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Abstract

We consider an exchange economy in which there are infinitely many
consumers and some commodities are bads, that is, cause disutility to
consumers. We give an example of such an economy for which there is
no competitive equilibrium or its variants (quasi- or pseudo-equilibrium).
We also give examples of the failure of the so called uniform integrabil-
ity condition of equilibrium allocations of increasingly populous finite

economies, and also the failure of the core convergence property.
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1 Introduction
1.1 Setup

This paper is concerned with exchange economies in which some com-
modities are bads, that is, cause disutility to consumers. To simplify the
analysis, we concentrate on the case where there are only two types of
commodities, one of which is a good and the other is a bad. The good
can be considered just as any consumption good, while the bad should
be considered as garbage or toxic wastes. The exchange economy is pop-
ulated with infinitely many consumers, each of whom is negligible in size
relative to the entire economy. As will be seen in the subsequent analy-
sis, what turns out to be crucial is not the infinity of the population of
consumers per se but the infinity of types of consumers.

The resource feasibility constraint in all the notions of Pareto-efficiency,
competitive equilibria, and the core, of this paper requires the demand to
be exactly equal to supply for each commodity. An alternative resource

feasibility constraint would allow the demand to be less than the supply;
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oue, Tomoichi Shinozuka, and Kotaro Suzumura. I gratefully acknowledge the hospitality of
Institute of Economic Research at Hitotsubashi University. Parts of the paper, such as the
proof methods for Lemmas 7 and 8 and Propositions 14 and 16, are contained in the Kyoto

workshop proceeding (Hara (2003)).



and the corresponding competitive equilibrium concept is called a free-
disposal equilibrium. We do not use this weaker constraint, because that
would allow the bad to be freely disposed of and hence trivialize the prob-
lem of the efficient allocation of bads. While a free-disposal equilibrium
involves only non-negative prices, an competitive equilibrium satisfying
the exact resource feasibility constraint must involve negative prices for
bads. This paper explores some consequences of allowing for negative
prices.

In most of this paper, the consumption set is assumed to be the non-
negative orthant R%r. This is mostly for simplicity, except that there is
no upper bound on the possible consumption levels for the bad, which we
will see turns out to be an important property. In our examples, every

consumer’s initial endowment for each commodity is strictly positive.

1.2 Our Results and the Relationship with the Literature

There have of course been many contributions in general equilibrium
theory in which bads and non-monotone preference relations are incor-
porated. While Arrow and Debreu (1954) used the free-disposal equilib-
rium as the equilibrium concept, the equilibrium concept of McKenzie
(1959, 1981) requires the exact equality of supply and demand with pos-
sibly negative prices. His work had later been followed by Bergstrom
(1976), Kuhn and Hart (1975), Polemarchakis and Siconolfi (1993), and
others. In the models of these papers, there assumed to be only finitely
consumers.

Aumann (1964) introduced a general equilibrium model of an exchange
economy with infinitely many consumers to establish the core equivalence
theorem. The existence of a competitive equilibrium in such a economy
was subsequently established by Aumann (1966), Schmeidler (1969), and
Hildenbrand (1970). Aumann (1966) and Schmeidler (1969) assumed



that every consumer has a monotone preference relation. Hildenbrand
(1970) considered a production economy, in which consumers’ preference
relations need not be monotone but the production technology can dis-
pose of any commodity without incurring any costs in terms of other com-
modities. In the context of an exchange economy, therefore, his theorem
would only establish the existence of a free-disposal equilibrium. Cornet,
Topuzu, and Yildiz (2003) proved the existence of a free-disposal equi-
librium in an extended sense, in that the cone in the commodity space
representing the feasible directions of disposal may be narrower than the
non-positive orthant. Yet their result falls short of the existence of an
equilibrium when the free disposal is completely impossible. To summa-
rize, unlike the case of economies consisting of finitely many consumers,
any equilibrium existence theorem without monotone preference relations
and the free disposability has been provided. Neither has an example of
the non-existence. This paper presents such an example (Example 10).
Our example is similar to the example of the non-existence of an equi-
librium in an exchange economy of Araujo (1985), in that there is neither
an efficient and individually rational allocation nor an efficient and envy-
free allocation in both our and his examples. The difference is, roughly,
that the role of consumers and commodities are swapped in his example,
so that there are only two consumers but infinitely many commodities.
Given that an economy of infinitely many negligible consumers can be
approximated by a large finite economy with respect to the weak topology
of probability measures, and that every finite economy has an equilib-
rium, one might wonder what would happen to the limit of the sequence
of equilibria of finite economies that converges to the infinite economy
having no equilibrium. We will see (Example 22) that the sequence of
equilibrium allocations of finite economies may not satisfy the so-called

uniform integrability condition, so that, as the free-disposal is impossi-



ble, the sequence does not possess any limit that would correspond to an
equilibrium allocation of the infinite economy.? This is an instance of the
divergence, pointed out by Anderson (1992), in equilibrium outcomes be-
tween infinite and large finite economies due to the assumptions implicit
in the formulation of an infinite economy. Another instance of the same
nature is the failure of the core convergence without monotone preference
relations, as exemplified by Manelli (1991a). We give an example (Exam-
ple 24) of the failure of the core convergence, which is simpler than his.
Both of the two examples illustrate a potential source of market power
arising from preference for (or, the willingness to accept) bads, not from

initial endowment allocations.

1.3 Significance of the Results

How to allocate bads efficiently is an important economic issue. A general
equilibrium model with bads is an appropriate theoretical framework to
tackle this question, since bads are often generated in conjunction with
the production or consumption activities of goods, and a general equilib-
rium model would then be necessary to assess the welfare consequences
of such joint productions. The model of this paper is a static exchange
economy with only two commodities, one good and one bad. It is an
appropriate benchmark case, just like the Edgeworth box economy and
the Robison-Crusoe economy.

We assume that there are complete markets for goods and bads. In

particular, no consumer can escape from consuming bads without paying

2 One could construct a sequence of equilibrium allocations of finite economies on the same
space of consumers, which have an almost everywhere limit. Given the failure of uniform
integrability, however, the conclusion of Fatou’s lemma holds with strict inequalities, leading

the almost everywhere limit to violate the exact resouce-feasibilty constraint.



prices.? We also assume that bads generate no externalities.* While some
important examples of bads, such as pollution, do have externalities, it
is a good theoretical exercise to take up a model with no externalities to
study efficient allocation of bads.

In this framework, the first and second welfare theorems still hold, as
long as prices may be negative, so that an allocation is efficient if and
only if it is a competitive equilibrium (or quasi-equilibrium) allocation
once some appropriate transfers are made. The natural starting point of
our analysis is thus to see whether any of the Pareto-efficient allocations
can be attained through the market mechanism with negative prices.
Underlying the two welfare theorems is the hypothesis of the price-taking
behavior. It is for this reasons that we look into a model with infinitely
many consumers, each of whom is negligible in size relative to the entire
economy. Indeed, Aumann (1964) introduced such a model to establish
the core equivalence theorem, which justifies the hypothesis of the price-
taking behavior. It has been later extended by Hildenbrand (1968) to
incorporate bads.

The example (Example 10) of non-existence of a competitive equilib-
rium should be taken as a seriously disturbing fact, as it shows that even
the simplest model of bads cannot pass the most basic internal consis-
tency test for economic models. The example (Example 24) of the failure
of core convergence undermines the relevance of the core equivalence the-
orem to large finite economies. Furthermore, the example (Example 22)
of the failure of the uniform integrability condition shows that in a large
finite economy, an almost negligibly small group of consumers may end

up consuming almost all of bads in the economy. Such an equilibrium

* Alternatively, Shapley and Shubik (1969) proposed a co-operative game in which con-

sumers can do so.
*'In fact, Arrow (1969) shows that, with appropriate modifications of the commodity space

and utility functions, an economy with externalities can be made a special case of economies

with incomplete markets.



allocation cast serious doubts on the plausibility of the price-taking be-

havior in finite economies, however large it may be.

1.4 Organization of the Paper

The formal model is presented in the next section. Section 2 presents the
model and basic concepts of this paper. Section 3 presents the leading
example of the non-existence of a competitive equilibrium. Section 4
shows that in addition to the non-existence of a competitive equilibrium,
there is neither an efficient and individually rational allocation nor an
efficient and envy-free allocation. Section 5 shows that the non-existence
survives various modifications of the example. Section 6 investigates
the limit behavior of core and equilibrium allocation of finite economies
approximating the infinite economy for which there is no competitive

equilibrium. Section 7 concludes.

2 Model

The space of (names of) consumers is given by a complete measure space
(A, A, p) with 0 < p(A) < co. Denote by U the set of all real-valued
functions defined on the two-dimensional non-negative orthant Ri, de-
noted by X, that are continuous, quasi-concave, strictly increasing in
the first coordinate, and strictly decreasing in the second coordinate,
endowed with the CY compact open topology. This is the space of util-
ity functions we shall consider in this paper. The interpretation is that
there are two commodities; X is the consumption set for every consumer;
the first commodity is a good; and the second commodity is a bad. An
(private ownership) economy is characterized as a pair of an (A ® B(U))-
measurable mapping u : A — U and an (A ® B(R?))-measurable and
integrable mapping e : A — R?, where B stands for the Borel o-field.

The interpretation is that the utility function u(a), which we also write
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uq, represents consumer a’s preference relation, and e(a) is his initial

endowment vector.

Definition 1 Let B € A and f: B — X, then f is an allocation within

B if it is integrable and satisfies | f = | e. An allocation within A is
B B
also simply called an allocation.

Note that an allocation, by definition, satisfies the resource feasibility

constraint, which is met with the strict equality rather than the weak

inequality / f< / e, to eliminate the possibility of free disposal.
B B

Definition 2 Let f and g be two allocations, then ¢ is a weak improve-
ment on f if u, (g(a)) > u, (f(a)) for almost every a € A, with a strict
inequality for every a in some measurable subset of positive measure. It
is a strong improvement on f if u, (g(a)) > u, (f(a)) for almost every
a € A.

Definition 3 An allocation of an economy is strongly efficient if there
is no weak improvement on it; it is weakly efficient if there is no strong

improvement on it.

A strong improvement is thus a weak improvement but the converse
need not be true. Yet if preference relations are strongly monotone, then
there is a strong improvement whenever there is a weak one, and the two
notions of efficiency coincide with each other. We will see towards the
end of this section that this fact remains to be true in an economy in
which there are one good and one bad.

A price vector is, by definition, a non-zero vector of R?.

Definition 4 An allocation f is strongly supportable if there exists a
price vector p such that for almost every a € A and every z € X,

p-x > p- f(a) whenever uy(x) > u.(f(a)). It is weakly supportable if



there exists a price vector p such that for almost every a € A and every
re€X,p-x>p- f(a) whenever uy(z) > uy(f(a)).

For each consumer a, we shall refer to the utility maximization con-
dition for strong supportability as the strong utility mazximization con-
dition and the utility maximization condition for weak supportability
as the weak utility mazximization condition. The above notion of weak
supportability has been considered in Hildenbrand (1968), Mas-Colell,
Whinston, and Green (1995), Hurwicz and Richter (2001), and many
others. As they have pointed out, with the locally non-satiation assump-
tion on utility functions, then the weak utility maximization condition is
equivalent to the cost minimization condition, that is, for almost every
a € Aandevery z € X, p-x > p- f(a) whenever u,(x) > u,(f(a)). Given
this, we see that the weak utility maximization condition is equivalent to

the strong utility maximization condition if p- f(a) > inf{p-z | z € X}.

Definition 5 A pair (p, f) of a price vector p and an allocation f is a
strong equilibrium if f is strongly supported by p and p- f(a) < p-e(a)
for almost every a € A. It is a weak equilibrium if f is weakly supported

by pand p- f(a) < p-e(a) for almost every a € A.

The strong equilibrium is commonly known as a Walrasian or com-
petitive equilibrium, but we opt for adding the adjective “strong” to
distinguish it from a weak equilibrium. The weak equilibrium concept
coincides with the pseudo-equilibrium and quasi-equilibrium, but we call
it an “weak” equilibrium for simplicity. Even if the weak inequality <
is replaced by =, the condition would still be equivalent in our setup,

because [ f = | e. Hence a weak equilibrium is a strong equilibrium if

A
p-e(a) > inf{p-z | x € X} for almost every a € A, that is, the so-called
minimum income condition is met. This condition is met if e;(a) > 0 for

almost every a € A (since p; > 0 at every weak equilibrium) or if ps < 0
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(since, then, inf{p -z | z € X} = —00).
We now introduce the useful notion of linked and non-linked alloca-
tions. It is taken from Proposition 7.2.7 of Mas-Colell (1985).5

Definition 6 Let B € A and f be an allocation within B, then f is
linked if f(a) € int X for every a in some measurable subset of B of

positive measure. Otherwise, it is non-linked.

According to this definition, at a non-linked allocation, almost no
consumer consumes both of the two commodities. The following lemma
on non-linked allocations is technical but underlies some of the results of

this paper.

Lemma 7 Let B € A and f be an allocation within B. If g is an non-
linked allocation within B and uq(g(a)) > ua(f(a)) for almost every a €
B, then g(a) = f(a) for almost every a € B.

Proof of i nce the measure space (A, A, p) is complete, we can assume
without loss of generality that g(a) € int X and u,(g(a)) > u.(f(a)) for
every a € B.

Since ¢ is an non-linked allocation within B, for every a € B, if
g2(a) > 0, then gi(a) = 0 < fi(a). Since uq(g(a)) > u.(f(a)), this
implies that g2(a) < fao(a). This of course holds when gs(a) = 0. Thus

g2(a) < fo(a) for every a € B. Since / go = / ey = / fa, this implies
B B B

that g2(a) = fao(a) for every a € B. Since u,(g(a)) > uq(f(a)), this

implies that fi(a) > gi(a) for every a € B. As before, then, g1(a) = fi(a)

for every a € B. ///

> There are apparently many predecessors of this definition. Also, Definition 4.3.5 of Mas-
Colell (1985) is more explicit but less suited to our analysis because he assumed differentiability
of utility functions while we do not do so at this point. A more detailed account on this

property is contained in a workshop proceeding (Hara (2003)).
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Lemma 8 An allocation is strongly efficient if and only if it is weakly
efficient.

Lemma 8 implies that there is no need to distinguish strong and weak
efficiency. We shall therefore refer to them simply as efficiency. Its proof
is somewhat intricate and thus relegated to the appendix.® The following
is a combination of the first and second welfare theorems. We skip its

easy proof.

Theorem 9 An allocation is efficient if and only if it is weakly support-
able.

3 Leading Example

The following example is our leading example. We shall explore vari-
ous properties of this example and also check the robustness of these

properties when the example is modified.

Example 10 Let A be the open interval (0, 1), A be the set of Lebesgue
measurable subsets of A, and p be the Lebesgue measure restricted on
A. For each a € A, let

uqs(x) =1 —a (:162)2
and e(a) = (2,1).

In this example, for every a € A, e(a) € int X and u, is smooth,

strictly differentiably quasi-concave, and can be extended to the entire

R2.

Proposition 11 There is no weak (and hence strong) equilibrium in Fx-

ample 10.

6 T am grateful to Tomoki Inoue for pointing out the need to check measurability in the

proof.
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Proof of i nce e(a) € int X for every a € A, it suffices to show that
there is no strong equilibrium. To do so by a contradiction argument,
suppose that there is a strong equilibrium (p, f).

Note that p; > 0 by the strong utility maximization condition. It also

implies that p, < 0 because, otherwise, fo(a) = 0 for almost every a € A,

implying that / fo = 0, but this would contradict / fo= / ey = 1.
A
Since Vu,(e(a)) = (1,—2a) and 2a < 2 for every a € A, if |py| > 2,

then fy(a) > 1 for almost every a € A and hence [ fo > 1. But this is
A

a contradiction to / fo= / es = 1. Thus |po| < 2.

A A
Since |po| < 2, p-e(a) > 2 — |po|] > 0 and hence the budget line
{re X |p-x=p-e(a)} must intersect with the horizontal, but not the
vertical, axis. Hence if f(a) is on the boundary of X, then f(a) = 0.

M = 2afy(a) = 0, the first-order
8562

condition for the strong utility maximization would contradict f>(a) = 0.

Thus f(a) € int X for almost every a € A. Again by the first-order
P2

However, since po < 0 and

condition, therefore, f(a) = for almost every a € A. But then f5
would not be integrable because the real-valued function a +— 1/a on A
is not integrable either. This is a contradiction. Hence there is no strong

equilibrium. /]/

The non-integrability of the real-valued function a +— 1/a on A is
the crucial property for the above non-existence result. It will appear

repeatedly in the subsequent analysis.

4 More on Non-Existence

A strong equilibrium allocation is efficient and individually rational, and
envy-free in terms of net demands. In this section, we show that there

are stronger non-existence results in Example 10. First, there is no allo-
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cation that is both efficient and individually rational. Second, there is no
allocation that is both efficient and envy-free in terms of net demands.
The following equivalence between efficiency and unlinkedness is crucial
for both results.

Lemma 12 In Example 10, an allocation is efficient if and only if it is

non-linked.

Proof of f an allocation is non-linked, then it is weakly supportable by
= (1,0) and hence efficient.

To prove the converse by a contradiction argument, let f is an efficient
and linked allocation. Then f is weakly supportable, by a price vector p.
Then, as we saw in the proof of Proposition 11, p; > 0 and hence we can
assume that p; = 1. Let B € A be such that u(B) and f(a) € int X for
every a € B. By the first-order condition of efficient interior allocations,
2afy(a) = —py for almost every a € B. Thus p; < 0 and the minimum
income condition is met for every consumer. Hence the strong utility
maximization condition is met for every consumer as well. The first-
order condition, allowing for the possibility of fi(a) = 0, is then that
2afa(a) = |psl, that is,

ola) > 22|

This weak inequality therefore holds for almost every a € A. But his
is a contradiction because f- is integrable but the real-valued function

a+— 1/a on A is not. ///

Note that to show that every non-linked allocation is efficient, we did
not use the specification of u and e in Example 10. Hence the property

is true in every economy with one good and one bad.
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4.1 Individual Rationality

The following definition is standard.

Definition 13 An allocation f is individually rational if u,(f(a)) >

uq(e(a)) for almost every a € A.

Proposition 14 In FExample 10, there is no efficient and individually

rational allocation.

Proof of u ppose that there is an efficient and individually rational
allocation f. By Lemma 12, f is non-linked. By Lemma 7, f(a) = e(a)

for almost every a € A. But this contradicts e(a) = (2,1) for every

a€ A /1]

4.2 Envy-Freeness

We consider the envy-free property with respect to net demands.

Definition 15 An allocation f is envy-free if there exists a B € A such
that u(A\ B) = 0 and for every a € B and every b € B, if e(a) + (f(b) —

e(b)) € X, then ug(e(a) + (f(b) —e(b))) < ua(f(a)).

The definition states that at an envy-free allocation, almost no con-
sumer can get strictly better off by receiving the net demands that an-

other consumer receives.

Proposition 16 In Example 10, there exists no efficient and envy-free

allocation.
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Proof of u ppose that there is an efficient and envy-free allocation f.
Define

A ={a € Al fila) > ei(a)},
Ay = {a € A| fa(a) > ex(a)}.

Then p(A; N As) = 0 because f is non-linked by Lemma 12. Suppose
that p(A;) > 0 and pu(As) > 0, then

p(Ar N (AN Ag)) = p (A \ (A1 N Az)) = p(Ar) > 0,
1 ((ANAr) N Ag) = p (A2 \ (A1 N Ag)) = p(Az) > 0.

But the consumers a € (A\ A1) N Az would envy those a € A;\ (41N Ay)
and hence f could not be envy-free. We must thus have either p(A;) =0
and p(As) = 0. If u(A;) =0, then fi(a) < ey(a) for almost every a € A
and, since [ fi = [ e1, fi(a) = e1(a) for almost every a € A. Then,

by the envyffl’ree progerty, fa(a) = es(a) for almost every a € A. Thus
f(a) = e(a) for almost every a € A. We can analogously show that the
same equality is obtained also when p(A;) = 0. But this contradicts
e(a) = (2,1) for every a € A. ///

5 Robustness of the Leading Example

In this section we argue that the non-existence results of our leading
example (Example 10) is robust in many directions of modification. We
will omit detailed proofs for most of the propositions below, as they
would be straightforward modifications of the preceding proofs. In all of
the modifications below, just as in Example 10, A be the open interval
(0,1), A be the set of Lebesgue measurable subsets of A, and p be the

Lebesgue measure restricted on A.
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5.1 Consumption Sets

It has so far been assumed that the consumption set X equals the non-
negative orthant Ri, but this assumption may seem to be implausible,
because it implies that a consumer can survive only with bads, not con-
suming the good at all.” The next proposition shows that a weak equilib-
rium may still not exist even if X is a proper subset of Ri, to incorporate
the situation where, for example, a consumer needs to consume more of

the good for survival when he consumes more of the bad.

Proposition 17 Let u and e be as in Example 10 for every a € A, and
let X, 2 {x € X | ua(x) > uq(e(a))} for every a € A, then there is no
weak equilibrium for the economy with initial endowments e and utility

functions u, restricted on X, for every a € A

This proposition can be proved by noting that the set of individually
rational consumption vectors remains the same as for Example 10 and
thus the demand function is the same as well. Since the set {z € X |
uq(x) > ug(e(a))} of individually rational consumption vectors has no
upper bound on the possible consumption levels for the bad, neither
does X,. Indeed, one can show that if there were an upper bound (with
other things being equal), then there would exist a strong equilibrium.

As explained in textbooks such as Kolstad (1999, Section 4.I11.C), a
standard technique to transform an economy with bads into an economy
without bads is to incorporate, say, “garbage disposal”’ as a commodity
in place of “garbage”. Since garbage disposal makes a good, one would
often conclude that the standard results on equilibria, including their ex-
istence, in economies without bads are all applicable to those with bads.
This argument, however, is flawed, as can be seen from the argument

in the previous paragraph: Since there is no upper bound on garbage

" Kotaro Suzumura and Tomoichi Shinozuka pointed out this to me.
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consumptions, the garbage disposal must be measured by negative num-
bers, where the more negative the garbage disposal level is, the more
the garbage itself is to be consumed; and there is no lower bound on
the possible consumption levels for garbage disposal in the transformed
consumption set. However, since the consumption sets are assumed to
be bounded from below in the existence theorems for infinite economies
(Aumann (1966), Schmeidler (1969), and Hildenbrand (1970)), these ex-
istence theorems, consistent with Example 10, do not imply existence of

equilibria in economies with bads.

5.2 Goods for Low Levels of Consumption

While, in the leading example, the second commodity is a bad for every
consumer at every consumption level, this aspect of preferences is not
crucial for an equilibrium not to exist. The following proposition shows
that even if the commodity is a good for low levels of consumptions, an
equilibrium may not exist as long as the satiation levels are sufficiently

low.

Proposition 18 Let e be as in Example 10 andr : A — R, be integrable.

Define u,(z) = x1—a(xy—r(a))?, then there is a strong (and hence weak)

equilibrium if and only if / r>1.
A

Proof of e note by g(a,ps) consumer a’s demand for the second com-
modity under the price vector p = (1,p2). This is well defined for every

a € A and every ps € R, and p is a strong equilibrium price vector if and

only if g(-, p2) is integrable and / g(-,p2) = 1. Note that g(a, p2) is non-
A

negative and continuous in po, and satisfies g(a, po) § r(a) if and only if

D2 ; 0. Hence, in particular, if po > 0, then g(-,po) is integrable and,

by the bounded convergence theorem, the function py +— / g(-,p2) is
A

17



continuous in po > 0. Moreover, g(a,ps) — 0 as py — oo for every a € A.

Hence, again by the bounded convergence theorem, [ g(-,p2) — 0 as
p2 — Q. .

Now, if / r > 1, then / g(-,0) = / r > 1. Hence, by the intermedi-
A A A

ate value theorem, there exists a p; > 0 such that / g(-,p3) = 1. Then

p* = (1,p3) is a strong (and hence weak) equilibrium price vector.

On the other hand, if / r < 1, then /g(',p2) < /7‘ < 1 for every
A A A
po > 0. We must thus have po < 0 at equilibrium. Then g(a,ps) >

r(a) + ‘22)—2‘ by the first-order condition for a maximum, holding with
a

an equality whenever g(a,p2) > 0. But the function a +— % is not

a
integrable. Thus ¢ is not integrable either and there is no strong (and

hence weak) equilibrium. ///

5.3 Initial Endowments

While all consumers have the same initial endowments (2, 1) in Exam-
ple 10, to establish the non-existence results, it is not necessary for all

consumers’ initial endowments to be equal.
Proposition 19 Let u be as in Example 10 and e : A — X be integrable.

1. There is a strong equilibrium if and only if es(a) = 0 for almost every
a€A.

2. There exists no weak equilibrium if and only if e1(a) > 0 for almost

every a € A.

Proof of . If es(a) = 0 for almost every a € A, then p = (1,0) and

e constitute a strong equilibrium. If not, and if p = (p1,p2) were an
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equilibrium price vector, then p; > 0 and py; < 0. By the first-order
condition admitting the boundary consumptions, if g(a,ps) is consumer
a’s demand for the bad under the price vector p = (1,p2) with py < 0,
then, for every a € A,

2
@ if el(a) — |p2|eg(a) + M > 0,
2a 2a

ex(a) — otherwise.
|p2\
s Ip|

This implies that g(a,ps) > o Since a +— is not integrable, there
a

is no strong equilibrium. ¢

2. Since a weak equilibrium would also be a strong equilibrium if
e1(a) > 0 for almost every a € A, part 1 implies that there is no weak
equilibrium if e;(a) > 0 for almost every a € A. On the other hand, if
there exists a B € A such that u(B) > 0 and e1(a) = 0 for every a € B,
then the price vector p = (1,0) and every non-linked allocation satisfying

fi(a) = g1(a) for almost every a € A constitute a weak equilibrium. ///

5.4 Distribution of the Intensity of Disutility

In Example 10, the utility functions are given by u,(z) = x1 — a(z2)?,
Taking the good as the numeraire, we can say that a represents the
intensity of disutility from consuming the bad, and that the intensity is
uniformly distributed over the unit interval (0,1). As has been argued
earlier, the crucial property of the uniform distribution is that the real
valued function a +— 1/a defined on (0, 1) is not integrable. The following

proposition substantiates this claim.

Proposition 20 Let e be as in Example 10 andr : A — A be measurable.
Define u,(x) = x1—7r(a)(x2)?, then there exists a strong (and hence weak)

equilibrium if and only if a — 1/r(a) is integrable.
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Since the distribution of the intensity of disutility on A = (0,1) is

1. the proposition says that there is a strong (and hence weak)

por

equilibrium if and only if there are relatively few consumers having very
low intensities of disutility. It can be proved by the same argument
as for Proposition 11 and, in particular, implies that the non-existence
result can be obtained even when there are only countably many types.

When a +— 1/r(a) is integrable, the equilibrium price vector is given by
—1

5.5 Range of Marginal Disutility

Oug
In the leading example (Example 10), the marginal disutility Ua(2) =
)

2axo ranges from zero to infinity as the consumption level x5 of the

bad goes to infinity. This fact might be considered as an indispensable
feature of the example for two reasons. First, it implies that every ef-
ficient allocation is supportable only by the zero price for the bad, and
a weak equilibrium is not a strong equilibrium only if the price for the
bad equals zero. Second, since the marginal utility diverges to infinity,
the bad can potentially be cause an arbitrarily large marginal disutility.
Indeed, unlike the u, of Example 10, if there is a bound on marginal util-
ity, as assumed under the names of C-monotone preferences in Grodal,
Trockel, and Weber (1984), and proper preferences in Manelli (1991a,
1991b), one may obtain a core convergence theorem, which is somewhat
suggestive of positive existence results for the limit, infinite economy.
The following proposition shows that our non-existence result still holds
even when the marginal utility can be bounded from above and below
by any non-negative numbers. It therefore implies that neither the zero
marginal utility at zero consumption nor its divergence to infinity when

the consumption level goes to infinity is a crucial property of our leading
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example.

Proposition 21 Let q and q be such that 0 < q<7q < oo. Then, there
exists au: A — U and w € int X such that

1. u, can be written in the form of

Uo(z) = 1 — 54 (22) ,

where, for every a € A, s, : Ry — R, 1is a twice continuously
differentiable function such that q¢ < s,(x2) <7 and s;(x2) > 0 for

every xo € Ry ..

2. There is no weak (and hence strong) equilibrium of the economy de-
fined by u and the constant mapping e : A — X with e(a) = w for
every a € A,

Proof of e prove the proposition first for the case of § = oo and then
for the case of § < .

Suppose first that § = oo. Then define

Sa(22) = a(x2)? + qs,

w=(2+q,1).

Then, just as in the proof of Proposition 11, we can show that we can

take p; = 1 without loss of generality; that p» < —g because otherwise
/f2 = 0; that |ps| < 2 + ¢ because otherwise /fg > 1; but that if
A B A

q < |p2| <2+ ¢, then f5(a) = \p2|2— g, contradicting the integrability of
= = a

fa.
Suppose next that § < co. Define r: (0,1] — R, by

4a

_q—q

r(a)
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Then, for each a € A, there exist an a(a) € R and a ((a) € R, such
that the function ¢, : A — R, defined by

q + 2ar; for 9 < r(a),
Ga(22) = _  afa) (1)
— 2 exp (— for 75 >
q 3(a) exp (—f(a)zz) for xy > r(a)
. ) . . R R T+
is continuously differentiable. Then ¢,(r(a)) = ¢, where ¢ = ——,

and ¢ < qu(22) < 7 and gq(z2) > 0 for every 2 € R,,. Then define
Sq: Ry — Ry by

5a(@2) = /0 () dt.

then s, is twice continuously differentiable. Moreover, s/ (r(a)) = g, and

q < s,(z2) <7 and s (x3) > 0 for every x; € Ry,. Define u: A — U by
Uo(T) = o1 — 84 (22)

then u is measurable.
Define e : A — int X by

e(a) = (qr(1),7(1))

for every a € A, then e is of course integrable. Since e(a) € int X, it is
sufficient to prove that there is no strong equilibrium for the economy
defined by u and e. To do so by a contradiction argument, suppose that
(p, f) is a strong equilibrium. Then p; > 0 and hence we can assume
that p; = 1.

If py > —q, then p-e(a) > (g — ¢)r(1) > 0 and hence the budget line
{r € X |p-x=p-e(a)} must intersect with the horizontal, but not

the vertical, axis. Thus the utility maximization condition implies that

fo(a) = 0 for almost every a € A, which contradicts / f= / e. Thus
A

A
p2 < —q < 0.
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Since es(a) = r(1) < r(a),

W' — d(es(a)) < sh(r(a) =7

for every a € A. Thus, if |ps| > @, then fy(a) > es(a) for almost every
a € A and hence | fy > | e, which is a contradiction. Thus |ps| < q.

Hence p - e(a) >A0 and tﬁe budget line {x € X |p-x =p-e(a)} must
intersect with the horizontal, but not the vertical, axis. Hence if f(a) is
on the boundary of X, then fy(a) = 0. However, since

duy(f(a))

_ o _ _
Ip2| > q = 5,(0) = qu(0) = o,

Y

the first-order condition for the strong utility maximization, even allow-
ing for the boundary consumption, could not be met. Hence f5(a) > 0.
Thus, by the first-order condition for an interior consumption, s/ (f2(a)) =
da(f2(a)) = |pa|. Since |ps| < @, this implies that fs(a) < r(a) and hence
q+2afa(a) = |p2|. That is,

fala) = ‘pia_ 1

for almost every a € A. But then f; would not be integrable because

the real-valued function @ — 1/a on A is not integrable either. This is a

contradiction. Hence there is no strong equilibrium. ///

6 Large Finite Economies

The purpose of this section is to clarify the nature of the non-existence of
equilibria of the leading example (Example 10) by looking into a sequence
of equilibria of finite economies that converges, with respect to the weak
topology of probability measures, to the infinite economy of the leading

example. We will see in Proposition 23 that as the economy becomes
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large, an arbitrary small group of consumers may end up consuming
almost all of the bad in the economy. Such a sequence of allocations has
no limit corresponding to an allocation of the infinite economy because,
by definition, every allocation in the infinite economy must assign zero
consumption to every group of consumers of measure zero. We shall also
give an example of the failure of the limit theorem of the core of finite
economies. Such an example was already given by Manelli (1991), but
our example is similar to Example 10 and admits an easier economic

interpretation.

6.1 Equilibria

Example 22 For each positive integer n, define a probability measure
space (A", A" p™) by letting A" = {1,2,...,n}, A" be the power set
of A", and p" be the uniform probability distribution on A”. Define
u": A" — U by
n a 2
U (2) = 21 — — (22)
and " : A" — X by e"(a) = (2,1) for every a € A".

n

1
Proposition 23 1. Write S = Z — and define
a

a=1

2 n n
"(q) = (2 —( . 1) ).
/'@ ( T 5n \5ma 5%)
Then, for every n, (p", f") is the unique strong (and hence weak)

equilibrium of the economy (u",e").

2. The sequence of induced probability measures pu™ o (u" x €*)~1 on
U x X converges weakly to o (u x €)1, where u and e are defined

as 1 Example 10.
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3. There ezists a sequence (a™), of positive integers such that

a" <n for everyn, (2)
2 L 0asn— 00, (3)
n
1 a
—Zf%‘(a)%l as n — oo. (4)
n
a=1

This proposition says that the group of consumers, {1,...,a"} C A",
in the n-th finite economy (u",e"), tends to occupy an arbitrarily small
proportion in population (3) but almost the entire share in the bads

consumption (4).

Proof of . This is routine.

2. Just as in Example 2.2 of Billingsley (1999), we can show that the
distribution assigning probability 1/n to points 1/n,2/n,...,n/n con-
verges weakly to the uniform distribution on the interval (0,1). Since
e"(a) = (2,1) for every n and a € A" and e(a) = (2,1) for every
a € A, and also since a — u, of A into U/ is continuous, this implies
that " o (u™ x €")~! converges weakly to po (u x )7t

3. For each n, let a" be the positive integer such that

—1/2

nl—(logn)_1/2 <a'< nl—(logn) + 1.
To prove (3), note first that
1—(logn)~1/2
logn— = —(logn) ?logn = —(logn)"? — —oc0

n

as n — oo. Thus
nlf(logn)*l/Q
— 0
n
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and hence (3) is proved. As for (4), since logn < S < 1+logn for every

n?
S o
n ‘= S“a S”
loga - log(n' *(log”)fm) logn
1+logn — logn 1+ logn
logn
— (1~ (logn) ™) 2.
( (logn) 1+ logn
Since the far right hand side converges to 1, (4) is proved. ///

6.2 Failure of the Core Convergence

Example 24 For each positive integer n, define a probability measure

space (A", A" p™) by letting A" = {0,1,...,n}, A" be the power set

of A", and p" be the uniform probability distribution on A”. Define
"o A" = U by

(z2)* fora =0,

1
un(x) = S
z1 — (22)° fora > 1
and define e" : A" — X by €"(a) = (2,1) for every a € A™.

The sequence of type distributions of finite economies, p™o(u" x e”)_l,

on U x X converges weakly to the degenerated probability measure on
U x X that puts probability one on the pair of utility function xz —
21— (x2)? and initial endowment vector (2,1). Hence the type of consumer

a = 0, who cares little about the bad, disappears at the limit.®

8 In fact, if the space U of utility functions were to be extended to accommodate the
possibility that the second commodity may be neutral, then the sequence of supports supp p"o
(u™ x e”)_l would not converge to this single type with respect to the closed convergence

topology.
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Proposition 25 In Example 24, for each n, the unique strong equiltb-

rium 18 gien by

pn = (17 _1) )
1

1
§n—|—2,§n—|—1) for a =20,

31
-, = > 1.

The proof is straightforward, so we omit it. Note that neither the equi-

f(a) =

librium price vector p" nor the consumption vector f"(a) for consumer
a > 1 depends on n. More importantly, the single consumer a = 0 always
consumes more than half of the aggregate endowment of both commodi-
ties, however large n may be. On the other hand, the equilibrium of
the limit economy with respect to the weak convergence is p = (1, —2)
and f(a) = (2,1) for almost every a. Hence there is a discontinuity
in the equilibrium correspondence with respect to the weak convergence
topology. The sequence of distributions of the equilibrium allocations f”
converges weakly to the degenerated probability measure putting prob-
ability one on (3/2,1/2). This does not correspond to any consumption
allocation of the limit economy, because half of both commodities are
disposed of.

We show that that the sequence of finite economies in Example 24
does not have the core convergence property, by measuring the gap from
budget feasibility and utility maximization in money metric. To be more
precise, take P = {p € R?*|p = 1} to be the price space.” For each n,
define " : X x P x A" — R, by

V" (z,p,a) = max{p- (z —e(a)),0} +sup{p- (z —y) |y € X and u}(y) > uy(z)}.

Thus ¢"(z,p,a) measures the gap between the given consumption vec-

tor x € X and the demand of consumer a € A" under the price vec-

% Once could of course take, say, P = {p € R? | |p1] + |p2] = 1} as the space of normalized

price vectors, but the result obtained below needs no change.
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tor p € P, where the first term measures the value of = in excess of
his wealth under p, and the second term measures the deviation from
cost minimization of z under p. With our specification of the util-
ity functions and endowments in Example 24, cost minimization, weak
utility maximization, and strong utility maximization are equivalent.
Hence, for every price vector p and an allocation f for the economy
(A", A" u),u™ e™), " (f(a),p,a) = 0 for every a € A" if and only if
(p, f) is a strong equilibrium. The above definition of ¢" is a modification
of the gap measure in Anderson (1978), which is, according to our nota-
tion, |p- (z — e(a))| + |inf {p - (y — e(a)) | y € X and ug(y) > uy(x)}]."
The notion of the core convergence property we employ requires that
the sequence (¢"), converges in measure to zero. More precisely, a
sequence of finite economies, ((A", A", u"),u", e"),, has the core con-
vergence property if for every sequence (g"), of core allocation of the
economies ((A", A", u™),u", e") and for every ¢ > 0, there exist a se-

quence (p"), in P and a positive integer N such that for every n > N,

p' ({a € A" [9"(g"(a),p",a) > €}) <e.

The following is an example of the violation of the two core conver-

gence properties.

Proposition 26 For each n, define an allocation g" : A" — X of the
economy ((A™, A", i), u", e") by

1
gn—l—2,§n—|—1 fora =0,
g"(a) = 11 1
— = > 1.
(B

Then, for every m, g" belongs to the core of ((A™, A", u"),u", e"), but

there exists an € > 0 such that for every sequence (p™), of price vectors

10 The failure of the core convergence property by the example can be established for his

gap measure as well.
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m P,
p' ({a € A" | 9"(g"(a),p",a) > €}) — 1. (5)

To explain intuitively why the sequence of the ¢" does not have the
core convergence property, recall that at the equilibrium allocations f",
the single consumer 0 consumes more than half of them, however large n
may be. It is thus reasonable to guess that he must retain some monopoly
power all along the sequence of finite economies, by being less unwilling
to accept the bad than any other consumer. In fact, what we see in the
above proposition is that even if we modify the equilibrium allocations
f™ by transferring some amounts of the good from all consumers a > 1
to a = 0, the resulting allocation will also belong to the core. This is

what was done to construct the allocations g".

1

The choice of the level of transfer, 3, is not completely arbitrary. To

see this, note that

5 1
12
the individual rationality constraint for a > 1, and we can take at most

i = % —% units of the first commodity from type a = 0 at the equilibrium

allocation f" without violating the individual rationality constraint. So
11
24
constraint is still met with strict inequality. This implies that there is no

for every a > 1. That is, the consumption vector ( ) just satisfies

we transfer just a half of it, % = so that his individual rationality
objecting coalition consisting of the a > 1. It thus remains to show that
there is no objection involving consumer 0. This task will turn out to be
easy, thanks to the quasi-linearity of utility functions with respect to the

good and by the strong supportability of the f".

Proof of e first prove that for every n, g" belongs to the core of (u",e").
Indeed, no coalition consisting only of consumers a > 1 can object to g";

if there were such a coalition, then, since all members have the identical,
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strict quasi-concave utility function, there would be another objection
at which every member receives the same consumption vector. But this
consumption vector must be e(a) = (2,1). This is a contradiction to
ul (¢"(a)) > wul(e(a)). Hence there is no objection consisting only of

consumers a > 1.

To show that there is no objection involving the consumer a = 0, note

Bualg"(a) _
8:1:2
for every a > 0, g" is strongly supportable by p = (1,—1) € P.

first that since
—1

Now, by means of a contradiction argument, suppose that there is a
weak objection ({0} UC, h) to some ¢g", where C is a subset of {1,...,n}
and may be empty or equal to {1,...,n}. Then

p-h(a) >p-g"(a)
for every a € C,
p-h(0)>p-g"(0),

and at least one of these |C| + 1 weak inequalities must be strict. Thus,

by taking summation over a € {0} U C, we obtain

p-| Y ha)]|>p-| > g'a)

ac{0}uC ac{0}uC
The left hand side is equal to (1 4 |C]) p - w, where w = (2,1) € X. On
the other hand, since p- ¢"(0) =p-w+ % and p- ¢g" (a) =p-w — g for
every a € C, the right hand side is equal to
n—|C]
g

Since n — |C| > 0, this is a contradiction. Hence there is no objection

(1+1C)p-w+

involving the consumer a = 0.

30



We now move on to prove that there exists a positive number € > 0 for

which (5) holds. Since all a > 1 have the same utility function and initial

. . 11 1
endowments, and receive the same consumption vector ¢"(a) = 33
for every n, both of the two terms of the measure of deviation for a > 1,
V"(g"(a),p,a) = max{p-(g"(a) —e(a)),0} +sup{p- (9"(a) —y) |y € X,

and uq(y) = ua(g"(a))}
depends only on p. We thus denote them by ,(p) and 1,(p). Since

11 1
<§, 5) is not the demand, ¢(p) + ¥y(p) > 0 for every p € P. The
first term v, (p) is a constant function of py for p, < —% and a strictly

increasing function for p, > —%. The second term 1,(p) is equal to

11 1 11 1
|l —. =] =] . > = .
D (8’2) mf{p y\yGXandua(y)_ua(8,2>}

Hence it is a convex function of p,. The value of the function is non-
negative everywhere and equal to zero only at po = —1. Hence 9y(p) is
a decreasing function of p, for po < —1 and an increasing function of for
po > —1. Therefore, ¥(g"(a),p,a) is a strictly decreasing function of po
for py < —1 and a strictly increasing function for ps > —3. Thus the

4
minimum,

min {i,(0) +02(0) [p€ Pand ~1<p<—3h

is equal to
inf {¢(g"(a), p,a) | p € P}
for every positive integer n and a > 1. If we denote the minimum (6) by

e, then
n

n c A" ng n : n’ > >
p'({a |99 (a).p"a) 2 e}) 2
for every sequence (p"),, and the right hand side converges to one as
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We should point out that it is possible to construct an example of
the failure of core convergence with the modifications of Proposition 21.
Indeed, for the case of § < oo, if we define (A", A", 1) as in Example 24
and (u",e") by

() = T1 — 51/(my2)(22) for a =0,
r1 — s1(x2) for a > 1,

e'(a) = w,

where $1/(49) 1 Ry — R, s1: Ry — R, and w € int X were defined as in

the proof of Proposition 21, then the strong equilibrium (p", f") is given

by
p - 9 4 )
n+2
fla)=9 §

g(q—g) for a > 1.

Again, a transfer of a sufficiently small amount of the the good from each

(@—q) fora=0,

a > 1 to a = 0 gives rise to a sequence of core allocations violating the
core convergence property. Since the upper bound g and lower bound ¢
of marginal disutility can be made at any levels, we have both proper

preferences and the failure of core convergence as in Manelli (1991).

7 Conclusion

We have explored some problems arising from the presence of bads in
economies with infinitely many consumers. The most significant result
was a work-out example (Example 10) of the non-existence of equilib-
ria. We have also shown (Section 4) that in this example, there is even
neither an efficient and individually rational allocation nor an efficient

and envy-free allocation; and (Section 5) that the non-existence result
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survives various types of modifications of the example. Two examples
were presented (Section 6), one to show that the limit of the sequence
of equilibrium allocations of increasingly populous finite economies may
not even be a resource-feasible allocation, and the other to show that the
limit theorem of the core fails even in a simple setting of economies.
The most important future research topic is perhaps to give a set of
sufficient conditions for the existence of equilibria. What we can see from
Proposition 21 is that the existence of equilibria cannot be guaranteed by
imposing bounds on the size of marginal disutility from bads. For any of
the utility functions (equality (1)) constructed in its proof, however, one
can show that at any given point, the Gaussian curvatures of indifference
curves of the u, converges to zero as a — 0 and that the equi-convexity
condition of Anderson (1981) is not satisfied. These conditions have
turned out to be crucial for the limit theorem for the core, and may well

be so too in our non-existence result.

A Proof of Lemma 8

It is sufficient to prove that if there exists a weak improvement g on an

allocation f, then there also exists a strong improvement on f. Define

B={a€ Alu,(9(a)) > uq(f(a))},
C={a€A|ga) €int X}

Then C' € A. We can prove that B € A as follows: The mapping (v, x) —
v(z) of U x X into R is continuous and hence (B(U) ® B(X),B(R))-
measurable. Since both a — wu, and f are measurable, by D.I.(4) of
Hildenbrand (1974), the mapping a +— (ug, f(a)) of A into U x X is
(A, B(U) ® B(X))-measurable. Since the mapping a — u,(f(a)) of A
into R is the composite of these two mappings, it is (A, B(R))-measurable.
We can similarly show that a +— u,(g(a)) is (A, B(R))-measurable. Thus
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B e A
If u(A\ B) =0, then g would itself be a strong improvement on g. In

the rest of the proof, therefore, we assume that p(A\ B) > 0.

Case 1 u(BNC) > 0.

For each positive integer n, define

D, = {a e BNC | gi(a) > % and u, (g(a) — %y) > ua(f(a))} ,

where y = (1,0) € X, then D, € A, D, C D, for every n, and
U,, Dn = BUC by the continuity of the u,. Hence there exists an n such
that p(D,) > 0. Define then h: A — X by

)
g(a) — ly if a € D,
n
_ D,)
h(a) = 4 g(a +'u(—ny ifae A\ B,
@)+ (AN B) !
\ g(a) otherwise.

Since the wu, are strictly increasing in the first commodity, h is a strong

improvement on f.

Case 2 u(BNC) =0.

In this case, it is sufficient to construct another weak improvement ¢’

on f that falls into Case 1. For each positive integer n, define

L= {(02) € B X |un(o) < wa(f@)} (V{(@a) € Bx X | o= g(a)] < 3 |

where ||-|| denotes the Euclidean norm. Since both sets on the right hand
side belongs to A ® B(X), so does I',. Since the measure space (A, A, 1)
(and hence its subspace B) is complete and X is a closed subset of R?,
by D.II.(11) of Hildenbrand (1974), the projection of I, onto B, that is,
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1
{a € B | there exists an € X such that u,(z) < u,(f(a)) and ||z — g(a)| < ﬁ} :

belongs to A. Denote this set by B,,, then B, O B, for every n and
),, Bn = @ by continuity. Thus there exists an n such that u(B\B,,) > 0.

By Lemma 7, u(C) > 0 and hence p((A\ B) N C) > 0. Then there
exist a 6 > 0 and a D € A such that D C (A\ B)NC, u(D) > 0, and

min{gi(a), g2(a)} > 6 for every a € D. We can assume without loss of

WB\ Ba)

ny(D)
Since each v € U is continuous, strictly increasing in the first com-

generality that 6 <

modity, and strictly decreasing in the second, for every x € X with
min{xi, x2} > 8, there exists a unique y € int X such that ||y|| = 6 and
v(x—y) = v(z). It is easy to show that the mapping « : (v, x) — y is con-
tinuous. Thus the mapping k : D — int X defined by k(a) = k(ug, g(a))
s (A, B(X))-measurable. Then ||k(a)|| = 6, g(a) — k(a) € int X, and
uq(g(a) — k(a)) = us(g(a)). Now define ¢’ : A — X by

( g(a) — k(a) if a € D,
/ L 1 .
g'(a) = g(a)+M(B\Bn)/1)k ifa € B\ By,
\ g(a) otherwise.

Then ¢’ is an allocation. Moreover, / k € int X and

H TE\ES s H SEVED J, =ty <

Hence, by the choice of B,,, u,(¢'(a)) > u.(f(a)) for every a € B\ B,.
Thus, if B’ and C’ are defined for ¢’ just as B and C were defined for g,
then u(B'NC") > u(B\ B,) > 0. Thus ¢ is a weak improvement on f
that falls into Case 1.
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