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ABSTRACT
Large numbers of small opaque dust clouds – termed ‘globulettes’ by Gahm et al. – have
been observed in the H II regions surrounding young stellar clusters. With masses typically
in the planetary (or low-mass brown dwarf) regime, these objects are so numerous in some
regions (e.g. the Rosette) that, if only a small fraction of them could ultimately collapse,
then they would be a very significant source of free-floating planets. Here, we review the
properties of globulettes and present a theoretical framework for their structure and evolution.
We demonstrate that their interior structure is well described by a pressure-confined isothermal
Bonnor–Ebert sphere and that the observed mass–radius relation (M ∝ R2.2) is a systematic
consequence of a column density threshold below which components of the globulette are
not identified. We also find that globulettes with this interior structure are very stable against
collapse within H II regions. We follow Gahm et al. in assuming that globulettes are detached
from the tips of pillars protruding in from the swept-up shell that borders the expanding H II

region and produce a model for their dynamics, finding that globulettes will eventually impact
the shell. We derive an expression for the time it takes to do so and show that dissipation
of energy via dust cooling allows all globulettes to survive this encounter and escape into
the wider interstellar medium. Once there, the ambient pressure drops and they disperse on
time-scales around 30–300 kyr and should be observable using ALMA out to distances of the
order of a parsec.

Key words: planets and satellites: formation – brown dwarfs – ISM: bubbles – ISM: clouds –
H II regions – ISM: kinematics and dynamics.

1 IN T RO D U C T I O N

Globulettes are small, dense conglomerations of gas observed
within H II regions, recently brought to attention by Gahm et al.
(2007), Gahm et al. (2013), Grenman & Gahm (2014) and Mäkelä,
Haikala & Gahm (2014). Grenman & Gahm (2014) studied glob-
ulettes in the Carina nebula, finding that they are typically approx-
imately spherical, having average radii varying from about 0.1 to
10 kau, masses from 0.1 to 100 Jupiter masses and number densi-
ties in the range 103–105 cm−3. They also noted that the globulette
masses and radii were found to be statistically correlated.

There are two possible formation mechanisms for globulettes.
H II regions are the expanding bubbles of ionized gas about mas-
sive stars. As H II regions expand, they accumulate material in a
shell about their periphery. In the first globulette formation mecha-
nism, they are the detached tips, or fragmented remnants, of pillars
(a.k.a elephant trunks) which are known to reside at the periphery
of H II regions and to be moving at the same velocity as the ex-
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panding shell. Once detached, the globulettes subsequently move
in the same direction as the expanding shell. This is the formation
mechanism proposed by Gahm et al. (2007) and Gahm et al. (2013).
The justification is that globulettes are often in the vicinity of pillars
and also that globulette velocities are observed to be similar to that
of the shell (Gahm et al. 2013).

Tremblin et al. (2012) also showed that larger globules (a few
solar masses – though these sizes were limited by the spatial reso-
lution of the simulation) within the H II region appear following the
irradiation of a turbulent medium. As well as being more massive,
these objects are also more complicated in structure, for example
being elongated with tails, similar to some of the globulettes stud-
ied by Gahm et al. (2007) and Grenman & Gahm (2014). In this
latter case, the globule has a more random motion determined by
the initial turbulent velocity field.

Gahm et al. (2007) showed that the expected photoevaporation
time-scale for globulettes is around 3.8 Myr; this value is consistent
with the fact that images of globulettes show a mixture of spheri-
cal and cometary morphologies. Grenman & Gahm (2014) found
that some globulettes in Carina were particularly small and dense,
leading the authors to conclude that perhaps they were at a later

C© 2014 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at U
niversity of C

am
bridge on M

arch 26, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

mailto:thaworth@ast.cam.ac.uk
http://mnras.oxfordjournals.org/


The theory of globulettes 1099

stage in globulette evolution, having had more time to be com-
pressed or for lower density outer layers to be dispersed. They also
speculate that globulettes might form free-floating planets or brown
dwarfs, though considerable external pressure may be required to
collapse globulettes. This external pressure could be in the form of
turbulence, photoevaporative driving or ram pressure (Gahm et al.
2007).

In this paper, we develop a model to describe the internal struc-
ture, motions and stability of globulettes in (and exterior to) H II

regions. We aim to determine if/when a globulette will have to pass
through the shell bounding the H II region and whether it will sur-
vive the encounter. We also aim to understand the sensitivity of
globulette lifetimes to star-forming region properties. In doing so,
we shall help to constrain models of globulette formation and any
possible subsequent evolution into brown dwarfs or vagrant planets.

2 IN T E R NA L ST RU C T U R E A N D T H E
M A S S – R A D I U S R E L AT I O N

We fitted the masses and radii of globulettes in the Carina nebula ob-
served by Grenman & Gahm (2014) and found that the mass–radius
relation differs from the cubic power law expected for constant
density spherical clouds, rather being given by(

M

MJ

)
= 1.6 ×

(
RG

kau

)2.2

(1)

to understand this we require a model of the internal structure of
globulettes.

2.1 Globulettes as Bonnor–Ebert spheres

Using CO observations of small globules (before the term globulette
was coined), Gonzalez-Alfonso & Cernicharo (1994) concluded
that globulettes are isothermal since they are optically thick to far-
ultraviolet radiation from the nearby stars. More recently, Gahm
et al. (2013) have shown that these objects might have a hot thin
envelope surrounding a cold dense core, as suggested by 12CO
emission lines. As a first approximation, an isothermal sphere is
still pragmatic. If we further assume hydrostatic equilibrium, we
can model them as Bonnor–Ebert spheres, the density of which is
described by the Lane–Emden equation

1

R2

d

dR

(
R2 d

dR
ln(ρ/ρc)

)
= −4πGρc

c2
s

exp[ln(ρ/ρc)], (2)

where R is the radial coordinate, cs is the sound speed, ρ is mass
density and ρc is the density value at the centre of the sphere.
We define R0 = cs/(4πGρc)1/2 as the typical length-scale of the
problem. By substituting ψ = ln (ρ/ρc) and x = R/R0, we can
rewrite equation (2) as

1

x2

d

dx

(
x2 d

dx
ψ

)
= − exp ψ. (3)

We numerically solve this second-order differential equation by
solving the two coupled first-order equations:

dψ

dx
= y

x2
, (4)

dy

dx
= −x2 exp ψ. (5)

We use a standard ODE integrator where the grid over x is log-
arithmically distributed between 10−4 and 104 with 800 points to

Figure 1. Dimensionless mass m versus ρc/ρ0. This relation is used to
obtain ρc for a given M, Pext and internal temperature. If m is less than 0.6,
the solution for ρc/ρ0 is unique, and the sphere is stable against contraction.

solve for the radial density structure. In order to solve the equation,
we require that ψ(x = 0) = 0 and y(x = 0) = 0.

In order to define the unique solution of the dimensional den-
sity ρ(R) for a given mass, we need to determine two physical
parameters: ρc and Rtr, i.e. the radius at which we truncate the
sphere (see Stahler & Palla 2005, for a further description of the
technique we are using). By obtaining these two parameters, we
can uniquely relate a mass to a radius. The two known parameters
for the globulettes are: the internal temperature T, and the external
pressure Pext of the H II region. The external pressure is related to
the density of the sphere ρ0 at the outer radius Rtr via the simple
relation ρ0 = Pext/c

2
s , since the internal pressure at the outer edge

of the cold neutral gas has to match the external pressure of the less
dense, much hotter ionized gas of the H II region. We use an internal
temperature of 10 K, a canonical value for dense opaque clouds.
Gonzalez-Alfonso & Cernicharo (1994) estimated a temperature of
the globulettes in the Rosette of ∼15 K from the CO emission line
width. We assume a mean molecular weight μ = 2.3. For the H II

region properties, we assume a temperature of 104 K and a num-
ber density of 10 cm−3. We calculate globulette properties over a
logarithmically spaced mass distribution between 10−1 and 103 MJ.

In order to find ρc, we first define a dimensionless mass:

m = P
1/2
ext G3/2M

c4
s

. (6)

The dimensionless mass m can be numerically related to ρc/ρ0, as
shown in Fig. 1, via the following relation:

m =
(

4π
ρc

ρ0

)−1/2(
x2 dψ

dx

)
. (7)

Therefore, from a given mass, external pressure, and internal tem-
perature of a globulette, we are able to extract the value of ρc.
Finally, we integrate outwards the density function until the total
mass matches with the given one. We can therefore determine the
value of the truncation radius Rtr. Doing so over a range of masses
yields the theoretical mass–radius relation for globulettes.

In Fig. 2, the solid black line shows our theoretical mass–radius
relation for an external pressure Pext = nkBT, where the electron
density n in the H II region is 10 cm−3, and the average tempera-
ture of the ionized gas is 5800 K (that estimated for the Rosette
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Figure 2. The mass–radius relationship from our theoretical models and from observations. The back solid line indicated the mass–radius relation estimated
by assuming the globulettes are isothermal Bonnor–Ebert spheres. The yellow dash–dotted line (with circled markers) indicates the mass–radius relation in
Rosette obtained after accounting for systematic errors in the mass determination, by truncating the spheres to the point where their column density equals the
detectability threshold. The green dash–dotted line (with circled markers) shows the same result for Carina. Brown triangles are globulettes in the Rosette, red
crosses are globulettes in the Carina nebula (Grenman & Gahm 2014), blue triangles in IC 1805 and black circles in NGC 7822 (Gahm et al. 2007).

by Celnik 1985). Overlaid are mass and radii of globulettes from
the Rosette (brown triangles, from Gahm et al. 2007), Carina (red
crosses, from Grenman & Gahm 2014), IC 1805 (blue triangles,
from Gahm et al. 2007) and NGC 7822 (black circles, from Gahm
et al. 2007). These pressure-confined Bonnor–Ebert spheres are not
very stratified, having a broad interior region of slowly varying
density until close to the globulette boundary (cf. Fig. 4). The the-
oretical mass–radius relation is well represented by a power law,
where M ∝ R3 (as one would expect) and the high-mass regime of
the data seems to be quite well described by this distribution (i.e.
they are Bonnor–Ebert spheres). However, in the low-mass regime,
the discrepancy between data and model is prominent (more than an
order of magnitude). We now demonstrate that this can be explained
by observational systematics.

2.2 Correcting for observational systematics

So far we have found that our model for the internal structure of
globulettes describes well the observed mass–radius relation of large
radius globulettes in the Rosette nebula, but masses differ by over
an order of magnitude for smaller globulettes. Gahm et al. (2007)
estimated globulette masses using extinction maps derived from
deep narrow-band H α images, collected with the 2.6 m Nordic Op-
tical Telescope (Gahm et al. 2007). For Carina, Grenman & Gahm
(2014) used Hα data from the Hubble Space Telescope archive. In
order to estimate the masses, in both cases they measure the col-
umn density of the neutral cold gas of the globulettes. By using
this method, there has to be an intrinsic threshold, under which no
column density is detected via extinction. From Gahm et al. (2007),
we estimate this threshold to be Nth ∼ 4 × 1020 cm−2 in the Rosette.

We construct an observed mass–radius relation by using the fol-
lowing procedure. From the theoretical mass–radius relation, we

compute the surface density profile of the spheres in the plane of
the sky. The relation between the two can be expressed by (e.g.
Dapp & Basu 2009)

�(r) = 2
∫ R

r

ρ(R)RdR√
R2 − r2

, (8)

where �(r) = N(r)/μmH and r is the cylindrical radius of the sphere
in the plane of the sky. We have checked that we re-obtain the initial
mass, by integrating the surface density profile out to a cylindrical
radius equalling Rtr:

M =
∫ Rtr

0
�(r)2πrdr. (9)

We then truncate the projected spheres to a cylindrical radius
rth such that N(rth) = Nth. This is the outer radius of the observed
globulettes. We finally compute the new mass of the globulette
M� (since it comes from the surface density) by integrating the
surface density profile from the centre out to rth. The new mass–
radius relation is given by M�(rth), and is shown with the yellow
dash–dotted line in Fig. 2. A much better agreement between the
data of the Rosette nebula and the model is apparent. The yellow
circles on the line represent the points through which the line is
drawn. The points are not equally separated in logarithmic space
(though our logarithmic sampling of masses was, cf. Section 2.1).
This is indicating that the low-mass end of the distribution comes
from initial masses that are higher by almost an order of magnitude,
i.e. the low-mass regime is probing the cores of globulettes with
masses equal to a few MJ. This same mass–radius distribution also
describes the data points from IC 1805 well, indicating that the
two star-forming regions have similar external pressures. The data
points for NGC 7822 are so few and the scatter is so large that we
cannot make any similar comment on the relative conditions there.
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The theory of globulettes 1101

We also produce a theoretical mass–radius relation for Carina.
The average electron density is well observationally constrained at
30 cm−3 from Ne II emission line data (Oberst et al. 2006, 2011).
We keep the same values used before for the internal temperature
of globulettes and temperature of the ionized gas, respectively, 10
and 5800 K. However, in order to obtain a good agreement with
the data, we require a higher column density threshold, namely
Nth = 8 × 1020. We cannot estimate this new column density thresh-
old directly from Grenman & Gahm (2014); however, we expect Nth

to be higher in Carina than in Rosette, since Carina is further away,
at ∼2.3 kpc (e.g. Smith 2006), whereas Rosette is at ∼1.6 kpc (e.g.
Park & Sung 2002). Moreover, in Carina there is potentially more
foreground emission due to the higher electron density, therefore
decreasing the signal to noise of the extinction maps. By assum-
ing the aforementioned value for Nth, the agreement between the
model and the observational data is good, as shown by the green
dash–dotted line and circles in Fig. 2.

We conclude that globulettes seem to be well described by isother-
mal Bonnor–Ebert spheres of low-density stratification. However, in
order to properly compare this underlying model with the data, we
need to account for systematics due to the observational techniques
used to estimate the globulettes masses and radii.

3 STA BILITY AG AINST C OLLAPSE

We now discuss whether globulettes are stable against contraction
or not. In Fig. 3, we show the ratio of internal (thermal) energy K to
the absolute value of gravitational energy W for the globulettes con-
sidered in this paper. Since at first order, globulettes are isothermal
and characterized by a uniform density, this ratio can be evaluated
via the simple relation:

K

W
= 5

2

c2
s R

GM
. (10)

The thermal energy is at least by an order of magnitude greater
than the binding energy. Globulettes are not gravitationally bound
structures. They are pressure confined by the hot surrounding gas.
A natural question is whether the pressure in the H II region is
high enough to trigger contraction in the globulettes. It is well

Figure 3. The ratio of thermal and binding energy of the globulettes, as
a function of mass. The points represent globulettes in the same systems
as those with corresponding symbols in Fig. 2 and the line is the ratio for
our model of globulette structure. This ratio is always much higher than
1, indicating that these structures are not gravitationally bound. They are
confined by external pressure from the hot ionized medium of the H II region.

Figure 4. Ratio of the central density over density at the outer edge of
globulettes versus mass. Since ρc/ρ0 is well below the value 14.1, these
spheres are stable against contraction.

known that Bonnor–Ebert spheres are stable against contraction
when ρc/ρ0 < 14.1 (see e.g. Stahler & Palla 2005). For the mass–
radius relation estimated in Section 2, ρc/ρ0 is always less than 1.5,
as shown in Fig. 4. Therefore, such globulettes are stable against
contraction in a typical H II region. In order to contract, they would
need either a higher external pressure or a higher mass. We can
conclude that globulettes will not collapse in the H II region, unless
they are subject to very high pressures (much higher than usual
thermal and turbulent pressures). They are therefore very unlikely
to form brown dwarfs or free-floating planets, unless contraction is
triggered by some strong perturbation, such as colliding with the
shell of the H II region.

4 H I I R E G I O N C O N F I N E M E N T T I M E - S C A L E

4.1 Analytic model

We build our model based upon the conclusions drawn from obser-
vations discussed in the Introduction (e.g. by Gahm et al. 2007). The
picture we have is that there is an expanding H II region, bounded
by a dense shell, from which pillars protrude into the ionized gas.

There are already well-established simple models describing the
extent of an H II region with time. An ionizing source in a uniform
density hydrogen medium rapidly ionises a sphere of Strömgren
radius given by

rs =
(

3Nly

4πn2
eαB

)1/3

, (11)

where Nly, ne and αB are the number of ionizing photons emitted per
second, electron density in the H II region and case B recombination
coefficient for hydrogen. Up to the Strömgren radius, the ionization
front propagation is rapid and does not significantly alter the density
distribution.

The subsequent expansion of the H II region is known as D-type
and results in the sweeping-up of a shell at the boundary of the
H II region. Hosokawa & Inutsuka (2006) solved the equation of
motion of the shell to find its location as a function of time, which is
essentially coincident with the ionization front given that the shell
is thin

rI(t) = rs

(
1 + 7

√
4 cIt

4
√

3 rs

)4/7

, (12)
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where cI is the sound speed in the ionized gas. Equation (12) gives
slightly faster D-type expansion than the classic solution by Spitzer
(1998) since it is based on momentum conservation rather than a
direct linkage of the pressure in the H II region to the ram pressure
in the ambient medium: the fact that these assumptions give slightly
different relations is an indication that the thin-shell approximation,
which both approaches use, is not accurate in practice: see Raga,
Cantó & Rodrı́guez (2012). We only consider the D-type expan-
sion of H II regions since it is in this phase that pillars which are
dynamically associated with the shell could form.

At ‘detach’ time tD, a globulette detaches from a pillar of length Lp

when the shell is at position rD. We assume that the properties (mass,
radius) of the globulette do not change with time. We also ignore
any acceleration due to the rocket effect or direct radiation pressure,
the impact of which we discuss in Section 4.3. In the absence of
ram pressure acting upon the globulette (we will later demonstrate
that ram pressure has no effect on the globulette propagation), the
subsequent location of the globulette as a function of time is

rg(t) = rD − Lp + ṙI(tD)t . (13)

In the event that rg(t) and rI(t) are equal at some time tc, which
we call the confinement time-scale, the globulette will collide with
the shell. However, equating equations (12) and (13) yields an im-
plicit relation for which the globulette lifetime needs to be solved
numerically.

We can derive an explicit expression for the globulette confine-
ment time-scale in the limit of constant shell deceleration (i.e. for
small pillar sizes). In this limit of constant shell deceleration, the
shell position following the detachment of a globulette is given by

rI(t) = rD + ṙI(tD)t + 1

2
r̈I(tD)t2. (14)

At time tC, the globulette collides with the shell when equations
(13) and (14) are equal, i.e.

t2
C = − 2Lp

r̈I(tD)
. (15)

Rewriting equation (12) as

rI = rs

(
1 + t

to

)4/7

, (16)

then

r̈I(tD) = −12

49

rs

t2
o

(
1 + tD

to

)−10//7

. (17)

Substituting this into equation (15)

tC =
√

49Lpt2
o (1 + tD/to)10/7

6rs
, (18)

which can be written as

tC =
√

49Lp

6rD

(
1 + tD

to

)
to, (19)

where rD is the ionization front position at the time of globulette
detachment. If the size of pillars scales linearly with the size of the
H II region Lp = frD, then the lifetime scales linearly with detach
time. However, if the pillar size is a constant, then

tC =
√

49Lp

6rs

(
1 + tD

to

)5/7

to (20)

so confinement time-scale scales as t
5/7
D .

The key points to note are that under the assumptions that we
have made the globulette lifetime only depends upon the time at
which they are detached and the length of the pillar from which
they are detached. It is insensitive to the source ionizing flux since
tC ∝ N

−1/6
ly . It is also independent of the globulette properties

(though this would not be the case if ram pressure were important).
Given that we have not included the rocket effect, the sensitivity
to ionizing flux will be stronger than the weak dependence quoted
above, we discuss this in more detail in Section 4.3.

4.2 Numerical comparison

We now compare our analytic model with more detailed numerical
calculations. This allows us to test the effect of ram pressure, which
was neglected in our analytic model.

4.2.1 Shell and globulette evolution

The expansion of the shell is modelled using equation (12). As in
our analytic model, we assume that globulettes are detached from
pillars suspended from the shell at some time after the start of D-type
expansion. The globulettes are spherical and their initial velocity is
the same as that of the shell.

Following detachment, the globulette is assumed to be impeded
by ram pressure only and so the velocity evolves according to

dv

dt
= −ρIπR2

G

(
v − vHII

)2

MG
, (21)

where RG, MG, ρI and vHII are the globulette radius and mass and
the density and velocity of the ionized gas in the radial direction
(i.e. the globulette propagation direction).

The velocity in the ionized gas in the immediate vicinity of the
globulette evolves according to

vHII = 1

2

(
rG

rI

)
ṙI, (22)

where rG, rI and ṙI are the globulette position, ionization front
position and ionization front velocity. The density in the ionized
gas also evolves with time since ionization equilibrium imposes
that

ρ2
I r

3
I = constant (23)

and so

ρI = ρa

√
r3

s

r3
I

, (24)

where ρa is the ambient density.

4.2.2 Further implementation

We begin by updating the ionization front position in regular time
intervals dt = t�/(4 × 105) where t� is the lifetime of the ionizing
source. We use ionizing fluxes from Diaz-Miller, Franco & Shore
(1998) for solar metallicity stars of 17.5, 21.9, 40.9 and 63.8 M�.
These ionizing fluxes were computed by integrating over local ther-
modynamic equilibrium metal-line blanketed model atmospheres
from Kurucz (1979). Lifetimes of the ionizing sources are calcu-
lated using the giant branch and core helium burning time-scale
models from Hurley, Pols & Tout (2000). The stellar properties are
summarized in Table 1.
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Table 1. Properties of the ionizing sources considered in
this paper.

Mass (M�) Ionizing flux (photons/s) Lifetime (Myr)

17.5 1.05 × 1047 11.4
21.9 1.25 × 1048 8.7
40.9 6.03 × 1048 5.2
63.8 2.24 × 1049 4.2

At a time t = tD, a globulette detaches from a pillar with velocity
equal to that of the shell. We then continue to evolve the shell
and globulette positions numerically over time steps of dt until t�,
beyond which the H II region might soon be expected to be dispersed
by supernovae. In the event of a collision with the shell (i.e. the
globulette position overtakes the shell), we record the globulette
confinement time-scale tC = t − tD. In the event that tD + tC > t�,
then we set tC = t� − tD to account for the fact that the limited
ionizing source lifetime may cut short the globulette lifetime (or
at least the time it is confined to the H II region). Note that for
this study, we assume that the globulette mass and radius remain
unchanged once it is detached from the shell.

4.2.3 Results of numerical calculations

Fig. 5 shows the globulette confinement time-scale (the smaller of
either the time until collision with the shell or the ionizing source
lifetime) as a function of detach time. The top panel shows the
results for calculations with ionizing sources of different masses. It
also compares calculations with and without ram pressure included
(lines and points, respectively). Since there is no difference between
the lines and the points, we conclude that ram pressure has no effect
on globulette evolution. We ran test calculations using ambient
densities up to a factor 104 higher (the ionized gas still obeyed
equation 24), but even in this extreme case, the effect of ram pressure
only elongated the globulette confinement time by at most 6 per cent.

In the middle panel, we also show that because tC ∝ N
−1/6
ly (equa-

tion 20) that even if we increase the ionizing flux by a factor of 10,
the globulette confinement time is essentially unaffected.

In the bottom panel of Fig. 5, we show the effect of choosing
different values of f for pillar sizes frI or using a constant pillar
size. The results in Section 4.1 reproduce the behaviour seen in the
numerical models. When the pillar size is frD, the globulette lifetime
is a linear function of detach time and is non-linear otherwise. In
Fig. 6, we compare the lifetimes given by two of our numerical
models with those given by equation (19). Prior to the lifetime of
the ionizing source limiting that of the globulette confinement time,
our analytic model gives results within 0.5 Myr of the numerical
result at all detach times.

4.3 Uncertainties in the confinement time-scale

There are two significant approximations that we make in calcu-
lating the globulette confinement time-scale that we have not yet
discussed: that globulettes initially travel at the velocity of the shell
and that we have neglected rocket-driven motion from photoevapo-
rative outflows.

If the globulettes are detached with lower velocities than the
shell, then they will remain confined to the H II region for longer. To
quantify this, we modify the initial globulette velocity for one of our
numerical models and plot the percentage increase in the globulette
confinement time as function of the fraction of the shell velocity

Figure 5. The time following detachment from the shell that a globulette
remains confined to an H II region. The top panel shows the result for different
stellar masses and both with (lines) and without (points) ram pressure. The
middle panel demonstrates that the result is insensitive to the ionizing flux
and the bottom-right panel shows results for models with different pillar
size prescriptions. Vertical lines denote the star lifetime.

that the globulette initially has in Fig. 7. Clearly, lower initial ve-
locities can increase the globulette confinement time significantly.
We reiterate that Gahm et al. (2013) found globulettes to be moving
at the same velocity as the shell, but even a difference of only 5 per
cent in the globulette velocity can increase the confinement time by
30 per cent.
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Figure 6. A comparison of our numerical calculations (points) with equa-
tion (19) (lines) for different pillar size prescriptions.

Figure 7. The effect upon the globulette lifetime of the initial globulette
velocity being lower than the shell velocity.

Given that our model in which the globulettes are in pressure
equilibrium with the surrounding H II region provides an excellent
fit to the observational data (Fig. 2), we do not expect that that the
additional pressure associated with photoevaporative flows from
the exposed surface of the globulette can be much larger than the
ambient thermal pressure (though Gahm et al. 2013, find a slight
asymmetry in the density structure, with denser gas towards the
OB association). In the case that these two pressures are similar in
magnitude, the one-sided application of photoevaporation pressure
would result in an outward acceleration of about 1 km s−1 Myr−1.
From our numerical models, we find that typical globulettes have
velocities of up to around 10 km s−1 and are confined up to 5 Myr.
Applying this acceleration to our numerical models, we find that
rocket-driven motion can reduce the confinement time-scale by up
to a factor of ≈2 (though it is usually less than this at around
10–40 per cent).

We therefore have two mechanisms that can significantly modify
the confinement time-scale acting to nullify one another. Determin-
ing which, if either, of these dominates requires radiation hydrody-
namic simulations with photoionization that self-consistently form
pillars and globulettes. This kind of simulation would be at the
forefront of modern numerical modelling of the expansion of H II

regions and is therefore beyond the scope of this paper.

5 C O L L I S I O N S W I T H T H E S H E L L

In the event of a globulette colliding with the shell, we estimate
the effect upon the globulette by comparing the kinetic energy dis-
sipated in the globulette with its gravitational binding energy. The
total kinetic energy of the shell at the collision interface is

K = [v − ṙI(t = tL)]2 ρsπR2
G�, (25)

where � is the shell width, ρs the shell density and ṙI the shell
velocity.

However, the quantity of energy dissipated within the globulette
(K′) is only a fraction (ρs/ρG)1/2 of this (Syer, Clarke & Rees 1991).
Since the gravitational binding energy of the globulette is

U = 3GM2
G

5RG
, (26)

we then have that

K ′

U
= 5 [v − ṙI(t = tL)]2 ρsπR3

G�

3 GM2
G

√
ρS

ρG
. (27)

We also need to consider the dissipation of energy through dust
cooling. The cooling rate per unit volume from dust alone is

	(T ) = 4κρσT 4, (28)

where κ is the mean opacity (we use the Planck opacity). Integrating
this cooling rate per unit volume over the shell crossing time-scale
and the globulette volume gives the possible energy extracted during
the shell crossing. Subtracting this energy lost gives

K ′

U
=

√
ρS

ρG

5R3
G�π

3GM2
G

[
ρs(v − ṙI )2 − 16

3
κρGσT 4

G

�

(v − ṙI )

]
.

(29)

If K′/U < 1, then the globulette is expected to survive the collision
with the shell.

In order to evaluate the energy involved in the shell collision, we
also require a description for the evolution of the shell. If the shell
is isothermal, the density is given by the pre-shock density times
the square of the Mach number in the pre-shock region

ρs = ρa

(
ṙI

ca

)2

, (30)

where ρa and ca are the density and sound speed in the pre-shock
gas, respectively (Clarke & Carswell 2007).

We calculate the mass in the shell as the difference between the
total mass of ambient gas initially contained within radius rI + �

and the mass of ionized gas within rI (which is small in compar-
ison). Since the initial Stromgren radius, rs, defines a situation of
ionization equilibrium for gas at density ρa, such equilibrium at
radius rI corresponds to an ionized gas mass of 4π/3ρar

3
s (rs/rI)−3/2

(from equation 24). Thus, the shell thickness is given by

MTot = 4π

3

[
(rI + �)3 − r3

I

]
ρs

= 4π

3

[
(rI + �)3 − r3

s (rs/rI)
−3/2

]
ρa (31)

and then

� =
[(

r3
I ρs − r3

s (rs/rI)−3/2ρa

ρs − ρa

)1/3

− rI

]
. (32)

We evolve the shell parameters in our numerical calculations (Sec-
tion 4.2) and evaluate the collision once the globulette is coincident
with the shell.
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Without dust cooling, the collision and gravitational binding en-
ergies from equation (29) are comparable. Those most susceptible
to destruction are the smallest globulettes. To include dust cooling,
we calculate the Planck opacity using subroutines from the TORUS ra-
diative transfer code (Harries 2000). We assume a dust-to-gas ratio
of 10−2 and spherical, silicate dust grains that follow a standard in-
terstellar medium (ISM) power-law size distribution (Draine 2003).
We assume a globulette temperature of 18 K, following the obser-
vations of Gahm et al. (2007). With these parameters for the lowest
mass (and most easily destroyed) 0.1 MJ globulette crossing the
shell at 1 km s−1 (the typical value from our subsequent numerical
calculations), we find that

K

U
≈ 2

(
�

pc

) [
1010ρs − 2 × 10−5

(
�

pc

)] √
ρS

ρG
. (33)

Since ( �
pc

) will be not much less than order unity and the shell

density is at most around 105mH cm−3, the energy lost through
dust cooling is always about 4–5 orders of magnitude higher than
heating due to ram pressure. Hence, even the smallest globulettes
will survive their encounter with the shell and escape into the wider
ISM.

6 FATE O F G LOBU LETTES IN THE W IDE R
ISM

Once in the wider ISM, dust cooling would continue to prevent
the destruction of the globulette by the action of the surroundings.
However, the external pressure could drop by an order of magnitude
or more exterior to the H II region so if globulettes are pressure
confined within the H II region, then they will eventually dissipate.

According to Stanyukovich (1960), it is impossible to find an
exact analytic solution for a suddenly expanding sphere of gas in
vacuum, however they calculate an approximate solution which is
also given by Zel’Dovich & Raizer (1967) where the globulette
expansion velocity is

dRG

dt
= 2

γ − 1
cG, (34)

and the globulette density evolves according to

ρ = MG

R3
G

(
1 − R2

G0

R2
G

)α

, (35)

where

α = 3 − γ

2(γ − 1)
(36)

and RG0, cG, γ are the initial globulette radius, sound speed in the
globulette and the adiabatic index in the globulette, respectively.

If we define the dissipation time-scale as that at which the glob-
ulette density is equal to the ambient medium, then

tDiss = 1

v

(
MG

ρamb

)1/3 (
1 − R2

G0

v2t2

)α/3

(37)

which has to be solved numerically unless in the limit of small
R2

G0/(v2t2). Solving numerically and assuming γ = 1.4, this gives
dissipation time-scales ranging from 30 to 300 kyr over the glob-
ulette mass range observed in Carina. The dissipation time given
in the aforementioned limiting case gives a value to within 0.5 per
cent of the numerical result and so the simplified form is applicable.
Assuming a constant propagation velocity of 10 km s−1, the largest
globulettes might therefore be observable external to an H II region
out to a distance of up to 3 pc (albeit increasingly dispersed). Of

course, this exact distance depends on the globulette properties and
propagation velocity. Nevertheless, globulettes might be observed
using high spatial resolution molecular line observations at veloci-
ties similar to that of the shell. In and around Carina, one would be
able to resolve globulettes down to 1 kau at 230 GHz (≈0.3 arcsec)
with an ALMA baseline of 1 km.

We have found that the only way that globulettes might form
brown dwarfs or free-floating planets is if they are triggered to col-
lapse as they traverse the shell. If they do form planets or brown
dwarfs, then they will contribute to the low-mass tail of the local
initial mass function (IMF). In the central cluster NGC 2244 of the
Rosette Nebula, recent estimates indicate a census of ∼2000 stars
(Li 2005; Wang et al. 2008), whereas 145 globulettes have been
detected in the outskirts of the same cluster (Gahm et al. 2007). The
majority of these objects have masses below 30 MJ. Considering
the globulettes with M < 30 MJ, if we assume they eventually col-
lapse and form free-floating planets and brown dwarfs, they would
constitute ∼5 per cent of the total number of stars in the cluster.
This would imply a significant upturn in the IMF at masses below
30 MJ, compared with the IMF determined at higher (brown dwarf
masses) by Da Rio et al. (2012) in the Orion nebular cluster. Glob-
ulettes could not however possibly provide the very high numbers
of free-floating planets (outnumbering stars by a factor 2) claimed
by Sumi et al. (2011) using the MOA-II (Microlensing Observations
in Astrophysics-II) survey (see however Chabrier et al. 2014, for a
recent discussion on this topic).

7 T H E D I S T R I BU T I O N O F G L O BU L E T T E S
I N H II R E G I O N S

We find that globulettes within H II regions will all eventually impact
the shell. Since globulettes are not decelerated by ram pressure, they
soon travel faster than the shell. We therefore also find that glob-
ulettes detached from a pillar of size Lp at the shell velocity remain
within Lp of the shell (this will not be the case if the initial glob-
ulette velocity is lower than the shell velocity). This is in qualitative
agreement with observations by Gahm et al. (2007) and Gahm et al.
(2013) which find globulettes clustered near to the shell. We there-
fore suggest that any globulettes observed at larger distances interior
to the shell either initially travel substantially slower than the shell
or are formed via some other mechanism. For example, they could
be the result of the irradiation of a turbulent medium, which has been
shown to produce isolated (but much larger) globules in simulations
by Tremblin et al. (2012) and Gritschneder et al. (2010). These two
mechanisms can be distinguished by the motions of the globulettes.
If they are detached from a shell, then their propagation direction
should correlate with the shell, whereas if they are the result of the
irradiation of a turbulent medium simulations show that globulettes
should have random velocities (Tremblin et al. 2012).

8 SU M M A RY A N D C O N C L U S I O N S

We have developed a theoretical model describing many features
of globulettes, including a description of their internal structure,
stability, motions, their ability to survive collisions with the shell
bounding an H II region and their fate in the wider ISM. We draw
the following main conclusions from this work.

(1) We demonstrate that globulettes are well described by
pressure-confined isothermal Bonnor–Ebert spheres (with very
slowly varying density distribution until close to the globulette
boundary). We have also shown that the observed M ∝ R2.2 relation
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for globulettes is explained by systematics, since there is a column
density threshold below which components of the globulette will
not be identified.

(2) We find that within the H II region globulettes are very stable
against collapse. Bonnor–Ebert spheres are stable against contrac-
tion if ρc/ρo < 14.1 and we find that this ratio is typically an order
of magnitude lower for globulettes.

(3) All globulettes will eventually impact the shell bounding the
H II region unless they are disrupted beforehand by, for example, a
supernova or photoevaporation. This is because although the glob-
ulette initially travels at the same speed as the shell (we assume this
based on observations), it experiences essentially zero deceleration
due to ram pressure as the gas density in the H II region is so low.

(4) Given conclusions 2 and 3, the only way that globulettes
might form brown dwarfs or free-floating planets is if they are
triggered to collapse as they traverse the shell at the boundary of
the H II region.

(5) The time that a globulette remains confined to an H II region
(its confinement time-scale) varies as the square root of the pillar
size from which it detaches. If the pillar size scales as some constant
fraction of the H II region size, then the globulette lifetime is a
linear function of the detach time. If the pillar size is constant, then
the globulette confinement time-scale is longer and a non-linear
function of detach time (approximately tL ∝ t

5/7
D ). The confinement

time-scale is independent of the globulette mass (since ram pressure
is negligible) and only varies with the ionizing flux as N

−1/6
ly (though

the rocket effect, which we do not directly include in this component
of our analysis, will increase the sensitivity to ionizing flux). The
lifetime is also sensitive to the initial globulette velocity, which we
assume is initially equal to that of the shell, as observed by Gahm
et al. (2013). A globulette initially moving slower than the shell can
be confined for much longer though. However, we estimate that the
rocket effect, which we do not directly include in our calculation, can
decrease the confinement time-scale by a similar factor. Radiation
hydrodynamic calculations would be required to investigate these
processes further.

(6) We find that because dust cooling can dissipate energy effi-
ciently that all globulettes can survive their collision with the shell
and escape into the wider ISM. Since the globulettes are pressure
confined (see Conclusion 2), they dissipate once they move into the
lower pressure medium external to the H II region, on time-scale of
the order of 30–300 kyr, potentially allowing them to travel around
3 pc. Small, high-velocity clumps with similar motions to the shell
might therefore be observable external to an H II region in high
spatial resolution molecular line observations (i.e. with ALMA).

(7) Globulettes detached from a pillar of size Lp at the velocity of
the shell will remain within Lp of the shell and will have velocities
and trajectories similar to the shell. Globulettes at smaller radii
could be formed through the irradiation of a turbulent medium and
would have more random velocities (Tremblin et al. 2012) or could
have been detached at a velocity significantly lower than that of the
shell, in which case their velocity should still be correlated with the
shell.

(8) The number of globulettes observed in some H II regions
suggests that they could make a very significant addition to the
inventory of free-floating planets/low-mass brown dwarfs if they
were able to collapse gravitationally. Given their low Jeans numbers,
this would however require some violent perturbative event.
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