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Abstract
In this contribution a new finite element is presented for the simulation of delamination growth in thin
layered composite materials. The element is based on the solid-like shell element, a volume element that
can be used in very thin applications due to a higher order displacement field in thickness direction. The
delamination crack is incorporated in this element as a jump of the displacement field by means of the
partition of unity method. The kinematics of the element as well as the finite element formulation are
described. The performance of the element is demonstrated by means of two examples.
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1 Introduction

The application of layered composite materials in the aerospace and automotive industries has increased
significantly over the last decades. Since the material can be tailored to meet special demands, laminated
composite structures are lighter and have superior characteristics when compared to traditional single
phase materials. However, the use of these materials introduces new failure mechanisms, such as delam-
ination, the debonding of individual layers, caused by manufacturing flaws, free edge stresses or impact
damage. In general, the presence of delaminations in the material will lead to a reduction of the residual
strength.

In order to get a better perception of this phenomenon, numerical simulations can be of assistance. Tradi-
tionally, in finite element models, the delamination crack is modelled explicitly by interface elements [1].
These elements consist of two surfaces which are connected to the continuum elements that model the
adjoining layers of the laminate. Debonding is governed by a softening or damage algorithm.

In an alternative approach, which will be pursued here, the delamination is incorporated in the continuum
elements as a discontinuity in the displacement field by means of the partition of unity concept [2, 3, 4, 5].
An advantage of this approach is the possibility to add new displacement jumps to the model at delam-
ination propagation, which reduces the total number of degrees of freedom significantly. Furthermore,
it avoids the use of dummy stiffnesses to simulate a perfect bond [6]. Finally, it is possible to model a
complete laminate with just one continuum element in thickness direction, which allows for the analysis
of delamination growth on a so-called macroscopic level [7].

In this contribution, the new method is extended to a three-dimensional model. A key feature is the choice
of a proper continuum element. Conventional volume elements show an overly stiff behaviour when used
in thin applications (Poisson thickness locking) due to a constant strain distribution in thickness direction.
An alternative is the solid-like shell element [8]. Here, an additional set of internal degrees of freedom is
used to add a quadratic term to the displacement field in thickness direction, the internal ‘stretch’ of the
element. Hence, the corresponding strain field varies linearly over the thickness instead of being constant
and Poisson thickness locking is hereby avoided.

This contribution is ordered as follows. In the next section, a short description of the kinematic relations
of the original solid-like shell element is given. The derivation of the enhanced solid-like shell element
with the displacement jump is presented in sections 3 and 4. Section 5 discusses a few implementation
aspects. The performance of the enhanced element is demonstrated by means of two numerical examples
(section 6). The contribution is closed with some conclusions.

2 Kinematics of the solid-like shell element

Consider the thick shell as shown in Figure 1. The position of a material point in the shell in the unde-
formed configuration can be written as a function of the three curvilinear coordinates

�
ξ � η � ζ � :

X � ξ � η � ζ ��� X0 � ξ � η ��� ζD � ξ � η �	� (1)

where X0 � ξ � η � is the projection of the point on the mid-surface of the shell and D � ξ � η � is the thickness
director in this point:

X0 � ξ � η �
� 1
2

�
Xt � ξ � η ��� Xb � ξ � η �
��� (2)
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Figure 1: Kinematic relations of the regular solid-like shell element in undeformed and deformed posi-
tion. The dash-dotted line denotes the mid-surface of the shell.

D � ξ � η � � 1
2

�
Xt � ξ � η � � Xb � ξ � η � � � (3)

The subscripts � � � t and � � � b denote the projections of the variable onto the top and bottom surface respec-
tively. The position of the material point in the deformed configuration x � ξ � η � ζ � is related to X � ξ � η � ζ �
via the displacement field φφφ � ξ � η � ζ � according to:

x � ξ � η � ζ ��� X � ξ � η � ζ ��� φφφ � ξ � η � ζ �	� (4)

where:
φφφ � ξ � η � ζ ��� u0 � ξ � η ��� ζu1 � ξ � η ��� � 1 � ζ 2 � u2 � ξ � η � � (5)

u0 and u1 are the displacements of the shell mid-surface X0 and the thickness director D respectively:

u0 � ξ � η � � 1
2

�
ut � ξ � η ��� ub � ξ � η �
��� (6)

u1 � ξ � η � � 1
2

�
ut � ξ � η � � ub � ξ � η � � � (7)

and u2 � ξ � η � denotes the internal stretching of the element, which is colinear with the thickness director
in the deformed configuration and a function of an additional ‘stretch’ parameter w:

u2 � ξ � η � � w � ξ � η � �D � u1 � ξ � η � � � (8)

In the remainder, we will consider the displacement field φφφ as a function of three variables; the displace-
ment vector of the top and bottom surfaces ut and ub respectively and the internal stretch parameter w:

φφφ � φφφ � ut � ub � w � � (9)

The displacement field will be cast in a discrete formulation for an eight-noded element1, see Figure 2.
Node numbers 1 to 4 are located at the bottom surface of the element and set up the projected displace-
ment vector ub; nodes 5 to 8 set up ut . The four internal degrees of freedom w j are used to construct the

1A description of the slightly different implementation of the sixteen-noded solid-like shell element can be found in
Parisch [8].
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Figure 2: Geometry of the eight-noded solid-like shell element. Each geometrical node i contains three
degrees of freedom:

�
ux � uy � uz � i. Each internal node j has one degree of freedom w j.

stretch parameter w. The interpolation of these displacement parameters can be done by using standard
iso-parametric shape functions [9]:

ut �
4

∑
i � 1

Niu
i
t ; ub �

4

∑
i � 1

Niu
i
b; w �

4

∑
j � 1

N jw
j � (10)

where ui
t and ui

b denote the set of three translational degrees of freedom of the nodes at the top and
bottom surface respectively, w j denotes the internal degrees of freedom.

3 Enhanced kinematic relations

Consider the thick shell with constant thickness as shown in Figure 3. The shell is crossed by a dis-
continuity surface Γd � 0 which divides the domain into two parts, Ω

�
0 and Ω �0 . The discontinuity surface

is assumed to be parallel to the mid-surface of the thick shell. The discontinuous displacement field
φφφ � ξ � η � ζ � can be decomposed in two parts [5], so that the position of a material point in the deformed
configuration can be written as:

x � X � φ̂φφ � �
Γd � 0φ̃φφ � (11)

where
�

Γd � 0 represents the Heaviside step function, which is defined as
�

Γd � 0 � X � � 1 if X � Ω
�
0 and

�
Γd � 0 � X � � 0 if X � Ω �0 . Since the displacement field is just a function of ut , ub and w, it is sufficient to

enhance these terms:

ut � ût � �
Γd � 0ũt ; ub � ûb �

�
Γd � 0ũb; w � ŵ � �

Γd � 0w̃ � (12)

Inserting these relations into Eqs. (6) to (8) gives:

u0 � û0 � �
Γd � 0ũ0; u1 � û1 � �

Γd � 0ũ1; u2 � û2 � �
Γd � 0ũ2 � (13)

where:

û0 � 1
2

�
ût � ûb � ũ0 � 1

2

�
ũt � ũb �

û1 � 1
2

�
ût

� ûb � ũ1 � 1
2

�
ũt

� ũb � (14)

û2 � ŵ
�
D � û1 � ũ2 � w̃

�
D � û1 � ũ1 ��� ŵũ1

4



WCCM V, July 7–12, 2002, Vienna, Austria

top

bottom

ξ

ζ

mid

ζd

Γu � 0

t̄ nu � 0
nd � 0

Ω �
0

Ω
�
0

Ω
�
0

nd � 0

Γd � 0

Γd � 0

Ω �
0

Figure 3: Thick shell crossed by a discontinuity Γd � 0 (heavy line). The vectors nu � 0 and ud � 0 are perpen-
dicular to the shell surface and the discontinuity surface respectively.

Note that the enhanced part of the internal stretch parameter u2 contains both regular and enhanced
variables.

The base vectors at the material point in undeformed and deformed configuration can be found by dif-
ferentiating the position vectors X and x with respect to the iso-parametric coordinates Θ i � �

ξ � η � ζ � . In
the undeformed configuration, the base vectors are equal to:

Gα � ∂X
∂Θα � X0 � α � ζD � α α � 1 � 2 � (15)

G3 � ∂X
∂Θ3 � D � (16)

where � � � � α denotes the partial derivative with respect to Θα . In the deformed configuration, the base
vectors in the ξ and η direction are equal to:

gα � X0 � α � û0 � α � ζD � α � ζ û1 � α � �
Γd � 0

�
ũ0 � α � ζ ũ1 � α � � h.o.t.

�
ζ �� ζd � (17)

whereas the base vector in the deformed configuration in the ζ direction is:

g3 � D � û1
� 2ζ ŵ � �

Γd � 0
�
ũ1

� 2ζ w̃ � � h.o.t.
�

ζ �� ζd
� (18)

The higher order terms (h.o.t.) in these expressions contain terms up to the fourth order in the thickness
coordinate ζ and derivatives of the stretch parameter u2 with respect to ξ and η . In the continuing, these
terms will be neglected without a significant loss of accuracy of the kinematic model [8].

The metric tensors G and g can be determined by using the base vectors Gi and gi in Eqs. (15) to (18):

Gi j � Gi
� G j ; gi j � gi

� g j � (19)

The metric tensors in turn are used to determine the Green-Lagrange strain tensor γγγ , according to:

γkl � 1
2
� gi j

� Gi j � ti
kt j

l � (20)

where the tensor ti
j denotes the transformation of the strains in the element iso-parametric coordinate

system into the global frame of reference. The strain tensor can be divided into a regular and an additional
part as well:

γγγ � γ̂γγ � �
Γd � 0γ̃γγ � (21)
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Note that the strain fields on either side of the discontinuity Γd � 0 are not necessarily equal. This implies
that it is possible to capture phenomena which are restricted to just one layer of the laminate such as
delamination buckling [10].

The magnitude of the displacement jump v is equal to the magnitude of the enhanced displacement at
the discontinuity ζd . In the spirit of previous assumptions, we neglect the terms that vary quadratically
in the thickness direction.

v � ũ0 � ζdũ1 � (22)

4 Equilibrium equations

The static equilibrium equations and boundary conditions for the body Ω without body forces with
respect to the undeformed configuration can be written as:

∇0
� P � 0 in Ω0 ; (23a)

nu � 0P � t̄ on Γu � 0 ; (23b)

nd � 0P � t on Γd � 0 � (23c)

where P is the nominal stress tensor and t̄ the applied external load; nu � 0 is the outward unit normal vector
to the body and nd � 0 is the inward unit normal to Ω

�
0 , see also Figure 3. Eq. (23c) represents the tractions

at the discontinuity Γd � 0 and is a functional of the displacement jump v:

t ��� � v � � (24)

The strong governing equations can be written as the weak equations of equilibrium by multiplying
Equation (23a) with an admissible displacement field φφφ and integrating the result over the domain Ω0:

�
Ω0

δφφφ � � ∇0
� P � dΩ0 � 0 � (25)

The admissible displacement field must have the same format as the standard displacement field:

δφφφ � δφ̂φφ � �
Γd � 0δφ̃φφ � (26)

Substituting this relation into Eq. (25) gives:

�
Ω0

δφ̂φφ � � ∇0
� P � dΩ0 �

�
Ω0

�
Γd � 0δφ̂φφ � � ∇0

� P � dΩ0 � 0 � (27)

This equation can be separated into two equations by taking first variation φ̂φφ (φ̃φφ � 0) and then variation
φ̃φφ (φ̂φφ � 0). The separated equations can be expanded by using Gauss’ theorem. The Heaviside function
can be eliminated by changing the integration domain Ω0 into Ω

�
0 [5, 11]:

�
Ω0

δφ̂φφ � � ∇0
� P � dΩ0 �

�
Ω0

∇0
� � Pδφ̂φφ � dΩ0

�

�
Ω0

∇0δφ̂φφ : PdΩ0 � 0 � (28a)

�
Ω0

�
Γd � 0δφ̃φφ � � ∇0

� P � dΩ0 �
�

Ω �
0

∇0
� � Pδφ̃φφ � dΩ0

�

�
Ω �

0

∇0δφ̃φφ : PdΩ0 � 0 � (28b)

6



WCCM V, July 7–12, 2002, Vienna, Austria

By using the boundary conditions in Eqs. (23b) and (23c), the two equilibrium equations can be written
as: �

Ω0

∇0δφ̂φφ : PdΩ0 �
�

Γu � 0
δφ̂φφ � t̄dΓ0 (29a)

�
Ω �

0

∇0δφ̃φφ : PdΩ0 �
�

Γd � 0
δφ̃φφ � tdΩ0 � �

Γd � 0

�
Γu � 0

δφ̃φφ � t̄dΓ0
� (29b)

The terms ∇0δφ̂φφ : P and ∇0δφ̃φφ : P can be replaced by δγ̂γγ : σσσ and δγ̃γγ : σσσ respectively [12], where σσσ is the
second Piola-Kirchhoff stress tensor:�

Ω0

δγ̂γγ : σσσ dΩ0 �
�

Γu � 0
δφ̂φφ � t̄dΓ0 � (30a)

�
Ω �

0

δγ̃γγ : σσσ dΩ0 �
�

Γd � 0
δφ̃φφ � tdΩ0 � �

Γd � 0

�
Γu � 0

δφ̃φφ � t̄dΓ0 � (30b)

These equilibrium equations still hold for large strains. For engineering purposes, when nonlinear mate-
rial models for the bulk material are implemented, a small strain formulation may be preferred.

5 Finite element implementation

The discontinuous displacement field can be written in a discrete form by using the standard finite el-
ement shape functions. It was shown by Babus̆ka et al. [2] that the basis of the finite element shape
functions can be enriched with enhanced bases. This means that when ψi is a partition of unity, a field u
can interpolated in terms of nodal values according to:

u � X � t ���
n

∑
i � 1

ψi � X ��� ai � t ���
m

∑
j � 1

β j � X � bi j � t ��� � (31)

In this specific case, the function β j can be replaced by the Heaviside step function
�

Γd � 0 and ψi by the

standard iso-parametric shape functions; ai represent the regular nodal degrees of freedom and bi j the
additional nodal degrees of freedom. Since the displacement field is constructed with three different sets
of degrees of freedom, see Eq. (10), all sets can be enhanced independently. For the eight-noded element,
the new discrete displacement fields are:

ut �
4

∑
i � 1

Niû
i
t � �

Γd � 0

4

∑
i � 1

Niũ
i
t ; ub �

4

∑
i � 1

Niû
i
b � �

Γd � 0

4

∑
i � 1

Niũ
i
b; w �

4

∑
i � j

N jŵ
j � �

Γd � 0

4

∑
i � j

N jw̃
j

� (32)

The interpolation of the nodal values of the sixteen-noded enhanced solid-like shell element can be
derived in a similar fashion [13].

Enhancement of geometrical and internal nodes

Figure 4 shows the activation of additional sets of degrees of freedom for a given delamination surface
in the model. Both the geometrical and the internal nodes are enhanced when the element is crossed by
a delamination. This implies that each geometrical node contains 3 additional degrees of freedom giving
6 degrees of freedom in total. Each internal node has one extra degree of freedom added to the single
regular degree of freedom.
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geometrical node

internal node

Figure 4: Enhanced nodes (black) whose support contains a discontinuity (grey surface). The nodes on
the edge of the discontinuity are not enhanced in order to assure a zero delamination opening here.

A displacement jump is added to an element when the stress state at the interface of two layers within the
element exceeds an ultimate level. It is assumed that the delamination crosses an entire element avoiding
the need of complicated stress concentration algorithms to describe the stress state in the vicinity of
the delamination front. The degrees of freedom that support the edge of the elements that touch the
delamination front are not enhanced in order to assure a zero crack tip condition, see also Fig. 4.

Condensation of the internal degrees of freedom

The original eight-noded solid-like shell element consists of 28 degrees of freedom; 3 translational de-
grees of freedom in the eight geometrical nodes and 4 internal degrees of freedom. Since the internal
degrees of freedom are not able to support an external loading, it was suggested by Parisch to eliminate
them on the element level by condensation [8].

It is emphasised that the additional degrees of freedom that describe the displacement jump cannot be
condensed. The magnitude of the displacement jump is continuous across element boundaries. The de-
grees of freedom that describe this jump are therefore global and cannot be solved on the element local
level. An exception is made for the additional internal degrees of freedom w̃ j [13]. Since the regular
internal degrees of freedom ŵ j are not continuous across element boundaries, there is no need for the
additional internal degrees of freedom to be continuous. In practice, an enhanced eight-noded solid-like
shell element has a total of 56 degrees of freedom; 2 times 3 in each geometrical node plus 2 times 4
internal degrees of freedom. These last 2 sets are eliminated by condensation reducing the contribution
of the element to the global solution vector to 48 degrees of freedom.

Numerical integration

The construction of the element internal force vector and stiffness matrix requires a proper integration of
three domains; Ω0, Ω

�
0 and Γd � 0, see also Eq. (30). In this case, all three domains are standard geomet-

rical entities (two six-sided volumes and a rectangular surface) and can be integrated numerically with
standard Gauss integration schemes.

8



WCCM V, July 7–12, 2002, Vienna, Austria

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

h

P

P � u

l � 10 mm
b � 1 mm

Figure 5: Geometry of a delaminated double cantilever beam under peel loading.

6 Numerical examples

Two examples are presented to demonstrate the performance of the new element. In the first example,
attention is focused on the accuracy of the element for a decreasing thickness in geometrically linear
applications. In the second example, the performance of the element in a geometrically nonlinear analysis
is illustrated by means of the simulation of a delamination buckling test.

A peel test

To test the performance of the new element for a decreasing thickness, a peel test is performed. Consider
the double cantilever beam as shown in Figure 5. The beam consists of two layers of the same material
with Young’s modulus E � 100 � 0 N/mm2 and Poisson ratio 0 � 0. The beam has delaminated over its entire
length. The test is performed for two different models. The first model contains ten eight-noded enhanced
solid-like shell elements (SLS+8); the second model is built with just five sixteen-noded enhanced solid-
like shell elements (SLS+16). In both cases, just one element in thickness direction is used. The initial
delamination is modelled by a traction free discontinuity.

The linear out-of-plane displacements as functions of the ratio of layer thickness and beam length are
given in Figure 6. The results are normalised by the exact solution that follows from the theory of beam
deflections. The eight-noded enhanced solid-like shell element gives nearly exact results for aspect ratios
up to 2000. The performance of the new sixteen-noded element is even better. Both results are identical
to the results with original solid-like shell elements [8]. It can therefore be concluded that kinematic
properties of the new enhanced solid-like shell elements are identical to those of the original elements.

Delamination buckling of a cantilever beam

A combination of delamination growth and structural instability is considered in the following exam-
ple [7, 14]. Consider the double cantilever beam as shown in Figure 7. The beam has an initial delami-
nation length of a0 � 10 mm and is subjected to an axial compressive load 2P. Two small perturbation
forces P0 are applied to trigger the desired buckling mode. Both layers are made of the same material
with Young’s modulus E � 135000 N/mm2 and Poisson’s ratio ν � 0 � 18. The ultimate strength of the
bond in mode-I is equal to tI � ult � 50 N/mm2, the fracture toughness is Gc � 0 � 8 N/mm. The critical load
for local buckling of the beam, prior to delamination growth can be calculated analytically using the
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Figure 6: Double cantilever beam loaded by peel force. Left: Normalised linear solution as a function of
the length over layer thickness ratio. Right: deformed mesh.
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Figure 7: Geometry of double cantilever beam with initial delamination a0 under compression.

equation for a single cantilever beam with length a0 and thickness h. For the given material parameters,
the buckling load is:

Pcr � π2Eh3

48a2
0

� 2 � 22N (33)

The finite element mesh used for the analysis is made of eight-noded enhanced solid-like shell elements
and is shown in Figure 8. Again, it consists of just one element in thickness direction. In order to capture
delamination growth correctly, the mesh is locally refined.

Figure 8 shows the lateral displacement u of the beam as a function of the external force P. The load-
displacement curve for a specimen with a perfect bond (no delamination) is given as a reference. The
numerically calculated buckling load is in agreement with the analytical solution. Steady delamination
growth starts at a lateral displacement u � 4 mm, which is in agreement with previous simulations [14].

7 Conclusions

In this contribution, a new element for the simulation of delamination growth in thin layered composite
materials is presented. The delamination crack is incorporated in the solid-like shell element by means of
the partition of unity concept. The approach has a number of advantages. First, the displacement jump is
only activated as the delamination propagates, which results in a reduction of the total number of degrees
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Figure 8: Delamination buckling test. Left: tip displacement as a function of the applied axial load P.
Right: final deformation.

of freedom. Besides that, it is possible to model a laminate with a delamination with just one element
in thickness direction, whereas with conventional techniques, at least the double amount of elements
is needed. This last property allows to use coarser meshes and analyse delamination phenomena on a
macroscopic level.

It has been shown that the new element has the same kinematic characteristics as the conventional solid-
like shell element. It can still be used in thin application without showing an overly stiff behaviour.
A delamination buckling example underlines the excellent performance of the element in combined
geometrically and physically nonlinear analyses.
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[8] H. Parisch, A continuum-based shell theory for non-linear applications, International Journal for
Numerical Methods in Engineering, 38 (11), (1995), 1855–1883.

[9] O. Zienkiewicz, R. Taylor, The Finite Element Method, Vol. 1, Basic Formulation and Linear Prob-
lems, Mc-Graw Hill (1989).

[10] G. Wells, R. de Borst, L. Sluys, A consistent geometrically non-linear approach for delamination
(2002), International Journal for Numerical Methods in Engineering (in print).

[11] A. Simone, J. Remmers, G. Wells, Modelling interface phenomena with enriched finite elements
(2002), submitted to Computer Methods in Applied Mechanics and Engineering.

[12] T. Belytschko, W. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures, John
Wiley and Sons Ltd. (2000).

[13] J. Remmers, G. Wells, R. de Borst, A discontinuous solid-like shell element for the analysis of
delamination growth in laminated composite materials (2002), submitted to International Journal
for Numerical Methods in Engineering.

[14] O. Allix, A. Corigliano, Geometrical and interfacial non-lineararities in the analysis of delamina-
tion in composites, International Journal of Solids and Structures, 36 (15), (1999), 2189–2216.

12


	Introduction
	Kinematics of the solid-like shell element
	Enhanced kinematic relations
	Equilibrium equations
	Finite element implementation
	Numerical examples
	Conclusions

