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Abstract

Introduction Normal gene expression variation is thought to
play a central role in inter-individual variation and susceptibility
to disease. Regulatory polymorphisms in cis-acting elements
result in the unequal expression of alleles. Differential allelic
expression (DAE) in heterozygote individuals could be used to
develop a new approach to discover regulatory breast cancer
susceptibility loci. As access to large numbers of fresh breast
tissue to perform such studies is difficult, a suitable surrogate
test tissue must be identified for future studies.

Methods We measured differential allelic expression of 12
candidate genes possibly related to breast cancer susceptibility
(BRCA1, BRCA2, C1qA, CCND3, EMSY, GPX1, GPX4,
MLHS3, MTHFR, NBS1, TP53 and TRXR2) in breast tissue (n =
40) and fresh blood (n = 170) of healthy individuals and EBV-
transformed lymphoblastoid cells (n = 19). Differential allelic
expression ratios were determined by Tagman assay. Ratio

distributions were compared using t-test and Wilcoxon rank sum
test, for mean ratios and variances respectively.

Results We show that differential allelic expression is common
among these 12 candidate genes and is comparable between
breast and blood (fresh and transformed lymphoblasts) in a
significant proportion of them. We found that eight out of nine
genes with DAE in breast and fresh blood were comparable, as
were 10 out of 11 genes between breast and transformed
lymphoblasts.

Conclusions Our findings support the use of differential allelic
expression in blood as a surrogate for breast tissue in future
studies on predisposition to breast cancer.

Introduction

Approximately 70% of the genetic risk associated with breast
cancer is still unaccounted for and it is predicted that the
remainder of susceptibility loci will include common, low-effect
variants that most likely have regulatory effects. Recent
genome-wide association studies (GWAS) have identified var-
iants that account for an additional 5.9% of the genetic risk [1-
5]. These variants are mostly associated with intronic and
intergenic regions, with the most significant variant regulating
the level of gene expression of FGFR2 [6]. However, as most

of the identified risk loci have small effects, very large numbers
of patients will have to be examined to identify further risk var-
iants. An alternative approach for the identification of regula-
tory risk variants could be to use differences in allelic gene
expression in heterozygotes as a quantitative phenotype [7-9].

Preferential expression from one allele is a common feature of
the human genome (up to 60% of genes) and has a genetic
basis [6,10-24]. Polymorphic variants at regulatory elements
can cause differential allelic expression (DAE), thus using DAE

CEPH: Centre D'Etude du Polymorphism Humaine; DAE: differential allelic expression; EBV: Epstein-Barr virus; GWAS: genome-wide association
studies; LCL: lymphoblastoid cell line; LD: linkage disequilibrium; SNP: single nucleotide polymorphism; tSNP: transcribed/transcript single nucle-

otide polymorphism.

Page 1 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20003265
http://breast-cancer-research.com/content/11/6/R88
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/

Breast Cancer Research Vol 11 No 6 Maia et al.

as a quantitative trait could help identify such variation. The
samples of choice for association studies are usually blood
and saliva, however, relatively little is known about how DAE
compares in multiple human tissues and it is questionable
whether studying DAE in blood would be a proper surrogate
for what happens in the disease target tissue. To date most
DAE studies have been performed on EBV transformed lym-
phoblastoid cell lines (LCLs). Studies in fresh blood, liver and
kidney have been reported in a small set of individuals [14,16],
and one recent study looking at the expression of one gene
reported that there were large tissue differences in allelic
expression ratios within the same individual [25]. An analo-
gous study has been reported in mice [26].

We aimed to perform a more extensive evaluation of differen-
tial allelic expression between blood and breast in order to
assess the potential usefulness of LCL and fresh blood in
association studies, to identify regulatory polymorphisms
related to susceptibility to breast cancer. Here we present an
analysis of DAE in 12 candidate genes (BRCA1, BRCA2,
C1gA, CCND3, EMSY, GPX1, GPX4, MLH3, MTHFR,
NBS1, TP53 and TRXR2) likely to be involved in breast can-
cer, in a large set of individuals. We compared the distribution
of allelic ratios of gene expression in fresh blood (B cells and
total mononuclear cells), transformed lymphoblasts, and
breast tissue from unmatched healthy individuals.

Materials and methods

Samples

A total of 170 white cell-reduction filters from anonymous
blood donors were collected from the Blood Centre at Adden-
brooke's Hospital. Mononuclear cells were separated by den-
sity gradient centrifugation using Lymphoprep (Sigma, St.
Louis, MO, USA), according to the manufacturer's instruc-
tions. B cells were further isolated from these samples by mag-
netic sorting using CD19 labelled magnetic check beads
(Milteny Biotech, Bergisch Gladbach, Germany).

Normal breast tissue was collected at Addenbroke's Hospital,
from 40 women undergoing aesthetic surgery, for reasons not
related to cancer. All samples were analysed by a histopathol-
ogist to ensure that they were free of dysplasia. Ethical
approval was obtained for the collection and research use of
all blood and breast samples used in this study.

Nineteen lymphoblastoid cell lines derived from unrelated
CEPH individuals were obtained from the Coriell Cell Reposi-
tory. Cell lines were grown in RPMI 1640 with 10% FCS, sup-
plemented with penicillin, streptomycin and L-glutamine, at
37°C and 5% CO, (Invitrogen, Carlsbad, CA, USA).

All research was carried out in compliance with ethics guide-
lines and regulations. Human B cells (purified from waste
products of blood donations) and normal breast samples were
collected with approval from the Addenbrooke's Hospital
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Local Research Ethics Committee (REC reference 04/
Q0108/21 and 06/Q0108/221, respectively).

RNA, DNA and cDNA preparation

DNA was extracted from total mononuclear cells, B-lym-
phocytes, normal breast and lymphoblastoid cell lines by a
conventional SDS/proteinase K/phenol method. Total RNA
was extracted from all samples using Qiazol (Invitrogen,
Carlsbad, CA, USA) following manufacturer's instructions.
The RNA was subsequently treated with DNasel and repuri-
fied using acidic phenol-chlorophorm, and ethanol
precipitation.

For normal breast tissue RNA extraction, samples were
soaked overnight in RNA/ater-lce® (Ambion, Austin, TX, USA),
homogenised in Qiazol using the Precellys®24 bead mecha-
nism (Bertin Technologies, Montigny-le-Bretonneux, France),
followed by an additional centrifugation step prior to addition
of chlorophorm to the lysate, to eliminate excessive fat.

cDNA was prepared from 1 pg of total RNA per 20 ul reaction
using random hexamers and the Reverse Transcription kit
(Applied Biosystems, Foster City, CA, USA), according to the
manufacturer's instructions, and was diluted in a final volume
of 100 pl.

Genotyping

All samples were genotyped using 5' exonuclease Tagman®
technology (Applied Biosystems, Foster City, CA, USA).
Approximately 20 ng of genomic DNA was used in a 5 ul PCR
reaction constituted by Tagman® master mix (Applied Biosys-
tems, Foster City, CA, USA), the two primers, and FAM- and
VIC- labelled probes, each designed to anneal specifically to
either of the alleles of each single nucleotide polymorphism
(SNP). After completion of the PCR, plates were analysed
using the Allelic Discrimination analysis method in an ABI
PRISM 7900 Sequence Detector (Applied Biosystems, Fos-
ter City, CA, USA). Genotyping was carried out in 384-well
plates, with random replicates included, as well as no template
controls (NTC), to ensure good quality of genotyping.

Quantification of differential allelic gene expression

Allele specific levels of gene expression were determined in
heterozygous samples using Tagman® technology (Applied
Biosystems, Foster City, CA, USA). Each PCR reaction con-
tains a primer pair targeting the region surrounding the tran-
scribed SNP (tSNP), and two probes that differ by a single
nucleotide and are complementary to each of the SNP alleles.
The probes are labelled with different fluorochromes (VIC and
FAM), generating two signals for each sample during the real-
time PCR. A standard curve was generated using a dilution
series of heterozygote blood DNA, serving as a reference for
the 50:50 allelic ratio. In this way, once the quantity of each
allele in the different samples is extrapolated from the linear
regression equation, a correction for the different background



fluorescence and annealing characteristics of each probe is
made automatically. We avoided using cDNA as control as we
would be biasing our results towards the DAE ratio of the ref-
erence sample. In contrast, there is a perfect 50:50 ratio of the
two alleles in a reference DNA sample from a heterozygote
with normal chromosomal copy number.

All experiments contained replicates for each sample, and
were repeated at least twice. Reactions were prepared as
described for genotyping and run on an ABI PRISM 7900
Sequence Detector using the Absolute Quantification
method. Ct values were obtained from ABI SDS 2.3 software
(Applied Biosystems, Foster City, CA, USA) and quantities of
allelic expression were extrapolated from the appropriate lin-
ear regression. We defined differential allelic expression as the
log, of the allelic-expression ratio calculated as log, [(VIC-
allele)/(FAM - allele)]. A gene was considered expressed if the
PCR yielded Ct values lower than 35 cycles.

Quantification of total gene expression

Total gene expression levels were determined in B cell cDNA
samples using Tagman® Gene Expression Assay pre-
designed by Applied Biosystems. Results were normalized
with the total levels of expression of Actin-, GAPDH, 18S
and S2M.

Statistical Analysis

Real-time PCR quantification statistics were carried out on
Microsoft® Excel® 2004 software. Percentage of variation
between replicates was calculated as % var = (SD/Mean). Lin-
ear regression for Tagman® standard curves was performed
using the function /inest.

All other statistical analysis was performed using the R statis-
tical programming language [27]. For analysis of DAE in B
cells a One Sample t-Test was performed to test for deviations
from null hypothesis that the mean is smaller than log,(1.20).
However, genes that presented trans-effects were analysed in
absolute values with the highest expressing allele divided by
the lowest one. For these genes the mean could not be used
as the two sides of the distribution would cancel each other
out, as explained in Results and Discussion. Furthermore, we
performed variance analysis for these genes using F tests for
variance. Using MLH3 as a reference gene with a distribution
identical to DNA (no DAE), we compared all genes with trans-
effect DAE.

To compare DAE across the three different tissue types, both
two-sample t-test and Wilcoxon rank sum test with continuity
correction were carried out, for comparing mean ratios and
variances respectively.

Correlation analysis of the total level of expression vs genotype
at the tSNP for these genes was performed using the Jonck-
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heere-Terpstra test, a non-parametric test for trend among
classes.

Results

Analysis of differential allelic expression of candidate
breast cancer genes in blood cells

We studied 12 candidate genes that are implicated in the aeti-
ology of breast cancer (Table 1): BRCA1, BRCA2, C1qA,
CCND3, EMSY, GPX1, GPX4, MLH3, MTHFR, NBS1, TP53
and TRXR2 [28-31]. Functionally, these genes are in different
pathways including: DNA-damage repair, complement and
coagulation cascades, cell cycle and apoptosis. For each
gene, we selected single nucleotide polymorphisms (SNPs)
markers in both the coding and untranslated regions (tran-
scribed SNP or tSNP), with high heterozygosity frequency.
This increased the number of informative individuals in our
sample sets. To ascertain differential allelic expression we
measured allele-specific transcript levels using real-time PCR
Tagman® technology in heterozygote samples for the selected
tSNPs, and calculated the ratio of one allele versus the other
(plotted as Log, ratios in Figure 1a).

Initial experiments on technical and biological replicates (dif-
ferent cDNA preparations) revealed a very good correlation
between replicates and low noise/variation intrinsic to the
technique ([mean allelic ratio: standard deviation] <20% and
5% for biological and technical replicates, respectively).
Based on this we defined the cut-off allelic expression ratio of
1.2 for DAE presence in a heterozygote sample (indicated on
Figure 1a by the dotted lines).

We started by analysing allelic expression in primary B-lym-
phocytes (magnetically sorted CD19* cells) from 170 unre-
lated healthy individuals. The aim was to first identify the genes
that displayed preferential allelic expression in a homogene-
ous population of cells, without the possible interference of
multiple cell types. We found that heterozygotes in 11 out of
12 genes (92%) showed allelic imbalances in gene expression
(Table 2 and blue data points in Figure 1a). As in previous
reports, we identified two patterns of differential expression. In
BRCA2, C1qgA, GPX1, GPX4, MTHFR and TP53, the same
allele was consistently expressed at a higher level in all heter-
ozygotes with allelic imbalance, indicating that for each of
these genes the regulatory variant is in strong linkage disequi-
librium (LD) with the assayed tSNP. On the other hand, in
BRCAT1, EMSY, CCND3, NBS1 and TRXRZ2 different hetero-
zygotes preferentially expressed different alleles. In this case,
expression is likely to be controlled by cis-acting elements that
are not in strong linkage disequilibrium with the tSNP.

We found considerable variation in the magnitude of DAE
across genes, with the largest seen in GPX4 (approximately
six-fold difference between the levels of expression of the two
alleles). For the genes which show DAE in at least one heter-
ozygote, the proportion of heterozygotes with unequal
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Comparison of allelic expression in blood vs LCL vs breast tissue. (a) Heterozygote individuals are represented as dots and are coloured blue for
blood, black for LCL and green for breast tissue. The mean value for each distribution is shown as a red dot, and whiskers represent the 95% confi-
dence interval of the mean. Dotted lines delimit the cut-off of 1.2 preferential allelic expression ratio [log,(1.2) = 0.263]. (b) Pairwise correlation anal-
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the linear regression applied to each tissue pair, and the respective equations and R2 values are indicated on each graph.

expression ranged from 10% to 100% (Table 2). Genes with
cis-acting elements in LD with the tSNP showed a direct cor-
relation between mean allelic ratio and number of heterozy-
gotes with variation (that is, the greater the mean allelic ratio,
the higher the number of heterozygotes with DAE) [see Addi-
tional file 1]. Genes with cis- regulation not in LD with the
tSNP had a distribution of ratios that was commonly centred
on the 50:50 ratio (log,= 0 in Figure 1a). This reflects the fact
that a proportion of the heterozygotes for the tSNP will be
homozygote for either of the regulatory polymorphic alleles,
consequently generating an equimolar transcription level of
the tSNP alleles.

Since peripheral blood is a heterogeneous tissue, composed
of mononuclear cells (including B lymphocytes), polymorpho-
nuclear cells and red blood cells, we compared the allelic
expression ratios in cDNA extracted from total mononuclear
cells from 59 healthy unrelated donors, with those obtained for
sorted B cells. We found no significant differences in terms of
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pattern (cis- regulation in LD with tSNP or not) or mean ratio
of DAE (data not shown).

Concerns have also been raised about the effect that transfor-
mation of lymphoblasts by Epstein-Barr Virus (EBV) may have
on their expression profile [32-34]. As most previous studies
of differential allelic expression have been performed on lym-
phoblastoid cell lines (LCL) and future case-control studies
using DAE could be performed on this type of sample, we next
compared transformed and non-transformed lymphoblasts
from 19 unrelated CEPH (Centre D'Etude du Polymorphism
Humaine) individuals, who were heterozygous for most of the
genes included in this study (black data points in Figure 1a).
Eight out of 12 genes showed DAE in both transformed and
fresh lymphocytes (BRCA2, CCND3 and GPX1 did not show
DAE in LCL samples, in contrast to that observed in untrans-
formed blood, whilst MLH3 showed the opposite). Of the
eight genes which showed DAE, five presented mean ratios
and patterns of allelic preferential expression that were com-



Table 1

Available online http://breast-cancer-research.com/content/11/6/R88

List of coding polymorphisms investigated for differential allelic expression, with the respective possible functional effects

Gene SNP Aminoacid/Position Alleles Pathway Functional Effect
BRCA1 rs799917 P871L CIT DSB repair Unknown

BRCA2 rs144848 N372H A/C DSB repair Unknown

CigA rs172378 G92G AIG Complement Cascade Reduced Activity
CCND3 rs1051130 A259S G/T Cell Cycle Unknown

EMSY rs2282611 5'UTR A/C DNA repair Unknown

GPX1 rs1050450 L200P T/IC Antioxidant Defense Unknown

GPX4 rs713041 3'UTR C/IT Antioxidant Defense Reduced Activity
MLH3 rs175080 P844L CIT Mismatch Repair Unknown

MTHFR rs1801133 A222V CIT Folate metabolism Reduced Activity
NBS1 rs709816 D399D CIT Homologous Recombination None

TP53 rs1042522 R72P G/C Apoptosis Differential apoptotic potential
TRXR2 rs1139793 T370I CIT Antioxidant Defense Unknown

DSB = double strand break.

parable between the two samples sets (Figure 1a and Tables
3 and 4). BRCA1, EMSY and NBS1 showed significantly dif-
ferent results from those obtained for fresh blood, in terms of
the mean fold difference between alleles and/or patterns of
DAE (cis- regulation in tight LD or not).

Comparison of DAE between breast tissue and blood
cells

Next, we analysed 40 normal breast tissue samples (green
data points in Figure 1a). Like blood, breast is a complex
organ, comprising breast epithelium, stroma, and adipocytes.
The comparison between fresh blood and breast tissue
showed that DAE distributions were similar for eight out of
nine genes (89%) that showed DAE in both tissues. BRCAT,
BRCA2, CCND3, EMSY, GPX4, and TRXR2 had similar
mean ratios (based on Wilcox rank sum test) and/or patterns.
In breast samples, the same alleles of MTHFR and TP53 were
preferentially expressed as in the fresh blood samples,
although with significantly different mean ratios (Tables 2 and
3). GPX1 showed no DAE in breast and MLH3 showed no
DAE in blood, whilst NBS7 showed discordant patterns and
mean allelic ratio.

Comparing the results obtained for transformed lymphoblasts
with those obtained for breast we found that 10 out of 11
genes showed preferential allelic expression in both types of
sample. Of these 10, five genes were comparable in terms of
pattern and mean allelic ratio (CCND3, GPX4, MLHS3,
MTHFR and NBST), and four were comparable only on pat-
tern (EMSY, TP53 and TRXR2). Only BRCA1 was signifi-
cantly different between the two sample sets for both mean
allelic ratio and pattern of preferential expression.

Pairwise correlation analysis with the mean allelic ratios
obtained for the genes that showed evidence of DAE in each
two sample types showed high correlation across types of tis-
sue (blood vs LCL R2=0.88, blood vs breast R2= 0.80 and
breast vs LCL R2=0.87) (Figure 1b).

Comparison between DAE analysis and linkage mapping
of expression phenotypes

For the genes that in blood showed evidence for regulation
from within the same linkage disequilibrium block (that is,
genes for which all heterozygotes with imbalances showed
preferential expression of the same allele), we determined total
levels of expression using Tagman technology, for individuals
of all genotypes. After, we performed a correlation analysis of
the total level of expression vs genotype at the tSNP for these
genes. We found that only MTHFR showed a significant cor-
relation (P < 0.005) (Figure 2). For other genes, for example
TP53, we found that total expression did not vary with geno-
type, even though we found evidence for differential allelic
expression in our initial analysis [see Additional file 2].

Discussion

Here we report an extensive analysis of differential allelic
expression in breast and blood (fresh and EBV-transformed) in
a set of candidate breast cancer genes using a large set of
unrelated individuals of European origin. We demonstrate the
feasibility of using DAE in fresh blood or transformed lymphob-
lasts as a quantitative trait in future association studies for sus-
ceptibility to breast cancer, as well as an approach to select
genes/loci from the lists produced by the genome-wide asso-
ciation studies for further functional investigation and valida-
tion. We found that the magnitude (fold difference) or pattern
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Table 2

Differential allelic expression ratios in fresh B cells

Gene SNP Heterozygotes with DAE Mean DAE SD Min-Max
BRCA1 rs799917 ™C 44% (12/27) 0.67 0.12 0.43-0.80
C>T 26% (7/27) 1.41 0.22 1.21-1.83
BRCA2 rs144848 C>A 65% (24/37) 1.60 0.55 1.24-3.62
CigA rs172378 A>SG 69% (11/16) 1.86 0.77 1.26-3.37
G>T 29% (5/17) 0.72 0.06 0.67-0.83
CCND3 rs1051130 ™G 24% (4/17) 1.36 0.11 1.25-1.51
C>A 5% (2/37) 0.79 0.01 0.78-0.80
EMSY rs228611 A>C 5% (2/37) 1.38 0.21 1.23-1.63
GPX1 rs1050450 C>T 79% (11/14) 1.32 0.09 1.23-1.50
GPX4 rs713041 C>T 100% (21/21) 6.46 2.97 2.5-11.31
MLH3 rs175080 NA 0% (0/35) NA NA NA
MTHFR rs1801133 ™C 829% (27/33) 0.65 0.06 0.54-0.77
NBS1 rs709816 C>T 149%(3/21) 0.82 0.01 0.81-0.83
™C 33% (7/21) 1.37 0.19 1.21-1.65
TP53 rs1042522 C>G 100% (16/16) 0.34 0.06 0.25-0.49
™C 17% (5/29) 0.75 0.06 0.66-0.82
TRXR2 rs1139793 C>T 31% (9/29) 1.38 0.13 1.21-1.61

DAE = differential allelic expression.

(direction) of differential expression was concordant in eight
out of nine genes which showed DAE in breast and fresh
blood. The results were similar between in fresh and trans-
formed lymphoblasts.

As reviewed by Williams et al. [35], the percentage of genes
reported to be affected by genetic variation at cis-acting
regulatory elements differs greatly between approaches. The
most common approach to studying variation in gene expres-
sion has been linkage analysis of total gene expression
[13,15,17], which in general reports 1 to 20% cis-linkages.
When using imbalances of allelic expression in heterozygotes,
previous reports point to a much greater proportion of genes
(80 to 60%) with cis-acting regulation [14,16,18,36-39]. The
discrepancy of proportion of genes showing cis-regulation
reported by the different methods, that we also observe in our
study (for TP53 for example), is in our view possibly the effect
of a feedback control loop that maintains the total level of
expression at a constant level inside the cell, irrespective of the
genotype at the regulatory element. A major advantage of
studying DAE is that as allelic transcript levels are compared
within the same cellular and haplotype context, environmental
factors, including the level and availability of transcription fac-
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tors, and genetic biases are eliminated increasing the ability to
detect the cis-effects (reviewed in [40,41]). However, the high
percentage of DAE that we observe in out study is likely to be
biased by our list of candidate genes, and will not necessarily
correspond to the percentage of DAE genome-wide for any of
the tissues we studied.

The previous studies that have looked at DAE in multiple tis-
sues have reported significant differences for one gene exam-
ined in 12 individuals [25], and for 11% of 92 studied genes
in six mice [26]. Our findings differ from these for two possible
reasons: we have increased statistical power due to the larger
number of samples analysed compared with the Wilkins et al
study [25], but also because we analysed a smaller number of
genes than Campbell et al [26].

We show that the difference between allelic expression levels
can vary greatly (up to six-fold) across genes and based on
previous reports [14,15] we assume that the distribution pat-
tern of DAE can shed light on the nature of the regulatory cis-
element causing DAE [7,16]. In addition, we note that the pro-
portion of heterozygotes displaying DAE can differ greatly
between genes (11% to 100% of heterozygotes). In only a
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Comparison of differential allelic expression between breast and blood (fresh and transformed)

Gene SNP Informative Heterozygotes Wilcoxon rank sum test p- value
Blood LCL Breast Blood vs LCL Blood vs Breast LCL vs Breast

BRCA1 rs799917 27 13 6 4.40E-06 0.011 0.016
BRCA2 rs144848 37 6 8 NA 0.744 NA
C1gA rs172378 16 5 7 0.076 NA NA
CCND3 rs1051130 17 12 7 0.207 0.266 0.090
EMSY rs228611 37 7 13 2.26E-05 0.029 0.047
GPX1 rs1050450 14 4 12 NA NA NA
GPX4 rs713041 21 8 5 0.366 0.057 0.091
MLH3 rs175080 35 12 13 NA NA 0.772
MTHFR rs1801133 33 7 12 0.030 1.563E-04 0.703
NBS1 rs709816 21 9 13 0.003 0.001 0.947
TP53 rs1042522 16 8 16 0.192 1.34E-05 3.80E-04
TRXR2 rs1139793 29 9 14 0.069 0.826 0.007

Wilcox rank sum tests were performed to compare deviations of differential allelic expression variance (only genes showing DAE were introduced
in the analysis). Blood corresponds to fresh B cell samples and LCL to EBV transformed lymphoblastoid cell lines. DAE = differential allelic

expression; LCL, EBV transformed lymphoblastoid cell lines.

small number of genes did all heterozygotes show preferential
expression of one allele (two genes in all three sample sets,
and two others in transformed lymphoblasts alone). In general,
high mean allelic ratios correlated with a high proportion of
samples with DAE. This suggests that regulatory variants have
in fact non-binary, stochastic effects on the binding of tran-
scription factors. If in some cases the effect is a very strong
one, consequently more heterozygotes will present it. For
example, in the case of a polymorphism that alters the affinity
of binding of a transcription factor [6,20], the extent of the
effect we detect is probably a reflection of where on the bind-
ing site sequence the nucleotide change occurs, and how
specific the binding of the transcription factor is to a certain
sequence. All of these considerations become important when
carrying out haplotype analysis to map which regulatory vari-
ants are mechanistically responsible for DAE.

Overall, our results suggest that although the total level of
expression of a gene is under tissue-specific regulation (mainly

Table 4

due to the availability of the necessary transcription factors),
DAE is mostly tissue-independent -exerting a similar effect in
most tissues where the gene is expressed - and individual spe-
cific - regulated by the genetic variation make-up of each indi-
vidual (even in the same cellular/tissue context). However, it is
likely that tissue-specific levels of transcription factors might
also influence the magnitude of DAE, as we noted in genes
that show evidence of being regulated differently in the stud-
ied tissues (BRCAT1 in B cells and breast, for example). Ideally,
for validation, this study should be followed-up with another on
matched blood and breast samples.

Conclusions

In conclusion, we show that differential allelic expression is
common in candidate breast cancer genes and is comparable
between tissues to some extent. Our findings support the fur-
ther exploration of DAE in blood and breast as a quantitative
phenotype to reveal regulatory genetic variation that predis-
poses to breast cancer (as in recent reports for breast and

Differential allelic expression concordance between breast and blood (fresh and transformed).

Blood vs LCI Blood vs Breast Breast vs LCL
DAE present in both 8/12 9/11 10/11
Similar DAE distribution/pattern 5/8 8/9 9/10

Number of genes concordant in terms of presence and extent/pattern of preferential allelic expression. DAE = differential allelic expression; LCL,

EBV transformed lymphoblastoid cell lines.
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calculated using the Jonckheere-Terpstra test). The graphs on the right-hand side represent the log,, ratios of allelic expression in heterozygotes only,

for the corresponding tSNPs.

colorectal cancers [9,42]), as well as a mean to prioritise the
candidate susceptibility hits from the GWAS for follow-up
functional studies and confirmation.
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