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Abstract: We extend our earlier study of spin correlations in the decay chain D →

Cq, C → Blnear, B → Alfar, where A,B,C,D are new particles with known masses but

undetermined spins, lnear and lfar are opposite-sign same-flavour charged leptons and A is

invisible. Instead of looking at the observable 2- and 3-particle invariant mass distributions

separately, we compare the full three-dimensional phase space distributions for all possible

spin assignments of the new particles, and show that this enhances their distinguishability

using a quantitative measure known as the Kullback-Leibler distance.
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1. Introduction

In the recent paper [1], to which we refer the reader for motivation, notation and relevant

references, we examined the distinguishability of different spin assignments in the decay

chain D → Cq, C → Blnear, B → Alfar, where A,B,C,D are new particles with known

masses but undetermined spins, lnear and lfar are opposite-sign same-flavour charged leptons

and A is invisible. This was done by comparing separately the invariant mass distributions

of the three observable two-body combinations: dileptons (mll), quark- or antiquark-jet

plus positive lepton (mjl+), and jet plus negative lepton (mjl−).1

If P (m|S) represents the normalized probability distribution of any one of these three

invariant masses predicted by spin assignment S, and T is the true spin configuration, then

a measure of the improbability of S is provided by the Kullback-Leibler distance

KL(T, S) =

∫

m

log

(
P (m|T )

P (m|S)

)
P (m|T )dm . (1.1)

In particular, the number N of events required to disfavour hypothesis S by a factor of

1/R under ideal conditions, assuming equal prior probabilities of S and T , would be

N ∼
log R

KL(T, S)
. (1.2)

By ideal conditions we mean isolation of the decay chain with no background and perfect

resolution. Therefore N sets a lower limit on the number of events that would be needed

in real life. The results for R = 1000 are shown in tables 1-3, reproduced for convenience

from [1], where a discussion of them can be found. Recall that the notation used is DCBA

with F for fermion, S for scalar, V for vector, so that squark decay in SUSY is SFSF and

excited quark decay in UED is FVFV. Mass spectra I and II are SUSY- and UED-like

respectively (see [1] for details).

1The three-body invariant mass mjll was also studied but this is not independent of the two-body masses.
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2. Three-dimensional analysis

To extract the most information from the data we should compare the predictions of

different spin assigments with the full probability distribution in the three-dimensional

space of mll, mjl+ and mjl− . The ambiguity between near and far leptons means that this

given by

P (mll,mjl+,mjl−) =
1

2
fq

[
P2(mll,mjl+ ,mjl−) + P1(mll,mjl−,mjl+)

]

+
1

2
fq̄

[
P1(mll,mjl+ ,mjl−) + P2(mll,mjl−,mjl+)

]
, (2.1)

where fq and fq̄ = 1−fq are the fractions of quark- and antiquark-like objects D initiating

the decay chain and we use P1,2(mll,m
near
jl ,mfar

jl ) on the right-hand side, assuming both

leptons are left-handed, otherwise fq and fq̄ are interchanged. The subscripts 1 and 2 refer

to processes 1 and 2 defined in [1] and the factors of one-half enter because P1,2 are both

normalized to unity.

Instead of trying to evaluate the three-dimensional generalization of the integral in

eq. (1.1) analytically, it is convenient to perform a Monte Carlo integration. If we generate

mll, mnear
jl and mfar

jl according to phase space, the weight to be assigned to the configuration

lnear = l+, lfar = l− is

P+−
(mll,m

near
jl ,mfar

jl ) =
1

2

[
fqP2(mll,m

near
jl ,mfar

jl ) + fq̄P1(mll,m
near
jl ,mfar

jl )
]

(2.2)

while that for lnear = l−, lfar = l+ is

P
−+(mll,m

near
jl ,mfar

jl ) =
1

2

[
fqP1(mll,m

near
jl ,mfar

jl ) + fq̄P2(mll,m
near
jl ,mfar

jl )
]

. (2.3)

In the former case, since the distinction between lnear and lfar is lost in the data (except

when interchanging them gives a point outside phase space), we must use eq. (2.1) with

l+ = lnear, l− = lfar in the logarithmic factor of the KL-distance, i.e. the contribution is

log

(
P+−

(mll,m
near
jl ,mfar

jl |T ) + P
−+(mll,m

far
jl ,mnear

jl |T )

P+−
(mll,m

near
jl ,mfar

jl |S) + P
−+(mll,m

far
jl ,mnear

jl |S)

)

P+−
(mll,m

near
jl ,mfar

jl |T ) . (2.4)

Similarly from the configuration lnear = l−, lfar = l+ we get the contribution

log

(
P
−+(mll,m

near
jl ,mfar

jl |T ) + P+−
(mll,m

far
jl ,mnear

jl |T )

P
−+(mll,m

near
jl ,mfar

jl |S) + P+−
(mll,m

far
jl ,mnear

jl |S)

)
P
−+(mll,m

near
jl ,mfar

jl |T ) . (2.5)

Denoting the sum of these two contributions at the ith phase space point by KLi(T, S),

and summing over M such points, we have as M → ∞

M log R∑
i KLi(T, S)

→ N , (2.6)

which is the Monte Carlo equivalent of eq. (1.2). Results for R = 1000 and M = 5 × 107

are shown in table 4. By comparing with tables 1-3, we see that, as might be expected,
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the three-dimensional analysis achieves a discrimination that is better than that of a one-

dimensional analysis applied to any single invariant mass distribution. This could be

particularly useful in difficult cases like that of distinguishing between SFSF (SUSY) and

FVFV (UED).
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(a) SFSF FVFV FSFS FVFS FSFV SFVF

SFSF ∞ 60486 23 148 15608 66

FVFV 60622 ∞ 22 164 6866 62

FSFS 36 34 ∞ 16 39 266

FVFS 156 173 11 ∞ 130 24

FSFV 15600 6864 25 122 ∞ 76

SFVF 78 73 187 27 90 ∞

(b) SFSF FVFV FSFS FVFS FSFV SFVF

SFSF ∞ 3353 23 304 427 80

FVFV 3361 ∞ 27 179 232 113

FSFS 36 44 ∞ 20 22 208

FVFS 313 184 14 ∞ 13077 35

FSFV 436 236 15 12957 ∞ 39

SFVF 89 126 134 38 42 ∞

Table 1: The number of events needed to disfavour the column model with respect to the row

model by a factor of 0.001, assuming the data to come from the row model, for the m̂2
ll distribution:

(a) mass spectrum I and (b) mass spectrum II.

(a) SFSF FVFV FSFS FVFS FSFV SFVF

SFSF ∞ 1059 205 1524 758 727

FVFV 1090 ∞ 404 3256 4363 1746

FSFS 278 554 ∞ 418 741 870

FVFS 1605 3242 345 ∞ 1256 2365

FSFV 749 4207 507 1212 ∞ 1803

SFVF 813 1821 751 2415 1888 ∞

(b) SFSF FVFV FSFS FVFS FSFV SFVF

SFSF ∞ 3006 958 6874 761 1280

FVFV 2961 ∞ 4427 1685 2749 3761

FSFS 914 4201 ∞ 743 9874 4877

FVFS 6716 1699 752 ∞ 656 1306

FSFV 720 2666 10279 649 ∞ 4138

SFVF 1141 3517 5269 1276 4259 ∞

Table 2: As in table 1, for the m̂2
jl+ distribution.

(a) SFSF FVFV FSFS FVFS FSFV SFVF

SFSF ∞ 1058 505 769 816 619

FVFV 1090 ∞ 541 5878 4821 445

FSFS 565 714 ∞ 1032 741 2183

FVFS 799 6435 882 ∞ 2742 510

FSFV 806 4641 507 2451 ∞ 413

SFVF 692 541 2272 576 521 ∞

(b) SFSF FVFV FSFS FVFS FSFV SFVF

SFSF ∞ 3037 689 8633 925 967

FVFV 2985 ∞ 2271 1431 4368 2527

FSFS 707 2297 ∞ 526 9874 5004

FVFS 8392 1450 525 ∞ 653 843

FSFV 924 4287 10279 640 ∞ 4036

SFVF 1047 2693 5213 870 4041 ∞

Table 3: As in table 1, for the m̂2
jl− distribution.

(a) SFSF FVFV FSFS FVFS FSFV SFVF

SFSF ∞ 455 21 47 348 55

FVFV 474 ∞ 21 54 1387 55

FSFS 33 34 ∞ 13 39 188

FVFS 55 67 10 ∞ 54 19

FSFV 341 1339 25 45 ∞ 66

SFVF 62 64 143 19 79 ∞

(b) SFSF FVFV FSFS FVFS FSFV SFVF

SFSF ∞ 1053 21 230 194 63

FVFV 1047 ∞ 27 135 190 90

FSFS 33 42 ∞ 19 22 175

FVFS 242 140 13 ∞ 332 33

FSFV 189 194 14 315 ∞ 37

SFVF 66 95 118 35 41 ∞

Table 4: As in table 1, for the combined three-dimensional distribution.
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