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Summary

Theoretical and experimental studies of particle deposition in turbulent pipe flow have been
carried out for over forty years, but some of the most important transport mechanisms are
still not well understood. The first part of this thesis is concerned with the calculation
of particle density when using Lagrangian methods to predict inertial particle transport in
two-dimensional laminar fluid flows. Traditionally, Lagrangian calculations involve integrating
the particle equations of motion along particle pathlines, and the particle density is obtained
by applying a statistical averaging procedure to those pathlines which intersect a particular
computational grid cell. Unfortunately, extremely large numbers of particles are required to
reduce the statistical errors to acceptable levels, and this makes the method computationally
expensive.

Recently, the Full Lagrangian approach has been developed, which allows the direct calcu-
lation of the particle density along particle pathlines. This method had previously been applied
only to simple analytical flow fields. The application of the method to CFD generated fluid
velocity fields was shown to be possible, and the results obtained using the Full Lagrangian
approach were compared to those from a traditional Lagrangian approach. It was found that
better quality solutions could be obtained with the use of far fewer particle pathlines. An anal-
ysis of the manner in which the Full Lagrangian approach deals with particles whose paths
cross each other (and the resulting discontinuity in particle density) was also undertaken, and
this illustrates the sophistication of the method.

The second part of the thesis comprises an experimental and theoretical study of the
deposition of small particles in turbulent flows by thermophoresis. Thermophoresis is the
phenomenon whereby small particles suspended in a gas in which there exists a temperature
gradient experience a force in the direction opposite from that of the temperature gradient.
Previous researchers have attempted to impose a radial temperature difference in pipe flow
experiments, but have not yet succeeded in attaining a constant thermophoretic force along
the length of the pipe. This limits the accuracy and usefulness of the data for the validation
of theoretical expressions for the thermophoretic fluxes.

An experimental rig has been designed to achieve a constant thermophoretic force. This
was done by using an annular geometry with a cold inner wall and hot outer wall. The
particle size was varied and the deposition flux was measured for turbulent flow with three
temperature differences. The deposition fluxes for small particles were found to be independent
of dimensionless particle size, with each increase in temperature difference resulting in an
increase in magnitude of the flux. Evidence of a thermophoresis-turbulence coupling was found
for intermediate-sized particles, and large particles were not influenced by thermophoresis.

A theory of particle deposition, developed for the case of turbulent pipe flow, was modified
to study flow in a turbulent annulus, so that theoretical expressions for the thermophoretic

fluxes could be included and compared with the experimental results. Agreement with ex-
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perimental data was quite good, but some deficiencies in a widely used theoretical expres-
sion for the thermophoretic flux were exposed. An alternative expression was used, which
gave much better agreement with the experimental data, and the mechanisms behind the
thermophoresis-turbulence coupling were also investigated. The validation of this expression
for the thermophoretic force will allow its inclusion in numerical studies of particle deposition

in more complex geometries.
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Chapter 1
Introduction

Atmospheric pollution by particulate matter presents a risk to human health and the health
of the environment, damaging respiratory and cardiovascular systems in humans, interfering
with photosynthesis in plants, causing the deterioration of building facades, and smog in the
air.

The main sources of particulate matter in the atmosphere are from combustion for heating
and power generation, and motor vehicle traffic. These primary pollutants are harmful not just
in the vicinity of the source, but they can travel long distances and engage in chemical reactions
as they do so, producing secondary pollution such as ozone and acid rain. The transport and
deposition of particles (or droplets) in the atmosphere may be considered a dispersed two-phase
flow, where the particles constitute the dispersed phase and the atmosphere the continuous
phase.

Dispersed two-phase flows are a subset of a wider category of flows, known as multi-
phase flows (gas-liquid, gas-solid, liquid-solid and three-phase flows). Industrial applications
involving multiphase flows include the production of food and pharmaceuticals through spray
drying; the pneumatic transport of cement, grains, and coal; the solid propellant rocket; fire
suppression and control; and fluidised beds for coal gasification, combustion and liquefaction
(Crowe et al., 1998).

1.1 Dilute gas-particle flow in a gas turbine

The main motivation for this work comes from the power generation industry. Combined-cycle
gas turbine (CCGT) power stations have been the subject of much recent interest, mainly due
to the increase in gas turbine temperature (and subsequent increase in specific work) and the
availability of natural gas, which results in greater efficiency and a reduction in the production
of CO,, SO, and NO,. Aside from the environmental benefits, the overall efficiency of the
best stations are just below 60% compared with 40% for a traditional coal-fired power station.
These factors have led to CCGT stations replacing coal-fired stations throughout the United
Kingdom.



CCGT plants can operate with distillate oil or natural gas, but cannot burn coal since
the products of combustion cannot be accepted by the gas turbine. Concerns regarding the
long-term availability of natural gas supplies have led to the development of new technologies
to allow the modification of such plants to operate using coal. Coal gasification involves the
mixing of pulverised coal and hot air under pressure, to produce a ‘synthetic gas' which is
cleaned by being cooled and passed through a ceramic filter, before undergoing combustion
and expansion through a gas turbine.

Hot filtration of the gas before entry to the gas turbine results in the removal of most
particles in the 10 — 20 pum range, but the gas still contains greater levels of contaminants
than in a natural gas-fired system. Particles in the gas stream may deposit on the turbine
blades and accumulate to cause blockages and gradually reduce the power output; particles
may cause erosion of the blades and affect their aerodynamic properties eventually leading to
mechanical failure; alkali vapours released from the coal may condense on the blade surface
and cause enhanced corrosion resulting in reduced blade lifetimes.

A combination of cyclone and high temperature filters may be used to reduce the dust
levels present in the gas to just a few ppmw (parts per million by weight), and the use of a
standard gas turbine may be possible (although more frequent cleaning than with other fuels
and corrosion resistant blade coatings may be required). However, such excessive filtration
can result in high pressure loss and inefficiency. If only a cyclone filter is used, then the dust
loading can be of the order of a few hundred ppmw, and the gas turbine must be designed
to minimise damage caused by particles and the uneconomically short cleaning/replacement
intervals that would be required. These low mass loadings mean that the gas-particle flow
may be considered dilute, and it is the influence of the gas on the particles (rather than
particle-particle interactions or particle modification of gas turbulence) that is important.

A typical approach to such a design taken by a major turbine manufacturer was as follows:
two stages of high cyclone filtering were used to reduce the dust loading to between 200 and
400 ppmw, and to restrict the particle size to less than about 10 pum, with only 1 ppmw
above 5 um. This limit on particle size is significant, as small particles follow the curved flow
through the turbine more closely than large particles, so that fewer deposit and with lower
impact energy, resulting in minimal erosion. The load and turning angle of the turbine was also
modified to resist erosion, which resulted in an increase in the number of stages from four to
five. The average velocity in the turbine was reduced, as was the combustor bed temperature
(to reduce alkali release and subsequent corrosion), and hence the turbine inlet temperature.
As a result, blade cooling (to protect the blade from excessively high temperatures) was
not required, and solid blades could be used, giving more structural integrity in the event
of erosion. Blade coatings were also used to prevent corrosion, and the blade profile was
thickened in areas sensitive to deposition.

Some of these steps represent an over-cautious approach to protecting the turbine against
the effects of particles, the result being that the turbine is operated at off-design conditions,

and at a reduced efficiency. A greater knowledge of particle behaviour would help to achieve



more of a balance between turbine efficiency and limiting the damage caused by particle depo-
sition, corrosion and erosion. Such knowledge can be obtained through experimentation, but
the expense and difficulty of conducting experiments in gas turbines precludes comprehensive
variational studies, and as a result there are very few such experiments (Parker & Ryley, 1970;
Wenglarz, 1981). Consequently, experiments are often conducted in simpler geometries (such
as pipe flows), and the experimental results are used to validate numerical models, which
are then developed to predict particle behaviour in more complex geometries. The work in
this thesis comprises both experimental and numerical work. There has been a great deal of
research into gas-particle flows, and the aim of this research was to address two areas which
have been largely neglected to date. Although they both pertain to dilute gas-particle flows
and will feature together in future numerical work, they are best treated as two separate,

fundamental problems. As a consequence, the thesis is divided into two parts.

1.2 Part I - Numerical study of the direct calculation
of particle density using the Full Lagrangian ap-

proach

Numerical methods are usually divided between Eulerian and Lagrangian approaches. The
more intuitive Lagrangian approach tracks individual particles as they move through a fluid,
and tracking many such particles yields representative information about the whole particle
field. The Eulerian approach treats the particles as a continuum ‘fluid’ with properties rep-
resentative of averaged particle behaviour; for this reason it is also known as the ‘two-fluid’
approach.

The choice of modelling approach depends on the class of particles in question, and
particles are best classified using the Stokes number, St, which is a ratio of particle and fluid
time-scales:

Tp

St = (1.1)

Tf

T, Is a time-scale representative of particle motion, and is sometimes known as the inertial
relaxation time. A large dense particle will have a larger response time (and higher inertia)
than a smaller, less dense particle. 7 is a time-scale which reflects the temporal rate of
change of the fluid, and may be chosen in a number of ways depending on the flow conditions
and geometry. When St > 1, the inertial particles will ignore the fluid flow, while for St < 1,
the particles have plenty of time to respond to changes in the fluid flow, which now has a
much greater influence on particle motion.

The Eulerian approach solves the particle momentum and mass conservation equation for
particle density and particle velocity. This approach works best for small Stokes numbers. At

intermediate and large St, the method is less suitable, and effects such as crossing trajectories



(particles pathlines intersecting each other) are not well represented, because the particle
velocity cannot be multi-valued at a single point.

The Lagrangian approach involves the integration of the particle equation of motion along
particle pathlines to yield the particle velocity. Traditionally, the particle density (where particle
density is equivalent to the particle concentration) is found by applying an averaging procedure
to those particles which cross a particular Eulerian cell (the fluid flow field is solved using an
Eulerian approach). However, large numbers of particles are required to reduce the statistical
errors to acceptable levels (although comparatively few are needed to find the particle velocity
field accurately). The Lagrangian approach works best for large Stokes numbers. In the
limit of St — oo, crossing trajectories are well represented, and a large integration time-step
can be used, resulting in computational efficiency. However, at intermediate and small St,
fluid motion becomes important and the integration time-step must be of the same order of
magnitude as the fluid time-scale, and the number of particles required also increases. These
factors make the method computationally expensive.

In order to produce a numerical code that can be integrated in the gas turbine design
process, the method must be computationally efficient and capable of representing the correct
physical behaviour. As the majority of real gas-particle flows fall somewhere between the limits
of high and low Stokes numbers (where the choice of either Lagrangian or Eulerian approach
could be made), a natural target would appear to be a method that combines both approaches,
exploiting the advantages while avoiding the disadvantages of each. Most numerical studies
are carried out in two-dimensions, but as extension of this joint Eulerian-Lagrangian approach
to three-dimensions is desired, particular emphasis is placed on computational efficiency.

While it is beyond the scope of this thesis to complete such a joint Eulerian-Lagrangian
approach, one of its aims is to develop the Lagrangian side of the approach. A recent
work by Osiptsov (1998) allows the direct calculation of the particle density along particle
pathlines (which is known as the Full Lagrangian approach), thus reducing the large number
of particles required. The ensuing increase in computational efficiency allows the application
of the approach to smaller Stokes numbers than before, and extension to three-dimensional
calculations is possible. Osiptsov (1998) only applied his method to simple analytical flow
fields, and the workings of his method are established in chapter 2 (with particular attention
paid to the treatment of crossing trajectories), along with a study into the suitability of using
this Full Lagrangian approach with a computationally generated solution for the fluid flow
field.




1.3 Part II - Experimental and numerical study of
the influence of thermophoresis on particle de-

position

There have been many experimental studies into the relationship between particle size and
deposition rate in fully-developed turbulent pipe flow, as exemplified by the work of Liu &
Agarwal (1974). The attractiveness of these experiments is that this relatively simple flow field
features many of the characteristics of particle behaviour found in more complex geometries.
Modern industrial gas turbines may have mean free-stream temperatures of up to 1420 °C, but
material considerations require that the turbine blade temperature does not rise much higher
than 800 °C. This results in high temperature gradients near the blade surfaces, and small
particles experience a force in the opposite direction from that of the temperature gradient.
This phenomenon is known as thermophoresis, and causes small particles to deposit on the
turbine blades. While the free-stream temperature could be reduced, this would result in
reduced turbine efficiency and, depending on the particle size, may not even be necessary
(large particles are comparatively insensitive to thermophoresis). Hence, the variation of
deposition rate for particles of different sizes in a flow field in which a temperature gradient
exists, is of great importance. Chapter 3 provides an explanation of the various particle
transport mechanisms that will be encountered throughout this work, and also provides a
comprehensive review of experimental work in turbulent pipe flow, and a detailed assessment
of experimental and theoretical work on the form of the thermophoretic force, and its use in

studies of turbulent pipe flow.

The magnitude of the thermophoretic force depends mainly on the particle diameter
(through the Knudsen number) and the magnitude of the temperature gradient. Ideally, ex-
periments would feature a range of particle sizes under the influence of a range of temperature
differences. One of the most comprehensive set of experiments was carried out by Romay et al.
(1998), who studied particle deposition in turbulent pipe flow with a cross-stream temperature
gradient. The temperature gradient was established by heating the particle-laden flow before
entry to the pipe, whose wall was cooled. However, the temperature of the particle-laden
flow decreased as it travelled through the pipe so that a constant temperature difference (and
constant thermophoretic force) was not maintained. Leeming (1995) also carried out experi-
ments on thermophoresis in a turbulent pipe flow, and while managing to maintain a constant
temperature difference, the drawback was that only a single, low temperature difference was

achieved.

The aim of the experimental work in this thesis, was to perform similar experiments in
a turbulent flow, but with a constant temperature difference (which could be varied), and a
constant mean temperature. Chapter 4 describes the design of an experimental rig and the
procedures to carry out such experiments. A concentric annulus was chosen as the geometry.

It is a close geometric relative of the pipe, and the inner wall was cooled with a flow of water,



while the outer wall was heated with a heating tape. The result was a test section with a
constant temperature difference, and a near-constant mean temperature. The power to the
heating tape could be varied, allowing a number of different temperature differences to be
imposed on the flow. Chapter 5 describes the results of these experiments. In order to
provide a datum against which to compare the effects of thermophoresis, and to provide a link
with the pipe flow experiments of other researchers, isothermal experiments were also carried
out. Some interesting results from these are also presented.

There have been many theoretical and experimental studies of thermophoresis (under con-
ditions where thermophoresis is the sole force on the particle), which have attempted to provide
(or corroborate) an expression for the thermophoretic force. Considerable controversy existed
at one time over the correct expression, and this controversy has subsided with the general
acceptance of one particular expression. The validity of this expression will be investigated
by including it in a numerical study of deposition in a turbulent annulus with a number of
cross-stream temperature gradients, for comparison with the experimental results. Young &
Leeming (1997) developed a theory of deposition for the case of fully-developed turbulent pipe
flow. The strength of this theory was its relatively simple turbulence closure models which did
not obscure the underlying physical behaviour of the particles. This approach was modified for
the case of a turbulent annulus and, while Young & Leeming (1997) used Reynolds averaging
of the particle equations, particle density-weighted averaging was used for the present work.
A numerical computer code was produced to study deposition in a turbulent annulus. The
modifications for the case of an annulus, for density-weighted averaging, and the numerical
details of the creation of the code are described in chapter 6.

Chapter 7 presents and discusses the results of the numerical study in a turbulent annulus
with isothermal conditions and also with a cross-stream temperature gradient. Comparison
is made between these and the experimental results, and solutions using different expressions

for the thermophoretic force are evaluated.
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Chapter 2

The Full Lagrangian approach for
the calculation of inertial particle

transport

2.1 Modelling approaches in gas-particle flows

A large number of numerical methods have been developed for calculating dilute gas-particle
flows and comprehensive reviews have been published by Crowe (1982) and Crowe et al.
(1996). The continuous gas phase equations are usually solved in Eulerian form, and the
method of solving the particle phase equations normally takes one of two forms, depending on
how the particle flow is observed. Choosing a stationary point and observing the particles as
they move past results in an Eulerian description of the flow, while a Lagrangian description
may be had if the observer follows the same path as the particle. The Stokes number of
the particles largely determines which description is more appropriate. The two categories of
modelling approach will be discussed in more detail, along with a number of methods which

attempt to combine the best features of Eulerian and Lagrangian descriptions.

2.1.1 The Eulerian approach

Using the Eulerian (or two-fluid) approach, particles are treated as a continuum fluid with
properties representative of averaged particle behaviour. The particle momentum and particle
mass conservation equations are solved for the particle density and particle velocity fields.
Brownian and turbulent diffusion are represented by the addition of modelling terms to the
governing equations. The inclusion of turbulent/diffusive effects in the Eulerian approach does
not result in a significant increase in computational expense. This approach is most suitable for
small Stokes numbers. At intermediate Stokes numbers, when inertial effects start to become
important, the equation set may become ill-posed and effects such as crossing trajectories
are not well represented, because the particle velocity cannot be multi-valued at one point.

It should be noted that this part of the thesis is concerned with laminar flows, so that the
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term ‘inertial effects’ refers to those effects caused by large-scale streamline curvature, and

not turbulent inertial effects, such as turbophoresis.

2.1.2 The traditional Lagrangian approach

The traditional Lagrangian approach involves integrating the particle equations of motion
along particle pathlines. While comparatively few pathlines are required to define the particle
velocity field with good accuracy, it is not as easy to obtain the particle density field. The
normal approach is to apply a statistical averaging procedure to those pathlines which intersect
a particular Eulerian cell (particles are tracked through the Eulerian grid on which the gas
phase equations have been solved). Unfortunately, extremely large numbers of pathlines are
required to reduce the statistical errors to acceptable levels. For example, to reduce the local
error in particle density to less than 1% in a two-dimensional calculation (a very modest target
in CFD), each cell must be intersected by more than 10,000 pathlines (Crowe, 1982). The
Lagrangian approach is most suitable for large Stokes numbers, as it can represent inertial
effects such as crossing trajectories and rebounding, while a large integration time-step can
be used, thus making the method computationally efficient. However, at intermediate St
when turbulent/diffusive effects become important, the time-step must be of the same order
of magnitude as the time-scale of fluid turbulence. The background turbulent fluid flow
must be modelled, and this increases the required number of particle trajectories dramatically.
The reduction in size of the time-step and the increase in the required number of trajectories
combine to make the method computationally expensive. The computational cost (particularly

for three-dimensional flow fields) is prohibitive even on modern computers.

2.1.3 Other methods

There are also a range of methods that attempt to either combine Eulerian and Lagrangian
approaches, or to relax the restriction on the range of Stokes numbers for which they are

applicable. A number of the most promising are described below.

Joint Eulerian-Lagrangian approach

While Eulerian methods are most appropriate when St < 1 and Lagrangian methods when
St > 1, the use of either method when St & 1 results in the loss of either computational
efficiency or the representation of inertial effects. A method that combines the two approaches,
and exploits the advantages of each method while avoiding the disadvantages, would provide
an ideal approach for such situations. There have been a number of attempts at such a
combined approach.

The model of Elsden & Hutchinson (1996) begins with a Lagrangian component in the
form of a stochastic simulation, which calculates the particle diffusion coefficients required for

an Eulerian calculation, and allows the representation of effects such as crossing trajectories.
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Advantage is taken of the smoothly varying nature of the diffusion coefficient, and a ‘look-up’
table for the diffusion coefficient is compiled for a range of velocity and length scales. An
Eulerian calculation is then performed, and the mass and momentum equations are solved
with reference to the table of diffusion coefficients. The model’s agreement with experiment
was at least as good as other calculation methods, but it is computationally expensive, and
lacks elegance.

Menguturk et al. (1983) investigated the inertial and diffusive motion of particles in gas
turbines. They found that, for very small particles, an Eulerian model considering laminar
and turbulent diffusion inside the blade boundary layer was sufficient, because the inertial
deviation of particles from mean streamlines could be neglected. For large particles, diffusion
could be neglected and it could be assumed that the particles had large enough relaxation
times so that the viscous boundary layer around the blade did not affect particle trajectories,
allowing the use of a Lagrangian approach based on inviscid flow data. However, there is an
intermediate particle size that may respond equally to both inertia and diffusion, and it is this
problem that was addressed. The method takes the initial particle conditions at the edge of
the boundary layer from a Lagrangian solution for inviscid flow, and then proceeds with an

Eulerian boundary layer calculation which considers laminar and turbulent diffusion.

This approach assumes little interaction between diffusive and inertial transport mecha-
nisms. This represents a significant simplification, as the different mechanisms may act in
unison. For example, Konstandopoulos & Rosner (1995a,b) have shown that inertial effects on
small particles in boundary layer flows with streamwise curvature, and in which a temperature
gradient exists, can be significant. While this combined approach is promising, the ‘cut-off
point’ between the relevant mechanisms cannot be considered to be as extreme without sig-
nificant loss of accuracy, and a more gradual ‘transition’ between them needs to be found.
This could involve extending the limits of applicability of the Eulerian part of the calculation

to deal with inertial effects due to streamwise curvature.

Eulerian diffusion-inertia approach

Slater & Young (1998) extended the region of validity of the Eulerian method to higher
Stokes numbers, by addressing some of the problems associated with inertial effects due to
streamwise curvature. An absorbing boundary condition was used to produce solutions for
inertial deposition on solid boundaries without discontinuities in particle density (incorrect
boundary conditions often allow p, — c0). A new artificial dissipation scheme for capturing
spatial discontinuities, along with a new damping technique to guarantee positivity of particle
density, allowed the accurate prediction of ‘shadow zones' (regions devoid of particles when
particle pathlines separate from solid boundaries due to their inability to follow the surface
curvature) without any new numerical or stability issues. While a general solution to the
representation of crossing trajectories was not found, a particular test case involving crossing

trajectories was undertaken successfully. Favourable comparisons were made between the
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solutions from the new approach and those from a traditional Lagrangian approach. The
method also has the potential for including turbulent/diffusive mechanisms without a heavy

computational penalty.

The Osiptsov Lagrangian approach

Recently, a new approach has been developed by Osiptsov (1998) which allows the direct
calculation of the particle density along particle pathlines. This is a major development, as the
direct calculation of the particle density removes the need for the use of an averaging procedure
and the ‘counting’ of a large number of particles. This is achieved by integrating differential
equations for the components of the Jacobian of the Eulerian-Lagrangian transformation.
Knowing the Jacobian yields the particle density via the Lagrangian form of the particle
continuity equation. Calculating the particle density directly removes the need for the large
number of particles required to reduce the local error to an acceptably small value, and vastly
improves the computational efficiency.

A requirement of the Osiptsov Lagrangian method is that the gradient of the fluid velocity
field be known. Osiptsov only applied his method to simple flow fields which could be described
analytically and which therefore had smooth and continuous fluid velocity gradients. CFD
generates velocity fields which are inherently ‘noisy’ and it needs to be established whether
the method can be used when the fluid velocity gradients have been obtained from a CFD
solution. The fact that equations are solved for particle density as well as particle velocity
means that the Osiptsov Lagrangian approach belongs to a wider category that has become

known as the ‘Full Lagrangian’ approach.

Other Full Lagrangian approaches

Attention should also be drawn to the method of Tarasova & Tsirkunov (2000), which was
developed independently to, but is essentially the same as, what has been termed the ‘Osiptsov
Lagrangian’ approach over the course of this work. The authors find that the additional
ordinary differential equations for the elements of the Jacobian, can be extremely cumbersome
when studying flows that require additional forces acting on a particle from a carrier gas (e.g.
Saffman lift force, thermophoresis) to be taken into account. Instead, the elements of the
Jacobian are calculated from finite-difference formulae with the use of several (typically two)
additional particle trajectories close to the basic one.

The origins of the Full Lagrangian approach are obscure but the first overt derivation of a
relevant set of equations was given by Fernandez de la Mora & Rosner (1981). The authors
did not exploit the method further as they were primarily concerned with an Eulerian rather
than a Lagrangian solution to their problem. Superficially, this method appears similar to that
of Osiptsov, but closer examination of the mathematics highlights some important differences.
Fernandez de la Mora & Rosner (1981) viewed the particle continuity equation equation as

an Eulerian equation which could, with advantage, be solved along Lagrangian trajectories
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by working with the substantive derivative. The Osiptsov approach, on the other hand, is
firmly rooted in a Lagrangian framework, with the particle density being obtained from the
Lagrangian form of the particle continuity equation by computing the change in volume of
a ‘particle cluster’ along its trajectory. This allows the calculation to handle certain types
of singularity when the particle density becomes infinite, because the Jacobian (from which
the particle density is calculated) passes smoothly through zero. However, the method of
Fernandez de la Mora & Rosner (1981) requires the calculation of the divergence of the particle
velocity field to obtain the particle density, which itself becomes infinite when the particle
density is infinite, leading to problems if a numerical solution is attempted. A more detailed
comparison of these two methods can be found in Healy & Young (2003). The Osiptsov
Lagrangian approach is found to be more suitable due to its wider range of applicability.
To avoid confusion with other ‘Full Lagrangian’ approaches, the term ‘Osiptsov Lagrangian’

approach will be used over the course of this chapter.

2.1.4 Proposed direction towards a numerical method covering

the complete range of Stokes numbers

One of the motivations of this work is quantifying particle deposition and erosion in gas
turbines, so that new turbine designs can be tested for these effects prior to manufacture.
Three-dimensional effects may also be significant (end wall boundary layers, passage vortices,
radial flows - Ulke & Rowleau (1976)). For reasons of practicality, this three-dimensional
analysis would need to be completed in a matter of hours rather than months.

The objective of this chapter is to assess the potential of the Osiptsov Lagrangian method
for use with two-dimensional CFD generated flow fields, to predict inertial particle transport.
If successful, the computational time for such calculations would be greatly reduced as far
fewer particles would be required for an accurate solution. Extension to three-dimensional
cases would then become computationally feasible.

For cases where both large-scale inertial and turbulent/diffusive effects are important, a
joint Eulerian-Lagrangian approach (similar to that of Menguturk et al. (1983)) would be the
long term numerical objective. The Osiptsov Lagrangian approach could be used to provide
a solution of the particle flow field up to the edge of the boundary layers (outside of which
the turbulence has little effect on the particles), from which point the Eulerian diffusion-
inertia approach (with turbulent/diffusive effects included) could be used to complete the
calculation. For cases where either inertial or turbulent/diffusive effects are important, the
appropriate component (Lagrangian or Eulerian) could be used. As both components would
be computationally efficient and capable of representing almost all of the necessary transport
mechanisms, accurate and quick three-dimensional analyses would then be possible.

The investigation into the Osiptsov Lagrangian method will take the following form:

- development of the method in its simplest, one-dimensional form, so that its basic

operation becomes obvious. It will be applied to some simple test cases.
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- two-dimensional development.

- application to the case of two-dimensional fluid-particle stagnation point flow, using
an analytical fluid flow field, and comparison between a numerical solution and the

analytical particle solution that exists for this case.

- development of a special treatment of the equations at low Stokes numbers, to re-
lieve mathematical stiffness when the time-step is required to be less than the particle

relaxation time in order to maintain numerical stability.

- application to two-dimensional fluid-particle flow over a cylinder, using an analytical fluid
flow field and a CFD-generated fluid flow field, and comparison with a traditional La-
grangian approach. A method is developed for the calculation of fluid velocity gradients,
and validated.

- quantification of the improvement in computational time compared with a traditional

Lagrangian approach, using the case of fluid-particle flow over a cylinder.
- testing the reaction of the method to crossing particle pathlines.

- application to two-dimensional fluid-particle flow in an industrial gas turbine is demon-

strated, along with a simple test of accuracy of the calculated particle density field.

2.2 The Osiptsov Lagrangian method in one-dimension

Consider a one-dimensional dilute gas-particle flow satisfying the usual dusty-gas approxima-
tions. In the Lagrangian formulation (see figure 2.1) attention is focused on an element of
‘particle fluid’, which, at time ¢ = 0, is situated at position = a. At a later time ¢ = 7 the
same element has moved to position x = z,, and the particle density and velocity associated
with it are denoted p, and V. Fixing a and 7 is therefore sufficient to define the values of x),

pp and V' through relationships of the form:
T, = zp(a, ) pp = pp(a,7) V=V(a,T) (2.1)

The Lagrangian coordinate a identifies a particular particle pathline and the Lagrangian time
7 identifies a point on that pathline.

The spatial extent dx, of the element at time 7 is generally different from its spatial
extent da at time zero. This is because the element becomes stretched or compressed by
local variations of particle velocity, caused by acceleration or deceleration of the background
fluid flow field. Nevertheless, in the absence of Brownian or turbulent diffusive fluxes, the

element always comprises the same particles. The conservation of particle mass therefore
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da 6Xp

Figure 2.1: A one-dimensional element of ‘particle fluid’ at timest =0and t =17

requires,
pola, 7)1, = pyla,0)da (2.2)
In the limit as da — 0 this may be written,
|J(a,T)|pp(a, ) =1|J(a,0)|pp(a, 0) = constant (2.3)

where .J is the Jacobian of the Eulerian-Lagrangian transformation,

ox,(a,
J(a, 1) = 71)5(@ ) (2.4)
and J(a,0) = 1. Note that the partial differentiation is at constant 7.

Equation 2.3 is the Lagrangian form of the particle continuity equation. The absolute
value of .J is used in order to cover the possibility that the ‘back’ of the element overtakes the
‘front’ with the result that .J becomes negative. Calculation of the particle density therefore
reduces to the equivalent problem of finding the variation of the Jacobian .J along the particle
pathline.

Assuming that the only force experienced by the particles is that due to steady-state drag,
Newton's second law of motion (the Lagrangian form of the particle momentum equation) is

written,

oV (a, )

S = BU - V) (2.5)

where the partial differentiation is at constant a. U is the local fluid velocity at the position

of the particle element and [ is the reciprocal of the particle relaxation time 7,:

2
o pp,mat dp

= 2.6
Tp 18/,69 ( )

where p, mq is the particle material density, d, is the particle diameter, and p, is the gas
dynamic viscosity.

The variation of .J with time along a pathline is described by 27 (at constant a) and is

15



denoted by the variable w,

oJ
- 27 2.7
w= " (2.7)
Introducing equation 2.4, switching the order of differentiation and noting that V' = % (at
constant a),
_0J 0 (0x,\ O (Ox,\ OV
w_E_&'(aa)_aa(ar)_aa (28)

Differentiating w with respect to Lagrangian time, again switching the order of differentiation,

and substituting equation (2.5) gives,

ow 0 [0V 0 [oV 0
o ~or (a_) = 9 (a_) = 9/ V)] (29)
Treating (3 as a constant (more precisely assuming % = 0), equation 2.9 becomes,
ow ou oV ou
gl == ) =8 = — 2.1
or <8a 8a) 6(8a w) (2:10)
%—g (at constant 7) in equation 2.10 is a Lagrangian derivative and is to be interpreted as

follows. Consider a particle element that starts at time zero at location a and arrives at time
T at location z, where the fluid velocity is U. Now consider an adjacent element that starts
at time zero at location a + da and arrives at time 7 at location x, + dx, where the fluid
velocity is U + 0U. 2Z is then equal to the limit of ¥ (at constant 7) as da — 0.

%—Z is awkward to evaluate because U is generally only known in Eulerian coordinates.

However, using the chain rule,

oU(a,7)  Ozp(a,7)0U(x,1) oU (x,t)
= = 2.11
da da ox J ox (2.11)
‘g—g can, in principle, be evaluated from the fluid velocity field specified in Eulerian coordinates.

Practical problems that arise in calculating g—g will be discussed later.

Equations 2.5, 2.7 and 2.10 are three first-order ordinary differential equations giving the
variation of the three unknowns V', J and w along the particle pathline defined by a particular
value of a. Equation 2.5 is uncoupled from the other equations and can be solved for V' in
the usual way. Equations 2.7 and 2.10 must be solved simultaneously for J and its derivative
w. The variation of particle density along the pathline can then be obtained from equation
2.3.

Initial conditions must be specified for V', J and w. Vi = V(a,0) is defined by the initial

gas-particle slip velocity which must be prescribed. .Jy = J(a,0) = 1, as mentioned above.
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From equation 2.8,

_ _ (VY _ OV _ o[V _Jou
wo_w(a’o)_(aa>0_J0<8x>0_%(87)0_%ﬂ(% Vo) (2.12)

wy Is therefore related to the initial slip velocity.

2.5 7
r"U) 2.0
.E. |
L u//v U\\WV
S N\v
NN
S v
] U-v)
0.0 T T ‘ T ‘ ‘ 1 X [m]
L. U-v) s 10 15 (U-v) 2° 25
1.0
1.5 —
2.5 7
2.0 o Po
& 1.5
)
-~ 1.0
‘T'B 0.5 w
= J J
0.0 T \ T ‘ ‘ 1 X [m]
5 10 15 \'/2;' 25
0.5 1/ w W
1.0

Figure 2.2: Gas velocity, particle velocity, slip velocity, Jacobian time derivative, Jacobian
and particle density for an accelerating/decelerating 1-D gas flow field. J and p, are non-
dimensionalised by J, and p.

2.2.1 One-dimensional examples

It is appropriate to examine some simple one-dimensional examples, in order to illustrate the

behaviour of ‘new’ quantities such as J and w when there are changes in U, V' and p,.

1 1

, accelerates to 2 ms™, and its

1

A gas with a constant initial velocity of Uy = 1 ms™
velocity remains constant before deceleration back to 1 ms™ occurs, followed by another
period of constant velocity (figure 2.2). The initial particle velocity (V; = 2 ms™!) takes
little time to attain the gas velocity of U = 1 ms™', due to its small relaxation time of 7, =

0.5 s. During the periods of gas acceleration and deceleration, V' can be seen to lag behind
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U, and the extent to which it does this is shown by the slip velocity (U — V). Also shown
are similarities between the behaviour of the slip velocity and w, the time derivative of the
Jacobian. J can be seen to increase (decrease) with the acceleration (deceleration) of the

gas, as stated earlier, while it is inversely proportional to pj,.

If a gas with a constant initial velocity of Uy = 1 ms™!, decelerates at a constant rate
until U = 0 ms~!, it can be seen from figure 2.3 that V' will also tend towards 0 ms=!. .J
decreases until it reaches zero, and consequently, p, rises rapidly, tending to infinity where
U reaches zero. p, always tends to infinity when J becomes very small (or zero). This
happens in two-dimensions when particle trajectories cross, and will be discussed later in
more detail. Osiptsov (1984) also discusses some interesting one-dimensional particle flows,

including singular situations when J — 0 and p, — oo.

2.5 7
—
[9)] 2.0
£
1.5
—
=
Q 1.0
> os
)
0.0
0.5
1.0
1.5 —
2.5 7
2.0 Po
&L 1.5 7
e}
- 1.0
—
2 0.5 J
2
0.0 y X [m]
5 10 15 20 25
0.5 1/ w
1.0

Figure 2.3: Gas velocity, particle velocity, slip velocity, Jacobian time derivative, Jacobian and
particle density for a 1-D gas flow field decelerating to a halt. J and p, are non-dimensionalised
by Jo and py .
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Figure 2.4: A two-dimensional element of ‘particle fluid" at times ¢t =0and t =7
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defined by,

0w _OVe 0Ty OV, 0T _ Ve 0] 0V,
W er T 9a’ YT or o % or  ov’ Y or  oa
(2.16)

Carrying out similar manipulations as in the one-dimensional case then leads to four differential
equations analogous to equation (2.10),

01;:@ _ 5 36Uax oy, (2.17a)
Béu:b _ 3 36be ~wy, (2.17b)
% _ 5 % — wye (2.17c)
ag;;,b _ ﬁ(% . (2.17d)

The chain rule expressions which relate the Lagrangian and Eulerian derivatives of U, and U,

are a little more complicated,

W _ ;. (gcxy, D00 (gy% H (2.18a)
W _ meaUz(azy,t) +be6Ux(gy,y,t) (2.18D)
Halobr) _y, 20l0 00y g, Koo (218¢)
W _ mbaUy(azy,t) +be8Uy(§y,y,t) (2.18d)

For a given particle pathline, equations (2.15), (2.16) and (2.17) represent ten ordinary dif-
ferential equations for the ten unknowns (two components of V', four components of .J and
four components of w). They can be integrated numerically if the components of the fluid
velocity gradient in Eulerian coordinates, required for equation (2.18), can be computed at
each point along the pathline. It is also necessary to know the values of V', .J and w at the
start of each pathline.
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Figure 2.5: A two-dimensional element of ‘particle fluid’ at time 7 = 0 to illustrate the
derivation of initial conditions
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2.16, some consideration shows that:

Weao = lim(6a — 0) <7Vx,2(;LVx,1> = lim(da — 0) <(V’%2 - Vw,l’);;(vx,lf - Vx,l))

(87)1’—2(%)0 — (Yp1 — ypl’)(aavz )o 1 oV, _ Vo dVio
Voo \Or ) Vao db

= lim(6a — 0)

(2.22a)

Wyq0 = lim(6a — 0) <7%25_ Vy’1> = lim(6a — 0) <(V;/2 _ Vy,l’);r (Vo — V;/l))
a a

_ lim(6a —» 0) (Or)v—>(F2)o = (=) (G0 _ 1 [0V, Ve dVyo
oa VI70 or 0 VI70 db

(2.22b)

2.3.2 Computational cost considerations

It should be pointed out, that for an incompressible and irrotational flow in two-dimensions,

oU. oU, oU. ouU,
e | d AR 2.23
ox dy an dy ox (223)
and the result of this, is that w,, = —w,; and w,, = wy,. There are now just four additional

equations, instead of eight.

Although three-dimensional flow fields will not be considered here, it is worth noting that
the Osiptsov Lagrangian method can, in principle, be extended to such flows. V' now has three,
and J and w each have nine, components. A total of 21 differential equations (18 additional
equations) can be derived corresponding to the 21 unknown dependent variables. Again, for
an incompressible and irrotational flow, the number of additional equations is reduced (10

additional equations are required in three-dimensions with these simplifications).

2.3.3 A two-dimensional example: stagnation point flow

Two-dimensional, inviscid, incompressible stagnation point flow is a good example with which
to assess the potential of the Osiptsov Lagrangian method because analytical solutions exist
for both fluid and particle flow fields.

The fluid flow field is shown in figure 2.6, and the stream function ¥ = —Axy (where
A is a positive constant) describes the flow in the upper-left quadrant of the flow field. The

velocity components and their spatial derivatives are then given by,

ov o, o,
U, = — = —Auz, T = A, T 2.24
dy v ox dy (2242)
ov ou, ouU,
_ oY v _ 9% _ 4 2.24
Uy ax y? ax 07 ay ( b)
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Figure 2.6: 2-D stagnation point flow.

9p
or

and V,, = %{’, together with equation 2.24 for U, and U, into equation 2.15 to give two

The analytical solution for the particle velocity field is obtained by substituting V, =

integrable second order differential equations for the particle pathlines in parametric form,
Ty, = 2,(7), yp = yp(7), (Osiptsov, 1984). Details of this process can be found in appendix
A.1, along with the derivation of an analytical expression for the Jacobian, from which the
particle density can be found.

The particular case of interest corresponds to particles injected at 7 = 0 at points along
the = —1 line with zero y-direction velocity (V, o = 0) and zero z-direction slip velocity
(Veo = Ugp). With these initial conditions, it can be shown that both V, and p, are
independent of y and depend only on z, i.e. V, = V,(x) and p, = p,(z). Substituting
these initial conditions into equations 2.21 and 2.22, gives wyq0 = Wyy0 = Wyso = 0 and
Wyz,0 = pU, ,O/Um,O-

The Osiptsov Lagrangian solution is obtained by time-integrating equations 2.15, 2.16
and 2.17 numerically along particle pathlines starting from the same initial conditions. For
the present calculations, a predictor-corrector algorithm was used for all the equations. At
each time-step, the components of the fluid velocity and the spatial derivatives were obtained
directly from equation 2.24.

Examination of the analytical solution shows that, when non-dimensionalised, it can be

expressed in terms of just one parameter, the Stokes number, defined by,

A

(2.25)
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This is to be interpreted as the ratio of the particle inertial relaxation time (37') to a fluid
time-scale (2/A). Figure 2.7, shows fluid streamlines, particle pathlines and the particle density
variation, in the upper-left quadrant of the flow field for several Stokes numbers, when A = 1.
In virtually all cases, the Osiptsov numerical and analytical solutions are indistinguishable and
hence only the numerical solution has been plotted.

The analytical solution for V, (see appendix A.1), has three types of solution depending
on the roots of its auxiliary equation. The roots change their nature at St = 0.125. In
the subcritical regime, St < 0.125 (figure 2.7a), particles approach the y-axis asymptotically
as y — 00, while the particle density remains finite. Particles do not cross other particles
pathlines nor the y—axis. At the critical condition, St = 0.125 (figure 2.7b), the solution
is singular and p, — oo as & — 0. In the supercritical regime, St > 0.125 (figure 2.7c),
particles reach the y-axis with a finite velocity and density. The situation shown is equivalent
to replacing the y-axis by a perfectly absorbing wall.

If the y-axis is not replaced by such a wall, the finite x-direction velocity of the particles
means that they can penetrate into the upper-right quadrant of the stagnation flow. When
particles do this, they oscillate about the y—axis with decaying amplitude, and this leads to
the crossing of particle trajectories, and an increase in the local particle density. The regions
of crossing trajectories are bounded by lines of infinite particle density.

For the case of St = 0.5 (figure 2.7d), the decay occurs relatively quickly. The particles
penetrate across to x ~ 0.3, and return across the y-axis before turning once more back
across the y—axis. At the extent of particle penetration into the upper-right quadrant, the
particle density becomes infinite. An infinite value of particle density is also found at each
‘turning point’ where the particles reverse direction and head back towards the y—axis. The
x—coordinates of these ‘turning points’ are coincident with lines of infinite particle density, and
these define the boundaries within which particle trajectories cross. The ability of the Osiptsov
Lagrangian method to deal with this behaviour, and other types of crossing trajectories, will
be discussed later. Healy & Young (2003) compared the behaviour of the Jacobian and
the divergence of the particle velocity field (from which the particle densities are calculated)
under these circumstances, to demonstrate the advantages of using the Osiptsov Lagrangian
approach over that of Fernandez de la Mora & Rosner (1981), for situations where particle

trajectories cross.

24



pp 5.0 ] — pp 5.0 ] —
\ \
-1.0 -0.5 0.0 -1.0 -0.5 0.0
x x
1.0 1.0
Y 0.5 Y 0.5
0.0 0.0
-1.0 -0.5 0.0 -1.0 -0.5 0.0
x x
a) Subcritical St = 0.05 b) Critical St = 0.125
10.0 10.0 ‘
|
|
|
Po 5.0 - - P 5.0 - | -
|
|
|
\ \ \
-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5
x x
1.0 / 1.0 j
Yy 0.5 _t,/// - Y 0.5 - B
———
—
—
0.0 \ 0.0
-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5
x x
c) Supercritical St = 0.5 (absorbing wall) d) Supercritical St = 0.5

Figure 2.7: Particle pathlines (solid) and fluid streamlines (dashed - a) and b) only), and
particle density for flow near a stagnation point
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2.4 Special treatment at low Stokes numbers

A serious computational problem arises at low Stokes numbers if an explicit numerical scheme
is used to integrate the equations. As is well-known, the time-step of an explicit scheme must
be less than the particle relaxation time in order to maintain numerical stability. At low Stokes
numbers, the equations become mathematically ‘stiff’, very small time-steps are required, and
the computational time becomes excessive. One method of overcoming this problem is to
use a semi-analytical approach whereby the Lagrangian equations are integrated analytically
over a time interval which is long compared to 3! but short compared with the time-scale
of flow changes. This approach is simpler and more transparent than traditional backwards-
difference numerical methods for stiff ordinary differential equations. The method is described
below with reference to the one-dimensional equations but the extension to two-dimensions

is straightforward.

The particle equation of motion (equation 2.5) can be rewritten,

oV =) ou
—_ V-U)=—— 2.26
Multiplying by the integrating factor " and rearranging,
oV -U) 4 d oU
T VU’ = = |efT(V —U)| = —=Z€°7 2.27
T BV - D) = (V- T) | = = (2.27)

Then, integrating analytically (from 7 = 0 to 7 = A7) while assuming ‘?3—(7] to remain constant

gives,

v

— - — —BAT _
(V= U) = (V —U)ge G or

(1 —e™P27) (2.28)
The first term on the right hand side represents the exponential decay, with time constant
B~ L, of the slip velocity at the start of the current time-step. The second term represents the

exponential approach (also with time constant 7') to the local ‘steady-state’ slip velocity

-19U
or”

An identical approach can be used to integrate out the stability restriction in equation
2.10. Thus, multiplying by €°™ and integrating analytically, assuming %—Z to remain constant,
oU

_a(l _ e—ﬁAT) (2.29)

w = woe PAT +

A further integration gives an expression for .J to replace equation 2.7,

1—e A7\ U 1 — e PAT
J = Jo+wy <6T> 5 (Ar - GT) (2.30)
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The full set of equations for two-dimensions is given in appendix A.2.

Equations 2.28, 2.29 and 2.30 can be applied using a predictor-corrector algorithm (this
is necessary as x, is needed to find U and thus V/, while V' must be known in order to find
xp). Now, however, there are no stability restrictions and the time increment A7 is only
limited by the accuracy of the assumptions that %—Z and %—Z remain constant. In this way,

calculations for flows at very low Stokes numbers can be performed accurately with no increase

in computational time.
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Figure 2.8: Near-cylinder grid for inviscid CFD calculations

2.5 Fluid-particle flow over a cylinder

2.5.1 Calculation of the fluid velocity field

Inviscid, incompressible fluid-particle flow over a cylinder has been investigated by Morsi &
Alexander (1972), Fernandez de la Mora & Rosner (1981), and others. The flow is unphysical
because there are no boundary layers but it is still a useful test case because of the existence
of an analytical solution for the fluid (although not the particle) velocity field. The stream

function W is given by,

R2

- 2.31
1'2 + y2 ( )

U=Uyyll

where U, is the velocity of the oncoming flow and R is the radius of the cylinder. Analytical
expressions for the fluid velocity components can easily be obtained by differentiating equation
2.31. The Stokes number for the cylinder calculations is defined by St = Uy, /(R[).

The fluid velocity field can also be obtained from a CFD calculation and this can then

be used to determine whether or not the Osiptsov Lagrangian method can function with a
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a) Analytical fluid velocity z-component

b) CFD fluid velocity z-component

c) Analytical fluid velocity y-component

d) CFD fluid velocity y-component
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Figure 2.9: Comparison between analytical and CFD fluid velocity fields
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non-analytical fluid flow field. The outcome is crucial because if the method is restricted

solely to analytical flow fields it is of little practical value.

The inviscid CFD solver used was actually written for duct flows but equation 2.31 rep-
resents the flow around an isolated cylinder. In order to model the far-field boundary as
realistically as possible, the duct height was made very large in comparison to the cylinder
diameter. The near-cylinder CFD grid is shown in figure 2.8 but the actual extent in the
y-direction was five times greater. A comparison between the analytical and CFD generated
velocity fields is shown in figure 2.9. The agreement is rather better than a comparison of the

contour plots suggests, as the method of presentation tends to exaggerate errors.

Figure 2.10: A cell of the Eulerian grid showing the projections L, and L,

2.5.2 Calculation of the fluid velocity gradient field

It is well-established that particle velocity fields can be computed accurately using CFD gen-
erated flow fields, but integration of the equations for the Jacobian requires a knowledge, not
only of the fluid velocity components, but also of their gradients. It is quite feasible that
numerical differentiation of a ‘noisy’ CFD velocity field may generate unacceptable errors. A
special technique was therefore developed to obtain the velocity derivatives from a CFD solu-
tion generated on a non-uniform grid. As numerical differentiation enhances errors, a method

based on numerical integration was used.

The so-called ‘gradient theorem’ (a special case of Gauss' theorem) is expressed by,

fi $dS = / . Vd(vol) (2.32)

where vol is a finite volume enclosed by a surface S and ¢ is any scalar function of position.

When the theorem is applied in finite-difference form to the single two-dimensional quadrilat-
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Figure 2.11: Comparison between analytical and CFD fluid velocity gradient fields
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eral cell of the Eulerian grid shown in figure 2.10, the following relationship is obtained,

S O(LaT + L) = (%+ %—) A (2.33)

sides

On the left hand side, L, and L, are the projections of a side normal to the z— and
y—directions and ¢ represents a mean value along the side. On the right hand side, %
and g—z are mean values of the derivatives, averaged over the cell which is of area A. Setting

¢ = U, and then ¢ = U, and separating into components gives four scalar equations,

oU. oU.

A—L = L A—L = L 2.34
o zd:U . 3 zd:U y (2.34a)
oU. oU,

A—Y = L, A—Y = L 2.34b
ax sz%;gUy ay Sizd;qu Yy ( 3 )

Equation 2.34 can be used to calculate the four required velocity gradients from the CFD
generated velocity field. Values along particle pathlines are then obtained by interpolation.
The method can easily be adapted for either cell centre or cell vertex storage schemes.

Figure 2.11 provides a comparison between the analytical and CFD-based calculations of

OUy AUy
ox oy

and

. The agreement is not perfect but the main features are reproduced reasonably

well by the numerical calculation. Similar agreement is obtained for 9% and aa—Uyy but these

ox
U U .
e — %2 gpd e — =), The real test, however, is whether or
ox oy oy ox

not this level of accuracy will generate unacceptable errors in calculating the particle density
field.

are not shown here (as

2.5.3 Calculation of the particle density field

Particles were computationally injected along a line =, 0 = —3R (the centre of the cylinder is
at = 0) with uniform density p, o, zero y—direction velocity (V,,o = 0) and zero z—direction
slip velocity (V0 = Us,). As before, Jyu0 = Jypo = 1 and Jyp o = Jya o = 0. From equations
2.21 and 2.22,

aUx,o w o BU ,0
b 0T U

Wya0 = Wypo = 0 Wypp = (2.35)

The Lagrangian equations 2.15, 2.16 and 2.17 for the components of the particle velocity,
the Jacobian and its derivatives were then integrated along particle pathlines through the flow
field (see appendix A.3 for details). The fluid velocity gradients required for equation 2.18
were obtained either analytically from equation 2.31 or numerically from the CFD solution
(using equation 2.34). For low Stokes numbers, the special treatment described in section

2.4 was applied in a two-dimensional form.
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Contour plots of the particle density fields for four different Stokes numbers are shown in
figure 2.12 (a-p). For each Stokes number, a traditional Lagrangian calculation (again see
appendix A.3) was performed on the analytical and CFD generated fluid flow field, and 10,000
particles were used in the calculation. An Osiptsov Lagrangian calculation was also carried
out on both the analytical and CFD generated fluid flow field, and just 500 particles were
used. In each case, the integration time-step was chosen so that about five steps were needed
for a particle to cross the smallest Eulerian cell.

The traditional Lagrangian method calculates the particle density by counting the number
of particles crossing a particular Eulerian cell, dividing by the area of that cell, and normalising
using the inlet particle density. The particle density is then known at the centre of each
Eulerian cell. The Osiptsov Lagrangian method calculates the particle density directly along
each particle pathline at each integration time-step. To produce the Osiptsov Lagrangian
contour plots of figure 2.12, the particle density was interpolated onto the CFD mesh of
quasi-streamlines and orthogonals. This was achieved, firstly by interpolating along pathlines
to give a set of off-mesh values on each orthogonal, and then by interpolating along the
orthogonals to give a set of on-mesh values, suitable for contouring. This independently
developed method is very similar to that of Geller et al. (1993) (see appendix A.4).

Results for a particle flow with St = 10 are shown in figure 2.12 (a-d). The particles have
high inertia and their pathlines are almost straight. Particles launched directly upstream of the
cylinder deposit on the surface (a perfectly absorbing boundary is assumed) and a ‘shadow-
zone', devoid of particles, forms behind the cylinder. The Osiptsov Lagrangian solutions on
either flow field show very good agreement. The traditional Lagrangian solutions deviate from
each other, and from the Osiptsov Lagrangian solutions.

For St = 1.0 (figure 2.12 (e-h)), the particles follow the fluid streamlines more closely,
resulting in pathline ‘bunching’ near the particle ‘separation’ point at the top of the cylinder.
The shadow-zone is larger than before and there is a steep particle density gradient close to
the ‘separation pathline’. All the solutions show close agreement.

For St = 0.1 (figure 2.12 (i-1)), the particle separation point moves upstream. Agreement
between the methods is still very good.

Figure 2.12 (m-p) shows the results for St = 0.01. This is a difficult test case because the
particle pathlines deviate only slightly from the fluid streamlines, as indicated by the very small
shadow-zone behind the cylinder. As for the St = 10 case, the Osiptsov Lagrangian solutions
show very good agreement with each other, while the traditional Lagrangian solutions deviate
from each other, and from the Osiptsov Lagrangian solutions.

Depending on the limits used in constructing contour plots, information may be obscured,
and the results may be misleading. Therefore, figure 2.13 (a-d) shows plots of particle density
at the outlet of the flow field (right hand side of plots in figure 2.12) for the different schemes
used, over a range of Stokes numbers. In all cases, the Osiptsov Lagrangian calculations on a
CFD and analytical flow field, are in close agreement, with slight differences occurring in the

location of the beginning of the shadow-zone. This is a result of slight differences in the
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Figure 2.14: ‘Noisy’ particle density contour plot as a result of reducing the number of particles
used in a traditional Lagrangian calculation for fluid-particle flow over a cylinder (analytical
flow field with 200 particles and Stokes number = 1)

fluid flow fields, but agreement is close enough to support the use of the method when an
analytical solution for the fluid flow is not available.

Using either method, there are differences between the solutions for the analytical and
CFD flow fields, but more significantly there are greater differences between the traditional
Lagrangian solution and the Osiptsov Lagrangian solution regardless of the flow field used.

This will be shown to be as a result of the method of calculation of particle density.

2.5.4 Number of particles required for the calculation of the

particle density field

The calculations presented in figures 2.12 and 2.13 were carried out using 500 particles for
the Osiptsov Lagrangian method, compared to 10,000 for the traditional Lagrangian method.
The number of particles chosen for the respective calculations was based on the minimum
number required for the particle density to reach a stationary average, i.e. the number of
particles that result in a particle density field that does not change with a further increase in
the number of particles. The effect of using too few particles in a calculation is shown in the
contour plot of figure 2.14, which is extremely ‘noisy’ compared to figure 2.12g, which is the
equivalent case but with 10,000 particles instead of just 200.

Figure 2.15a shows particle density values at the outlet of the flow field, for the two
methods using a range of particle numbers. The Osiptsov Lagrangian calculations of the
previous section were carried out using 500 particles, but it can be seen that the result is
unaffected when just 200 particles were used. The traditional Lagrangian calculations used
10,000 particles, and it can be seen that these results do not coincide with those for 200 and
500 particles. Above 10,000 particles, the solution was found to remain unaltered.

It has been established that the Osiptsov Lagrangian and traditional Lagrangian methods

give solutions for particle density that differ from each other. Lagrangian calculations attempt
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to solve for the particle properties at every point in a domain, but use a finite number of particle
trajectories. The Osiptsov Lagrangian approach views the particle density between adjacent
pathlines as being an intermediate value which can be estimated by interpolation. Thus an
exact value of particle density can be found at any point. The traditional Lagrangian approach
finds an average value for particle density in each Eulerian cell through which particles pass.
Hence, the quality of the traditional Lagrangian solution is limited by the quality of the
computational grid (i.e. the grid from the fluid flow calculation), even when large numbers
of particles are used. By using an extremely fine grid with a very large number of particles
passing through each cell, the traditional Lagrangian method should give the same result as
the Osiptsov Lagrangian method. Such a hypothesis is difficult to test due to computational
expense, but figure 2.15b examines the effect of doubling the number of y-direction grid cells.
This has no effect on the Osiptsov Lagrangian solution. However, the traditional Lagrangian

method (with twice as many particles to keep up with the increase in grid cells), gives a
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Figure 2.15: The effect of particle numbers and computational grids on traditional Lagrangian
and Osiptsov Lagrangian calculations using an analytical flow field for fluid-particle flow over
a cylinder with Stokes number = 0.5
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different result, that is much closer to the Osiptsov solution.

The Osiptsov Lagrangian method solves ten ordinary differential equations, while the
traditional Lagrangian method solves just two. Hence, for the same number of particles,
the Osiptsov Lagrangian calculation requires five times as much CPU time. However, it
has been shown that the Osiptsov calculation can be performed accurately with just 200
particles, compared with 10,000 particles which are needed using the traditional calculation.
This more than offsets the cost of the extra equations, with the result that the Osiptsov
Lagrangian approach is almost ten times faster than the traditional Lagrangian approach, for
two-dimensional problems. It should be pointed out that for this particular problem, the flow
field is both incompressible and irrotational, so that (as pointed out in section 2.3) there are
just six different ordinary differential equations to be solved using the Osiptsov method. In
this case, the Osiptsov approach is therefore almost twenty times faster than the traditional
Lagrangian approach. These savings would be even more pronounced in three-dimensions.

In summary, these calculations demonstrate that the Osiptsov Lagrangian method can be
applied reliably using a CFD-generated fluid flow field. To highlight the accuracy and speed
of this method, the particle density fields were calculated using the traditional Lagrangian
method of computing a very large number of pathlines and applying an averaging procedure
to those intersecting each Eulerian cell in turn. The CPU times for the Osiptsov method
were less by factors ranging from ten to twenty, and gave a better quality solution. Further
improvements in computational time could be achieved by use of an improved algorithm for
locating the Eulerian grid cell in which the particle resides. Zhou & Leschziner (1999) recently
developed a new algorithm that claims to be about 30% faster than the most efficient scheme

available at that time.

2.6 Crossing particle pathlines

The ability to model crossing particle pathlines is a feature of Lagrangian methods and it is
interesting to see how the Osiptsov method copes with such difficulties. It should be noted that
the concern of this work is dilute suspensions of particles in fluid, and hence particle-particle
interactions are neglected.

Several different types of pathline intersection can occur in 2-D flows. One example is
when the distance between initially adjacent pathlines decreases to zero. This, of course, never
happens with fluid streamlines, but particle pathlines are not restricted by the same continuity
requirement. Intersecting pathlines do occur when the fluid velocity gradients enforce such
behaviour, but only when the particles are of a small enough Stokes number to respond. At
the crossing point itself, the Jacobian vanishes and the particle density becomes infinite. The
Osiptsov Lagrangian method handles this well because, in actual computation, the Jacobian
simply changes sign in passing through the crossing point (see figure 2.16). Osiptsov (1984)
discusses a number of examples to illustrate different types of unbounded growth of particle

density.
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Figure 2.16: An element of ‘particle fluid’ compressing to zero and expanding as pathlines
Cross

2.6.1 Crossing particle pathlines in fluid-particle flow over a

cylinder

When St is less than a critical value, St.,;;, particles do not deposit on the cylinder surface.
For a cylinder flow, St..;; > 0.125 (the value for stagnation-point flow) because the surface
curvature acts to reduce deposition. It was found that deposition occurred for St > 0.15,
but also that particles crossed (using either the Osiptsov or traditional Lagrangian approach)
in the range 0.2 < St < 2. However, there have been very few (if any) mentions of crossing
particle pathlines in fluid-particle flow over a cylinder, despite the many studies that have been
carried out (e.g. Fernandez de la Mora & Rosner, 1981; Geller et al., 1993).

Figure 2.17 shows an example from fluid-particle flow over a cylinder of some initially
adjacent particles which cross each other under the influence of fluid velocity gradients. Figure
2.17a is plotted with pathline 2 (used as a reference pathline) projected onto the abscissa.
The centre of the cylinder is at /R = 3 and the leading edge at /R = 2, and St = 0.2.
200 particles were injected, and particle pathlines 1, 3, 4, 5, 6, 7 and 8 are plotted so that
the ordinate represents their displacement from the reference pathline. Figure 2.17b has the
same abscissa scale but the ordinate scale is expanded to show the trajectory intersections in
greater detail.

Pathline 1 deviates downwards from the reference pathline before impacting the cylinder
surface. The particle pathlines numbered 2, 3, 4 ,5 and 6 cross the trajectory that had initially
been above them, and some of their other neighbouring trajectories. Pathlines 7 and 8 do not
cross their upper neighbouring trajectories, although some other neighbouring trajectories are
crossed.

Figure 2.17c shows the variation of the Jacobian along each particle pathline. The Ja-

cobians of pathlines 7 and 8 approach zero, because they almost cross. The Jacobians of
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pathlines which do cross, pass smoothly through zero (and the particle density becomes infi-
nite) but only when a pathline passes one which had previously been located above it. The
Jacobian of a pathline that crosses an additional neighbouring pathline does not pass through
zero again. This behaviour can be expected, because the Jacobian was defined in terms of
a very small element of ‘particle fluid’, which is consequently only ‘aware’ of its immediate
neighbour. The decrease in .J prior to crossing, and subsequent increase in .J after crossing,
raises questions on the analysis of Robinson (1956) (cited in Fernandez de la Mora & Ros-
ner (1981)), and his result that the particle density cannot decrease (or the Jacobian cannot

increase) along a particle pathline in a potential flow (see Healy & Young, 2003).
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Figure 2.17: Crossing particle pathlines in fluid-particle flow over a cylinder (X=x/R)
a) Deviation y of pathlines 1 and 3-8 from the reference pathline 2
b) As a) but with an expanded ordinate scale
c) Corresponding behaviour of the Jacobian along each pathline
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2.6.2 Some further examples of crossing particle pathlines

The crossing of particle pathlines in the previous section, was caused by the influence of fluid
velocity gradients on particles of an intermediate Stokes number, which were initially adjacent
to each other. Figure 2.18 shows two different types of pathline intersection, where non-
neighbouring particles cross, under the influence of their inertia and initial injection velocities.

In figure 2.18a, two particle streams of low density intersect in a small region. The
particles have large inertia (and so do not follow the fluid streamlines) which, combined with
their prescribed initial velocities, causes the particle streams to intersect. Within the crossing
region, the value of the particle density should be double that in the individual streams. The
Osiptsov Lagrangian method, with the data processed as in the previous case, does not deal
correctly with this situation. The failure to deal with this type of crossing pathline situation
could have been expected from an examination of how non-neighbouring particles cross in
figure 2.17.
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Figure 2.18: Intersecting particle pathlines in two-dimensional flows

The plotting routine would need to be amended so that, if two particles share the same
position, their respective values of particle density are added together. Computationally, it is
very difficult to find an exact match in the position of any two particles, so a ‘cell’ would have to
be placed around each particle, to determine coincidence of particles. A much easier method
involves the use of a plotting routine similar to that used with the traditional Lagrangian
method. The particle densities of every particle that crosses a particular Eulerian cell are
added (with an extra contribution for each time-step across a particular cell), divided by the
area of the cell, and normalised using the inlet particle density. The values of particle density

are known exactly along each pathline, so plotting using this ‘averaging’ procedure still gives
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a stationary solution for particle density, using as few particles as when the ‘interpolative’
plotting procedure is used. The results from such a plotting procedure can be shown to agree
almost exactly with the results from the interpolative procedure for fluid-particle flow over a
cylinder (using the Osiptsov Lagrangian approach), but with a slight loss in spatial resolution.

Figure 2.18a shows that the Osiptsov Lagrangian method (with the altered plotting rou-
tine) now deals with this situation correctly. Along each pathline, the Jacobian remains
essentially constant but the procedure to interpolate the Lagrangian data onto the Eulerian
grid recognises the existence of twice the number of pathlines within the crossing region with
the result that the particle density is doubled as required (as can be seen from the cross-
sectional plot of particle density taken through the crossing point of the particles, on the right
hand side of figure 2.18a).

Figure 2.18b shows an extreme example of this type of flow. Particles with high inertia
are injected along the inlet plane at varying angles with the intention that their pathlines
intersect at the same point resulting in an infinite particle density. Computationally, a sharp
density spike is generated. It has finite magnitude because of the finite number of pathlines
used in the computation and the fact that the crossing point becomes a small crossing region
in numerical reality. The correct behaviour is predicted with the inclusion of a certain amount

of ‘smoothing’, as one would expect with any numerical scheme.

2.7 Flow through a turbine cascade

A more practical application of the Osiptsov Lagrangian method is that of gas-particle flow
through a turbine cascade. The gas field was calculated using a viscous CFD solver developed
by J.D. Denton at the Whittle Laboratory, Cambridge University. Figure 2.19 shows the
particle density fields for St = 1.0 and 0.1. As expected, a shadow-zone forms behind the
blade in both cases and the particle separation point is closer to the leading edge with greater
pathline ‘bunching’ for St = 0.1.

A useful check on the accuracy of the calculations can be made in the limit St — 0 when
particle pathlines and gas streamlines coincide. Writing D% for the convective derivative, the
Eulerian forms of the particle and gas continuity equations are,

D(lnpy) = D(lnp,) 7

v.7=2Wn0g) o 5y 9.36
Dt Dt (2.36)

which, in Lagrangian form with zero velocity slip, becomes,

I(Inpy) _ 9(Inpy)

= 2.37
or or (2:37)
Equation (2.37) can be integrated to give,
P _ Lo (2.38)
Ppo  Pg,0
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Figure 2.19: Gas-particle flow through a turbine cascade
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Figure 2.20: A check on the accuracy of the calculations
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which shows that, when suitably non-dimensionalised, the particle and gas density fields should
be identical in the limit St — 0. For the flow through the turbine cascade, the exit Mach
number was 1.12, which results in significant variations in gas density. A comparison between
the gas and particle density fields at very low Stokes number therefore provides a sensitive test
of computational accuracy. Figure 2.20 shows that the Osiptsov Lagrangian method performs

well in this respect.

2.8 Conclusions

The theory and calculations presented in this chapter have shown that Osiptsov's elegant Full
Lagrangian approach for calculating the particle density field in two-dimensional non-turbulent
flows has great potential for dramatic reductions in computational time and improvements
in accuracy. A special technique has been developed for flows at low Stokes number which
relieves the mathematical stiffness of the equations and allows their solution to proceed without
increase in CPU time. It has been established that Osiptsov's method can be used with CFD-
generated flow fields and a procedure for calculating the spatial velocity derivatives from
‘noisy’ velocity fields without introducing unacceptable errors has been developed. Particle
density calculations in three-dimensional flows, a target previously precluded by prohibitive

computational expense, now appear feasible.
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Chapter 3

Literature Review

3.1 Introduction to dispersed two-phase flows

Various forms of multiphase flows are encountered in industrial applications, such as convective
boiling, separated flows where the component phases may be considered continuous (such as
slug flow and film flow), and dispersed two-phase flows consisting of particles or droplets in a
continuous carrier phase (gas or liquid). Dispersed gas-particle flows (such as ash particles in
air flowing through a gas turbine) are the concern of this work."

The first aim of this chapter is to define the scope of the investigation that has been
undertaken, and to provide an explanation of the various particle transport mechanisms that
will be encountered in later chapters. Fully-developed turbulent pipe flow features all of these
mechanisms, and in order to obtain as much understanding as possible from the pipe (and
annulus) flow experiments that will be presented later, a comprehensive review of previous
experimental studies is undertaken. The focus of the turbulent annulus experiments is to
investigate the transport mechanism of thermophoresis, which is the phenomenon whereby
small particles suspended in a gas in which there exists a temperature gradient, experience a
force in the direction opposite to that of the temperature gradient. Accordingly, a detailed
assessment is made of the theoretical and experimental studies that have been carried out
on thermophoresis, in order to establish the need for such experiments and to appreciate the
strengths and weaknesses of the available theories.

There are a number of different properties used for the characterisation of dispersed two-
phase flows. The dispersed phase volume fraction is the limit of the ratio of the particulate
phase volume to the total volume:

OVap

= 1 1
= s hhve 5V (3:1)

where Vy, is the volume of the dispersed (particulate) phase, and §V? is the limiting volume.

tIn this introduction, many of the statements made with regard to a ‘particle’ may also be applied to a
‘droplet’.
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The continuous (fluid) phase volume fraction ¢, may be similarly defined by the use of V,
the volume of the continuous phase, in place of V. These definitions involve averaging over
a volume, as that volume approaches zero. Crowe (1982) points out that for a gas-particle
flow, the limiting volume must be large enough to contain sufficient particles to obtain a
stationary average. However, the dimension of the limiting volume must also be many times
smaller than the characteristic dimension of the flow, in order for the volume to be treated as
a ‘point’ and the dispersed phase to be treated as a ‘continuum’.

The particle phase bulk density (subsequently referred to as the particle density) is the
mass of the particulate phase per unit volume of the mixture, and may be expressed in terms

of its volume fraction and material density (p, mat), such that:

Pp = CdPp,mat (3-2)

The continuous (fluid) phase bulk density is given by:

Pe = CcPy (33)

where p, is the density of the continuous phase (g is used as the continuous phase in this
work is a gas).
The particle mass ratio (Crowe et al., 1998) is then defined as:

c="r (3.4)
Pe

A suspension of particles in a fluid may be described as dilute if the particles have no
interaction with each other. At high mass loadings, the particles interact with each other in
what is considered a dense suspension. According to Elghobashi (1994), a dispersed two-phase
flow may be considered dilute if ¢; < 1072, If the condition ¢4 < 10~° also holds, then the
interaction between the particle and fluid phases constitutes a ‘one-way coupling’, as the fluid
phase is not affected by the presence of the particles. When 10°% < ¢; < 1073, ‘two-way
coupling’ is said to exist. There is sufficient momentum transfer between the phases for the
motion of the fluid phase to be altered by the presence of the particles. For c¢; > 1073, the flow
is considered dense, and there is a ‘four-way coupling’ consisting of two-way coupling between
the phases as well as further coupling due to momentum transfer within the particulate phase,
i.e. particle-particle collisions.

However, a theoretical prediction of the relative significance of particle-particle collisions
and the reverse effect of the particle phase on the carrier gas by Tsirkunov (2001), shows that
particle-particle collisions become important at volume fractions almost ten times lower than
those at which two-way coupling becomes important. This implies that the use of a two-way
coupling model, together with a collisionless particle phase, is physically incorrect.

The dispersed gas-particle flows of concern to this work may be classified by using the low

mass ratio criterion proposed by Johansen (1991), and making reference to the experiments
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of Fackrell et al. (1994). Johansen (1991) found that when C' < 1, the flow is dilute and
one-way coupling may be assumed. Fackrell et al. (1994) investigated particle deposition in a
coal-fired gas turbine, representative of the flows of interest to this work. The gases from the
combustor were first cleaned with a cyclone system to reduce particulate loading. Particles
of 10 to 20 wm passed through this clean-up, and the resulting total dust loading was 100
parts per million by weight (ppmw). The low mass loading of such flows means that in the
work to follow, the influence of particles on the fluid phase can be considered negligible, and
that particle-particle interactions can also be neglected (i.e. the flow is dilute with one-way

coupling).

3.1.1 Particle response times

The non-dimensional parameters used to characterise a flow are often defined in terms of the
response time of a particle or droplet to changes in flow velocity or temperature. Assuming

Stokes flow, the particle momentum response time (or inertial relaxation time) is defined by:

2
o pp,mat dp

= 3.5
Tp 18/,69 ( )

where d,, is the particle diameter, and i, is the gas dynamic viscosity. The particle momentum
response time is the time required for a particle released from rest in a uniform flow to achieve
63% (1 — %) of the flow velocity. Although Stokes flow may not apply, 7, (as defined by
equation 3.5) is, nevertheless, used to non-dimensionalise data. The thermal response time

(once more assuming Stokes flow) is:

2
pp,matcpdp

o (3.6)

Ty =
where ¢, is the specific heat capacity of the particle material, and k, is the thermal conductivity
of the gas. In gases, the thermal response time is of the same order of magnitude as the
momentum response time (because the Prandtl number = 1), hence the assumption of one-
way coupling between gas and particle momentum equations also holds good for the energy
equations. In any case, the particle conservation of energy equation can usually be omitted
from consideration, particularly when the differences in temperature between particle and gas
are slight.
By choosing some characteristic fluid time-scale 7, the Stokes number may be defined
as:
Tp

St=1

Tf

(3.7)

77 is a time-scale which reflects temporal rates of change of the fluid, and may be chosen in a

number of ways, depending on the fluid flow conditions (e.g. a laminar or turbulent gas time-
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scale). For St < 1, the response time of the particles is much less than the characteristic
time-scale of the fluid, giving them plenty of time to respond to changes in fluid velocity,
and resulting in an inter-phase slip velocity approaching zero. If St > 1, the particles have
significant inertia, which impedes their response to the changing fluid flow field, and the
particle phase develops a velocity relative to the fluid phase.

Gas-particle flows may be observed in two ways. By choosing a stationary point and
observing the particles as they move past it, an Eulerian view of the flow may be taken.
However, a reference point which moves with a particle may also be chosen, so that the
observer follows the same path as the particle and is given a Lagrangian view of the flow. In
the modelling of gas-particle flows, it is necessary to adopt either an Eulerian or a Lagrangian
description, and, as was shown in chapter 2, the Stokes number of the particles will largely

determine which description is more appropriate.

3.2 Particle transport in laminar flows

3.2.1 The drag force on a particle

The steady-state viscous drag force on a particle is related to the relative velocity between
the particle and the fluid. The particle Reynolds number is defined as:

_ dplu — v|

Re, = (3.8)

Vg

where u and v are the fluid and particle velocities, and v, is the gas kinematic viscosity. When
a particle moves relative to a gas, vorticity is generated at its surface. For very low values of
Re,, energy is dissipated by viscosity. In the viscous limit, as Re, — 0, the Navier-Stokes
equation can be linearised and solved. The drag force in this limit is known as Stokes drag.
In the limit as Re, — 0, the equation of motion for a small rigid sphere in a viscous
quiescent fluid is the Basset-Boussinesq-Oseen (BBO) equation. Crowe et al. (1998) expressed

it as: . .
Stokes drag pressure gradient & virtual mass

shear stress
V, d
Irdypy (0 = V) + Vo (~¥p+ 0r) + P02 ()
3 9 ! (u—v)
+ §dp, /Trpg,ug/o N dt' + myg

Basset history gravity

dv_

dt

mp

where m,, is the mass of a single particle, V), is the particle volume, p is the pressure and 7
is the shear stress in the vicinity of the particle, and g is the gravitational acceleration. The
Faxen relations accounting for velocity curvature have been neglected. The pressure gradient
and shear stress terms are related to the fluid acceleration and gravitational force so that
equation 3.9 becomes:
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3 pg du
(u V) * 2 pp,mat dt

<1+1 Pg )d_V_ 1811

2 ppmat/ dt _pp,matd?) (3.10)

9 Lot (u—
(_Ly/ @=v) (1 _ L>g
27T7—p ,Op,mat 0o Vv t—t pp,mat

The ratio of the gas phase density to the particle material density is often small in gas-particle
flows (e.g. for a particle of uranine and oleic acid in air, as used in the pipe (and annulus)
flow experiments to be described later, p,/ppmat = 1073), and under these circumstances
equation 3.10 may be simplified to:
(u—v)

dv 1814
— = u—v)+g= + 3.11
B ) s (3.11)

This is the origin of the definition of particle inertial relaxation time (equation 3.5). As
Re, — 0,

fp = 3ndppg(u —v) (3.12)

where f), is the drag force on the particle. The Stokes drag coefficient for small Re, is then

defined as:

Ifp| 24
Cp = . (3.13)
spl(u—v)[?5d;  Re,

When a particle moves relative to a gas with a finite Re,, eddies are formed in the region
behind the particle. As a result, the pressure (or form) drag on the particle increases and the
drag force is larger than that predicted by the expression for Stokes drag. The Stokes expression
can be extended to finite Re,, however, by using an empirical curve fit to experimental data
for the drag coefficient, to account for the increase in total drag (Morsi & Alexander, 1972).
The drag term over the range of particle Reynolds numbers (0 < Re, < 50000) is:

FD:M(U—V) (3.14)
Tp
where Fp, is the drag force per unit mass on the particle, and ¢p(Re,) is a correction
containing an empirical curve fit to experimental data for Cp [¢p(Re,) = Cp(Re,/24)],
details of which can be found in appendix B.1.

When the molecular mean free path of the gas molecules ()\,) becomes comparable with
the linear dimension of a particle (its radius r,), the gas becomes rarefied with respect to the
particle. The extent of this rarefaction is given by the particle Knudsen number, K'n = X\;/r,.
Stokes drag was derived in the limit of Kn — 0, where there is no slip between the gas and

the surface of the particle. This is not the case when Kn ~ 1, and the gas then slips relative
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to the surface of the particle. The drag on such a particle will be less than that predicted by
Stokes drag, so equation 3.14 must be altered to take account of this. An accurate empirical
correction factor, is that derived by Cunningham (1910):
Fp = 220%) (o) where €= (14 135Kn) (3.15)
7,C
The expression used for C'. is not Cunningham’s original expression, but an approximate curve
fit to more refined kinetic theory.

The assumption of a spherical particle in a uniform flow and in a domain of infinite extent
has been made in the derivations described above. A particle in a flow near a planar surface,
will find itself in a simple shear flow, with the velocity varying from its free-stream value to
zero at the wall. The numerical results of Dandy & Dwyer (1990) show that the drag force
is independent of the presence of a wall. However, the particle in the shear flow will not only
experience a drag force acting parallel to the direction of its motion relative to the flow; there
will also be a force due to shear, which acts perpendicular to the relative motion, known as
the lift force.

3.2.2 The lift force on a particle

Particles moving in a shear flow experience a non-uniform relative velocity and consequently,
a non-uniform pressure distribution. The resultant force acts in the transverse direction and is
called the Saffman lift force. There will also be a Magnus lift force due to the rotation of the
particle. Saffman (1965) showed that the force due to rotation was an order of magnitude
less than that due to shear, for small particle Reynolds numbers.

Saffman (1965, 1968) found that the lift force on a small sphere in an unbounded slow

shear flow was given by:

myFp, = 1.61pyd,|u — v|\/Regn,  Reg, = V—”d—y (3.16)
9
where F, is the lift force per unit mass on the particle, and Reg, is the shear Reynolds number,
based on the fluid velocity change in a distance d,. Figure 3.1 shows two particles suspended
in a gas flowing downwards in a vertical pipe. One particle leads the gas while the other lags
behind it. It can be seen that the particle leading the gas experiences a force towards the pipe
wall, while the particle lagging the gas experiences a force away from the pipe wall. Saffman’s
expression was only valid when Re, < Rey,, and both Re, and Reg, are small compared to
unity.
McLaughlin (1989) performed a DNS study of olive oil droplets in turbulent air flowing
vertically between two parallel walls which showed that the condition of Re, < Rey, was
rarely satisfied. In his study, Re,, was of the order 0.04, and Re, was of the order unity.

McLaughlin (1991) removed this restriction of Saffman’s expression, and Dandy & Dwyer
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Figure 3.1: The effect of lift on a particle lagging or leading the fluid in a vertical pipe

(1990) extended its validity up to Re, = 100. Mei (1992) produced a curve fit incorporating
both of these improvements (see appendix B.2). For a pipe flow, equation 3.16 may be
rewritten as (Slater et al., 2003):

1/2( )
pg (9ux Uy — Vg
Fr,=0.725 T 3.17
b <pp,mat P ay ) ( )

Studies have also been carried out on the lift force acting on a particle in a wall-bounded
shear flow, and Wang et al. (1997) found that accounting for the wall had the effect of

reducing the lift force predicted using the Saffman expression by a factor of three.

3.2.3 Thermophoresis

Small particles suspended in a gas in which there exists a temperature gradient, will experience
a force in the opposite direction to that of the temperature gradient, and this behaviour is
known as thermophoresis. Gas molecules impinging obliquely on the particle surface deliver
more tangential momentum if they arrive from a hotter region of the flow, than those arriving
from a cooler region. This unequal momentum transfer leads to the gas exerting a shear stress
on the particle which accelerates it towards the cooler region. The particle exerts an equal
and opposite shear stress upon the gas, so that in the region adjacent to the particle surface,

there is a flow in the opposite direction. This is known as thermal creep.

Modern industrial gas turbines may have mean free-stream temperatures of up to 1420 °C,
but material considerations require that the turbine blade temperature does not rise to much
higher than 800 °C. The cooling techniques implemented to meet this requirement result
in huge temperature gradients in the boundary layer adjacent to the blade surface, and the
resulting thermophoretic force may be so large that thermophoresis becomes the dominant

deposition mechanism for small particles.
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The thermophoretic force per unit mass (Fry) on a spherical particle is given by:
mpFTH = —HTHV(ZTLT) (318)

where T is the absolute temperature of the surrounding gas and 7y is the coefficient of
thermophoresis. It should be noted that 7, has the dimensions [kgm?s™2]. A dimensionless

thermophoretic coefficient may be defined as:

This allows the thermophoretic force per unit mass to be written as:

KTHl/g

Tp
Thermophoresis is central to this work, and the determination of nry will be examined in
much greater detail later in this chapter. 7yg is the thermophoretic coefficient commonly

used in the literature, and is used in place of the dimensionless K1y to enable comparison.

3.2.4 Brownian motion

In a laminar gas flow, the transport of particles is determined by the drag, lift and ther-
mophoretic forces. Small particles in particular will follow the fluid streamlines almost exactly.
If the particles are extremely small, however, they will respond to the random collisions of
the gas molecules, and this gives rise to a diffusive transport mechanism known as Brownian
diffusion. The result is a net transport of particles, from regions of high particle density to
regions of low particle density.

Fick’s law of diffusion relates the mass flux of particles, J g, to the particle density gradient,

Vpp:
JB = —Dvap (321)

where Dy is the coefficient of particle Brownian diffusion. A large value of Dpg represents
more vigorous Brownian motion and more rapid mass transfer in a gradient of particle density.
Einstein’s treatment of diffusion as a random walk (see Kennard, 1938, pg. 286) resulted in

the determination of the coefficient as:
Dy =kTB (3.22)

where k is Boltzmann's constant, 7' is the absolute temperature of the surrounding gas,
and B = 71,/m, is the dynamic mobility of the particle, which may include Cunningham’s
correction factor in the case of a rarefied gas.

Ramshaw (1979) considered Brownian motion in relation to the partial pressure of the
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particle phase, p,, associated with the random thermal movement of the particles. Assuming

that the particles and gas are in thermal equilibrium, equipartition of energy gives:

ppkT
my

pp = npkT = (3.23)

where n, is the number of particles per unit volume. Hence:

kT kp kT ETp D
VPp = —Vpp+ ﬁva = —Vpp+— Ly(InT) = T—B<Vpp + ppv(lnT)) (3.24)
P P P P p

The V(InT') term will tend to create a net particle drift down a temperature gradient, but it
is neglected as this flux is about five orders of magnitude smaller than that associated with

thermophoresis. The Brownian force per unit mass is now given by:

D
Fp = ——2v(Inp,) (3.25)
Tp
The laminar particle Schmidt number relates the gas kinematic viscosity, v, to the particle
diffusivity, Dp:

v

Se= D—f; (3.26)
The particle diffusivity is many orders of magnitude less than the gas kinematic viscosity,
reflecting the greater mobility of the gas molecules, and resulting in Sc > 1. Typically,
particles in air may have Schmidt numbers of 10* ~ 10%. In a pipe flow, deposition due to
Brownian motion will consequently lead to localised reduction of particle density, only in a
very thin region adjacent to the pipe wall. In the limit of Dg — 0, the thickness of the
particle density boundary layer will tend to zero, and no deposition will occur. It will later be
shown that the dimensionless deposition velocity of very small particles depositing under the

influence of Brownian motion depends only on the particle Schmidt number.

3.3 Particle transport in turbulent flows

In a turbulent flow, the mechanisms of particle transport that occur in a laminar flow will all
be present, in addition to some others caused by the turbulence. The random interactions
of a particle with turbulent eddies is somewhat similar to the random molecular collisions of
Brownian motion. This has led to a modified version of Fick’s law of diffusion being used to
describe the transport of particles in a turbulent flow, known as the ‘gradient diffusion’ model.

The turbulent mass flux of particles is then assumed to be given by:
JT == —DTVpp (327)
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where D7 is the coefficient of particle turbulent diffusion.

When the particles are very small, they follow the turbulent eddies almost exactly. The
diffusion of particles is essentially the same as the diffusion of large molecules, and the model
of simple Fickian diffusion is valid. In these circumstances, it is a good approximation to
assume that the turbulent particle Schmidt number (Scr = v,1/Dr) is about unity, i.e.

Dy =2 vy, where v, ¢ is the turbulent kinematic viscosity (eddy viscosity) of the gas.

As the particles become larger, however, the effect of particle inertia becomes important
and the model of simple Fickian diffusion is no longer realistic. A particle with significant
inertia is unable to respond to the changing motion of the fluid, and a large relative velocity
may develop which results in the particle drifting out of the fluid eddy.

3.3.1 Homogeneous and inhomogeneous turbulence

Consider a solid particle caught up in a turbulent eddy centred at an arbitrary position O
within the flow. The particle may remain entrained by this eddy until it decays, at which time
the particle will be picked up by another eddy, centred elsewhere in the flow. However, if the
particle’s inertial relaxation time, 7, is large compared with a characteristic time for the eddy,
the particle may be ejected from the eddy before it has decayed. It will then be picked up by
another eddy. Although each successive eddy will impart a random velocity on the particle,

in homogeneous turbulence the particle will have a zero mean displacement from O.

If the turbulence is inhomogeneous, the particle-eddy interaction will be locally similar to

the homogeneous case. However, because of differences in the mean-square fluctuating gas
velocity (u'u’) throughout the flow, a net particle flux may be generated. In homogeneous
turbulence, a particle being thrown from an eddy is as likely to be thrown back in the direction
from whence it came as it is to be thrown in any other direction. But when the turbulence is

inhomogeneous, it may find itself transported to another part of the flow where u/u' is lower.

The random velocity imparted by the eddies in this more quiescent region will probably be
insufficient to return the particle up the gradient of turbulent gas velocity from whence it

came. For inhomogeneous turbulence, there is consequently a net particle flux which is driven

by the gradient of turbulent gas velocity, for particles that have sufficient inertia to ‘slip” out
of the eddies. This effect has been termed ‘turbophoresis’ (Caporaloni et al., 1975; Reeks,
1983). It is important to appreciate that this is a convective drift flux of particles and is not

a diffusive flux driven by a particle density gradient, as in equation 3.27.

By Reynolds averaging equation 3.11 (without gravity, or lift and thermophoresis) and
invoking the principle of conservation of mass, Young & Leeming (1997) showed that for a
pipe flow the radial momentum equation may be written:

— oV, B ooV, B v, vy,

= — 2
Vy oy Tp oy (3.28)
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where the final term on the right hand side is the turbophoretic force per unit mass:

Y
Frurbo = —ag—yy% (3.29)
The particle acceleration (left hand side of equation 3.28) is therefore enhanced by turbophore-
sis and opposed by steady-state drag.

The term % is the mean-square fluctuating particle velocity normal to the pipe wall. In
the core of the pipe, the mean-square fluctuating gas velocity in the wallward direction (u;u;)
has an almost constant value, and its value decreases through the buffer layer becoming zero
at the wall. This results in a large gradient ofm near the wall, so that particles thrown into
this region are unlikely to make their way back into the core of the flow, and instead deposit
on the wall.

By manipulating the equations it can be shown that an alternative interpretation is to
consider the turbophoretic term as an addition to the diffusive term, to give an expression for

the particle mass flux to the wall in a turbulent pipe flow as:

" _ _vy 3.30
By PpTp By ( )

In the core of the flow, D > Dp, and turbulent diffusion transports the particles towards
the wall. However, Dr decreases in the viscous sublayer as the wall is approached (now
Dy < Dpg), and very small particles are deposited by Brownian diffusion. For particles with
sufficient inertia to slip out of the eddies, turbophoresis becomes the dominant transport
mechanism as the wall is approached (where the fluctuating velocity gradient is high), and
deposits the particles on the wall. It has already been stated, that for very small particles
Dy = vy . The problem of choosing a suitable value of Dy for particles with high inertia is

discussed below.

3.3.2 Turbulence modelling

In order to model the behaviour of particles in a turbulent flow, models are required for the

mean-square fluctuating particle velocity in the direction of the wall (m) and the coefficient
of particle turbulent diffusion (Dr).

One of the most detailed considerations of this problem can be found in a series of papers
by Reeks (1991, 1992, 1993). The continuum equations were derived by integrating a kinetic
equation analogous to the Maxwell-Boltzmann equation for the particle probability density
function (PDF), and closure models were then provided for the stochastic terms at this level.
A similar approach has also been developed by Zaichik (1997).

Johansen (1991) and Young & Leeming (1997) used a more simple approach to demon-
strate the basic physical processes involved, by assuming that the local particle turbulent

velocity is a function of the local fluid turbulent velocity, in what is commonly referred to as
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the ‘local equilibrium’ model:

vj vy, = T'(ujul, St) (3.31)
where St = 7,/7, is the Stokes number and 7, is a suitable time-scale of the fluid turbulence.
" is a function of the response of a particle to the fluid turbulence around it. This implies that
the particle v , Is related to the local gas u , and that the particles do not retain a memory
of the turbulent field through which they have just passed (although Shin & Lee (2001)
have attempted to account for this ‘memory effect’ through the use of an additional term).
Referring to the data of Mei et al. (1991), this would appear to be a reasonable assumption,
at least when 7, is small, but maybe not for larger 7,. By making various approximations, the
turbulent particle velocity fluctuations are related to the turbulent fluid velocity fluctuations
by the relationship (e.g. Slater et al., 2003):

-
= 9 u
Tg+ T

=Tu

U U

y Uy y Uy (3.32)

This is a relationship based on theoretical considerations which models the essential features.
Equation 3.32 is essentially a curve-fit connecting two extreme cases. When 7, < 7, then

the particles respond ‘perfectly’ to the turbulence, and:

(3.33)

When 7, > 7,, particles respond less to the turbulence and in proportion to the ratio of gas

and particle time-scales:

Tg
Tp

vyl =

YU 1 gyl
Uy ulu and vjv, — 0 as 7, =00 (3.34)

Yy

Consider now the modelling of Dy. Even for particles of high inertia, it is probably a
reasonable assumption in homogeneous turbulence that the turbulent particle Schmidt number
is near unity. This was a conclusion from the analyses of Tchen (1947), Reeks (1977) and
Pismen & Nir (1978). The surprising outcome that particle and fluid diffusive coefficients are
nearly equal may be explained as follows: a particle of large inertia will have a lower turbulent
velocity than a small particle, but this velocity is more persistent, because the integral length
scale of turbulence for the large particle is longer than that for the small particle. The result
is that Dy remains approximately independent of particle size, and is therefore given for

homogeneous turbulence, by:
DT = Vg,T (335)

Difficulties arise in inhomogeneous turbulence when there is significant particle drift: particles

entrained by eddies in one region of the flow acquire sufficient inertia to drift into regions with
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very different turbulence characteristics. The subsequent reduction in the correlation between
the particle velocity and that of the eddy by which it was originally entrained results in a
reduction in Dy. Dy can be corrected for this ‘crossing trajectory effect’ T (Simonin et al.,
1993). Again, a ‘local equilibrium’ model may be adopted, where Dy is assumed to be
unaltered from its homogeneous (isotropic) value (Young & Leeming, 1997).

An alternative formulation for Dy is:

Dy = Tyulul (3.36)

where 7, is a suitable eddy time-scale. This arises from the following prescription of 7,:

1% T
7, = —u’gu’ (3.37)
¥y

This type of prescription was found to be the most reliable by Rambaud et al. (2002), who
compared a number of methods for obtaining the Lagrangian integral time-scale in a channel
flow with DNS data.

In a turbulent pipe flow, 7, (as prescribed in equation 3.37) varies across the pipe. How-
ever, for turbulent pipe flow experiments, non-dimensionalisation is usually performed using a
characteristic eddy time-scale in the core (and there is no variation across the pipe) which is
approximated by:

Y

(3.38)

T, =
9 uz
(the friction velocity u, is defined below). In order to avoid confusion, v, and u? (rather than

7,) will be used explicitly for the case of turbulent pipe flow.

3.4 Pipe flow experiments

A relatively simple flow field, which features all of the transport mechanisms described earlier
in the chapter, is fully-developed turbulent gas-particle flow in a vertical pipe. The importance
of the various mechanisms varies with particle size but, as a general rule, particles with small
Stokes numbers are heavily influenced by diffusion, while inertial effects dominate the transport
of particles with large Stokes numbers. Pipe flow experiments have been carried out for over
forty years, and it is the rate of deposition of particles from the bulk flow onto the pipe walls
which bound it, that is of primary interest.
The dimensionless deposition velocity is defined as:
yr_Ya_ _Ju (3.39)

U Pp,mUs

*Not be confused with the crossing trajectories of chapter 2.
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where V; is the deposition velocity, u, is the friction velocity (u. = /7w/py, and 7, is the
wall shear stress), J,, is the mass flux of particles to the wall per unit area, Pp,m 1 the mean

particle density across the pipe.

Neglecting entrance effects, electrical effects, and the roughness of the pipe wall, the

deposition velocity is a function of the following parameters:

Vd = f(pp,matapgau*adpalugada DB) (340)

where d,, is the particle diameter, and d is the pipe diameter. Choosing appropriate dimen-

sionless groups yields

Vit = f(r}, Se, Re, %) (3.41)
g

where the dimensionless particle relaxation time is given by:

P () () =

and v, /u? is the gas relaxation time based on a characteristic eddy time-scale. Re is the pipe

Reynolds number, based on pipe diameter and mean flow velocity (Up,):

B PgUnd
Hg

Re (3.43)

The results of experimental studies of particle deposition in turbulent pipe flows, are usually
presented as plots of V" against T;’. A small particle obeying Stokes law of resistance while

moving through a stationary fluid from an initial velocity u,, will stop after a distance:

ma d2
S = (M>u = (3.44)
1844

S is known as the stopping distance, and T; can be interpreted as a dimensionless stopping
distance ST. The concept of a stopping distance played a central role in the earlier theories

of particle deposition.

3.4.1 The factors influencing particle deposition in vertical pipe

flows

Figures 3.2 and 3.3 show some of the available experimental data, which are plotted on a

number of separate graphs for clarity. Conventionally, the data is divided into three regimes.
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Figure 3.2: The variation of dimensionless deposition velocity with dimensionless particle
relaxation time for a range of different experiments in vertical turbulent pipe flow
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Figure 3.3: The variation of dimensionless deposition velocity with dimensionless particle
relaxation time for a range of different experiments in vertical turbulent pipe flow: a) The
data of Liu & Agarwal (1974), Agarwal (1975) and Leeming (1995); b) Data for the ‘inertia
moderated’ regime
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‘Diffusional deposition’ regime

Below T; ~ 0.2, is the ‘diffusional deposition’ regime. Particles follow the streamlines of the
fluid motion almost exactly. The lift force is negligible and deposition is by turbulent and
Brownian diffusion. Turbulent diffusion dominates over Brownian diffusion in the core of the
flow and carries particles well into the viscous sublayer, from which point Brownian diffusion
becomes dominant, and is responsible for particle deposition. Analysis shows that in the
diffusional deposition regime, Vd+ is a function only of the laminar particle Schmidt number,
Sc. The laminar Schmidt number for particles is very high, resulting in a ‘concentration
sublayer’ that is much thinner than the ‘viscous sublayer’. Hence, Brownian diffusion only
comes into play very close to the wall.

As shown by the solid lines in figure 3.2 (top right hand graph), it is customary to plot
V" against 7.7, not for constant Sc (which would give horizontal lines) but for constant
(7,7 /Sc?)'/? (e.g. Wood, 1981b). This group is chosen because it is independent of particle
diameter but varies with flow conditions. Experimentally, the condition of constant Sc is
extremely difficult to obtain, but achieving a constant value of (7.7 /Sc?)'/® is much more
straightforward. Thus, for the same flow conditions, two particles of different diameter (and
different 7.7), will have equal values of (7,7 /Sc?)'/%, and lie on the same line of almost constant
Vi

Now consider two particles of different diameters in flows of different Reynolds numbers,
but with the same T;. The particle in the higher Reynolds number flow will be physically
smaller and have a greater molecular diffusivity, and a lower Sc. This will result in a higher
value of (7,7 /Sc?)'/3, and from figure 3.2, an increase in V,;" would be expected. The greater
diffusivity (and lower Sc) results in an increase in the thickness of the narrow diffusion layer,
and an increase in V,". This dependence on the particle Schmidt number illustrates the
controlling influence of diffusion on small particles. Pershukov et al. (1995) found that V"
could be represented by (0.115/S¢**) for this regime, and this led to the possibility of

determining a boundary value of 7';“ for which the use of a simple diffusion model is valid.

‘Turbulent diffusion-eddy impaction’ regime

Between 7.f ~ 0.2 and 7,7 ~ 20 is the ‘turbulent diffusion-eddy impaction’ regime. As the
particle inertia is increased, the deposition velocity increases by several orders of magnitude.
Particles slip relative to the turbulent eddies and the mechanism of turbophoresis causes a
drift flux towards the wall. In this region, the empirical relationship V" = k7, approximately

holds, where k is a constant.

‘Inertia moderated’ regime

Above T; ~ 20 is the ‘inertia moderated’ regime, where the particles are no longer as respon-

sive to the eddy motion of the fluid. The deposition velocity has reached its maximum, and
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gradually decreases with increasing 7.’

Equation 3.41 expressed the dependencies of V. The direct numerical simulation of
Zhang & Ahmadi (2000) has shown that a variation of p, ma/p, between values of 1000
and 2000 has little effect on Vd+. Consequently, for the ‘diffusional deposition’ regime,
V" = f(Sc), and for the ‘turbulent diffusion-eddy impaction’ regime, V" = f(7,}). The
experimental deposition velocities in the ‘inertia moderated’ regime are often represented by
a straight line at V;" = 0.17, but there is an obvious decrease as 7,1 increases. Pershukov
et al. (1995) and Gusev et al. (1990) have performed analyses that find that V" = f(7,", Re),
which becomes significant above T;“ ~ 103. Using the analytical expression of Gusev et al.
and assuming that the pipe wall is perfectly absorbing, the solid lines of figure 3.3b show the
variation of V" with 7.7 for Reynolds numbers of 10°, 10* and 10°. The data do not match
these lines for the various Reynolds numbers very well.

Figure 3.2 shows data collected for 7.7 < 100, which is well into the start of the ‘inertia
moderated’ regime. The data of Liu & Agarwal (1974) is included on each graph as a datum
for comparison, as these experiments covered a large range of T; and are the most frequently
cited. This is probably because much of the data follows the empirical relationship V" = kT;r?
(where k = 6 x 10~ %) with very little scatter. Figure 3.3a compares the data of Liu & Agarwal
(1974), Agarwal (1975) (cited in Ganic & Mastanaiah, 1981) and Leeming (1995). A range of
Reynolds numbers have been used in these studies, and the experimental methods are similar
to that used by the author for the work reported later in this thesis. Figure 3.3b shows the
available data for very large 7.1

3.4.2 Measurement of deposition velocity in vertical turbulent

pipe flow

These experiments will now be critically discussed to assess the reliability of the data presented
in figures 3.2 and 3.3, and to shed light on the practicalities involved with such experiments.

Table 3.1 summarises the experimental conditions of all the presented data.

Friedlander & Johnstone (1957)

Friedlander & Johnstone (1957) carried out one of the first such experiments, using glass and
brass tubes. They calculated the amount of deposition by removing the particles from the pipe
wall with Scotch tape, or applying pressure-sensitive tape or glycerol jelly to the wall for the
duration of the experiment, and then counting the particles on the tape or jelly under a mi-
croscope. Microscopic examination of several experiments allowed checks for re-entrainment
(removal of particles which had already deposited on the wall). The pressure-sensitive tape
or glycerol jelly were applied to avoid re-entrainment, and it was found that without them,
re-entrainment began at Reynolds numbers between 12500 and 20000, depending on the
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experimental conditions. Results for the brass and glass tubes compared favourably, indicat-
ing that rebounding was not significant, as the different materials would have had different
coefficients of restitution, and thus a different propensity for rebound.

In order to allow comparison of experimental data with theory, most experiments employed
a transition length of pipe as well as a test section, so that a fully-developed turbulent
flow existed, before the measurements were made. The distance taken for this transition to
turbulence to occur may be defined by the Reynolds number based on distance from the inlet
(Re,), and this must be between 10° and 10° for transition to occur (Schlichting, 1968, pg.
435). The deposition rate as a function of distance from inlet is plotted by Friedlander &
Johnstone, and no deposition is found until Re, ~ 10°. The rate of deposition then increased
until a constant value was reached at Re, ~ 2 x 10°, indicating that the flow here was
fully-developed. This illustrates the importance of turbulent eddies on deposition rates, as the
deposition rate near the inlet follows the development of the boundary layer. The distance
required for the transition to turbulence to occur may also be based on the number of pipe
diameters. Friedlander & Johnstone found that between 25 and 45 diameters was sufficient.
Table 3.1 gives the total pipe length to diameter (L/d) ratios used by other researchers.

In an attempt to explain their results, they proposed the stopping distance model. This
also formed the basis of many other early theoretical studies. The central idea of the model
is that turbulent diffusion carries the particles from the turbulent core to within one stopping
distance of the wall, and the particles have enough wallwards momentum to make a ‘free-flight’
across to the wall. If a particle comes within one particle radius of the wall it will deposit,
and if it comes within one stopping distance of the wall it will also deposit. Therefore, the
stopping distance can be viewed as the effective radius of the particles due to their inertia,
and is the distance which a particle with a given initial velocity will move through a stagnant
gas. The initial velocity is assumed to be equal to the root mean square of the fluctuating gas
velocity. As noted by Young & Leeming (1997), the theory was a crude attempt to explain
the fact that both diffusive and convective effects contribute to particle deposition in pipe
flow. The flow field is divided into a diffusive region in the core of the pipe, and a region close

to the wall where convective effects, although arbitrarily specified, are active.

Wells & Chamberlain (1967)

Wells & Chamberlain (1967) used radioactive-tagged particles to measure the deposition rate.
Their geometry was an annular arrangement consisting of a brass rod placed axially in a copper
tube. This arrangement is of particular interest with regard to the experiments carried out in
this work. It also allowed better access to the deposition surface, in order that it might be
roughened by covering it with filter paper.

The authors contended that the surface was still aerodynamically smooth, and that the
surface roughness elements were too small to disturb the viscous boundary layer of the airflow,

allowing the effect of surface roughness on particle deposition rate to be examined, without
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altering the gas flow field. This could be interpreted as follows: Schlichting (1968, pg. 511)
found that the critical height of roughness below which transition to turbulence is unaffected is
given by (u.h)/v, = 20, where h is the height of the roughness elements; and (u.h)/v, < 20
in Wells & Chamberlain’s experiments. It was found that the deposition velocity increased
by several orders of magnitude when the deposition surface was covered with filter paper
(although only the results for the smooth surface are plotted in figure 3.2). This contrasts
with the results of Schwendiman & Postma (1961) for pipe flow, who found no difference in
deposition velocity between a grit roughened surface and a polished surface. Clearly, however,
the preparation of the inner walls of a pipe has inherent difficulties that are overcome by
the novel annular arrangement of Wells & Chamberlain. It should be noted that only the
deposition on the inner rod was measured. For a more detailed treatment of the effects of
roughness on particle deposition in turbulent pipe flow, see Wood (1981b) and El-Shobokshy
(1983).

Sehmel (1968)

Sehmel (1968) used uranine and uranine-methylene blue particles in a variety of pipe diameters,
and at various Reynolds numbers. The amount deposited on the pipe wall was determined by
cutting the pipe into sections, and washing each section before using fluorimetric techniques to
determine the mass deposited (uranine was used as a fluorescent tracer). The mass deposited
on each section, together with the mass deposited on a filter at the outlet of the flow, was
used to calculate the fraction of particles penetrating through each individual section of the

pipe. The deposition velocity in each section was then calculated using the equation:

_ Qa 1

where @), is the volumetric flow rate of air, Az is the length of the section, and P is the

fractional penetration through the section.

Many experimental conditions were investigated and sources of error discussed, such as:
pipe roughness, pipe entry and end effects, the effects of pipe joints, re-entrainment, particle
dryness (large particles dry more slowly and may be more ‘sticky’), and the repeatability of
results. These were the main features that led to the order of magnitude scatter observed
in Sehmel's experimental results, and understanding their effects is important to producing a
‘definitive’ set of experimental results, against which theoretical models can be validated.

A criterion for re-entrainment of particles was proposed; particles are re-entrained if tur-
bulent eddies penetrate the laminar sublayer to within one particle diameter, a condition that
occurs when the dimensionless particle diameter in wall units d (= dyu./v,) > 0.4. As
well as the result for particle deposition velocity, important supplementary information was
presented. Non-uniform radial profiles of particle concentration were found (by placing a filter

across the tube center), and axial concentration profiles were also found (from the fractional
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penetration P). Log coordinates were used to plot the concentration drop along the axis,
and for monodispersed particles a linear profile would be expected. However, the normalised
concentration was shown to decrease linearly to 10% of its inlet value within the first 8 foot
(of a 50 foot pipe), but the profile then levelled out, due to the existence of what were termed
smaller ‘satellite’ particles.

The plots of deposition velocity against Reynolds number or particle diameter are quite
confusing, and show significant amounts of scatter. However, in an earlier paper (Sehmel,
1963), results are plotted as dimensionless deposition velocity (V;/U,,) against dimensionless
stopping distance (S*), and the various experimental data correlate much better when plotted
in this manner, with a subsequent reduction in scatter. This is very similar to the V;/u, versus
T; plots that are now in widespread use, and may be the first instance of such a plot. Some

of the data in figures 3.2 and 3.3 have been modified from their original dimensionless forms.

Lee & Gieseke (1994)

Lee & Gieseke (1994) sought to supplement the ‘very few' experimental data points for the
region between the diffusional deposition and inertia moderated regimes, although figure 3.2
indicates that data is not as scarce as the authors intimate. Three methods were used to
determine the deposition velocity: an electrical aerosol detector, a fluorimetric technique
with uranine-tagged particles (similar to that of Sehmel, 1968), and the use of upstream and
downstream membrane filters. The results compared well for the three different methods. The
apparent scatter in the ‘diffusional deposition’ regime is largely due to the different values of

the Schmidt number used.

Liu & Agarwal (1974)

The most popular set of experiments for comparison is that of Liu & Agarwal (1974). This is
probably due to the range of 7./ covered, and the self-consistency of the results. Particles of
olive oil tagged with uranine were used, and the deposition velocity determined after Sehmel
(1968). Physically, the particles consisted of a solid core of uranine surrounded by a liquid
coating of olive oil, so that the adhesion of the particles to the wall was not considered a
problem. Results in the inertial regime are presented for pipe Reynolds numbers of 10000 and
50000, and this data is well supplemented by that of Agarwal (1975), for Reynolds number of
6000, which suggest that there may be a Reynolds number dependancy above T;’ ~ 50. Also
shown are the experiments of Leeming (1995), which were carried out (in a very similar manner
to those of Liu & Agarwal) as a datum against which to examine the effect of thermophoresis

on particle deposition (which is of direct interest to this work).

Particles and droplets of high inertia

The data of Forney & Spielman (1974) for particles of high inertia shows a much higher peak

in the value of deposition velocity, but also displays large scatter. The trend of decreasing
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deposition velocity as inertia increases further, is shown by the investigations of Cousins &
Hewitt (1968), Farmer et al. (1970), Ganic & Mastanaiah (1981) and Andreussi (1983), into
the behaviour of water droplets in air. It should be noted that such experiments almost always

involve a polydispersed droplet size distribution, rather than one that is monodispersed.

3.4.3 Precautions for future experiments

The experimental data presented above varies by up to an order of magnitude for certain ranges
of T;, and the review of the experimental methods used in these investigations gives a clear
indication of pitfalls to be avoided in future experiments. In order to carry out experiments in
turbulent pipe flow, and to achieve repeatable and reproduceable results that do not contribute
more to the uncertainty and scatter apparent in the data that already exists, a number of
precautions must be taken. The particles must be electrically neutral, the pipe wall must
be earthed and smooth, and the pipe length to diameter ratio must be sufficient so that
entrance effects may be neglected. The use of an aerosol with a liquid component helps
in ensuring adhesion and guarding against re-entrainment. Along with these precautions,
rigorous experimental techniques are needed in order for the results to be reproduceable and

self-consistent.

3.5 Thermophoresis

It has already been stated that thermophoresis may be the dominant deposition mechanism
for small particles in a temperature gradient (section 3.2.3). One of the aims of this work is to
provide reliable experimental data for the influence of thermophoresis on particle deposition,
and to compare this data with theoretical calculations. Accordingly, various theoretical models
for the coefficient of thermophoresis are examined in order to identify the most suitable form
for inclusion in the theory. In section 3.4, experiments on particle deposition in fully-developed
turbulent pipe flow were examined. The popularity of these experiments is due to the pres-
ence of all the transport mechanisms previously described, and such experiments also lend
themselves to investigations into thermophoresis. Previous turbulent pipe flow experiments
featuring thermophoresis will therefore be examined, and suggestions for improvements will
be made. These improvements form the basis of the experimental work to be presented.
The magnitude of the thermophoretic force depends on the particle Knudsen number. The
particle Knudsen number, Kn, is the ratio of the mean free path of a gas molecule, )\, to
the particle radius, 7,:
Kn = Ay (3.46)

Tp

Useful explanations of the phenomena occurring at various Knudsen numbers are given by
Rohsenow & Choi (1961) and Eckert & Drake (1959).
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Under continuum conditions (Kn < 1), rates of momentum and energy transfer at the
particle surface are governed by the equations of continuum fluid flow and the fluid adjacent
to the surface assumes the velocity and temperature of the surface with negligible ‘slip’. When
the molecular mean free path becomes comparable with the particle diameter, however, the
gas becomes rarefied with respect to the particle. This results in a velocity ‘slip’ between the
gas and the particle at the particle surface. There is also a ‘jump’ in temperature between
the particle surface and the adjacent gas. The effects of the molecular velocity distribution
in the gas now become important, because the rates of momentum and energy exchange
are no longer solely governed by intermolecular collisions, but also by the effectiveness of
momentum and energy exchange between the gas molecules and the particle. These effects are
quantified by parameters known as accommodation and reflection coefficients, which describe
the statistical surface-molecule interactions. This flow regime is known as the slip-flow regime,
and it occurs when Kn ~ 0.1.

When Kn > 1, intermolecular collisions are negligible compared with surface collisions,
as molecules leaving the particle surface do not collide with free-stream particles until they are
very far away. The molecular velocity distribution away from the surface can be assumed to
be undistorted (Maxwellian), and flow near the body is considered as the interaction between
free molecules and the surface. This is known as the free-molecule or Knudsen regime.

Between the slip-flow and free-molecule regimes lies the transition regime, where Kn =~ 1.
Collisions between molecule and surface, and molecule and molecule are frequent and of equal

importance. Analysis of transition flow is very difficult.

3.5.1 Theories of thermophoresis over the range of Knudsen

numbers

The thermophoretic force on a spherical particle is given by:

where T' is the absolute temperature of the surrounding gas, and nry is the coefficient of
thermophoresis, which depends particularly on the Knudsen number and the ratio of gas to
particle thermal conductivities.

In the free-molecule regime (Kn > 1), kinetic theory was used by Waldmann (1959)
(cited in Byers & Calvert, 1969) to give the thermophoretic coefficient as:

T2
Nrag = 27r,u/gl/g)\_p = 2T,
9

where )\, is the mean free path of a gas molecule and is given by kinetic theory as A\, = i”—f_:,
g

where ¢ = \/8RT /7 is the mean molecular speed. R is the specific gas constant.

One of the earliest attempts to calculate the thermophoretic force was made by Epstein
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(1929) (cited in Talbot et al., 1980), who derived the following expression for use in the

slip-flow regime:

kg
nro = 9T glgTy <1—:72£—9> (3.49)

»
where £, is the thermal conductivity of the particle, and £, is the thermal conductivity of the
gas. Epstein’s expression was found to underpredict the thermophoretic force compared to
experimental results, especially for particles of high thermal conductivity (Z—Z < 1). It should
be noted that in the free-molecule regime, the thermophoretic force varies with 7"]2, (equation

3.48), while in the continuum and slip-flow regimes the variation is with , (equation 3.49).

Brock (1962) had two objections to the Epstein expression. These were that the correct
boundary conditions for the slip-flow regime may not have been used, and that the continuum
energy equation had been solved neglecting the convective terms. Taking these into account,

he arrived at the expression:

127 pgvgryCl (i—f’ + C’tKn>

Nnra = (3.50)
(

1+ 3CmKn> (1 + 28 4 QC’tKn)

where C',, Cs and C; are constants whose order of magnitude can be established by kinetic
theory. This is the best established equation, and is favoured by many researchers, but the
values C),, Cs and C} as suggested by Brock are usually replaced by those suggested by
Talbot et al. (1980). Note that equation 3.50 reduces to equation 3.49 in the limit Kn — 0
if Cs = 0.75 (the value suggested by Brock). It also reduces to equation 3.48 in the limit
Kn — oo, it Cy = C,,.

Cha & McCoy (1974) adapted their own analysis for the thermophoretic force to present a
theory that would span all values of Knudsen number. Their findings were modified by Wood
(1981) and presented by He & Ahmadi (1998) as the Cha-McCoy-Wood theory:

1
K 4 L (2r,)?
Nrg = n [1 — e:vp( — i)] (—gmen) kT( 7“21,) (3.51)
4\/504(1 + %Kn) Kn 3T dm

where T is the mean gas temperature in the vicinity of the particle, £ is the Boltzmann

constant, and d,,, is the molecular diameter. ¢ depends on the gas properties, 7 is a function
of the normal and tangential momentum accommodation coefficients, and « is a function of
¢, ™ and Kn. It will be shown later that this expression is at variance with both theoretical

and experimental results.

Another theory that merits examination is that of Bakanov & Roldugin (1977), for small
Knudsen numbers. It claims to represent the behaviour of particles of high thermal conduc-
tivity better than other theories, but it will be seen that this theory is highly dependent on
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the choice of the energy accommodation coefficient.

3.5.2 Determination of accommodation coefficients

The constants C; (associated with the temperature jump) and C,, (associated with the ve-
locity slip) are complex functions of the energy (a;) and momentum (a,,) accommodation
coefficients respectively. For the case of incident molecules achieving complete thermody-
namic equilibrium (accommodation) with the surface before leaving, a; = a,,, = 1; and for

the case of complete specular reflection of the molecules, a; = a,, = 0.

Brock assumed the case of complete momentum and energy accommodation, resulting in
Cy, = 1.0 and C; = 1.875. According to Talbot et al. (1980), the best kinetic theory values
for complete accommodation appear to be C,, = 1.14, C; = 2.18 (from Loyalka & Ferziger
(1967) and Loyalka (1968)).

However, for the thermal slip coefficient, Brock used the value Cy = 0.75, first used by
Maxwell (see Kennard, 1938, pg. 295) on the assumption that the distribution function in
the bulk of the gas held all the way to the wall. Talbot found that C'; = 1.17 for complete
thermal accommodation from the more refined kinetic theory analysis of lvchenko & Yalamov

(1971), a value in substantial agreement with other analyses.

Talbot was seeking a fitting formula that would give an expression for the thermophoretic
force that was valid over the entire range of Knudsen number. He chanced upon the fact that
in the limit K'n — oo, the Brock result and the Waldmann free-molecule result are identical,
except for the factor Cs/C,,. But Cs/C,, = 1.17/1.14 = 1.03 (using Talbot’s constants),
giving an error of just 3%. The Brock result, with the constants recommended by Talbot et
al., has been taken by many authors as the definitive formula and has been widely shown to

agree with experiments (as will be discussed in a subsequent section).

According to Talbot, drag measurements carried out on the various aerosols used in ther-
mophoretic experiments support the assumption of perfectly diffuse reflection (a,, = 1.0 and
Cy, = 1.14). The validity of the assumption of complete thermal accommodation has also
been examined. Brock found evidence that for unprepared surfaces, a,, is usually very close
to 1 and a; varies between 0.5 and 1.0; and that for air on various surfaces a; is very near
1. Talbot examined the effect of a reduction in the value of a; to less than unity. In the
near-continuum regime, a reduction in the magnitude of C; results in a slight reduction in
the thermophoretic force. However, in the slip-flow regime this reduction of C; was offset by
changes in the ratio of the two terms containing C;. A lowering of a, results in an increase in
the thermophoretic force in the free-molecule regime. It was concluded that there would be
no significant improvement to the fitting formula by abandoning the assumption of complete

thermal accommodation.
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3.5.3 Additional considerations for particles of high thermal

conductivity

Brock’s expression was found to give poor agreement with experiment for particles of high
thermal conductivity (Bakanov, 1992), although there is improvement over the results using
the Epstein expression. Examining the case for particles of low thermal conductivity in the
near-continuum regime (k,/k, > A\;/rp), the Epstein and Brock expressions are equivalent.

Epstein’s formula is the formal limit as Kn — 0 of Brock's theory.

Bakanov (1992) recognised the limiting case of Epstein’s result, and described it as the first
term of a series in powers of Kn. He reasoned that it was the omission of higher powers of the
Knudsen number that led to the theory under-predicting experiment. Bakanov & Roldugin
(1977) proposed an expression for the thermophoretic velocity at small Knudsen numbers
that was similar to that of Epstein, but with a multiplier of (1 + Kn¢), where ¢ is a complex
function of the momentum and energy accommodation coefficients, and the curvature of the
surface. The Kn¢ term was included to account for mechanisms other than thermal slippage
that contribute to thermophoresis of solid particles. For particles of high thermal conductivity
(:—Z < 1), the Kn¢ term dominates. Bakanov interpreted this as reflecting the physical fact
that for particles of high thermal conductivity, the temperature of the particle will be very
nearly uniform regardless of the temperature distribution of the gas, and that the thermal
slippage is close to zero. The origin of thermophoresis in this case is from thermal stresses in

the gas, and the nonuniformity of the normal flux of heat on the surface of the solid.

Bakanov (1991) argued that because reliable theoretical results were derived mainly in
the Kn < 1 domain, that comparison with experiment is justified only at these Knudsen
numbers. He found little experimental work in this domain, and those experiments that were
carried out at sufficiently small Knudsen numbers, only provided a result at one point, and
consequently gave no information regarding the effect of Knudsen number. According to
Bakanov, for particles of high thermal conductivity, the more rigorous condition Kn < IZ—Z

must be fulfilled in order for a justifiable comparison with theory to be made.

There have been several other attempts at theoretically quantifying the thermophoretic
force, using approaches other than the hydrodynamic analysis of Brock. Dwyer (1968) used
the relationships derived from the Grad molecular velocity distribution, and it was found
that when Z—Z < 1 that the thermophoretic velocity can alter its sign, resulting in a positive
thermophoretic force (usually the force is in the opposite direction to the temperature gradient
and the sign is negative). Bakanov (1991) reports that Gorelov (1976) solved the linearised
Boltzmann equation for the cases where :—i = 0.2 and Z—Z = 0.002, typical of low and high
thermal conductivity particles. For the high thermal conductivity particle, Gorelov found that
close to Kn & 0.1, the thermophoretic force may be very slightly positive. A similar reversal

of the thermophoretic force was found by Sone & Aoki (1981).
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Figure 3.4: The variation of normalised thermophoretic force with Knudsen number: a selec-
tion of experimental data

3.5.4 Experimental work

The experimental data collected in figure 3.4 shows the variation of the normalised ther-

mophoretic force with Knudsen number. The normalised thermophoretic force is:

|fTH| _ nrH
7"]2)|VT| rgT

(3.52)

Based on the various theoretical formulations, 77y /(r.T) can be expected to be a unique
function of the Knudsen number for a specific gas-particle system, and Li & Davis (1995a)
found that this normalisation of the force substantially reduces the scatter in the data. It was
earlier noted that fry varies with r, (from equation 3.50) for the continuum and slip-flow
regimes, and it follows that 7y /(r2T) varies inversely with 7,,. Thus, for a given flow field,
nru/(r;T) varies directly with K'n. Experimental data supports this linear dependence of the
normalised thermophoretic force on Knudsen number.

The experiments of Schmitt (1959)" (silicon oil droplets in argon) and Schadt & Cadle
(1961)" (mercury and tricresyl phosphate (TCP) droplets and sodium chloride (NaCl) particles
in air) were carried out using the Millikan oil drop experimental technique. Li & Davis (1995a)
used electrodynamic levitation to maintain a microsphere in the space between heated and
cooled plates (for dioctyl phthalate (DOP) droplets and polystyrene latex (PSL), nickel and

glass particles in air). A potential difficulty in such experiments is that the gas may be

TData from Li & Davis (1995a).
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Figure 3.5: The variation of normalised thermophoretic force with Knudsen number: a repre-
sentative comparison between theory and experiment

subject to free convection and thermal creep effects. Li & Davis (1995b) also carried out
experiments to determine the effect of gas properties. Figure 3.4 shows a representative

sample of experimental data for various materials in air.

The data of Li & Davis (1995a) shows an increase in nry/(r;T) with an increase in
Knudsen number. For Kn > 3, nTH/(rf,T) is seen to decrease, even though, for free-molecule
flow, a constant value would be expected from the Waldmann theory. The authors explain
that this is due to the fact that the temperature gradient used to calculate these points is not
the effective temperature gradient for large values of Kn. As the mean free path of the gas
approaches the distance between the heated and cooled plates, the temperature gradient at
the center of the chamber deviates from the assumed continuum value, because temperature
jumps exist at the solid surfaces. Thus, there is a second Knudsen number (Kns) based
on the distance between the heated and cooled surfaces, which must be taken into account.
By using a correction term for the temperature gradient, the data was shown to approach a
constant asymptotic value for 5 < Kn < 20 (in agreement with the Waldmann expression
for the free-molecule regime), and the data for K'n > 20 has been ignored. The possibility of
reverse thermophoresis was also investigated for particles of high thermal conductivity at low
Knudsen numbers. It was concluded that due to scatter in the data for Kn < 0.1, there was

insufficient evidence of such a reversal.
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3.5.5 Comparison of experimental data with theory

Figure 3.5 shows the comparison between theoretical models and the data of Li & Davis
(1995a) for DOP and nickel. These experimental data sets are plotted as they are representa-
tive of low and high particle thermal conductivity (for DOP k, = 0.125 Wm ™K™', and for
nickel k, = 90.9 Wm ™K', resulting in :—1; ~ 5 and Z—;’ ~ 3600 respectively). The expression
of Talbot et al. is plotted for the two cases. For Kn < 1, both sets of data are represented
fairly well, but at Kn = 1 the theoretical expressions merge and follow the data for DOP
(underpredicting the data for nickel in this region) before reaching an asymptote, correspond-
ing to the Waldmann expression for the free-molecule regime. The theories of Epstein and
Brock are also plotted. The extent to which the Epstein theory underpredicted 7ry/(r2T)
for particles of high thermal conductivity is evident. Brock's theory does not represent the
data well when Kn > 0.1.

He & Ahmadi (1998) presented the Cha-McCoy-Wood equation, and this shows 7y / (721")
increasing with increasing Knudsen number until Kn = 3, and thereafter decreasing with in-
creasing Knudsen number. The amplitude and other parameters («, ;) were then modified to
improve agreement with the experimental data. The authors find good agreement between the
data of Li & Davis and their modified Cha-McCoy-Wood equation, but do not seem aware
that Li & Davis have themselves pointed out that the trend of decreasing nrp/(r;T) for
Kn > 3 is due to experimental conditions. The fact that the theory follows the experimental
data at all, is probably due to the fact that the original Cha & McCoy (1974) theory was
developed for a spherical particle suspended in a gas midway between two planes at different
temperatures; an arrangement similar to the experiments of Li & Davis. Cha & McCoy were
also aware of the existence of a second Knudsen number based on the distance between the
plates. Wood (1981a) attempted to remove the dependence on a second Knudsen number
Kny from the expression by assuming that Kny, < 0, but this does not appear to have been

sufficient to correct the deficiencies in the theory.

The theory of Bakanov & Roldugin (1977) is shown for a particle of high thermal con-
ductivity (nickel), and with a; = 1. The normalised force due to thermophoresis decreases
with increasing Knudsen number, and it is not until a; < 0.9 that the force increases with
Knudsen number, though it still does not represent the experimental data well. Bakanov
(1991) thought that the possibility existed to assess the value of the energy accommodation
coefficient of gas molecules undergoing collisions with the surface of a particle, according
to the variation of the thermophoretic force at small Knudsen numbers using the theory of
Bakanov & Roldugin. However, Li & Davis (1995a) report that a, strongly depends on the
type of surface, the cleanliness of the surface, its temperature, and the composition of any
adsorbed gas. The theory of Bakanov & Roldugin (1977) would seem to be too sensitive to
the value of a; to be of practical use. The reversal of the sign of nTH/(rf,T) for a slight change
in the value of a; at a; = 0.9 suggests that the theory is far removed from the actual physical

process. The obvious failings of this theory may explain Bakanov's subsequent rejection of
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Figure 3.6: The effect of variation of the thermal accommodation coefficient on the normalised
thermophoretic force across the range of Knudsen numbers

comparisons between experimental data and theoretical analyses.f

The effect of a coefficient of energy accommodation that deviates from unity on the
expression of Talbot et al. is shown in figure 3.6. It can be seen that below Kn = 1, the value
of a; has no significant effect on 7ry /(r2T), as would be expected from continuum theories.
It should be pointed out that the Waldmann theory also assumes complete accommodation.
Talbot et al. (1980) have managed to match the near-continuum result of Brock, and the free-
molecule result of Waldmann, while representing the experimental data between these limits
fairly well. The assumption of complete accommodation has been shown to be reasonable,
and even if this is not the case, the effects of a varying energy accommodation coefficient
are negligible below Kn ~ 1 (0.01< Kn <0.1 is the range of interest in this work). It is
clear that the most suitable formulation is that of Brock, using the constants recommended
by Talbot et al..

3.6 The effect of thermophoresis on particle deposi-
tion

Particle transport and deposition in fully-developed turbulent pipe flow is a relatively simple
flow field which still features particle transport by nearly all of the mechanisms described in

sections 3.2 and 3.3. Since Friedlander & Johnstone (1957) first carried out experiments on

'Bakanov & Roldugin (1977) is reconsidered in chapter 7 in the light of a newly discovered paper by
Beresnev & Chernyak (1995).
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isothermal and turbulent vertical pipe flows, there have been many other investigations of this
type. The influence of thermophoresis (acting either alone or in unison with other mechanisms)
on particle deposition may be studied by imposing a temperature gradient across the pipe.
Most experiments involving a temperature gradient have been conducted in laminar pipe flows,
but the present work aims to deal with the case of turbulent pipe flow.

Montassier et al. (1991) performed experiments by heating a laminar flow of air, laden with

uranine particles, and then directing this upwards through a vertical pipe. The outer wall of the
pipe was kept at a constant temperature by a flow of cold water, and the nominal temperature
gradient at entry to the deposition pipe (difference in temperature between the wall and the
flow at entry divided by the pipe radius) was approximately 8000-9000 Km~! (80-90 K in a 2
cm diameter pipe). The nominal temperature gradient will be denoted by Tgrad.T Experiments
were performed for a number of different particle sizes, and the deposition efficiencies were
determined by cutting the deposition pipe into sections, washing these sections, and then
measuring the fluorescence of the solution with a photometer.

Romay et al. (1998) carried out experiments on sodium chloride (NaCl) and polystyrene
latex (PSL) particles in a downward turbulent flow through a vertical pipe. The particle-laden
flow had a temperature of between 298 K and 410 K at the entrance to the deposition pipe,
compared to a temperature of 20 K at the water-cooled pipe wall. For a 0.49 cm diameter
pipe, this corresponds to a nominal temperature gradient at entry to the deposition pipe of
approximately 2000-48000 Km~!. Condensation nucleus counters upstream and downstream
of the deposition pipe were used to measure the deposition efficiency. Having derived a
theoretical expression for thermophoretic deposition efficiency in turbulent pipe flow, this was
compared with the turbulent expressions of Byers & Calvert (1969), Nishio et al. (1974),
Batchelor & Shen (1985), and the laminar expression of Stratmann et al. (1994). All the
expressions (including that for laminar flow) were found to be within 2% of each other, except
for that of Byers & Calvert. This expression predicted much higher deposition rates, due, it
was thought, to the particular treatment of the temperature gradient at the gas-wall boundary.

Leeming (1995) performed similar experiments with particles of oleic acid and uranine,
in a turbulent pipe flow. The particle-laden flow was directed downwards through a vertical
pipe. The quantities deposited on the pipe walls were then determined by cutting the pipe
into sections and using fluorescence spectrometry. As well as experiments in isothermal flow,
experiments were carried out where the flow was heated and passed through a pipe with
water-cooled walls. However, it was found that when the flow had travelled far enough along
the pipe for the temperature profile to be fully-developed, the temperature difference between
the flow and the walls of the pipe was only 4 K in a 1 cm diameter pipe (Tgad = 800 Km™1).

While Montassier et al. (1991) and Romay et al. (1998) plotted their results as deposition
efficiencies, Leeming plotted dimensionless deposition velocities, as used for the results from

the many isothermal pipe flow experiments. The dimensionless deposition velocity is (from

tThe limitations of using a nominal temperature gradient will be explained in chapter 4.
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equation 3.45):

dU 1
v = Wmg
d 4L, n(P) (3.53)

where L is the length of the pipe (or section), d is the pipe diameter, U, is the mean flow
velocity, u, is the friction velocity, and the fractional penetration of each section P =1 — 1y,
where 1), is the deposition efficiency of that section. The deposition efficiencies were converted
to dimensionless deposition velocities using the parameters shown in equation 3.53, with
the parameters evaluated at a representative mean temperature (taken as the mean of the
wall temperature and the temperature of the flow at entry to the deposition pipe) for the
experiments of Montassier et al. (1991) and Romay et al. (1998). The experiments of Leeming
(1995) calculated the deposition velocities themselves, based on the mean temperature in the

section of the pipe where the temperature field was fully-developed.

The results are shown in figure 3.7. The data taken from the experiments of Romay et
al. was for sodium chloride particles at flow rates of 5 Ipm and 35 Ipm, corresponding to a
laminar flow with Re ~ 1400 and a turbulent flow with Re ~ 9500, respectively. The upper
lines bounding this data represents the case when the nominal temperature gradient at entry
to the deposition pipe Tgna = 48000 Km ™!, and the lower bounding lines represent the case
when Tgrag = 2000 Km™,

It should be noted that 7. for the data of Romay et al. is defined by equation 3.5 multiplied
by the Cunningham correction factor of equation 3.15, to account for the rarefaction of the
gas with respect to the particle. At standard conditions, the error involved in the omission of
this correction factor is only significant for particles less than 1 um in diameter (Hinds, 1998,
pg. 49). Romay et al. used particle diameters in the range 0.1-0.7 um, making the use of
this correction factor necessary. Montassier et al. used particles of diameter both greater and
less than 1 um, so although the Cunningham correction factor was included in the expression
for T;“,
in Leeming’s data as all the particles were greater than 1 um in diameter.

it use was only significant for the submicron particles. This correction was not used

The shaded area in figure 3.7 represents the scatter of experimental data for isothermal
turbulent pipe flow. The isothermal data of Leeming is within these limits, while the data of
Romay et al. is slightly higher, but demonstrates a similar trend. Leeming's data for turbulent
flow with only a 2000 Km ™! nominal temperature gradient across the pipe shows an increase
in V.- from the isothermal case for T; < 1, but there is no apparent effect on particles of
higher inertia. It should be expected that, outside of the inertia-moderated regime, the effect
of thermophoresis would decrease as particle size increased. Leeming's data shows this as a
reduction in the increase in V" of the heated experiments over the isothermal experiments.
The fact that there is still an increase in V" for the heated experiments at these values of T;“
is due to the additional deposition mechanism of turbophoresis, which becomes increasingly

important in this particular size range.
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Figure 3.7: The influence of thermophoresis on the variation of dimensionless deposition
velocity with dimensionless particle relaxation time in pipe flows

The trend of decreasing thermophoretic effect with increasing particle size may be seen in
the data of Montassier et al. for laminar flow. They found that deposition was negligible in the
absence of a temperature gradient for laminar flow at this range of 77, so that the deposition
measured is almost completely due to thermophoresis. There is agreement between this data
for laminar pipe flow (Tgg = 8000 Km™!), and that of Romay et al, also for laminar pipe
flow (Tgaa = 48000 Km™'). The difference between Ty.q4 for the two cases does not produce
significantly different values of V", which can be attributed to the approximate method of
calculating V", and the decreasing effect of further increases of Tgaq on V.

The turbulent heated pipe flow data shows an increase in deposition as Tg.q is increased.
It should be noted that the greatest increase in deposition velocity in the data of Romay et
al. occurs when Tg,q = 2000 Km~!, and that these values are very close to those of Leeming
with Tgag = 800 Km~!. This agreement is very good when the approximations made in
converting the data from deposition efficiencies to deposition velocities is considered. The

Knudsen numbers for all these experiments were in the range 0.01 to 1.5.

Some problems with the available thermophoretic data

The conversion from deposition efficiency to deposition velocity is only approximate as the
mean temperature of the flow decreases with distance from the inlet of the deposition pipe.
When a cross-stream temperature gradient exists, the gas properties vary across the pipe, and

mean values are used to calculate the Reynolds and Knudsen numbers. However, the existence
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of an axial temperature gradient means that the mean gas properties also vary in the axial
direction, along with the Reynolds number and Knudsen number. The thermophoretic force
also decreases along the length of the pipe as the mean gas temperature approaches the
(cooled) wall temperature. Leeming’s experimental data is more useful, as the mass flow
rates of the particle-laden flow and the counterflow cooling water were chosen so that there
was a constant heat flux from the particle-laden flow to the cooled pipe wall. This resulted
in a constant temperature difference, and thus a constant thermophoretic force in the section
of the pipe where the measurements were made (although the mean temperature still varied
axially, the variation was small enough not to alter the thermophoretic force or influence the

gas properties significantly).

3.6.1 Comparison of experimental data with theory

In order to compare these experimental results with the available theories for the ther-
mophoretic force, the thermophoretic contribution to the deposition velocity must first be
separated from the contributions due to other deposition mechanisms. However, a coupling
between thermophoresis and one or more of the other mechanisms may exist, in which case
the separation of these contributions would not be trivial.

Comparison is possible using the results of Montassier et al. (1991), as they found that
deposition was negligible for the isothermal laminar case. Their experimental data has been
compared with the theories of Walker (1979) and Stratmann & Whitby (1989) (cited in
Montassier et al., 1990), both of which use the coefficient of thermophoresis 77 as given by
Brock (1962), with the constants suggested by Talbot et al. (1980). The experimental data
showed good agreement with these theories, especially considering that the expression for the
thermophoretic coefficient was originally derived only for small temperature gradients.

Such a comparison is not as straightforward using the turbulent results of Leeming and
Romay et al., as it can be seen that other deposition mechanisms were involved in the isother-
mal case. Romay et al. sought to decouple the thermophoretic component of deposition

efficiency from the overall deposition efficiency through the use of the expression:

Neombined = T + 2 + f1,2 (354)

where 7y, 1, are the deposition efficiencies due to mechanisms 1 and 2, and f; 2 is a function
of the dimensionless parameters for mechanisms 1 and 2. As the value of f; > will depend on
the exact nature of the mechanisms involved, it was assumed to be equal to zero as a first
approximation, and the same assumption was made by Nishio et al. (1974), i.e. complete
decoupling of the mechanisms was assumed. When Leeming treated his deposition velocity
data in the same way, he found too much scatter in the plots of V" against Tg.q4 for the
results to be meaningfully compared.

Romay et al. found that, once the thermophoretic component had been extracted for

the turbulent pipe flow, the experimental results were a factor of 1.4-2.0 times greater than
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theoretical predictions (again based on Brock’s theory using Talbot's constants). They also
showed that theory underpredicted the experimental data of Byers & Calvert (1969) and Nishio
et al. (1974) by similar amounts. While a negative f; 5 would only enhance the discrepancy,
a positive value would have improved agreement, and such a value would indicate a coupling
between thermophoresis and turbophoresis. Leeming (1995) also presented the results of a
numerical study that showed a non-linear coupling between the isothermal and temperature
dependent deposition of particles in the turbulent diffusion-eddy impaction regime. It was also
found that numerical calculations (using the same expression for the thermophoretic force as

Romay et al. (1998)) underpredicted the experimental results by a factor of two.

The experiments carried out on thermophoresis in laminar pipe flows show good agreement
with available theoretical expressions, which use the expression for the thermophoretic force
recommended by Talbot et al. (1980). The results from turbulent pipe flows indicate that
there may be a coupling between the mechanisms of thermophoresis and turbophoresis for

certain classes of particles, and that this coupling further enhances deposition.

3.6.2 Other experimental and theoretical work

Rosner & Fernandez de la Mora (1982) developed a theory of particle transport across turbu-
lent boundary layers in the presence of a temperature gradient, and examined the interaction
between turbulent diffusion, Brownian diffusion and thermophoresis, for small particles. Kon-
standopoulos & Rosner (1995a,b) carried out a theoretical and experimental study of inertial
effects on thermophoresis of small particles in laminar boundary layer flows with streamwise
curvature. While the important role of inertial transport of large particles is well recognised,
the indirect effects of particle inertia on small particles have been widely overlooked. The au-
thors report how particle inertia has been shown to affect deposition rates by local enrichment

or depletion of the particle concentration in the vicinity of the collector.

As well as pipe flow experiments, there have been many experiments to examine the influ-
ence of thermophoresis in other applications. Nomura et al. (1997) and Vermes (1979) have
investigated enhanced deposition to air-cooled turbine blades, while Ryley & Davies (1983)
examined how thermophoresis could be used to discourage the deposition of fog droplets on

steam turbine guide blades.

Chen (1999) and Chen & Xu (2002) have carried out studies on the effect of the presence
of a wall on the thermophoresis of particles at small and large Knudsen numbers. For the case
of small Knudsen numbers (of more interest to this work), the effect only becomes significant
when the ratio of the particle radius to the distance from the wall is less than 0.5. Gallis et al.
(2002) studied this effect over the entire range of Kn and found that the force increased

slightly (less than 5%) near the wall, with the greatest increase being for the smallest Kn.
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3.6.3 Proposed work

Previous pipe flow experiments have involved heating the particle-laden flow before passing
it through a pipe with a cooled outer wall. The temperature of the gas and particles then
decreases along the length of the pipe. The result of this is that the conversion of the
pipe flow data from deposition efficiency to deposition velocity (shown in figure 3.7) was
only approximate, and the thermophoretic force was not constant. Under such conditions, a
constant thermophoretic force may be achieved by a constant heat flux from the pipe walls
to the flow, but only if the axial variation in mean temperaure is small and the temperature
field is fully-developed. However, only the data of Leeming takes note of this, and measures
deposition in the part of the pipe where the temperature field is fully-developed with a constant
thermophoretic force. Unfortunately, a nominal temperature gradient of just 800 Km~! existed
in this part of the pipe. The requirement for a constant heat flux (V7 = constant) and a
constant mean temperature for a constant thermophoretic force comes from the fact that
fru < v(InT) =vT/T.

The recommendations of Leeming (1995) were adopted for the present work. Thus, an
annular arrangement like that of Wells & Chamberlain (1967) for isothermal flow was used,
but with the inner wall cooled and the outer wall heated, so that once the temperature field is
fully-developed, the flow experiences a constant temperature difference, and thermophoretic
force. The particle-laden gas will not decrease in temperature as it flows down the annulus
as happened in previous pipe flow experiments. It will flow between two walls maintained
at constant temperatures, and hence it will now be possible to achieve a fully-developed
temperature field with large temperature differences, and with very limited axial variations in
mean gas properties.

Owen et al. (1989) and Chiou & Cleaver (1996) carried out experiments on thermophoresis
in annular arrangements. However, Chiou & Cleaver (1996) investigated the case of laminar
flow, and Owen et al. (1989) used only particles with very small 77 (~ 1072). It is worth
noting that both studies used uranine particles and a fluorimetric analysis technique, and that
both studies seem only to have measured the deposition to the inner pipe of the annulus (in
common with Wells & Chamberlain (1967)). As will be seen when the method of calculating
the deposition velocity in an annulus is presented later, it should not be possible to calculate
the deposition velocity on one surface, without analysing the deposit on the other surface,
unless the deposition velocity to the omitted surface is negligible . It is hoped that the annular
arrangement will improve the accuracy of the experiments by providing a range of constant
thermophoretic forces in fully-developed temperature fields with constant mean temperatures,
resulting in a datum against which any potential coupling between thermophoresis and other
deposition mechanisms may be investigated, and expressions for the thermophoretic force may
be validated.
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Chapter 4

Experimental study of
thermophoresis in a turbulent

annular flow - design and procedure

4.1 Introduction

There have many experimental studies of the relationship between particle size and deposition
rate, and most of these have been carried out in a fully-developed turbulent pipe flow, in
which no temperature gradient exists (reviewed in section 3.4). This relatively simple flow
field, featuring many of the transport mechanisms previously discussed, was understandably

attractive to researchers.

With the large of amount of experimental data available for such flows (and results which
are well established), attention has now turned to studying the mechanism of thermophoresis
in fully-developed turbulent pipe flow. One possibility is that the gas-particle flow is heated
before it enters the pipe, and the wall of the pipe is cooled, so that a temperature difference
exists between the flow at the centre of the pipe and the pipe wall. However, as the gas-
particle flow moves through the pipe its temperature decreases, and this detracts from the
usefulness of the data obtained because the thermophoretic force varies along the length of the
pipe. Experimental conditions can be arranged in such a way that the wall temperature also
decreases so that a constant temperature difference, and hence a constant thermophoretic
force, is maintained (Leeming, 1995). The disadvantage of such an arrangement is that high
temperature differences are difficult to achieve. Alternatively, high temperature differences
may be achieved, but without a constant temperature difference (Romay et al., 1998). If the
cold wall is maintained at a constant temperature while the hot gas-particle flow loses heat
as it moves along the pipe, then the gas properties (such as density and dynamic viscosity)
also change along the pipe as the temperature changes, and this leads to variations in the
thermophoretic coefficient, Knudsen number and Reynolds number. This makes it difficult to

reliably non-dimensionalise the results in the traditional (and most useful) manner, involving
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dimensionless deposition velocity and dimensionless particle relaxation time.

The experiments described here involve the study of turbulent flow in an annulus, subse-
quently referred to as turbulent annular flow (this is definitely not to be confused with annular
gas/liquid flows where part of the liquid moves as a film on the pipe wall and part is entrained
as droplets in the high-velocity gas core). The inner wall of the annulus is cooled and the
outer wall heated, in such a way that the temperature of each is (almost) constant. A near
constant thermophoretic effect along the length of the annulus is then achieved (although
the thermophoretic force varies across the annulus), without a variation in gas properties,
and in such a way that high temperature differences may be achieved. The first part of the
study involved a set of isothermal experiments, to provide a datum against which to compare
the thermophoresis experiments, and a link to the turbulent pipe flow experiments of other
researchers. The thermophoresis experiments were carried out for a range of particle sizes,
with a number of temperature differences.

This chapter deals with the many factors which were considered during the design of
the experiment, and the establishment of a procedure for performing an experiment and
analysing the measurements to obtain a result. The complete set of results are presented
and discussed in the next chapter, and will be shown to provide invaluable new data on
the influence of thermophoresis on particle deposition, against which computational models
containing theoretical expressions for thermophoresis (and the other transport mechanisms)

may be assessed.

4.2 Experimental overview
The experiment is best described by dividing it into a number of parts:

1 Aerosol particles tagged with a fluorescent tracer were generated and entrained by a

flow of air.

2 The particle-laden flow then underwent a series of preparations on its journey to the

test section.

3 The particle-laden flow then entered an annular region between two pipes. The inner
wall of the annulus was cooled by a flow of water, and the outer wall was heated by
a heating tape wrapped around its outer side. The particle-laden flow passed through
this annular arrangement and a fraction of the particles deposited on the pipe walls.
The remainder of the particles were removed from the flow by a filter at the end of the

annular section, and the air was exhausted to the atmosphere.

4 Temperature and pressure measurements were taken to determine the conditions under

which deposition occurred.
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5 At the end of a run, the annular test section was removed. The inner and outer pipes
and the filter paper were washed, and the washings were analysed using a luminescence

spectrometer.

6 The quantity of fluorescent tracer (and hence the fraction of particles) deposited on
each pipe wall was determined from an analysis of the washings, and this information
was used to determine the rate of deposition to each pipe wall for the particular size of

particle generated.

4.2.1 Particle generation

The TSI model 3450 vibrating orifice aerosol generator (VOAG) (TSI Inc, 1998) produces
a spherical, near monodisperse aerosol of known particle size and concentration from any
material in solution form. A syringe pump forces an aerosol solution from a syringe, at constant
flowrate, through an extremely small orifice in a disk, so that the solution forms a liquid jet.
Such a jet is naturally unstable and tends to break up into droplets. Left uncontrolled,
non-uniform droplets would be produced, but the application of a periodic disturbance of
an appropriate frequency to the jet results in the production of extremely uniform droplets.
This is done by applying a signal across a piezoelectric ceramic, which produces a mechanical
vibration in the orifice disk. The aerosol generator is shown in figure 4.1.

One droplet is produced per cycle of disturbance, so that if the liquid feed rate of the
aerosol solution and the frequency of the applied disturbance are known, the volume of a

single droplet may be accurately calculated. Then, the droplet diameter, d; (in cm), is

. (ﬁf) 1)

where () is the liquid feed rate (cm3s™!) and f is the frequency of the disturbance (Hz).

calculated from:

A number of different sized orifices are available for use with the aerosol generator, and
10, 20 and 35 pum diameter orifices were used in these experiments. Apart from the upper
size limit that the diameter of the orifice places on the particle to be generated, the diameter
of the orifice only affects the droplet diameter through the limitations that it places on the
choice of liquid feed rate and disturbance frequency. These limitations are that there is a
minimum liquid velocity needed to form a liquid jet, and that uniform droplets can only be
produced if the frequency of the disturbance is within a certain range. The minimum liquid
velocity and the limits of this frequency range are determined by the orifice diameter.

The droplet diameter (d;) does not represent the diameter of the final aerosol particle.
The aerosol solution components were a non-volatile solute (oleic acid, uranine and any
non-volatile impurities initially present in the solvent) in a volatile solvent (propan-2-ol and

deionised water). When this solution passed through the orifice and had been broken up into
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Figure 4.1: The TSI model 3450 VOAG (note the drying column on top)

droplets, it was dispersed and then diluted with air in a drying column above the aerosol
generator. This prevented agglomeration (the joining of one or more droplets into a single
larger droplet), and allowed the solvents to evaporate, leaving a final aerosol particle which
consisted of a solid core of uranine surrounded by a liquid coating of oleic acid, with a diameter
d,. This liquid coating helped to ensure that when a particle deposited on the pipe wall, the
adhesive forces were sufficient to prevent re-entrainment. Uranine was used as a fluorescent
tracer.

Once an orifice had been chosen and a suitable frequency and liquid feed rate selected,
the diameter of the final aerosol particle, d,,, depended only on the volumetric concentration
of the solute in the aerosol solution. The final particle diameter is found using:

6Q.C\"° v, .V
d, = ( g} ) where C:v{l—i—;——l—fvp} (4.2)

C' is the volumetric concentration of non-volatile solute in the solution, V' is the volume of a
solution constituent, and subscripts o, p, s and u refer to oleic acid, propan-2-ol, the entire
solution and uranine, respectively. ¢, is the mass of uranine per unit volume of oleic acid, p,
is the density of uranine, and I is the volumetric concentration of the non-volatile impurity in
the particular grade of propan-2-ol used in these experiments.

Manipulation of equation 4.2 with the substitution of some basic volumetric relationships

allows the particle material density to be calculated using:
1
Pp,mat = W V;)(po + Cu) + pI%I (43)
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where p; is the mean density of the non-volatile impurities in the grade of propan-2-ol used.
The physical properties of these reagents are given in table 4.1. ¢, was chosen as 0.1 gcm ™3
to match previous experimental studies (Liu & Agarwal, 1974; Leeming, 1995), and this fixed
Pp.mat=931 kgm 3. V; was chosen to be large enough for the experiment to be run for long
enough that a measurable quantity of uranine could deposit (ranging from thirty minutes for
large particles to thirty six hours for the smallest).

The theoretical particle concentration at outlet from the aerosol generator, C,, ,u, is given

by:

f

o (4.4)

Cp,out =
where (), is the total volumetric flow rate of air through the aerosol generator. The actual
particle concentration at entry to the deposition annulus was less than C), ,,; due to particle
deposition in the drying column and in the flexible tubing and pipes through which the particle-

laden flow of air passed on its way to the annular test section.

Reagent Property Value Source

Uranine Pu 1.53 gcm ™3 Olan-Figueroa et al. (1982)
K 0.43 WmK™! Al-Azzawi & Owen (1984)

Oleic acid Po 0.892 gcm —3 @ 20°C Weast (1988, pg. C-385)
k,  0.230 Wm~'K~! @ 26.5°C Weast (1967)

Non-volatile Pr 1.0 gcm 3 Fisher Scientific UK (2001)

propan-2-ol I 0.001 % Fisher Scientific UK (2001)

impurity

Table 4.1: Physical properties of aerosol solution reagents

Validation of particle generation

It is of great importance that the size of the particles generated is known accurately. Berglund
& Liu (1973) have shown that the use of equation 4.2 to determine particle diameter is much
more accurate (as well as easier) than ‘conventional microscopic sizing techniques’. However,
even if the particle diameter can be calculated with confidence without the use of microscopic
techniques, the quality of the particles generated must still be assessed. A particular operating
frequency may be within the limits of the frequency range for a particular orifice, and still
produce droplets that are not monodispersed. Smaller ‘satellite’ particles may be produced, or
larger ‘doublets’ and ‘triplets’ (twice and three times the intended size). Insufficient dispersion
or dilution air may result in particle agglomeration. Any of these effects would result in a
discrete number of particles of different diameter from that calculated using equation 4.2, and
this would affect both 7.f and V"

One method of collecting oil particles (oleic acid in this case) is through the use of an
oleophobic surfactant (e.g. Liu & Agarwal, 1974). A sampling jet (located before the test
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section) was opened and particles were collected on a 6mm diameter microscope slide cover-
glass coated with the surfactant. However, the particles on the slide were ‘flattened’ due to
the action of surface tension and interfacial forces, resulting in an observed size that was larger
than the particle diameter prior to collection. A flattening coefficient is defined to relate the
observed size to the true size, and a different flattening coefficient exists for each particle-
surfactant combination (Olan-Figueroa et al., 1982). In the past, as surfactants were replaced
with newer ones, flattening coefficients were determined for the replacement surfactants. The
withdrawal from the market of the widely used FC-721 (3M Co.) has not coincided with the
determination of a flattening coefficient for any new surfactant that can be used in conjunction
with oleic acid. Hence, the surfactant used in these experiments (Certonal TL6x(J), Layton
plc) had an unknown flattening coefficient. As this made determination of the exact particle
diameter impossible, microscopic analyses were carried out only to assess the mondispersivity
of the particles, the level of agglomeration and to give an indication of the particle diameter.
Figure 4.2 shows a comparison between two slides representative of poor quality and good
quality aerosols. A number of discrete particle diameters (approximately 3.6, 4.5 and 6.8
pum) can be seen in figure 4.2a, as well as a number of non-spherical particles, indicating a
poor quality aerosol). Figure 4.2b shows a monodisperse aerosol with a particle diameter of
approximately 9.2 ym. Note that the uranine core surrounded by a liquid coating of oleic acid

is clearly visible.

o _ o )

Figure 4.2: Particles of uranine and oleic acid collected on slide cover-glasses coated with an
oleophobic surfactant: a) poor quality aerosol; b) good quality aerosol

4.2.2 Preparation of particles for the deposition pipe

Before a particle-laden flow can be used to study deposition, certain precautions must be
taken so that the mechanisms causing deposition can be identified. Clean dry compressed

air entered the aerosol generator and left it carrying an electrically charged cloud of aerosol
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particles. An electrical charge would have enhanced deposition (Montgomery & Corn, 1970),
so the flow was directed past a 10 mCi Krypton-85 radioactive source (TSI model 3054 aerosol
neutraliser). The ionizing Beta radiation left a bipolar residual charge on the particles, but

the aerosol cloud as a whole was electrically neutral (Liu & Agarwal, 1974).

The particle-laden flow was then mixed with a secondary flow of air because the air flow
required was higher than the rated output of the aerosol generator (which is just 100 Ipm).
In certain cases, it was necessary for the particle-laden flow to be heated before entry to the
test section (for the heated runs to investigate the effects of thermophoresis, this reduced
the length of annulus required to attain a fully-developed temperature field). The aerosol
generator was not designed for high temperature air flows, so the temperature of the particle-
laden flow was increased through mixing with the secondary flow which had passed through
a 1600W threaded inline heater (Hawco Ltd.) (see figure 4.3 for a schematic diagram of the

rg).
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Figure 4.3: A schematic diagram of the experimental rig
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As a precaution against swirl in the deposition annulus, and to allow thorough mixing
of the two component flows, the flow was directed into a plenum chamber (see figure 4.4).
When the flow entered the plenum chamber, a baffle placed in front of the inlet forced it to
circulate throughout the chamber, rather than proceeding directly into the deposition annulus.
A circular header tube with a spiral arrangement of holes was located around the exit from
the plenum chamber (and extended to the roof of the chamber), so that the flow entered the
header from all sides before proceeding in a uniform non-swirling manner to the deposition
annulus. The baffle and header geometries were designed so as to remove as few particles as

possible from the flow.

Figure 4.4: Plenum chamber measuring 280mm x 175mm x 120mm (note that the baffle and
a header have been removed - the rig was originally designed to operate with an additional

‘bypass’ pipe)

4.2.3 Deposition annulus

The deposition annulus represented the test section in this experiment (although the entry
and exit regions were neglected as the flow may not have been uniform here). The schematic
diagram of figure 4.5 is intended to complement the following description. The deposition
annulus consisted of a 15 mm outside diameter (d;) stainless steel tube placed concentrically
in a 23 mm inside diameter (d,) brass pipe. The brass pipe extended from the bottom
of the plenum chamber to the top of the filter assembly. The brass pipe (and deposition
annulus) was 2.4 m in length. The stainless steel tube was longer and passed through the
top of the plenum chamber (through the centre of the header) and the bottom of the filter
assembly. Cold water could be directed downwards through the stainless steel tube, while
the particle-laden flow passed from the plenum chamber, vertically downwards between the

stainless steel tube and brass pipe, and into the filter assembly. A 110 mm diameter Whatman
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a) b)

Figure 4.5: A schematic diagram of the particle-laden flow and cooling water as they enter
and exit the annular test section: a) entrance via the plenum chamber; b) exit via the filter
assembly. Blue arrows represent the flow of water, and red arrows the particle-laden flow. The
hatched area of b) represents the filter paper, and the air exits the filter below this, towards
the rear of the bottom half of the filter assembly.

glass microfibre (GF/A) filter with 1.6 um retention was placed across the flow in the filter
assembly, to capture any particles which remained suspended in the flow (when using particles
smaller than 1.6m, GF /B filter paper with 1.0 um retention was used). It was supported by
a circular steel mesh, and the stainless steel tube passed through the centre of the filter paper
and its supporting mesh. A nitrile rubber o-ring ensured that there was no flow between the
stainless steel tube and the filter paper. An 800 W (16 ft x 1 in) heating tape (Electrothermal
Engineering Ltd) was wrapped around the outside of the brass pipe, and a controller was used
to control the power to the heating tape, maintaining it at a constant temperature. The
plenum chamber, filter assembly, heating tape and brass tube were wrapped in aluminium
foil, and lagged with Armaflex insulating sheets (Armacell UK Ltd) and Rocklap 800 pipe
insulating section (Rockwool Ltd) to prevent heat loss. Both the tube and the pipe were

earthed to remove any electrical charge that might have affected deposition.

It has already been stated that the use of a plenum chamber helps in preventing swirl in
the deposition annulus. It is well known (e.g. Liu & Agarwal, 1974) that the existence of

secondary flows in pipes can influence particle deposition rates, particularly for small particles.
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If swirl is present in a turbulent pipe flow, the rotation of the flow as it moves down the
pipe subjects the particles to centrifugal forces which cause them to deposit at a much higher
rate than expected, as seen in certain experiments of Leeming (1995). A further precaution
to prevent swirl was the use of a flow straightener (see figure 4.6) at the entrance to the
deposition annulus. A twelve-finned 25 mm long flow straightener was attached to this end of
the deposition annulus, and a similar flow straightener was also attached to the lower end of
the annulus. Together, they also served the purpose of locating the inner tube concentrically
within the outer pipe. They also prevented the removal of deposited particles from either
surface when the inner tube was removed from within the outer pipe for washing. These flow
straighteners were omitted from figure 4.5 for clarity. Both deposition surfaces were confirmed

to be aerodynamically smooth.

Figure 4.6: A schematic diagram of a flow straightener

Experimental limitations

There were certain limitations on particle size and the flow conditions attainable. The maxi-
mum pressure in the system was limited to approximately 1.1 bar by the fact that, at higher
pressures, the drying column would lift off the aerosol generator. While the hydraulic diameter
of the deposition annulus (d, = d, — d; = 0.8 cm) was close to the 1.27 cm diameter pipe
used by Liu & Agarwal (1974) and the 1 cm diameter pipe of Leeming (1995), the flow area
was much greater, and so compressed air would need to have been supplied at pressures far
in excess of 1.1 bar in order to reach some of the higher flow rates and Reynolds numbers
used in these other experiments (The highest Reynolds number used by Leeming was 20000

while Liu & Agarwal used 50000). Two vacuum motors were arranged in parallel downstream
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of the filter assembly to draw the air through at higher flow rates. The maximum possible
Reynolds number attainable was still limited to 6000.

One of the consequences of using vacuum motors was that the pressure fell below the
atmospheric level in much of the system, so that use of the sampling jet in the plenum
chamber to collect particles on a slide (see figure 4.2) resulted in air being drawn into the
system, rather than a sample emerging from the jet. Therefore, sampling had to take place
at the end of the run, with the vacuum motors switched off, and with a lower air flow rate
than was used during the experiment. This was not ideal when trying to test the quality of
the aerosol produced, as agglomeration may have occurred at the lower flow rate, but not
during the actual experiment. Sampling was therefore used as an indication of the worst case,
so that if the sample were free from agglomeration, the experiment was also considered to be
free from agglomeration. If only a small amount of agglomeration was observed, then it was
assumed that this occurred due to the sampling method and that there was no agglomeration
during the experiment (when higher air flow rates were used).

The dimensionless quantity 7.7 has been previously defined (equation 3.42) as the ratio
of the particle to the gas relaxation times. For turbulent pipe flow, the gas relaxation time
is traditionally based on a characteristic eddy time-scale (given by v,/u?). It follows that
7,7 can be increased by increasing the particle diameter d, (and hence 7,), or by increasing
u, through an increase in the pipe Reynolds number. There were limitations on the size
of particle that could be generated by the aerosol generator. Its operating conditions and
the difficulty in measuring out very small quantities of uranine and oleic acid prohibited the
generation of particles smaller in diameter than approximately 1 um, while larger particles
requiring greater quantities of uranine and oleic acid resulted in the persistent clogging of the
small orifice disks. As a result of these limitations, Liu & Agarwal (1974) and Leeming (1995)
achieved large values of 7,7 by increasing the pipe Reynolds number, an option not available
in these experiments. Consequently, 7.7 was limited to the range 107'-10” in the experiments

described below.

4.2.4 Determination of the flow conditions

A number of measurements were made so that the gas properties were fully known, allowing
calculation of w,, T;“ and V", and the determination of the conditions under which deposition
had occurred. The volumetric flow rate of air was measured using a Platon rotameter (with
a 20-180 Ipm range) downstream of the filter assembly, and at the same point pressure and
temperature measurements were made. The rotameter reading was corrected for pressures
and temperatures that deviated from calibration conditions. The volumetric flow rate of air
was given by Q, = Qina\/(PearTrot)/ (ProtTear), Where Qinq is the indicated flow rate, and the

subscript cal refers to calibration conditions and rot refers to actual rotameter conditions.

The density of the flow at this point was then found using the equation of state for a perfect

gas. By making pressure and temperature measurements in the deposition annulus, and using
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Figure 4.7: A schematic diagram of a thermocouple on the outer wall of the annulus, and a
thermocouple in a wall cavity

the principle of conservation of mass, the mean flow velocity was calculated.

Temperature measurement

It was also necessary to have a knowledge of the temperature distribution along the length
of the annulus. While there were heat losses at either end of the annulus, the lagging and
heating tape controller combined to maintain a constant (high) temperature over a large
part of the pipe. By heating the secondary flow of air (see figure 4.3) and thus elevating the
temperature of the particle-laden flow supplied to the test section, the distance taken along the
deposition annulus to attain a fully-developed temperature profile was reduced. Accordingly,
the temperature of the flow after the heater and in the plenum chamber was measured. The
temperature of the cooling water before it entered the stainless steel tube and downstream of
the filter assembly was also measured to confirm that the flow rate was sufficient to maintain
a constant (low) temperature at the stainless steel tube wall.

K-type thermocouples were attached to the outside of the brass pipe to measure the
temperature profile along the annulus. It was too difficult to place the thermocouples in such
a way that they were all equidistant from the heating tape that spirals around the pipe wall,
so that some of the thermocouples may have measured the temperature of the heating tape,
rather than the temperature conducted along the brass pipe. To guard against this, further
temperature measurements were made by welding a number of bosses onto the wall of the
brass tube, each of which held a thermocouple in a cavity between the boss and the pipe wall
(see figure 4.7). Each cavity had access to the annular flow area through a 2.5 mm hole, so
that these thermocouples measured the approximate temperature of the flow at the wall, and
these measurements were used to verify that those taken from the wall thermocouples were

correct.
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Figure 4.8: Thermocouple calibration: a) TC1 against a mercury thermometer in a water
bath; b) TC1 against remaining flow thermocouples in a water bath

The thermocouple temperatures were logged using a personal computer and two TC-16
modules of a Biodata Microlink Ill mainframe. The TC-16 modules were each connected
to an isothermal box housing thermocouple reference junctions and a platinum resistance

thermometer to measure the temperature at these junctions.

Calibrating the wall thermocouples before attaching them to the pipe wall would not have
been very useful, as a second form of calibration would have been necessary to take into
account the proximity (or otherwise) of each thermocouple to the heating tape. Accurate cal-
ibration of the ‘cavity’ thermocouples could have been carried out, but the action of replacing
and removing the thermocouples before and after each run resulted in slight alterations to the
thermocouples. Therefore, a ‘rough’ calibration procedure was adopted to check the linearity
of the thermocouple readings over the temperature range. This was repeated from time to

time.

The results presented in figure 4.8 were taken after the entire set of experiments had been
completed. Figure 4.8a shows the variation in the temperature of the inlet ‘cavity’ thermo-
couple (TC1) against a mercury thermometer in a water bath. The results are plotted as
temperature against temperature, rather than voltage against temperature. The thermocou-
ple temperature was found using a five term power series expansion (incorporated within the
logging software) which linearises the variation of thermocouple voltage over a range of tem-
peratures, assuming a 0 °C cold reference junction (Biodata Ltd, 1986). Figure 4.8b shows
the variation in temperature of all the ‘cavity’ thermocouples when placed in a water bath
(although the z-axis label in this figure refers to their position when in the annulus). The tem-
peratures were logged at several intervals between 20 and 95 °C, and the temperatures were

normalised using the temperature of TC1 (T;y;), at each interval. It can be seen that over
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Figure 4.9: Pressure sensor calibration: a) 0-1 psi; b) 0-5 psi

this range of temperature, the greatest deviation from linearity for any of the thermocouples
was 2 % of Tjyee (°C). Even though the highest temperature (140 °C) that the thermocouples
were subjected to was outside of the range of the calibration, the linearity of these thermo-
couples was assumed to hold. 2 % of the highest temperature is only marginally greater than
the 2.5 °C tolerance value associated with K-type thermocouples. The thermocouple readings
taken were assumed to be ‘true’, and the errors were accounted for by including a 2.5 °C bias

limit in the uncertainty analysis of the temperature measurement (see appendix C.2).

Pressure measurement

Two pressure sensors (Honeywell Ltd) were used to monitor the pressure in the plenum cham-
ber (0-1 psi range) and at the rotameter (0-5 psi range). The pressure sensor outputs were
amplified (with a gain of 100 and 50 respectively) before being input to the PGA-16 module
of the Microlink mainframe, as it was found that interference would otherwise corrupt the
measurement of such small voltages. The pressure sensors were calibrated using a Druck DPI

610 pressure calibrator, and the results are shown in figure 4.9.

Measurement of pressure drop along the annulus and determination of friction

velocity

The friction velocity (u,) for the annulus must be known, as it is used to find both the

dimensionless deposition velocity (V") and the dimensionless particle relaxation time (7,7).

u, 1s a function of the pressure drop along the annulus. For fully-developed flow in a pipe, a
control volume analysis can be used to show that:
r dp

Tw = =

2\ dz (4:5)
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Figure 4.10: A control volume analysis of the pressure drop along an annulus

where 7, is the wall shear stress, r is the pipe radius, and —% is the pressure gradient along

the pipe. The skin friction coefficient (C) is defined by:

2
Tw = Of% (4.6)

and the friction velocity by:

I TS (4.7)
Pg 2

In the case of the annulus, there is both an inner and outer wall, with associated wall shear
stresses (7,,; and 7,,) and wall friction velocities (u.; and u.,). A control volume analysis

of fully-developed flow in an annulus (see figure 4.10) of area A = m(r2 — r?) shows that:

TiTwi — ToTw,o (To - Ti) dp
’ 0 = - 4.
(-) (13)

TO+TZ' 2

where r; and r, are the inner and outer wall radii. It should be noted that 7, ; is positive, and
Tw,o Negative. By comparison with equation 4.5, a mean wall shear stress may be defined as:
TiTwi — ToT,
?w _ Tilwg olw,o (49)
To+ T

The magnitudes of shear stress and friction velocity at the inner and outer walls are very close
to each other, so that the mean wall shear stress is representative of the magnitude of the
shear stress at either wall. The same point can be made with regard to the friction velocities,
where the mean friction velocity is defined in terms of 7, by u. = \/7w/p,. It should be
noted that 7, ; is slightly larger in magnitude than 7, , (Brighton & Jones, 1964).

In order to obtain the mean friction velocity, the outer wall thermocouple attachments were

replaced with pressure tappings, and a water manometer was used to measure the pressure
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Figure 4.11: The variation of friction velocity with Reynolds number in a turbulent annulus

differences between a point located 120 cm from the top of the annulus, and three other points
(at 20 cm intervals further down the annulus). The values of pressure at each of these three
points were used to find an average value of % for that particular Reynolds number. The flow
rate was altered, and the measurements repeated until the range of Reynolds number used in
the experiments had been spanned. The friction velocity was then calculated for each value
of pressure gradient, and the variation of friction velocity with Reynolds number is shown in
figure 4.11. Also shown are u, values found from the least squares fit of Nouri et al. (1993)

to their own experimental data for C:

C;=0.36Re "% (4.10)

One of the most complete studies of turbulent flow in annuli is that of Jones & Leung
(1981), who found a correlation for the friction factor which was compared against a large
number of experimental results over a range of Reynolds numbers and radius ratios (r* =
ri/ro). Their correlation reduced the observed data scatter to approximately +5%. This

correlation was:

% = 2logio(Re¢*\/f) — 0.8 where f=4C, (4.11)

and ¢* is a shape factor that takes into account the geometric alterations of the flow by radius
ratios which vary between the extreme cases of 7* = 0 (pipe) and r* = 1 (flat plate). It is
given by:

1_ *2
L4724 —— ] (4.12)
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u, was found from this correlation, and also plotted are the values of u, found from a computer
code written by the author (details of this code may be found in appendix D.1). The correlation
of Jones & Leung (1981) agrees very well with the author’s calculations, and is also close to
the least squares fit of Nouri et al. (1993). The experimental data shows the correct trend,
but its magnitude is considerably larger. However, the pressure differences measured were
small and even very small burrs in pressure tappings can cause significant errors. The errors
may be of the same order of magnitude as the pressure differences measured (Brighton &
Jones, 1964). It was concluded that the correlation of Jones & Leung (1981) represented the

most accurate source for values of w,.

NaOH in

NaOH and
uranine out

Figure 4.12: A schematic diagram of the washing 'cup’ in position around the inner tube

4.2.5 Pipe washing and luminescence spectrometry

After an experimental run, the stainless steel tube, brass pipe and filter assembly were detached
from the rig, removed as a unit and dismantled. The filter paper was removed and soaked
in a volume of NaOH. NaOH dissolves the deposited uranine, and this was analysed in the
luminescence spectrometer, which required an alkaline solution. The analysis gave a measure
of the number of particles that did not deposit in the test section. The filter paper and plastic
sheets that covered the walls of the upper and lower sections of the filter assembly were also
soaked in volumes of NaOH. The lower section washings were downstream of the filter paper,
and analysis of these acted as a check that the filter paper captured the particles as intended,
and that none were 'leaking’ past.

The tube and pipe were placed in a vertical position, and a rope was attached to the top

of the inner tube. This was then lifted out of the outer pipe using a pulley system, with the
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flow straighteners being used as a guide to ensure that the walls did not touch as the tube
was removed. The tube and pipe were then placed in vertical stands to hold them in position
for cleaning.

A specially designed ‘cup’ (see figure 4.12) was then slid onto the bottom end of the
stainless steel inner tube. This cup had a hole in the centre of its base, surrounded by a
nitrile rubber o-ring which sealed against the tube. It was 10 cm in length and its volume
was approximately 50 cm3. The cleaning cup was filled with NaOH through its open top, and
allowed to soak for several minutes. The NaOH /uranine washings were then drained through
a tap in the side of the cup at its base, and collected in a graduated cylinder to measure the
exact volume. The cup was then slid upwards along the tube and the next 10 cm section was
washed. The process was repeated until the entire pipe has been washed in 10 cm sections.

A rubber bung with a drain through its centre was placed in the bottom opening of the
brass outer pipe. A funnel was attached to the thermocouple fitting nearest the bottom of
the pipe, the pipe was filled up to the level of this fitting with the appropriate amount of
NaOH, and allowed to soak. The NaOH/uranine washings were then collected through the
drain in the bung (this resulted in the washing of a 20 cm section of the pipe). 50 cm?® of
NaOH was added to remove any residue of NaOH/uranine solution that had gathered around
the bung, and collected as before. The funnel was attached to the next fitting up the pipe,
the lower fitting was plugged, and again, NaOH was added until the level of this next fitting
was reached. The washings collected comprised of the previously washed 20 cm section and a
new 20 cm section. This washing technique was continued up along the pipe until the halfway
mark was reached, at which point the pipe was inverted, and the washing was continued up
the pipe, from what was the top of the pipe as it had been orientated during the experimental
run. This was done to reduce the volume of NaOH required to remove the uranine deposit
from the central section of the pipe. The volume of each wash increased with distance from
the end of the pipe, so this reversal of the pipe ensured that the washings did not become
so large as to over-dilute the uranine with NaOH, which would have resulted in negligible
luminosity readings (over-dilution was a particular problem for runs with low deposition rates,
necessitating very long runs).

The NaOH /uranine washings from the stainless steel tube, brass pipe, and filter assembly
were than analysed using the luminescence spectrometer. Finding the luminosity of these
washings of known volume (and thus the amount of uranine present) allowed the determination
of the amount of particle material that deposited on the annulus walls compared to the amount
that was captured by the filter.

The washings were sampled by an LS-30 luminescence spectrometer (Perkin Elmer Ltd).
The principle behind luminescence spectrometry is the excitation by irradiation at a character-
istic wavelength of an electron in a molecule of some fluorescent substance. After excitation,
the electron emits a photon of light at another wavelength to release energy and return to its
natural state. The optimum excitation and emission wavelengths for uranine are 475 nm and

514 nm respectively.
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Figure 4.13: LS-30 luminescence spectrometer calibration

The LS-30 can detect uranine at concentrations as low as 1x107'* mol/I. A high concen-
tration sample would be off the scale of the spectrometer, but dilution by a known volume
allows the luminosity to be determined, and the original luminosity can then be calculated.
This was the case with the washings from the filter paper, or sections of pipe on which a large
amount of deposition occurred. The washings were diluted by taking a small volume of the
NaOH /uranine washings (measured with a 10 cm? burette) and adding a large known volume
of NaOH (measured in a graduated cylinder). For extremely high concentrations (such as
that at the filter paper), the dilution was repeated a number of times, to avoid the errors in-
herent in measuring tiny volumes. Averages of these were then taken to give a more accurate

luminosity value.

When moving from a section of high deposit to a section of lower deposit (such as near
the bottom of the annulus), the washing of the high-deposit section was repeated, to make
sure that all of the particle deposit had been dissolved and drained from the cup. Even a small
fraction of the deposit from a previous section (if the amount of deposit was high enough),
could contaminate the result from a subsequent section. When moving between sections with
similar amounts of deposit, it was found that there was no need for a second washing of the

section.

The calibration curve for the spectrometer is shown in figure 4.13. The concentration
values shown are nominal in that large dilutions were required to obtain a solution with a low
enough concentration to be on the scale of the LS-30. This solution was used as a starting
point for the calibration and the solution was diluted to different levels to span the scale of
the instrument (these dilutions were smaller and of less uncertainty than those required to
produce the ‘starting point’ solution). The linear behaviour of luminosity with concentration
is shown. The ratio of the masses deposited was required to determine V", but the exact

concentration of uranine in NaOH (and thus mass of uranine in the sample) was unknown.
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Figure 4.14: Control volume containing a section of the annulus

This was of no consequence once the existence of a linear relationship had been established,

as the ratio of luminosities is equivalent to the ratio of masses.

4.2.6 Analysis of experimental washings

The aim of the experiment was to determine the variation of dimensionless particle deposition
velocity, V;*, with dimensionless particle relaxation time, T;’. The analysis for an annular flow
is very similar to that developed for pipe flow by Sehmel (1968).

As the particle-laden flow moves downwards through the annulus, particles deposit and
are removed from the flow, resulting in an axial decrease in particle concentration. This
concentration drop is related to V", which can be related to the mass of particles deposited
during an experimental run. The principle of conservation of particle mass is applied to a
control volume containing a section of the annulus of length Az (see figure 4.14). The mass
flow rate of particles through the section, 1, is defined by:

To
my = Pp.mUnA = m,Cp nUpn A = mp/ 2nrUC,dr (4.13)
Ti
where m,, is the mass of a single particle, U,, is the mean gas velocity (it is assumed that
the mean particle axial velocity is approximately equal to that of the gas) , C,,, is the mean
particle concentration in the section (number of particles per unit volume), p, ,, is the mean
particle density, and A is the cross-sectional area. The change in particle mass flux between
the beginning and end of a section can be related to the mass deposited on the walls in that

section:

d

. (mpC’pUmA> Ax = —7 (diJw,i + don,()) Ax (4.14)
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where J,, is the mass flux of particles to the wall per unit area, and C, is the particle
concentration at any point in the section. The subscripts ¢ and o refer to the inner and
outer deposition surfaces respectively. Manipulating this and substituting the definition of
V& (equation 3.39) yields an expression for the ratio of the mean concentration leaving the

section to the mean concentration entering, Cp ma2/Cyp mi:

Cp,mQ

aln—>—
Q Cp,ml

= —T (dzu*yl(VdJ“)z + dou*,o(VdJr)o) Az (415)

where @), is the volumetric flow rate of air, and the subscripts 1 and 2 refer to the beginning
and end of the section under consideration. The actual mass of particles deposited on the
inner and outer walls (M,,; and M, ,) over a section of length Az can be related to the mass

of particles at the beginning and end of the section by:
Mp71 — Mp,i —|— Mp,o —|— Mp72 (416)

where M, 1 = m,Cp 1 U AAL and My, o = m,Cp 2Up AAL. At is the time over which the
deposition occurs. Dividing by M), , and inverting gives:

Op,mZ — Mp,2
Cp,ml Mp,Z + Mp,i + Mp,o

(4.17)

The fraction C},n2/Cp.m1 is known as the fractional penetration, P, of particles through the

section. Since:

M, 0 (Vd+)ou* odo
= 2 4.18
My; (V) )ivid; (4.18)

)

equation 4.15 can be rewritten as:

Cpm2 M,,
Qoln="2 = —rAxdyu, ; (V)i | 1+ =22 (4.19)
Cp7m1 ¢ p,i

By knowing the flow conditions and measuring the mass of particles deposited, V" can be
calculated for each surface. The mass deposited on the filter gives the first value of M, 5, and
(V;5)i and (V,}), are then calculated for each section moving up the pipe. As mentioned in
section 4.2.5, luminosity readings are not converted into concentration and mass values, due
to the uncertainty involved with the spectrometer calibration. However, the linearity of the
instrument has been confirmed, so that luminosity readings (L,) may be substituted in the
place of masses deposited (1,).

The dimensionless deposition velocity for each surface may now be written:

Un(d2—d2) M, 1 Un(d® —d2) M, 1
V+i: m\*o 7 V2% l - Cl V+0: m\ Yo 7 p,0 l -
V)i = apua, 40, p ™ Vo= = 3, w0, P

(4.20)

105



In practice, u,; and u, , are very close to each other, so u,, which lies between the two values,

may be used without any loss of accuracy.

4.3 Thermophoresis experiments: turbulent annular

flow with a cross-stream temperature gradient

Once the depositional behaviour of a range of different sized particles in a turbulent annulus in
isothermal flow was known, the effect of imposing a temperature difference across the annulus
was studied. Most of the experimental methods that have been described for turbulent flow
in an isothermal annulus are also applicable when a temperature difference is imposed. This

section aims to describe any deviation from those methods.

4.3.1 Measurement of the temperature flow field

The thermophoresis experiments were executed and analysed in almost exactly the same man-
ner as the isothermal set. The main difference between these experiments and the isothermal
set, was that cold water was passed through the central pipe of the annulus at 30 Ipm, and
the heating tape was switched on so that the outer wall of the annulus was maintained at one
of three nominal outer wall temperatures, T}, nom = 40°C, 85°C or 140°C. Although uranine
starts to soften at temperatures above 90°C (Al-Azzawi & Owen, 1984), the temperature in
the annulus only reached this value very close to the hot wall.

As well as the use of the cold water and heating tape, the experimental runs differed in
that a much longer time was required for the rig to reach thermal equilibrium (typically one
hour). The secondary flow of air (that supplements the air flow through the aerosol generator)
was also heated, to raise the temperature of the flow when it entered the test section and
thus reduce the length of annulus required for a constant temperature to be attained. The
flow was initially allowed to pass through both the aerosol generator and the secondary supply
pipe, and the aerosol jet was started once the flow had reached thermal equilibrium. Although
this made starting the aerosol jet more difficult, it meant that no aerosol entered the test
section while the temperatures in the rig were still varying.

The heating tape was operated with a controller, which switched power on and off as the
temperature of the pipe (monitored by a thermocouple) moved above or below the desired
value. The temperature oscillated around 15y, nom by between 2 and 4 °C depending on
Townom- By averaging the temperature along the pipe over seven readings (representing
about thirty minutes), the temperature profile along the outer pipe was found, and this is
shown in figure 4.15 for each thermophoresis experiment (grouped together by T}y, nom). The
outer wall temperatures for each experiment were then averaged to give an average outer wall
temperature (75y,409) profile for each value of Ty nom.

The temperature of the inner pipe was measured after all the experiments had been

completed (so as not to deface the deposition surface). Four thermocouples were fixed into
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the inner pipe wall, and the thermocouple leads were fed through the centre of the pipe (where
the water flowed). Two of the thermocouples were fixed at the same axial location, but on
opposite sides of the pipe, to give an indication of any effects the thermocouples’ positions
in the pipe wall may have had. The temperature of this wall, T}, remained constant along
the length of the pipe for all values of T}, nom at Tj, = 12°C. It was then assumed that the
mean temperature of the particle-laden air flow (7,,cqn) Was the average of the temperatures
at the hot outer wall and cold inner wall, and that flow properties such as j, and p, could be
evaluated at this temperature.

Although T, 4,4 differed from the measured temperature by as much as 15°C in places, the
axial variation of T}, (calculated from T, 4,4 and Tj,,) was quite small. The thermophoretic
force along the annulus did not deviate significantly either, as this scales with V(InT'), so that
a constant temperature difference with small axial variations in temperature ensures a constant
thermophoretic force. T},eq, showed a maximum variation along the annulus (excluding the
first and last 40 cm) of 2°C, 5°C and 15°C respectively, for each value of T, nom. This
ensured that the thermophoretic force was almost constant in the area of interest of the test
section.

The nominal cross-stream temperature gradient (7,44, as used in chapter 3) can be quite
different to the local temperature gradients across the annulus. In a pipe flow, the temperature
is highest at the pipe centreline, and decreases all the way to the wall, so that a nominal T, .4
can be expressed as the temperature difference between the centreline and the wall, divided
by the pipe radius. But the largest temperature difference occurs across the boundary layer.
In the case of an annulus with a heated outer wall and a cooled inner wall, the temperature
is at its highest at the heated wall and drops over the very short distance of the boundary
layer to a near-mean temperature, which is almost constant across the annulus. Very near the
cooled wall, there is another large temperature drop over another very short distance (another
boundary layer). The result is that the nominal temperature gradients are quite approximate,
and reflect only the temperature difference between the hottest and coldest points in the flow,
and the distance separating them.

Figure 4.15 shows that one experiment for each of T}, nom = 85°C and T}y, pom = 140°C
experienced a dip in temperature near the middle of the pipe. This was due to the heated
outer pipe expanding, and buckling near the middle as it was constrained at each end. To
counteract this, the connection between the outer pipe and the plenum chamber was altered
from a fixed one, to one which allowed the outer pipe to slide upwards as it expanded, and

prevent buckling.

4.3.2 Determination of u, for a thermophoresis experiment

The friction velocity was measured, with an indicated volumetric flow rate ;4 = 140 Ipm
(and for each value of T, ;0m), in the same way as it was for the isothermal experiments.

Figure 4.16 collects together the experimental measurements of u, for isothermal and heated
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Figure 4.16: The variation of friction velocity with Reynolds number in a turbulent annulus
at different temperatures

flow conditions, and compares them with the previously introduced correlations. For the
heated runs, wu, increases as T,y nom Increases and Re is reduced, but the isothermal runs
experienced an increase in u, with increasing Re. This seemingly contradictory behaviour may
be explained by examining the influence of 7},cq, on U,,. Increasing the temperature of the
flow reduces p, and increases /1,4, and this results in an increase in Uy,,. While two flows with
identical Re but different mean temperatures would have the same value of f, an increase in
Up with Teqn causes u, to increase (see equation 4.7). The increase in U, caused by the
large increase in T;,eqy, for the heated experiments, is greater than the decrease in C'y (caused
by a decrease in Re) and causes u, to increase.

In figure 4.16, the correlations show the same trend as the experimental data, and the
differences in magnitude between them are similar in size to those for isothermal flow. Again,

it was decided to use the correlation of Jones & Leung (1981).

4.4 Summary

An annular deposition rig has been designed and built, and an experimental procedure devel-
oped, to study the influence of thermophoresis on deposition in turbulent annular flow. An
annular geometry was adopted in order that a constant thermophoretic force (and constant
mean temperature) existed in the experimental test section. The results from the isothermal

and thermophoresis experiments can now be considered.
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Chapter 5

Experimental study of
thermophoresis in a turbulent

annular flow - results

5.1 Introduction

Experimental data for thermophoretic deposition in a turbulent annular flow (with a cross-
stream temperature gradient) will be presented in this chapter. First, the results from a
number of isothermal turbulent pipe flow experiments are examined, to establish the cred-
ibility of the experimental rig and procedures. In order to determine the degree to which
thermophoresis influences deposition, experiments were carried out in an isothermal turbulent
annular flow. These results also provide a link between the isothermal turbulent pipe flow
data of other researchers (e.g Liu & Agarwal, 1974; Leeming, 1995) and the new data for
a turbulent annulus with a cross-stream temperature gradient. The thermophoretic experi-
ments were carried out with three different temperature differences, across a range of values
of 7,7, and the aim was to find the increase in magnitude of V" at low values of 7,7, for
each temperature difference. As 7.7 increases (and Kn decreases), the thermophoretic force
decreases, and the magnitude of V" is expected to return to that of an isothermal turbulent

annular flow.

5.2 Isothermal turbulent pipe flow experiments

In order to develop the experimental techniques, and to test the operation of the experimental
rig and equipment, a number of isothermal turbulent pipe flow experiments were attempted.
A 2.4 m long 10 mm diameter copper pipe was used for these experiments, and the exper-
imental procedures of the previous chapter (with alterations for the change in test section
geometry following Leeming (1995)) were employed. The results are compared with the data
of Leeming (1995), Liu & Agarwal (1974) and Agarwal (1975) in figure 5.1. While the agree-
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Figure 5.1: Results for the isothermal experiments in turbulent pipe flow
(The shaded envelope contains the data of: Friedlander & Johnstone (1957),Schwendiman
& Postma (1961),Wells & Chamberlain (1967),Sehmel (1968) and Liu & Agarwal (1974))

ment is excellent, the analysis involved in achieving these results was also very instructive,
and invaluable in understanding some unusual results for the turbulent annulus experiments,

which will be discussed later.

5.2.1 The axial variation of V" for large 7.

Referring to figure 5.1, the data points with 7';“ = 2.4 and 7';“ = 14.7 were obtained in a
straightforward manner. The third point, with T; = 70.8, was the result of the experiment
‘pipe 7' (run with d, = 11.78 um and Re =~ 18000). Cutting a 2.4 m pipe into 10 cm
sections for washing and analysis is very labour intensive; Romay et al. (1998) employed
more ‘modern’ techniques, and used a condensation nucleus counter to find the difference in
particle concentration between the beginning and end of the test section. However, cutting
the pipe into sections allows the variation of V" (and the mean particle concentration ratio
Cp.m/Cpm.iniet) to be determined along the length of the pipe. This information is illustrated
in figure 5.2, and was very useful in determining the conditions under which deposition had
occurred.

Figure 5.2a shows the axial variation of V" along the pipe. There is an order of magnitude

difference between V' at the top and the bottom of the pipe, whereas the other two pipe flow
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Figure 5.2: Theoretical and experimental values for a) deposition velocity and b) mean particle
concentration ratio along the length of a 10 mm diameter pipe with Re=18000 for ‘pipe 7"

experiments gave almost constant values of V" (once the entrance and end effects had been
neglected). By averaging values in the top and bottom halves of the pipe separately, Vd—j—top R
0.103 while Vdfbotmm ~ 0.02. It is not obvious how to proceed in determining a value for V"
(V" ~ 0.1 is expected from figure 5.1). However, by examining the axial variation in mean
particle concentration ratio (figure 5.2b), the reason for the order of magnitude variation of
V" becomes clearer.

The mean particle concentration ratio is initially linear, before curving near the middle of
the pipe, and following a second linear trend along the bottom half of the pipe. This sort of
behaviour was also found by Sehmel (1968) (and is shown in figure 5.3) in one of the few
studies to include detailed information on the axial variation of deposition. Linearity of mean
concentration ratio on a logarithmic plot would be expected from monodispersed particles.
This non-linear behaviour is indicative of an aerosol with particles of a large diameter (and
high T; and V") which are all deposited along the top portion of the pipe, and smaller
‘satellite’ particles (with much smaller V) which can penetrate further down the pipe, and
dominate deposition once all the larger particles have deposited.

Further confirmation of these experimental observations, may be found through a theoret-
ical analysis of the particle mass flow rate and deposition velocity (see appendix C.1), which

yields the expression:

d Cpmi
Vi =1.257a8 (E) Re™?[n (ﬁ) (5.1)

This expression was used to generate mean particle concentration ratio profiles along the length
of the pipe for V;" = 0.103 and V" = 0.02 (representative of the average of the measured
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Figure 5.3: Mean particle concentration ratio along a pipe (Sehmel, 1968)
(The linear profile on a logarithmic scale is obtained by subtracting the ‘satellite’ concentration
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values in each half of the pipe). These are also plotted in figure 5.2b. The V;* = 0.103 line
passes close to the experimental data for the top half of the pipe, while a line parallel to that
for V;} = 0.02 passes through the experimental data for the lower half of the pipe.

This behaviour highlights the need for a check on the assumption of a monodispersed
aerosol of known diameter, and this may be done through aerosol sampling. It should be
remembered that this sort of behaviour is most likely to occur with particles of large T;“.
Particles with smaller T; are less likely to have their concentration depleted by deposition
(because of their lower V") to the extent that satellite particles influence the value of V.
The value of V" for a particular experiment is the average of the V" value for each section
where the mean particle concentration ratio is linear - averaging along the entire length of the

pipe may not produce the ‘correct’ result.

5.2.2 Aerosol sampling

The previous chapter pointed out two difficulties with aerosol sampling and microscopic sizing
techniques. The first was the unavailability of a surfactant of known flattening coefficient, to
determine the ‘exact’ particle diameter . However, an indication of the level of monodispersiv-
ity can still be obtained, along with an ‘approximate’ particle diameter. The second difficulty
was that the aerosol had to be sampled at a lower air flow rate than that used during the
experimental run. This increased the chance of particle agglomeration during sampling, and
meant that sometimes a ‘judgement’ would have to be made as to whether agglomeration
occurred during the experiment, or only during sampling. The lower air flow rate also altered

T; of the particles during sampling, through a change in magnitude of w,.
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Figure 5.4: Particles of uranine and oleic acid collected on slide cover-glasses coated with an
oleophobic surfactant for ‘pipe 7'

Aerosol samples from ‘pipe 7’

Figure 5.4 shows a sample from this run (taken at 2 cm from the sampling jet). In order to
get an approximate indication of d,, from this slide, a flattening coefficient of 1.3 was assumed
(this is approximate but not unreasonable when ¢,=0.1 gcm—3). In figure 5.4, most particles
have d, =11.4 pm (d,=11.78 pm using equation 4.2), and there is also one smaller particle
(marked with a yellow square) with d, =1.9 um. The presence of only one ‘small’ particle
on the slide does not mean that many more were not produced; the deposition rate of small
particles onto the slide would have been very low.

The observed particle diameters of 1.9 um and 11.4 um correspond to T;“ ~ 4.5 and 66,
respectively. By examining the scatter of experimental data for turbulent pipe flow, particles
with these values of 7.7 would be expected to have values of V" ~ 0.02, and V" ~ 0.1,
which provides strong evidence for the validity of the measured values of V" in each region

of the pipe.

5.2.3 Conclusions drawn from isothermal pipe flow experiments

For large values of 7F, high values of V' may cause the mean particle concentration to be
very low in the latter portions of the test section. If small satellite particles are present in the
flow, they will dominate depositional behaviour in these latter portions. Their effect would
be negligible if the concentration of the large particles remained high. Aerosol sampling can
be effective in verifying the calculated particle diameter, and in testing for monodispersivity,

satellite particles and agglomeration.
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5.3 Isothermal turbulent annular flow experiments

The main reason for carrying out experiments in an isothermal turbulent annulus, is to provide
a datum against which to compare the experiments in a turbulent annulus with a cross-stream
temperature gradient. Chung et al. (2002) found that the turbulence quantities close to the
inner wall are similar to those of a turbulent channel flow (for a high radius ratio), and that
the outer wall profiles are similar to those of turbulent pipe flow. Since deposition in turbulent
channel and pipe flows are very similar, the deposition on each wall of a turbulent annulus
is expected to be similar to that of a turbulent pipe flow. The following experiments were
intended to validate this assumption.

Experiment were carried out to obtain values of (V,"); and (V;"), for a range of different
values of T;. The results, associated uncertainties and experimental conditions are given in
table C.1. The values of the dimensionless group (7,5 /Sc?)'/? for each experiment are given,
and these did not vary significantly. Hence, this dimensionless group did not influence the
results in the diffusional deposition regime (see section 3.4.1).

The uncertainties associated with V" (shown in figure C.1) are smaller than those found
by Leeming (1995) for a turbulent pipe flow. The uncertainty in V" scales with 1/inP, so
that a small uncertainty in P can lead to a large uncertainty in V,;". However, the larger
surface area of the annulus walls compared to cross-sectional area means that the annulus is
more ‘efficient’ at removing particles from the flow, and the effect of the uncertainty in P on
V" is reduced significantly. Leeming (1995) predicted that such a change in geometry would
result in a reduction in the uncertainty of V.

Figure 5.5 shows V' (for both walls) plotted against 7.\, when d, is found using equation
4.2. (V;"), is higher than (V;");, but this may have been due to uranine soaking into the rubber
bung used to plug the outer pipe during washing. This would then increase the luminosity
of each outer pipe section by a small amount. The shaded area represents the scatter of
experimental data for turbulent pipe flow, and the data for the annulus falls within these
limits, but only when T;“ < 15. Above this point, Vd+ decreases with increasing 7", whereas
for a turbulent pipe flow, V" reaches its peak when T; > 15, and remains at this level as
7';_ is further increased (the three data points for isothermal turbulent pipe flow are plotted
in figure 5.5 for comparison). However, by sampling the aerosol during each experiment, it
was found that the particles were not always of the intended d,, and were sometimes not

monodispersed.

5.3.1 Determination of the effective particle diameter in the

annular test section

The particle diameter predicted by equation 4.2 for ‘annulus 11" was d,, = 13.3 pm, with T;r
= 21.8. From the aerosol sample shown in figure 5.6a, the particles were monodispersed and

the particle diameter was measured as d,=7.12um, which would result in 7,7 = 6.23.
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Figure 5.5: Results for the isothermal experiments in turbulent annular flow with d,, calculated
using equation 4.2

In some cases, the particles produced were not monodispersed, and an ‘effective’ particle
diameter was calculated based on the equivalence of particle volume (which scales with df;).
If two discrete particle sizes were observed, and (frac;) and (fracy) represent the fraction of
particles of each size, then

0y eftective = (fraci)dy; + (fracy)d; (5.2)

By treating each individual experiment in this way, the results for the isothermal experi-
ments may be replotted, as shown in figure 5.7 (the uncertainty levels are not indicated to
maintain clarity, but the same figure with uncertainty levels shown can be found in appendix
C.3). When the observed diameter did not vary significantly from the calculated diameter,
the calculated value was used, with small deviations from the mean diameter accounted for
in the uncertainty associated with the experiment (see appendix C.2). Table C.1 contains

information on the variation between ‘calculated’ and ‘observed’/‘effective’ values of d,,.

Each data point for 7,7 >15 has either an observed or effective value of d,,, smaller than its
calculated value. There is now no data above 7';“ ~15, and the results fit within the envelope
of data for turbulent pipe flow. Also shown is the data of Wells & Chamberlain (1967) for
the inner wall of an annulus in an isothermal turbulent flow, and these compare favourably

with the inner wall data.
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a) b)

Figure 5.6: Particles of uranine and oleic acid collected on slide cover-glasses coated with an
oleophobic surfactant; a) ‘annulus 11'; b) ‘annulus 14’
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Figure 5.7: Results for the isothermal experiments in turbulent annular flow with d, found by
measuring the particles impacted on a slide
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5.3.2 An explanation for the lack of data when T;r > 15

The experiment “annulus 14" was run with d,=22.6 ym and T; = 58.0. The aerosol sample
taken at the end of the run resulted in no particles being collected. Figure 5.6b shows the
particles collected when the airflow rate was reduced to 40 Ipm. There are particles of three

different diameters: d,; = 2.88 um, d, » = 6.8 um, and d, 3 = 19.11 um.

It has already been established that the aerosol generator does not always produce a
monodispersed aerosol, and that for large T;“, the mean particle concentration can be very
low in parts of the test section. The inability to achieve large values of T;“ was a combination
of these two factors. Referring back to figure 5.2, the possibility exists that, for very large
7';“, most of the particles deposit in the section of the experimental rig between the aerosol
generator and the test section, leaving only small satellite particles to deposit in the test
section. This would explain the low (and constant axial) values of V" for experiments run

with what was thought to be 77 > 15.

With ‘annulus 11°, the 13.3 pum particles deposited before the test section leaving only
the 7.12 pum particles to deposit on the annulus walls. With ‘annulus 14', nearly all the
particles except for the smallest deposited before the test section. The aerosol sampling with
a reduced air flow rate was misleading, because u, was reduced and T;“ consequently decreased
(7,5 scales with u?), and the deposition rate of the particles was reduced. This allowed even
the large particles to reach the plenum chamber, and deposit on the sampling slide.

The result was an extremely misleading value of V", or more correctly, a correct (and
constant axial) value of V", but for an unexpected value of T;“ that could not properly be

determined by aerosol sampling.

5.3.3 Calculation of TI;L outside of the test section

In order to determine the extent to which particles are removed from the flow as they travel

between the aerosol generator and the test section, T;’

From the continuity equation, (p,UA)test = (PgUmA)app, Where the subscript 4.5 refers to

must be calculated for this region.

the test section, the subscript ,,, refers to the 1 m horizontal approach pipe before the test
section, and A is the flow area. Assuming that p, does not vary to a great extent between
these two locations:
2 _ 72 2
7T(do B dz) md

Um,testf - Um,app pr (53)

where dypp = 0.019 m, and Up,.app = 0.84210,,0sr. Typically, Reyes, 2 5920, Uy esr = 11.07
ms ! and Uy, app = 9.32 ms™ 1. But before the test section, Re,,, ~ 11840. Using the Blasius
formula for a smooth pipe (Schlichting, 1968), Cfq,, = 0.0791Re > = 7.5832z107%, and

Usapp = Unm.app/Clrapp/2 = 0.574 ms 1. Similarly, . gese = 0.7713 ms™ L.

T; scales with u2, so the dimensionless particle relaxation time of a particle as it approaches
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the test section compared to a particle in the test section may be written as:

+ +
Toapp = 0-557) 0t (5.4)
Even though 7.7, is just half the size of 7., it appears that once 7., > 15 (and V" has

reached a maximum value that remains almost constant as T; increases), the deposition rate
in the approach pipe is of a similar magnitude to that in the test section, and is large enough
to remove nearly all of the particles before they reach the test section. Between the aerosol
generator and the horizontal approach pipe, there is an additional 2 m vertical distance to be
travelled (through the aerosol neutraliser and some flexible tubing), where further deposition
may occur.

If the test section had been a 10 mm pipe (as used by Leeming (1995)), and the mass
flow rates were the same, then Uy, ,ipe = 33.64 ms !, Repipe =~ 22500 and u, pipe = 1.911
ms~!. The result of this, is that:

o =0.097" (5.5)

p,app p,pipe

So for this case, even when 7.° . is as high as 50, 7,7, will only be 5, and there is almost a
whole order of magnitude between the respective values of V,". This would explain why the
range of 7';“ could be extended to much higher values in the pipe flow experiments of Leeming
(1995). However, two data points from these experiments (see figure 5.1) for 7.7 >50, are

below the expected values of V.

5.3.4 The decrease in experimental values of V" with increasing

T+

, in the ‘inertia moderated’ regime

Figure 5.1 shows that in the inertia moderated regime (7.7 > 20), there is a slight decrease
in V" as 7.} increases in the data of Liu & Agarwal (1974) (figure 3.3b shows the data of
other researchers who also found this trend). Pershukov et al. (1995) and Gusev et al. (1990)
have performed analyses (again see figure 3.3) suggesting that the decrease in V" is due to
a Reynolds number dependence. However, the analytical expression of Gusev et al. does not
match experimental data very well.

An alternative explanation may be offered by considering the behaviour of particles with
Totest >15 in an isothermal annular flow, and the experiments of Liu & Agarwal (1974). Liu &
Agarwal (1974) used a 1.27 cm inner diameter pipe as the deposition pipe. The approach to
the deposition pipe from the aerosol generator consisted of upward flow through some flexible
hosing and a length of 3.2 cm diameter pipe, a plenum chamber, and downward flow through
a 3.2 cm diameter transition pipe. By calculating u, pipe and u, qp, for these pipes, it was
found that:

+ +
Tp,app = O'OSTp,pipe

(5.6)
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and the following then applies:

when 7. —100 5 V," ~01 and 7/, =3V} ~0003  (5.7a)

p,pipe »pipe p,app ,app
+ + +to— R
when Tp.pipe — 1000 — Vdmipe ~ 0.1 and Tpapp = 30 — Vd,app ~ 0.1 (5.7b)

The large rise in V[ when 100 < 7.7, = < 1000, may cause the slight ‘roll-off" in V"
with increasing 7,7, in this region. These experiments were carried out at Re=50000.

The experiments of Agarwal (1975) shown in figure 5.1 were carried out at Re=6000
(the same Re as used for the isothermal annulus), and show an even sharper decrease in V,
as 7';“ increases. The physically larger particle, required to produce similarly large values of
T; for smaller Re, may have encountered additional deposition in the approach pipe, than
those used in Liu & Agarwal’s experiments. The annulus experiments could be expected to
show a greater decrease in V" than pipe flow experiments at the same Re, because of the
effect that the much greater flow area has on the ratio T;app/T;ftest. It could be that there
is a Reynolds number dependence in this regime, but that it is a feature of the experimental
design, and that the dependence is actually on the ratio of the Reynolds numbers (and wu,

and T;) approaching, and travelling through, the test section.

5.3.5 Additional ‘inertial’ experiments with modified approach
pipes

In order to reduce the ratio T;:app/T;test and thus reduce deposition in the approach to the
test section, the approach pipes were altered. From the aerosol generator the flow negotiated
a bend through a length of flexible tubing (d = 0.03 m), a 2 m vertical distance through
the aerosol neutraliser and then a further bend through some more flexible tubing to the
horizontal pipe (d4p, = 0.019 m), and into the plenum chamber. Instead, flexible tubing (d
= 0.063 m) came vertically out of the top of the aerosol generator. The aerosol neutraliser
was bypassed because it had a small diameter (d = 0.025 m) and any electrical charge would
not enhance the deposition of large particles. A second plenum chamber was used to turn
the flow in the horizontal direction, and the diameter of the horizontal pipe to the plenum
chamber was increased to 0.05 m. The header and baffle were removed from the plenum
chamber above the test section. All possible obstructions to the flow which could capture
particles were removed, and the ratio Tp—i:app/T;test was now equal to 0.01, which would ensure
that most of the particles generated found their way to the test section.

Three further experiments were then carried out, when the rig had been altered for the
benefit of the ‘inertial’ particles, and the results have been added to the others in figure 5.8.
Aerosol sampling during the experiment showed that large particles of the correct size were
making their way to the plenum chamber, but the values of V" measured were still much
lower than expected. On visual inspection of the test section before washing, a huge amount

of uranine (visible to the naked eye) could be seen on the inner wall of the annulus, at the
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Figure 5.8: Results for the isothermal experiments in turbulent annular flow with d, found by
measuring the particles impacted on a slide, and three further ‘inertial’ experiments

point where the flow leaves the plenum chamber and enters the test section. The acceleration
of the flow at this point was thought to be responsible for this deposition. Again, smaller
satellite particles were deposited in the test section. The existence of the satellite particles
can be explained as follows: T;“ was increased through increasing particle diameter rather than
through increasing Re, and although the final diameter of the particles was always smaller
than the orifice diameter, the droplet diameter was comparable to the orifice diameter for
large T;“ (see equations 4.1 and 4.2), causing production of the satellite particles.

A relatively large flow area was required by the annular geometry to ensure adequate
cooling water through the inner pipe, stiffness of the pipes for concentricity, and ease of
removal of the inner pipe from the outer one without the removal of deposited particles.
While these requirements facilitated the experiments on thermophoretic deposition, they have

placed limitations on the range of 7';“ over which experiments can be performed.
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5.3.6 Conclusions drawn from the isothermal annular flow ex-

periments

Particle deposition in a turbulent isothermal annular flow is very similar to that in a

turbulent isothermal pipe flow.

The outer wall dimensionless deposition velocity is consistently higher than the inner

wall value, but this may be due to the washing procedure.

Both (V,"), and (V,); fall within the scatter of experimental data for turbulent pipe
flow. (V;"), agrees well with the data of Liu & Agarwal (1974) and Leeming (1995) for
isothermal turbulent pipe flow. (V,"); agrees well with the data of Wells & Chamberlain

(1967) for isothermal turbulent deposition on the inner wall of an annulus.

Experiments with particles of T; > 15 were not possible with this experimental rig, due
to the large amount of deposition at the inlet to the test section. The upper limit on
7,7 was a consequence of the design requirements of the annular experiments with a
cross-stream temperature gradient.

Experimental conditions in the approach pipes may cause the slight decrease in V" with
increasing T;“ found in the inertia moderated regime, for previous isothermal turbulent

pipe flow experiments (especially at low Re).

The uncertainty in V" is much less for deposition in a turbulent annular flow than in a

turbulent pipe flow.

In order to perform experiments with large particles, the inlet to the test section needs
to be redesigned so that deposition here is reduced to a sufficiently small level that

these large particles can actually penetrate through to the test section.
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5.4 Thermophoresis experiments - turbulent annular

flow with a cross-stream temperature gradient

The aim of these experiments was to find the magnitude of the increase in VdJr (for small T;,
with three different temperature differences), compared with isothermal values of V. While
this will provide reliable data against which to validate a numerical scheme with a theoretical
expression for thermophoresis, there are also a number of other trends that can be expected,
that would provide a stern examination of such a scheme.

At large 7.7, thermophoresis should have an almost negligible influence on deposition, and
the deposition velocities would be almost equal for the inner and outer walls. The presence
of a cross-stream temperature gradient in the annulus means that for small T; particles
should be driven from the hot outer wall to the cold inner wall, and there would be negligible
deposition on the outer wall. For intermediate values of 7';“, there is a transition between
the two extremes of deposition, and there is also speculation (e.g. Romay et al., 1998) that
thermophoresis and eddy impaction-turbulent diffusion mechanisms may interact to enhance
deposition. The vastly different depositional behaviour in these three regions makes the results
of these experiments of great interest to researchers wishing to test their deposition theories

against a new set of experimental data.

5.4.1 Results from the thermophoresis experiments

The tables in appendix C.4 contain the results, uncertainties and experimental conditions of
the thermophoresis experiments, and the results are plotted in figure 5.9. This shows the data
from the experiments with three different outer wall temperatures. Starting with the set for
Townom = 40°C, the four smallest values of 7.1 resulted in values of (V;")i which were almost
identical to each other, and an order of magnitude greater than the isothermal deposition
velocity. (V,"), was either too low to be measured, or negligible, in these cases. As T; was
increased (and the eddy impaction-turbulent diffusion regime was entered), (V,"), became
measurable (although with less accuracy than a higher value of V" would have) but was
still much lower than isothermal values, while (V,"); began to approach isothermal values.
Only when 7.5 ~ 5 did both (V,"), and (V,"); approach their isothermal values. At this
stage, Kn =~ 0.02, and the effects of thermophoresis are extremely small in comparison with
deposition due to turbophoresis. (The largest value of Kn in any of these experiments was
Kn = 0.136, and inclusion of the Cunningham correction factor would alter 7.t by a factor
of only 1.18 in this case. Its omission is also justified as d, > 1um (Hinds, 1998, pg. 49).)
The data sets for T,y nom = 85°C and 140°C show a similar trend. However, the higher
temperature difference between outer and inner walls meant that (V,"), for T,y nom = 85°C
appears to be smaller than (V,"), for Ty nom = 40°C and small particles, and (V,"), for
Townom = 140°C is smaller again. The effect on (V,"); was the opposite, although the

increase in (V,"); with these further increases in temperature difference was not as great
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as with the initial increase, because the thermophoretic force increases with v(InT'). With
increasing temperature difference (and thermophoretic force), more particles were driven away

from the hot outer wall and towards the cold inner wall.

Enhanced deposition by a thermophoresis-turbulence interaction

The difference between the thermophoretic dimensionless deposition velocity on the inner wall,
(V" )irm, and its isothermal equivalent ,(V,"); 150, decreases as K'n decreases (7,1 increases).
However, as [(V;")irn - (V;")irso] is decreasing, it is still greater than would be expected
unless the interaction between thermophoresis and turbulence in the eddy impaction-turbulent
diffusion regime enhanced deposition. Taking a closer look at the experimental results (fig-
ure 5.10), the straight lines of V", as T; increases, curve upwards before intersecting the
isothermal data, rather than after they intersect it. Thus the results will make an interesting
comparison with numerical models in this region. Also of interest is whether these models
will predict accurately the level of deposition in the diffusional deposition regime, where ther-
mophoresis is the dominant mechanism. The experimental results in this region are extremely
‘self-consistent.” The results at T; ~ 8 should be ignored, for the reasons given in the previous

section.
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Figure 5.9: Results for the thermophoresis experiments in turbulent annular flow
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Figure 5.10: Results for the thermophoresis experiments in turbulent annular flow - a closer
examination of deposition velocities in the eddy impaction-turbulent diffusion regime (the
shaded area highlights the isothermal data of Wells & Chamberlain (1967))

Recovery of deposition to isothermal levels with increasing T;

As discussed in section 5.3, the rig will not produce particles greater than T;’ ~ 15 (in the
test section). While (V5,75 for Ty nom = 40°C and 85°C are almost at the same level as
(V5 )ors0 for T ~b, (VD) orsr for Toy nom = 140°C has not yet recovered to its isothermal
level. At T; ~ 8, the thermophoresis experiments have experienced the same problems as the
isothermal experiments.

Locating the exact ‘cross-over’ point (where (V,"), becomes greater than (V,"); again,
as with the isothermal case) would have been extremely useful, but at least there are still
results for both walls at lower values of T;“. This behaviour represents an additional test in

the validation of numerical models.

The non-existence of an effective particle diameter in the presence of ther-

mophoresis

Attempts made at generating large particles (7';r > 8) which failed, are not as useful as those
isothermal attempts, where an effective particle diameter can be used to recalculate 77, and

the V" result then appears reasonable. In a thermophoresis experiment, a flow of small and
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large particles cannot be given an ‘average’ T;r which will describe their behaviour. Each size
of particle will have a different Kn, and the smaller particle size (if small enough) will tend
to move away from the hot wall towards the cold wall, while the large particle will have less
tendency to do so, and may even be large enough to deposit on the hot wall. Two such runs
were ‘thermo 16’ and ‘thermo 26’, and while they are not plotted in figure 5.9, the results are

included in the tables of appendix C.4.

5.4.2 Conclusions drawn from the thermophoresis experiments

- The thermophoresis experiments have been carried out with an almost zero tempera-
ture gradient along the pipe (and almost constant wall and mean temperatures), due
to the novel annular arrangement used. The radial temperature difference and gas
properties did not vary along the pipe, and thus the Reynolds number, Knudsen num-
ber and thermophoretic force also did not vary significantly. The data can be easily
non-dimensionalised as T;“ against V", and represents a vast improvement on previ-
ous thermophoresis data, when the flow properties and thermophoretic force were not

constant over the length of the test section.

- The results in the diffusional deposition regime shows constant values of deposition
velocity as particle size increases, for each particular temperature difference. As the
temperature difference increases, the value of the constant deposition velocity also

increases.

- There is an area in the eddy impaction-turbulent diffusion regime where the deposi-
tion velocity increases further, before reaching the same value as it would have in an
isothermal flow. This data provides an opportunity to quantify any interaction between

thermophoresis and turbulent deposition mechanisms.

- The outer wall deposition velocity is immeasurable, or negligible, for very small particles
but, as particle size increases (and Knudsen number decreases), the outer wall deposition
velocity increases again, towards its isothermal value, which is larger than the inner wall
isothermal deposition velocity. This feature could be studied more fully if the use of

large particle sizes were possible with this rig.

- The thermophoresis experiments with 7';_ ~ 8 should be ignored.
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Chapter 6

A theory of particle deposition in a

turbulent annular flow

6.1 Introduction

One of the aims of this research was to adapt the theory of particle deposition developed by
Young & Leeming (1997) and Leeming (1995), which has been successfully applied to the
case of fully-developed pipe flow. To complement the experiments of the previous chapter,
the theory will eventually be applied to fully-developed turbulent annular flow. The two-
dimensional axisymmetric fully Eulerian formulation is similar to that described in Young &
Leeming (1997), but particle density-weighted averaging (rather than Reynolds averaging,
which is non-density-weighted) is used (as in Slater et al., 2003), because fewer turbulence
correlations are generated. The alteration of the boundary conditions to take account of the
presence of two walls in the case of the annulus is also considered. This chapter features the
derivation of the relevant governing equations of particle motion, and considers the modelling
of the turbulence encountered by particles, and the numerical time-marching scheme of the
computer code used to solve the particle equations. A detailed study of the results of simula-
tions carried out using this computer code (and comparison with experiments) follows in the

next chapter.

6.2 Density-weighted averaged particle conservation

equations

6.2.1 Particle conservation equations

The motion of a dilute suspension of particles (under the assumption of ‘one-way coupling’) is
described by the conservation equations of particle mass and momentum. The instantaneous

conservation equations for particle mass and momentum using cartesian tensor notation with
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the repeated suffix summation convention, may be written as:

Opp i A(ppv)

Oppvi) | Oppvive)
ot &rk

= pp(Fi+9) = pp(Fpi+Fri+Frmi +Fpi+9) (6.1Db)

where v; is the i-component of the particle velocity and F; is the i-component of the force per
unit mass acting on the particles. Adopting the usual approximations for dilute-gas particle
flows, the most significant forces acting on the particles are due to viscous drag, Saffman lift,

Brownian motion, thermophoresis, and gravity. It was shown in section 3.1 that:

3 5 1/2( ) 5 1/2
P Uk U — Vg Uk
Fri=0.725 Z [(pp :thp 3%) Tp ] - (33&) (1 = v1)

k=1,

= —QTH o
A

i+ 0x; Frm = ox;
Tp Tp i Tp i

The correction to the drag term for finite values of Re, has been omitted for now (Re, is
small for all but the largest particles). The coefficients o, and oy are defined in order that
quantities which do not have a fluid turbulence fluctuating component are grouped together
for simplicity.
Combining equation 6.1b with equation 6.1a and manipulating, gives the non-conservative
form of the particle momentum equation:
0v; dvi _ (u;—v;)  Dgd(lnpy)

— = Fri+Frm, 6.2
ot +Uk3xk Tp T, Ox; trLitrrmi+yg (6.2)

6.2.2 Particle convective velocity

Let .J; represent the total mass flux of particles per unit area. v; is considered to be a mean
velocity averaged over the random thermal motions of all the particles, thus treating them as

large molecules. Therefore:
Ji = ppvi (6.3)
J; can be represented as the sum of a convective and Brownian diffusive contribution:
Ji = Jeonvi + Juify.i (6.4)
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where Jyirri = —DB% (equation 3.21). By writing J.onw; = ppw;, the particle convective

velocity, w;, is defined:
PpVi = ppwi — Dp—=—= (6.5)

Substituting this into equations 6.1a and 6.2 has the effect of shifting the diffusive terms from

the particle momentum equation into the particle mass conservation equation:

Opp | O(ppwr) d dpp
7 = Dp—— .
ot " om0z, | Pou, (6.62)
Ov; Ov; i — Wi
- + Vg A (: = wy) +Fri+Frgi+g (6.6b)

ot

8xk Tp

This is helpful in obtaining a clear picture of the different types of transport mechanisms,
and also for computational purposes.

Examining equation 6.5, it can be seen that w; and v; are only significantly different
when diffusive effects are dominant, as happens when 7, is small. However, inertial effects
are then no longer important, and the acceleration term on the left hand side of the particle
momentum equation (equation 6.6b) can be neglected in relation to (u; — w;) because it
is multiplied by 7,. For large 7, the acceleration term cannot be neglected, but because
convective effects now dominate, v; = w;. For these reasons it is permissible to replace v; by

w; in_the acceleration term, without serious error, over the whole range of 7, (see Ramshaw,

1979). A similar approach can be used to advantage with the averaged equations for turbulent

flow (see below).

6.2.3 Reynolds and particle density-weighted averaging

The most common method of dealing with the governing equations of turbulent flows is
Reynolds averaging, where the instantaneous values of particle phase density and fluid and
particle velocity are decomposed into mean and fluctuating components. Decomposing p,

and u; into Reynolds averaged ensemble-mean and fluctuating components:

Pp = Py + 1y u =U; + u; where ¢/,

While it is more conventional to decompose a velocity as u; = u; + u}, the ensemble-mean
component is capitalised for visual clarity.

All particle phase density fields are compressible, so it is advantageous to use density-
weighted (Favre) averaging for quantities involving v;. For variable density flows, Reynolds
averaging results in significant added complexity in the averaged governing equations, whereas

density-weighted averaging leads to a simplified and more easily interpreted set of equations
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(Chen et al., 1991). If v; is the quantity to be averaged (using density-weighting), then decom-
posing into density-weighted ensemble-mean (denoted by a double overbar) and fluctuating

components (denoted by a double prime) gives:
PpVi = ppvi + PpU;’

A number of identities that will be used in subsequent derivations will now be defined. The

density-weighted average value of any variable ¢ is defined by:

p="12 (6.72)

bl“
S e

Decomposing p,v; and averaging:

PpU; = ppﬁi + oy = DU = ﬁpﬁi + ppvl = ﬁp?i which shows that p,v! = p,v! =0
(6.7h)
Similarly:
ppUiv; = p,V; Vi + Ppu; vy (6.7¢)

Particle mass conservation equation
Decomposing and expanding equation 6.1a:

a(ﬁp—i_p;’) o NGV 7
ot + axk (pp+pp)(vk+vk) =0

op,+pm) 0 = _ =
% T om P,V + v + 0 Vie + prug) =0

Taking averages, remembering the rules of equation 6.7 and that ﬁp = 0, gives the density-

weighted averaged particle mass conservation equation as:

o,  p,V)

Y By =0 (6.8)

Particle momentum equation

The drag force is averaged by assuming 7, to be a local constant evaluated at the local mean
slip Reynolds number. By ignoring any correlation between fluctuating particle density and gas

velocity in the lift force term, and between fluctuating particle density and gas temperature
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in the thermophoretic force term, the averaging of the force terms results in:

PoTi = Vi) + oot _ (05— Vi + )

PPFDi = ﬁpﬁ,i = 2 =-L : (6.9a)
’ Tp Tp

__ A

ppFL,i = ﬁpF_L,i = OéLﬁp (a—l‘k) (Uk — Vk) (69b)

= Dg_ 0(Inp,) Dp 0p,

Pp B Ppr B T Pp 8% T 3$Z ( C)
— o(InT
ppFrm ;= pFrm; = —CYTHE,% (6.9d)

Treating equation 6.1b similarly to the particle mass conservation equation (and substi-

tuting equations 6.9a and 6.9c) gives:

op,V:) 0@,V Ve) _ 9@ | U=V | A Dy,
Ot 8xk o 8$k Tp Tp Tp 8:62

+ﬁp(F_L,i +Fru;+9) (6.10)

Combining equation 6.10 with 6.8 and manipulating gives the non-conservative form of the

particle momentum equation:

Wi T oV __O0i) _ (i) 9By | (Ti=V)
ot oy, oy, Pp Oxy, Tp

Dy 07,
Tpﬁp &vz

+(ﬁ,i +§,i +g) (6.11)

Qlﬁll

6.2.4 Turbulence modelling

Closure of the particle momentum equation requires the modelling of the turbulence corre-
lations 7,07} (the particle Reynolds stress) and p,u! (the density-velocity correlation). A
transport equation for the particle Reynolds stress can be derived in a similar manner to
the single-phase Reynolds stress transport equation, and the result is (neglecting lift, ther-

mophoresis, Brownian motion and gravity):

6(1}2’.’1);-/) +§ a(vilv;,) — 1 a(pp?)” vy ”) n //avj Wavl
ot Y om, P, Ony P e, kB,

1,,11

u;v; +uv — 2v'v ”

= (6.12)

In an inhomogeneous turbulent flow, the particles are prevented from attaining local equi-

librium by the production of particle fluctuating stress (the second and third terms on the

133



right hand side of equation 6.12). If the turbulence were homogeneous, the gradients of mean

quantities would vanish and:

oo = It (6.13)

By adopting the ‘local equilibrium’ model, equation 6.13 may be used even for inhomogeneous

turbulence (especially for small 7, as all the other terms in the transport equation become

very small). The problem of modelling the correlation p,v{v] is now replaced by the need

to provide a local equilibrium model for p,u;v7. The turbulence modelling adopted for this
correlation is detailed in Slater et al. (2003), and the result is:

wv; = wivy = Tuju) (6.14a)
where
1 [ _
r—1 / =5/ R(s)ds (6.14b)
Tp Jo

and R(s) is the gas velocity autocorrelation function. A commonly used approximation is
the expression R(s) = exp(—s/7,) where 7, is the integral time-scale of the turbulence.

Substituting this into equation 6.14b gives:

['= (6.14c)
Tg+ Tp
Combining these results gives:
ol = Tl = — 9y (6.14d)
] [ad] Tg + Tp [l

It should be noted that, strictly speaking, equation 6.14a requires a density-weighted correla-
tion, but this is ignored in the derivations by Slater et al. (2003), Reeks (1991) and others.

Details of the modelling of the density-velocity correlation can also be found in Slater
et al. (2003). The result is that:

_= T dp.
P (11— -2 D; —P 6.15
L ( T ) k@xk ( )

where D is the turbulent diffusion tensor for a passive scalar. By inserting equation 6.14c
and making a further simplification by assuming isotropy of turbulence so that D;, = 6, Dr
(where Dy is the isotropic turbulent diffusion coefficient):
ap,
Gxi

p,u. = —T Dy (6.16)
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where Dy =2 v, 1 (equation 3.35).

These turbulence models (equations 6.14d and 6.16) are quite simple, and some more
complex modelling approaches were discussed in section 3.3.2. However, Slater et al. (2003)
argue that such models cannot be reliably substantiated, and do not necessarily result in
improved accuracy. Young & Leeming (1997) have also shown that the local equilibrium
assumption can be successful in predicting the gross features, even if the local details are less

accurate.

6.2.5 Working form of the particle conservation equations

Combining equations 6.14d and 6.15 with equation 6.11 gives:

ot 0wy, 0wy, pp Oy T, ikﬁ—xk B TpPp OT;

oV, +§k87i _ CO(Lujuy)  (Pujuy) ap, B (1 B @F)D dp, Dg 0P,

(Uz'—ﬁz')Jr

Tp

+ (Fri+Frmi+yg) (6.17)
A more general expression of equation 3.36 is D;; = 7, uiu). Substituting this into the

second term on the right hand side of equation 6.17, rearranging, and again assuming isotropy
(Dir = 6ix D) gives:

OV: = oV oW (Dr+Dp)dp, [Ti-V)  —  —
Vg = - Lo Zi TV (Fo, 4+ Frma+g) (6.18
ot ka'L'k axk Tpﬁp a'L'Z T ( L TH g) ( )
For the purposes of computational work, it is convenient to define an ensemble-mean
density-weighted particle convective velocity, W;. The total mass flux of particles is again

divided into convective and diffusive components:

0Py
ox i

p,Vi=p,Wi— (Dr+ Dp) (6.19)
A similar procedure to that described in section 6.2.2 for the instantaneous equations is now
followed. Equation 6.19 is substituted into equations 6.8 and 6.18, and V/; is replaced by W;
in the acceleration term of equation 6.18 (this is the only approximation):

“Ip — Dy + D)2 92

o T T ome ~an |(Pr DBy, (6.20a)
oW, = oW, _ olduy) (Ui-W,) — —

~ U F..+Frp. 20b
5 + Wy e e, + - + (Fr;+Fru;+9) (6.20b)

The left hand side of equation 6.20b represents the mean particle convective acceleration,

while the terms on the right represent the forces (per unit particle mass) producing this
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acceleration, namely turbophoresis, drag, lift and thermophoresis. Equation 6.20b does not
involve particle density and can be solved for W; independently of equation 6.20a, and this

represents a considerable computational simplification.

6.3 Fully-developed axisymmetric turbulent annular

flow

6.3.1 Particle momentum equation

The particle mass conservation and momentum equation are transformed into a cylindrical
polar coordinate system, where (r, 6, z) are the radial, circumferential and axial components
respectively, for steady vertical flow through an annulus. For axisymmmetric flow, the 6-
component of the particle momentum equation yields no useful information and is omitted;
the circumferential variation of all time-mean quantities is zero; and for non-swirling flow

Wy = Uy = 0. The radial and axial momentum equations for steady flow may be written as:

— oW, = oW, oTud) W) T, —W,) = —
W or +Ws 0z or 0z + 7 +Fr, +Fru, (6.2la)
— oW, = oW, o) o) 6T, -W,) = =—
W W - - + +Fr.+Fru.+g (6.21b)
87" az 87" aZ Tp ’ )

and ¢p, which is a function of particle slip Reynolds number, has been introduced in order to
take account of non-Stokesian drag.

The following simplifications are made:

- for fully-developed annular flow, the axial variation of the time-mean products of fluc-

tuating components is zero

- for fully-developed annular flow, the time-mean particle velocity field is independent of

the axial coordinate

- for fully-developed annular flow, the radial component of the time-mean fluid velocity

is zero
- Brownian diffusion, lift and thermophoresis in the axial direction are neglected

- the axial momentum equation is less important than the radial equation, and so the
modelling of v/v) is not crucial. It is consequently represented by a gradient diffusion

model, and its turbulent viscosity is assumed equal to that of the fluid, such that:

oW,

— 22
sl (6.22)

oyl —
UTUZ—I/Q,
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The equations are non-dimensionalised using: r* = ru, /v, where r is measured from the
—+ e

- - - + a2 + 3 _ 3

inner wall radius 7; to the outer wall radius r,, 7,7 = T,ui /vy, g* = gvy/us, F' = Fv,/us,

Vi = ver/vy and tT = tu?/v,. All velocities are non-dimensionalised with the friction

velocity, u, = \/Tw/py-

The dimensionless particle momentum equations are:

—+ P —+
— W OTUFuF)  —gaW, ==t =t
W, e = S A —. 6.23
"oort ot T Ly Ty (6.282)

(6.23b)

6.3.2 Particle mass conservation equation

For fully-developed flow, it has been assumed that OW,/dz and 0W,/0z = 0, however
Gﬁp/&z is not equal to zero, as particles are removed from the flow by deposition to the walls,
and p, consequently decreases in the axial direction, such that p, = 7,(r, 2).

Making the same assumptions as with the momentum equation, the particle mass conser-

vation equation in cylindrical polar coordinates is:

op, 1005, W,) O(@EW.) 10 p
Bt =-—|r(Dy+ Dp)—=2 24
ot + r or + 0z ror r(Dr+ D) or (6:24)
A dimensionless time-mean particle density 1 is defined by:

— pylr,2) _ 2 e _

= ﬁz,m(z) and Ppm(2) = - /Tl 7P, (1, 2)dr (6.25)

where 7, ,,(2) is the time-mean particle density averaged across the annulus. The definition
of 1 is designed to remove the dependency of particle density on axial position, so that the
particle conservation of mass equation can be considered as being fully-developed (Young &
Leeming, 1997).

For the present, it will be assumed that ) = ¢)(r), and the mass flux to the wall (where

subscript ¢ denotes the inner wall and o the outer wall) is:

e di
Tusio) = Byn(2) |G, — (D + Dr) 2% (6.26)

wyifo

A deposition velocity is then defined as Vy i/ = Ju.i/o(2)/P,.m(2) and its dimensionless form
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Juin(z) o=+ 4
Vi) = W) W (D + DE) = 6.27
( d )/ ﬁp’m(z)u* [1/) r ( B+ T)dT+] / ( )

where Dp and Dy are made non-dimensional using v,. It then follows that, if ¢ = 9 (r), V"

is independent of z. This equation is applicable to either wall of the annulus.

The total particle mass flow at any axial location is:

Iy = Pyn(2)27 / r(r)W(r)dr (6.28)
A dimensionless particle mass flow rate (independent of z) can be defined as:
) = _mLz)u*z =27 /To 7"+E(7"+)W+ (r*)dr* (6.29)
Ppn(2)V "

where global conservation of mass imposes the requirement that:

drny(2)

Az = —27T(7”0Jw70 — TiJw,i) (630)

Substituting the definitions of .J,, ;/, and 1, (equations 6.26 and 6.28):

Apym(27)

2 Kpynl) (6.31)

where K is a similarity parameter describing the rate of depletion of particles from the flow
(through use of equations 6.27 and 6.29):

2”[7”0(Vd+)0 — Ty (Vd+)i]

K= o (6.32)
p
If 9) = 1)(r), then the mean particle density decays exponentially as:
Ppm(2") = Dpm(0) exp(—Kz7) (6.33)

where 7, . (0) is the value of p,, ,, at the inlet of the annulus (2™ = 0).

Introducing equation 6.31 into equation 6.24, the dimensionless particle mass conservation

equation becomes:

[ﬁ(DE + D;)@] (6.34)

z dr+

1 d +_:+ +_:+ 1 d
— (YW, ) - KTy W T T At
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6.3.3 Boundary conditions

Boundary conditions for the momentum equations are required at the inner and outer walls,

but the purely convective nature of the momentum equations means that the particles have
no knowledge of the wall before they deposit. An ‘internal’ boundary condition is applied at
the boundary by upwinding the spatial derivatives, once the equations have been written in
finite-difference form.

The wall boundary condition for 7, given by Young & Leeming (1997) is used for the
conservation of mass equation. Although referred to as the ‘wall’ boundary condition, the
finite dimensions of the particles means that it is applied one particle radius from the wall.
The boundary condition was derived from a simple kinetic approach based on a Maxwellian
distribution of particle velocity. Referring to equation 6.27, the dimensionless deposition

velocity is now written as:

- @] - 1= exp(~1?)
V= |9 W, — (Dh+DH)—| =9, =W, [1+erf(—M,)] — ———=L|6.35
( d ) [w r ( B+ T)dr+]w’i ¢w,z _2 r[ +er( )] /7277507_;_(w,i a)
=+ dip _ [1=+ exp(—MQ)_
Vi), = W, — (D} + D) = -W_[1 f(+M, —————L2((6.35b
(Vit) [w .~ (Df+ ﬂWLO P | et + Do (0350

)

where erf is the error function, and M, = W:, /%SCT;. The only difference between the
expressions for the inner and outer wall is a minus sign in the er f(+M,.) term. r is measured
from the inner wall, and the result is that Wr is negative when particles move towards the
inner wall and positive when they move towards the outer wall. The opposite signs of W,
ensure that the signs of (V,); and (V,"), are in opposite directions. The sign changes are

subtle, but important, for obtaining the correct values of V.

6.4 Solution of the particle equations

Equations 6.23a, 6.23b and 6.34 (each with a boundary condition at each wall) comprise the
complete set of particle equations to be solved. Although the boundary conditions differ,
because of the different geometries, the density-weighted averaged equations are essentially
the same as the Reynolds averaged equations obtained by Young & Leeming (1997). The
validity of this result (in light of work by Cerbelli et al. (2001)) will be discussed in more detail
in the next chapter.

The equations are solved numerically using a time-marching approach, and to enable this

a time derivative term is added to each equation:

—+ —+ S +
My _ W, Cu) | oV, = =
L or+ + T+ +FL, +Fra, (6.36a)
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oW,  —+dW. 0 oW, \ T —T.)
: - W = 7 f z SR + 6.36b
e r o o (”-%T ort ) L= (6.36D)
oy 1 d =+ =t 1 .d | ., . L dp

By writing the ‘non-conservative’ form of the particle momentum equations in terms of a
particle convective velocity, the momentum equations may be solved for W:r and W: before
the conservation of mass equation is solved for 1. Young & Leeming (1997) point out that
while conservation of momentum cannot be guaranteed using a non-conservative differencing
scheme, this is not actually a physically realistic requirement as the assumption of one-way
coupling has already created an unbalanced source of momentum. However, ¥ may be found
using a conservative finite-volume technique, ensuring that particles are not numerically added

or removed from the flow field.

6.4.1 Grid generation

In turbulent pipe flows, the grid is usually structured to have greater resolution near the wall
than in the core of the flow. This ensures that the rapidly changing gas turbulence near the
wall is captured, but without sacrificing computational efficiency by over-resolution of the core
region, where the turbulence is nearly homogeneous. In a turbulent annulus, there are two wall
regions to be considered. Thus, a computational grid was constructed, with grid spacings that
were very small near the inner wall and increased gradually until the annulus half-width was
reached, and then decreased again towards the outer wall. If G is the geometric progression

ratio, then:
(ris = TG = 1) = Arg (GFP71 — 1) (6.37)

where kp is the number of grid points, and the grid spacing increases from the inner wall
(k = 1) to half way across the domain (k = kp/2). Ary =ry —rf =7} and rf =1/,
which reflects the fact that particles deposit when they come within one radius of the wall.
The width of the first grid spacing (Ary) is set equal to 7, to ensure that particle behaviour
close to the wall is accurately captured. This equation is solved iteratively using a Newton-
Raphson procedure for G. The grid spacing decreases between k£ = kp/2 and the outer wall

(k = kp) with a geometric progression ratio of G~ i.e. Ary = Arp .

The pre-determined solution for the gas flow field is then interpolated onto this computa-
tional grid, using a variable power spline curve fitting procedure developed by Soanes (1976),
the coding for which was implemented by Young (1991).
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6.4.2 Particle momentum equation

The particle radial and axial momentum equations are solved by the semi-implicit time-
marching integration of equations 6.36a and 6.36b. A second-order accurate central-differencing

scheme is used.

Spatial differencing

The centrally-differenced spatial derivatives can be defined for any grid point & (except points
k =1,kp/2, and kp) by:

DA A+ (G2 = )AL — GP4,
or+ | B G(G+1)Arf

(6.38)

where Ar} = rf —r |, and A is a property of the flow. G represents either G (from

equation 6.37) or G !, depending on whether k is greater than or less than kp/2. When
k=kp/2,

0A Agpras1 — Arpja—1
— = - (6.39)
ort oo/ 2Arkp/2
and at either wall:
0A Ay — Ay 0A Agp — Agp1
= d _— = 6.40
or+t Ary an ort Arpt (6.40)
1 kp p

The upwinding of the spatial derivatives at £k = 1 and k = kp in equation 6.40 represents the

application of two ‘internal’ boundary conditions to each momentum equation.

Central-differencing of a convective transport equation is inherently unstable when inte-
grated explicitly in time. Artificial viscosity was included through the addition to the right
hand side of equation 6.36a of the term:

—+
W,
VART 5 =% (6.41)

Leeming (1995) found that the axial momentum equation did not require the addition of any

artificial viscosity.

The centrally-differenced spatial second derivative at any point k£ (again, k # 1,kp/2,k)

PA| 2Aps — (G + 1AL+ GAY)
or+? | B G(G+1)Ar?

(6.42)
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For k = 1,kp/2, kp:

PA| 24— (G+1)4 +GAY)
= 6.43
or 2| G(G +1)Ar;? (6.432)
0*A Appja+1 — 2Akps2 + Appra—1
_ 6.43D)
> 2 (
ort oo/ Arkp/2
02 A _ 2(Akp — (G + I)Akp_1 + GAkp_g) (6 43C)
or2| GG+ )Ar? |
D

Time integration

A semi-implicit integration scheme is used for the time-marching of the momentum equations.
The radial and axial momentum equations at any point & (for 2 < k < kp — 1) are:

i+l i
— —+
r = Wr +
At+7'+ +8W ¢ W + =t oU " V2 32W+ i
i D +(TT E5 74 z + r
{At+ +rf }{ ( = T Sap(U: = W)l 5m ART gr-+2 )
k
8v’+v’+ olnT
( %H—ar+) } (6.44)
k
i+l i
— —
k k

(6.45)
where
1/2
af = oy _ 0.795, | Lo/ Pomat)
L U le_
kg
af. — arH _ Kru _ 9(pg/ Ppmat) CS(E + CyKn)

o 3 r’ (14 3C,Kn)(1+ 2,’2—5 +2C,Kn)

(6.46)
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where k, = 3.75uyR, Vipr = varr/v,, and S is the sign of oU . /or™. The superscript i
represents the value of a property at the current time-step, while 7 + 1 represents the value
at the next time-step. [nT is already non-dimensional.

The drag terms are integrated implicitly with a time-step of At*7F/(At* + 7.f). For
large values of 77, this is equal to At™, the time-step of the semi-implicit method and the
time-step if the drag terms had been integrated explicitly. However, for small values of 7,
the time-step of the semi-implicit method is scaled by T;. This avoids the requirement of very
small time-steps that would be needed to integrate the drag terms for small T;“ if a purely

explicit method had been used. The time-step of the semi-implicit method is defined as:
Att = —— (6.47)

where C'F'L is a user-specified Courant number, and the subscript min requires that the
minimum value across the grid be used.

The turbophoretic, thermophoretic and gravitational forces do not have a superscript as
they are unchanged with time. They drive the particles’ motion while the other forces are a
reaction to these driving forces.

The addition of artificial viscosity is controlled by the cell Reynolds number:

=+
W, |Arf

Re, (6.48)

Ko+
v
ART‘k
- - - - oy :+ - .
with Re. = 2 being sufficient to ensure stability, and ‘WT ‘ is the magnitude of the local

convective velocity with which information is transferred across a cell, in the radial direction.

6.4.3 Particle mass conservation equation

The particle mass conservation equation is solved on the same grid as the momentum equa-
tions, in contrast with the method of Young & Leeming (1997) where the grid spacing is
influenced by the particle density gradient. Apart from this difference, and the choice of
boundary conditions, the treatment of the particle mass conservation equation is almost iden-
tical to that of Leeming (1995), with some slight changes due to the different coordinate

system.

Spatial discretisation

Equation 6.36¢ is solved by a finite-volume time-marching integration to a steady state,
because it is non-linear in 1) through K*. The equation is integrated over a typical control
volume, shown in figure 6.1. If J is the flux though each cell face, then Jm¢t = Jin — jout,

Thus, the net axial flux J¢* can be related to the rate of depletion of particles from the flow
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Figure 6.1: Spatial discretisation for the particle conservation of mass equation

(through K), and the radial flux J, is similar in form to the definition of the wall mass flux

(equation 6.26), giving:

ne =T — =" a@
(2] =KW, and  [J,]=vW, - (Dy+ D;)arﬁ (6.49)
Gauss’s theorem then gives:
0 — ne
pyes [¢], i 0.5(ArS + Aryf ) + [T7] k+%rlj+%0'5AT/j+1
a1 08AR + ]l =[], =0 (6.50)

A linear variation of quantites between grid points is assumed.

Time integration

The discretised particle conservation of mass equation (equation 6.50) is of the convection-

diffusion type, and is inherently unstable to explicit methods of integration, necessitating the
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use of implicit Euler integration. Rewriting equation 6.50:
(At + ‘ZH —¢ ‘;
|:Tk (Ark + Ark+1):| T =
K+‘ (ATZHTI;:_Z B
i =t [ )
K+‘ ( ot W, )(075¢\“+025¢\“ -
4 4

) (0 Y[ 025w ] +
4

Er o4 i+1 i+1
L ot ek ()
? T
— b ‘z+1 — i+l
7"]:—_1 [Wr ( ‘H—l + ¢ ‘H-l ) _9 D+ + D-l—) 1 ( A kl) (651)
2 Tk;

Boundary conditions

The boundary conditions of equation 6.35 along with equation 6.51 (applied for 2 < k <
kp — 1) represent the complete set of equations needed to solve the particle conservation of
mass equation. The boundary conditions are re-written in discretised form as:

+1 ‘z+1 . ¢ ‘z+1 -
(2 + + (2
= 0| W] — (Dh+ D) i =0 [ ks (6.52a)
‘H»l . ¢ ‘z+1
7 1 — i+1
V)o=)W, | = (D + Df iy L = (6.52b)
Tkp
where
1—+ exp(—M;;) — 1
wz:_Wr 1+erf _Mri ————- and Mri_ . —Sert
K s 2 1[ ( 7)] \/m ) 2 CTP
1=+ exp(—M?2) — 1
wo =35W 1 F(+ M. —— d Mro:Wr —SerF
K 2 r kp[ +er (+ s )] + \/m an s 2 CTP
Equations 6.51 and 6.52 can be written in the general form:
11 ‘ZH + ot ‘Hl (6.54a)
i+1 i+1
bt |, +b2k7f)‘k +b3k¢‘k+1_b4k (6.54b)
b1 kpt) ‘ZH + ba gyt ‘ZH ba kp (6.54c)

where the coefficients are obtained by a simple rearrangement of the equations. The equa-

tions 6.54 can be written in matrix-vector form and solved with a single sweep of Gaussian
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elimination.

~- A [ — i+l ~- -

1 C2 w‘l Ca
— 1i+1

bia bap bso o, b
— 41

bis bas bss v, bis

= ... (6.55)
— it
bl,kpfl b2,kp71 bS,kpfl ¢ ‘kp—l b4,kp71

— 1e+1

L blvkp bz,k}p . w ‘]gp L b47kp

As the scheme is implicit, it is unconditionally stable and the time-step is set so that the CFL
number is 10.

For fully-developed turbulent pipe flow, Leeming (1995) applied boundary conditions at
the pipe wall and centre-line. The two wall boundary conditions applied for the case of the
annulus mean that while the shape of the particle density profile obtained may be realistic,
its actual magnitude may not. The dimensionless time-mean particle density averaged across
the annulus is defined as:

+
_ 9 s

The magnitude of ¢ is controlled by ensuring that ¢, tends towards unity by applying the
relationship:
—it1
A (6.57)
Vrm

at the end of each time-step.

6.5 Summary

The theory and numerical scheme described in this chapter are based on the work of Leeming
(1995), Young & Leeming (1997) and Slater et al. (2003) for turbulent pipe flow. The particle
equations of motion derived here using particle density-weighted averaging are essentially the
same as those derived by Young & Leeming (1997) using Reynolds averaging. They have
been extended to the case of turbulent annular flow, and were used to provide the numerical

results presented and discussed in the next chapter.
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Chapter 7

A numerical study of particle
deposition in a turbulent annular

flow

7.1 Introduction

The theory of particle deposition and the numerical scheme presented in the previous chapter
were used to write a computer code to solve the governing equations of particle motion in a
fully-developed turbulent annular flow. The code was written to produce numerical results for
comparison with the experimental data for thermophoretic deposition presented in chapter 5.
As part of this experimental investigation, data were also obtained for isothermal deposition
in a turbulent annulus, as a datum against which the thermophoretic deposition could be
compared. The isothermal deposition velocities were expected to be very similar to those in an
isothermal turbulent pipe flow. However, as discussed in section 5.3, when T; > 20 (the inertia
moderated regime), the experimental deposition velocities for the turbulent annulus were
almost an order of magnitude lower than those for turbulent pipe flow. While experimental
conditions were found to be responsible for some unusual behaviour over this range of 7.f,
and the order of magnitude deviation in V" has been attributed to the excessive deposition
at the inlet to the test section, this is not the first study to find variations in depositional

behaviour in this range of 7.\

The first part of this chapter involves a study of isothermal particle deposition in a tur-
bulent annulus, to illustrate the interaction of the various transport mechanisms without
thermophoresis. Attention is paid to the inertia moderated regime in particular, to illustrate
the variations in V; (from both experimental and numerical studies) and to discuss possible
explanations for the behaviour mentioned above. Recent works based on the theory of Young
& Leeming (1997) are examined, and the results of direct numerical simulations (DNS) in
turbulent pipe and channel flows are surveyed. The second part consists of a numerical study

of thermophoretic deposition in a turbulent annulus, and comparison with the experimental
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results. Thermophoresis does not appear to alter significantly the deposition rates of particles
in the inertia moderated regime, and the isothermal results were as expected outside of this
regime. Consequently, the study of thermophoresis can proceed with confidence, despite the

experimental results obtained for T;“ > 20.

7.2 Isothermal particle deposition

The work of Young & Leeming (1997) (on which this numerical study is based) has been the
subject of much recent attention, and has come to be known as both the Advection-Diffusion
Equation (ADE) approach, and the unified deposition theory. Shin & Lee (2001) attempted to
improve on the local equilibrium assumption by including a non-equilibrium ‘memory effect’ in
the turbophoretic term, valid in the absence of the lift force; Shin et al. (2003) extended this
non-equilibrium analysis to take account of shear-induced lift, which plays a significant role
in the deposition of particles in the inertia moderated regime, and also examined the choice
of particle diffusivity and the ‘crossing trajectory’ effect; Cerbelli et al. (2001) estimated the
magnitude of a correlation involving the divergence of the particle velocity field that was
ignored by Young & Leeming (1997), and found that it can have a significant effect on
particle density profiles; and Reeks (2003) conducted an extensive comparison between the
approach of Young & Leeming (1997) (with and without the inclusion of the extra correlation
from Cerbelli et al. (2001)), and an Eulerian model approach based on the probability density
function (PDF) method.

Some numerical results found using the computer code described in the previous chapter
will now be presented. The success of the theory of Young & Leeming (1997) was the use
of comparatively simple theoretical models to represent quantitively the physical processes
involved in particle deposition. Before the recent developments (which attempt to provide
qualitative improvements) are examined in closer detail, the influence of the Saffman lift
force and the prescription of the fluid turbulent properties on particle deposition will first be
examined. This is done to demonstrate the large influence that the lift force can have on
deposition velocities, and to ascertain the sensitivity of particle deposition to the fluid flow
field (the governing equations of particle motion are solved using the fluid flow field as an
input). An over-sensitivity to changes in the fluid turbulence characteristics (about which
there is some uncertainty), would greatly hinder any attempts at qualitative improvements in
particle turbulence modelling, as differences between predicted and measured deposition rates

could be attributed to limitations in the modelling of the fluid or the particle turbulence.

7.2.1 The Saffman lift force

As T;“ increases, particles develop a streamwise slip velocity relative to the fluid (U, — W).
The lift force is related to this slip velocity (see equation 6.9b), and so the deposition velocity

changes quite considerably with the inclusion of the lift force, for T;r > 1. This can be seen
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Figure 7.1: Isothermal particle deposition in a turbulent annulus with and without lift (in both
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clearly in figure 7.1, which shows calculated values of V" for turbulent flow in an annulus
under isothermal conditions with Re = 5900 (this matches the experimental conditions).
The experimental data and numerical results show good agreement, except at large T;. The
inner and outer wall deposition velocities are almost equal in the numerical study, but the
experiments showed (V;"), to be larger than (V,");, especially for small 7.,7. However, V;°
is much lower at small T;, and thus more prone to error. The numerical results also show
that deposition in an isothermal turbulent annulus is very similar to that in a pipe. The lift
force couples the axial and radial momentum equations, so that there is no need to solve the
particle axial momentum equation when the lift force is neglected.

Figures 7.2 and 7.3 show the dimensionless profiles of particle velocity in the radial direction

(i.e. towards/away from the wall ) W, , acceleration and forces per unit mass of particles in
=+

o
the radial direction F', , and dimensionless particle density 1, all plotted against dimensionless
distance from the inner wall y*. These profiles are shown for a range of different values of
7,7, both with and without lift (figures 7.2 and 7.3 respectively). The vertical axes for the
1) profiles are offset from the walls so that the near-wall behaviour is not obscured, and
different ordinate scales have been used for each diagram. For the profiles of W: and ?: a
negative value represents a velocity or force towards the inner wall, while a positive value is

representative of a velocity/force towards the outer wall.
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Particles with T;“ = 0.1 are in the diffusional deposition regime, particles with T;“ =1,10
and 100 represent the start, middle and end of the turbulent diffusion-eddy impaction regime,
and particles with 7.7 = 1000 are in the inertia moderated regime. These types of profiles
have been discussed at length by Young & Leeming (1997) with regard to the manner in which
particles of different sizes respond to turbulence, and how they deposit under the influence
of diffusive or convective mechanisms, or a combination of both. The focus here is on the

differences between the profiles with and without lift.

It can be seen that for 7';“: 0.1 and 1, there is very little difference between the two
cases, as can be expected from figure 7.1. The profiles for T; = 10, 100 and 1000 are
quite different however. In the absence of lift, peaks of 1) occur close to the walls, whereas
the inclusion of lift results in the removal of these peaks, and much larger values of W: at
the walls. This behaviour is not unexpected: Young & Leeming (1997) point out that the
particle density profile should reflect the continuity requirement that the total radial particle
flux (convective and diffusive) must remain almost exactly constant in the region y* < 20,
and since convection dominates over diffusion for 10 < T; < 1000, the continuity requirement
is that EW: should be nearly constant in the near-wall region. Hence, the increase in W:
near the walls in the presence of lift requires a reduction in 1) (compared to the case without
lift).

It has been shown that the lift force can have a significant influence on both V" and
the profiles of W:r and 1. However, the form of the lift force used (the Saffman formula)
has been derived for a particle far from any boundaries, so that the presence of a wall may
influence V" for particles of certain sizes. Wang et al. (1997) used an ‘optimum’ lift force
which takes account of the presence of the wall. In fact, this ‘optimum’ force comprises a
number of different expressions, the appropriate one depending on distance from the wall,
and Reynolds numbers and length scales based on the slip velocity and fluid velocity gradient.
The implementation of these expressions into the computational model proved difficult due
to the large number of expressions, and it introduced numerical instabilities as the Reynolds
number and length scales changed across the annulus, causing the form of the ‘optimum’ lift
force to change suddenly (although this may be due to the present method'’s requirement for
smooth profiles of fluid and particle properties, which will be explained in the next section).
Wang et al. (1997) found that the use of the Saffman lift force led to an over-prediction of
VF, and large eddy simulations showed that the ‘optimum’ lift force was approximately three
times smaller than the Saffman lift force. Accounting for the presence of the walls would
lead to deposition velocities somewhere between those found without the lift force, and those
found using the Saffman formula. Finding the correct form of the lift force is not be helped
by the fact that the lift force has the greatest influence on V" in the region where the scatter

of experimental data is the largest.
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7.2.2 Fluid fluctuating velocity and eddy viscosity

In order to solve the particle equations, a knowledge of the fluid flow field is required. Val-
idation of the particle solution depends on errors arising from the fluid solution being small,
so that any differences between numerical and experimental deposition velocities can be at-
tributed to the particle transport modelling rather than the fluid turbulence modelling. The
information required by the particle equations is the radial variation of U, ulul, ver (Ser is
assumed equal to unity, Dr = v, 1 and 7, is a function of u/u! and v,r) and T.

Slater (1999) carried out a sensitivity study of the deposition velocity to different methods
of obtaining the fluid turbulence statistics. The closure methods investigated were £ — ¢,
full Reynolds stress, low Reynolds number & — ¢, and the use of experimental/DNS data.
The limitation of these models was found to be their failure to predict the correct near-wall
behaviour, with the result that deposition velocities were strongly dependent on the closure
method used. The correct near-wall behaviour is that WUZ varies with ™2, and y;,T
varies with y ™3 (Chapman & Kuhn, 1986), where y™ is the dimensionless distance from the
wall.

The choice of gas turbulence model is also influenced by the stability requirements of

the numerical scheme. Turbophoresis is governed by the term —d(v”v”)/Or, which is a
function of u/u/ and v, (through T). In order that the turbophoretic force has a smooth
radial variation, W and v, must be twice differentiable. The best method of meeting
these requirements is the use of empirical models, which fit to available experimental (and/or
DNS) data and represent the near-wall behaviour accurately, while also being continously
differentiable. The empirical models used here are similar to those of Young & Leeming
(1997), but with alterations to account for the change in geometry from a pipe to an annulus.
They are described in detail in appendix D.1, along with other details of the fluid flow solver.

The only available data for an annulus, to which the empirical models may be fitted,
appears to be the DNS data of Chung et al. (2002) for Re =8900 and Quadrio & Luchini
(2002) for Re =11200. The experimental work of Kang et al. (2001) is unsuitable as it is
for a vertical upflow of refrigerant (non-dimensionalisation is made difficult by this), and the
Reynolds numbers used were much higher. Experimental and DNS data for turbulent pipe and
channel flow indicates that there is a Reynolds number dependence in the near-wall region for
low Re (see Manna & Vacca, 2001), and Re ~ 5900 in the present experiments. Quadrio &
Luchini (2002) investigated wall curvature effects on the turbulence statistics in an annulus,
which were shown to have an effect even in the low-curvature range (the range of the present
experiments), where a flow very similar to that over a plane surface was expected. As all of
this creates a level of uncertainty in the prescription of u/u! and v, r, a sensitivity study was
carried out on the effect of varying these quantities while maintaining a reasonable agreement
with the available data (see appendix D.1 for justification of these variations).

Figure 7.4 shows the fluid fluctuating velocity and eddy viscosity, and their first derivatives.
While the fluid fluctuating velocity profiles are plotted against 3™, the eddy viscosity profiles
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Figure 7.4: Fluid fluctuating velocity (above) and eddy viscosity (below) profiles and their

first derivatives
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Equation D.17
Equation D.18

vt

9,7
Equation D.12
Equation D.13

§=0.7,%0=09 6=07 v/,=09 §=10,7/,=09

e=1.0 e=1.7 e=1.0
’{i/o =04 ’{i/o = 0.7 ’{i/o =04
constant = 15 constant = 15 constant = 25

Table 7.1: Constants used to vary the profiles of fluid fluctuating velocity and eddy viscosity
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Figure 7.5: Isothermal particle deposition in a turbulent annulus with altered eddy viscosity
and fluid fluctuating velocity profiles

are plotted against y* = (r —r;)/(r, — ;) to allow for better comparison by avoiding changes
in y* (through w.) when v, r is altered. Three different profiles are shown. The standard
model, in each case, is the original empirical model that was used to obtain the results shown
in figure 7.1, and represents the best fit to experimental data with a ‘standard’ choice of
constants. The constants used in the empirical models of appendix D.1 were than varied,
to obtain profiles that were altered in the near-wall and then, the core region. The different
constants used are given in table 7.1.

Altering the turbulence statistics in the core of the flow, had a negligible effect on the
deposition velocity (the results are not plotted), but the near-wall alterations exert more
influence, as can be seen from figure 7.5. While there is a more pronounced change in particle
velocity and density profiles (not shown), the change in deposition velocity is relatively small
and confined mainly to the turbulent diffusion-eddy impaction regime, as was the case with
the modifications to the lift force. The differences in V" are much smaller than the scatter
associated with the experimental data in this range of T;“. The ‘standard’ profiles of fluid
fluctuating velocity and eddy viscosity will be used throughout the remainder of this study,
and their prescription can be said to have only a minimal influence on V., in the sense that
only vast and physically unrealistic changes in the fluid turbulence statistics would alter the
values of V" sufficiently to fall outside of the scatter of experimental data for turbulent pipe

flow.
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7.2.3 Memory effects

Shin & Lee (2001) included a non-equilibrium ‘memory effect’ in the turbophoretic term,
in an analysis valid in the absence of the Saffman lift force. When the particle relaxation
time is much smaller than the characteristic time scale of the fluid flow, 7, /7, <1, particles
follow the fluctuating fluid motion closely and the turbulence characteristics of the particle are
almost the same as those of the fluid at the same position. When 7,/7, > 1, the particle’s
inertia is such that its motion is only slightly altered by the turbulent eddy motion of the fluid
over the small time interval of their interaction, and its turbulent characteristics are the result
of its interactions over a longer period of time, i.e. a large particle has a longer memory.
The expression given by Shin & Lee (2001) for the mean-square particle fluctuating velocity

(towards the wall) accounting for this memory effect is:

exp(—27/1,) = 0 ([ ——
T _ —(Tu 1
To1- exp(—QT/Tp)TWT or ( u,ur) (7.1)

.7
where 7 is an intermediate diffusion time scale, which may be given any value much smaller
than 7,. Thus, for small values of T;, the local equilibrium assumption still remains valid,
while for large T;“ the memory effect becomes significant and W is altered from its local
equilibrium value. The inclusion of the memory effect was found to induce an additional
drift velocity towards the wall, alleviate the excessive build-up of particles near the wall, and
enhance deposition.

Shin et al. (2003) carried out a further non-equilibrium analysis, this time in the presence
of lift. The number of dispersion coefficients calculated represents a significant complication
over the analysis in the absence of lift, and the deposition results vary depending on the
choice of 7. An analysis was also carried out to investigate the effect of the choice of the
particle turbulent diffusion coefficient. The local equilibrium model makes the assumption
that Dy =~ v, . Shin et al. (2003) modified this expression to take account of the ‘crossing
trajectory’ T effect for large particles; large particles develop a slip velocity relative to the fluid,
and particles drift out of their surrounding eddies, resulting in a reduction in the correlation
between the particle velocity and the fluid velocity at the particle’s ‘previous’ location, thus
reducing Dp. While not altering the deposition results to a great extent, these alterations did
result in better agreement with the experimental data of Liu & Agarwal (1974) in the inertia
moderated regime, where V" begins to decrease with increasing T;’ (which is often known as
the ‘roll-off’ in deposition).

The effect of including the crossing trajectory effect on the roll-off in deposition can

be explained by considering the local equilibrium definition of v/v! and substituting 7, =

1ol -
VQ,T/ Up Uy

! o1
— Vo U, U
o0l — 9, r'r
vl = ————— (7.2)
V97T + uTuTTp

*Not be confused with the crossing trajectories of chapter 2.
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Differentiating this:

00D _ 1 Ovr a0 -
or (14 +7)% Or or '
As 7, —0,T = 1:
o) ., ) -

because small particles follow the fluid turbulence exactly. As 7, — oo, the fluid fluctuating
velocity gradient term (of equation 7.3) scales with 1/7. while the eddy viscosity gradient

term scales with 1/7,, so that the eddy viscosity gradient term dominates and:

o(vv") 1 Ovgr
e 7.5
or T, Or (75)

Over therange 1 < T; < 10, the two terms of equation 7.3 are of roughly equal magnitude,
but the fluid fluctuating velocity gradient term decreases while the eddy viscosity gradient
term increases. In the region 10 < 7,7 < 100, the eddy viscosity gradient term dominates but
gradually decreases with increasing 7.7 (so that V" decreases also). If Dy was modelled by
vg,r Minus the contribution due to crossing trajectories (as in Shin et al., 2003), Vd+ would
be further reduced allowing the roll-off in deposition to be better captured. (It should be
pointed out that the appearance of a diffusion coefficient in the description of particle motion
at high 7, where convection dominates, may represent an undesirable characteristic of the

modelling.)

7.2.4 Particle deposition in relation to particle transport

It has been shown over the preceeding pages that the fluid flow field may be altered, and
that physically reasonable improvements may be made to the local equilibrium assumption
without significant alteration to the overall shape of the deposition velocity curve (although
the shape of particle velocity and density profiles are altered). The difficulties associated with
measuring turbulence characteristics (even for the fluid phase) mean that, other than DNS
data, there is very little validatory data for anything other than depositional studies, and so it
is deposition that is of most interest in this thesis. The particle velocity and density profiles
are intended to give an understanding of the mechanisms causing deposition, and the theory
of Young & Leeming (1997) was formulated specifically for the case of deposition. There is a
great volume of work in the literature more concerned with particle transport than deposition,
i.e the particle properties throughout the flow rather than at the wall. While the work of each
of these closely related fields is often mutually beneficial, it can sometimes lead to confusion.

One of the findings of the previous chapter was that the momentum equations derived

using particle density-weighted averaging are essentially those obtained by Young & Leeming
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(1997) using Reynolds averaging. Young & Leeming (1997) ignored a correlation involving the
divergence of the particle velocity field, on the grounds that large gradients of particle density
do not occur simultaneously with large convective velocities, and vice versa. Cerbelli et al.
(2001) estimated the magnitude of this correlation and suggested that it can be significant,
leading Slater et al. (2003) to suggest that there may be an inconsistency of comparable
magnitude in the density-weighted turbulence modelling. The issue of the appearance or dis-
appearance of this correlation highlights the importance of recognising the differences between
studies of particle transport and those of particle deposition. Cerbelli et al. (2001) found that
the particle density gradient can be large in the presence of large convective velocities, but
only in the presence of perfectly reflecting walls (i.e. no deposition occurs). However, this
is often a physically unrealistic case, and there is no need to take account of this correlation
when particle deposition is being studied (although the assumption of perfect absorbing walls
is also an idealisation, it is relevant to a wider variety of applications, and the particles in the
experiments presented earlier had a coating of oleic acid to ensure adhesion).

Furthermore, the approach of Young & Leeming (1997) is not valid for such a case, as
pointed out by Reeks (2003), who found inconsistencies in the closure approximations and the
form of the transport equation, when applied to cases other than deposition in a turbulent
pipe flow (or similar geometries). Reeks (2003) gives credit to the analysis of Young &
Leeming (1997) for being aware of its own deficiencies and the conditions of its validity:
for small particles, diffusion dominates or is comparable to convective mechanisms and the
approximations for the diffusion coefficient and the gradient of fluctuating particle velocity
are valid, while for large particles, convection dominates over diffusive mechanisms, so that
the form of the diffusion coefficient is not vital, as long it is consistent with such behaviour.
This is not the case when there is a perfectly reflecting boundary, as a balance of convective

and diffusive mechanisms co-exist when 7. is large.

7.2.5 Direct numerical simulation of particle transport in wall-

bounded flows

Recent computational advances have spawned a large number of studies involving direct nu-
merical simulations (DNS), which resolve all of the relevant turbulent scales, without the need
for turbulence closure models. Lagrangian tracking of the particles can then be performed.
The development of the flow over time, coupled with the quality (in that there is no practical
alternative means of obtaining such data) and quantity of information provided by such stud-
ies, has led them to be regarded as ‘computational experiments’ and the results are often used
to validate new models and theories, in the absence of ‘real” experimental data (e.g. Cerbelli
et al., 2001). Some of the earliest examples of this type of work are by McLaughlin (1989),
Brooke et al. (1992), and Brooke et al. (1994) (often cited for its v.v. profiles).

One striking similarity between these studies and turbulent pipe flow experiments is the

method by which the deposition velocity is calculated: the rate of particle depletion is plotted
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against time (or distance along the pipe) and a deposition coefficient is found by determining
the slope at the straight part of the curve (Uijttewaal & Oliemans, 1996). A straight portion of
the curve forms after a period of time, the length of which depends on 7', and the particular
conditions of the DNS study.

Nearly every DNS study since McLaughlin (1989) has reported the steady accumulation of
particles in the near-wall region over time. Portela et al. (2001) found that it is in this near-
wall region that the particle density takes longest to reach a stationary steady-state value, and
Rouson & Eaton (1994) never reached a stationary value for particle density (instead running
simulations until the particle velocity statistics alone became stationary in time).

Differences in the time to stationarity between different studies is hardly surprising. In
certain cases (e.g. Rouson & Eaton, 1994; Marchioli et al., 2003), particles that exit the flow
domain through one boundary are reintroduced through the opposite boundary, while others
(such as Brooke et al., 1994) allow the particles simply to deposit. The particle density is
calculated by dividing the flow domain into a number of ‘bins’ and averaging the number of
particles resident in each bin over a time interval. Hence, the use of a greater number of
particles (or reintroducing particles that have already 'deposited’) should result in a stationary
average being achieved over a shorter period of time (an alternative method for calculating
particle density for laminar flows, that removes the need to use large numbers of particles, was
discussed in part 1 of this thesis). Another discrepancy between various numerical studies, as
pointed out by Pedinotti et al. (1992), is that it is impossible to match the particle Stokes
numbers based on different scalings (e.g. Kolmogorov time scale and viscous wall time scale)
for studies at different Reynolds number.

Differences in the time to stationarity for particles of different T;“ can be expected, but
there seems to be some conflict as to which particles take the longest times. Matida et al.
(2000) found that for some intermediate sized particles (7,7 ~ 5, 10), the deposition velocity
was still increasing at the end of the test section, and studied the influence of the inlet particle
density distribution on deposition. However, Portela et al. (2001) found that a particle with
T;“ = 100 took more than twice as long to reach a statistically steady-state concentration
profile than a particle with T; = 25. They also estimated the length required for this to
occur, and found that it could take as many as 300 pipe diameters. The particle density
developing length is, in general, found to be much longer that the hydrodynamic developing
length, particularly for large particles. In such cases, longer computational times, or longer
experimental test-section lengths, are required.

Uijttewaal & Oliemans (1996) suggest that the discrepancy between computations (and
experiments) of different Reynolds number for large T;“ can be explained by a scaling argument
(similar to that of Pedinotti et al. (1992)). They suggest that for small particles (7, < 100),
since the motion is sensitive to the variation of turbulence properties in the near-wall layer, that
the deposition velocity will scale properly with Reynolds number when non-dimensionalised
with u, and v,. Large particles hardly notice the presence of the near-wall layer, and it is

considered more likely that they scale with an integral property of the turbulence. This was
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found to be the case when their data was scaled with the turbulence integral time scale.
This brief look at particle studies using DNS has shown the value of such ‘experiments’,
but also some possible sources for the discrepancies between different turbulent pipe flow
studies, and between turbulent pipe and annulus experiments: the particle density profile may
not have had sufficient length to develop, and the low Reynolds number (or even change in

geometry) may require a change in dimensionless scaling.

7.2.6 Summary

Numerical results for particle deposition in an isothermal turbulent annulus have been pre-
sented, and were shown to be similar to those for an isothermal turbulent pipe. The fluid
flow information required by the particle equations does not alter the deposition velocity sig-
nificantly, but the inclusion of the Saffman lift force has a pronounced effect for certain sizes
of particle, and alters the shape of particle velocity and density profiles across the annulus.
The inclusion of some particle memory effects into the model has been examined. Although,
there is a sound physical basis for their inclusion, there is little experimental evidence in the
bulk of the particle flow to provide verification. The roll-off in deposition velocities found
experimentally is captured well with this modification, but the overall effect on deposition
velocities is small. By contrasting the interests of studies of particle transport (in the bulk of
the flow) and particle deposition (on the wall), some conditions of applicability (or limitations)
of the theory of Young & Leeming (1997) have been illustrated, and the usefulness of particle
DNS studies have been shown with regard to some potential explanations for the variation in
depositional behaviour of particles with large 7';“. An investigation into the scaling of V" for
large 7.7 may result in a better collation of experimental and DNS data, in the same way that
non-dimensionalisation of deposition results collated the results of the early deposition exper-
iments (see the comment with regard to the work of Sehmel (1968) in section 3.4.2). Having
established the mechanisms of deposition in an isothermal turbulent annulus, the numerical
study of deposition in a turbulent annulus with a cross-stream temperature gradient will now

be presented.
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7.3 Thermophoretic particle deposition

The fluid flow solver (decribed in appendix D.1) was used to provide three solutions rep-
resentative of the experimental conditions of chapter 5, where three different cross-stream
temperature differences were imposed on a turbulent annular flow. The expression for the
thermophoretic force derived by Brock (1962), using the constants of Talbot et al. (1980),
was included in the Eulerian particle code of the previous chapter. The results are presented
in figure 7.6, along with the experimental results from chapter 5. For small particles, the
deposition velocity at the inner wall is approximately constant, and its magnitude increases
with each increase in the temperature of the outer wall. The deposition velocity at the outer
wall is negligible. In the range 1< T;“ <10, the deposition velocities at both walls return to
their isothermal values, and the deposition velocities of large particles are unaltered by ther-
mophoresis. The agreement of ('), with experimental data, as it recovers from a negligible
level to its isothermal level, is very good considering the difficulty in measuring low levels of
deposition to the outer wall of the annulus. It should also be remembered that the results at
T;r ~ 8 should be ignored, for the reasons stated in section 5.3.

While Romay et al. (1998) and Leeming (1995) (discussed in detail in chapter 3) found that
their experimental results were greater than theoretical predictions (using the same expression
for the thermophoretic force used here), figure 7.6 shows that the numerical predictions of this
study are greater than the experimental results. The thermophoresis-turbulence interaction
found experimentally is also reproduced.

Before investigating possible reasons for the discrepancy between experiment and predic-
tion, dimensionless profiles of particle velocity, forces per unit mass of particles, and particle
density will be presented, to highlight the changes compared with the isothermal case, and to
illustrate the mechanisms behind the thermophoresis-turbulence interaction. The profiles are
presented only for the largest temperate difference, 1oy nom — Tiy = 128°C, and the Saffman
lift force has been included in all predictions that will be presented in the remainder of this

chapter.

7.3.1 Thermophoresis-turbulence interaction

Considering figure 7.7 for the case when 7, = 0.01, it can be seen that the negative ther-
mophoretic force (in red) directs particles away from the hot outer wall (at y* ~ 150) and
towards the cold inner wall (at y™ &~ 0). As a result, (referring to figure 7.6) (V,"), is negli-
gible and (V"); is significantly increased from its isothermal value. The thermophoretic force
also results in a finite radial particle convective velocity at either wall.

As 7.7 increases (and K decreases), the magnitude of the thermophoretic force decreases.
Figure 7.6 shows that at 7,7 ~ 4, (V;")o has increased sharply to its isothermal value, and
(V;7): has also gradually attained its isothermal value. However, in the range 0.5 < 7,7 < 4,
(V;")i increases in value, rather than continuing at the constant value established below

7, ~ 0.5. And this is despite the fact that figure 7.7 clearly shows that for 7,7 = 1, the
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Figure 7.6: Thermophoretic particle deposition in a turbulent annulus with a cross-stream
temperature gradient: comparison between experimental data and numerical results using the
expression of Talbot et al. (1980)

thermophoretic force has become extremely small. This increase in deposition velocity with a
decrease in thermophoretic force (with (V,;"); being more than an order of magnitude greater
than its isothermal value), indicates a strong coupling between thermophoresis and turbulence,
which has also been found experimentally.

Examining the force diagram in figure 7.7 for 7.F=1, apart from the now small ther-
mophoretic force, the other forces are almost identical to the isothermal case (see figure 7.2).
Under isothermal conditions, deposition in this size range would just be starting to be influ-
enced by the increasing turbophoretic force. However, while the turbophoretic force decreases
to zero at the wall, the small but finite thermophoretic force still has enough influence in the

near-wall region to prevent significant deposition to the hot outer wall, and further enhance

deposition to the cold inner wall. Even though the magnitudes of the deposition velocities
vary between the experiments and numerical predictions, the rate of the increase due to the

interaction of thermophoresis and turbophoresis is well-captured.
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7.3.2 The discrepancy between experimental and numerical re-

sults

In order to understand the reasons for the differences between the experimental and numerical
deposition velocities shown in figure 7.6, a number of possible sources were examined. Table
4.1 gives the thermal conductivities of uranine and oleic acid as 0.43 and 0.23 Wm~!K~!
respectively. While the thermal conductivity of a particle comprising these constituents should
lie somewhere between their individual values, the individual values will also vary with changes
in temperature. However, numerical results with a value of 0.43 or 0.23 Wm~!K~! were
identical (not shown) - it is the fact that this range of k, is indicative of a particle of moderate
to low thermal conductivity that is important, and slight changes will not significantly alter
the ratio of gas to particle thermal conductivities.

The form of the closure model for the turbulent Prandtl number (Prr, equation D.15)
was also found to be unimportant, and the use of other models that give quite different values
of Pry in the near-wall region did not influence the deposition velocities (again, not shown).
While there is no experimental data for flow in a turbulent annulus with a heated and cooled
wall, there is DNS data for a turbulent channel flow with the walls at different temperatures
(Kasagi et al., 1992). This was used to show that the dimensionless temperature found using
the annular flow solver conforms very closely to the universal profiles (see appendix D.1), and
the slight differences were not found to influence the deposition velocities.

In the previous section, the effects of altering the fluid fluctuating velocity and eddy
viscosity were examined. The only change in these quantities to have any effect on the
thermophoretic deposition, was the alteration of the fluid fluctuating velocity profile in the
near-wall region (e=1.7 in table 7.1). The result of this (for T,y nom = 40°C) is shown in
figure 7.8.

This alteration reduces the value of (V') in the region of the thermophoresis-turbophoresis

interaction, and reinforces the existence of the interaction by showing the influence of u/u/

(and thus v”v”) on (V;"); over this range of 7.7, in the presence of thermophoresis. The
bumpiness in values of (V;"); in the region where 77 ~ 5 is also smoothed by this alteration,
but this particular range of T; was found to require an increased grid resolution to achieve
stability (even for the isothermal case), and little should be made of the lack of smoothness
when € = 1.0.

Also shown in figure 7.8 is the result of using the constants of Brock (1962) instead of
those suggested by Talbot et al. (1980) (for Th,y, nom = 40°C with € = 1.7). This involves the
use of Cy = 0.75 in place of 'y = 1.17, in equation 3.50. The result was a small reduction in
the value of (V,;");. For particles of low thermal conductivity in the Knudsen number range
0.01< Kn <0.1 (as is the case for these experiments), figure 3.5 shows that there is little
difference in the magnitude of the thermophoretic force calculated by the different expresssions
(except for that of Bakanov & Roldugin (1977)). One of the largest changes is when altering

C, from 1.17 to 0.75, but this does not reduce the magnitude of the numerical results for
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Figure 7.8: Thermophoretic particle deposition in a turbulent annulus with a cross-stream
temperature gradient: numerical results for 75, nom = 40°C with a number of modifications,
compared with experimental results

deposition velocity to the level of the experimental results.

There is the possbility that the temperature of the flow at either wall may have deviated
from the values measured during the experiments. Figure 7.9 shows the effect of increasing the
temperature of the inner wall by 5°C, and reducing the temperature of the outer wall by 5°C
(but the mean temperature remains the same), for each temperature difference (using Brock's
value for C). This would represent an extreme deviation from the measured conditions. Only
the inner wall deposition velocities for small 7';“ are shown, and although the agreement with
the experimental data is better, an even greater change in wall temperatures would be required
to achieve a closer match. Even a 5°C deviation from the measured temperatures is considered

highly unlikely.

7.3.3 Deficiency in the expression for the thermophoretic force

It has been established that there is a definite discrepancy between the deposition veloci-
ties that were measured during the experiments and those predicted in the numerical study,
and various possible sources (both experimental and numerical) of the discrepancy have been
investigated. The fluctuating temperature has been neglected in the calculation of the ther-
mophoretic force, but the DNS study of Thakurta et al. (1998) on thermophoretic deposition
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Figure 7.9: Thermophoretic particle deposition in a turbulent annulus with a cross-stream
temperature gradient: numerical results for small 7.7 when each wall temperature is altered
by 5°C, compared with experimental results

found that the inclusion of temperature fluctuations had virtually no effect. It is unclear how
they included the temperature fluctuations, but adding the temperature fluctuations to the
mean temperature (as done in the random-walk simulation of Kroger & Drossinos (2000))
was found to have no effect on the deposition velocities presented earlier. The remaining pos-
sibility is that the form of the thermophoretic force used in the numerical predictions might
not be appropriate.

In section 3.5, it was concluded that the theory of Brock (1962) with the constants
recommended by Talbot et al. (1980) probably represented the most accurate form for the
thermophoretic force on a spherical particle. This was due to the fact that it can be applied
over the full range of Knudsen numbers, it agrees with other theories in the limits of Kn < 1
and Kn > 1, and good qualitative agreement with experimental data was demonstrated;
there also appears to be no alternative formulation that can be used with ease over the range
of Kn. The theory of Bakanov & Roldugin (1977) (for small K'n) was found to inadequate,
as it gave a thermophoretic force in the opposite direction to all other theories, and was overly
sensitive to changes in the accommodation coefficients. For this reason, other studies that
were similarly based on various approximations of the Boltzmann equation solutions, or on

numerical calculations for the gas-kinetic model equations, were not considered any further.

Perhaps confusion and a lack of clarity have been introduced in the course of the translation
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from Russian, but from the work of Beresnev & Chernyak (1995), it transpires that Bakanov
& Roldugin (1977) (and Bakanov (1991), Bakanov (1992)) do not do justice to this type
of study. Beresnev & Chernyak (1995) carried out an analysis on the basis of the linearised
Bhatnagar-Gross-Krook (BGK) and S model kinetic equations. The thermophoretic force was
found for arbitrary Knudsen number, accommodation coefficients, and ratio of gas to particle
thermal conductivities. Before examining their expression for the thermophoretic force, an
attempt will be made to clarify the different mechanisms that contribute to thermophoresis,

and how these can bring about a reversal of the thermophoretic force. Paraphrasing Sone
(1972):

When gas and particle thermal conductivities are of similar magnitude, the side
of the particle facing the hot region is heated more than the cold facing side and
there is a temperature gradient, comparable to that of the gas, on the surface of
the particle. A thermal creep flow of the gas is induced from the colder to the
hotter region, and the particle is subjected to an equal and opposite force in the
direction opposite to the temperature gradient (from hot to cold). This is the

first thermophoresis mechanism.

It is this first thermophoresis mechanism that is of principle concern in this work (k,/k, ~0.1),
and this mechanism was included in the hydrodynamic analysis of Brock (1962). However,
certain other studies have found that when kg/kp and Kn are very small, the direction of the
thermophoretic force may be reversed. Although these conditions did not exist in the present
study, an explanation of this phenomenon is important in determining the credibility of any
particular expression for the thermophoretic force. The most adequate explanation can be
found from a combination of Sone (1972), Kogan (1992) and Beresnev & Chernyak (1995):

When the thermal conductivity of the particle is much larger than the thermal
conductivity of the gas, the temperature of the particle is almost uniform and
the thermal creep flow is negligible. However, a temperature gradient exists in
the gas, and molecules impinging obliquely on an element of the particle surface
deliver more tangential momentum to the particle if they come from the hotter
region of the gas. This unequal transfer of tangential momentum results in a shear
stress exerted by the particle on the gas, and there is a flow of gas adjacent to the
particle in the opposite direction to the temperature gradient - from the hotter to
the colder region. The gas then exerts a reactive force on the particle towards the
hotter region. This thermal stress slip flow is termed the second thermophoresis
mechanism, and dominates over the first mechanism only for very small Kn and
large k,, resulting in reverse thermophoresis. As Kn increases (but is still much
less than unity) the mechanisms compete, until further increases in Kn lead to

the first mechanism dominating completely.
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The second thermophoresis mechanism is predicted (alongside the first) by both the lin-
earised Boltzmann equation and the BGK model. Beresnev & Chernyak (1995) graphically
detail the competition between the two mechanisms with changes in Kn. The coefficient of
thermophoresis for the S model (for complete thermal accommodation) was given by Beresnev
& Chernyak (1995) as:

2T lgVyTyp fi1 + (kp/ky) for
Kn 1+ [+ (10/4)(k,/k,) Knfu

nro = (7.6)
where the coefficients fi1, f21, f41 depend only on Kn, and are presented in tabular form.
However, an approximate expression for the thermophoretic force at Kn < 1 in the case of

complete thermal accommodation is also given as:

kp ' C(kp/k9)+B
1+ Kn(Ak—g +D+ 1+ (1/2)(1‘719/]‘79))

127 pgvgr,Cs
NTH = 77,7\ L 5
(kp/kg) +2

(7.7)

The force found using equation 7.6, its ‘small K'n' approximation (equation 7.7), and the
expression of Talbot et al. (1980) are shown in figure 7.10. In figure 7.10a, k,/k, is repre-
sentative of the high thermal conductivity nickel particles for which the thermophoretic force
was calculated in chapter 3, and in figure 7.10b, k,/k, is representative of the moderate
thermal conductivity particles of uranine and oleic acid suspended in air that were used in the

experiments carried out as part of the present study.

Figure 7.10 shows that equation 7.7 does not approximate equation 7.6 very well, except
at Kn < 1, and figure 7.10a reveals that it behaves similarly to the expression of Bakanov
& Roldugin (1977) in figure 3.5. So when Bakanov (1991) writes ‘small Knudsen numbers’,
he is referring to the continuum regime, where Kn < 1. Therefore, the use of the Bakanov
& Roldugin (1977) theory in chapter 3 at finite K'n was not valid, and the criticism of it was
not entirely justified. This type of study (without making the approximation for Kn < 1)

may prove to be useful over the entire range of Kn.

The results of studies using the kinetic equations have rarely produced an expression for
the thermophoretic force, other than approximations for Kn < 1 and the free-molecule limit.
As a consequence, the calculation of the thermophoretic force using such methods would be
of a similar magnitude to the solution of the particle equations. The work of Beresnev &
Chernyak (1995) is particularly welcome as it provides such an expression along with a table
of the necessary coefficients. As interpolation between values of Kn is required to find the
coefficients of equation 7.6, it may seem unsuitable for use as a formula over the range of
Kn in the same manner as Talbot's expression. The results of figure 7.10 (for equation 7.6)
were produced by fitting a sixth order polynomial to each coefficient, in each range of Kn
(i.e 1073 — 1072, 1072 — 107! ;107 — 10°, etc). These polynomials are given in appendix
D.1. It can be seen in figure 7.10a that there is a bump in the normalised thermophoretic

force (calculated in this manner) at K'n = 0.01, and this is as a result of the shift between
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ranges of Kn. Of much more interest, however, is that figure 7.10b shows that using the
expression of Beresnev & Chernyak (1995) results in a reduced thermophoretic force when
compared with the expression of Talbot et al. (1980), for the small K'n range. This is due to
the action of the second thermophoresis mechanism.

The values of Kn for the turbulent annulus experiments where thermophoresis had the
greatest effect (i.e. 107" < 7,7 < 10°) were between 0.01 and 0.1. The use of this expression
in the numerical study should result in a reduction in the deposition velocity in this range
(again because of the inclusion of the second thermophoresis mechanism), and a closer fit
with the experimental data. Beresnev & Chernyak (1995) also performed a sensitivity study

on the effect of accommodation coefficients that deviate from unity.
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Figure 7.11: Thermophoretic particle deposition in a turbulent annulus with a cross-stream
temperature gradient: comparison between experimental data and numerical results using the
expression of Beresnev & Chernyak (1995)

The numerical results found by replacing Talbot's expression with that of Beresnev &
Chernyak (1995) are shown in figure 7.11. The agreement with the experimental data in
terms of the magnitude of the deposition velocity is much better, and within the uncertainty
of the experimental data. V' first decreases slightly before increasing at the start of the
turbulent diffusion-eddy impaction regime, in comparison with the behaviour found previously
of a near constant V", followed by an increase. This may suggest that V" decreases as s
increases and K'n decreases, and that the thermophoresis-turbulence interaction then occurs

at smaller T;“ than before, initiating the increase in Vd+.

7.3.4 Summary

A set of experimental data for deposition in a turbulent annulus with different cross-stream
gradients and constant thermophoretic force have been obtained. A numerical study has also
been undertaken, and it has been found that the widely used expression resulting from the
hydrodynamic analysis of Brock (1962), using the constants of Talbot et al. (1980), does not
give the correct thermophoretic force for the range of Knudsen numbers used. The expression
of Beresnev & Chernyak (1995) based on the linearised kinetic equations was found to give

much better results, and includes mechanisms of thermophoresis not considered in the analysis
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of Brock (1962), which makes it applicable to a broader range of situations. The expression
of Beresnev & Chernyak (1995) can be included in particle calculations without significant
computational penalties. The experimental and numerical studies also revealed the existence
of an interaction between thermophoresis and turbophoresis. The evaluation of different
expressions for the thermophoretic force, and the identification of the turbulence interaction
has been made possible by the novel experimental set-up which allowed the imposition of a
constant thermophoretic force (by maintaining a constant temperature difference and constant
mean temperature) along the test section. These experimental results should provide a reliable
datum for future studies of thermophoresis and its role in particle deposition in turbulent

geometries.
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Chapter 8

Conclusions and suggestions for

further research

8.1 Part I - The Full Lagrangian Approach

The use of the Full Lagrangian approach (and more specifically, the Osiptsov Lagrangian

approach) allows the direct calculation of particle density along particle pathlines in laminar

fluid flows, reducing the number of particle pathlines required to achieve a stationary average

of particle density, and increasing the computational efficiency of particle calculations. The

Osiptsov Lagrangian approach had previously only been applied to analytical fluid flow fields,

and the suitability of this approach for use with computationally generated fluid flow fields

was assessed.

8.1.1 Conclusions

1.

The Osiptsov Lagrangian approach has been shown to be capable of finding the particle
density and velocity accurately using computationally generated fluid flow fields as well
as analytical ones, by considering the case of gas-particle flow over a cylinder. It
was found to give a better quality solution compared with the traditional Lagrangian

approach, and had computational times that were between ten and twenty times smaller.

. The Osiptsov Lagrangian approach was also applied to a practical flow application: gas-

particle flow through a turbine cascade. An additional check on accuracy was tested,
where in the limit of extremely small Stokes numbers the particle and gas density fields

should be identical. The Osiptsov Lagrangian approach performed well.

. A special technique was successfully developed for flows at low Stokes numbers which re-

lieved the mathematical ‘stiffness’ of the equations and allowed solutions to be obtained

without an increase in computational times.

4. A detailed study was made of the manner in which the Osiptsov Lagrangian approach
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deals with crossing particle pathlines. At the crossing point, the particle density becomes
infinite and this would usually cause numerical problems, but it is the Jacobian that is
integrated along pathlines, and this passes smoothly through zero. The behaviour of a
group of neighbouring particles was observed as they crossed in a flow over a cylinder,
and it was shown that the Jacobian can increase or decrease along a particle pathline.
This raises questions on the analysis of Robinson (1956) and the result that the particle
density cannot decrease (i.e. the Jacobian increases) along a particle pathline in a

potential flow.

8.1.2 Further research

1. In principle, there is no reason why the Osiptsov Lagrangian approach could not be
extended to three-dimensional calculations. The reduction in the number of particle

pathlines required means that the calculation would not be computationally prohibitive.

2. Eulerian approaches are generally employed for small Stokes numbers in turbulent fluid
flows where turbulent/diffusive effects are important. At intermediate Stokes numbers,
when large-scale inertial effects and turbulent/diffusive effects are important, a combi-
nation of both Eulerian and Lagrangian approaches would be desirable. The Osiptsov
Lagrangian approach could be used to provide a solution of the particle flow field up
to the edge of the boundary layer (outside of which turbulence has little effect on the
particles), and an Eulerian approach could then be used to complete the calculation.
Although this approach may not seem very elegant, the intricacy of the near-wall particle
behaviour means that there is no justification for over-resolution of the entire flow field.
Rather than viewing it as a ‘mixed’ calculation, the Lagrangian part may be thought
of as an extra step between the solution of the fluid and particle flow fields, which
provides a further input to the Eulerian boundary layer calculation. To this end, the
Eulerian diffusion-inertia approach of Slater & Young (1998) should first be applied to
a fluid boundary layer solution, and then an investigation into the matching of the two

calculations at the edge of the boundary layer can be undertaken.

3. As both the Osiptsov Lagrangian and Eulerian components of such an approach are com-
putationally efficient, extension of the combined approach to three-dimensional analyses
is computationally feasible. Work is already under way to extend the Eulerian calculation
to three-dimensions, and if the Osiptsov Lagrangian approach were similarly developed,
this would allow the study of three-dimensional effects in turbomachinery flows, such as
the influence of end wall boundary layers, passage vortices, and the blocking of turbine

blade cooling holes by excess deposition.
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8.2 Part II - Thermophoretic Deposition

The aim of the present experimental study was to provide data on the variation of deposition
velocity with particle size over a range of temperature differences that were constant along
the length of the test section, to provide a constant thermophoretic force (at a constant
Reynolds number). Such data was required so that expressions for the thermophoretic force
could be validated and used in other studies for which experimental data does not exist. This
validation was considered necessary because of the considerable discrepancies between the
many different expressions, despite the general acceptance of the expression of Talbot et al.
(1980).

An experimental rig was designed to achieve a constant thermophoretic force. This was
done by using an annular geometry with a cold inner wall and hot outer wall with the result
that once the temperature was fully-developed, a constant temperature difference, a constant
mean temperature and a constant thermophoretic force existed along the length of the test
section. A numerical scheme was also developed based on the theory of Young & Leeming

(1997), with modifications made for the change of geometry from a pipe to an annulus.

8.2.1 Conclusions
Experimental

1. Results in the diffusional deposition regime when a cross-stream temperature gradient
was imposed, showed near constant values of deposition velocity at the inner wall as
particle size was increased. When the temperature difference was increased, the value
of the constant deposition velocity also increased. There was an area in the eddy
impaction-turbulent diffusion regime where the deposition velocity at the inner wall
increased beyond its constant value in the diffusional deposition regime, before reaching
the same value as it would have in an isothermal flow. This provided experimental
evidence of an interaction between thermophoresis and turbulence (i.e. turbophoresis).
The outer wall deposition velocity was negligible in the diffusional deposition regime,

but as particle size was increased, it increased towards its isothermal value.

2. Particle deposition in a turbulent isothermal annular flow was expected to be very similar
to that in a turbulent isothermal pipe flow, and the experimental results showed this
to be the case, except for particles in the inertia moderated regime where deposition
velocities in the annulus were almost an order of magnitude lower than those in a pipe.
For large particles, the large deposition velocities (and excessive deposition at the inlet
to the test section) caused the mean particle concentration to be very low in some (or
all) portions of the test section. If small satellite particles are present in the flow they

will dominate depositional behaviour, giving smaller than expected deposition velocities.
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Numerical

1. The work of Beresnev & Chernyak (1995) provided an expression for the thermophoretic
force based on the linearised kinetic equations, and a table of coefficients for use at var-
ious values of Knudsen number. This expression, together with a number of polynomial
fits to the coefficients over different ranges of Knudsen number, was used to obtain
numerical results for turbulent flow in an annulus with a cross-stream temperature gra-
dient, and these were compared with results obtained using the expression of Talbot
et al. (1980). The expression of Beresnev & Chernyak (1995) performed much bet-
ter than that of Talbot et al. (1980) in relation to the experimental data, at no extra
computational cost.

2. The success of the expression of Beresnev & Chernyak (1995) over that of Talbot
et al. (1980) is thought to be due to its inclusion of a second thermophoresis mecha-
nism, which comes from the higher order solution of the model Boltzmann equation.
For particles of high thermal conductivity at very small Knudsen numbers, this second
mechanism can cause a reversal in the direction of the thermophoretic force. This mech-
anism was not included in the expression of Talbot et al. (1980), and with the moderate
particle thermal conductivity and relatively small Knudsen numbers that existed exper-
imentally, this second mechanism had the effect of reducing the overall thermophoretic
force, thus improving agreement between the experimental data and numerical results,

when the expression of Beresnev & Chernyak (1995) was used.

3. The thermophoresis-turbulence interaction was reproduced numerically, and explained
by considering force profiles across the annulus. The turbophoresis force transports
particles towards the wall, and the thermophoretic force (although very small at these
values of T;“ and Kn) is still of sufficient magnitude in the near-wall region to enhance

deposition to the inner wall, and retard deposition to the outer wall.

8.2.2 Further research

1. A survey of experimental and DNS data has shown that there is some deviation in the
values found for deposition velocity in the inertia moderated regime. A possible cause is
the differences in the time/distance taken for a stationary particle density profile to be
reached for different sized particles in different studies. Another is that large particles
take little notice of the near-wall turbulence layer, and that non-dimensionalisation
with an integral property of the turbulence (rather than wall variables) may result in
a better correlation between different data. A comprehensive scaling study of DNS
and experimental data would be useful to determine the most appropriate scaling for
large particles, and establish limits of validity on the length of test section, or time of a

calculation, required for particle densities to reach stationary values.
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2. The attractiveness of turbulent pipe (and annulus) flow studies is due to the presence of
all the deposition mechanisms that have so far been introduced, and the simplicity of the
geometry. One of the greatest departures between this type of study and more practical
applications is the effect of more complex geometries on particle deposition, especially
when the flow is over a curved surface, as is the case for gas turbine blades. Kon-
standopoulos & Rosner (1995a) found that there was a significant interaction between
thermophoresis and inertial effects due to streamline curvature for small particles in lam-
inar boundary layer flows. While the interaction between thermophoresis and turbulence
has been demonstrated in this thesis, if the theories developed are to be extended to
more complex geometries, an understanding of the interaction between streamline cur-
vature effects and turbophoresis is also required. For a range of particle sizes, there will
be competition between the turbophoretic force and the centrifugal force, which may
either enhance or oppose deposition (depending on whether the surface is concave or
convex) and lead to local enrichment or depletion of the particle density near the surface.
The annular test section of the experimental rig has now been replaced by a 90° curved
duct, so that experiments can be carried out for a range of particles sizes and radii
of curvature. This will allow an investigation of the streamwise curvature-turbulence

interaction, and comparison with theory through a parallel numerical study.
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Appendix A

Supplementary information to

chapter 2

A.1 Two-dimensional stagnation point flow

The fluid streamlines for such a flow are shown in figure 2.6. The stream function equation
is:
ov ov

UV =—Azry, where U,=——=—-Az, and U, = = Ay (A1)
T

where A is a positive constant.

The analytical solution for the particle flow will now be derived. The particle equation of

motion can be split into its x— and y—components:

oV aV,
5 = B(U, —V,) and a—Ty = (U, = V,) (A.2)

Substituting the relationships V,, = 0z,/07 and V,, = 0y, /0T into equation A.2 gives two

second-order differential equations for x, and ¥, in terms of the time 7:

2
0%z,

or?

O,

2
o o g% _gay 0 (A.3)
or

oT2 or

+ 05 + fAz, =0 and

In order to solve these second-order differential equations, the roots of their auxiliary equations

must be obtained. These are:

My = —g (1 i\ [1— %) and My 2 = —g (1 /14 %) (A.4)

The y-direction equation has two real and different roots. The z-direction is more complicated,

having three types of solution: when % < 1, the roots are real and different, when % =1,
the roots are real and equal, and when 22 > 1, the roots are imaginary and different. The

B
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solutions of each take the following form:

Cre™1™ 4 Coema2T if % <1
Tp = 4 (O3 + Cy7)em=17 if % =1 (A.5)

e I2{Cscos(Bwr) + Cosin(Swr)} if % > 1

Yp=  Cre™aT 4 Cye? (A6)

where w = /4A/3 — 1. Differentiating with respect to 7 gives the z— and y—components

of the particle velocity:

;

Clmmlemmﬁ + CQmmzemsz if % <1
Vo % (C3myy + Cymg 7 + Cy)e™17 if 4 =1 A7)
—ge_BT/Q{Cg,cos(ng) + CGSm(ng)} if % >1
\ +e P12 —Cswsin(Bwr) + CsBweos(Swr)}
Vy= Cimyu ™' + Cymype™ " (A.8)

The constants in the above equations are dependent on the initial conditions of the particle
flow. These are that the particles enter the flow from the x = -1 line with zero initial
z—velocity slip (V0 = U0 = —Ax, ) and zero initial y—velocity (V}, o = 0). Inserting these

initial conditions into the above equations at time 7 = 0, gives the constants as:

xpyo(mml + A) —xp,o(mxg + A)

cy = oM ¥ ) o
Mg — Mg2 Myp1 — My2
03 =Tpo 04 - _xp,o(mzl + A)
Lo, A (A.9)
Cs = 0 Ces = %(1 — 25)
O = Yp,oy1 Oy = ~—Yp,oTly2
My1 — My2 My1 — My2

Combining equations 2.16 and 2.17, two second-order differential equations may be written
for the non-zero components of the Jacobian:

0* Ja aJ.

zTra 62(]
or? +6 or + AT, =0 and v

or?

0y

o BAT, =0 (A.10)

+

These equations can be solved in exactly the same manner as those for z;, and y,, to give
an analytical solution for the components of the Jacobian (and particle density), by using the

initial conditions for .J and w as described in section 2.3.3 to solve for the necessary constants.
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The solutions are:
Dqe™=1T 4 Dye™me2T if % <1

Jra = (D3 + D47‘)€m“7— if % =1 (A].].)
e P12 Dscos(Bwr) + Dgsin(Bwr)} if % > 1

be = D717 4 Dge™v?" (A12)
with constants:
—m m
D1 — T2 D2 — xl
Mg — My2 Mg — My2
D3 =1 Dy = —myu
Al
D5 =1 D6 =1 ( 3)
Uy o Uy o
Bars — My myy — B3
D; = 8 =
My1 — My2 My1 — My2

A.2 Special treatment at low Stokes numbers in two-

dimensions

The two particle velocity components are:

—BAT
(Vs = Uy) = (Vy = Up)ge a7 — O (1 —)
or ﬂf an (A.14)
(V, = U,) = (V, - U)o — P (12 7Y
Y y y Y 67_ ﬁ

The four Jacobian components are:

1 — e PAT oU, 1 — e PAT
Jxa - (J:va)O + (wxa)O ﬁ + da (AT )
1 — e PAT oU, — e AAT
me = (be)o + (wxb)o ﬁ + ab (AT )
N N (A.15)
1 —e P27 oU, 1 —e P27
Tya = Ugado + (wga)o | —5— | + 5.t (ar-—5—)
1 — e PAT oU, 1-— e‘BAT
be = (be)o + (wyb)o ﬂ + 8by (AT )
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and the four w-components are:

a

— —BAT 1— —BAT
Wyq, (wxa)Oe + aa ( € )
Wap = (wxb)oe_ﬂAT + %(1 — e"BAT)
83_; (A.16)
Wyq = (wya)oe_’BAT + —2(1 - e"BAT)
a
oU,
wyb = (wyb)oe_’BAT + 8—1)1/(1 — 6_’8A7—)

where the gradients of fluid velocity are found using equation 2.18.

A.3 Deterministic Lagrangian tracking

The traditional Lagrangian calculations were performed using a code originally written by
Slater (1999). The main features of this code are discussed here, because they also appear
in the code written to perform the Osiptov Lagrangian calculations. This allowed the two
methods to be compared on a fair and equal basis. Lagrangian tracking involves the repeated
integration of the particle equations of motion. Using a temporal discretisation (first order

accurate in A7) gives:

oV View — V
0x Xpnew — X
V = an =P Ar Ld (A.17b)

The traditional Lagrangian method integrates only the particle equation of motion (equa-
tion A.17). If the initial conditions are known, i.e. particle velocity V and position X,, then
the equation can be integrated to solve for the particle velocity V., at the end of the time-
step A7. Slater (1999) points out that the use of this algorithm (which is first-order accurate
in A7), requires extremely small time-steps to minimise the statistical noise within the particle
density field. This made the need for higher-order interpolations redundant.

The Osiptsov Lagrangian method also uses equation A.17, but in conjunction with the

additional equations:

ow ou . Winew — W

0 Jpew —J

These are integrated in the same manner as the particle equations of motion. If the inital
values of w, J and the fluid velocity gradient %—E are known, then w,,, at the end of the

time-step can be found. If w and J are known, then J,.,, can be found, which then gives the
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Figure A.1: Schematic of interpolation of data from Lagrangian trajectories to Eulerian grid

A.4 Plotting of particle density field

The Osiptsov Lagrangian approach provides detailed information about the particle density
and velocity at every time-step along each particle pathline. lrregularly spaced data is ex-
tremely difficult to contour, so it must first be interpolated onto a regular grid. In this case,
the Eulerian grid from the fluid phase calculation was used. Each particle pathline was dealt
with individually. Figure A.1 shows two particle pathlines crossing Eulerian grid cells. Par-
ticle density and velocity were known at the points marked o. A two-dimensional bi-linear
interpolation was performed between these points, and the particle density and velocity were
calculated at the points (marked e) where the particle pathlines intersect the dashed lines
which join the cell centres to the centres of grid lines. A variable-power spline (Soanes, 1976)

was then fitted to these points (marked o) and values of particle density and velocity were
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e

1.05 7

Ointerpolated data
— pathline data

a) Interpolation along a particle pathline

Osplined data
2.0 7 — interpolated pathline
| data

b) Splining across particle pathlines

Figure A.2: Interpolation of data from Lagrangian trajectories to Eulerian grid

found at the Eulerian grid cell centres (marked X'). Figure A.2a shows the interpolation along
a particle pathline (from o to e). Figure A.2b shows the variable-power spline across the
particle pathlines (from e to X). The interpolation and splining can be seen to represent

accurately the original particle pathline data.
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Appendix B

Supplementary information to

chapter 3

B.1 Drag term correction

The drag force per unit mass (equation 3.14) contains the term ¢ (Re,), which is a correction
for non-Stokesian behaviour. The Stokes drag coefficient (i.e. small Re,) is given by Cp =
24/ Re,, but an empirical curve fit to experimental data may be used to extend the expression
to finite values of Re,. The correction is defined as:

Re,

én(Re,) = Cp— 2 (B.1)

and Cp is found for a range of values of Re, from Morsi & Alexander (1972):

Cp = % for Re, <0.1

P
Cp= 2040098 1369  for 0.1 <Re,<1.0

P P
Cp= 2O — 3388 +1.222 for 0.1 < Re, <10 (B.2)
Cp = 2060 _ 38899 41222 for 1.0 < Re, < 10.0

P P

Cp = fo—'pst +06167 for 10.0 < Re, <100.0

B.2 Lift term correction

Saffman’s expression for the lift force (equation 3.16) is only valid when Re, < Reyy,, Re, < 1
and Reg, < 1. McLaughlin (1991) and Dandy & Dwyer (1990) removed various restrictions,
and Mei (1992) produced a curve fit incorporating these improvements. The lift force is now

given as:

FL = d)LFL,saff (B3)
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where FJ, ¢, 7 is the Saffman expression equation (3.16), and ¢, is given by Mei (1992) as:

¢r, = (1.0 —0.3314a"/?)exp(—52) 4 0.3314a/2 for Re, < 40

(B.4)
¢ = 0.0524(aRe,)"/? for Re, > 40

where

. lResh
2 Re,
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Appendix C

Supplementary information to

chapters 4 and 5

C.1 Theoretical analysis of turbulent pipe deposition

velocity

Consider a pipe flow with a radial coordinate r and an axial coordinate z. The particle density

pp = pp(7, 2) and the mean particle density p, m = pp.m(2) is defined by:

ﬂapr,m:/ 27r ppdr (C.1)
0

where a is the pipe radius. V, = V,(r, z) is the particle axial velocity, and the mean particle

axial velocity V, ,, = V, (%) is defined by:
Ta*V, = / 211V, dr (C.2)
0
Defining ¢ = p,/ppm and ¢ =V, /V,

7ra2:/ 27rrwd7":/ 27r¢dr (C.3)
0 0

The particle mass flow rate can now be written:
a
my, = my(2) = / 211 ppVodr = 70* pp i Upnt3 (C.4)
0

where o =V, ,,,/U,, and U, is the mean gas velocity in the pipe, and 3 is defined by:
na’f = / 2riodr (C.5)
0
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Generally, e and 3 are functions of 2, and are constant for fully-developed particle flows. The
product a3 will be quite close to unity for most particle velocity and density profiles.
Remembering from equation 3.39, that .J, = J,(2) is the mass flux of particles to the

wall per unit area, and is defined by:
Jw = ,Opyde (CG)

For fully-developed particle flow, theory shows the V; is independent of 2.
The change in particle mass flow rate in the axial direction is related to the mass of
particles deposited on the wall, such that:
dm, d

= — 2 = — = —
T = <7ra pp,mUmaﬁ> 2way, 2mapymVy (C.7)

Now consider a length of pipe over which «, § and Vj are approximately constant (not

necessarily implying fully-developed particle flow). The particle conservation equation is:

dpp,m . 2 Vd

S — oo C.8
dz a3 Uy, Pr, (C.8)
By integrating from 2z = 2; to 2 = 23 where 29 — 2, = L,
m 1 2LV,
In(fem2 ) = — 2274 (C.9)
Pp,m1 af a Uy,
Rearranging, gives the dimensionless deposition velocity V" as:
a Um Pp,m1
Vi=af——"LIn| 22 C.10
d aﬁ2L L n(pp’m) (C.10)

Using equation 4.7 and the Blasius formula for a smooth pipe (Schlichting, 1968), rearrange-

ment gives:

d m
Vit =1.257ap (E) Re>PIn, <M) (C.11)

pp,mZ

Once the flow conditions of an experiment have been set, this expression can be used with a
predicted value of V' to find the mean concentration drop along the length of the pipe. The
expression ln(%) may be used in place of ln(i)”“—””) as ppm = MpChpm, and my, is the

p,m2 p,m2

same at positions 1 and 2.
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C.2 Uncertainty analysis

Single-sample uncertainty analysis of the measurement of 7'p+

The dimensionless particle relaxation time is:

2 2
ot pp,matdp Pg U

C.12

Following Moffat (1988) and Leeming (1995), d7," is the uncertainty associated with 7.7, and
may be expressed as:

(5 i 5 2 5 6d 2 5 2y 1/2

-

ﬁ _ Pg 14 Uy ) Pp,mat (C.13)
’/"p pg U dp Pp,mat

where the individual uncertainties may be expressed as:

5 5 2 2y 1/2
Pyqg p

2 2

5
ol 44

Hg

+4

2

or
T

OR
R

5 65 [6Un]" 1[6fw]” 1 [6p,]" 1 [om]" 1 [6a] "
Us — | Zz=m + = fcorr _|__ﬁ +_ﬂ _|___h
Uy 64 | Up, 41 f 64 | pg 64 | pig 64 | dp
5U R R 1o R P P R P PO R 0 o
OUnm )| 0n | |0Qal o 0Py | o |OPgrot| . |0y
Un dp, | i Qa Py Pg,rot Hg
- -2 r 2 25 1/2
5pg,rot o 6prot + (5Trot 5_R
,Og,rot L Prot ] i Trot R
6 _6 2 r 5T 2N 1/2
e Hocorr |4 | B(1)2 + 4B(2)?T? + 9B(3)2T° + 16B(4)*T° | | &=
g | Hg i T
- 2 - 2 25 1/2
5Qa _ 5de + 1 5Trot + 1 5prot
Qa i Qind 4 i Trot 4 Prot

(C.14)

where f.,,, is the error due to the friction factor correlation (equation 4.11), and /ig corr is the
error due to the correlation of Irvine & Liley (1984) used to find the dependence of y, on T,
which introduces the constants B(1)...B(4). The subscript ,,; indicates a quantity measured
at the rotameter rather than in the test section, while the subscript ;,; refers to the flow
rate indicated by the rotameter, before the correction for operating conditions that vary from
calibration conditions (indicated by the subscipt .,;) has been made. The uncertainty in 7

p
is now a function of the following parameters:

ot orf
7_—+ = 7_—+ dha dpa fcorra /~Lg,cor7"7 P, Prot, Qinda R, pp,mata T; Trot (015)
p p
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Single-sample uncertainty analysis of the measurement of V;
The dimensionless particle deposition velocity is:

Un(dg = di) — Mpijo 1

)., — — 1
Vi )ito = G unsyudegs My + M,y P (C.16)
The uncertainty associated with this measurement may be expressed as:
2 2 2 2 2
5(Vd+)i/o . 5Um n 5111*71'/0 4 9 (do — dz) 6di/0 4 (SAJZ' (5Mp,i/o
(Vd+)i/o B Um u*,i/o (do + dz) di/o Ax Mp,i + M, ,0
2y 1/2
1 6P
InP P
(C.17)

The uncertainty in V' is a function of the following parameters:

5(Vd+)i/o _ 5(Vd+)i/o
(Vd+)i/o (Vd+)i/o

(A.I‘, di/o; fcorr; Mg,corr; Mp,i/o; P, Prot, P7 Qind; R7 T7 Trot) (C18)

Uncertainty in the constituent variables - fixed uncertainties

The uncertainties in a number of the parameters do not vary from one run to the next. These
will be dealt with first.

- The uncertainty in the concentration and volume of the constituent reagents of the
aerosol solution, the solution feed rate, and the frequency of vibration of the orifice, are

assumed to be insignificant. The particle material density, pp mat, is therefore known

dpp,mat
Pp,mat

less certainty, because of the possibility of particle agglomeration producing doublets

with negligible uncertainty, so that = 0. The particle diameter, d,, is known with
and triplets. Leeming (1995) assumed that the particle size distribution was similar
to one produced during the calibration of the aerosol generator. 10% of the particles

were doublets, increasing the mean particle diameter from d, to 1.026d,. Therefore,

od
d—: = 0.026.

- The nominal values for inside diameter, d;, and outside diameter, d,, (and thus the
hydraulic diameter, d},) are assumed to be within 1% of the real value, so that ‘Zlf//—"//}:‘ =
0.01.

- It is assumed that the washing can be carried out over 10 cm sections to an accuracy

of £ 1 mm, so that ‘SAA—;” = 0.01.

- The rotameter, from which Q;,s is read, is accurate to within 5% of its full-scale
deflection (which is 180 Ipm). Taking this as the worst case, % < 0.05
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- The correlation used for the friction factor was found to reduce the observed scatter of
experimental data to approximately + 5% (Jones & Leung, 1981), so that ‘SfT" = 0.05.

- The correlation used for the variation of dynamic viscosity with temperature was accu-
rate to within 1% for 7' < 1500 K (Irvine & Liley, 1984), therefore 6““’;;% =0.01. R
= 287.1 Jkg ="K~ over the range of temperatures used so that 2& = 0.

Multiple-sample analysis

The only remaining uncertainties required, are those associated with temperature, pressure
and fractional penetration, and deposited mass (or luminosity reading). Temperature and
pressure measurements were taken over the course of each experimental run, and the fractional
penetration (and luminosity readings) was found for each section of the annulus. Therefore
a multiple-sample analysis (again following Moffat (1988) and Leeming (1995)) was used to
determine these uncertainties. The overall uncertainty in a result R at a 95% confidence level

is given by:
(Ur)ogs = {(Bgr)? + (t.Sg)*}'/? (C.19)

- Bpg is the bias limit of a measurement, and provides an estimate of the maximum

probable value of the fixed error arising from calibration or measurement.

- t is the Student’s ¢ multiplier for the number of degrees of freedom (equal to N-1,
where N is the number of measurements taken), which may be found, for example, in
Wonnacott & Wonnacott (1977).

- Sp is the precision index of the mean, and provides an estimate of the standard deviation

of the mean of the set of N measurements. It is given by:

N —\p) /2
Sp = \/1N{ > (X;'V__)i") } (C.20)

i—1

The bias limit was taken as the uncertainty in the calibration of the relevant instrument
(thermocouple, pressure transducer or luminescence spectrometer). Leeming (1995) took
the bias limit for the uncertainty of the fractional penetration to be the uncertainty in the
calibration of the luminescence spectrometer, but found this bias limit to be negligible. The
bias limits for the fractional penetration and luminosity readings were therefore assumed
negligible. The accuracy of the Druck DPI 610 pressure calibrator was 0.025 % of its full-
scale deflection, which was 20 bar, so the bias limit for the pressure measurement was taken
as 500 Nm~'. The bias limit of the temperature measurement was taken as 2.5 K (see section
4.2.4).
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C.3 Uncertainty for particle deposition in an isother-

mal turbulent annulus
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Figure C.1: Results for the isothermal experiments in turbulent annular flow with d, found by
measuring the particles impacted on a slide (with uncertainty level indicators)
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C.4 Results from the thermophoresis experiments
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Figure C.2: Results for the thermophoresis experiments in turbulent annular flow with uncer-
tainty level indicators
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Appendix D

Supplementary information to

chapter 7

D.1 Turbulent annulus fluid flow solver

In order to solve the particle equations of motion, the fluid flow field must first be known. This

section describes the manner in which the turbulent flow of air in an annulus was prescribed.

D.1.1 Momentum equation

In a fully-developed annular flow with constant density, continuity dictates that:

U, =0 =0 U,=U.,r) (D.1)

where U is the time-mean fluid velocity in the radial (r) or axial (z) direction. Only the axial

component of the momentum equation need be considered, and this reduces to:

- 7(pg + /Lg,T)W

1d
— - =0 D.2
dz+7"dr ( )

where dp/dz is the pressure gradient along the annulus, and ji, 7 is the turbulent (or eddy)

dynamic viscosity, defined by the relationship:

N ou,
~PgUrly = T3 = (D.3)
From equations 4.8 and 4.9:
— 2 TiTwi — ToTw,o (To - 7",‘) dp (D 4)
Tw = U* = = _ .
Py To + 7 2 dz
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Non-dimensionalisation is carried out using the following variables:

. :ri—i-ro A T yA:r—ri . :l/g_’T

“we 2 Tavg To — T; 9.7 Vg
=A U, A Mg Re — ngmQ(TO — Ti) C _ Twji/o
m Hg,m Hg,m 2PgYm

where C';/, is the skin friction coefficient at the inner or outer wall, j, ., is the mean dynamic

eddy viscosity across the annulus, and the bulk mean velocity of the flow is given by:

2 o
U, = E— / U, rdr (D.5)

Tq

The radius r varies from r; to r,, so that y* varies from 0 at the inner wall to 1 at the outer

wall. Inserting equation D.4 into equation D.2 and non-dimensionalising gives:

A
Re d dU
TAz(TiACf,i — 75 Cro) + g [TAM;(I +v,7) dyjl =0 (D.6)
—A
By setting b = 2 (147, 7) and ¢ = ‘Zj , the result is a system of two first-order equations.

If the eddy viscosity profile is known, the resulting finite-difference equations can be written in
matrix-vector form, and solved for the velocity profile using the block-tridiagonal-elimination
method (see Cebeci & Bradshaw, 1984, chapter 13).

It is the flow field at a given Reynolds number that is required and the skin friction
coefficients (from which the pressure gradient can be found) are unknown. Initially, V;fT is
set equal to zero, Cy,; and Cy, are found using the correlation of Jones & Leung (1981) (see
equation 4.11), and an initial profile of Uf(yA) is found. v, is then modelled (as described
below), and an iterative procedure begins, where the velocity field is corrected by the pressure
gradient, through the adjustment of C; and Cy,, until U:l =1.

D.1.2 Energy equation

The temperature field in a turbulent annular flow can be said to be fully-developed when the

dimensionless temperature T, defined by:

(D.7)

is independent of axial position (z) and depends only on radial position (7). The energy
equation in a fully-developed annular flow with constant density reduces to:
oT

T(I{?g + kg,T) W

— oT 0
rngcha = —

. (D.8)
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where ¢, is the specific heat capacity of the gas, and £, is the thermal conductivity of the

gas, and k, r is the turbulent (or eddy) conductivity, given by:

oT

—PgCpu, T = kg,TW (D.9)
Some additional dimensionless groups are:
pr="mlls  pp Gl A G (D.10)

D
kg kg.r Cp,m

where Pr and Prq are the Prandtl and turbulent Prandtl numbers respectively, and ¢, is

the mean value of ¢, across the annulus. The dimensionless form of equation D.8 is:

0 1 v \oT'
I At = 4 Zot 0
oy PRI\ Pr Prp ] Oy

Closure of this equation requires models for y;“T and Pryp.

~0 (D.11)

D.1.3 Turbulence modelling

Solution of the momentum and energy equations requires models for y;,T and Prp, and the

. . . . —1/2
solution of the particle equations also requires a model for ugfuyt .

Eddy viscosity

The eddy viscosity model is based on a form suggested by Michiyoshi & Nakajima (1968)
which divides the flow cross-section into four regimes: a sublayer at the inner and outer
annulus walls (denoted by ;5 and ,5), and a turbulent core region between each sublayer and
the plane of zero shear (denoted by ;. and ,.).

In each sublayer, the form of I/;F’T is based on a modified van Driest mixing length formula
proposed by Granville (1990):

) e

y-l-
o
(Vr)os = Hola™ — ") (1 — eap [ - (%) ]) (D.12b)

where y* = (r — r;)u./v,. 7 is measured from the inner wall and varies between r; and r,,

so that y™ varies from 0 at the inner wall to a™ (the dimensionless gap width) at the outer

wall. A* = 26 (the value usually chosen), and the von Karman constant, &;,, for each wall
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is chosen as 0.4, although some models assign different values to each wall (e.g. Michiyoshi
& Nakajima, 1968; Azouz & Shirazi, 1997). This ensures that v, varies with y™* near the
wall (Chapman & Kuhn, 1986).

The expression of Michiyoshi & Nakajima (1968) for the inner turbulent core region is
applied to both turbulent core regions with some modifications:

(Vgr)ic = %Mu —n7)(1+ 2n) [1 — <1 - )) m] (D.13a)

Uy 15 NG
+_ ot
u r, —r
+ _ %070 28 2 2
(Vyir)ae = === === (1 = mg) (1 + 2177) (D.13h)
Uy
+ _ et + _ ot + et
h —g —T ~ Tzs, _7"25— 7 d _Tu},o
where 7); = T T Mo = T e 8*—7Jr n an T = .
Tys =T To — T2 o — T2 Tw,i

where 7" = ru,/v,, and r,, is the radius of the plane of zero shear. When r* = 7}

(vy)ic = (¥, 1)oc. The blending relation of Granville (1990) is used to join each sublayer and

turbulent core expression, such that:

(l/+ ) (l/+ )
(V;:T)i = (V;:T)ictanh g,1'/%s and (V;r’T)o = (V;,T)Octanh g,T')os
(Vg’T)ic (ngT)oc

(D.14)

where the subscripts ¢ and o apply to the regions between the inner and outer walls and the
radius of zero shear, respectively. The dependence of I' on v, through 7,, means that the
profile of 1), must be twice differentiable. Smooth derivatives at the radius of zero shear
are enforced, by ‘cutting-off’ (1//;.); and (1), at positions a small distance either side of
the plane of zero shear, and connecting these two profiles with a function that has the same

values of l/;:T (and its first and second derivatives) at the ‘cut-off’ points.

Turbulent Prandtl number

Silva et al. (1999) and Kays (1994) have compared a number of different theories with DNS
and experimental data for Pry. The evidence indicates that, for air, 0.9 < Pry < 1.5 in the
near-wall region, and Prr decreases to a value of approximately 0.9 in the core of the flow.
The model of Wassel & Catton (1973) (from Silva et al., 1999) followed this behaviour, and

takes the form:

AT

C,Pr [1 — exp(P*Cf )]
rl/g,T

P?”T == (D15)

where C;=0.21, C/;=5.25, C3=0.2 and C4=5.0.
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Radial rms fluctuating fluid velocity

The chosen model is very similar in form to that used by Young & Leeming (1997) and, as

with the eddy viscosity model, the flow is split into four regimes. In the sublayer:

(ubFurt 2 )is = Qy [1 - exp( - %)_ (D.16a)

g

(u;fu;jrl/?)os = a(at —y") [1 - exp( - M) (D.16b)

a=0.0373 (the value used by Young & Leeming (1997)), and 3 = a//0.008 results in u/Fu’+ 2
varying with 0.008y "2 near the wall. In the core:

(ubFult 2 Jie =04 (7 — 0) [1 — garctan < [yL ) (D.17a)

T —yt

™

(u;}+ug/+'1/2) =0+ (7, — 9) [1 - garctan ( [%_ >_ (D.17b)

/2 -

where ; and 7, are the values of u u;f ”? at y™ and (a™ — y™) &~ 50, and § is the value
——1/2 . : :

of uytuyf ’” in the core of the flow. y. is the distance of the plane of zero shear from the

inner wall, non-dimensionalised using wall units.

Again, a blending relation is used to join each sublayer and turbulent core expression:

(ubFult 2 )is

(u/y+u’y+‘1/2)l = (uFult ubFult 1/2 )ictanh —— (D.18a)
e(uptut " )i
—1/2
—1/2 /2 (uyFug ") os
(ubFult "), = (ulfulF"")octanh @ /+;+ /2) (D.18b)

where € is a new constant to help capture experimental and DNS behaviour between the

sublayer and core more accurately. The two blending relations meet smoothly at the radius of
—1/2 —1/2 . :

zero shear, where utu;t "~ 0, so that even though u;Fu;f "> must be twice differentiable,

there was no need to enforce this in the same manner as for u;T
)

D.2 Validation of the fluid flow solver

Table D.1 compares some results of the fluid flow solver under isothermal conditions, with the
radius ratio and Re set to match experimental data of Nouri et al. (1993) and the DNS data of
Chung et al. (2002) for a turbulent annulus. Figures D.1a and D.1b show that the agreement
between calculated values of axial velocity and Reynolds shear stress, and experimental /DNS

data is excellent. Figures D.1c and D.1d plot the same quantities but with distance from the
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wall on a log-scale, and the agreement is also good. Figure D.2 shows how the model for the
fluctuating fluid radial velocity fits to given DNS data when adjusted through ¢, 7;/, and 4.

Figures D.3a and D.3b show DNS and experimental data for u/u/ and MI/Q for pipe,
channel and annulus flows over a range of Reynolds numbers. The aim of these figures is
to show that evidence exists for a Re dependence of these quantities at small values of Re
(see Manna & Vacca (2001) for a detailed study of this dependence). This establishes the
uncertainty in the prescription of these quantities (due to Re and geometry), and the need
for the sensitivity study to changes in these quantities carried out in chapter 7.

Table D.2 shows the conditions used by the fluid flow solver to match experimental con-
ditions. Prr has been shown to agree with the DNS data of Kasagi et al. (1992). Figure
D.4 shows the variation of the inner and outer wall temperatures compared with the universal
profile in the sublayer, 8 = Pry™. In studies of heat transfer in channel flows, & represents
a local temperature difference (T,, — T') non-dimensionalised using the friction temperature,
T. = qu/(pycpus), where g, (in Wm=2K~!) is the time-averaged wall heat flux. In figure
D.4, inner and outer non-dimensionalisation is required, such that:
and 0 =

o

(Tiw — T) pycpiss
Qu i

(Tow — T)pycpus

GQuw,o

-

(D.19)

It should be noted that in a channel flow, ¢, is the same at either wall, but that for an annulus,

the change in surface area between the inner radius and outer radius means that q,,; # quo-

Nouri et al. (1993) Chung et al. (2002) Present study

Re 8900 8900 8900
at - 297 296
ri/To 0.5 0.5 0.5
Cx102 10.38 9.41 9.31
O ox107 10.38 8.49 8.41

Table D.1: Comparison of results found using annular flow solver with DNS and experimental
data
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Figure D.1: Comparison of calculated mean fluid velocity and fluid fluctuating velocity corre-
lations with DNS and experimental data with Re = 8900

1.0 ——r
0.9 Chung et al. (2002a):
® [nner wall
0.8 O Outer wall
0.7 Present study:
— Inner wall
—— 1 0.6 1 —-outer wall
uu ..
0.4
0.3
0.2
0.1
0.0 : T T
10° 10* 10?
y+

Figure D.2: Fluid fluctuating velocity in the radial direction adjusted to fit DNS data with Re

= 8900
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Figure D.3: Comparison of fluid fluctuating velocity correlations with DNS and experimental

data showing RRe dependancy

Isothermal Tty nom = 40°C Thu nom = 85°C Ty pom = 140°C
Re 5900 4800 4500 4200
yt+ 214 181 170 158
r 0.65 0.65 0.65 0.65
Ofin].O_:} 11.02 12.44 13.15 13.91
C'f,oxlo_?’ 10.11 10.99 11.06 11.13
Tow 293K 310K 350K 395K
Tiw 293K 285K 285K 285K

Table D.2: Details of numerical conditions to match experiments
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Figure D.4: Comparison of non-dimensional temperature profiles at each wall with the uni-
versal profile

D.3 Polynomial coefficients for fitting to the expres-
sion of Beresnev & Chernyak (1995)

The expression of Beresnev & Chernyak (1995) requires coefficients found from the kinetic
equations. These were given in tabular form for specific values of Kn, and in between these
values, some sort of interpolation is required. A different polynomial was fitted to the kinetic

equation coefficients for different ranges of K'n. The polynomial was of the form:
frj = az® + ba® + cxt 4+ dad + ex? + fat + ga° (D.20)

where the constants are given in table D.3.
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