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ABSTRACT

Aims. We evaluate some approximations for solving the equations of special relativistic hydrodynamics within complex geometries.
In particular, we assess the following schemes: the Generalized FORCE (GFORCE) and MUlti STAge (MUSTA) approaches which
are used as the basis for a second-order-accurate Slope-LImited-Centred (SLIC) method. These do not require detailed knowledge of
the characteristic structure of the system, but have the potential to be nearly as accurate as more expensive schemes which do require
this knowledge.
Methods. In order to treat complex geometries, we use multiple overlapping grids which allow the capturing of complex geometries
while retaining the efficiencies associated with structured grids.
Results. The schemes are evaluated using a suite of one dimensional problems some of which have known exact solutions, and
it is shown that the schemes can be used at CFL numbers close to the theoretical stability limit. We compare the effects of the
MUSTA approach when applied to two different schemes. The scheme is further validated on a number of problems involving complex
geometries with overlapping grids.

Key words. methods: numerical – hydrodynamics – relativistic processes – shock waves

1. Introduction

The numerical solution of the relativistic hydrodynamical equa-
tions is of importance to the simulation of astrophysical phe-
nomena such as gamma-ray bursts, supernova core-collapse, and
relativistic wind accretion. Although approximations can be ob-
tained by the use of a Newtonian fluid alone, relativistic effects
must be taken into account in order to make accurate predictions
that can be tested against observations.

These problems often require calculations to be performed
in three dimensions on non-Cartesian grids (for reasons to be ex-
plained later) and are thus computationally expensive. An ideal
numerical scheme for evolving such problems would therefore
have comparatively low computational cost, and be easily incor-
porated into existing codes capable of using three-dimensional,
non-Cartesian grids.

There are various approaches to evolving the relativistic hy-
drodynamical equations. The most popular are finite-volume
based schemes, but other methods such as smoothed particle
hydrodynamics (Rosswog 2010), spectral methods (van Putten
1993) and the relativistic beam scheme (Sanders & Prendergast
1974) have been employed in the past. A full review of the
field can be found in Martí & Müller (2003). High-order and
high-accuracy methods are often based on either an exact or
an approximate Riemann solver, coupled with a high-order
reconstruction procedure. However, the full solution of the

relativistic hydrodynamical Riemann problem requires knowl-
edge of the wave structure and the characteristics, and these
are algebraically complicated, expensive to calculate, and their
form depends on the equation of state. Therefore it could be ad-
vantageous to have a numerical scheme that does not require
knowledge of the characteristic structure.

It has been demonstrated by Eulderink & Mellema (1995)
that Riemann solver based methods are capable of providing
accurate evolutions of special relativistic problems. However,
we show here that the computational expense associated with a
Riemann solver based method may not, in fact, be necessary, as
a similar accuracy can be achieved using a method that requires
less information about the characteristic structure. We further
show that we can choose the time-step based on a CFL num-
ber of around 0.95, as opposed to values such as 0.5 as used by
Del Zanna & Bucciantini (2002).

There do exist numerical schemes which do not require a
Riemann solver or any other information about the equations,
save for the conserved variables and fluxes given in the conser-
vation law form, and the speed of the fastest moving wave, in
order to maintain stability. These schemes are typically centred
in that they do not take into account the direction of travel of
the waves. In contrast, methods based on approximate or exact
Riemann solutions tend to upwind the appropriate characteristic
variables.
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Our objective is to use numerical methods which are both
accurate and robust and can be used for practical large-scale
calculations. Following the arguments above, an ideal method
would have the advantages of centred schemes in terms of com-
putational expense, and ease of implementation, and would also
approach the accuracy and robustness of a traditional Riemann
solver based method. Such a method should then be suitable
for the solution of more complex systems of equations, such
as those of special relativistic hydrodynamics (SRHD) or gen-
eral relativistic hydrodynamics (GRHD), and could be readily
incorporated into existing multi-dimensional frameworks.

To this end, the MUlti-STAged (MUSTA) approach pro-
posed by Toro & Titarev (2006) has been considered as a
methodology which meets the above objectives. This takes a
basic centred scheme and attempts to improve the solution by
repeatedly solving the local Riemann problem in a predictor-
corrector fashion. The same paper proposed the Generalized
FORCE (GFORCE) scheme, which relies on estimates of the
local wave-speeds, and which can provide better results than
the MUSTA approach when applied to the FORCE scheme. In
particular, when implemented for SRHD flows, the GFORCE
scheme appears to combine the accuracy of upwind schemes
with the simplicity of centred methods. The MUSTA approach
also displays these properties, but we give an explicit demonstra-
tion here as to why care should be taken when using the MUSTA
approach.

The idea behind the MUSTA approach is to solve the lo-
cal Riemann problem numerically rather than analytically, by
means of a first order centred method which is simple and com-
putationally inexpensive as compared to approximate or exact
analytic solutions, but which makes full use of local wave-
propagation speed information. The MUSTA approach seeks to
improve upon this by evolving the local Riemann problem multi-
ple times in a predictor-corrector approach, with the expectation
that this will lead to a more accurate approximation to the flux,
depending on the number of corrector steps used. The number
of steps taken by the MUSTA approach can be varied, and the
effect of using different numbers of steps upon the accuracy and
robustness are explored in this paper.

We use the special relativistic system as a stepping-stone to-
wards the solution of the full GRHD system, to be presented
in another communication. We use the SRHD system to evalu-
ate these numerical methods since exact solutions are known for
this system, and there are existing results showing its solution
with various other numerical schemes. Therefore, our numerical
solutions can be compared to both exact solutions and to existing
numerical schemes.

The intention is that the code being developed here for
SRHD will be extended to the evolution of a fluid on an arbitrary
space-time metric, specifically, in the vicinity of one or more
black holes. The presence of a singularity in the metric leads to a
severe reduction in the maximum stable time-step permitted for
the explicit methods being considered. One approach to avoid
this time-step restriction is to excise the singularity from the do-
main, ensuring that the excision boundary is within the apparent
horizon of the black hole, so that causality will not allow any
boundary effects to propagate into the region outside the hori-
zon. Further, we must specify outer boundary conditions at some
large distance from the black hole since it is hard to determine
suitable boundary conditions in regions where the space-time is
not approximately flat. One way to address both these issues is
to use curvilinear overlapping grids. These grids will allow the
excision boundary to be smooth, thus reducing the likelihood of
generating spurious numerical effects there. The approach also

allows a spherical grid to be used at large distances from the
black hole, which generally requires fewer grid points to reach
a suitably large distance for the outer boundary than would a
Cartesian grid. We have therefore based our code on Overture
as described by Brown et al. (1997), which is a framework for
developing numerical PDE solvers on curvilinear overlapping
grids capable of efficiently treating complex, possibly moving,
geometries.

In this paper we demonstrate the use of the MUSTA ap-
proach as developed by Toro & Titarev (2006) to solve the
SRHD equations. Although the methodology is simpler, than
traditional Riemann Problem based ones, we assess whether it
is capable of producing results which are at least as accurate as
previously used schemes. Further, we show that it can be im-
plemented within a curvilinear overlapping grid framework, and
give some sample results.

The rest of this paper is organised as follows: in Sect. 2, a
discrete form of the SRHD equations in conservation law form
is formulated. We outline the finite-volume approach in Sect. 3
and the FORCE and Slope-LImited-Centred (SLIC) schemes in
Sect. 3.1. The MUSTA and GFORCE approaches are then de-
scribed in Sects. 3.2 and 3.3, and some notation is defined. This
includes some analysis on the MUSTA approach to explore its
limitations when applied to the FORCE scheme, and we suggest
that it may be more robust for GFORCE. In Sect. 4 we describe
the Overture software and its applicability to astrophysical fluid
dynamics. In Sect. 5 we discuss how to adapt the SLIC scheme
to evolution on curvilinear grids.

In Sect. 6 we validate the multi-staged FORCE and
GFORCE schemes in 1D against exact solutions and compar-
isons to a well known approximate Riemann solver. We include
a demonstration of an evolution on a non-uniform 1D grid. In
Sect. 7.1 we demonstrate the evolution of a 1D problem across
an overlapping curvilinear grid system.

We then proceed to some truly two-dimensional problems,
and in Sect. 7.2 evaluate our code against the four-quadrant prob-
lem proposed by Del Zanna & Bucciantini (2002). Finally, in
Sects. 7.3–7.5, we demonstrate the application of our code to
some examples where overlapping curvilinear grids are required
for their accurate solution.

We then present our conclusions in Sect. 8 and evaluate
the potential of this method for the solution of more complex
systems of equations.

2. Equations of SRHD

Throughout this paper, we use units where the speed of light,
c = 1. Greek indices run over space and time: μ, ν, . . . = 0, 1, 2, 3,
and Roman indices run over space only: i, j, . . . = 1, 2, 3. We use
Minkowski space with metric ημν = diag(−1,+1,+1,+1).

The evolution of a relativistic fluid in flat space is governed
by the conservation law

∂U
∂x0
+
∂Fi

∂xi
= 0, (1)

where

U =
(
D, Sj, τ

)
,

and Fi =
(
Dvi, Sjv

i + pδi
j, τv

i + pvi
)
. (2)
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In the case of an ideal gas, the conserved fluid variables U are
defined in terms of the primitive fluid variables as

D = ρW, Sj = ρhW2v j, τ = E − D = ρhW2 − p − D,

W =
(
1 − δi jv

iv j
)−1/2

, (3)

where ρ is the fluid density, p is the pressure, vi is the veloc-
ity vector, and W is the Lorentz factor. The specific enthalpy
h = h(ρ, p) characterises the heat content of a fluid per unit
volume, and it defines the equation of state for the fluid when
written as a function of the pressure and density. The conserved
variables are the relativistic density D, the three-momentum Si,
and the relativistic energy E, although we evolve τ, being the dif-
ference of the total relativistic energy and the relativistic density,
in place of E to allow for more accurate evolutions as otherwise
variations in p can be swamped by the relatively large relativistic
density D, following Martí & Müller (2003).

Given an equation of state defined through the specific en-
thalpy h, the energy momentum tensor for a perfect fluid is
given by

T μν = ρhuμuν + pgμν, (4)

where the four-velocity uμ is defined in terms of the three-
velocity vi via

vi =
ui

W
· (5)

Here, W = (1 − vivi)−1/2, calculated for Minkowski space-time.
The specific enthalpy of an ideal fluid is

h = 1 +
p
ρ

(
Γ

Γ − 1

)
, (6)

where Γ (assumed to be constant) is the adiabatic index of the
fluid (often written as γ, but this symbol is reserved for the de-
terminant of the three-metric). The speed of sound in the fluid,
cs, is then given by

c2
s =
Γp
ρ

(
1 +

p
ρ

Γ

Γ − 1

)−1

· (7)

In the case of non-relativistic ideal-gas, the recovery of the prim-
itive variables from the conserved variables is an algebraic oper-
ation. However, for relativistic fluids the presence of the Lorentz
factor complicates the issue, since the three-momentum com-
ponents are no longer independent of each other, so we use
a Newton-Raphson method to recover the primitive variables.
Other techniques are available, including the solution of a quar-
tic, but tend to be computationally involved and expensive. The
Newton-Raphson approach we use follows the one given in
Appendix A of Eulderink & Mellema (1995). We chose this
over the approach of Martí & Müller (2003) as in our experi-
ence the latter appeared susceptible to numerical round-off er-
rors when evaluating W, and appeared to lead to problems if the
conserved variables had accumulated errors that took them out-
side the physically valid range. Eulderink & Mellema’s method,
on the other hand, requires no calculation of W and, although it
may be susceptible to issues of numerical precision, or lead to

very small densities and pressure, we believe that we have recti-
fied these in a robust fashion, as follows:

Given the conserved variables given above, we solve the fol-
lowing for ξ in order to recover the primitive variables:

α4ξ
3(ξ − η) + α2ξ

2 + α1ξ + α0 = 0,

where ξ =

√
(τ + D)2 − S 2

ρhW
,

α0 = − 1
Γ2
, α1 = −2C

Γ − 1
Γ2
,

α2 =
Γ − 2
Γ

(
C2

0 − 1
)
+ 1 −C2

(
Γ − 1
Γ

)2

,

η = 2C
Γ − 1
Γ
, α4 = C2

0 − 1,

C0 =
τ + D√

(τ + D)2 − S 2
,

and C =
D√

(τ + D)2 − S 2
· (8)

We note that, in order to retain numerical accuracy, the ex-
pression for calculating u0 = W in Eq. (A.12) of Eulderink &
Mellema (1995) should be rewritten as

W =
1
2

C0ξ

⎛⎜⎜⎜⎜⎜⎜⎝1 +
√

1 + 4
Γ − 1
Γ
· 1 −Cξ

C2
0ξ

2

⎞⎟⎟⎟⎟⎟⎟⎠ , (9)

taking C0ξ outside the brackets, since for large W the bracketed
expression is of order unity and C0ξ is large. We then use the
following to recover the remaining primitive variables:

ρ = max(D/W, ρmin), h = 1/(Cξ), (10)

where we have chosen ρmin = 10−8. Given that ρ may have been
altered from its correct value of D/W, we recalculate the appro-
priate value of p from h, enforce p ≥ pmin if necessary, and then
recalculate h before calculating vi as

vi =
S i

ρhW2
· (11)

According to Eulderink & Mellema (1995), “with some effort it
may be shown that the derivative of [the quartic (8)] is always at
least 2/Γ in its physical root, thus guaranteeing quadratic conver-
gence for the Newton[-Raphson] method”. This gives us confi-
dence that the approach is robust, and will remain so even when
applied to more extreme flows, in cases where numerical errors
are more likely, such as the evolution of a fluid on a strongly
curved space-time metric.

3. HRSC schemes and MUSTA

Finite volume schemes (FV) are often used for the solution of
equations in conservation-law form. The solution is approxi-
mated using averages over grid cells, and is advanced in time by
the addition and subtraction of fluxes of the conserved quantities
across the grid cell edges:

un+1
i = un

i + Δt
(

f n
i−1/2 − f n

i+1/2

)
, (12)

where we have a grid-spacing Δx, a time-step Δt, un
i is an ap-

proximation to the solution expressed in conserved variables
in grid-cell i at time-step n, and f n

i−1/2 is an approximation to
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the flux of conserved quantities between cells i − 1 and i at
time-step n.

Since the finite volume approach is based on the integral
form of the conservation law, it is suited to problems where
discontinuities are expected. The sine qua non of finite-volume
schemes is therefore the accurate approximation of the fluxes
of the conserved quantities through the cell edges. The way in
which the solution is updated using Eq. (12) ensures conserva-
tion, but care must be taken to ensure that no spurious oscilla-
tions arise in the vicinity of shocks.

A subset of finite volume schemes is the set of high-
resolution shock-capturing (HRSC) schemes. These are capable
of capturing shocks with very little smearing, even at low resolu-
tion, and are of at least second-order accuracy in smooth regions
of the flow.

3.1. FORCE and SLIC schemes

One of the most basic FV schemes is the First ORder CEntred
(FORCE) scheme. It can be applied to any set of PDEs in con-
servation form (omitting source terms) with little effort. The flux
approximation is calculated as follows:

f FORCE
i+ 1

2

(
un

i , u
n
i+1

)
=

1
2

f LW
i+ 1

2
+

1
2

f LF
i+ 1

2

=
1
2

f LW
i+ 1

2
+

1
4

[(
f n

i + f n
i+1

)]
+

1
4
Δx
Δt

(
un

i − un
i+1

)
,

where f n
i = f (un

i ), f LW
i+ 1

2
= f

(
u

n+ 1
2

i+ 1
2

)
,

and u
n+ 1

2

i+ 1
2

=
1
2

(
un

i + un
i+1

)
+

1
2
Δt
Δx

(
f n

i − f n
i+1

)
. (13)

This is first-order accurate, and is a centred scheme, mean-
ing that it does not have a (solution dependent) bias to infor-
mation from either the left or the right. As will become rele-
vant later, FORCE is the simple average of two other numerical
schemes: the Lax-Wendroff scheme, being the term f LW

i+ 1
2
, and the

Lax-Friedrichs scheme, being the term f LF
i+ 1

2
. The Lax-Wendroff

scheme is second-order but oscillatory, and the Lax-Friedrichs
scheme is first-order, but very diffusive. It turns out that the
FORCE scheme is the least diffusive non-oscillatory three-point
first-order linear scheme that is not dependent on local solution
information. The FORCE scheme is based on the piecewise con-
stant reconstruction of the solution, i.e. the left and right states
are taken directly from the solution vectors un

i and un
i+1.

One improvement over the constant piecewise reconstruc-
tion, known as the SLIC scheme (Slope-LImited Centred), is to
use cells i−1 and i+2 to make a piecewise linear reconstruction
of the solution at time n + 1/2 to provide initial states for the
Riemann problem. However, we must take care that, in recon-
structing the solution, we do not introduce any new extrema into
the solution. We first reconstruct the slope of the solution, Δi,
using data from either side of the current cell, taking the average
of the forward and backward differences:

Δ−i = un
i − un

i−1, Δ
+
i = un

i+1 − un
i , Δi =

1
2

(
Δ−i + Δ

+
i
)
, (14)

and then determine a limited slope Δ∗i by multiplying each com-
ponent by a factor dependent on the local solution behaviour:

Δ∗i = Δi · ξ(Δ−i ,Δ+i ), (15)

where

ξ(Δ−i ,Δ
+
i ) ≡ ξ

(
Δ−i
Δ+i

)
≡ ξ(r). (16)

The preceding two equations are applied to each individual com-
ponent of Δi, Δ+i , and Δ−i to form the limited slope Δ∗i . The SLIC
flux is then calculated as

un
i,L = un

i − 1
2Δ
∗
i , u

n
i,R = un

i +
1
2Δ
∗
i , (17)

u
n+ 1

2

i,L = un
i,L +

Δt
2Δx

(
f
(
un

i,L

)
− f

(
un

i,R

))
, (18)

u
n+ 1

2
i,R = un

i,R +
Δt

2Δx

(
f
(
un

i,L

)
− f

(
un

i,R

))
, (19)

f i+ 1
2
= f FORCE

i+ 1
2

(
u

n+ 1
2

i,R , u
n+ 1

2

i+1,L

)
. (20)

where we use u
n+ 1

2

i,R and u
n+ 1

2

i+1,L as the left and right states for the
FORCE flux.

There are many choices for the slope-limiter ξ, even given
the constraint that the overall numerical scheme should be Total
Variation Diminishing (TVD) as defined by Toro (1999). If we
restrict the limiter to be a function of the ratio of the forward and
backward differences:

ξ(Δ−i ,Δ
+
i ) ≡ ξ

(
Δ−i
Δ+i

)
≡ ξ(r), (21)

then the constraints on ξ(r) can be shown to be (Toro 1999,
p. 505, setting ω = 0):

ξ(r) = 0 for r ≤ 0, and (22)

0 ≤ ξ(r) ≤ min{ξL(r), ξR(r)} for r > 0, (23)

where

ξL(r) =
4r

(1 +CCFL)(1 + r)
, and ξR(r) =

4r
(1 −CCFL)(1 + r)

, (24)

with CCFL being the local Courant number.
We see that the ratio r is a measure of the change in slope

around cell i. It is negative if i lies at an extremum of the solu-
tion, as one of Δ+i and Δ−i will be positive and the other negative,
and this is the reason that we require ξ(r) = 0 for r < 0 as
any non-constant reconstruction would result in an overshoot or
undershoot of the extremum.

The slope-limiter that we will use in this paper is the
van-Leer limiter given by:

ξvan-Leer(r) =

⎧⎪⎪⎨⎪⎪⎩0 if r ≤ 0
min

(
2r

1+r ,
2

1+r

)
if r > 0

. (25)

This limiter is a good compromise between compressive (super-
bee) and diffusive (min-mod) limiters, and we have found it
suitable for our purposes, not leading to excessive smearing of
shocks, nor any spurious oscillations.

3.2. MUlti-STAging approach (MUSTA)

When considering the accuracy of a numerical scheme, one
must take into account both the order of accuracy (for example
second-order in both space and time) and the “error-constant”.
In other words, if the solution error is locally of the form

ei ≈ ci (Δtp + Δxq) (26)

then the accuracy depends both on p and q and also the constant
ci. Thus the accuracy of the scheme can be improved by decreas-
ing the error constant without decreasing the order of accuracy.

In order to improve on the accuracy of SLIC, we could con-
sider Riemann solvers (as an alternative to FORCE to calculate
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x/t = 0

i − 1
2 i + 1

2 i + 3
2

Fig. 1. How to multi-stage a simple numerical scheme (e.g. FORCE).
The Riemann problem is solved for several time steps using the simple
scheme on the two-cell domain, with transmissive boundary conditions
as shown by the empty arrows. The solid lines show the wave struc-
ture of the solution. As the number of stages increases, the waves move
away from the centre, so that the flux at the centre tends to the correct
limit, which is represented by the filled arrow at the top. This figure cor-
responds to calculating the FORCE3 scheme, if FORCE is used as the
underlying simple scheme.

the first-order solution) which use information about the wave
types making up the solution to calculate the flux. These tend to
be computationally intensive, often requiring iterative or matrix
methods to determine the flux at the cell face. In order to increase
the order of accuracy, we could use a higher-order reconstruction
than the linear one that SLIC uses. Again, this would require
more computational expense. However, Toro (2003) has sug-
gested a simple way of improving the accuracy of any numerical
scheme, which can produce improved accuracy for less compu-
tational effort than would be required if the accuracy were to be
attained by increasing resolution. This is called MUSTA, which
stands for MUlti-STAging and can be understood as follows.

The FORCE flux provides a simple way of estimating the
flux at a cell face. We can define an approximate Riemann solver
by using the FORCE (or any other) flux to evaluate the initial
flux and then seeking to correct it using multiple evaluations of
the flux on the resulting solution, and using the resulting flux
on the face to define an improved numerical flux for the origi-
nal scheme. The MUSTA approach uses this idea to numerically
evolve the Riemann problem on a two cell grid, using some ap-
propriate scheme, for a few time-steps, or stages, and to take the
central flux at the last stage as the estimate for the final flux. This
is represented in Fig. 1. When using the FORCE scheme as the
basis for MUSTA, the MUSTA algorithm can be written as the
iterative scheme

f FORCEk

i+ 1
2

= f FORCE
i+ 1

2

(
uk−1

L , u
k−1
R

)
, (27)

uk
L = uk−1

L − Δt
Δx

(
f FORCEk

i+ 1
2

− f (uk−1
L )

)
, (28)

uk
R = uk−1

R − Δt
Δx

(
f (uk−1

R ) − f FORCEk

i+ 1
2

)
, (29)

where u0
L = uL and u0

R = uR give the initial conditions
based on the original Riemann problem. This scheme uses the

transmissive boundary conditions where the solution has zero
derivative at the boundary.

The best improvements in accuracy for least computational
expense are likely to be found when multi-staging is applied to as
simple and appropriate scheme as possible. Therefore, in order
to improve the accuracy of SLIC, we do not multi-stage SLIC
itself, but rather multi-stage the FORCE scheme on which SLIC
is based. We write the multi-staged FORCE scheme as FORCEk,
where k is the number of stages, so that FORCE1 ≡ FORCE.
This notation is as in Toro (2003) but differs from that in Toro &
Titarev (2006).

Although the preceding explanation seems plausible enough,
we can examine the theoretical effect of MUSTA for the lin-
ear advection equation. As mentioned in Sect. 3.1, the FORCE
scheme can be expressed as

f FORCE
i+ 1

2
= ω f LW

i+ 1
2
+ (1 − ω) f LF

i+ 1
2

(30)

with ω = 1
2 .

The local CFL number cL is derived from the local wave
speed ai+ 1

2
and global time step Δt as

cL =
Δt
Δx

ai+ 1
2
· (31)

For linear advection, many numerical schemes with a stencil
width of three can be written in the form (30) for some ω, which
may depend on the solution. Therefore we can plot the depen-
dence of ω on cL for various schemes, as in Fig. 2. The Godunov
scheme corresponds to the choice ω = 1

1+cL
, the FORCE scheme

to ω = 1
2 , Lax-Wendroff to ω = 1, and Lax-Friedrichs to ω = 0.

The Godunov scheme, based on the exact Riemann solution,
falls on the curved line shown. This splits the diagram into two
parts. Above the curve lie schemes that are oscillatory, and be-
low it lie schemes that are non-oscillatory, but are more diffusive
than the Godunov scheme. The first-order Godunov scheme is
the least diffusive non-oscillatory linear first-order method for
the linear advection equation. The FORCE scheme can there-
fore be seen to be the least diffusive non-oscillatory first-order
method that does not depend on the local wave speed informa-
tion given by cL.

Although the MUSTA approach does not depend explicitly
on cL, it does depend on it implicitly, through its dependence on
the local data for the predictor step (27). This dependence can be
calculated in a straightforward, but algebraically intensive man-
ner, which we have done using Maple

TM
, and we plot the results

for FORCE n, n = 1, . . . , 5 in Fig. 3. It is immediately clear that
MUSTA may not be a suitable evolution scheme at high CFL
numbers, even for linear advection, as all of the schemes now
protrude into the oscillatory region. Using very high numbers of
stages shows that FORCEk tends to the Lax-Wendroff scheme as
k → ∞ (except for cL = 1 where ω = 1

2 for all k, so that the
convergence is not uniform).

3.3. Generalised FORCE flux

The impetus for the development of MUSTA was the fact that
even for the simplest of all conservation laws, the linear ad-
vection equation, the FORCE method was more diffusive than
the Godunov scheme using the exact Riemann solver for CFL
less than unity, and the approach was to improve the accuracy
of a scheme, without requiring local wave speed information.
However, we have seen that the MUSTA approach is not ideal as
it can lead to oscillatory methods, even for linear advection.
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Fig. 2. Demonstration of how different first-order schemes for solv-
ing the linear-advection equation can be represented in the form 30
where ω depends on cL the local CFL condition.
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Fig. 3. Same as Fig. 2, with additional multi-staged versions of
FORCE k where k = 1 . . . 5 and k increases up the page (labels for
k = 3, 4, 5 are omitted for reasons of clarity).

Toro & Titarev (2006) presented a solution to this in the same
paper as their MUSTA approach. In that paper, they calculate the
generalised FORCE flux (GFORCE) as a weighted average of
the Lax-Friedrichs and Lax-Wendroff fluxes, now dependent on
local wave speed information:

f GFORCE
i+ 1

2
=

1
1 + cL

(
f LW

i+ 1
2
+ cL f LF

i+ 1
2

)
(32)

where cL is the local CFL number, derived from the local wave
speed ai+ 1

2
and global time step Δt as

cL =
Δt
Δx

ai+ 1
2
· (33)

With these definitions, GFORCE replicates the Godunov up-
wind scheme for the linear-advection case. This suggests that the
GFORCE flux could well provide improved accuracy for more
complex systems of equations.

We note that the SR wave speeds in one dimension are
given by

λ± =
v ± cs

1 ± vcs
· (34)

As the GFORCE scheme already coincides with the Godunov
scheme for the linear advection equation, applying the MUSTA
approach makes no difference in this case, simply maintaining
the Godunov scheme. However, this is not the case for more
complicated systems of equations, which have multiple wave-
speeds, and we shall see that multi-staging GFORCE provides
some increase in accuracy.

3.4. HLL flux

The GFORCE flux, being equivalent to the flux from the first-
order Godunov solver in this case, is the most accurate non-
oscillatory first-order scheme for the linear advection equation.
However, more complex systems of equations have more com-
plex solutions to their Riemann problems. It is possible, in many
cases, to derive a linearised or exact Riemann solver for a sys-
tem of equations. However, this will usually involve either cal-
culating a matrix inverse or using an iterative method to find the
flux. This tends to be computationally expensive, and is therefore
often avoided unless the pay-off of computational time versus
accuracy is worthwhile.

However, a simple Riemann solver, applicable to any sys-
tem of equations, was suggested by Harten et al. (1983), and is
known as the HLL Riemann solver. The rationale behind this ap-
proach is that if all the waves in the solution are moving in one
direction only, then the flux is taken wholly from one side or the
other, and an appropriately weighted average is taken otherwise:

f HLL
i+ 1

2
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (ui) if 0 < aL
aR f (ui)−aL f(ui+1)+aL aR(ui+1−ui)

aR−aL
if aL < 0 < aR

f (ui+1) if aR < 0
.

This is only dependent on approximations to the left and right
local wave speeds aL and aR. These can be calculated from the
fluid variables as suggested by Schneider et al. (1993)

aL = min

(
0,
v − cs

1 − v cs

)
, aR = max

(
v + cs

1 + v cs
, 0

)
, (35)

where v and cs are the arithmetic means of the initial velocities
and sound speeds in cells i and i + 1.

In the case of a curvilinear grid, we note that we have to
transform the variables into the computational grid’s local coor-
dinate system in order to find the wave speed parallel to the grid
coordinate direction. We elaborate on this in Sect. 5.

3.5. Recommendations for the MUSTA approach

In summary, therefore, the multi-staging approach at first sight
appears to produce a straightforward and cheap way of im-
proving the accuracy of a simple flux approximation scheme.
However, some investigation shows that applying it to the
FORCE scheme alone may not be a viable approach as FORCEk

for k > 1 are oscillatory schemes for linear advection. An im-
provement on this appears to be to apply it to the GFORCE
scheme, where GFORCEk is not oscillatory for linear advection.
Likewise, the HLLk schemes are not oscillatory.

However, as the analysis has not been extended to more com-
plex systems of equations, our recommendations are as follows:
use of FORCEk may be advantageous in that it captures peaks
and discontinuities with less diffusion as k increases, but this
method should be used with care since for k > 1 the scheme
no longer satisfies the TVD property for the linear advection
equation as illustrated in Fig. 3. Without further analysis the
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GFORCEk and HLLk schemes should also be used with caution
although they are likely more robust than the FORCEk scheme.
The use of GFORCEk or HLLk does not, as yet, have any evi-
dence of causing the loss of the TVD property although, given
the analysis for FORCE, we suggest caution as to whether this
result can be applied to more complex systems of equations.

We attach a caveat emptor here, therefore, to any use of
multi-staging, but suggest that it may be useful if used with care,
and with only a few extra stages, perhaps around three or so.
We present some numerical results and comparisons in Sect. 6.
In particular, the examples shown in Fig. 7 show the effect of
increasing the multi-staging parameter.

In terms of a comparison to using an exact or approxi-
mate Riemann solver, the relative accuracy will depend on the
system being solved. We have not made any direct compar-
isons with a Riemann-solver-based method, but in general cen-
tred schemes tend to smear contact discontinuities substantially
more than Riemann solvers designed to capture these exactly.
However, other regions of the flow should be captured with
similar accuracy if sufficient MUSTA stages are used.

The MUSTA approach permits improved accuracy on top of
that provided by FORCE by the simple addition of an extra con-
taining loop within a single flux calculation. No further alge-
braic derivations are required as for a Riemann solver, and nei-
ther are any higher-order reconstructions, such as those required
by CENO (Del Zanna & Bucciantini 2002). As demonstrated
by Eulderink & Mellema (1995), constructing a Riemann solver
takes substantial work.

Therefore, the advantage of our aproach is that it only re-
quires the system fluxes and maximum wave-speeds to be spec-
ified, and affords an easy way of improving accuracy with mini-
mal time penalty, without having to derive, implement, and test
a full Riemann solver.

In terms of computational cost, we have not made a com-
parison with a relativistic Riemann solver. However, a compari-
son between FORCEk and an exact Riemann solver for an ideal
Eulerian gas in one dimension suggested that FORCE1 took
about a third of the time, FORCE3 about two-thirds of the time,
and FORCE5 about the same time. We would expect that for
SRHD, the Riemann solver would take comparatively substan-
tially longer than this, and so the performance gain would be far
greater.

4. Overture

Overture1 is an infrastructure that supports the development of
PDE solvers for overlapping curvilinear grids, as described by
Brown et al. (1997). Overture includes support for grid genera-
tion, for individual component grids, and for generating the over-
lapping grid, and associated connectivity information required
for interpolation. Users of Overture may utilise existing PDE
solvers or implement their own approximations.

Our main reason for using Overture is that we wish to capture
a spherical geometry, with a smooth inner excision boundary,
so that we can include general relativistic effects and ultimately
simulate fluid flow into a black hole. Relevant results for the
GRHD equations will be presented in a future paper.

There are two main issues with regard to dealing with over-
lapping grids. The first is that of constructing the full grid struc-
ture. This is one of the tasks that Overture has been designed
to perform even for very complicated grids. Given a set of logi-
cally rectangular grids, along with mappings to the physical grid

1 Freely available from http://www.overtureframework.org

coordinates, as well as boundary conditions, Overture can re-
move parts of grids that are obscured by other grids and calcu-
late which cells on which grids should be used to interpolate data
onto grid cells that are now near to cut-out portions of the grid.

In order to interpolate solution variables between grids, we
have used polynomial interpolation. Overture uses Lagrange
polynomials for interpolation, and takes into account the grid
geometries involved. One potential drawback of using Lagrange
polynomials is that, except for the linear case, it is not guaranteed
that the interpolated values will be contained in the same range
as the values from which they are interpolated. This could lead to
overshoots developing near interpolation boundaries. However,
although monotonicity preserving interpolation schemes can be
derived, it was not found that the extra expense was worthwhile.

We used a fifth-order accurate interpolation, based on a five-
point stencil, which required two lines of interpolation points
at the edge of each grid. We required two lines of interpolation
points as the slope-limiting methods we use require two ghost
cells at the grid boundaries.

5. Curvilinear grids

When solving a PDE on overlapping grids, each with its own
curvilinear coordinate system, it is usual to transform the gov-
erning equations to the new grid coordinate systems but retain
the Cartesian components of the dependent variables. This sim-
plifies interpolation between different component grids.

The curvilinear grid is defined by a smooth transformation,
xi = φ(ri), from Cartesian coordinates xi to the unit square pa-
rameter space coordinates ri. This means that we transform the
governing equations as follows

∂Ju
∂t
+
∂

∂ri

(
J
∂ri

∂x j
f j(u)

)
− ∂
∂ri

(
J
∂ri

∂x j

)
f j(u) = 0, (36)

where J is the Jacobian of the transformation:

J =

∣∣∣∣∣∣
[
∂xi

∂r j

]∣∣∣∣∣∣ · (37)

The third term in Eq. (36) is added so that at the discrete level
we maintain the geometric conservation law (this is also known
as free-stream preservation). When the flux is not spatially de-
pendent, the second term in Eq. (36) is zero analytically, but may
not be zero when evaluated numerically. The third term is added
to ensure that, when the flux is constant spatially, the flow re-
mains constant. The term is composed of an evaluation of f on a
cell-centred value of u, multiplied by a geometric term. This ge-
ometric term must be calculated in a manner consistent with the
second term, so that, for a constant state u, the geometric terms
will cancel exactly (at least up to round-off error).

The process of evaluating the third term is fairly straight-
forward in practice. For any given HRSC scheme, we can do
this by starting with a fluid with constant density, velocity, and
pressure, and compute the fluxes analytically, ensuring that the
flow is preserved, regardless of the geometry or other parame-
ters, such as slope-limiter. In the case of SLIC, the result is that
the flux for each cell face is composed of the product of a flux,
derived from the given constant state, and a geometry term of the

form Jk+1/2
∂ri

∂x j

∣∣∣∣
k+1/2

. Since the final flux for a given coordinate

direction ri is then simply a difference of these, the term that
cancels these is⎛⎜⎜⎜⎜⎜⎜⎝J

k+
1
2

∂ri

∂x j

∣∣∣∣∣∣
k+

1
2

− J
k− 1

2

∂ri

∂x j

∣∣∣∣∣∣
k− 1

2

⎞⎟⎟⎟⎟⎟⎟⎠ f j(uk), (38)

A102, page 7 of 14

http://www.overtureframework.org


A&A 575, A102 (2015)

where the values of the Jacobian and coordinate derivatives have
to be calculated in exactly the same way as in the rest of the
HRSC scheme being used.

5.1. Curvilinear SLIC scheme

The SLIC scheme requires the reconstruction of states at cell-
faces. We have changed the SLIC algorithm slightly to take ac-
count of the spatial of the Jacobian on curvilinear grids.

We replace Eqs. (14)–(19) by

Δ−i = Ji ·
(

un
i

Ji
− un

i−1

Ji−1

)
, Δ+i = Ji ·

(
un

i+1

Ji+1
− un

i

Ji

)
,

Δi =
1
2

(
Δ−i + Δ

+
i
)
,

un
i,L =

Ji− 1
2

Ji

(
un

i −
1
2
Δi

)
, un

i,R =
Ji+ 1

2

Ji

(
un

i +
1
2
Δi

)
, (39)

u
n+ 1

2
i,L = un

i,L +
Δt

2Δx

⎛⎜⎜⎜⎜⎜⎝ f (un
i,L) −

Ji− 1
2

Ji+ 1
2

f (un
i,R)

⎞⎟⎟⎟⎟⎟⎠ ,
u

n+ 1
2

i,R = un
i,R +

Δt
2Δx

⎛⎜⎜⎜⎜⎜⎝ Ji+ 1
2

Ji− 1
2

f (un
i,L) − f (un

i,R)

⎞⎟⎟⎟⎟⎟⎠ ,
where Ji is the Jacobian of cell i, and Ji+ 1

2
= 1

2 (Ji + Ji+1). The

derivatives ∂ri/∂x j, however, are averaged differently since, in
one dimension, we know that J−1 = ∂r/∂x, and so we want to
ensure that

J|
i+

1
2

∂r j

∂x j

∣∣∣∣∣∣
i+

1
2

= 1 ∀ j, (40)

where there is no sum over j.
One way to ensure that this is always true is to average the

derivatives of the inverse mapping using the harmonic mean

D
i+

1
2
= 2

(
D−1

i + D−1
i+1

)−1
, (41)

where the matrix Di is defined as

Di =

[
∂rl

∂xm

]∣∣∣∣∣∣
x=xi

· (42)

Even in the case of multi-dimensions, we never need to calculate
the fluxes across more than one cell-face at a time, so the above
averaging is only ever done in one computational grid direction.

5.2. HLL flux

In order to calculate the HLL flux in curvilinear coordinates, we
first transform the Cartesian components of the solution vari-
ables into the local grid coordinate basis. The wave speeds are
then calculated for the required coordinate direction from the
transformed variables. In the same way as SLIC, we calculate
the fluxes in the local grid coordinate direction, multiplied by the
local Jacobian. In order to achieve second order convergence, we
adjust the HLL flux to read:

f HLL
i+ 1

2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (ui) if 0 < aL(
aR Ji+ 1

2
f (ui) − aL Ji+ 1

2
f (ui+1)+

aL aR(Ji+ 1
2

ui+1 − Ji+ 1
2

ui)
)

if aL < 0 < aR

/(aR − aL)
f (ui+1) if aR < 0

(43)

where the fluxes are calculated parallel to the local grid coordi-
nate i. We note that the local CFL number defined in Eq. (33)
required for the calculation of GFORCE is also derived from
the wave speeds calculated along the local grid coordinate
directions.

5.3. Determination of the time-step

On Cartesian grids, the maximum time-step that retains stability
for the SLIC scheme is given by

Δt = CCFL
Δx

S max
, (44)

where CCFL ≤ 1 is the CFL number, Δx is the grid spacing, and
S max is the maximum wave-speed, obtained from (34). On curvi-
linear grids, we determine the global time-step as the minimum
of local time-steps determined on a cell-by-cell basis, where Δx
is chosen appropriately from the local cell size. The alternative,
taking the minimum cell size and the maximum wave speed over
the whole grid, can lead to time steps that are more restrictive
than necessary. Further, when we wish to calculate the wave-
speeds, we in fact transform the numerical solution into the lo-
cal grid basis so that the correct wave speeds along the coordi-
nate directions can be found, as these may not be aligned with
Cartesian directions, which could lead to an underestimate of the
local wavespeed.

However, a draw-back of using curvilinear grids is that the
cells are not of similar size everywhere. Even with the above
method of calculating the time-step, this still leads to an effec-
tively lower CFL number for evolution on larger grid cells, as the
time-step has been restricted by the stability condition on smaller
grid cells. Therefore waves may become somewhat smeared on
a coarser area of the grid only because of finer resolution else-
where.

We can reduce the effect of this problem by using as accurate
a scheme as possible, namely GFORCE or HLL, which provide
accurate solutions even at lower CFL numbers.

6. One-dimensional test problems

In order to test the stability and accuracy of the GFORCE
scheme and the MUSTA approach, we have applied them to
some standard one-dimensional test-cases which have been used
previously in the literature. The tests we consider are carried
out using a one-dimensional uniform resolution code using the
same numerical schemes as the Overture code, but without the
overhead imposed by Overture.

An exact solution to the Riemann problem for the one-
dimensional special relativistic hydrodynamical equations ex-
ists, and so we can compare our numerical results to this. In
order to generate the exact solutions, we have used the code
riemann.f from Martí & Müller (2003).

The test-cases we use are taken from Del Zanna &
Bucciantini (2002), so that a comparison can be made with their
numerical results, which were obtained using a Convex ENO re-
construction and the HLL Riemann solver. The three test-cases
below all use an ideal fluid with adiabatic index Γ = 5/3 and are
performed on a domain of x ∈ [0, 1].
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Fig. 4. Results for a mildly relativistic shock wave, (ρ, u, p)L =
(10, 0, 13.3) and (ρ, u, p)R = (1, 0, 0), using 400 cells, a CFL num-
ber of 0.99, and the van Leer limiter, with the SLIC scheme based on
the GFORCE 3 flux, simulated to time t = 0.4. The exact solution is
given by the solid line and is composed of a rarefaction, a contact dis-
continuity, and a shock.

6.1. Mildly relativistic shock

The initial conditions for this test are

(ρ, v, p) =

{
(10, 0, 13.3) if x < 1

2

(1, 0, 0) if x > 1
2 ·

(45)

It is fairly easy to obtain good results for this test, as it con-
tains no extreme velocities or densities. The solution is evolved
to a time t = 0.4. It has been noticed by other researchers
(e.g. Del Zanna & Bucciantini 2002) that, for certain schemes,
the initial zero pressure has to be set to some small non-zero
value. We use a minimum pressure of pmin = 10−8, assuming
reference pressures of order 1.

An example result is shown in Fig. 4 using the SLIC scheme
with the van Leer slope limiter, based upon the GFORCE 3

scheme, and using a CFL number of 0.99. The right-most dis-
continuity, corresponding to a shock wave, is captured with only
four points. In this, and in the capturing of other discontinu-
ities, we see that our results are as good as those of Del Zanna
& Bucciantini (2002). However, the capturing of the density is
seen to be somewhat better in Lucas-Serrano et al. (2004). We
also note that the kink we find in the velocity at x ≈ 0.6 (near
where the solution has a discontinuity in the slope) is present to
a slightly lesser extent in Lucas-Serrano et al. (2004), and not at
all in Del Zanna & Bucciantini (2002).

Figure 5 shows the result near the leading shock using
four different numerical schemes for the same problem. All the
methods use the SLIC scheme, based on four different fluxes:
FORCE, GFORCE, GFORCE3, and HLL. It can be seen that
there is very little difference indeed between the methods. This
is due to the mild nature of the problem. However, we can make
the differences between the methods more apparent by evalu-
ating the L1 error of the density for each of several methods,
using a range of CFL numbers. The results are shown in Table 1.
The error norm is taken over the whole domain and so includes
the discontinuities. We see that increasing the number of stages
used for a scheme reduces the error. In all cases, the GFORCE
scheme is better than the FORCE scheme, although the FORCE2

scheme is always better than the GFORCE2 scheme, except for
the case of CCFL = 0.4, where the numerical evolution blows up.
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Fig. 5. Results for the density of a mildly relativistic shock wave,
(ρ, u, p)L = (10, 0, 13.3) and (ρ, u, p)R = (1, 0, 0), using 400 cells,
a CFL number of 0.99, and the van Leer limiter, with the SLIC scheme
based on the fluxes: FORCE (circles), GFORCE (squares), GFORCE 3

(crosses), and HLL (+ signs). The exact solution is given by the straight
line. We restrict the region plotted so that the differences between the
methods can be seen.

We note this data as evidence for the caveat emptor in Sect. 3.5.
The reason for the improvement of FORCE k over GFORCE is
that the FORCE k scheme is usually above the GFORCE scheme
as shown in Fig. 3, as a result of its lessening diffusion at the
expense of potentially introducing oscillations into the solu-
tion. The GFORCE1 scheme is of similar accuracy to the HLL
scheme, although it is slightly worse at CFL 0.4. There is a slight
improvement in accuracy when increasing the number of stages
used for the GFORCEk scheme. We also note that the error de-
creases for higher CFL numbers, both as a result of the reduced
number of time-steps required to reach the final time and the fact
that schemes are often more accurate for CFL numbers close
to 1.

However, in general, the FORCEk and GFORCEk schemes
are more accurate than the HLL scheme, at least for k ≥ 2. This
is roughly in line with what we would expect from the analysis of
the various schemes on the linear advection equation in Sect. 3.

6.2. Strongly relativistic Blast-Wave

The initial data for this problem is given by

(ρ, v, p) =

{
(1, 0, 1000) if x < 1

2

(1, 0, 0.01) if x > 1
2 ·

(46)

This is a more difficult test-case to evolve, as the solution con-
tains a narrow peak of high density, which is hard to cap-
ture at low resolution, and also contains velocities which ap-
proach c = 1. This problem is also evolved to a time t = 0.4. The
exact solution for all variables is shown as part of Fig. 6. This
shows a narrow region of high density moving close to the speed
of light. The maximum density is very difficult to capture at a
moderate resolution such as we are using due to the narrowness
of the peak. A good test of the accuracy of a scheme, therefore,
is the fraction of the peak value that is attained.

An example result, obtained using the SLIC scheme based
on GFORCE, using the van Leer limiter, with a CFL of 0.99,
and using 400 cells, is shown in Fig. 6. The solution is al-
ready quite accurate, and the density peak is at 65.6% of
its correct value. Del Zanna & Bucciantini (2002) achieved
peaks of 70.1% and 62.4% for two different versions of their
method, and Lucas-Serrano et al. (2004) attained a density peak
of 76% of the exact value (the comparison is not quite valid as
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Table 1. Error norms of the density using ‖·‖1 for various base schemes for the SLIC method applied to the mildly relativistic shock test.

Scheme CFL 0.4 CFL 0.8 CFL 0.9 CFL 0.99

FORCE1 8.68 × 10−2 5.81 × 10−2 5.14 × 10−2 4.61 × 10−2

FORCE2 6.94 × 1048 4.62 × 10−2 4.08 × 10−2 3.63 × 10−2

FORCE3 4.37 × 10−2 4.00 × 10−2 3.69 × 10−2 3.32 × 10−2

GFORCE1 6.14 × 10−2 5.37 × 10−2 4.53 × 10−2 4.06 × 10−2

GFORCE2 5.89 × 10−2 5.02 × 10−2 4.31 × 10−2 3.82 × 10−2

GFORCE3 5.70 × 10−2 4.82 × 10−2 4.28 × 10−2 3.81 × 10−2

HLL1 5.88 × 10−2 5.44 × 10−2 5.30 × 10−2 5.13 × 10−2

Notes. All were evaluated using the van Leer slope limiter on 400 cells. Note the blow-up evident for FORCE 2 with CCFL = 0.4.
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Fig. 6. Results for the blast-wave Riemann problem given by (46) using
400 cells, a CFL number of 0.99, and the van Leer limiter, with the SLIC
scheme based on the GFORCE flux, to time t = 0.4. The exact solution
is given by the solid lines, and is composed of a rarefaction, a contact
discontinuity, and a shock. The maximum velocity is v ≈ 0.960, cor-
responding to a Lorentz factor of 3.59. Numerical results are given for
pressure (squares), velocity (circles), and density (crosses), all scaled
by appropriate factors to fit them all onto one plot.

Del Zanna & Bucciantini (2002) only evolved to time t = 0.35,
rather than t = 0.4 as used here and in Lucas-Serrano et al.
2004).

On comparing different underlying first-order methods for
SLIC, we find that once again there is little visual difference be-
tween the results, and we therefore give the density peaks in
Table 2. These results are in line with what we have already
seen, that FORCE k tends to be more accurate than GFORCE k

for k ≥ 2, and that HLL is more accurate than GFORCE when
no multi-staging is used.

In Table 3 we give the L1 errors in the density for various
resolutions and methods. This shows near first-order accuracy
over the whole problem, which is the best that we can expect for
a solution containing discontinuities.

6.3. Perturbed density test

The initial data for this problem is given by

(ρ, v, p) =

{
(5, 0, 50) if x < 1

2

(2 + 0.3 sin(50x), 0, 5) if x > 1
2 ·

(47)

This problem provides a good indicator of how well a numeri-
cal method can capture extrema. There is no analytic solution to
this, and instead we use a converged numerical solution, gener-
ated at high-resolution. This test is evolved to t = 0.35, since the
results of Del Zanna & Bucciantini (2002) are consistent with

Table 2. Density peak for strongly relativistic shock as predicted by
various methods at a resolution of 400 cells.

Scheme Density peak Proportion of exact peak
Exact 10.42 100%

FORCE 6.84 65.6%
FORCE2 7.56 72.6%
FORCE3 8.04 77.2%
FORCE5 8.24 79.1%
GFORCE 6.99 67.1%
GFORCE2 7.45 71.5%
GFORCE3 7.78 74.7%
GFORCE5 7.98 76.6%

HLL 7.26 69.7%

Notes. The approximate methods all used CFL 0.99, van Leer limiter,
and the first-order reduction for the first five steps as indicated in the
main text.

Table 3. L1 norm errors in density for the blast-wave test, evaluated
over the whole domain.

Resolution Scheme ‖ρexact − ρnum‖1

400

FORCE 1.59 × 10−1

GFORCE 1.54 × 10−1

GFORCE 3 1.44 × 10−1

HLL 2.05 × 10−1

800

FORCE 1.16 × 10−1

GFORCE 1.13 × 10−1

GFORCE 3 9.95 × 10−2

HLL 2.00 × 10−1

1600

FORCE 6.27 × 10−2

GFORCE 6.13 × 10−2

GFORCE 3 5.07 × 10−2

HLL 1.11 × 10−1

Notes. All simulations used the van Leer limiter, CFL 0.99, and the
first-order reduction for the first five time-steps.

this, not t = 0.4 as stated in their main text. The converged solu-
tion, evolved using the SLIC 1 scheme with van Leer limiter, and
20 000 cells, is shown as the first part of Fig. 7. We note that this
is visually indistinguishable from the result using 10 000 cells.
Superimposed on this is an example evolution, using 400 cells
and the SLIC scheme based on FORCE. Points to note are that
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Fig. 7. Results for the density-perturbation initial conditions. The first plot shows a full solution obtained using the SLIC scheme based on
FORCE 1. The other plots show close-ups of the density when replacing FORCE by other schemes. For all results, a CFL of 0.99 and the van Leer
limiter were used, on a grid of 400 cells.

the three sharp peaks are not particularly well captured, and that
the final peak at the right of the figure is clipped. We note that
Del Zanna & Bucciantini (2002) manage to capture the peaks
somewhat better than we do whilst using half the number of
cells.

The rest of Fig. 7 shows the results for various schemes, fo-
cusing on the region 0.6 ≤ x ≤ 1. Now we see that increasing
the number of stages used improves the capturing of the three
peaks and the knees at x ≈ 0.7 and x ≈ 0.85. The ordering
of the plots has been chosen to show a progressively increase
in accuracy. We see that multi-staging GFORCE out-performs
HLL, and that multi-staged FORCE still produces better accu-
racy than multi-staged GFORCE. However, in our experience,
multi-staged FORCE appears to be more robust, and we note
that although increasing multi-staging generally improves accu-
racy, the pay-off after about three stages is small relative to the
extra computational cost.

7. Validation in two spatial dimensions

In this section we give details of various validation tests we
have carried out in two spatial dimensions, making use of the
overlapping grid capabilities of our algorithm.

7.1. One-dimensional shock across overlapping grids

It is important to test the accuracy of the method on curvilinear,
overlapping grids since use of these grids will be integral to our
later work. To this end, we evolve a one-dimensional Riemann
problem with a known solution across the two-dimensional do-
main, with outer vertices at (±0.5,±0.5) shown in Fig. 8, where
the Cartesian grid has resolution 400 × 400, and the annulus
matches its resolution to that of the Cartesian grid at its in-
ner circumference. This is designed to test the accuracy of the
interpolation between a curvilinear grid and a regular Cartesian
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grid, as well as the accuracy of the evolution taking place on an
annular geometry, rather than a Cartesian grid. From a physical
point of view, this is just evolving the shock-test on a square
domain, but the presence of the embedded curvilinear grid adds
numerical and algorithmic complexity. As initial conditions we
use the Riemann problem

(ρ, vx, vy, p) =

{
(10, 0, 0, 13.3) if x + y < 0
(1, 0, 0, 0) if x + y > 0, (48)

so that the shock is propagating diagonally across the grid.
As this is only a 1D test evolved on a 2D grid, the exact solu-

tion can be found as in Sect. 6. We perform the evolution using
the grid described in Fig. 8, and sample the solution at 400 points
(corresponding to the Cartesian grid’s resolution) along the line
x = y, perpendicular to the shock direction, at a time of t = 0.4.
Figure 9 shows the results from using the GFORCE flux, with a
CFL of 0.95 and the van Leer limiter. We can see that the solu-
tions on the plain 2D Cartesian grid and on the overlapping grid
are almost indistinguishable.

7.2. The two-dimensional Riemann problem

We can also test the multi-dimensionalisation of our schemes
in a simple two-dimensional test, essentially a two-dimensional
Riemann problem. Due to the two-dimensional nature of the set-
up, there is no known exact solution to this problem, but we can
compare our results to those of other authors such as Del Zanna
& Bucciantini (2002). The problem is defined on a region [0, 1]×
[0, 1] and is evolved to a time t = 0.4, with initial conditions

(ρ, vx, vy, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(0.5, 0, 0, 1) if x < 1

2 and y < 1
2 ,

(0.1, 0, 0.99, 1) if x > 1
2 and y < 1

2 ,

(0.1, 0.99, 0, 1) if x < 1
2 and y > 1

2 ,

(0.1, 0, 0, 0.01) if x > 1
2 and y > 1

2 .

(49)

This setup is symmetric about the line x = y, so that the evolved
solution should maintain this symmetry.

Figure 10 shows the results for two different schemes,
FORCE and GFORCE, both using the van Leer limiter. The
resolution used is 400 cells in each direction, using a CFL of
0.95. Although there is no exact solution for this initial data,
the results compare well with those of Del Zanna & Bucciantini
(2002), in that the same features are captured, and with similar
widths. We note that the long density peak in the upper-right of
the figure is more pronounced in our scheme than in Del Zanna
& Bucciantini (2002), but that the feature just below and to the
left of the centre is somewhat less well-defined in our plot than in
Del Zanna & Bucciantini (2002). It is in fact the case that, within
this region, the density drops to a very small value indeed, of the
order of 10−6. It is also the case, although not entirely clear on
the plots shown, that the discontinuities are slightly narrower for
the GFORCE scheme than for the FORCE scheme.

7.3. Front-facing step

In order to demonstrate the overlapping grid approach, we apply
our code to the problem of a fluid shock forming ahead of a solid
front-facing step, similar to the one presented in Lucas-Serrano
et al. (2004). Since this benchmark has a grid-aligned geome-
try, it can be performed with far simpler mesh-generation ap-
proaches, such as by a block-structured methodology based
on orthogonal cells. In order to demonstrate the versatility of
Overture, we smooth the corner of the step, as shown in Fig. 11.

Fig. 8. Grid for testing curvilinear and overlapping routines. An annulus
is superimposed on a Cartesian grid and used to replace part of that
grid. The Cartesian grid has its vertices at (±0.5, ±0.5), a resolution of
400×400, and the annulus resolution matches that of the Cartesian grid
at the inner circumference. We only show every fourth gridline in this
plot for clarity.
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Fig. 9. Cross-section of the evolution of the mildly relativistic shock-
wave across the grid shown in Fig. 8. The run was performed using
the GFORCE 1 scheme at a CFL of 0.95, and using the van Leer slope-
limiter. The green + signs are the numerical solution on the overlap-
ping grid, the red circles are from an equivalent simulation on a single
2D Cartesian grid, and the blue line is the exact solution for the prob-
lem. The two numerical solutions have been interpolated from along the
line x = y.

The fluid has an initial density of 1.4, with an adiabatic index
of 1.4. The fluid is initially steady, and the left-hand boundary
has an inflow of fluid at velocity vx = 0.8, at Mach 3, and the
system is evolved to time t = 10.

The resulting flow pattern is shown in Fig. 12, where we
plot iso-contours of the log of the density. This compares
qualitatively well to the results of Lucas-Serrano et al. (2004).

7.4. Reflective cylinder

Since we intend to apply this code to problems in general rel-
ativity, we demonstrate a problem that is somewhat similar in
its grid setup and initial conditions to that of a fluid impacting
on a black hole. In this problem, we immerse a solid cylinder
in a constant velocity flow and allow the numerical solution to
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(a) FORCE 1 scheme

(b) GFORCE 1 scheme

Fig. 10. Quadrants problem evolved at a resolution of 400× 400, with a
CFL of 0.95, using the FORCE 1 and GFORCE 1 schemes with the van
Leer slope-limiter. We plot the log of the density ρ, using 30 equally
spaced contours from ln 0.1 = −2.303 to ln 3.927 = 1.368.

evolve to steady-state. This general setup has been much stud-
ied in the non-relativistic case, and we expect to see qualitatively
similar results here. Our grid is constructed from a Cartesian grid
for the channel of size 10 by 5, containing an annulus with in-
ner radius 0.5, the inner circumference of which is a reflective
boundary. The channel’s walls are given transmissive bound-
ary conditions, with the exception of the left boundary, which
is an inflow boundary. The grid is shown in the bottom half of
Fig. 13. The state of the simulation at time t = 10 is shown in
Fig. 13. The solution consists of a strong bow shock in front
of the cylinder, and there is some evidence of an unstable wake

Fig. 11. Grid used for the front-facing step problem. The grid is made
up of three separate grids: one for the incoming channel, one for the
rest of the channel, and one for the step itself. The last has stretched
grid cells that become narrower towards the edge of the step. For clarity
we only show every other grid line.

Fig. 12. Solution at t = 10 for a shock hitting a front-facing step. The
fluid has adiabatic index Γ = 1.4, velocity v = 0.8 and is travelling
at Mach 3. The scheme used was GFORCE 1 with the van Leer slope-
limiter, and with CFL 0.95. We plot 30 contours of the log of the density.

Fig. 13. Solution for a reflective cylinder initially immersed in a con-
stant velocity flow of Mach 3, velocity 0.8, adiabatic index Γ = 1.4, and
density 1.4. The main channel has length 10 and width 5, composed of
100 × 200 cells. The annulus has inner radius 0.5 and outer radius 1.25,
with 168 cells in the angular dimension, and 32 cells in the radial direc-
tion, where an exponential stretching function has been applied in the
radial direction to restrict the radial size of cells nearer the inner bound-
ary. For clarity, we only show every other grid line. In the top half of
the plot, contours of ρ at time t = 10 are shown. The scheme used was
GFORCE 1, with the van Leer slope-limiter, at a CFL of 0.95. There
are 30 contours, equally spaced between 0 and 10.

beginning to form downstream, as would be expected. The so-
lution has qualitatively similar characteristics to those exhibited
by the non-relativistic problem.

7.5. Multiple reflective cylinders

In Fig. 14 we show an extension of the problem from the pre-
vious section, to the case where there is more than one reflec-
tive cylinder in the domain. The same constant state initial data
was used, this time incoming from the right. Since the numerical
solver we developed can handle general overlapping grids, it was
relatively simple to go from the single cylinder case to the mul-
tiple cylinder case. We show both the grid as used by Overture

A102, page 13 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425182&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425182&pdf_id=11
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425182&pdf_id=12
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425182&pdf_id=13


A&A 575, A102 (2015)

(a) Grid used for multi-cylinder flow, showing only every other
grid line for clarity.

(b) Solution for two reflective cylinders

Fig. 14. Simulation of flow past two solid cylinders. The first plot shows
the grid and in the second we plot 30 contours of ρ from 0 to 10 for two
solid cylinders initially immersed in a fluid of constant state, Mach 3
and velocity 0.8, with density 1.4 and adiabatic index 1.4. The solution
is shown at time 10. The GFORCE 1 scheme was used, with the van Leer
slope-limiter, and a CFL of 0.95.

and the result which, while it cannot be validated, demonstrates
qualitatively plausible behaviour.

8. Conclusions and further work

In this paper, we developed a numerical scheme to solve the
SRHD equations in complex geometries. The approach was
based on the second-order SLIC method, with fluxes obtained
through the MUSTA approach applied to the FORCE and
GFORCE schemes. The properties of these new schemes were
analysed and it was shown that the MUSTA approach can lead to
more accurate results potentially at the cost of being less robust,
although in practice the GFORCE scheme coupled with MUSTA
presented no difficulties. The new schemes were then compared
to each other and to the HLL scheme when applied to a number
of one-dimensional test problems. We found that the MUSTA
approach applied to the GFORCE scheme generally gave more
accurate results than the HLL scheme. The scheme was then ap-
plied to a number of two dimensional problems using overlap-
ping grids, which demonstrated the flexibility of the scheme to
handle complex geometries.

In a future paper, we shall therefore extend our scheme
to evolve general relativistic hydrodynamical problems, and
present the way that we have adapted the numerical schemes
presented in this paper to allow for a non-flat metric. It is our
intention to apply our code to problems involving a stationary
black-hole metric, in particular, to Bondi-Hoyle-Lyttleton accre-
tion onto a Kerr black hole.
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