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Abstract: Motivated by the recent experimental observation of exclusive χc events at

the Tevatron, we revisit earlier studies of central exclusive scalar χc0 meson production,

before generalising the existing formalism to include χc1 and χc2 mesons. Although χc0
production was previously assumed to be dominant, we find that the χc1 and χc2 rates for

the experimentally considered χc → J/ψγ → µ+µ−γ decay process are in fact comparable

to the χc0 rate. We have developed a new Monte Carlo event generator, SuperCHIC,

which models the central exclusive production of the three χc states via this decay chain,

and have explored possible ways of distinguishing them, given that their mass differences

are not resolvable within the current experimental set-up. Although we find that the

severity of current experimental cuts appears to preclude this, the acceptance does not

change crucially between the three states and so our conclusions regarding the overall rates

remain unchanged. This therefore raises the interesting possibility that exclusive χc1 and

χc2 production has already been observed at the Tevatron.

http://arxiv.org/abs/0909.4748v2


1. Introduction

The measurement of central exclusive production (CEP) processes in high-energy proton

– (anti)proton collisions represents a very promising way to study the properties of new

particles, from exotic hadrons to the Higgs boson, see for example Refs. [1] - [7].

The CEP of an object A may be written in the form

pp(p̄) → p+A+ p(p̄),

where + signs are used to denote the presence of large rapidity gaps. An attractive ad-

vantage of these reactions is that they provide an especially clean environment in which

to measure the nature and quantum numbers (in particular, the spin and parity) of new

states, see for example Refs. [4, 8, 9]. A topical example is the CEP of the Higgs bo-

son [10] - [14]. This provides a novel and promising way to study in detail the Higgs sector

at the LHC and gives a strong motivation for the addition of near-beam proton detectors

to enhance the discovery and physics potential of the ATLAS and CMS detectors at the

LHC [15] - [17].

Recently, exclusive diffractive processes pp̄→ p+A+ p̄ have been successfully observed

by CDF Collaboration at the Tevatron, where A = γγ [18], dijet [19] or χc [20].1 As the

sketch in Fig. 1(a) indicates, these processes are driven by the same mechanism as exclusive

Higgs (or other new object) production at the LHC, but have much larger cross sections.

They can therefore serve as “standard candles”, see [12, 23], which allow us to check the

theoretical predictions for the CEP of new physics signals by measurements made at the

Tevatron. Moreover, the observed rates of all three CEP processes measured by the CDF

collaboration are in broad agreement with theoretical expectations [3, 5, 12, 23], which

lends credence to the predictions for exclusive Higgs production at the LHC.

Among the CEP processes measured at the Tevatron, the double-diffractive production

of C-even, heavy quarkonia (χc) states plays a special role [5] (see also [24] – [29]). First,

as is well known, heavy quarkonium production provides a valuable tool to test the ideas

and methods of the QCD physics of bound states, such as effective field theories, lattice

QCD, NRQCD, etc. (see, for example, Refs. [30, 31] for theoretical reviews). Second,

χc production exhibits characteristic features, based on Regge theory, that depend on the

particle spin and parity JP . We discuss these in Section 2 below.

A potential problem with χc production as a “standard candle” for Higgs produc-

tion is that it is far from clear that the purely perturbative approach of Refs. [10, 12]

(as exemplified by Fig. 1(a)) is valid. In particular, the estimates in Ref. [5] assume a

perturbative contribution coming from integrating round the gluon loop in Fig. 1(a) for

Q⊥ > 0.85 GeV. Due to such low scales, strictly speaking one cannot guarantee that the

accuracy in the perturbative predictions made in this way for χc CEP is better than a

factor of 4-5 up or down. In addition, there may be important non-perturbative contri-

butions, traditionally modelled by the Pomeron-Pomeron process shown in Fig. 1(b), but

1For a recent review see [21]. More CDF exclusive data on γγ and χc production may be available in
the near future [22].
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Figure 1: Schematic diagrams for CEP of a system A within the approach of Refs. [10, 12] and
[32] - [35]. The integration over the loop momentum Q⊥ in diagram (a) results in a Jz = 0 selection
rule [3], where Jz is the projection of the total angular momentum along the proton beam axis. It
is also necessary to compute the probability, Ŝ2, that the rapidity gaps survive soft ([32, 33]) and
semi-hard ([34] - [36]) rescattering; these two possible types of unitarity (or absorptive) corrections
are exemplified in diagrams (c) and (d) respectively, where the dashed lines represent Pomeron
exchanges (as in version (b) of diagram (a)).

here again there is significant model dependence and so any predictions for this component

also come with large uncertainties. We choose to take a pragmatic approach, in which we

base our analysis on the perturbative contribution only, but at the same time we consider

which features of the perturbative contribution (for example, the relative contributions of

the various JP states, distributions of final state particles, etc.) are likely to be shared

by the non-perturbative contribution. Independent of the exact details of the production

mechanism, the CEP of χ states provides a valuable check on the important ingredients of

the physics of Pomeron-Pomeron fusion.

Another important issue related to the CEP of χc states at the Tevatron is that this
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process allows us to test the role of the so-called enhanced absorptive corrections (see

Fig. 1(d)), which break soft-hard factorization, see for example [35] - [36]. As shown in

[14, 35], there is a hierarchy in the value of the rapidity gap survival factor S due to

enhanced absorption, Senh,

SLHC
enh (MH > 100 GeV) > STevatron

enh (γγ;EγT > 5 GeV) > STevatron
enh (χc),

which reflects the size of the various rapidity gaps (s/M2) of the different exclusive pro-

cesses. The very fact that γγ and χc events have been observed at the Tevatron in rea-

sonable agreement with theoretical expectations2 confirms that there is no danger that

enhanced absorption will strongly reduce the exclusive SM Higgs signal at the LHC.

When interpreting the results of [20] in terms of the production of a particular χc
state there is one important point to bear in mind. While the P and C parities are

unambiguously defined by the fusion mechanism (see, for example, [12]) the spin assignment

requires special care. As discussed in Refs. [3, 5], central exclusive χc production should

be dominated by the χc0(0
++) state. This is because χc1(1

++) and χc2(2
++) production

is strongly suppressed: the former due to the Landau-Yang theorem [38] for on-mass-shell

gluons and the latter because in the non-relativistic approximation the χc2(2
++) meson

cannot be produced in the Jz = 0 state, which dominates CEP for forward outgoing

protons [3].

Recall, however, that the experimental observation [20] of exclusive χc production is

based on the decay chain χc → J/ψγ → µ+µ−γ. The observed 65±10 signal events have a

limited M(J/ψγ) resolution and are collected in a restricted area of final state kinematics

(due to cuts and event selection criteria). In order to determine the χc yield the dominance

of χc0 production is assumed , and the CHIC Monte Carlo3, based on the χc0 → J/ψ + γ

decay, is used for conversion of the observed events into the cross section. However at

the present time we cannot rule out the possibility that, under the conditions of the CDF

experiment, higher spin χc states (1++, 2++) contribute to the observed J/ψ + γ signal.4

As is correctly pointed out in Ref. [29], the strong suppression of 1++ central production

can be compensated by its much higher branching fraction to the J/ψ + γ final state.

We show below (see also [14]) that this can also be true for χc2(2
++) CEP. Explicitly,

the χc0, χc1, χc2 branching fractions to J/ψγ are 0.011, 0.34 and 0.19 respectively [37].

There is another factor leading to a further rebalance between the relative contributions of

different χc spin states. As discussed in [4, 14], the eikonal survival factor, Seik, is larger

for χc1 and χc2 since, due to their spin structure, they are produced more peripherally.5

The simultaneous presence of several χc states clearly requires a more comprehensive

analysis, including a new Monte Carlo programme, allowing for production and decay of

2In the χc case the agreement becomes especially striking after taking into account the revised value of
the total χc0 width which has been reduced by a factor 1.4 [37] as compared to the value in the Review of
Particle Properties (2002) used in [5].

3CHIC is a publicly available Monte Carlo implementation of the χc0 analysis of Ref. [5].
4This applies not only to χc(1P ) states, but also to possible higher excitations χc(nP ).
5Senh is largely independent of the χ spin assignment. Note also that the relative number of events

where the forward protons dissociate is larger for χc1 and χc2 than for χc0.
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the higher-spin states. This is the main topic of the current paper, i.e. we extend the

analysis of Refs. [3, 5] to include the detailed study of χc1 and χc2 exclusive production.

Special attention is paid to the role of absorptive corrections, which significantly affect the

predicted rates, see [4, 5, 14].

The paper is organized as follows. In Section 2 we review the general expectations

for the JP properties of χc production based on Regge theory. In Section 3 we discuss in

detail the perturbative approach to the calculation of χc CEP, paying particular attention

to the differences between χc0, χc1 and χc2 production and to the uncertainties in the

predictions. We have implemented our calculations in a new Monte Carlo event generator

– SuperCHIC – which is described in Section 4. In Section 5 we present numerical results for

χc0, χc1 and χc2 CEP at the Tevatron. We discuss the impact of the survival factors on the

CEP cross sections, and comment on the size of possible non-perturbative contributions.

We investigate to what extent kinematical distributions of the final-state particles can be

used to distinguish the three χc spin states. In Section 6 we summarise our conclusions and

comment on possible future developments in the study of the CEP of quarkonia states at the

Tevatron and LHC. Some additional calculational details are presented in two Appendices.

2. General expectations from Regge theory

As discussed in [4], the central diffractive production of meson states (see Fig. 1(b)) has

characteristic features that depend on the particle spin and parity JP , which follow from the

general principles of Regge theory. Let us first recall particular examples of bare Pomeron-

Pomeron vertices for the spin-parity JP of particle h in the case of low transverse momenta

p1,2⊥
of the outgoing protons.

(a) JP (h) = 0+

For a scalar particle h, the vertex coupling is simply6

gSPP = f0+(p2
1⊥
,p2

2⊥
,p1⊥ ·p2⊥), (2.1)

where f0+ is a function of the displayed scalar variables. When p2
1⊥

or p2
2⊥

→ 0, this

function, in general, tends to some constant fs. Further information on the structure

of this function requires extra dynamical input. In particular, within the perturbative

framework (for Q2
⊥
≫ p2

1,2⊥
), f0+ is almost independent of p1,2⊥ , and hence the bare

cross section, σ0+ , is essentially independent of the azimuthal angle φ between the

outgoing protons
dσ0+

dt1dt2dφ
∝ constant(φ), (2.2)

where t1,2 ≃ −p2
1,2⊥

. We note, however, that for χc CEP the low Q⊥ scale we are

considering means that the inequality Q2
⊥

≫ p2
1,2⊥

is not completely valid, and we

therefore expect some deviation from the constant behaviour of (2.2).

6We use boldface type to denote spatial three-vectors.
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(b) JP (h) = 0−

For the central production of a pseudoscalar particle, the bare vertex factor takes the

form

gPPP = f0−(p2
1⊥
,p2

2⊥
,p1⊥ ·p2⊥) (p1⊥ × p2⊥) · n, (2.3)

where n is the unit vector in the direction of the colliding hadrons (in the c.m.s.).

Due to the identity of the Pomerons, the function f0− should be symmetric under

the interchange 1 ↔ 2. It follows from (2.3) that in the pseudoscalar case the bare

cross section, σ0− , should behave for small |t1,2| as

dσ0−

dt1dt2dφ
∝ |t1||t2| sin2φ. (2.4)

An immediate consequence of (2.4) is that pseudoscalar production is forbidden when

the protons scatter at zero angle.

(c) JP (h) = 1+

For the production of an axial vector state the bare Pomeron-Pomeron fusion vertex

factor can be written as

gAPP ∼aλ=0
(t1 − t2)([p1⊥ × p2⊥ ] · e)

M2
+ aλ=1

[K × n] · e
M

(2.5)

with

K ≡ p1 − p2. (2.6)

Here M and e are the mass and polarization vector of the centrally produced 1++

state, and the vertex functions aλ=0,1 correspond to axial meson production with

helicities λ = 0, 1 in the target rest frame (where the longitudinal component of the

axial meson momentum is much larger than its transverse component). Analogously

to f0+ and f0− in the previous cases, the functions aλ=0,1 may depend on p2
1⊥
, p2

2⊥

and (p1⊥ · p2⊥), and are symmetric under the 1 ↔ 2 interchange.

It follows from (2.5) that the bare amplitude tends to zero at low K⊥, in particular

when both protons scatter at zero angle. Another important consequence of (2.5) is

that at low |t1,2| the axial meson should be produced dominantly in the helicity-one

state. As already mentioned in [4], the general structure of the axial vertex gAPP ,

given by Eq. (2.5), coincides with that found using a non-conserved vector current

model [8], which gives a good description of the experimental data on f1(1285) and

f1(1420) CEP by the WA102 Collaboration [39]; for a review see Ref. [7].

(d) JP (h) = 2+

For a tensor particle h, the bare vertex function gTPP is not constrained by Regge

theory alone. However, as we have already mentioned, within the perturbative ap-

proach of Refs. [5, 12] the forward CEP of non-relativistic heavy 2++ quarkonium
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should be strongly reduced because of the suppression of the 2++ → 2g transition for

the Jz = 0 on-mass-shell two-gluon state.7

dσ/dφ

φ

1+

dσ/dφ

φ

0-

dσ/dφ

φ

0+

dσ/dφ

φ

2+

Figure 2: Impact of the absorptive corrections on the distribution (in arbitrary units) of the
difference in azimuthal angle of the outgoing protons for the CEP of various JP χc states at the
LHC, using the two channel eikonal model of Ref. [32]. The solid (dashed) lines are the distributions
including (excluding) the survival factor. For completeness we also show the result for pseudoscalar
ηc production.

Finally, we recall that, as discussed in [4], the absorptive corrections arising from the

multi-Pomeron exchanges modify the distributions over φ. This is because the absorption

depends on the distribution in impact parameter b space, which in turn leads to a char-

acteristic dependence of the survival factor (mainly S2
eik) on the azimuthal angle between

the outgoing protons. This effect was discussed in detail in [40].

To demonstrate how the absorptive corrections may affect the angular distributions

between the outgoing protons we have used a simple two channel eikonal model [32]. We

show in Fig. 2 the results for
√
s = 14 TeV. An analogous dependence of S2

eik on the

transverse momentum of the centrally produced meson is shown for the Tevatron energy√
s = 1.96 TeV in Fig. 3.

7We reconfirm the conclusion of [3] that the relativistic corrections to the χc,b(2
++) → 2g transition are

numerically small.
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S2

pT (GeV)

0+

1+

2+

0-

Figure 3: Dependence of the survival factor S2
eik

on the transverse momentum of centrally produced
χc mesons at the Tevatron, using the two channel eikonal model of Ref. [32]. Also shown (dashed
line) is the survival factor corresponding to ηc production.

3. Central Exclusive χc production: perturbative framework

To calculate the perturbative contribution to the central exclusive χc production process

we use the formalism of Refs. [3, 4, 10]. The amplitude is described by the diagram shown

in Fig. 1(a), where the hard subprocess gg → χc is initiated by gluon-gluon fusion and the

second t-channel gluon is needed to screen the colour flow across the rapidity gap intervals.

We can write the Born amplitude in the factorised form [5, 6] (see Fig. 4):

T = π2

∫

d2Q⊥ VJ
Q2

⊥
(Q⊥ − p1⊥)2(Q⊥ + p2⊥)2

· fg(x1, x
′

1, Q
2
1, µ

2; t1)fg(x2, x
′

2, Q
2
2, µ

2; t2) , (3.1)

where VJ is the colour-averaged, normalised sub-amplitude for the gg → χcJ process:

VJ ≡ 2

s

1

N2
C − 1

∑

a,b

δabpµ1p
ν
2V

ab
µν . (3.2)

Here a and b are colour indices and NC = 3. The amplitude V ab
µν represents the coupling of

two gluons to the χc state being considered: the procedure for calculating this is outlined

below. The fg’s in (3.1) are the skewed unintegrated gluon densities of the proton at the

hard scale µ, taken typically to be of the order of the produced massive state, i.e. Mχ/2 in

this case, and only one transverse momentum scale is taken into account by the prescription

Q1 = min{Q⊥, |(Q⊥ − p1⊥)|}
Q2 = min{Q⊥, |(Q⊥ + p2⊥)|} . (3.3)

The longitudinal momentum fractions carried by the gluons satisfy
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Figure 4: The perturbative mechanism for the exclusive process pp→ p+ χ+ p, with the eikonal
and enhanced survival factors shown symbolically.

(

x′ ∼ Q⊥√
s

)

≪
(

x ∼ Mχ√
s

)

. (3.4)

The t dependence of the fg’s is not well known, but in the limit that the protons scatter

at small angles, we can assume a factorization of the form

fg(x, x
′, Q2

i , µ
2; t) = fg(x, x

′, Q2
i , µ

2)FN (t) , (3.5)

where the t-dependence is isolated in a proton form factor, which we take to have the

phenomenological form FN (t) = exp(bt/2). In such a case a fit to soft hadronic data [32]

gives b ≃ 4GeV−2, which is also consistent with extracting FN (t) from the t-dependence

in ‘elastic’ J/ψ photoproduction [41]. We will therefore use b = 4GeV−2 as our value for

the slope parameter throughout.

In the kinematic region specified by (3.4), the skewed unintegrated densities are given

in terms of the conventional (integrated) densities g(x,Q2
i ). To single log accuracy, we

have8

fg(x, x
′, Q2

i , µ
2) = Rg

∂

∂ logQ2
i

[

xg(x,Q2
i )

√

Tg(Q
2
i , µ

2)
]

, (3.6)

where Tg is the usual Sudakov survival factor which ensures that the active gluon does

not emit additional real partons in the course of the evolution up to the hard scale µ, so

that the rapidity gaps survive. Rg is the ratio of the skewed x′ ≪ x unintegrated gluon

distribution to the conventional diagonal density g(x,Q2). For x ≪ 1 it is completely

determined [43]. The explicit form for Tg is given by resumming the virtual contributions

to the DGLAP equation. It is given by

Tg(Q
2
⊥, µ

2) = exp

(

−
∫ µ2

Q2
⊥

dk2
⊥

k2
⊥

αs(k
2
⊥
)

2π

∫ 1−∆

0

[

zPgg(z) +
∑

q

Pqg(z)

]

dz

)

. (3.7)

Here, as in [5], we go beyond the collinear approximation and in the T factor we resum not

just the single collinear logarithms, but the single soft ln(1 − z) terms as well. To a good

approximation, this can be achieved by taking the upper limit of the z integration in (3.7)

8In actual calculations, we use a more precise phenomenological form given by Eq. (26) of [42].
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to be

∆ =
k⊥

k⊥ + 0.62Mχ
. (3.8)

Returning to the gg → χc amplitude, we note that the original extension of the CEP

formalism to χc0 production in [5] was achieved in direct analogy to the Higgs case, that is

by assuming that the χc0 coupled to the gluons as a pure scalar with any effects from its

internal structure neglected. We now wish to go beyond this approximation and model the

internal structure of the χc meson for all three J states and in particular their coupling to

two gluons. This is done by a simple extension of the calculation of [44], where the coupling

of 3PJ quarkonium states to two off-mass-shell photons is considered: as the gluons are in

a colour singlet state the only difference will be constant prefactors resulting from colour

algebra. We will simply state the results for the three amplitudes, leaving the derivation

to Appendix A:

V0 =

√

1

6

c

Mχ
((q1⊥q2⊥)(3M2

χ − q21⊥ − q22⊥) − 2q21⊥q
2
2⊥

) , (3.9)

V1 = −2ic

s
p1,νp2,α((q2⊥)µ(q1⊥)2−(q1⊥)µ(q2⊥)2)ǫµναβǫ∗χβ , (3.10)

V2 =

√
2cMχ

s
(s(q1⊥)µ(q2⊥)α + 2(q1⊥q2⊥)p1µp2α)ǫ∗µαχ , (3.11)

where q1⊥ ≡ Q⊥ − p1⊥ and q2⊥ ≡ −Q⊥ − p2⊥ . The amplitudes are normalised as in (3.2)

and the qi⊥ are 4-vectors with q2i⊥ ≡ −q2
i⊥

< 0 throughout.9 Considering first the χc0
vertex, in the Q2

⊥
≪ M2

χ limit (which is true to an acceptable degree of accuracy) we

expect the internal structure of the χc0 to be unimportant, and therefore to recover the

previous result of [5]. We find

V0 ≈ 48παS√
NCM3

χ

φ′c(0)
√

πMχ

(q1⊥q2⊥) . (3.12)

Making use of the standard NRQCD result (see for example Refs. [45, 46, 47]),

Γ(χc0 → gg) = 96
α2
S

M4
χ

|φ′c(0)|2 , (3.13)

9Four-vector scalar products are denoted by (pq).
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we find10

|V0|2 =
8πΓ(χc0 → gg)

M3
χ

(q1⊥q2⊥)2 , (3.14)

which has the same form and normalisation as the previous result, as it must do. We will

take this large Mχ limit throughout. Turning now to the χc1 vertex, we can immediately see

that it vanishes for on-shell gluons, that is when q2i = q2i⊥ = 0, as dictated by the Landau-

Yang theorem (see Section 2). Furthermore, in the forward limit we have q1⊥ = −q2⊥ = Q⊥

and so

V0 → −
√

3

2
cMχQ

2
⊥ , (3.15)

V1 → 4ic

s
Q2

⊥p1,νp2,αQ⊥µǫ
µναβǫ∗χβ , (3.16)

V2 → −
√

2cM

s
(sQ⊥µQ⊥α + 2Q2

⊥p1µp2α)ǫ
∗µα
χ . (3.17)

We see that V1 is odd in Q⊥, and will therefore vanish upon the loop integration (3.1) over

Q⊥. For V2 we make use of the identity

∫

d2Q⊥Q⊥µQ⊥σ =
π

2

∫

dQ2
⊥Q

2
⊥g

T
µσ , (3.18)

where gT
µσ , the transverse part of the metric, can be written in the covariant form

gT
µσ = gµσ −

2

s
(p1µp2σ + p1σp2µ) . (3.19)

We then find V2 ∝ ǫµµ which vanishes due to the tracelessness of the χ2 polarization

tensor (A.18). We see that, as expected, the χc2 and χc1 production amplitudes vanish in

the forward limit, and we will therefore expect the corresponding rates to be suppressed

relative to χc0 production, via the integration over the proton form factor ebti ≈ e−bp
2
i⊥

which suppresses large p2
i⊥ values. In fact we can give a very rough estimate for the level

of suppression we will expect. Squaring and summing over polarization states gives

|V0|2 : |V1|2 : |V2|2 ∼ 1 :

〈

p2
⊥

〉

M2
χ

:

〈

p2
⊥

〉2

〈

Q2
⊥

〉2 . (3.20)

Note that this result, as well as the amplitudes of (3.9 - 3.11), is also applicable to the CEP

10Analogously to Ref. [5], we assume the same NLO correction for the gg → χ vertex as for the χ → gg
width, which can be valid only within a certain approximation. Moreover, as has been known for some
time in the P−wave case (see for example Ref. [48]), the NNLO and higher-order radiative corrections
to the χ → gg transition are expected to be numerically quite large, and this would result in further
uncertainties in the theoretical expectations. Recall that these corrections are not universal and depend on
the spin-parity assignment of the P−wave states. In particular, it is known that in the χ0 case the dominant
part of the NLO correction comes from the (iπ)2 term originating from the Sudakov-like double logarithm
αs ln2(q2/M2), when the imaginary part of the logarithm (= −iπ) is squared. This double logarithm,
and correspondingly the (iπ)2 contributions, are absent for the case of the χ1, where the amplitude for
on-mass-shell (q2 = 0) gluons vanishes due to the Landau-Yang theorem.
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of χb mesons. The factor of
〈

p2
⊥

〉

comes from integrating over the assumed exponential

form of the proton vertex,

〈

p2
⊥

〉

=

∫

dp2
⊥e

−bp2
⊥ =

1

b
=

1

4
GeV2 . (3.21)

If for simplicity we assume
〈

Q2
⊥

〉

≈ 1.5GeV2 and

M2
χ ≈ 10GeV2, we obtain11

|V0|2 : |V1|2 : |V2|2 ∼ 1 :
1

40
:

1

36
. (3.22)

While it is clear that we will have a quite sizeable suppression of the χc1 and χc2 CEP cross

sections, these values are of course only very rough estimates, and an explicit calculation

is required to confirm them.

We stress again that the legitimacy of the extension of the purely perturbative QCD

treatment for central exclusive Higgs production to the χc case is somewhat questionable.

For Higgs production the hard scale µ is set by MH/2, and so we expect that a reliable

calculation within perturbative QCD can be performed. In particular, the Sudakov factor

leads to an IR stable result, with only a small contribution to the cross section from the

region of Q⊥ below ∼ 1 GeV (although this is not to say the calculation does not come

with significant uncertainties). However, in the case of χc production, where the ‘hard’

scale is ∼ 1 GeV, we expect and find that a significant part of the cross section comes

from the IR unstable low Q⊥ region. It might seem then, that despite the attractions of

considering central exclusive χc production, any attempt to calculate a reliable cross section

within the perturbative QCD framework is unlikely to succeed. This is not the case: the

philosophy we take is that, even if the purely perturbative calculation is not IR stable, we

should expect a smooth matching between the perturbative regime and the ‘soft’ regime

to which we can apply a non-perturbative Regge model. This was done in [5] for the χc0,

with a simple model for the Pomeron invoked, and the non-perturbative and perturbative

contributions were found to be of a similar size, which gives justification for the inclusion

of a perturbative contribution to χc CEP. On the other hand, there is much uncertainty

surrounding which non-perturbative models for the Pomeron are most appropriate in this

context, and so results such as this can only be used as a guide.

Returning to the perturbative calculation, several comments are in order. As men-

tioned above, in the case of the χc we expect a significant proportion of the cross section

to come from the low Q⊥ region where perturbation theory is not valid, and there will

correspondingly be a large degree of uncertainty in its predicted value. Given our lack of

detailed understanding of low Q⊥ non-perturbative gluon dynamics, the best we can do is

to introduce an infrared cut-off to the Q⊥ loop integral such that we are only considering

11In fact, accounting for the values of p1⊥, p2⊥ in the denominator of (3.1) we obtain a slightly larger
value of the effective slope beff = b+O(1/Q2

⊥) > 4 GeV−2. Therefore we expect a slightly larger suppression
of the higher spin, χ1 and χ2, states than that given by (3.22). Note also that for a heavier meson (χb)
CEP the slope beff will be smaller than that for the case of χc due to a typically larger values of Q⊥ in the
integral (3.1).
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the regime where perturbation theory will be reliable. This can be loosely justified on

the grounds that our current understanding of these non-perturbative dynamic predicts

that the low Q⊥ contribution appears to be suppressed [49]. Nevertheless significant un-

certainties remain, both in the specific choice of cut-off, for which we have rough physical

guidelines but which inevitably amounts to a subjective decision, and in what contribu-

tion we would actually expect from the low Q⊥ region, which a cut-off prescription simply

ignores.

A further uncertainty that is worth mentioning arises from the skewed PDFs, which we

can express via (3.6) in terms of the conventional PDFs g(x,Q2), and therefore evaluate.

Unfortunately, although this is in principal true, there is a large degree of uncertainty in

the value of the conventional PDFs at the low x and low Q2 scales we are considering, as

can be seen in Fig. 5 where four representative PDF sets are plotted at Q2 = 1.5 GeV2. In

the case of exclusive χc production at the Tevatron (
√
s = 1.96 TeV) we are sampling the

x ∼ 2 × 10−3 region, for which there is a large uncertainty. Recalling that the final cross

section depends quartically on the skewed PDFs, this is clearly unacceptable. We can see,

on the other hand, that as x is increased the uncertainty rapidly decreases and we have

a reasonable agreement between the sets in the region 0.05 . x ≤ 1. We can therefore

perform the cross section calculation for a lower c.m.s energy such that the sampled x

value is in this range, although we must be careful that the corresponding x value is not

too high, as our initial formula for the skewed PDFs relies on a small x approximation. In

actual calculations a value of
√
s = 60 GeV is chosen, which corresponds to x ∼ 0.05. To

make contact with the experimental c.m.s. energies of the Tevatron we then assume that

the total cross section exhibits the Regge behaviour

dσ ∝ sαP (t1)+αP (t2)−2 . (3.23)

This gives us a simple way to avoid the large uncertainties of the PDFs in the low x region,

although our final result will depend on the validity of this Regge assumption and on the

specific value of the Pomeron intercept αP (0) that we use.12

We end this section with a brief review of the uncertainties that are present in our

calculation. First, we have the uncertainty in our choice of hard scale µ and the prescription

(3.3) for the transverse momentum scale Q2
i , with for example the choice µ = MH/4 in

the Higgs case giving a quoted enhancement of 30% to the cross section [4]. Further to

this we have the even more considerable uncertainty coming from the dependence of the

cross section on the conventional PDFs to the fourth power in the low x and Q2 region,

where they are not well determined. We also have the dependence of the final result

on the non-perturbative, non-universal survival factor, which gives perhaps the largest

uncertainty in the overall production rate. Differences in the higher-order QCD radiative

corrections to the gg → χ vertex could also cause additional uncertainties. Finally we have

the uncertainty in the low Q⊥ contribution to the perturbative amplitude, which we find

to be quite large in the χc case. For more details of these issues we refer the reader to [4].

12Our procedure is equivalent to assuming a Regge-based extrapolation of the PDFs to small x.
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Figure 5: LO and NLO PDFs at Q2 = 1.5 GeV2, plotted as function of x. Four representative
PDF sets are displayed, and a large uncertainty at small x is clear.

4. SuperCHIC Monte Carlo Generator

In [5], central exclusive χc0 meson production and its subsequent decay to J/ψγ → µ+µ−γ

was modelled using the CHIC Monte Carlo event generator, but we now wish to consider

the case where higher spin χc states are produced. The CEP of the three χc(0,1,2) states is

modelled using a new, more general, Monte Carlo programme, SuperCHIC.13 This follows

essentially the same procedure for generating the relevant phase space as the previous

CHIC MC – optimised to reduce the event weight variation – but with some important

generalisations included that we will now outline.

The explicit evaluation of (3.1) is in all cases performed ‘offline’ from the SuperCHIC

Monte Carlo event generator: to perform the loop integration for each event would lead to

an unacceptably large run-time. The skewed PDFs are calculated as outlined in Section 3,

with the Sudakov factor read in from a grid to minimise run-time, and (3.1) then evaluated

using standard Monte Carlo techniques. We go beyond the approximation used in [5],

where the amplitude squared was calculated in the forward limit, with the p⊥ dependence

isolated in the proton form factors. Such an assumption is not relevant for the Tevatron,

where the p⊥ of the final state protons is not measured [20], and so we must include

non-forward effects. This will not only give a more accurate evaluation of the χc0 cross

section, but is also essential in the case of χc1 and χc2 production, where the corresponding

amplitudes vanish in the forward limit. On the other hand, we still need to perform the

loop integration separately from the Monte Carlo event generator. Considering first the

χc0 amplitude A0, this can be achieved by noting that for small p⊥ it must have the form

A0 ∝
∫

d2Q⊥(q1⊥ ·q2⊥)

Q2
⊥
q2

1q
2
2

fg(x1, Q
2
1, µ

2)fg(x2, Q
2
2, µ

2)

≈ C0 + C1(p
2
1⊥

+ p2
2⊥

) + C12(p1⊥ · p2⊥) + · · · , (4.1)

13The extension to, for example, the CEP of pseudo-scalar ηc or higher excitation χc(nP ) states, as well
as the respective b-quark states χb, ηb and χb(nP ), is planned for future work.
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that is, there exists a Taylor expansion for A0 formed from all possible scalar combinations

of the pi⊥ , the validity of which depends on the suppression in p2
⊥

coming from the proton

form factors. Squaring (4.1) and keeping only the leading terms in p2
i⊥

, we can see that

this expansion is equivalent to making the replacement (at lowest order in p2
i⊥

)

e
−bp2

i
⊥ → e

−(b−2
C1
C0

)p2
i
⊥ . (4.2)

Thus to a first approximation we expect the inclusion of non-zero p⊥ in the amplitude

calculation to simply result in a change in the effective slope of the proton form factor.

This then allows for an easy way to take into account the effect of non-forward protons in

the amplitude, as we can simply model |A0|2 as a Gaussian,

e
−b(p2

1⊥
+p

2
2⊥

) |A0|2 ∝ e
−beff0 (p2

1⊥
+p

2
2⊥

)
, (4.3)

where the slope beff0 and the overall normalisation are set by matching the values of 〈p2
χ⊥

〉
and the integrated cross section, respectively, to those given by the exact expression for

|A0|2. We note that the exact expression for A0 (and therefore the pχ⊥
distribution) will

depend in general on the azimuthal angle between the outgoing protons, but by choosing to

model this effect by simple Gaussians in p2
i⊥

the resultant azimuthal correlations between

the protons will not be fully modelled in the Monte Carlo. Thus in the case of the χc0
any deviation, for example, from the flat behaviour of (2.2) is ignored. On the other hand

it is clear that we are not currently interested in correctly modelling the p⊥ distributions

of the outgoing protons, which we recall are not measured at the Tevatron, but only

those of the centrally produced final state particles, which it is important to know when

discussing possible methods for distinguishing the three χc states, and the simple Gaussian

approximation achieves this to an acceptable degree of accuracy.14 However, we should be

careful in our application of this approximation, as no strict Q⊥ ≫ p⊥ hierarchy exists for

the χc.
15

The higher J states are more complicated due to their non-trivial Lorentz structure,

but the basic argument remains the same. We can write the χc1 and χc2 amplitudes,

omitting the χc polarization vectors etc. for simplicity, as

Aµ1 ∝ (p2⊥ − p1⊥)µe
−beff1 (p2

1
⊥

+p
2
2
⊥

)/2
, (4.4)

Aµν2 ∝(s(p1⊥)µ(p2⊥)ν+2(p1⊥p2⊥)pµ1p
ν
2)e

−beff2 (p2
1⊥

+p
2
2⊥

)/2
, (4.5)

where we must now square the amplitudes and sum over the relevant χc polarization states

before matching the values of the normalisation and slope as before.

SuperCHIC is a standard MC event generator that calculates the relevant weight for

each generated event using these effective slopes, which can simply be read in at the

14In fact, in the case of the χc2 it is necessary to include a p1⊥
· p2⊥

term in the fit. We also note
that, while it is not done here, the complete inclusion of the correct azimuthal correlations, which may be
relevant for measurements at the LHC with tagged forward protons, remains a possible future extension of
the Monte Carlo.

15Note that such a procedure can be useful in the case of CEP of the Higgs boson [6, 12].
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beginning of the run. We give the option of generating events for purely χc0, χc1 and χc2
production, as well as the (experimentally relevant) option of generating all three states at

once. It is possible to generate the differential cross section dσ/dyχ at a given rapidity yχ
value or the full cross section over a pre-specified χc rapidity range, with an approximate

phenomenological fit invoked for the yχ dependence of the cross section.

Having generated the appropriately weighted central exclusive χc event, we then gen-

erate the decay process χc → J/ψγ → µ+µ−γ through which exclusive χc production has

been observed at the Tevatron. While the isotropic decay of the scalar χc0 → J/ψγ is triv-

ial, the situation for χc1 and χc2, which have non-trivial polarization states that must be

accounted for in the relevant decays, is not so simple. The calculation of the different decay

distributions is, however, relatively straightforward and is outlined in full in Appendix B.

In all cases, these decays have an integrated weight of unity, while we multiply the overall

cross section by the relevant branching ratios, taken from [37]. For the χc1, χc2 and J/ψ we

generate the spin states in the helicity basis: that is, we generate the χc(J/ψ) polarization

vectors in the χc(J/ψ) rest frame, before boosting along the spin quantization (z) axis and

then rotating in the z − pχ(ψ) plane. Finally, to improve the overall efficiency we allow

as input the option of specifying values for the experimentally significant cuts on the final

state µ+µ− pair, in particular the maximum pseudorapidity |η| and the minimum p⊥. All

kinematic information for the produced particles is calculated and can be read out at the

end of the run.

5. Results

We begin, for the sake of comparison with the previous results of [5], with a calculation of

the χc0 cross section in the forward limit. As in [5], we use GRV94H0 partons [50] through-

out16, and we choose the value of Q⊥ = 0.85 GeV as our infrared cut-off. Combining the

perturbative and non-perturbative contributions, we find

dσapprox
χc0

dyχ

∣

∣

∣

∣

yχ=0

= 80nb . (5.1)

Once we have corrected for the revised PDG value for the total χc0 width (which has

decreased by a factor ∼ 1.4), as well as the slightly revised value of the survival factor

that we use, we find that this is in good agreement with the previous result quoted in [5].

Moreover, this is also in excellent agreement with the experimental value from the CDF

collaboration [20]:
dσexp

χc

dyχ

∣

∣

∣

∣

yχ=0

= (76 ± 14) nb . (5.2)

We emphasise that this value was assumed, rather than being observed, to correspond to

χc0 production, as the mass difference between the three χc states was not resolvable within

the experimental set-up.

16As already mentioned, the GRV94HO gluon PDF is very consistent with the more recent MSTW2008
and CTEQ LO and NLO gluon PDFs in the 0.05 < x < 1 region.
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We now consider the effect of non-forward protons (p⊥ 6= 0) on this cross section (see

also [4, 6]). By directly integrating over the p⊥ dependent amplitude squared and fitting

the resultant p2
χ⊥

distribution according to (4.3), we find

beff0 = 6.6GeV−2 , (5.3)

that is, a steepening in the effective slope of the proton form factor17. The effect of this is

shown in Fig. 6, where we have plotted the differential cross section as a function of p⊥(χc0)

in the forward and non-forward limits discussed above. As a check, we plot both the exact

and our fitted results for the non-forward limit: we can see that the match is sufficiently

accurate for our purposes. As expected, the steeper slope corresponds to p⊥(χc0) being

more sharply peaked at low p⊥ values. This effect is enhanced by the prescription (3.3)

for the argument Q2
i of the skewed PDFs. In particular, we have introduced an infrared

cut-off to avoid a contribution from the low Q⊥ domain, where perturbation theory is not

valid. However we can see that (3.3) will have the average effect of pushing Qi into this

‘soft’ region which we are neglecting, and therefore lower values of p⊥ will be favoured,

leading to a steepening of the effective slope. On the other hand, we could, instead of

taking the minimum of the two gluon transverse momenta, take their average, which gives

beff0 ≈ 5.6GeV−2. It is clear then that we expect some steepening in the effective slope,

but the exact amount is very much tied up in the overall uncertainties of the calculation.

Näıvely, we might expect this to lead to a factor of ∼3 decrease in the production cross

section, via the integration over the transverse momenta pi⊥ , however we recall (see, for

example, [5, 14, 35]) that the total cross section depends on the ratio S2/b2, which depends

only weakly on b2; that is the reduction in the cross section caused by the increased

slope is largely compensated by an increase in the survival factor for the more peripheral

interaction, leading to only a small overall decrease in the χc0 rate. We next consider the

χc1 and χc2 cross sections, which are calculated following the procedure outlined in Section

4. Directly integrating over the p⊥ dependent amplitude squared and fitting the resultant

p2
χ⊥

distribution according to (4.4) and (4.5) for χc1 and χc2 CEP, respectively, we find the

following values for the effective slopes:

beff1 = 4.6GeV−2 , (5.4)

beff2 = 5.9GeV−2 , (5.5)

We can see from Fig. 3 that while the χc0 and χc1 eikonal survival factors are approximately

constant, the χc2 eikonal survival factor has a strong dependence on the p⊥ of the χc2, which

we read in from a grid in the Monte Carlo. Making use of (5.3), (5.4) and (5.5) we find

S2
eik(χ0) : S2

eik(χ1) : 〈S2
eik(χ2)〉 ≈ 0.098 : 0.15 : 0.22 . (5.6)

We emphasise that the gap survival factor S2 depends on the effective slope beff of the bare

17Recall that here beff/2 is the slope of the ‘bare’ amplitude before screening effects are included. The
inclusion of absorptive effects (i.e. the gap survival factor) will further enlarge the p⊥-slope of the experi-
mentally observed forward proton distributions.
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Figure 6: Differential cross section (in arbitrary units) as a function of χc0 p⊥ as a result of exactly
calculating the p⊥ dependent χc0 amplitude (‘exact’), setting p⊥ = 0 in the initial amplitude
calculation (‘forward approximation’) and approximating the non-forward effects by an effective
slope parameter beff (‘non-forward approximation’).

(non-screened) CEP amplitude which, in turn, depends explicitly on the p⊥ of the outgoing

protons, see [6]. In particular, at b = 4 GeV−2 we obtain S2
eik = 0.046, while in the case

of CEP of the χc0, where b0eff = 6.6 GeV−2, we obtain the value S2
eik = 0.098, i.e. a factor

of two larger. As discussed above, such an increase in S2 largely compensates the decrease

in the CEP cross section caused by a smaller phase space in p⊥ occupied by the final state

protons (due to a larger beff). Recalling that the CEP event rate depends on the ratio

S2/b2 (rather than on S2) [5], this can serve as a warning regarding the conclusions made

in Refs. [51, 52] about the CEP rates based solely on the evaluations of S2 for protons with

p⊥ = 0. In addition, we have already shown in Section 3 that neglecting the p⊥ 6= 0 effects

in the structure of the hard production subprocess can lead to a significant underestimate

in the production rate of states with JP other than 0+. Returning to the calculation of the

higher spin χc cross sections we find, by including the relevant branching ratios (evaluated

at rapidity yχ = 0 in all cases),

Γχ0

J/ψγ

Γχ0

tot

dσpert
χc0

dyχ
:
Γχ1

J/ψγ

Γχ1

tot

dσpert
χc1

dyχ
:
Γχ2

J/ψγ

Γχ2

tot

dσpert
χc2

dyχ
≈1 : 0.8 : 0.6 . (5.7)

Thus, within the perturbative framework, the expected contributions of the three χc states

to the Tevatron data are of comparable size, despite the initial suppression in the χc1 and

χc2 production amplitudes. The previous assumption that the Tevatron events correspond

to purely χc0 CEP may therefore be unjustified. To give a prediction for the total cross

section we must take into account the so-called ‘enhanced’ absorptive effects, which break

the soft-hard factorization previously assumed in the evaluation of the χc0 CEP cross

section in [5]. The generalisation of the simple two channel eikonal model to include these
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Figure 7: χc0, χc1 and χc2 differential cross sections, without experimental cuts, as a function of
the photon p⊥ and cos θ, where θ is the angle between the µ+ momentum in the J/ψ rest frame
and the direction of the Lorentz boost from the J/ψ rest frame to the lab frame. Integrated cross
sections normalised to unity before cuts are imposed in all cases.

enhanced rescattering effects is outlined in [35], where the effect of including both eikonal

and enhanced screening corrections, as well as non-forward outgoing protons in the hard

matrix element, can be roughly accounted for by the introduction of an ‘effective’ survival

factor S2
eff . Recalling (1.1), it is found that the effect of enhanced absorption for the CEP

of the light χc is quite strong (see also [36, 51, 52]). In particular, ignoring for simplicity

any impact parameter b dependence, we have

〈S2
eff〉 ≈ 〈S2

enh〉 × 〈S2
eik〉 ≈

1

3
〈S2

eik〉 , (5.8)

with the enhanced survival factor S2
enh (at our present level of understanding) approxi-
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Figure 8: Differential cross sections as a function of cos θ, with experimental cuts, and the µ+, µ−

p⊥, without experimental cuts. Integrated cross sections normalised to unity before cuts are imposed
in all cases.

mately the same for all three χc states. Multiplying by this suppression factor and includ-

ing the contribution from the three J states to the observed cross section, we can then use

the branching ratio Br(χc0 → J/ψ+γ), as was done for the CDF data, to produce a rough

value for the ‘χc0’ cross section at Tevatron energies (prior to any corrections due to the

varying experimental acceptances of the χc states),

dσtot
χc

dyχ

∣

∣

∣

∣

yχ=0

≈ 65 nb . (5.9)

Here we stress that a sizeable proportion of the observed events are predicted to correspond

to χc1 and χc2 CEP. Thus, the combination of including the more general enhanced rescat-
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tering effects, which leads to a reduction in the predicted rate, and the contribution of the

higher spin χc1 and χc2 states, which leads to an increase in the predicted rate, leaves the

perturbative prediction for the total χc cross section at the Tevatron largely unchanged

and, crucially, still in good agreement with the experimental data.

At this point we need also to consider the non-perturbative contribution to the cross

section. Leaving the explicit evaluation for future work, we simply note that the previous

calculations of [53, 54] show that the non-perturbative contributions of the three χc states

are also comparable, with the general results of Section 2 suggesting that, at least for

the χc0 and χc1, they will have a similar p⊥ dependence to that outlined in Section 4.

We can therefore reasonably assume that the relative values of (5.7) are approximately

correct. However, given the overall uncertainty in the perturbative and non-perturbative

cross section calculations, we note that the precise ratio of the χc cross sections cannot be

stated with certainty at this time. While our results suggest that some fraction of the 65

± 10 candidate ‘χc0’ events observed at CDF are in fact χc1 or χc2 events, we can make

no definitive prediction for their precise relative contributions.

In fact, we have noted that the perturbative contribution to χc2 CEP is strongly sup-

pressed due to the Jz = 0 selection rule, for which it decouples from two real gluons.

However, for the non-perturbative contribution we have no such selection rule, and we

therefore cannot exclude the possibility that the χc2 non-perturbative contribution is dom-

inant. The above-mentioned Pomeron models suggest that this may be the case, although

there remains a large degree of uncertainty in how to perform these calculations, and in

particular which model of the Pomeron to choose.

Putting aside the question of normalisation, we might hope to be able to distinguish

between the three states by studying the angular and kinematical distributions of the final

state particles as modelled in SuperCHIC, which should not depend strongly on the overall

production rate. In Fig. 7 we show the polar angular distributions of the µ+µ− pair and

the p⊥ distributions of the photon for the three χ states, as given by SuperCHIC. For the

p⊥ distribution we can see the clear separation in the χ masses coming from the position

of the Jacobian peaks as p⊥ approaches the photon energy Eγ ∼ Mχ −Mψ, although in

the current experimental set-up we know it is not possible to resolve this separation.

The angular distribution is more interesting: there is clearly a significant difference

between the χc0 and the χc1 and χc2 cases with, as expected from helicity conservation,

the χc0 decaying into purely transversely polarized J/ψ’s, while this is not the case for the

χc1 and χc2. This in principle provides a way to determine if χc1 and χc2 mesons are being

produced, irrespective of the particular mass resolution of the experiment. Unfortunately,

this does not appear to be the case in practice, as we have yet to include the experimental

cuts on the kinematics of the final state particles. At CDF we require in particular that

the muon pseudorapidity |η| < 0.6 and the muon p⊥ > 1.4 GeV. In Fig. 8 we show the

angular distribution as before but with these cuts introduced, and immediately we can see

that the clear difference in shape has not survived. We also show the p⊥ distribution of

the muons, from which it is clear that a sizeable fraction of the events will not pass the

cuts (recalling that the cut must be passed by both muons), and the pseudorapidity cut

further enhances this effect. Moreover, in the low (high) θ region the µ+(−) will be directed
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along the motion of the J/ψ with high p⊥, while the µ−(+) will be directed against the

motion of the J/ψ and will therefore have low p⊥. This is clear from Fig. 8 where the

cos θ ≈ +1,−1 events which would have allowed us to distinguish between χc1,2 and χc0
production have not been accepted. We note that other potentially interesting variables,

such as the difference in the azimuthal angle of the muons ∆φµµ, appear to be equally

unpromising. It therefore seems that it will be very hard, given the experimental set up

and the low statistics available at the present time, to distinguish between the three χc
states via the experimentally considered decay chain, although with more detailed analysis

and/or higher statistics this conclusion may change. Another potential solution to this

issue could be to consider a different decay chain, for example the direct decay of the χc
to charged hadrons, etc. (see Section 6 below).

Finally, we can also see that the χc1 has a slightly higher acceptance, with in particular

(at yχ = 0)
dσcuts

χc0

dσtot
:

dσcuts
χc1

dσtot
:
dσcuts

χc2

dσtot
≈ 16% : 17% : 15% . (5.10)

The acceptance is therefore reasonably uniform, and so should not present a significant

obstacle when considering χc1 and χc2 production experimentally.

6. Summary and Outlook

Motivated by the recent experimental observation of exclusive χc events at the Tevatron, we

have updated the earlier studies of central exclusive scalar χc0 meson production to include

χc1 and χc2 mesons. Due to the low scale, Mχc/2, and very large rapidity gap coverage

(∆η ≃ 7.4 units) in the CDF measurement [20], the contamination from processes in which

the incoming protons dissociate is relatively small. The CDF χc event selection therefore

effectively ensures that they come from the exclusive reaction, pp̄→ p + χc + p̄.

Although χc0 production was previously assumed to be dominant, we find that the χc0,

χc1 and χc2 rates for the experimentally considered χc → J/ψγ → µ+µ−γ decay process

are in fact comparable. We have developed a new Monte Carlo event generator, Super-

CHIC, which models the central exclusive production of the three χc states via this decay

chain, and have used this to explore possible ways of distinguishing them, given that their

mass differences are not resolvable within the current experimental set-up. Although we

find that the severity of current experimental cuts appears to preclude this discrimination,

the acceptance does not change crucially between the three states and so our conclusions

regarding the overall rates remain unchanged. This therefore raises the interesting possi-

bility that exclusive χc1 and χc2 production has already been observed at the Tevatron.

Higher statistics and/or a broader acceptance coverage for the photon and leptons could

help discriminate between the χc mesons via differences in the angular correlations between

the final-state particles. We note also that the addition of forward proton detectors would

certainly allow discrimination between the different C-even states via the measurement of

the relative azimuthal angular distribution between the outgoing protons.

To further resolve the spin-parity assignment issue in the absence of forward proton

detectors, it would be instructive to observe central exclusive χc production in other decay
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channels, in particular ππ or KK̄, see [5]. These modes are ideally suited for spin-parity

analysis: the ππ or KK̄ decay modes of the χc0 meson have a branching fraction of about

1%, while these decay channels are forbidden for χc1 and suppressed by about a factor

of 5 for the χc2 relative to the χc0, in contrast to the χc2 relative enhancement for the

J/ψγ channel. Another interesting mode for discriminating between the CEP of different

χc states is χc → pp̄, since the branching fraction for χc0 (≃ 0.024%) is a factor of 3 higher

than that for χc1,2 [37]. The ΛΛ̄ mode (branching fraction for χc0 ≃ 0.034%) could also be

important for spin-parity analyzing.18

In the case of two-body final states (ππ, KK, pp̄) where the very forward protons

are not detected, further cuts can be imposed to reduce the contribution of events where

the protons dissociate (via single and double diffractive dissociation). These include, for

example, cuts on the transverse momentum of the resonance and on the final particles’

accoplanarity angle (in the frame where the rapidity of the resonance is zero).19

In this paper we have focused on χc meson production at the Tevatron. It is of course

straightforward to extend our results to the LHC, and we will consider this is in a future

study [57]. Note that we do not expect the χc CEP rate to have a strong energy dependence

when going from the Tevatron to the LHC. The growth of the bare amplitude caused by

the increase in the gluon density at smaller x is compensated by a smaller gap survival

factor at the larger LHC energies, especially S2
enh, the value of which decreases due to the

larger rapidity interval available for the ‘enhanced’ absorptive corrections, see Fig. 1(d).

Indeed, the measurement of the ratios of the CEP rates at the two different (Tevatron

and LHC) collider energies could allow the effects of enhanced absorption to be probed,

since in these cross section ratios various uncertainties (for example, NLO corrections to

the gg → χ transition etc.) would cancel out.

The issue of forward proton detection is more relevant at the LHC (in particular

for χb states) as the planned near-beam proton detectors, see Refs. [11, 15, 58], would

allow us to measure the outgoing very forward protons. As we have already noted, the

azimuthal angle distributions would provide interesting additional information with which

we could discriminate between different JPC states as well as investigate the dynamics of the

survival factors S2. Moreover, as pointed out in [40], measuring the transverse momentum

and azimuthal angle correlations between the outgoing protons would allow us to probe

the proton opacity Ω(s, bt) and perform a detailed test of the whole diffractive formalism.

Even before the forward proton detectors become operational, a broad programme of heavy

quarkonium studies can be performed with the existing LHC detectors (ALICE, ATLAS,

CMS and LHCb), especially if the rapidity gap coverage is increased by using forward

shower counters (FSC) along the beam line [59], thereby allowing detection and triggering

on rapidity gaps in diffractive events.

In future work we will also consider χb and ηb,c meson CEP and include them in the

18Rough estimates show that the background from continuum ππ, KK̄, pp̄ and ΛΛ̄ central production
should be quite manageable. This is in accord with measurements in two-photon collisions [55], where the
χc0,2 resonances decaying to ππ and KK̄ final states are clearly seen.

19This procedure is similar to that used in the separation of exclusive lepton-pair production via photon-
photon fusion, pp → p + l+l− + p, see [56] for more details.
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Monte Carlo. The perturbative χb0 CEP rate was calculated in [3, 5] analogously to the

χc0. While the higher Mχ scale results in a more perturbatively reliable prediction, the

reduced rate suggests that exclusive χb production, observed through the χb → Υ(1S)γ →
µ+µ−γ decay chain, may only be relevant at the LHC. The experimental values for the

χbJ → Υ(1S)γ branching ratios carry larger uncertainties, but a similar hierarchy to the

χc case is observed, and so the contribution of higher spin states should once again be

considered, with in particular the result of (3.20) for the relative rates remaining valid.

However, we note that the higher mass scale will result in a stronger suppression of the

higher spin states relative to the χb0 than in the χc case. In particular, for χb1 production

we have an explicit factor of M2
χ in the denominator of (3.20), while the larger expected

value of 〈Q2
⊥
〉 will result in a stronger suppression of the χb2 state.

The ηc,b CEP cross sections can be calculated by using the same formalism as for the

χ mesons, the only difference being that for the L = 0 quarkonium state the gg → η vertex

is proportional to the value of the wave function φ(0) at the origin and not to φ′(0) as in

(3.12). The vertex Vη should therefore be normalised to the leptonic width of the J/ψ (or

Υ for ηb) decay – the vector mesons from the same L = 0 multiplet. Note also that for the

heavier χb or ηb mesons we expect a slightly lower slope beff (due to a larger mean 〈Q2
⊥
〉)

and a larger value of S2
enh (due to a smaller rapidity interval available for the ‘enhanced’

absorptive corrections, Fig. 1(d)). Preliminary estimates indicate that the ηc CEP rate

(which we recall from [4] will be proportional to 〈p2
1⊥
p2
2⊥

〉/〈Q2
⊥
〉2) is expected to be about

two orders of magnitude lower than in the χc0 case.

We are also planning to revisit γγ CEP in a wider interval of photon ET , rapidity

and di-photon mass M than that considered in [23] and to include this in the Monte Carlo

generator. Note that the measurement of the ratio of γγ CEP at ET = 5 GeV to that

of χb production may allow us to reduce various uncertainties in the calculations, with in

particular the dependence on the survival factors cancelling out.

Finally, we note that the spin-parity analyzing properties of central exclusive produc-

tion could shed light on the dynamics of the zoology of ‘exotic’ charmonium-like states

(X,Y,Z) which have been discovered in the last few years (see for example [37, 60]), and

whose nature and in many cases spin-parity assignment still remain unclear.
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A. χc → gg amplitudes

A.1 χc0

We use the formalism of [44] and the kinematics of Section 3 throughout. The general

colour-averaged vertex for the coupling to two gluons has the form

V0 ≡ ǫα1 ǫ
β
2V

0
αβ =

√

1

6

c

M
(I0

1 (M2 + (q1q2)) − 2I0
2 ) , (A.1)

where ǫ1,2 are the polarization vectors of the incoming gluons and

q1 = x1p1 +Q⊥ − p1⊥ , (A.2)

q2 = x2p2 −Q⊥ − p2⊥ , (A.3)

while we define

I0
1 = F 1

µνF
2,µν , (A.4)

I0
2 = qν1FµνF

2,µσq2,σ . (A.5)

Here Fµν is the usual field strength tensor for the gluons and

c =
1

2
√
NC

4g2
s

(q1q2)2

√

6

4πM
φ′c(0) , (A.6)

where gs is the strong coupling and φ′c(0) is the derivative of the χc radial wavefunction at

the origin. Note that our definition of c differs from that of Ref. [44] by a factor

〈

3i; 3k|1
〉

taijt
b
jk =

δab

2
√
NC

→ 1

2
√
NC

, (A.7)

where
〈

3i; 3k|1
〉

is the colour space Clebsch-Gordon coefficient for the colour singlet quark

configuration, and we have averaged over the gluon colour indices a, b in the last step.

Recalling (3.2), we make the replacement ǫµ1 ǫ
ν
2Vµν → 2

sp
µ
1p
ν
2Vµν and use the gauge invariance

of Vµν to give

I0
1 = 2(q1⊥q2⊥) , (A.8)

I0
2 = q21⊥q

2
2⊥
. (A.9)

Here we have made use of the identity

(q1q2) =
1

2
(M2 − q21⊥ − q22⊥) . (A.10)

We therefore obtain

V0 =

√

1

6

c

Mχ
((q1⊥q2⊥)(3M2

χ − q21⊥ − q22⊥) − 2q21⊥q
2
2⊥

) (A.11)
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A.2 χc1

The general colour-averaged vertex has the form

V1 = − ic
2

(I1
1 + I1

2 ) , (A.12)

where

I1
1 = ǫµναβǫχ∗β F

1
µνF

2
αγq

γ
2 (A.13)

I2
1 = ǫµναβǫχ∗β F

2
µνF

1
αγq

γ
1 . (A.14)

Here ǫχβ is the χ1 polarization vector and ǫµναβ is the antisymmetric Levi-Civita tensor.

This gives

V1 = −2ic

s
ǫµναβǫχ∗β p1,νp2,α((q2⊥)µ(q1⊥)2 − (q1⊥)µ(q2⊥)2) . (A.15)

A.3 χc2

The general colour-averaged vertex has the form

V2 = −c
√

2MI2
2 , (A.16)

where

I2
2 = ǫ∗µαχ F 1β

µ F 2
αβ . (A.17)

ǫµαχ is the χ2 polarization tensor, which satisfies

ǫµν = ǫνµ , ǫ µ
µ = 0 , ǫµνP

µ
χ = 0 , (A.18)

∑

pol

ǫµνǫ
∗

αβ =
1

2
(PµαPνβ + PµβPνα) −

1

3
PµνPαβ , (A.19)

P
µν ≡ −gµν +

PµχP νχ
M2

. (A.20)

We therefore obtain

V2 =

√
2cM

s
(s(q1⊥)µ(q2⊥)α + 2(q1⊥q2⊥)p1µp2α)ǫ∗µαχ . (A.21)

B. χc and J/ψ decay amplitudes

We will make use of the identities

ǫµναβǫµ̃ν̃αβ = −4 δ
[µ
µ̃ δ

ν]
ν̃ , (B.1)

ǫµναβǫµ̃ν̃α̃β = −3! δ
[µ
µ̃ δ

ν
ν̃ δ

α]
α̃ , (B.2)

ǫµναβǫµ̃ν̃α̃β̃ = −4! δ
[µ
µ̃ δ

ν
ν̃ δ

α
α̃ δ

β]

β̃
. (B.3)
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B.1 χc(0
++) → J/ψ + γ

The scalar χ0 decays into a transversely polarized photon with a uniform angular distribu-

tion in its rest frame, and conservation of angular momentum therefore requires the J/ψ

to be transversely polarized.

B.2 χc(1
++) → J/ψ + γ

The amplitude that is expected to dominate (as it is the amplitude which corresponds to

the dipole transition [44]) is of the form

A1 ∼ ǫµναβǫχµǫ
ψ∗
ν pγαǫ

γ∗
β . (B.4)

Squaring and summing over photon polarizations, and making use of (B.2), we find

∑

ǫγ

|A1|2∼|(pγǫψ)|2 + |(pγǫχ)|2 + 2Re[(ǫχǫψ)(ǫ∗χpγ)(pγǫ
∗

ψ)] . (B.5)

The normalisation is given by summing over J/ψ polarizations and making use of (B.1)

and (B.3)

|Anorm
1 |2∼|(ǫχpγ)|2 +

(pγpψ)

M2
ψ

((pγpψ) + 2Re[(ǫ∗χpγ)(ǫχpψ)]) . (B.6)

We then divide by the normalisation factor to give the relative amplitudes squared for the

three different χ1 polarizations.

B.3 χc(2
++) → J/ψ + γ

Following similar arguments to the χ1 case (that is, assuming the dipole transition domi-

nates), we can write the invariant amplitude as

A2 = ǫµαχ (F γ)βµ(F
ψ)αβ . (B.7)

To study angular correlations it is necessary to consider the explicit form of the χ2 polariza-

tion tensor. This represents the irreducible tensor operator for J = 2 angular momentum,

which can be decomposed in terms of the spin and orbital polarization vectors [44]

ǫ
(J

Z
)

µν =
∑

S
Z
,m

ǫ
(S

Z
)

µ ǫ(m)
ν 〈S = 1, L = 1, S

Z
,m|J = 2, J

Z
〉 , (B.8)

where 〈S = 1, L = 1, S
Z
,m|J = 2, J

Z
〉 are the Clebsch-Gordon coefficients and ǫ

(S
Z

)
µ , ǫ

(m)
ν

have the usual explicit representation in (say) the χ2 rest frame. We can thus decompose
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the 5 polarization states as

ǫ+2
µν = ǫ+µ ǫ

+
ν , (B.9)

ǫ+1
µν =

√

1

2
(ǫ+µ ǫ

0
ν + ǫ0µǫ

+
ν ) , (B.10)

ǫ0µν =

√

1

6
(ǫ+µ ǫ

−

ν + 2 ǫ0µǫ
0
ν + ǫ−µ ǫ

+
ν ) , (B.11)

ǫ−1
µν =

√

1

2
(ǫ−µ ǫ

0
ν + ǫ0µǫ

−

ν ) , (B.12)

ǫ−2
µν = ǫ−µ ǫ

−

ν . (B.13)

Returning to (B.7), we obtain

∑

ǫγ

|A2|2 ∼ 2Re[ǫµαǫ∗νσpγµ((pγpψ)ǫψσ − (pγǫψ)pψσ )(ǫ∗ψα pψν − ǫ∗ψν pψα)]

− ǫµαǫ∗νσ
(

gµν((pγpψ)ǫψ∗α − (pγǫ
∗

ψ)pψα)((pγpψ)ǫψσ − (pγǫψ)pψσ )

+ pγµp
γ
ν(M

2
ψǫ

∗ψ
α ǫψσ − pψαp

ψ
σ )

)

, (B.14)

where the normalisation is given by

|Anorm
2 |2 ∼ ǫµαǫ

∗αν((pγpψ)2gµν +M2
χp

γ
µp
γ
ν) + 2(pγpψ)pγµp

γ
ν Re[ǫµαǫ

∗αν ] . (B.15)

References

[1] D. Robson, Nucl. Phys. B130 (1977) 328;

F.E. Close, Rept. Prog. Phys. 51 (1988) 833.

[2] P. Minkowski, Fizika B 14 (2005) 79 [arXiv:hep-ph/0405032].

[3] V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C 19, 477 (2001) [Erratum-ibid.

C 20, 599 (2001)] [arXiv:hep-ph/0011393].

[4] A. B. Kaidalov, V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C 31, 387

(2003) [arXiv:hep-ph/0307064].

[5] V. A. Khoze, A. D. Martin, M. G. Ryskin and W. J. Stirling, Eur. Phys. J. C 35, 211 (2004)

[arXiv:hep-ph/0403218].

[6] A. Kaidalov et al., V.A. Khoze, A.D. Martin and M. Ryskin, Eur. Phys. J. C 33 (2004) 261,

hep-ph/0311023.

[7] E. Klempt and A. Zaitsev, Phys. Rept. 454 (2007) 1 [arXiv:0708.4016 [hep-ph]].

[8] F. E. Close and A. Kirk, Phys. Lett. B 397 (1997) 333 [arXiv:hep-ph/9701222];

F. E. Close, A. Kirk and G. Schuler, Phys. Lett. B 477 (2000) 13 [arXiv:hep-ph/0001158].

[9] S. Heinemeyer, V. A. Khoze, M. G. Ryskin, W. J. Stirling, M. Tasevsky and G. Weiglein,

Eur. Phys. J. C 53 (2008) 231 [arXiv:0708.3052 [hep-ph]].

[10] V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C 14, 525 (2000)

[arXiv:hep-ph/0002072].

– 27 –



[11] M. G. Albrow and A. Rostovtsev, arXiv:hep-ph/0009336.

[12] V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C 23, 311 (2002)

[arXiv:hep-ph/0111078].

[13] A. De Roeck, V. A. Khoze, A. D. Martin, R. Orava and M. G. Ryskin, Eur. Phys. J. C 25,

391 (2002) [arXiv:hep-ph/0207042].

[14] For a recent review see A. D. Martin, M. G. Ryskin and V. A. Khoze, arXiv:0903.2980

[hep-ph].

[15] M. G. Albrow et al. [FP420 R&D Collaboration], arXiv:0806.0302 [hep-ex].

[16] P. Bussey and P. Van Mechelen in: H. Jung et al., arXiv:0903.3861 [hep-ph], p. 557.

[17] C. Royon, Acta Phys. Polon. B 39, 2339 (2008) [arXiv:0805.0261 [hep-ph]].

[18] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 99 (2007) 242002 [arXiv:0707.2374

[hep-ex]].

[19] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. D 77,(2008) 052004 [arXiv:0712.0604

[hep-ex]].

[20] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 102, 242001 (2009)

[arXiv:0902.1271 [hep-ex]].

[21] M.Albrow, arXiv:0909.3471

[22] Mike Albrow and Jim Pinfold, private communication.

[23] V. A. Khoze, A. D. Martin, M. G. Ryskin and W. J. Stirling, Eur. Phys. J. C 38 (2005) 475

[arXiv:hep-ph/0409037].

[24] J. Pumplin, Phys. Rev. D47 (1993) 4820.

[25] F. Yuan, Phys. Lett. B 510, 155 (2001) [arXiv:hep-ph/0103213].

[26] V. A. Petrov and R. A. Ryutin, JHEP 0408 (2004) 013 [arXiv:hep-ph/0403189];

V. A. Petrov, R. A. Ryutin, A. E. Sobol and J. P. Guillaud, JHEP 0506 (2005) 007

[arXiv:hep-ph/0409118].

[27] A. Bzdak, Phys. Lett. B 619 (2005) 288 [arXiv:hep-ph/0506101].

[28] M. Rangel, C. Royon, G. Alves, J. Barreto and R. B. Peschanski, Nucl. Phys. B 774, 53

(2007) [arXiv:hep-ph/0612297].

[29] R. S. Pasechnik, A. Szczurek and O. V. Teryaev, Phys. Lett. B 680 (2009) 62

[arXiv:0901.4187 [hep-ph]] and references therein.

[30] G. T. Bodwin, E. Braaten and G. P. Lepage, Phys. Rev. D 51 (1995) 1125 [Erratum-ibid. D

55 (1997) 5853] [arXiv:hep-ph/9407339].

[31] N. Brambilla, A. Pineda, J. Soto and A. Vairo, Rev. Mod. Phys. 77 (2005) 1423

[arXiv:hep-ph/0410047];

N. Brambilla and A. Vairo, Acta Phys. Polon. B 38, 3429 (2007) [arXiv:0711.1328 [hep-ph]].

[32] V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C 18, 167 (2000)

[arXiv:hep-ph/0007359].

– 28 –



[33] M. G. Ryskin, A. D. Martin and V. A. Khoze, Eur. Phys. J. C 54, 199 (2008)

[arXiv:0710.2494 [hep-ph]];

M. G. Ryskin, A. D. Martin and V. A. Khoze, Eur. Phys. J. C 60 (2009) 249

[arXiv:0812.2407 [hep-ph]].

[34] V.A. Khoze, A.D. Martin and M.G. Ryskin, JHEP 0605, 036 (2006) [arXiv:hep-ph/0602247].

[35] M. G. Ryskin, A. D. Martin and V. A. Khoze, Eur. Phys. J. C 60 (2009) 265

[arXiv:0812.2413 [hep-ph]].

[36] J. Bartels, S. Bondarenko, K. Kutak and L. Motyka, Phys. Rev. D 73 (2006) 093004

[arXiv:hep-ph/0601128].

[37] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008) and 2009 partial update

for the 2010 edition.

[38] L.D. Landau, Dokl. Akad. Nauk SSSR 60 (1948) 213;

C.N. Yang, Phys. Rev. 77 (1950) 242.

[39] D. Barberis et al. [WA102 Collaboration], Phys. lett. B440 (1998) 225; ibid. B422 (1998)

399;

A. Kirk et al. [WA102 Collaboration], arXiv:hep-ph/9810221.

[40] V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C 24, 581 (2002)

[arXiv:hep-ph/0203122].

[41] S. Aid et al. [H1 Collaboration], Nucl. Phys. B 472 (1996) 3 [arXiv:hep-ex/9603005].

[42] A. D. Martin and M. G. Ryskin, Phys. Rev. D 64, 094017 (2001) [arXiv:hep-ph/0107149].

[43] A. G. Shuvaev, K. J. Golec-Biernat, A. D. Martin and M. G. Ryskin, Phys. Rev. D 60,

014015 (1999) [arXiv:hep-ph/9902410].

[44] J. H. Kuhn, J. Kaplan and E. G. O. Safiani, Nucl. Phys. B 157, 125 (1979).

[45] R. Barbieri, R. Gatto and R. Kogerler, Bound Phys. Lett. B 60, 183 (1976).

[46] V. A. Novikov, L. B. Okun, M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and

V. I. Zakharov, Phys. Rept. 41, 1 (1978).

[47] F. E. Close, G. R. Farrar and Z. p. Li, Phys. Rev. D 55, 5749 (1997) [arXiv:hep-ph/9610280].

[48] R. Barbieri, M. Caffo, R. Gatto and E. Remiddi, Phys. Lett. B 95, 93 (1980).

[49] R. Alkofer and C. S. Fischer, Fizika B 13, 65 (2004) [arXiv:hep-ph/0309089].

[50] M. Gluck, E. Reya and A. Vogt, Z. Phys. C 67, 433 (1995).

[51] L. Frankfurt, C.E. Hyde, M. Strikman and C. Weiss, Phys. Rev. D75, 054009 (2007);

arXiv:0710.2942 [hep-ph];

M. Strikman and C. Weiss, arXiv:0812.1053 [hep-ph].

[52] E. Gotsman, E. Levin, U. Maor and J. S. Miller, Eur. Phys. J. C 57, 689 (2008)

[arXiv:0805.2799 [hep-ph]].

[53] H. A. Peng, Z. M. He and C. S. Ju, Phys. Lett. B 351, 349 (1995).

[54] E. Stein and A. Schafer, Phys. Lett. B 300, 400 (1993).

– 29 –



[55] T. Mori et al. [BELLE Collaboration], J. Phys. Soc. Jap. 76 (2007) 074102 [arXiv:0704.3538

[hep-ex]];

H. Nakazawa et al. [BELLE Collaboration], Phys. Lett. B 615 (2005) 39

[arXiv:hep-ex/0412058];

S. Uehara et al. [BELLE Collaboration], arXiv:0903.3697 [hep-ex].

[56] V. A. Khoze, A. D. Martin, R. Orava and M. G. Ryskin, Eur. Phys. J. C 19, 313 (2001)

[arXiv:hep-ph/0010163].

[57] L. A. Harland-Lang et al., in preparation.

[58] M. Albrow et al., CERN-LHCC-2006-039, CERN-LHCC-G-124,

CERN-CMS-NOTE-2007-002, Dec 2006;

G. Anelli et al. [TOTEM Collaboration], JINST 3 (2008) S08007.

[59] M. Albrow et al. [USCMS Collaboration], arXiv:0811.0120 [hep-ex];

J. W. Lamsa and R. Orava, arXiv:0907.3847 [physics.acc-ph].

[60] G. V. Pakhlova, arXiv:0810.4114 [hep-ex];

Phys. Atom. Nucl. 72 (2009) 482 [Yad. Fiz. 72 (2009) 518].

– 30 –


