Gaussianity.

2.1 Pair-wise correlations based on realized volatilities

In this paper we consider an alternative formulation of �ij;t�1 that makes use of
realized volatilities, or their approximations based on daily observations when
realized volatility measures are not available. In a series of papers Andersen,
Bollerslev and Diebold show that daily returns on foreign exchange and stock
returns standardized by realized volatility are approximately Gaussian. See,
for example, Andersen, Bollerslev, Diebold, and Ebens (2001), and Andersen,
Bollerslev, Diebold and Labys (2001). The transformation of returns to Gaus-
sianity is important since as recently shown by Embrechts et al. (2003), the use
of correlation as a measure of dependence can be misdealing in the case of (con-
ditionally) non-Gaussian returns. In contrast, estimation of correlations based
on devolatized returns that are nearly Gaussian is likely to be more generally
meaningful. Denote the realized volatility of ith return in day t by �realizedit and
standardize the returns by the realized volatilities to obtain

~rit =
rit

�realizedit

: (7)

To avoid confusions we refer to ~rit as the �devolatized returns�, and refer to
zit de�ned by (6) as the standardized returns. The conditional pair-wise return
correlations based on ~rit are now given by
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~�ij;t�1 (�) =

P1
s=1 �

s�1~ri;t�s~rj;t�sqP1
s=1 �

s�1~r2i;t�s

qP1
s=1 �

s�1~r2j;t�s

; (8)

where �1 < ~�ij;t�1 (�) < 1 for all values of j�j < 1.
As compared to zit, the use of ~rit is more data intensive and requires in-

tradaily observations. Although, intradaily observations are becoming increas-
ingly available across a large number of assets, it would still be desirable to work
with a version of ~rit that does not require intradaily observations, but is nev-
ertheless capable of rendering the devolatized returns approximately Gaussian.
One of the main reasons for the non-Gaussian behavior daily returns is pres-
ence of jumps in the return process as documented for a number of markets in
the literature (see, for example, Barndor¤-Nielsen and Shephard (2002) ). The
standardized return, zit, used by Engle does not deal with such jumps, since
the jump process that a¤ects the numerator of zit in day t does not enter the
denominator of zit which is based on past returns and exclude the current re-
turn, rt. The problem is accentuated due to the facts that jumps are typically
independently distributed over time. The use of realized volatility ensures that
the numerator and the denominator of the devolatized returns, ~rit, are both
a¤ected by the same jumps in day t.
In the absence of intradaily observations the following simple estimate of �it

based on daily returns, inclusive of the contemporaneous value of rit, seem to
work well in practice

~�2it(p) =

Pp�1
s=0 r

2
i;t�s

p
: (9)

The lag-order, p; needs to chosen carefully. We have found that for daily returns
a value of p = 20 tends to render the devolatized returns, ~rit t rit=~�it(p),
nearly Gaussian, with approximately unit variances, for all asset classes foreign
exchange, equities, bonds or commodities.3 Note that ~�2it(p) is not the same of
the rolling historical estimate of �it de�ned by

�̂2it(p) =

Pp
s=1 r

2
i;t�s

p
:

Speci�cally

~�2it(p)� �̂2it(p) =
r2it � r2i;t�p

p
:

It is the inclusion of the current squared returns, r2it, in the estimation of ~�
2
it

that seems to be critical in transformation of rit (which is non-Gaussian) into
~rit which seems to be approximately Gaussian.

3For some empirical evidence in support of this claim see Section 6.
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3 Real Time Risk Analysis and Updates

In �nancial analysis estimation and evaluation are in general recursive and the
unknown parameters need to be updated over time.4 The frequency by which
parameters are updated depends on the processing costs and the expected ben-
e�t from the updates. When processing costs are negligible parameter updates
are carried out on the arrival of new data or shortly thereafter. For daily ob-
servations (the focus of the present paper) weekly or even monthly updates are
recommended. Daily updates can be quite time consuming for large portfolios,
and the expected bene�t of the more frequent (daily) updates unclear. For
model evaluation, however, a daily frequency seems desirable. Clearly, model
evaluation need not be carried out at the same frequency with which para-
meters are updated. In analysis of market risk where daily or even intradaily
observations are available evaluation is typically carried out on a daily basis.
The implementation of the real time analysis is very much facilitated using

recursive formulae in the estimation and the evaluation process. For computa-
tional of �ij;t�1, given by (5) and (8), as noted by Engle (2002) we have

~�ij;t�1 (�) =
qij;t�1p

qii;t�1qjj;t�1
(10)

where
qij;t�1 = �qij;t�2 + (1� �) ~ri;t�1~rj;t�1: (11)

The recursive expression for �̂ij;t�1 (�) is identical except that instead of de-
volatized returns the standardized returns, zit, given by (6) are used.
The above models for �ij;t�1 are non-mean reverting. A more general mean-

reverting speci�cation is given by

qij;t�1 = ��ij(1� �1 � �2) + �1qij;t�2 + �2~ri;t�1~rj;t�1; (12)

where ��ij is the unconditional correlation of rit and rjt and �1 + �2 < 1. One
would expect �1 + �2 to be close to unity. The non-mean reverting case can be
obtained as a special case by setting �1 + �2 = 1. In practice it is impossible
to be sure if �1 + �2 < 1 or not. The unconditional correlations, ��ij , can be
estimated using an expanding window. In the empirical applications we shall
consider the mean reverting as well as the non-mean reverting speci�cations,
and experiment with the two speci�cations of the conditional correlations that
are based on standardized and devolatized returns.

3.1 Initialization, Estimation and Evaluation Samples

Suppose daily observations are available on m daily returns in the m� 1 vector
rt over the period t = 1; 2; :::; T; T + 1; :::; T +N . The �rst T0 observations are
used for computation of (9), the initialization of the recursions (12), and the

4A general discussion of real time econometric analysis is provided in Pesaran and Tim-
mermann (2005).
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estimation of sample variances and correlations, namely ��2i and ��ij , used in (2)
and (12), respectively. Let s denote the starting point of the most recent sample
of observations to be used in estimation. Clearly, we must have T > s > T0 > p.
The size of the estimation window will then be given by Te = T � s + 1. The
remainingN observations can then be used for evaluation purposes. More specif-
ically, the initialization sample will be given by S0 = frt, t = 1; 2; :::; T0g, the
estimation sample by Se = frt, t = s; s+ 1; :::; Tg, and the evaluation sample,
Seval = frt, t = T + 1; T + 2; :::; T +Ng : This decomposition allows us to vary
the size of the estimation window (Te = T � s+1) by moving the index s along
the time axis in order to accommodate estimation of the unknown parame-
ters using expanding or rolling observation windows, with di¤erent estimation
update frequencies. For example, for an expanding estimation window we set
s = T0 + 1. For a rolling window of size W we need to set s = T + 1 �W .
The whole estimation process can then be rolled into the future with an update
frequency of h by carrying the estimations at T + h; T + 2h, ..., using either
expanding or rolling estimation samples from t = s. Note that model (risk)
evaluation can be carried out using observations t = T +1; T +2; :::, irrespective
of the update frequency parameter h.

3.2 Mean Reverting Conditional Correlations

In the mean reverting case we also need the estimates of the unconditional
volatilities and the correlation coe¢ cients. These can be estimated by

��2i;t =

Pt
�=1 r

2
i�

t
; (13)

��ij;t =

Pt
�=1 ri�rj�qPt

�=1 r
2
i�

qPt
�=1 r

2
j�

: (14)

The index t refers to the end of the available estimation sample which in real
time will be recursively rolling or expanding, namely t = T; T + h; T + 2h; :::

4 Maximum Likelihood Estimation of the t-DCC
Model

In its most general formulation (the non-mean reverting speci�cations given by
(2) and (12)) the DCC(1,1) model contains 2m+3 unknown parameters; 2m co-
e¢ cients �1 = (�11; �12; : : : ; �1m)0 and �2 = (�21; �22; : : : ; �2m)0 that enter the
individual asset returns volatilities, the 2 coe¢ cients �1 and �2 that enter the
conditional correlations, and the degrees of freedom of the multivariate t distri-
bution, v. The parameters ��2i and ��ij in (2) and (12) refer to the unconditional
volatilities and return correlations and can be estimated using the estimation
sample or the estimation plus initialization sample. See (13) and (14) . In
the non-mean reverting case these intercept coe¢ cients disappear, but for the
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initialization of the recursive relations (2) and (12) it is still advisable to use
unconditional estimates of the correlation matrix and asset returns volatilities.
Denote the unknown coe¢ cients by

� = (�1;�2; �1; �2; v)
0:

Then based on a sample of observations on returns, r1; r2; :::; rt, available at
time t, the time t log-likelihood function based on the decomposition (1) is
given by

lt (�) =
tX

�=s

f� (�) ; (15)

where s < t is the start date of the estimation window (see above). Under t-DCC
speci�cation f� (�) refers to the density of the multivariate distribution with v
degrees of freedom which can be written in terms of the �t�1 = Dt�1Rt�1Dt�1
as5

f� (�) = �m
2
ln (�)� 1

2
ln j R��1 (�) j � ln j D��1(�1;�2) j

+ ln

�
�

�
m+ v

2

�
=�
�v
2

��
� m
2
ln (v � 2) (16)

�
�
m+ v

2

�
ln

"
1 +

e0�D
�1
��1 (�1;�2)R

�1
��1 (�)D

�1
��1 (�1;�2) e�

v � 2

#
;

where
e� = r� � ���1;

and

ln j D��1(�1;�2) j=
mX
i=1

ln [�i;��1 (�1i; �2i)] : (17)

It is worth noting that under Engle�s speci�cation Rt�1 depends on �1 and
�2 as well as on �1 and �2. Under the alternative speci�cation advanced here
(based on devolatized returns)Rt�1 does not depend on �1 and �2, but depends
on �1 and �2, and p, the lag order used in the devolatization process.
The ML estimate of � based on the sample observations, rs; r2; :::; rT , can

now be computed by maximization of lt (�) with respect to �; which we denote
by �̂t. More speci�cally

�̂t = Argmax
�
flt (�)g , for t = T; T + h; T + 2h; ::::; T +N; (18)

where h is the (estimation) update frequency, and as before N refers to the
length of the evaluation sample. The standard errors of the ML estimates are

5Typically the multivariate t density is written in terms of a scale matrix. But assuming
v > 2 ensures that �t�1 exists and therefore the scale matrix of the multivariate t distribution
can be written in terms of �t�1, which is more convenient for the analysis of multivariate
volatility models. See, for example, Bauwens and Laurent (2005).
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computed using the asymptotic formulae6

dCov(�̂t) = ( tX
�=s

�
�@2f� (�)
@�@�0

�
�=�̂t

)�1
:

In comparison with general speci�cations of multivariate GARCH model,
the model set out in this paper is quite parsimonious. The number of unknown
coe¢ cients of the general MGARCH model rises as a quadratic function of m,
while the parameters of the DCC model rises linearly with m. Nevertheless, in
practice the simultaneous estimation of all the parameters of the DCC model
could be problematic, namely can encounter convergence problems, or could lead
to a local maxima of the likelihood function. When the returns are conditionally
Gaussian one could simplify (at the expense of some loss of estimation e¢ ciency)
the computations by adopting Engle�s two-stage estimation procedure. But for
our preferred distributional assumption the use of such a two-stage procedure
does not seem possible and can lead to contradictions. For example, estimation
of separate t � GARCH(1; 1) models for individual asset returns can lead to
di¤erent estimates of v, while the multi-variate t distribution requires v to be
the same across all assets.7

5 Simple Diagnostic Tests of the t-DCC Model

Consider a portfolio based on the m assets with the return vector rt using the
m � 1 vector of pre-determined weights, wt�1. The return on this portfolio is
given by

�t = w
0
t�1rt: (19)

Suppose that we are interested in computing the capital Value at Risk (VaR)
of this portfolio expected at the close of business on day t� 1 with probability
1� �, which we denote by V aR(wt�1;�). For this purpose we require that

Pr
�
w0
t�1rt < �V aR(wt�1;�) j
t�1

�
� �:

Under our assumptions, conditional on 
t�1, w0
t�1rt has a Student t distribution

with mean w0
t�1�t�1, the variance w

0
t�1�t�1wt�1; and the degrees of freedom

v. Hence

zt =

r
v

v � 2

 
w0
t�1rt �w0

t�1�t�1p
w0
t�1�t�1wt�1

!
;

conditional on 
t�1 will also have a t distribution with v degrees of freedom.
It is easily veri�ed that E(ztj
t�1) = 0, and V (ztj
t�1) = v=(v � 2): Denoting

6An analytical expression for the information matrix for the multivariate t-GARCH model
is provided by Florentini, Sentana, and Calzolari (2003). But in the applications considered
in this paper we did not encounter any problems using numerical derivatives to compute the
information matrix.

7Marginal distributions associated with a multi-variate t-distribution with v degrees of
freedom are also t-distributed with the same degrees of freedom.
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the cumulative distribution function of a Student t with v degrees of freedom
by Fv(z), V aR(wt�1;�) will be given as the solution to

Fv

0@�V aR(wt�1;�)�w0
t�1�t�1q

v�2
v

�
w0
t�1�t�1wt�1

�
1A � �:

But since Fv(z) is a continuous and monotonic function of z we have

�V aR(wt�1;�)�w0
t�1�t�1q

v�2
v

�
w0
t�1�t�1wt�1

� = F�1v (�) = �c�;

where c� is the �% critical value of a Student t distribution with v degrees of
freedom. Therefore,

V aR(wt�1;�)=~c�

q�
w0
t�1�t�1wt�1

�
�w0

t�1�t�1; (20)

where ~c� = c�
q

v�2
v .

Following Christo¤ersen (1998) and Engle and Manganelli (2004), a simple
test of the validity of t-DCC model can be computed recursively using the VaR
indicators

dt = I
�
w0
t�1rt + V aR(wt�1;�)

�
(21)

where I(A) is an indicator function which is equal to unity if A > 0 and zero
otherwise. These indicator statistics can be computed in-sample or preferably
can be based on recursive out-of-sample one-step ahead forecast of �t�1 and
�t�1, for a given (pre-determined set of portfolio weights, wt�1). In such an
out�of-sample exercise the parameters of the mean returns and the volatility
variables (� and �, respectively) could be either kept �xed at the start of the
evaluation sample or changed with an update frequency of h periods ( for ex-
ample with h = 5 for weekly updates, or h = 20 for monthly updates). For the
evaluation sample, Seval = frt, t = T + 1; T + 2; :::; T +Ng ; the mean hit rate
is given by

�̂N =
1

N

T+NX
t=T+1

dt: (22)

Under the t-DCC speci�cation, �̂N will have mean 1 � � and variance �(1 �
�)=N . The standardized statistic,

z� =

p
N [�̂N � (1� �)]p

�(1� �)
; (23)

will have a standard normal distribution for a su¢ ciently large evaluation sample
size, N . This result holds irrespective of whether the unknown parameters are
estimated recursively or �xed at the start of the evaluation sample. In the
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case of the latter the validity of the test procedure requires that N=T ! 0 as
(N;T )!1. For a proof see Pesaran and Za¤aroni (2007).
The z� statistic provides evidence on the performance of �t�1 and �t�1 in

an average (unconditional) sense. (Lopez (1999)). An alternative conditional
evaluation procedure, proposed by Berkowitz (2001), can be based on probabil-
ity integral transforms8

Ût = Fv

0@ w0
t�1rt �w0

t�1�̂t�1q
v�2
v w

0
t�1�̂t�1wt�1

1A ; t = T + 1; T + 2; :::; T +N: (24)

Under the null hypothesis of correct speci�cation of the t-DCC model, the prob-
ability transform estimates, Ût; are serially uncorrelated and uniformly distrib-
uted over the range (0; 1). Both of these properties can be readily tested. The
serial correlation property of Ût can be tested by Lagrange multiplier tests using
OLS regressions of Zt on an intercept and the lagged values Ût�1; Ût�2; ::::; Ût�s.
The maximum lag length, s, can be selected by the application of the AIC crite-
ria, for example. The uniformity of the distribution of Ût over t can be tested us-
ing the Kolmogorov-Smirnov statistic de�ned by, KSN = supx

��FÛ (x)� U(x)�� ;
where FÛ (x) is the empirical cumulative distribution function (CDF) of the Ût,
for t = T +1; T +2; :::; T +N , and U(x) = x is the CDF of iid U [0; 1]. Large val-
ues of the Kolmogorov-Smirnov statistic, KSN , indicate that the sample CDF
is not similar to the hypothesized uniform CDF.9

6 Volatilities and Conditional Correlations in Fu-
tures Markets

We estimated alternative versions of the t-DCC model for a portfolio composed
of returns on six currency futures: Japanese yen, euro, British pound, Swiss
franc, Canadian and Australian dollars, denoted by JY;EU;BP;CH;CD;AD;
four government bond futures: US ten year Treasury Note, 10 year govern-
ment bonds issued by Germany, UK and Japan, denoted by TNote;Bund;Gilt;
and JGB; and �ve equity index futures in US, UK: Germany, France and Japan,
namely S&P 500, FTSE, DAX, CAC and Nikkei, denoted by SP , FTSE;DAX;CAC,
and, NK. The daily futures prices are obtained from Datastream and cover the
twelve years from 02-Jan-95 to 31-Dec-2006.
Table 1 provides summary statistics for the daily returns (rit, in percent) and

the devolatized daily returns ~rit = rit=~�it(p), where in the absence of intradaily
observations ~�2it(p) is de�ned by (9), with p = 20. The choice of p = 20 was
guided by some experimentation with pre-1995 returns with the aim of trans-
forming rit into an approximately Gaussian process. A choice of p well above

8See also Christo¤ersen (1998) for a related test that applied to the VaR indicators, dt,
de�ned by (21).

9For details of the Kolmogorov-Smirnov test and its critical values see, for example, Massey
(1951), and Neave and Worthington (1992, pp.89-93).
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20 does now allow the (possible) jumps in rit to become adequately re�ected in
~�it(p), and a value of p well below 20 transforms rit to an indicator looking func-
tion. In the extreme case where p = 1 we have ~rit = 1, if rit > 0; and ~rit = �1,
if rit < 0, and ~rit = 0, if rit = 0. We did not experiment with other values of p
for the sample under consideration and set p = 20 for all the 15 assets. For the
non-devolatized returns the results are as to be expected from previous studies.
The future returns seem to be symmetrically distributed with kurtosis in some
cases well in excess of 3 (the value for the Gaussian distribution). The excess
kurtosis is particularly large for equities, JY , AD, and JGB. In contrast, the
devolatized returns do not show any excess kurtosis. For example, for equities
the excess kurtosis of the devolatized returns is below 0:11 (for SP ), and the
excess kurtosis of JY , DAX, and JGB; have fallen from 9:83; 4:56 and 4:18 to
0:70, �0:07, and 0:38, respectively. The means and standard deviations of the
devolatized returns are also very close to (0; 1).
The extent to which the devolatization has been e¤ective in transforming

the returns into Gaussian variates can be seen in Figures 1-15. The left panel of
each �gure gives the histograms, a kernel density �tted to the returns together
with the normal density and the normal QQ-plots. These plots graphically
compare the distribution of returns to the normal distribution (represented by
a straight line in the case of the QQ-plots). The �gures on the right panel
display the same graphs for the devolatized returns. These �gures clearly show
that devolatization has been quite e¤ective in achieving Gaussianity to a high
degree of approximation. This can be seen particularly if one compares QQ-
plots of returns and their devolatized counterparts. For the devolatized returns
the QQ-plots generally lie on the straight-line with a few exceptions. But for
the raw returns there are important departures from normality, particularly in
tails of the return distributions.
Since we are primarily interested in volatility modelling and VaR diagnos-

tics we set �t�1 = 0, and estimate the DCC models on daily returns (close
on close) over the period 01-Jan-95 to 31-Dec-2004 (2610 observations), and
use the observations January 2, 2005 to December 31, 2006 for the evalua-
tion of estimated volatility models using the VaR and distribution free diag-
nostics.10 We also estimated separate t-DCC models for currencies, bonds and
equities for purposes of comparisons. All estimations are carried out for the
unrestricted versions of the DCC(1,1) model with asset-speci�c volatility pa-
rameters �1 = (�11; �12; : : : ; �1m)

0 , �2 = (�21; �22; : : : ; �2m)
0, and common

conditional correlation parameters, �1 and �2, and the degrees-of-freedom pa-
rameter, v, under conditionally t distributed returns. We did not encounter
even a single case of non-convergence, and furthermore obtained the same ML
estimates when starting from di¤erent initial parameter values.
To evaluate the statistical signi�cance of the multivariate t distribution for

the analysis of return volatilities, in Table 2 we �rst provide the maximized log-
likelihood values under multivariate normal and t distributions for currencies,

10The ML estimation and the computation of the diagnostic statistics are carried using
Micro�t 5. See Pesaran and Pesaran (2007).
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bonds and equities separately, as well as for all the 15 assets jointly. We report
these results both for standardized and devolatized returns. It is �rstly clear
from these results that the normal-DCC speci�cations are strongly rejected rel-
ative to the t-DCC models for all asset categories. The maximized log-likelihood
values for the t-DCC models are signi�cantly larger than the ones for the normal-
DCC models. The estimated degrees of freedom are also in the range 5:91 (for
currencies) to 10:16 (for equities), all well below the values of 30 and above
that one would expect for a multivariate normal distribution. These conclu-
sions are robust to the way returns are standardized for computation of cross
asset return correlations. The maximized log-likelihoods for the standardized
and devolatized returns are very close, although due to the non-nested nature
of the two return transformations no de�nite conclusions can be reached as to
their relative merits here we adopt the devolatized returns in the estimation of
correlations on the grounds of their approximate Gaussianity.

6.1 Testing for Integrated GARCH E¤ects

Table 3 presents the detailed estimation results of the t-DCC model for all the
15 assets using devolatization results over the period January, 1995 to Decem-
ber 2004. The asset-speci�c estimates of the volatility decay parameters are all
highly signi�cant, with the estimates of �i1, i = 1; 2; :::; 15 falling in the range
0:9097 (for Nikkei) to 0:9687 (for Canadian dollar). The average estimate of
�1 across assets is 0:9521 which is just inside the range (0:95 � 0:97) of val-
ues recommended by Riskmetrics for their exponential smoothing estimates of
volatilities. There are, however, notable di¤erences across asset groups with �i1
estimated to be larger for currencies as compared to the estimates for bonds
and equities. The sum of the estimates of �i1 and �i2 are very close to unity,
but the hypothesis that �i1 + �i2 = 1 is statistically rejected for 13 out of
the 15 assets; the exceptions being Canadian dollar and US Treasury Note.
The correlation parameters, �1 and �2 are also very precisely estimated with
�̂1 = 0:9810(0:0012), �̂2 = 0:0107(0:0005), and 1� �̂1 � �̂2 = 0:0083(0:0008).11
These estimates suggest very slow but statistically signi�cant mean reverting
volatilities and conditional correlations. There are also statistically signi�cant
evidence of parameter heterogeneity across assets, although these di¤erences
may not be important in practice as their di¤erences (although statistically
signi�cant) are quantitatively rather small.

6.2 Diagnostics

For an equal-weighted portfolio, namely setting all elements of w in (19) equal
to unity, and � = 1% one would expect �̂ de�ned by (22) to be around 0:99. For
the t-DCC estimates reported in Table 3, with the estimates �xed at the end
of 2004, we obtain �̂ = 0:9904, z� = 0:0882 over the evaluation sample January
2, 2005 to December 31, 2006 (520 daily observations), and the null hypothesis

11The standard errors are given in brackets.
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that � = 0:99 can not be rejected.12 We also �nd no statistically signi�cant
evidence of serial correlation in the estimates of Ût; t = T +1; T +2; :::; T +520,
de�ned by (24).13 The value of the Kolmogorov-Smirnov statistic computed
using Ût, t = T + 1; T + 2; :::; T + 520, turned out to be KSN = 0:0404, which
is below 0:0596, the 5% critical value of the KS test with N = 520, and does
not indicate any major departures of Ût from uniformity.14

6.3 Changing Interdependence in Financial Markets

The t-DCC model can provide important insights into the changing volatilities
and correlations over the past two decades. To this end we re-estimated the
model over the full sample period, January 2, 1995 to December 31, 2006 and
obtained very similar results as those reported in Table 3. The time series plots
of volatilities are displayed in Figures 16-18 for currencies, equities and bond
futures, respectively. Conditional correlations of Euro with other currencies,
S&P futures with other equity future indices, US 10 year bond futures with other
bond futures are shown in Figures 19 to 21, respectively. To reduce the impact of
the initialization on the plots of volatilities and conditional correlations initial
estimates for 1995 are not shown. These �gures show a declining trends in
volatilities over the 1996-2006 period, most pronounced in the case of currency
futures, and a rising trend in correlations most notable in the case of equity
futures. These trend could re�ect the advent of Euro and a closer integration of
the world economy, particularly in the euro area. In contrast, there are no clear
trends in the cross market correlations, correlation between bonds and equities,
currencies and equities, or bonds and currencies. See Figures 22-24.
The above conclusions concerning the trends in daily volatilities and corre-

lations ought to be viewed with caution given the relatively short span of years
that they are covering. Unfortunately, futures market do not go back far enough
to enable us to arrive at a more de�nite conclusion. Only for the main currencies
(yen, euro and British pound) longer spans of futures data are available. For
these currencies �tting a t-DCC model to the daily observations over the period

12Similar results are also obtained when the parameters of the t-DCC model are updated
at the end of 2005.
13Recall that these estimates are obtained with the value of � estimated over the sample

ending in t = T:
14See Table 1 in Massey (1951).
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2 January 1985 to May 1, 2007 yields the following estimates:

ML Estimates of t-DCC Model for Three Currency Futures over
the Period 30 January 1985 to 30 April 2007

ML Estimates
Currencies �̂1 �̂2 1� �̂1 � �̂2

British pound 0.9576 (0.0048) 0.0374 (0.0039) 0.0050 (0.0013)[3.95]

Euro 0.9536 (0.0052) 0.0367 (0.0036) 0.0097 (0.0021)[4.62]

Yen 0.9396 (0.0077) 0.0439 (0.0048) 0.0164 (0.0038)[4.37]

v̂ = 4.99 (0.1472) , �̂1= 0.9702 (0.0024), �̂2 = 0.0268 (0.0019)

Note: Standard errors of the estimates are given in round brackets,

t-statistics are given is square brackets.

The estimates for the conditional volatilities of euro and British pound are also
very close, and the very low estimate obtained for the degrees of freedom of
the multivariate t distribution ( v̂ = 5) once again high lights the importance
of allowing for the fat tail properties of currency futures in volatility modelling.
Estimates of conditional volatilities over the period January 2, 1986 to April
30, 2007 show a declining trend for euro and british pound but not for yen.
The sample mean of conditional volatilities for yen has remained fairly constant
at around 0.688 per cent per day over the two sub-samples: January 2, 1986
to December 30, 1996, and January 2, 1997 to April 30, 2007. But the mean
estimates of the volatilities of euro and British pound have declined form 0.720
and 0.691 over the �rst sub-sample to 0.622 and 0.537, respectively, over the
second sub-samples. This can be clearly seen in Figure 25.

7 A Concluding Remark

This paper proposes the use of t-DCC model for the analysis of asset returns
as a way of dealing with the fat-tailed nature of their underling distributions.
However, the multivariate t distribution used for this purpose implies marginal
t distributions for the individual underlying returns with the same degrees of
freedom. This is clearly not supported by the data. As can be seen from Table
2, the degrees of freedom parameter estimated separately for the di¤erent asset
classes di¤er markedly across the asset classes (around 6 for currencies, 8 for
bonds and 9.5 for equities). One possible way of dealing with this problem would
be to combine the t-DCC models estimated separately by asset classes, �lling
the missing blocks of the full correlation matrix, Rt�1, by means of exponential
smoothers of the type used in Riskmetrics. However, in this case the distri-
bution of returns on portfolios formed with assets from di¤erent asset classes
will no longer follow a t distribution, and VaR calculations must be carried out
by stochastic simulations as no closed form solution seems to exist for linear
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combination of t-distributed variates with di¤erent degrees of freedom. Further
research in this area is required.
In the case of some asset returns, particularly in the cash markets, it might

also be important to consider using multivariate asymmetric distributions, such
as the �multivariate skew-Student density�recently proposed by Bauwens and
Laurent (2005). However, our preliminary analysis suggests that such asymme-
tries might not important in futures markets where there are little restrictions
on long/short transactions.

17



Table 1: Summary Statistics for Futures Daily Returns and Devolatized Daily
Returns - 02-Jan-95 to 30-Dec-06

Returns Devolatilized returns
Asset Mean S.D. Skewness Ex. Kurtosis Mean S.D. Skewness Ex. Kurtosis

Currencies
Australian dollar 0.008 0.674 -0.035 2.801 0.024 0.997 -0.056 0.307

British pound 0.013 0.516 0.012 1.549 0.030 0.998 0.039 0.396

Canadian dollar 0.006 0.408 0.021 1.460 0.005 1.000 0.048 -0.086

Swiss franc -0.006 0.691 0.217 1.998 -0.016 1.000 0.135 0.267

Euro -0.001 0.626 0.050 1.476 -0.002 0.996 0.065 0.221

Yen -0.019 0.730 0.951 9.833 -0.039 1.000 0.271 0.701

Bonds
Bunds 0.017 0.317 -0.407 1.548 0.075 0.994 -0.159 0.092

Gilt 0.011 0.359 -0.206 2.003 0.036 0.997 -0.057 0.081

JGB 0.018 0.288 -0.463 4.178 0.080 1.004 -0.206 0.384

TNote 0.015 0.372 -0.322 1.923 0.052 0.999 -0.088 0.258

Equities
CAC 0.041 1.388 -0.027 2.790 0.042 1.001 -0.119 -0.160

DAX 0.037 1.510 -0.227 4.547 0.045 1.002 -0.169 -0.073

Nikkei 0.007 1.463 0.060 1.989 0.009 1.000 -0.058 0.039

S&P 500 0.033 1.118 -0.083 3.916 0.038 1.004 -0.192 0.105

FTSE 0.021 1.118 -0.066 2.819 0.027 1.005 -0.134 -0.172
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Table 2: Maximized log-likelihood Values of DCC Models Estimatd with Daily
Returns over 02-Jan-95 to 31-Dec-04

Standardized Returns Devolatized returns
Assets Normal t-distribution D.F. Normal t-distribution. D.F.

Currencies (6) -9600.4 -8853.9 5.94 (0.2285) -9602.1 -8848.4 5.91 (0.2263)

Bonds (4) -1282.3 -1018.9 7.66 (0.4479) -1284.2 -1019.6 7.62 (0.4438)

Equities (5) -18189.4 -17894.2 9.37 (0.5578) -18192.3 -17896.7 9.33 (0.5556)

All 15 -28604.8 -27460.8 10.16 (0.3889) -28612.3 -27461.4 10.05 (0.3832)

Note: D.F. is the estimated degrees of the freedom of the multivariate t-distribution.

Standard errors of the estimates are given in round brackets.
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Table 3: ML Estimates of t-DCC Model Estimatd with Daily Returns over
02-Jan-95 to 31-Dec-04

ML Estimates
Asset �̂1 �̂2 1� �̂1 � �̂2
Currencies
Australian dollar 0.9631 (0.0069) 0.0246 (0.0038) 0.0124 (0.0044)[2.80]

British pound 0.9669 (0.0092) 0.0218 (0.0047) 0.0114 (0.0053)[2.13]

Canadian dollar 0.9687 (0.0050) 0.0293 (0.0043) 0.0021 (0.0017)[1.19]

Swiss franc 0.9647 (0.0057) 0.0260 (0.0036) 0.0094 (0.0028)[3.33]

Euro 0.9691 (0.0047) 0.0234 (0.0031) 0.0075 (0.0022)[3.42]

Yen 0.9505 (0.0085) 0.0409 (0.0062) 0.0086 (0.0029)[2.93]

Bonds
Bunds 0.9525 (0.0075) 0.0361 (0.0049) 0.0114 (0.0036)[3.21]

Gilt 0.9675 (0.0058) 0.0280 (0.0044) 0.0045 (0.0020)[2.25]

JGB 0.9212 (0.0095) 0.0707 (0.0080) 0.0082 (0.0022)[3.69]

TNote 0.9571 (0.0061) 0.0389 (0.0046) 0.0040 (0.0028)[1.41]

Equities
CAC 0.9524 (0.0056) 0.0392 (0.0041) 0.0084 (0.0023)[3.60]

DAX 0.9547 (0.0053) 0.0374 (0.0039) 0.0079 (0.0023)[3.44]

Nikkei 0.9097 (0.0143) 0.0584 (0.0078) 0.0319 (0.0087)[3.65]

S&P 500 0.9376 (0.0082) 0.0524 (0.0063) 0.0100 (0.0032)[3.12]

FTSE 0.9463 (0.0066) 0.0454 (0.0051) 0.0082 (0.0023)[3.54]

v̂ = 10.05 (0.3832) , �̂1= 0.9810 (0.0012), �̂2 = 0.0107 (0.0005)

Note: Standard errors of the estimates are given in round brackets,

t-statistics are given is square brackets. �i1 and �i2 are the asset-speci�c
volatility parameters. �1 and �2 are the common conditional
correlation parameters.
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Figure 1: Australian dollar futures returns (simple and devolatized) 02-Jan-1995 to
31-Dec-2006

Figure 2: British pound futures returns (simple and devolatized) 02-Jan-1995 to
31-Dec-2006
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Figure 3: Canadian dollar futures returns (simple and de-volatized) 02-Jan-1995 to
31-Dec-2006

Figure 4: Swiss franc futures returns (simple and de-volatized) 02-Jan-1995 to
31-Dec-2006
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Figure 5: Euro futures returns (simple and de-volatized) 02-Jan-1995 to 31-Dec-2006

Figure 6: Japanese yen futures returns (simple and de-volatized) 02-Jan-1995 to
31-Dec-2006

23



Figure 7: Bunds returns (simple and de-volatized) 02-Jan-1995 to 31-Dec-2006

Figure 8: Gilt returns (simple and de-volatized) 02-Jan-1995 to 31-Dec-2006
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Figure 9: JGB returns (simple and de-volatized) 02-Jan-1995 to 31-Dec-2006

Figure 10: US Treasury note returns (simple and de-volatized) 02-Jan-1995 to
31-Dec-2006
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Figure 11: CAC returns (simple and de-volatized) 02-Jan-1995 to 31-Dec-2006

Figure 12: DAX returns (simple and de-volatized) 02-Jan-1995 to 31-Dec-2006
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Figure 13: Nikkei returns (simple and de-volatized) 02-Jan-1995 to 31-Dec-2006

Figure 14: S&P 500 returns (simple and de-volatized) 02-Jan-1995 to 31-Dec-2006
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Figure 15: FTSE returns (simple and de-volatized) 02-Jan-1995 to 31-Dec-2006

Figure 16: Conditional volatilities of currency futures returns
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Figure 17: Conditional volatilities of equity futures returns

Figure 18: Conditional volatilities of bond futures returns
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Figure 19: Conditional correlations of Euro with other currency futures returns

Figure 20: Conditional correlations of S&P 500 with other equity futures returns
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Figure 21: Conditional correlations of TNote with other bond futures returns

Figure 22: Conditional correlations of bond and equity futures returns
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Figure 23: Conditional correlations of equity and currency futures returns

Figure 24: Conditional correlations of bond and currency futures returns
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Figure 25: Conditional volatilities of euro and British pound over the 1986-2007
period
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