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Abstract 

In the present experiments in HEL cells, we have investigated the requirement for a 

hyperpolarised resting membrane potential for the initial activation of the Ca2+ activated K+ 

channel, KCa3.1, following activation of the Ca2+ release activated Ca2+ (CRAC) entry 

pathway.  In intact cells, fluorimetric measurements of [Ca2+]i following thapsigargin-

mediated activation of CRAC entry revealed a sustained increase in [Ca2+]i.  Block of 

KCa3.1 by application of charybdotoxin resulted in a 50% reduction in the steady-state 

[Ca2+]i, consistent with the well established role for KCa3.1-mediated hyperpolarisation in 

augmenting CRAC entry.  Interestingly, subsequent depolarisation to 0 mV by application of 

gramicidin resulted in a fall in steady-state Ca2+ levels to values theoretically below that 

required for activation of KCa3.1.  Whole cell patch clamp experiments confirmed the lack of 

KCa3.1 activation at 0 mV following activation of the CRAC entry pathway, indicating an 

absolute requirement for a hyperpolarised resting membrane potential for the initial activation 

of KCa3.1 leading to hyperpolarsation and augmented Ca2+ entry.  Current clamp 

experiments confirmed the requirement for a hyperpolarised resting membrane potential in 

KCa3.1 activation by CRAC entry.  Given the critical role played by KCa3.1 and membrane 

potential in general in the control of CRAC-mediated [Ca2+]i changes, we investigated the 

hypothesis that inhibition of the CRAC-mediated changes in [Ca2+]i observed following 2-

APB addition may in part arise from direct inhibition of KCa3.1 by 2-APB.  Under whole 

cell patch clamp, 2-APB, at concentrations typically used to block the CRAC channel, 

potently inhibited KCa3.1 in a reversible manner (half maximal inhibition 14.2 µM).  This 

block was accompanied by a marked shift in the reversal potential to depolarised values 

approaching that set by endogenous membrane conductances.  At the single channel level, 2-

APB applied to the cytosolic face resulted in a significant reduction in open channel 
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probability and a fall in the mean open time of the residual channel activity.  Our data 

highlight the absolute requirement for a hyperpolarising resting membrane conductance for 

the initial activation of KCa3.1 by CRAC entry.  Additionally, our results document direct 

inhibition of KCa3.1 by 2-APB, thus highlighting the need for caution when ascribing the site 

of inhibition of 2-APB exclusively to the CRAC entry pathway in experiments where 

membrane potential is not controlled.
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1.  Introduction 

 Ca2+ entry mediated by depletion of endosomal Ca2+ stores in non-excitable cells is 

a ubiquitous mechanism leading to Ca2+ mediated down-stream signaling events.  The role 

of intracellular stores in regulation of the Ca2+ permeability of the plasma membrane was 

first highlighted by Putney and co-workers in 1986 [1].  Store operated Ca2+ entry (SOCE) 

as it has subsequently come to be known has since been under extensive investigation and has 

moved from the observation of augmented Ca2+ entry following depletion of endosomal 

Ca2+ stores [1], to detection of an inward Ca2+ current accompanying store depletion [2], to 

the more recent identification of several components of the transduction and pore-forming 

elements including Orai1, 2 and 3 and Stim1 and 2 which signal the Ca2+ loss from 

endosomal compartments to the Orai components in the plasma membrane [as reviewed in 

3].  The best electrophysiologically studied variant of the current is the calcium release 

activated Ca2+ (CRAC) channel, first isolated by Hoth and Penner [2] in rat basophilic 

leukemia cells and later by Zwiefach and Lewis [4] in Jurkat cells.  This current displays 

marked inward rectification thus making net Ca2+ entry particularly susceptible to 

depolarisation. 

 SOCE pathways and CRAC entry in particular, play important roles in health and 

disease [as reviewed in 5].  As such, Ca2+ entry pathways controlled by the Ca2+ status of 

intracellular Ca2+ stores are important targets for therapeutic modulation.  To date, high 

affinity, selective blockers of the signaling cascade leading to SOCE have remained elusive.  

Numerous organic compounds are known to block CRAC currents and inhibit elevations in 

[Ca2+]i ascribed to Ca2+ entry by these pathways [as reviewed in 5].  2-aminoethoxyphenyl 

borate (2-APB) is a well established blocker of CRAC currents [6,7,8].  Its ability to 

modulate CRAC currents is complex.  At low concentrations it has been shown to augment 
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channel conductance while at high concentrations it is inhibitory [7].  As this compound 

became more widely used as a SOC/CRAC entry blocker its off target effects began to mount 

up.  These include block of endosomal Ca2+ pumps [9], voltage-gated K+ channels [10], the 

non-selective cation channel TRPM7 [11], a Mg2+-inhibited K+ conductance described in 

human erythroleukemia (HEL) cells [12] and mitochondrial Ca2+ release [7].  Although it is 

well established to block CRAC currents at higher concentrations, its additional inhibitory 

influences make for cautious interpretation of effects observed during 2-APB application.  

This is particularly important when ascribing a site of action of this agent. 

 In the present experiments we have undertaken experiments to investigate the 

requirement for a hyperpolarised resting potential in ensuring adequate CRAC-mediated 

changes in [Ca2+]i for activation of KCa3.1 in HEL cells.  Our results highlight the absolute 

requirement for a hyperpolarised potential while confirming a critical role for the 

hyperpolarisation mediated by the Ca2+-activated K+ channel, KCa3.1 in maximising Ca2+ 

entry.  Importantly, we demonstrate that 2-APB potently inhibits KCa3.1, independent of its 

effects on CRAC channel function and propose that inhibition of KCa3.1 may underlie, in 

part, the inhibitory influence of 2-APB on Ca2+ elevations mediated by CRAC entry in 

experiments in which membrane potential is not controlled. 

 

2.  Materials and Methods 

2.1.  Reagents 

 NaCl and KCl were purchase from Fisher Scientific (Loughborough, Leicestershire, 

UK) or Sigma-Aldrich Ltd (Gillingham, Dorset, UK).  MgCl2, HEPES, N-methyl-D-

glucamine (NMDG+), EGTA, NaOH, KOH, DMSO, ethyl alcohol, gramicidin D and 2-

aminoethoxydiphenyl borate (2-APB), were purchased from Sigma-Aldrich Ltd.  CaCl2 was 

purchased from VWR International (Lutterworth, Leicestershire, UK).  D-glucose was 
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purchased from Fissons Scientific Apparatus (Loughborough, Leicestershire, UK).  

Thapsigargin and ionomycin were purchased from Merck Biosciences Calbiochem 

(Nottingham, Nottinghamshire, UK).  Charybdotoxin was purchased from Bachem (St. 

Helens, Merseyside, UK).  The acetoxymethyl ester of Fluo3 (Fluo3-AM) was purchased 

from TeFlabs (Austin, Tx, USA).  Pluronic was obtained from Molecular Probes (Leiden, 

NL).  2-APB and thapsigargin were made up as concentrated stocks in DMSO while 

ionomycin and gramicidin D were made up in ethyl alcohol.  Fluo3-AM was made up in a 

pluronic/DMSO solution.  

 

2.2.  Cell culture 

 HEL cells, a human erythroleukemia cell line [13] were originally obtained from the 

European Collection of Animal Cell Cultures (Porton Down, Salisbury, UK).  Cells were 

propagated in HCO3--buffered RPMI 1640 media supplemented with 10% fetal bovine 

serum, 4 mM L-glutamine, 100 U.ml- 1 penicillin and 50 µg.ml-1 streptomycin (all from 

Sigma-Aldrich Ltd., Dorset, UK or Invitrogen, Paisley, UK) in a humidified atmosphere of 

95% air, 5% CO2 at 37oC.  Cells grew in suspension and were passaged twice a week.  

 

2.3.  Solutions 

2.3.1.  Fluo3 measurements of [Ca2+]i  

 The basic extracellular Na+ solution had the following composition in mM; 145 

NaCl, 5 KCl, 1 CaCl2, 1 MgCl2, 10 Glucose, 0.1 EGTA, 10 HEPES.  The solution was 

titrated to pH 7.35 with NaOH.  Na+-free solution was made by equimolar replacement of 

Na+ with NMDG+.  This solution was titrated to pH 7.35 with NMDG+ free base.   
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2.3.2.  Whole cell patch clamp 

 For whole cell recording, the standard low Ca2+, KCl-based pipette solution 

contained (mM) 150 KCl, 0.15 EGTA, 1 MgCl2, 10 HEPES adjusted to pH 7.2 with KOH.  

This solution did not support activation of KCa3.1 in the absence of elevated cytosolic free 

Ca2+.  In a small subset of experiments EGTA was omitted from this solution as noted in the 

text.  In some experiments free Ca2+ was buffered to 5 µM.  This solution had the following 

composition in mM; 150 KCl, 5 EGTA, 4.8329 CaCl2, 1.0074 MgCl2, 10 HEPES adjusted to 

pH 7.2 with KOH.  The values for Ca2+ and Mg2+ are theoretical concentrations that must 

be added to yield 5 µM free Ca2+ and 1 mM free Mg2+, as determined by WEBMAXC with 

extended constants (http://maxchelator.stanford.edu/webmaxc/webmaxcE.htm).  The basic 

extracellular Na+ solution had the following composition in mM; 145 NaCl, 5 KCl, 1 CaCl2, 

1 MgCl2, 10 Glucose, 10 HEPES.  The solution was titrated to pH 7.35 with NaOH.  When 

required Ca2+ was omitted from the solution. 

 For current clamp experiments, the low Ca2+, KCl-based pipette solution contained 

(mM) 150 KCl, 0.1 EGTA, 2 MgCl2, 10 HEPES adjusted to pH 7.2 with KOH.  In some 

experiments EGTA was omitted from this solution.  The extracellular Na+ solutions were 

identical to that used in the whole cell voltage clamp experiments with the exception that the 

Ca2+-free solution was supplemented with 0.1 mM EGTA.  

 

2.3.3.  Excised inside-out single channel patch clamp recordings 

The NaCl-based pipette solution is identical to the standard NaCl-based extracellular 

solution used for whole cell recordings.  The standard KCl-based solution used to bath the 

cytosolic face of the excised patch had the following composition in mM; 150 KCl, 5 EGTA, 

4.8044 CaCl2, 5 EGTA, 5.0368 MgCl2, 10 HEPES and was adjusted to pH 7.2 by titration 



 9 

with KOH.  These theoretical CaCl2 and MgCl2 concentrations were added to yield 5 µM 

free Ca2+ and 5 mM free Mg2+ as determined by WEBMAXC with extended constants.  

When required the concentrations of total Ca2+ and Mg2+ were altered to yield solutions of 

defined free Ca2+ and Mg2+ in accordance with the values obtained from WEBMAXC with 

extended constants. 

 

2.3.4.  Solution changes and additions 

 In whole cell and excised patch clamp experiments solution changes were made by 

gravity fed superfusion of the chamber.  Under voltage clamp, thapsigargin was applied by 

superfusion of thapsigargin containing solution from a large bore pipette positioned close to 

the cell.  In current clamp experiments thapsigargin was applied by gravity fed superfusion of 

the chamber. 

 In cuvette based experiments reagents were added directly to the cuvette from 

concentrated stocks. 

 

2.4.  Patch clamp methods 

2.4.1.  Recording 

 Cells were added to a low volume plexiglass chamber mounted on the stage of an 

inverted microscope.  The bottom of the chamber was formed by adherence of a glass cover 

slip with silicone grease.  The chamber was grounded via a Ag/AgCl wire placed directly in 

the chamber downstream of the cells.  Tight seal whole cell patch clamp recordings in 

voltage and current clamp modes and excised single channel recordings were carried out 

using an Axopatch 200A amplifier (Molecular Devices, Union City, CA, USA).  70% series 

resistance compensation was achieved in whole cell recordings using the series resistance 

compensation feature of the amplifier.  Electrodes were pulled from filamented borosilicate 
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glass (Harvard Apparatus, Kent, UK) and the tips fire polished.  Electrodes had resistances of 

3 to 8 MΩ when filled with standard KCl-based internal for whole cell recordings and 10 to 

14 MΩ when filled with NaCl-based solution for excised patch recordings.  All experiments 

were performed at room temperature (20-24oC). 

 

2.4.2.  Data acquisition 

 Amplifier control and data acquisition were performed using Axograph 4.9 software 

(Axograph Scientific, Sydney, Australia) running on a Macintosh computer using a Digidata 

1322A 16 bit data acquisition system (Molecular Devices, Union City, CA, USA).  Analysis 

was performed using Axograph and custom macros and procedures written within IGOR Pro 

(Wavemetrics, Lake Oswego, OR, USA). 

 In whole cell voltage clamp recordings, 200 ms voltage ramps from -100 to +100 mV 

were applied every 3 s from a holding potential of -80 or 0 mV.  Between ramps the cell was 

held at the indicated holding potential.  The voltage clamp and current clamp data were 

filtered at 1 kHz using the 4 pole Bessel filter of the Axopatch 200A amplifier and acquired 

at 2 kHz.  Reversal potentials were extracted from each voltage ramp using a custom macro 

written in IGOR Pro.  All data presented are the raw whole cell currents uncorrected for the 

presence of background currents. 

 Excised single channel data were filtered at 1 kHz and acquired at 10 kHz. 

 

2.4.3.  Analysis 

 When required, single channel activity was quantified using all-points-amplitude 

histograms produced using the built in histogram routine within IGOR Pro with a current bin 

width of 0.05 pA.  The calculated amplitude histograms were fit to the sum of multiple 

Gaussian distributions using the multi-peak fitting routine within IGOR Pro as previously 
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reported [14.15].  The calculated areas, A, of the individual Gaussian peaks in the multipeak 

fit were taken directly from the output of the peak fitting routine and used to calculate NPo 

were N is the number of channels and Po is the open channel probability as previously 

reported by our laboratory [14,15].  Assuming all channels are identical and behave 

independently, NPo can be determined from the areas of individual Gaussian peaks using the 

following relationship [16] as modified from Selyanko et. al. [17] and Li et. al. [18]: 

 

 

 

where Ai is the area of the corresponding Gaussian peak for i open channels and N is the 

number of current levels in the patch as determined by the number of Gaussian peaks 

corresponding to multiples of the unitary single channel current. 

 For single channel open time analysis, the durations of channel openings were 

determined by detecting channel openings and closings using a 50% threshold crossing 

method [19] using a custom procedure written within IGOR Pro as previously reported [15].  

The mean open time was directly calculated from the observed distributions of open times 

using the output of the IGOR Pro procedure.  Mean open times were calculated from patches 

in which only a single channel was detected.  Prior to analysis, the original data filtered at 1 

kHz, was digitally filtered at 500 Hz using the Gaussian filter within Axograph.  This was 

necessary to minimise spurious events associated with the signal to noise ratio of our 

acquired data.  To ensure that brief openings associated with residual noise events did not 

bias the results, identical record lengths were analysed in the control and 2-APB conditions.  

All open events including the very briefest detectable events were included in the mean open 

time calculation.  Given the filter frequencies used in this analysis brief events will be under-

represented.  As a result, the mean open times are over estimates, particularly in the presence 
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of 2-APB where the channel openings were subsequently shown to be significantly shorter. 

 In the whole cell experiments initiated with KCl-based pipette solutions and NaCl-

based bath solutions, a +3 mV junction potential exists [20].  For the excised inside-out 

single channel data initiated with NaCl-based pipette solution and a KCl-based bath solution 

a -3 mV junction potential potential exists [20].  This results in all reported voltages being +3 

mV more positive than actually applied.  For presentation purposes, single channel data 

recordings have been smoothed using a binomial smoothing function within IGOR Pro.  With 

the exception of the data used in the open channel time analysis, which was additionally 

filtered at 500 Hz post acquistion, all other data used in our analyses was filtered only at the 

level of the Axopatch 200A amplifier. 

 

2.5.  Measurements of intracellular [Ca2+]i in cell suspensions 

 [Ca2+]i was measured fluorimetrically in cell suspensions using fluo3 as previously 

reported [21].  25 X 106 cells.ml-1 were incubated with 3 µM fluo3-AM (0.06% pluronic 

made up in DMSO) for 25 minutes at 37oC.  Cells were then centrifuged, resuspended in 

basic Na+ solution and stored in the dark at room temperature until required.  For 

intracellular Ca2+ measurements cells were centrifuged and added directly to a cuvette to 

give a final concentration of between 1 and  2 X 106 cells.ml-1 and fluo3 fluorescence 

monitored under continual stirring in a cuvette-based fluorescence spectrophotometer (Cairn 

Research Ltd, Faversham, Kent, UK) (Ex 488 nm, 10 nm half band width, Em 530 nm 

longpass, Comar Instruments, Cambridge, Cambridgeshire, UK).  The photomultiplier tube 

output was externally filtered a 15 Hz using a lowpass Bessel filter (Frequency Devices Inc., 

Haverhill, MA, USA) and sampled at 30 Hz using the same data acquistion hardware and 

software and computer control as employed for the patch clamp measurements.  To calibrate 
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the fluo3 signal the maximum fluorescence in the presence of saturating Ca2+ (Fmax ) and 

the minimum fluorescence in the complete absence of Ca2+ (Fmin ) is required.  At the end 

of each experiment maximum fluorescence was determined by the addition of ionomycin in 

the presence of 16 mM Ca2+.  This was followed by the addition of  8 mM Mn2+ leading to 

quenching of the fluo3 signal (FMn).  In cell free experiments the decline in fluorescence 

from Fmax observed by addition of Mn2+ is consistently 89% of the decline observed by 

complete removal of Ca2+ (Fmin) [21].  This relationship was used to calculate the minimum 

fluorescence value of fluo3 for each experiment.  [Ca2+]i for a given fluorescence (F) was 

then calculated according to the following relationship: 

 

     

Where Fmin is the calculated minimum fluorescence in the absence of Ca2+, Fmax is the 

maximum fluorescence in the presence of ionomycin and 16 mM extracellular Ca2+, and 390 

is the dissociation constant for fluo3 in nM as defined by the manufacturer. 

All experiments were performed at room temperature, 20-22oC. 

 

2.6.  Analysis of the concentration dependence of 2-APB block of KCa3.1 

 For determination of the concentration dependence of 2-APB block of KCa3.1 the 

magnitude of the whole cell current at 0 mV, extracted from voltage ramps applied every 

second, was normalised to the magnitude of the current in the absence of 2-APB and fit to the 

following modified Hill equation; 
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Where Baseline is the normalised 2-APB-insensitive whole cell current,  (1-Baseline) is the 

maximal inhibition of the 2-APB-sensitive current, K1/2 is the concentration of 2-APB that 

yields half maximal inhibition, and n is the apparent cooperativity of the process.  

 

2.7  Statistical analysis and presentation 

 Data are presented as the mean ± the SEM.  All error bars on graph symbols denote 

the SEM.  Differences were considered statistically significant at the p ≤ 0.05 level using 

paired Student’s T-tests or repeated measures ANOVAs with Tukey-Kramer multiple 

comparison tests used to determine pairwise differences when required. 

 

3.  Results 

3.1.  Reversal by 2-APB of the thapsigargin-mediated rise in [Ca2+]i in intact HEL cells 

 The influence of the established CRAC channel blocker 2-APB on Ca2+ signaling in 

HEL cells was investigated.  Thapsigargin-induced activation of the CRAC channel in HEL 

cells was accompanied by a robust increase in [Ca2+]i.  Figure 1A shows a representative 

experiment from a cell suspension where the CRAC entry pathway was activated by 

thapsigargin-mediated depletion of intracellular Ca2+ stores as previously reported by our 

laboratory [22].  Application of 75 µM 2-APB at the peak of the rise in Ca2+i resulted in a 

fall in free Ca2+ to near pre-thapsigargin levels.  Such observations are consistent with the 

established interpretation in the literature that 2-APB inhibits Ca2+ entry via block of the 

CRAC entry pathway [7].  In 9 experiments thapsigargin induced a 260± 56 nM increase in 

Ca2+i over resting levels.  75 µM 2-APB significantly reduced the Ca2+ rise to 22 ± 6 nM 
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over baseline values (p ≤ 0.05, n=9).  This represents a 90 ± 3 % decrease in the thapsigargin-

mediated rise in [Ca2+]i. 

  

 

3.2.  Effect of membrane potential on the thapsigargin-mediated changes in [Ca2+]i in intact 

cells 

 In contrast to the direct pharmacological inhibition of the CRAC channel by 2-APB, 

changes in membrane potential can also have marked influences on CRAC channel-mediated 

Ca2+ changes as a result of the electrogenic nature of the entry pathway and the inwardly 

rectifying current-voltage relationship [2,4,22].  The role of membrane potential modulation 

of CRAC-mediated Ca2+ entry in HEL cells is of particular importance given the depolarised 

resting membrane potential and the expression of the Ca2+-activated K+ channel, KCa3.1 

[12,14,15,23).  We have investigated the role of the resting membrane potential and 

subsequent hyperpolarisation driven by activation of the Ca2+-activated K+ channel, 

KCa3.1, in the activation and modulation of the elevation in [Ca2+]i mediated by 

thapsigargin.  In Figure 1B, 200 nM charybdotoxin, a potent inhibitor of KCa3.1 in HEL cells 

[14,23] was added near the peak of the rise in Ca2+i.  Addition of the toxin was accompanied 

by a marked fall in [Ca2+]i to a value approximately 50% of the Ca2+ rise.  In 9 experiments 

thapsigargin induced a 317 ± 27 nM increase in Ca2+ over resting levels.  Charybdotoxin 

significantly reduced this increase to 153 ± 15 nM, a 51 ± 3% decrease in the thapsigargin-

mediated rise in [Ca2+]i (p ≤ 0.05, n=9).  Charybdotoxin’s inhibitory influence on the Ca2+ 

response most likely arises from the inhibition of the hyperpolarising influence of KCa3.1 

activated by the rise in [Ca2+]i [14,23].  Assuming that 200 nM charybdotoxin maximally 

inhibits KCa3.1, the residual elevation in [Ca2+]i is accounted for by the maintenance of a 
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residual membrane potential sufficient to support net Ca2+ entry. 

 To substantiate this interpretation, we have exploited the use of gramicidin, a 

monovalent cation selective pore forming antibiotic [as reviewed in 24].  In standard 

extracellular Na+ solution gramicidin addition will clamp membrane potential at a value 

close to 0 mV, while in the absence of extracellular Na+ (substituted with the impermeant 

monovalent cation NMDG), gramicidin will hyperpolarise the membrane potential to the 

theoretical value of -88 mV (K+ equilibrium potential) [25,26].  Since the experiment 

presented in Panel B was perfomed in a Na+ containing solution, subsequent addition of 

gramicidin abolishes the transmembrane potential attributable to the residual membrane 

conductance.  This is accompanied by a fall in free Ca2+ towards pre-thapsigargin levels.  

Identical experiments were performed in the absence of extracellular Na+ (equimolar 

substitution with NMDG).  Again, charybdotoxin resulted in a marked fall in the 

thapsigargin-mediated rise in [Ca2+]i.  However, in contrast to the effect of gramicidin 

shown in the presence of extracellular Na+ (Figure 1B), subsequent addition of gramicidin 

resulted in a marked increase in [Ca2+]i consistent with gramicidin-mediated 

hyperpolarisation to the theoretical value of -88 mV (Figure 1C).  The mean data from 3 

independent experimental series are shown in Figure 1D.  Replacement of extracellular Na+ 

with NMDG+ had no significant effect on resting free [Ca2+], the peak increase in [Ca2+]i 

induced by thapsigargin or the magnitude of the fall in [Ca2+]i following charybdotoxin 

addition.  However, application of gramicidin resulted in a significantly greater steady-state 

[Ca2+] when applied in NMDGCl extracellular solution (p ≤ 0.05, n=3), a result we ascribe 

to the marked difference in membrane potential set by gramicidin in Na+ and NMDG+ 

solutions.  In NMDGCl solution the steady-state [Ca2+] after gramicidin addition was not 

significantly different from that measured in the presence of KCa3.1 activity at the peak of 
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the thapsigargin response. 

 These data highlight the established importance of KCa3.1-mediated 

hyperpolarisation in maximising net Ca2+ entry during activation of the CRAC entry 

pathway.  Importantly, these results highlight the need for a hyperpolarised resting membrane 

potential to ensure adequate Ca2+ entry sufficient for the activation of KCa3.1.  Abolishing 

this transmembrane potential with gramicidin resulted in free Ca2+ falling to 106 ± 2.6 nM 

(n=3), a value that is not expected to activate KCa3.1 [23,27,28,29]. 

 

3.3.  Membrane potential modulation of CRAC-mediated activation of KCa3.1 recorded 

under whole cell patch clamp 

 To more directly address the requirement for a hyperpolarised resting membrane 

potential for activation of KCa3.1 by CRAC Ca2+ entry, we have undertaken whole cell 

patch clamp experiments.  We monitored the whole cell current attributed to KCa3.1 during 

application of thapsigargin with the magnitude of the current providing an index of the sub 

membranous Ca2+ level rather than the measure of global Ca2+ reported in Figure 1.  By 

altering the holding potential between voltage ramps administered every 3 seconds and 

monitoring the magnitude of the KCa3.1 current it is possible to determine if a 

hyperpolarised membrane potential is required for the generation of sufficient CRAC entry 

for activation of KCa3.1.  In Figure 2 a cell was whole cell patched using KCl-based, low 

Ca2+ solution containing 154 mM KCl.  As noted in Materials and Methods, this solution has 

a resting free [Ca2+] that does not support activation of KCa3.1.  Importantly, solutions of 

near identical Ca2+ buffering capacity have been previously demonstrated by our laboratory 

to support robust Ca2+ signaling including receptor-mediated Ca2+ oscillations and 

oscillations in KCa3.1 activity [30,31,32].  Following transition to the whole cell 

configuration the cell was held at -80 mV and 200 ms voltage ramps from -100 to +100 mV 



 18 

administered every three seconds.  The magnitude of the ramp current at 0 mV was extracted 

from individual ramps and plotted in Panel A as a function of time.  We have chosen to plot 

the current at 0 mV since the pipette solution used in these experiments supports variable 

levels of activation of TRPM7 as previously reported by our laboratory [12].  Since TRPM7 

has a reversal potential near 0 mV, the magnitude of the outward current at this potential 

cannot be ascribed to TRPM7.  A representative IV relationship before application of 

thapsigargin is shown in Figure 2B1.  The traces labeled 1 through 4 in Panel B refer to the 

ramp currents at the indicated time points presented in Panel A.  Application of thapsigargin 

was accompanied by a marked increase in the 0 mV current magnitude (Panel A) consistent 

with the pronounced increase in ramp current shown in Panel B2.  This ramp current has the 

well defined characteristics of KCa3.1 in HEL cells as previously reported by our laboratory 

[14].  Changing the holding potential between ramps from -80 to 0 mV was accompanied by 

a large decline in the current to a new steady-state value near that recorded before 

thapsigargin application (as seen in Panels A and B3).  Such a finding is consistent with the 

fall in global [Ca2+]i observed in Figure 1 during gramicidin-induced clamp of membrane 

potential to 0 mV.  Returning the holding potential to -80 mV was associated with an increase 

in current, again, consistent with augmented Ca2+ entry and the activation of KCa3.1.  The 

extent of the return in current was variable, consistent with our finding of a marked cell to 

cell variability in the inactivation characteristics of KCa3.1 and possibly of the CRAC entry 

pathway its self.  To substantiate the role of modulation of Ca2+ entry in these holding 

potential changes in KCa3.1 activation, we subsequently removed extracellular Ca2+.  This 

resulted in a slow decline in KCa3.1 current as shown in Panel A at 0 mV and in Panel B4 

across the entire voltage range of the ramp.  The effect of 0 and -80 mV holding potentials on 

the magnitude of outward ramp current measured at 0 mV is summarised for 9 cells in Panel 

C.  The current at 0 mV is normalised to the peak current recorded at a holding potential of -
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80 mV during the initial application of thapsigargin.  0 mV holding potential resulted in a 

significant decline in the outward current at 0 mV to a value 13.7 ± 4.0% of the value 

recorded at  -80 mV (p ≤ 0.05, n=9).  The magnitude of the current recorded at a holding 

potential of 0 mV during thapsigargin application was not significantly different than that 

recorded at -80 mV in the absence of thapsigargin  (p ≥ 0.05, n=9).  Such a finding is 

consistent with no appreciable activation of KCa3.1 when the membrane potential was held 

at 0 mV, a result attributable to insufficient sub membranous Ca2+ levels for activation of 

KCa3.1.  In spite of the large inward chemical Ca2+ gradient, membrane hyperpolarisation is 

an absolute requirement for sufficient Ca2+ entry for the activation of KCa3.1. 

 Whole cell current clamp experiments were undertaken that further substantiate the 

critical role played by the resting membrane potential in the initial activation of KCa3.1.  In 

the experiment presented in Figure 3A a cell in whole cell current clamp mode was 

superfused with Ca2+-free Na+ solution containing 200 nM thapsigargin.  Prior to 

thapsigargin, the resting membrane potential was approximately -23 mV.  Depletion of 

intracellular Ca2+ stores was accompanied by a marked transient hyperpolarisation to 

approximately -84 mV followed by a return to a resting potential of approximately -19 mV.  

The transient nature of the hyperpolarisation is attributable to transient activation of the 

Ca2+-activated K+ conductance, secondary to the transient rise in free Ca2+ arising from 

extrusion of Ca2+ from the cytosol (see supplemental Figure S1).  In accordance with this 

interpretation, thapsigargin addition in the presence of extracellular Ca2+ is accompanied by 

a sustained hyperpolarisation consistent with sustained CRAC-mediated Ca2+ entry (see 

supplemental Figure S2).  In the experiment presented in Figure 3, re-introduction of 1 mM 

extracellular Ca2+ was accompanied by a marked hyperpolarisation of the cell to a value of -

84 mV, consistent with CRAC-mediated Ca2+ entry leading to activation of KCa3.1.  In a 
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subset of cells, (6 of 18), reintroduction of Ca2+ was not accompanied by hyperpolarisation.  

An example of such a response in shown in Figure 3B.  In this experiment thapsigargin 

application transiently hyperpolarised the cell from approximately -27 mV to -79 mV, 

followed by recovery of the potential to a value of -8 mV immediately before Ca2+ re-

introduction.  One explanation for the lack of hyperpolarisation following 

Ca2+ reintroduction is that net Ca2+ entry in this cell is inadequate to activate KCa3.1.  

Consistent with this hypothesis, application of a small injection current sufficient to 

hyperpolarise, and hence increase the Ca2+ driving force, was accompanied by a secondary 

hyperpolarisation that persisted when the injection current was removed.  This result is easily 

explained by the augmented Ca2+ entry accompanying the injection current-mediated 

hyperpolarisation leading to sufficient net Ca2+ entry for activation of KCa3.1.  We have 

compared the resting membrane potential immediately prior to Ca2+ re-introduction in cells 

that hyperpolarised with those that required current injection to facilitate hyperpolarisation.  

Cells that hyperpolarised without injection current had a membrane potential of -18.0  3.6 

mV (n=12).  In contrast, cells requiring an injection current had a significantly more 

depolarised potential of -5.8  1.9 mV (n=6, p ≤  0.05).  These data reinforce the requirement 

for adequate driving force to support sufficient Ca2+ entry for the initial activation of 

KCa3.1.  

 These whole cell patch clamp experiments were undertaken with a pipette solution 

containing 150 µM EGTA.  While this solution has been documented to support robust Ca2+ 

signaling [30,31,32], it was necessary to ensure that the inhibitory influence of depolarisation 

of KCa3.1 activation was not an effect arising from augmented exogenous Ca2+ buffering 

power.  Experiments were undertaken with a pipette solution of identical ionic composition 

but devoid of EGTA.  Under these conditions indistinguishable results were observed.  Figure 
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4 shows such an experiment.  Panel A shows the whole cell ramp currents at a holding 

potential of -80 and 0 mV following thapsigargin application.  Consistent with the data 

presented in Figure 2, a holding potential of 0 mV was accompanied by a marked decline in 

whole cell current and a shift in the reversal potential to a depolarised value.  The influence 

of membrane potential on KCa3.1 regulation was also investigated under current clamp in the 

same cell (Panel B).  The first segment of the recording in Panel B shows the transition from 

voltage clamp to current clamp following abolition of the KCa3.1 current by applying the 

voltage ramps from a holding potential of 0 mV.  Transition to current clamp from a holding 

potential of 0 mV was accompanied by an immediate shift in potential to approximately -30 

mV; a value set by the residual membrane conductances (see reversal potential in Panel A).  

This was followed by a secondary hyperpolarisation towards a value set by the activation of 

KCa3.1, driven by the Ca2+ entry supported by the hyperpolarised membrane potential.  To 

confirm this interpretation, the cell was again placed in voltage clamp and ramps applied 

from a holding potential of 0 mV to inactivate KCa3.1 (data not shown).  Upon return to 

current clamp the cell displayed a similar membrane potential of approximately -30 mV as 

shown in the second segment of the record in Panel B.  In this experiment, however, the cell 

was immediately depolarised to approximately 0 mV by the application of a small injection 

current of approximately 11 pA.  At 0 mV membrane potential no secondary 

hyperpolarisation was observed.  Removal of the injection current resulted in a small 

hyperpolarisation to approximately -25 mV and the development of the secondary 

hyperpolarisation consistent with sufficient Ca2+ entry and the activation of KCa3.1.  Taken 

in concert, these data demonstrate that the influence of depolarisation on KCa3.1 inhibition 

does not arise as a result of the presence of 150 µM EGTA in the internal pipette solution 

while highlighting the need for a hyperpolarised potential for sufficient Ca2+ influx to 

activate KCa3.1. 
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3.4. Direct inhibition by 2-APB of KCa3.1 recorded under whole cell patch clamp 

 Given the requirement for KCa3.1 activation for optimisation of CRAC entry, could 

the fall in [Ca2+]i observed during 2-APB addition have a component of block of KCa3.1?  

To address this question it is imperative that activation of KCa3.1 be independent of any 

CRAC entry which is well established to be inhibited by 2-APB [6,7,8].  In an effort to meet 

this criteria, we added 5 µM free [Ca2+] to the whole cell patch pipette (see Materials and 

Methods).  Following transition to the whole cell configuration, a robust KCa3.1 current was 

detected.  Figure 5A shows the time course of changes in the whole cell ramp current at 0 mV 

extracted from voltage ramps administered every 3 s following activation of KCa3.1.  

Changing the holding potential from -80 to 0 mV did not result in the significant decline in 

whole cell current observed during thapsigargin application as shown in Figure 2.  In fact, the 

current recorded at a holding potential of 0 mV was augmented in some cells over that 

recorded at -80 mV.  Such an observation is consistent with the modulation of the KCa3.1 

channel by depolarisation previously reported in HEL cells by our laboratory [14,15].  

Removal of extracellular Ca2+ had no significant effect upon the magnitude of the KCa3.1 

current consistent with the conclusion that CRAC entry has no detectable role in Ca2+-

mediated activation of KCa3.1 when cells are dialysed with 5 µM free [Ca2+] under the 

present conditions.  Under these conditions addition of 75 µM 2-APB was accompanied by 

near complete abolition of the outward current recorded at 0 mV and attributed to KCa3.1 as 

shown in Figure 6A.  Representative IV relationships before and during application of 2-APB 

at the indicated time points marked in Panel A, are shown in Panel B.  In Panel C we have 

summarised the influence of 75 µM 2-APB on the whole cell ramp current recorded at 0 mV 

in 8 cells.  The current at 0 mV has been normalised to the magnitude of the current at -80 

mV holding potential immediately prior to addition of 2-APB.  While changing the holding 
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potential from -80 to 0 mV resulted in a small increase in KCa3.1 in some cells as previously 

reported [14,15], this effect was not statistically significant in this data set.  Subsequent 

addition of 75 µM 2-APB resulted in a significant decline in the current at 0 mV to a value 

11.6 ± 4.5 % of the control value in the absence of 2-APB (p ≤ 0.05, n=8).  Washout of 2-

APB resulted in a return of the current to a value not significantly different from the pre-2-

APB level.  Inhibition of the current was associated with a depolarisation of the reversal 

potential by 35.4 ± 5.5 mV (n=8).  To exclude any possibility of a contribution of CRAC 

entry to the block observed by application of 2-APB, we repeated the experiments of Figure 6 

in the absence of extracellular Ca2+ with identical block of the current by 2-APB (data not 

shown).  Analysis of the whole cell IV relationships during 2-APB application provided no 

indication of voltage dependence of the 2-APB block. 

 The inhibitory sensitivity of KCa3.1 to block by 2-APB was determined and is 

presented in Figure 6D.  The magnitude of the whole cell current at 0 mV, extracted from 

voltage ramps applied every second, was normalised to the magnitude of the current in the 

absence of 2-APB and fit to the Hill equation described in Materials and Methods.  The solid 

line denotes the best fit of the data with K1/2 = 14.2 µM, n = 1.8 and Baseline = 0.05 (n=4 to 

8 cells for each data point). 

 

3.5.  Inhibition by 2-APB of KCa3.1 single channel open probability 

 To further substantiate the direct inhibition of KCa3.1 by 2-APB, the effects of this 

agent on single channel activity were investigated in the excised, inside out patch clamp 

configuration.  Channel activity attributable to KCa3.1 was confirmed using the Ca2+ 

dependence of the activity, the magnitude of the unitary current at 0 mV holding potential, a 

negative reversal potential and the open channel kinetics, in accordance with our previous 

single channel characterisation of the charybdotoxin and TRAM-34-sensitive channel in HEL 
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cells [14,15].  Figure 7A shows the single channel activity recorded in a representative 

excised patch at a holding potential of 0 mV.  The pipette contained standard extracellular 

NaCl solution identical to that used in the whole cell experiments presented earlier while the 

cytosolic face of the patch was superfused with KCl-based extracellular solution having a 

free Ca2+ concentration of 5 µM and a free Mg2+ concentration of 5 mM (see Materials and 

Methods).  The Ca2+ dependence of the channel activity was first determined by superfusing 

the patch with a KCl-based solution having a free [Ca2+] of 50 nM.  This solution resulted in 

complete cessation of channel activity (data not shown).  In addition, the channel displayed a 

highly negative reversal potential consistent with a strongly selective K+ channel (data not 

shown).  Application of 75 µM 2-APB to the cytosolic face of the patch was associated with 

a marked reduction in channel activity that was at least partially reversible upon wash-off.  

Representative channel activity at the indicated times are shown at higher temporal resolution 

in Panel A.  To quantify the extent of the block of channel activity we have determined the 

NPo value; the product of the channel number and the open channel probability, in the 

absence and presence of 2-APB.  All-points-amplitude histograms were constructed from 

segments of the trace immediately before and during peak 2-APB block.  The data were fit to 

multiple Gaussian distributions and NPo calculated as described in Materials and Methods.  

The results for the experiment shown in Figure 7A are shown in Panel B.  In the absence of 

2-APB NPo was 0.76.  This has reduced to 0.04 in the presence of 2-APB.  The results of 2-

APB application in 8 independent experiments is shown in Panel C.  To take into account the 

variability in channel number in the different patches, NPo in the presence of 2-APB was 

normalised to that measured in its absence.  In the presence of 75 µM 2-APB, NPo was 

significantly reduced from 1 to 0.09 ± 0.02 (p ≤ 0.05, n=8).  Wash-off of 2-APB was 

accompanied by variable degrees of recovery of the channel activity as indicated by the large 

SEM. 
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3.6.  Modulation by 2-APB of the single channel open time distribution of KCa3.1 

 A close inspection of the residual channel activity observed during exposure to 2-

APB suggested that the opening events were of shorter duration than control opening events 

(see Figure 7A; higher temporal resolution channel activity).  We have undertaken a 

simplified kinetic analysis to quantify the mean open times in the absence and presence of 2-

APB.  Open time distributions in the absence and presence of 2-APB were created for 

experiments in which only a single channel was present.  The duration of channel openings 

were determined using a 50% threshold crossing method (see Materials and Methods).  

Representative analyses in the absence and presence of 2-APB in a single patch are shown in 

Figure 8A and B.  In this experiment the mean open time (To) was calculated to be 6.7 ms in 

the absence of 2-APB (Panel A) and 2.8 ms in its presence (Panel B).  As a result of the filter 

frequency used in the experiments and the need to filter post acquisition to reduce detection 

of false opening events associated with the signal to noise characteristics of the recording, 

brief openings are under-estimated in the distributions.  This is particularly so in the presence 

of 2-APB where openings are much briefer.  As such, our calculated mean open times should 

be considered as over-estimates.  In spite of this caveat we found that the mean open time in 

the presence of 2-APB was significantly reduced by 52.8 ± 3.1 % from a value of 5.3 ± 0.7 

ms in the absence of 2-APB to 2.5 ± 0.2 ms in its presence (p ≤ 0.05, n=5) (Panel C).        

  

4.  Discussion 

 The present experiments in HEL cells document an absolute requirement for a 

hyperpolarised membrane potential for the onset activation of KCa3.1 leading to the 

augmented Ca2+ entry driven by a secondary hyperpolarisation.  Additionally, our results 

highlight significant direct inhibition of the Ca2+-activated K+ channel KCa3.1 by the 



 26 

established CRAC channel blocker 2-APB. 

 The importance of KCa3.1 in augmenting Ca2+ entry is well established in non-

excitable cells [33,34,35] and the importance of KCa3.1 in augmenting Ca2+ entry in HEL 

has been previously proposed [23].  However, the physiological relevance of this mechanism 

in HEL cells was uncertain since the authors reported that KCa3.1 was not endogenously 

active.  Our present data, and previous work from our laboratory [14,15], have demonstrated 

the constitutive expression of KCa3.1 and the present data strongly reinforces the 

physiological importance of this channel in the optimisation of Ca2+ entry mediated by 

depletion of endosomal Ca2+ stores.  In contrast to previous investigations of the importance 

of KCa3.1 in augmenting CRAC-mediated Ca2+ entry, the focus of our investigations 

centered upon the onset activation of this channel and the importance of membrane potential 

in ensuring adequate Ca2+ entry for initiate of KCa3.1 channel activation.  We have found 

that in intact HEL cells, depolarisation to 0 mV was accompanied by a fall in free Ca2+ to a 

value not expected to activate KCa3.1 [23,28,29]  (Figure 1D).  We have also shown using 

whole cell patch clamp that during activation of CRAC entry, a membrane potential of 0 mV 

is insufficient to elevate sub membranous free Ca2+ to levels required for KCa3.1 activation.  

Thus, a hyperpolarised resting membrane potential is an absolute requirement for onset 

activation of KCa3.1 in spite of the presence of a large inward Ca2+ gradient. 

 

4.1.  Feed-forward control of Ca2+ entry by KCa3.1-mediated hyperpolarisation 

 The role of KCa3.1-mediated hyperpolarisation in the control of Ca2+ entry is easily 

described by a simple feed-forward mechanism.  In this scheme, a sufficient resting 

membrane potential is required to support adequate Ca2+ entry leading to activation of 

KCa3.1, hyperpolarisation and augmented Ca2+ entry.  In fact, the data presented in Figure 
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1C is consistent with such a simple model.  In this experiment the thapsigargin-mediated 

changes in [Ca2+]i were biphasic.  An initial rise in [Ca2+]i following addition of 

thapsigargin was followed by a secondary rise which may be attributable to activation of 

KCa3.1 leading to hyperpolarisation and augmented net Ca2+ entry.  Consistent with this 

interpretation, the secondary rise in [Ca2+]i was abolished by addition of charybdotoxin as 

evident in Figure 1B and C.  We have also performed preliminary experiments in which 

membrane potential was recorded under whole cell current clamp while simultaneously 

monitoring [Ca2+]i using fluo3 dialysed into the cell from the patch pipette.  Like the intact 

cell suspension experiments of Figure 1, the rise in [Ca2+]i was frequently biphasic with the 

secondary rise in [Ca2+]i being associated with a pronounced hyperpolarisation (see 

supplemental Figure S3). 

 To more directly investigate the role of membrane potential in the CRAC-mediated 

initial activation of KCa3.1 we employed measurements of the KCa3.1 current under whole 

cell voltage clamp.  As noted above, these experiments demonstrate the absolute requirement 

for a negative potential for KCa3.1 activation.  However, voltage clamp investigations of a 

feed-forward membrane potential mechanism regulating Ca2+ entry have a serious potential 

limitation.  Voltage clamp effectively removes the feed-forward mechanism, since voltage is 

not allowed to change with any changes in [Ca2+]i.  We have used the lack of detection of a 

measureable KCa3.1 current as evidence that the obligatory hyperpolarisation required to 

initiate the feed-forward process would not be evoked.  To ensure that our ability to detect 

changes in KCa3.1 does not underlie our finding of a requirement for hyperpolarisation, we 

also undertook current clamp experiments.  Under current clamp, membrane potential is free 

to change in response to even modest changes in [Ca2+]i should they activate levels of 

KCa3.1 below our level of detection sensitivity in voltage clamp.  Experiments such as those 
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presented in Figure 4B concur that at 0 mV, insufficient Ca2+ entry exists to support 

activation of KCa3.1 and subsequent hyperpolarisation; a surprising result considering the 

sustained inward chemical gradient for Ca2+.  Additionally, under current clamp, we 

observed a subset of cells that did not hyperpolarise in response to Ca2+ reintroduction after 

activation of the CRAC pathway (Figure 3B).  Consistent with this arising from insufficient 

Ca2+ entry, hyperpolarisation mediated by current injection gave rise to a secondary 

hyperpolarisation that was sustained after termination of the injection current.  We propose 

that this arises as a result of the augmented Ca2+ entry during current injection and the 

initiation of the feed-forward influence of voltage on secondary Ca2+ entry. 

The temporal changes in membrane potential recorded under current clamp also 

support the existence of a feed-forward mechanism controlling Ca2+ entry.  The 

hyperpolarisation observed during Ca2+ reintroduction frequently showed an initial 

hyperpolarising phase that gradually increased leading to a rapid hyperpolarisation as can be 

seen in Figures 3A and 4B.  The exact origin of the slower initial phase of hyperpolarisation 

is unclear.  However, modest Ca2+ entry, sufficient to activate a small subset of KCa3.1 

channels localised to Ca2+ entry channels could give rise to the secondary rapid phase of 

hyperpolarisation via the simple feed-forward mechanism proposed.  The kinetics of the 

change in membrane potential are expected to be altered by the resting potential and hence 

the initial rate of change of [Ca2+]i.  The membrane potential required to facilitate the 

required Ca2+ elevation necessary for activation of KCa3.1 will, however, be a function of 

the degree of CRAC channel expression and activation, and the effectiveness of Ca2+ 

extrusion mechanism.  It is also important to bear in mind that the sensitivity of Ca2+ entry to 

membrane potential is a nonlinear relationship given the inward rectification of the CRAC 

pathway in HEL cells [22] and other cell types [2,4].  As a result, small changes in potential 
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may give rise to large changes in [Ca2+]. 

 

4.2.  Implications of 2-APB block of KCa3.1 

 It is well established that 2-APB is a blocker of the CRAC current [6,7,8].  However, 

the importance of membrane potential in the control of elevations in [Ca2+]i may in part 

underlie the fall in [Ca2+]i associated with 2-APB application in HEL and other cells types.  

2-APB would be expected to modulate CRAC-mediated Ca2+i levels via block of the 

accompanying hyperpolarisation in cells types where KCa3.1 plays an important role in the 

feed-forward regulation of Ca2+ entry.  Such a proposal requires that 2-APB sufficiently 

blocks KCa3.1 to give rise to a reversal of the hyperpolarisation.  In cells with modest 

depolarising conductances, potent block of KCa3.1 may be required.  Our data presented in 

Figure 1B and C demonstrates the influence of block of KCa3.1 by charybdotoxin on 

[Ca2+]i.  We also found an approximately 35 mV depolarising shift in the reversal potential 

in the presence of 75 µM 2-APB indicating that this concentration sufficiently inhibits 

KCa3.1, thereby reducing the driving force for Ca2+ entry.  In fact, the dose response 

relationship presented in Figure 6D indicates that lower concentrations of 2-APB are 

expected to give similar effects.  

 Multiple reports in the literature have ascribed the fall in free Ca2+i and/or the decline 

in KCa3.1 current observed following application of 2-APB exclusively to its inhibitory 

effect on SOC/CRAC entry.  Gao and co-workers [33] have demonstrated the importance of 

KCa3.1 in augmenting Ca2+ entry in human macrophages with the authors demonstrating a 

significant hyperpolarisation driven by this channel during activation of the CRAC entry 

pathway following UTP addition.  Additionally, the authors demonstrate the importance of 

the charybdotoxin-sensitive KCa3.1 current in the maintenance of elevated steady-state 
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[Ca2+]i.  However, the decline in free Ca2+i and the reversal of the KCa3.1-mediated 

hyperpolarisation observed following 50 µM 2-APB addition was ascribed exclusively to 

block of the CRAC pathway.  Given our finding of direct block of the hyperpolarising current 

by this concentration of 2-APB, the mechanism of block by 2-APB of Ca2+ entry and the 

role of direct membrane potential modulation by 2-APB in human macrophages remains 

unclear.  A similar conclusion can be drawn from experiments performed in rat microglial 

cells [29].  The authors demonstrate the presence of KCa3.1 and highlight its role in 

augmenting changes in [Ca2+]i mediated by UTP.  Again, the mechanism of block of Ca2+ 

entry and KCa3.1 currents measured directly under whole cell patch clamp conditions was 

ascribed exclusively to 2-APB (50 µM) block of Ca2+ entry.  It remains to be determined if, 

like in HEL cells, 2-APB may contribute to Ca2+ signaling via direct block of KCa3.1 in 

other cells types. 

 In addition to our present results with 2-APB, the CRAC channel blocker BTP2 

[36,37], a 3,5-bistrifluoromethyl pyrazole derivative, has also been implicated in control of 

Ca2+ signaling via direct modulation of membrane potential.  However, in contrast to direct 

inhibition of a hyperpolarising effect, as we describe for 2-APB, BTP2 has been proposed to 

directly activate TRPM4, a depolarising conductance [38], at a concentration lower than that 

required to inhibit CRAC currents [37].  It is the subsequent depolarisation that has been 

proposed to underlie the inhibitory effect of BTP2 on Ca2+ influx and interleukin-2 

production in Jurkat cells when used at low concentrations [37]. 

 

4.3.  Promiscuous and complex modulation of ion transport processes by 2-APB  

 In addition to block of the CRAC channel, 2-APB is also known to block numerous 

ion transport processes of diverse function.  These include block of endosomal Ca2+ pumps 



 31 

[9], voltage-gated K+ channels [10], the non-selective cation channel TRPM7 [11] and a 

Mg2+-inhibited K+ conductance described in HEL cells [12].  In spite of these documents 

actions, 2-APB block of Ca2+ elevations is still used as evidence of SOC/CRAC entry 

involvement.  Our data not only highlight the inhibitory influence of 2-APB on KCa3.1 but 

provides an experimental framework whereby block of this channel can give rise to a decline 

in free Ca2+ levels mediated by CRAC entry without direct inhibition of the CRAC pathway. 

 The site of block of KCa3.1 by 2-APB is unclear.  In the majority of our experiments 

2-APB was added to the extracellular solution, giving rise to a rapid and potent inhibition of 

both the elevation in [Ca2+]i mediated by thapsigargin and the whole cell KCa3.1 current 

accompanying whole cell dialysis with solutions containing high free Ca2+.  However, 

application of 2-APB to the cytosolic face of excised patches also resulted in a reduction in 

open channel probability and a decline in the mean open time of the residual channel activity.  

Interestingly, these effects seems to develop with an apparently longer time course.  

However, the kinetics of the inhibition were not studied in detail as a result of the limitations 

of our solution exchange procedures.  Given the membrane permeability of 2-APB it is 

difficult to conclude whether the site of action is extracellular or intracellular.  An 

extracellular site of action may account for less than 100% inhibition of the single channel 

open probability since diffusion across the membrane may give rise to a lower concentration 

at the extracellular face and a slower development of channel inhibition. 

 The mode or modes of action of 2-APB modulation of ion channels are complex.  At 

high concentrations it blocks CRAC current activation [6,7,8] while at low concentrations it 

has been reported to augment CRAC currents in Jurkat cells [7].  However, the potentiating 

effect of low doses of 2-APB appears to be cell type specific [6,7,8].  High concentrations of 

2-APB are also known to activate TRPV channels [39,40] while additional work has shown 

that at high concentrations this agent activates Orai3 channel homologues without a need for 
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Ca2+-store depletion and presumably STIM1 engagement [41,42,43], giving rise to a 

nonselective cation current displaying both inward and outward rectification; a current clearly 

distinct from the highly Ca2+ selective CRAC current. 

 While 75 µM 2-APB markedly inhibits KCa3.1, lower doses reported to block the 

CRAC pathway also significantly inhibit the channel (Figure 6D) and blocked the CRAC 

entry pathway (see supplemental data Figure S4).  Our estimated concentration yielding half 

inhibition of KCa3.1 is 14.2 µM.  Inhibition of the CRAC current has been reported to have a 

half inhibition concentration of 5.5 µM in RBL cells [8] and 9.6 µM in Jurkat cells [7].  Thus, 

2-APB is slightly more potent at blocking CRAC currents than it is at blocking KCa3.1 

currents.  However, at concentrations typically used in experiments designed to abolish Ca2+ 

entry mediated by CRAC and SOCE [29,33,44], KCa3.1 also undergoes near complete 

inhibition.  

 Like the complex effects of low doses of 2-APB on the modulation of the CRAC 

pathway in Jurkat cells [7], low doses caused somewhat confusing results in a small number 

of cells during investigations of inhibition of KCa3.1.  In some experiments 5 µM 2-APB 

caused an inhibition of KCa3.1 followed by a potentiation during application or a 

potentiation following removal of the drug.  However, this effect was inconsistent.  As a 

result, for the construction of the dose response relationship presented in Figure 6D the data 

for 5 µM 2-APB was taken from experiments in which there was no significant modulation 

of the current during or after wash-off of 2-APB.  The origin of this low dose effect is 

unclear.  On one hand it may be indicative of complex interactions of low doses of 2-APB 

similar to those reported for CRAC currents [7].  Alternatively, the complex changes in 

KCa3.1 current observed in some experiments may arise from 2-APB-independent 

modulation of the channel by additional factors.   The lack of consistency of this effect makes 

investigations of the phenomena difficult. 
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4.4.  Importance of the resting membrane potential in cells of leukemic origin 

 The importance of ion channels in augmenting the Ca2+ driving force is well 

established in non-excitable cells.  Numerous ion channels such as the voltage-dependent K+ 

channel Kv1.3, [45], the intermediate and small conductance Ca2+-activated K+ channels 

including KCa3.1 [45,46,47,48] and a swelling-induced chloride conductance [49,50] have 

all been proposed to augment Ca2+ entry via their ability to hyperpolarise the membrane 

potential. 

 Our demonstration that 0 mV is unable to support sufficient Ca2+ entry for activation 

of KCa3.1 in HEL cells is, in our mind, surprising given the large residual chemical gradient.  

However, this is accounted for by the inwardly rectifying nature of the CRAC pathway as 

discussed above.  The absolute requirement for a hyperpolarised potential has important 

implications for Ca2+ signaling in leukemic cells.  Kapural and coworkers [51] have 

demonstrated suppression of conventional voltage-gated K+ channel function and membrane 

depolarisation in megakaryocytes from patients with myelogenous leukemia.  The authors 

also documented the absence of this channel in the leukemic cell lines HEL and CHRF-288-

11, an observation substantiated by work from our laboratory [12 and the present study].  In 

spite of the absence of delayed rectifier type channel activity and any other conventional K+ 

channel activity, we found that both HEL and CHRF-288-11 cells displayed a negative 

membrane potential [12].  We have previously reported that the conductance setting this 

negative resting potential was inhibited by elevated free Mg2+i but that the channel was 

active at physiological free Mg2+ concentrations giving rise to our designation of this as a 

Mg2+ inhibited potassium (MIP) current [12].  Importantly, we have reported that HEL cells 

display a negative resting potential under conditions that support activation of the non-
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selective cation channel TRPM7 [12] which has a reversal potential near 0 mV given its non-

selective cation permeability [52,53].  We propose that in the face of constitutive activation 

of TRPM7, the MIP conductance plays a critical role in ensuring a sufficient hyperpolarised 

resting potential to support onset activation of KCa3.1 during CRAC channel activation. 

 

5. Conclusions 

 Our results highlight the absolute requirement for membrane hyperpolarisation for 

adequate Ca2+ entry leading to KCa3.1 activation.  These results highlight the critical 

importance of the hyperpolarising MIP conductance described in leukemic cell lines [12] for 

the initiation of optimum Ca2+ signaling events.  Additionally, the present results 

demonstrate inhibition of KCa3.1 by 2-APB and highlight the need for caution when 

interpreting the site of action of 2-APB in cells expressing KCa3.1. 

 

 

Figure Legends 

Fig. 1. Effect of 2-APB and membrane potential on thapsigargin-mediated elevations in 

[Ca2+]i in cuvette suspensions of HEL cells.  (A-C) Fluo3 loaded cells were suspended in 

NaCl or NMDGCl-based extracellular solutions containing 1 mM Ca2+.  Where indicated, 

200 nM thapsigargin, 75 µM 2-APB, 200 nM charybdotoxin (CTX) and 200 nM gramicidin 

were added.  All experiments were performed at 20-22oC. (D) Summary of the effect of 

changes in membrane potential induced by charybdotoxin and gramicidin addition in NaCl or 

NMDGCl-based solutions.  &, #, and *, significantly different at p ≤ 0.05, n=3. 

 

Fig. 2. Effect of holding potential on the magnitude of the KCa3.1 current stimulated by 

CRAC entry.  A cell was superfused with standard extracellular NaCl-based solution 
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containing 1 mM Ca2+ and whole cell patched using a low Ca2+, KCl-based pipette solution.  

The indicated 200 ms voltage ramps from -100 to +100 mV were administered every 3 

seconds from a holding potential of -80 or 0 mV.  (A) The magnitude of the whole cell ramp 

current at 0 mV was extracted from individual ramps and plotted as a function of time.  

Where indicated the cell was superfused with NaCl-based solution containing 1 µM 

thapsigargin.  Holding potential (HP) and extracellular Ca2+ were changed as indicated.  (B) 

representative ramp currents applied from holding potentials of -80 or 0 mV.  The traces 

labeled 1 through 4 are the ramp currents at the indicated time points presented in Panel A.  

(C) Summary of the effect of holding potential on the magnitude of the KCa3.1 current 

stimulated by CRAC entry.  The ramp current at 0 mV has been normalised to the ramp 

current at 0 mV recorded at a holding potential (HP) of -80 mV during addition of 1 µM 

thapsigargin.  & and *, significantly different at p ≤ 0.05, n=9. 

 

Fig. 3. Current clamp measurements of membrane hyperpolarisation mediated by activation 

of KCa3.1.  Cells were whole cell patched and membrane potential monitored under current 

clamp.  The cells were superfused with 200 nM thapsigargin in Ca2+-free Na+ solution as 

noted.  Where indicated the solution was changed to Na+ solution containing 1 mM Ca2+.  

Where indicated in Panel B current was transiently injected to hyperpolarise the cell.  

 

Fig. 4. Effect of holding potential on the magnitude of the KCa3.1 conductance stimulated by 

CRAC entry in the absence of intracellular EGTA.  A cell was superfused with standard 

extracellular NaCl-based solution containing 1 mM Ca2+ and whole cell patched using a low 

Ca2+, KCl-based pipette solution devoid of added EGTA.  (A) Representative ramp currents 

applied from holding potentials of -80 or 0 mV.  200 ms voltage ramps from -100 to +100 

mV from the indicated holding potentials were administered every 3 seconds.  (B) The same 
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cell used in the voltage clamp experiments of Panel A was placed in current clamp after 

inhibition of KCa3.1 mediated by a holding potential of 0 mV.  The start of the record in 

Panel B shows the transition from voltage clamp (0 mV holding potential) to current clamp.  

The second section of Panel B shows a similar transition from voltage clamp to current clamp 

with the exception that a small positive injection current (approximately 11 pA) was quickly 

applied to depolarise the cell to approximately 0 mV.  Where indicated the injection current 

was turned off. 

 

Fig. 5. Effect of holding potential on the magnitude of the KCa3.1 current activated by 5 µM 

cytosolic Ca2+.  A cell was superfused with standard extracellular NaCl-based solution 

containing 1 mM Ca2+ and whole cell patched using a KCl-based pipette solution with a free 

Ca2+ concentration of 5 µM.  200 ms voltage ramps from -100 to +100 mV were 

administered every 3 seconds from a holding potential of -80 or 0 mV.  (A) The magnitude of 

the whole cell ramp current at 0 mV was extracted from individual ramps and plotted as a 

function of time.  Holding potential (HP) and extracellular Ca2+ were changed as indicated.  

(B) Representative ramp currents applied from holding potentials of -80 or 0 mV.  The traces 

labeled 1 through 3 are the ramp currents at the indicated time points presented in Panel A. 

 

Fig. 6. Block of whole cell KCa3.1 current by 2-APB.  A cell was superfused with standard 

extracellular NaCl-based solution containing 1 mM Ca2+ and whole cell patched using a 

KCl-based pipette solution with a free Ca2+ concentration of 5 µM.  200 ms voltage ramps 

from -100 to +100 mV were administered every 3 seconds from a holding potential of -80 or 

0 mV.  (A) The magnitude of the whole cell ramp current at 0 mV was extracted from 

individual ramps and plotted as a function of time.  Holding potential (HP) was changed and 

75 µM 2-APB added as indicated.   (B) Representative ramp currents in the absence and 
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presence of 2-APB,  The traces labeled 1 and 2 are the ramp currents at the indicated time 

points presented in Panel A.  (C)  Summary of the effect of changes in holding potential and 

addition of 75 µM 2-APB on the ramp current at 0 mV.  The ramp currents at 0 mV were 

normalised the magnitude of the current at a -80 mV holding potential (HP).  @,* and &, 

significantly different at p ≤ 0.05, n=8.  (D) Degree of KCa3.1 inhibition by 2-APB.  The 

current at 0 mV in the presence of 2-APB was normalised to the current in its absence.  The 

solid line is the best fit to the Hill equation described in Materials and Methods with K1/2 = 

14.2 µM, n = 1.8 and Baseline = 0.05.  n=4 to 8 for each data point. 

 

Fig. 7. Block by 2-APB of KCa3.1 single channel activity.  Excised patch recording of 

KCa3.1 activity.  The pipette solution was the 1 mM Ca2+, NaCl-based extracellular solution 

used in Fig. 2, 4 and 5.  The cytosolic face of the patch was superfused with a KCl-based , 5 

µM free Ca2+ solution identical to that used as the whole cell pipette solution used in Figs. 4 

and 5.  (A) Single channel activity at 0 mV holding potential in a patch containing 2 apparent 

channels.  Where indicated, the patch was superfused with solution containing 75 µM 2-APB.  

Higher temporal resolutions segments of channel activity are shown in the lower traces.  The 

closed state, c, and open channel current levels are denoted on the left of the traces.  (B)  All-

points-amplitude histograms in the absence and presence of 2-APB.  Identical record lengths 

immediately before and during peak 2-APB inhibition were used to construct the histograms.  

Histograms were fit to the sum of multiple Gaussian distributions and NPo calculated as 

described in Materials and Methods.  i is the number of single channel current levels.  (C) 

Summary of the effect of 75 µM 2-APB inhibition of the open channel probability of 

KCa3.1.  NPo was normalised to the value in the absence of 2-APB (Pre-2-APB).  * and &, 

significantly different at p ≤ 0.05, n=8. 
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Fig. 8. Effect of 2-APB on single channel mean open times.  Open time distributions were 

determined for identical segment lengths in the absence and presence of 75 µM 2-APB in 

patches containing a single channel as described in Materials and Methods.  (A). Open time  

distributions in a representative patch.  To, the mean open time was calculated as the mean of 

all open events of all durations.  (B) Summary of the effect of 75 µM 2-APB on the mean 

open time.  *, significantly different at p ≤ 0.05, n=5. 

 

Supplemental Fig. S1.  Comparison of the initial rise in [Ca2+]i mediated by thapsigargin 

addition in the presence and absence of 1 mM extracellular Ca2+.  Fluo3 loaded cell 

suspensions were added to a cuvette under continual stirring and 200 nM thapsigargin added 

were indicated.  The data is presented as raw photomultiplier tube output.  The traces have 

been scaled to ensure identical Fmax to FMn voltage ranges thus ensuring identical dynamic 

fluorescence ranges for each experiment.  For ease of comparison of the magnitude and rate 

of change in fluorescence the traces have been aligned. 

 

Supplemental Fig. S2.  Current clamp measurements of membrane hyperpolarisation 

mediated by activation of KCa3.1.  (A) A cell was whole cell patched and membrane 

potential monitored under current clamp.  The cell was superfused with 200 nM thapsigargin 

in Ca2+-containing Na+ solution as noted.  Where indicated Ca2+ was removed or added to 

the Na+ solution. 

 

Supplemental Fig. S3.   Simultaneous measurement of fluo3 fluorescence and membrane 

potential under whole cell current clamp.  A single cell was whole cell patched with a low 

Ca2+, KCl-based solution supplemented with 50 µM fluo3 free salt.  The solution is identical 

to that used in our thapsigargin whole cell patch clamp experiments with the exception that 
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50 µM EGTA was replaced with 50 µM fluo3.  Membrane potential was recorded under 

current clamp and fluo3 fluorescence monitored using a photomultiplier-based fluorescence 

system attached to the side-port of the microscope.  Fluo3 fluorescence is reported as the raw 

photomultiplier tube output. 

 

Supplemental Fig. S4.  Effect of 25 µM 2-APB on thapsigargin-mediated elevations in 

[Ca2+]i in cuvette suspensions of HEL cells.  Fluo3 loaded cells were suspended in NaCl 

solution identical to that used in Figure 1A.  Where indicated, 100 nM thapsigargin and 25 

µM 2-APB were added.  The experiment was performed at 20-22oC. 

 

Appendix A.  Supplemental data 

This article contains supplemental data. 
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